WO2014014012A1 - 電力用半導体モジュール - Google Patents

電力用半導体モジュール Download PDF

Info

Publication number
WO2014014012A1
WO2014014012A1 PCT/JP2013/069380 JP2013069380W WO2014014012A1 WO 2014014012 A1 WO2014014012 A1 WO 2014014012A1 JP 2013069380 W JP2013069380 W JP 2013069380W WO 2014014012 A1 WO2014014012 A1 WO 2014014012A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring pattern
power semiconductor
wiring
insulating layer
semiconductor module
Prior art date
Application number
PCT/JP2013/069380
Other languages
English (en)
French (fr)
Inventor
美子 玉田
岡 誠次
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/409,301 priority Critical patent/US9196604B2/en
Priority to CN201380038280.9A priority patent/CN104488078B/zh
Priority to DE112013003161.2T priority patent/DE112013003161T5/de
Priority to JP2014525838A priority patent/JP6147256B2/ja
Publication of WO2014014012A1 publication Critical patent/WO2014014012A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/049Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being perpendicular to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10254Diamond [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1316Moulded encapsulation of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components

Definitions

  • the present invention relates to an insulated power semiconductor module used in a power converter such as an inverter.
  • a wiring pattern is formed on a metal plate serving as a heat sink via an insulating layer, and a power semiconductor element is provided on the metal pattern and connected to each terminal by wire bonding, etc. What is sealed is generally used.
  • Such power semiconductor modules can be roughly classified into two types: case type modules sealed with silicone gel and transfer mold type modules sealed with epoxy resin (for example, the former is Patent Document 1 and the latter is Patent Document 2).
  • case type module a ceramic insulating layer is used as an insulating layer
  • a resin insulating layer is often used.
  • a conventional semiconductor module is formed on a ceramic multilayer substrate in which three or more ceramic substrates are laminated and bonded to each other, a surface metal circuit board bonded to the upper and lower surfaces of the ceramic multilayer substrate, and an inner ceramic substrate.
  • An inner layer metal circuit board disposed in the circuit through-hole, one end joined to the inner layer metal circuit board, and the other end joined to the other inner layer metal circuit board or the surface layer metal circuit board by a brazing material,
  • a semiconductor element as an electronic component is mounted on a ceramic circuit board provided with a metal column connecting another inner layer metal circuit board or a surface layer metal circuit board (see, for example, Patent Document 3).
  • the bus bar portion has a laminated structure, and the bus bar portion has a low inductance, thereby reducing the inductance of the semiconductor module (see, for example, Patent Document 4).
  • JP 08-316357 A Japanese Patent Laid-Open No. 10-135377 JP 2011-199275 A Japanese Patent No. 4430497
  • the conventional semiconductor module described in Patent Document 3 uses a ceramic multilayer substrate, it is considered that the semiconductor module can be miniaturized and an effect of reducing inductance can be obtained in a portion where circuits overlap.
  • the ceramic multilayer substrate has a multilayer structure, the thermal resistance is large, and there has been a problem that heat generated during switching of the power semiconductor element mounted on the ceramic multilayer substrate cannot be efficiently radiated.
  • a method of using a metal column to connect the multilayer metal circuit boards to form a current path is not suitable for a power module having a large current capacity.
  • the conventional semiconductor module described in Patent Document 4 can reduce the inductance in the bus bar laminated portion, but there is no description of the shape of the output terminal of the bus bar and the connection between the bus bar and the semiconductor element. It is estimated that the shape of the output terminal and the connection structure with the power semiconductor element are complicated. Further, it is presumed that the manufacturing process is complicated, such as insert molding with a case with insulating paper sandwiched between bus bars. In addition, the resin fluidity of the case is poor, it is necessary to increase the distance between the bus bars, and there is a concern that the effect of reducing inductance is weakened.
  • the present invention has been made to solve the above-described problems, and has an object to provide a power semiconductor module that achieves downsizing and low inductance with a simple configuration and suppresses an increase in thermal resistance.
  • a power semiconductor module is an insulating power semiconductor module configured by housing a plurality of power semiconductor elements therein, and a base plate that is a metal radiator and the base plate A first insulating layer provided and a first wiring pattern provided on the first insulating layer, and a predetermined region on the first wiring pattern is 2 through only the second insulating layer made of resin. This is a pattern stacking region in which the second wiring patterns of the layers are stacked.
  • a power semiconductor module is an insulating power semiconductor module configured by housing a plurality of power semiconductor elements therein, and a base plate that is a metal radiator and the base plate A first insulating layer provided and a first wiring pattern provided on the first insulating layer, and a predetermined region on the first wiring pattern is 2 through only the second insulating layer made of resin.
  • This is a pattern stacking region in which the second wiring patterns of the layers are stacked. Therefore, the wiring in the power semiconductor module can be stacked in the pattern stacking region, and the power semiconductor module can be reduced in size and inductance with a simple configuration.
  • the power semiconductor element can be disposed in a region other than the pattern lamination region on the first wiring pattern, and heat generated from the power semiconductor element can be efficiently radiated.
  • FIG. 2 is a sectional view taken along line A1-A2 in the plan view of FIG. It is a circuit diagram for demonstrating the circuit structure of the power semiconductor module in Embodiment 1 of this invention. It is a top view which shows typically the structure of the semiconductor module for electric power in Embodiment 2 of this invention.
  • FIG. 5 is a B1-B2 cross-sectional view in the plan view of FIG. 4. It is a top view which shows typically the structure of the semiconductor module for electric power in Embodiment 3 of this invention.
  • FIG. 7 is a C1-C2 sectional view in the plan view of FIG. 6. It is a top view which shows typically the structure of the semiconductor module for electric power in Embodiment 4 of this invention. It is D1-D2 sectional drawing in the top view of FIG.
  • FIG. 1 is a plan view schematically showing a configuration of a power semiconductor module 1 according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view taken along line A1-A2 in the plan view of FIG.
  • a so-called 6-in-1 structure which is a power semiconductor module applicable to three-phase alternating current
  • the 6-in-1 power semiconductor module is composed of a circuit in which two pairs of self-extinguishing semiconductor elements and freewheeling diodes connected in antiparallel are connected in series, and this circuit is provided for three phases. It is a thing.
  • the power semiconductor module 1 is an insulated power semiconductor module configured by housing a plurality of power semiconductor elements 7 therein, and is a metal for radiating heat generated in the power semiconductor module 1 to the outside.
  • a base plate 2 that is a radiator, a first insulating layer 3 provided on the base plate 2, and a first wiring pattern 4 of a first layer made of metal foil provided on the first insulating layer 3 are provided. ing.
  • a second wiring pattern 6 of a second layer made of a metal foil disposed via the second insulating layer 5 is laminated, and a second layer of the second wiring pattern 6 is laminated.
  • a pattern lamination region X1 in which the first and second wiring patterns 4 and 6 are laminated is formed.
  • a plurality of power semiconductor elements 7 are mounted on the first wiring pattern 4 in a region different from the pattern lamination region X1 and are joined to the first wiring pattern 4 by solder 8. Necessary portions such as between the power semiconductor elements 7 and between the power semiconductor elements 7 and the first and second wiring patterns 4 and 6 are electrically connected by wire bonds 9.
  • the required locations on the first and second wiring patterns 4 and 6 are respectively provided with socket-type terminals 10 for external connection, and the terminals 10 are joined to the first and second wiring patterns 4 and 6 by solder 8.
  • a rod-like external terminal (not shown) is inserted and connected to the hole 100 of the terminal 10.
  • the power semiconductor module 1 is configured by being integrally sealed with the transfer mold resin 11.
  • a socket-type terminal into which an external terminal is inserted and connected is adopted as the terminal 10.
  • any terminal that can be connected to an external circuit such as a screw connection terminal, is used. It may be a terminal.
  • the base plate 2 is a metal having excellent thermal conductivity, such as aluminum, aluminum alloy, copper, copper alloy, iron, and iron alloy, or a composite material such as copper / iron-nickel alloy / copper and aluminum / iron. -Nickel alloy / aluminum can be used.
  • the thickness, length, and width of the base plate 2 are appropriately determined depending on, for example, the current capacity of the power semiconductor element 7. As the current capacity of the power semiconductor element 7 increases, it is preferable to set the thickness, length, and width of the base plate 2 to be larger.
  • an aluminum plate having a thickness of 3 mm is used as the base plate 2.
  • the first insulating layer 3 for example, various ceramics, a resin insulating sheet containing inorganic powder, a resin insulating sheet containing glass fiber, or the like can be used.
  • the second insulating layer 5 is made of a resin, and for example, a resin insulating sheet containing inorganic powder, a resin insulating sheet containing glass fiber, or the like can be used.
  • both the first and second insulating layers 3 and 5 are formed of an epoxy resin insulating sheet containing alumina powder as an inorganic powder.
  • Other inorganic powders include beryllia, boron nitride, magnesia, silica, silicon nitride, aluminum nitride and the like.
  • the thickness of the first and second insulating layers 3 and 5 formed of a resin insulating sheet is set to about 20 to 400 ⁇ m, for example.
  • a copper foil is used as the metal foil for forming the first wiring pattern 4 and the second wiring pattern 6, and the thickness of the copper foil is 0.3 mm.
  • the wire bond 9 can be an aluminum wire, a copper wire, or the like.
  • an aluminum wire is used as the wire bond 9.
  • the thickness of the copper foil forming the first and second wiring patterns 4 and 6 and the diameter and number of the metal wires used for the wire bond 9 are appropriately determined according to the current capacity of the power semiconductor element 7, and this embodiment It is not restricted to the example of the form 1 of.
  • an epoxy resin sheet containing alumina powder in a B-stage state is placed as a first insulating layer 3 on a base plate 2 made of an aluminum plate having a thickness of 3 mm, and further a copper foil having a thickness of 0.3 mm (one layer) Stack eyes).
  • the B stage state refers to an intermediate curing state of a thermosetting resin such as an epoxy resin.
  • the base plate 2, the first insulating layer 3, and the copper foil (first layer) are heated and pressed, and the base plate 2 and the copper foil (first layer) are cured of the first insulating layer 3. It is fixed by. Thereafter, the copper foil (first layer) is etched into a predetermined shape to form the first wiring pattern 4 of the first layer.
  • the first wiring pattern 4 is provided with an element mounting portion for mounting the power semiconductor element 7 at a predetermined position.
  • an epoxy resin sheet containing alumina powder in a B-stage state is placed as a second insulating layer 5 in a predetermined region that is a part of the first wiring pattern 4 of the first layer, and further a second insulating layer is formed thereon.
  • a copper foil (second layer) having the same size as layer 5 and a thickness of 0.3 mm is stacked. Then, these are heated and pressurized again, and the first wiring pattern 4 and the copper foil (second layer) are fixed by curing the second insulating layer 5. Thereafter, the copper foil (second layer) is etched into a predetermined shape to form the second wiring pattern 6 of the second layer.
  • a metal circuit board formed by laminating the base plate 2, the first insulating layer 3, the first wiring pattern 4, the second insulating layer 5, and the second wiring pattern 6 is formed.
  • the first insulating layer 3 and the second insulating layer 5 are formed of an epoxy resin insulating sheet, between the base plate 2 and the first wiring pattern 4, the first wiring pattern 4 and the second wiring.
  • each member is insulated and also serves as an adhesive for fixing each member.
  • a solder resist (not shown) that is an insulating film for protecting the first wiring pattern 4 and the second wiring pattern 6 is formed at an arbitrary position on the surface of the metal circuit board. Also good.
  • the power semiconductor element 7 is placed on the element mounting portion provided at a predetermined location on the first wiring pattern 4 on the first layer, and the external portion is placed on any location on the first wiring pattern 4 and the second wiring pattern 6.
  • Each of the connection terminals 10 is joined using solder 8.
  • the power semiconductor element 7 is disposed only on the first wiring pattern 4 and is not disposed on the second wiring pattern 6.
  • a portion requiring conduction is connected by a wire bond 9.
  • the connection between the first and second wiring patterns 4 and 6 and the power semiconductor element 7 and the connection between the power semiconductor elements 7 are performed by the wire bond 9.
  • the present invention is not limited to this, and other methods may be used as long as electrical connection can be made.
  • a metal circuit board on which the power semiconductor element 7 and the terminals 10 are mounted is set in a mold, and an epoxy resin transfer mold resin 11 filled with, for example, silica powder is injected into the mold to The metal circuit board on which the semiconductor element 7 and the terminal 10 are mounted is sealed.
  • an epoxy resin sheet containing alumina powder is used as the second insulating layer 5 serving as the second insulating layer.
  • an insulating resin film such as polyimide is used.
  • the first wiring pattern 4 and the second wiring pattern 6 can be bonded not only by processing by heating and pressurization but also by using a polyimide sheet with adhesive on both sides. May be.
  • an insulating substrate is a substrate in which only one wiring pattern is disposed on a metal base plate via an insulating layer, and such an insulating substrate is commercially available.
  • the power semiconductor module 1 according to the first embodiment may be formed using this generally commercially available insulating substrate. That is, a wiring pattern of a general insulating substrate may be a first-layer wiring pattern, and a second-layer wiring pattern may be provided in a partial region on the wiring pattern via an insulating layer.
  • the power semiconductor module 1 includes the self-extinguishing semiconductor element 7a as the power semiconductor element 7 and the power semiconductor element.
  • a circuit in which two sets of anti-reflective diodes 7b connected in reverse parallel are connected in series is provided for three phases.
  • the self-extinguishing semiconductor element 7a and the free-wheeling diode 7b arranged in the circuit form a negative arm 70b, and the positive arm 70a and the negative arm 70b form a circuit for one phase. Yes.
  • the self-extinguishing semiconductor element 7a includes an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). However, it is not limited to these, and other self-extinguishing semiconductor elements may be used.
  • an IGBT is employed as the self-extinguishing semiconductor element 7a, and includes a gate electrode as a control electrode, a collector electrode as an input electrode, and an emitter electrode as an output electrode.
  • a drain electrode corresponds to the input electrode
  • a source electrode corresponds to the output electrode.
  • FIG. 3 shows an equivalent circuit diagram including an external circuit when one phase of the three phases of the power semiconductor module 1 constitutes a two-level power conversion circuit.
  • two sets of self-extinguishing semiconductor elements 7a and freewheeling diodes 7b connected in antiparallel are connected in series with a positive electrode terminal 10p serving as both ends of a capacitor 110. It is configured to be connected to the negative electrode terminal 10n.
  • the arm connected to the positive electrode of the capacitor 110 is the positive electrode side arm 70a, and the arm connected to the negative electrode of the capacitor 110 is the negative electrode side arm 70b.
  • a midpoint AC between the positive arm 70a and the negative arm 70b is connected to a midpoint between the positive arm 71a and the negative arm 71b of the other phase via a load L.
  • FIG. 1 the connection relationship of the circuit for one phase constituted by the leftmost positive electrode side arm 70a and the adjacent negative electrode side arm 70b will be described with reference to FIG.
  • the dotted line portion shown in FIG. 3 that is, the connection path between the positive terminal 10p and the point C1 on the collector electrode side of the positive arm 70a is indicated by a dotted line, and in FIG. 1, the connection path is between the points C1 and 10P. Indicated by a dotted line.
  • the positive electrode terminal 10p and the positive electrode side arm 70a are provided on the first region 4a of the first wiring pattern 4, so that the connection path between the positive electrode terminal 10p and the positive electrode side arm 70a is one layer. On the first wiring pattern 4 of the eye.
  • the alternate long and short dashed line portion shown in FIG. 3, that is, the connection path between the negative electrode terminal 70n and the point E1 on the negative electrode side arm 70b on the emitter electrode side is shown by the alternate long and short dashed line. It is shown with a dashed-dotted line between.
  • a negative arm 70b is provided on the second region 4b of the first wiring pattern 4, and the negative arm 70b is connected to the second wiring pattern 6 of the second layer by a wire bond 9b (9). It is connected. Since the negative electrode terminal 10n is provided on the second wiring pattern 6 of the second layer, the connection path between the negative electrode side arm 70b and the negative electrode terminal 10n is mainly on the second wiring pattern 6 of the second layer. It becomes.
  • the positive side arm 70 a and the negative side arm 70 b are connected through the wire bond 9 a (9) and the second region 4 b of the first wiring pattern 4.
  • the gate electrode wiring of the self-extinguishing semiconductor element 7a constituting the positive arm 70a is provided in the third region 4c which is a part of the first wiring pattern 4 in the first layer, and the emitter electrode control wiring is provided. It is formed in a fourth area 4d, which is a part of the first wiring pattern 4 arranged adjacent to the third area 4c.
  • the electrical connection between the positive terminal 10p and the positive arm 70a is via the first wiring pattern 4 in the first layer
  • the electrical connection between the negative arm 70b and the negative terminal 10n is the first wiring pattern 4.
  • This is performed via the second wiring pattern 6 of the second layer overlapping the upper side.
  • Parallel flat plate can be used. Therefore, the current path of the circuit can be shortened, and the wiring inductance inside the power semiconductor module 1 can be reduced.
  • the commutation loop R in the circuit shown in FIG. 3 is indicated by a gray solid line (partly including a dotted line and a one-dot chain line). Further, in correspondence with FIG. 3, the circuit for one phase formed by the leftmost positive electrode arm 70a and the adjacent negative electrode arm 70b in FIG. , Including an alternate long and short dash line).
  • the path (dotted line portion) from the positive electrode terminal 10p to the positive electrode side arm 70a and the path (dotted line portion) from the negative electrode side arm 70b to the negative electrode terminal 10n described above are included in the commutation loop. It is the main part of the flow loop.
  • the path from the positive electrode terminal 10p to the positive electrode side arm 70a passes through the first region 4a of the first wiring pattern 4, and the path from the negative electrode side arm 70b to the negative electrode terminal 10n is the first region of the first wiring pattern 4. It passes through the second wiring pattern 6 overlapping the portion 4a.
  • the current direction is opposite, so that the magnetic fluxes generated by the time change di / dt of the current cancel each other. That is, since the first region 4a portion of the first wiring pattern 4 and the second wiring pattern 6 are laminated and the path is shortened, the magnetic flux due to di / dt is canceled out, so that the wiring inductance L in the commutation loop is reduced. Can be efficiently reduced.
  • the second insulating layer 5 and the second wiring pattern 6 are disposed at any location other than the element mounting portion on the first wiring pattern 4.
  • the arrangement of the second wiring pattern 6 is an arbitrary place other than the element mounting portion on the first wiring pattern 4, and the wirings of the commutation loop are stacked as described above, and the direction of the current is reversed.
  • the arrangement is determined as follows.
  • the power semiconductor elements 7 such as the self-extinguishing semiconductor element 7 a and the freewheeling diode 7 b are disposed only on the first wiring pattern 4 and are not disposed on the second wiring pattern 6. The effect by this is demonstrated. Since the power semiconductor element 7 generates heat during switching or the like, it is necessary to efficiently dissipate the generated heat. In general, power semiconductor modules are used by connecting to a heatsink, but reducing the thermal resistance of the stacked members from the power semiconductor element to the base plate that contacts the heatsink will increase the heat dissipation efficiency. Connected. In particular, an insulator having a lower thermal conductivity than a conductor increases the thermal resistance.
  • the thermal resistance increases because the insulating layer, which is an insulator, is laminated in two layers.
  • the insulation layer is a single layer.
  • the lower part of the first wiring pattern 4 is directly fixed to the base plate 2 via the first insulating layer 3. For this reason, by arranging the power semiconductor element 7 on the first wiring pattern 4, the heat generated from the power semiconductor element 7 is efficiently transferred to the base plate 2 and dissipated.
  • the second wiring of the second layer is provided in a partial region on the first wiring pattern 4 of the first layer via only the second insulating layer 5.
  • a pattern lamination region X1 in which the pattern 6 is laminated is provided.
  • wiring from the positive electrode terminal 10p, which is the main circuit of the power semiconductor module 1, to the positive arm 70a is provided in the first wiring pattern 4 in the first layer, and two wirings from the negative arm 70b to the negative terminal 10n are provided. It can be provided in the second wiring pattern 6 of the layer, and the current path can be formed into a parallel plate. As a result, the circuit current path can be shortened, and the wiring inductance inside the power semiconductor module 1 can be reduced.
  • the direction of the current is reversed, so that the magnetic flux generated by the time change di / dt of the current can be canceled each other,
  • the wiring inductance in the commutation loop can be efficiently reduced.
  • the space required for wiring can be reduced, and the power semiconductor module 1 can be reduced in size.
  • the power semiconductor element 7 serving as a heat source is disposed on the first wiring pattern 4 in the first layer, the generated heat from the power semiconductor element 7 can be efficiently transferred to the base plate 2.
  • the power semiconductor module 1 with high cooling performance can be obtained.
  • the 6-in-1 power semiconductor module 1 is used as an example.
  • the present invention is not limited to this, and even a so-called 2-in-1 or 1-in-1 power semiconductor module may be used.
  • Form 1 can be applied, and the same effect can be obtained.
  • the 6-in-1 structure described in the first embodiment the first and second wiring patterns 4 and 6 are stacked, and the wiring inductance can be efficiently reduced. small. Therefore, by applying the present invention to a 6-in-1 structure, the effect that the variation in switching speed between phases and the variation in surge voltage are reduced can be obtained.
  • FIG. 4 is a plan view schematically showing a configuration of a power semiconductor module 1A according to the second embodiment of the present invention
  • FIG. 5 is a B1-B2 cross-sectional view in the plan view of FIG. Note that the transfer mold resin 11 is not shown in the plan view of FIG. 4 so that the internal configuration of the power semiconductor module 1A can be easily understood.
  • a power semiconductor module having a 6-in-1 structure is adopted, and a set of a self-extinguishing semiconductor element 7a and a free-wheeling diode 7b connected in antiparallel is provided. Two sets of circuits connected in series are defined as one phase, and this circuit is provided for three phases.
  • the basic configuration such as the arrangement of the power semiconductor elements 7a and 7b is substantially the same as that of the first embodiment, but the wiring for the gate electrode and the control wiring for the emitter electrode of each self-extinguishing semiconductor element 7a.
  • the pattern placement locations are different.
  • symbol is attached
  • subjected and description is abbreviate
  • the gate electrode wiring and the emitter electrode control wiring of the self-extinguishing semiconductor element 7a are both on the first wiring pattern 4 in the first layer (third region 4c, fourth region 4d).
  • the second embodiment as shown in FIGS. 4 and 5, there are a plurality of pattern lamination regions where the first wiring pattern 4 in the first layer and the second wiring pattern 6 in the second layer are laminated.
  • One of the wiring for the gate electrode and the control wiring for the emitter electrode of the self-extinguishing semiconductor element 7a is in the first wiring pattern of the first layer, and the other is in the second wiring pattern of the second layer.
  • the gate electrode wiring and the emitter electrode control wiring are stacked in the pattern stacking region.
  • the control wiring of the emitter electrode of the self-extinguishing semiconductor element 7a arranged on the leftmost side is the first wiring pattern 4 (the fifth region of the first wiring pattern 4). 4e), and the wiring for the gate electrode is laminated on the second wiring pattern 6 of the second layer in the pattern lamination region X2 (the second layer laminated on the fifth region 4e of the first wiring pattern 4 via the second insulating layer) It is provided in the wiring pattern 6) of the eyes.
  • the gate electrode wiring of the self-extinguishing semiconductor element 7a and the emitter electrode control wiring are stacked.
  • the first wiring pattern 4e (4) and the second wiring pattern 6 (X2) are connected to the emitter electrode and the gate electrode of the self-extinguishing semiconductor element 7a through wire bonds 9 (wire bonds indicated by 9c in the figure), respectively.
  • the emitter electrode and the gate electrode are respectively connected to the control terminal 10 (terminal indicated by 10a in the figure).
  • an external circuit is connected to each terminal 10a.
  • the wiring for the gate electrode and the emitter The electrode control wiring is laminated.
  • the path between the gate electrode and the emitter electrode is shortened. Become.
  • the impedance in the path between the gate and the emitter can be lowered, and the vibration and oscillation of the gate can be suppressed.
  • the power semiconductor module 1A can be further reduced in size.
  • the emitter electrode control wiring is provided in the first wiring pattern 4 of the first layer and the gate electrode wiring is provided in the second wiring pattern 6 of the second layer.
  • the gate electrode wiring may be provided in the first wiring pattern 4 of the first layer, and the control wiring of the emitter electrode may be provided in the second wiring pattern 6 of the second layer.
  • FIG. 6 is a plan view schematically showing a configuration of a power semiconductor module 1B according to Embodiment 3 of the present invention
  • FIG. 7 is a C1-C2 cross-sectional view in the plan view of FIG.
  • a power semiconductor module 1B according to the third embodiment includes a self-extinguishing semiconductor element 7a as a power semiconductor element 7 and a reflux diode 7b as a power semiconductor element 7 connected in antiparallel. Are connected in parallel to form one set, and two sets of these sets are connected in series.
  • the power semiconductor module 1B of the third embodiment is not a transfer mold type power semiconductor module that is sealed with a transfer mold resin.
  • the power semiconductor module 1B according to the third embodiment is a case-type power semiconductor module 1B that is more widely used than the transfer mold type.
  • the case-type power semiconductor module is obtained by injecting a gel sealing resin or the like into a resin case to seal and integrate a wiring pattern, a power semiconductor element, or the like.
  • a ceramic insulating layer is used as an insulating layer disposed on a base plate which is a metal radiator.
  • the first insulating layer 3B made of ceramic is used as the first first insulating layer disposed on the base plate.
  • the configuration of the power semiconductor module 1B will be described with reference to FIGS.
  • symbol is attached
  • the case is not shown in the plan view of FIG. 6 so that the configuration inside the case of the power semiconductor module 1B can be easily understood.
  • a first insulating layer 3B made of ceramics as a first insulating layer is provided on a base plate 2B that is a metal radiator.
  • the metal foil 30B is joined to the lower surface of the first insulating layer 3B by brazing, and the metal foil 30B is joined to the base plate 2B by the solder 8.
  • the 1st insulating layer 3B adheres on the base board 2B.
  • the first wiring pattern 4B of the first layer formed by etching the metal foil is fixed by brazing or the like.
  • a second wiring pattern 6B of a second layer made of a metal foil disposed via the second insulating layer 5B is laminated, and two layers of wiring are formed.
  • a pattern lamination region Y1 in which the patterns 4B and 6B are laminated is formed.
  • a plurality of power semiconductor elements 7 are mounted on the first wiring pattern 4B in a region different from the pattern lamination region Y1, and are joined to the first wiring pattern 4B by solder 8. Necessary portions such as between the power semiconductor elements 7 and between the power semiconductor elements 7 and the first and second wiring patterns 4B and 6B are electrically connected by wire bonds 9. Also, a plurality of external connection terminals 10b are provided at arbitrary locations on the first and second wiring patterns 4B and 6B. The terminals 10b are connected to the first and second wiring patterns 4B and 6B by the solder 8. It is joined. In the first and second embodiments, a socket-type terminal is used as an external connection terminal. In the third embodiment, a screw-type terminal 10 b is used as the terminal 10.
  • each of these members (base plate 2B, first insulating layer 3B, first wiring pattern 4B, second insulating layer 5B, second wiring pattern 6B, power semiconductor element 7, wire bond 9, terminal 10b, etc.)
  • the case 12 is covered, and the inside of the case 12 is filled with a gel-like sealing resin 13.
  • the base plate 2B is the same as that of the base plate 2 of the first embodiment, and a description thereof is omitted.
  • the first insulating layer 3B employs a ceramic-made first insulating layer 3B.
  • ceramics include silicon nitride and aluminum nitride.
  • the thickness of the first insulating layer 3B is set to about 300 to 1000 ⁇ m, for example.
  • the second insulating layer 5B is the same as that of the first embodiment, and the second insulating layer 5B is formed of an epoxy resin insulating sheet containing alumina powder as an inorganic powder, and the thickness thereof is, for example, 20 to 400 ⁇ m. Set to degree. About the 1st wiring pattern 4B, the 2nd wiring pattern 6B, the wire bond 9, etc., it is the same as that of the case of the said Embodiment 1, and abbreviate
  • a ceramic insulating substrate generally used for a case type power semiconductor module has a wiring pattern formed by attaching a metal foil such as copper to one surface of a ceramic insulating layer by brazing and etching the metal foil such as copper foil on the other surface. Similarly, it is fixed by brazing.
  • the ceramic insulating substrate that is generally commercially available is used as the metal foil 30B, the first insulating layer 3B, and the first wiring pattern 4B, and the metal foil 30B is used.
  • the first insulating layer 3B and the first wiring pattern 4B are used as the ceramic insulating substrate 14.
  • the ceramic insulating substrate 14 is fixed by the solder 8 on the base plate 2B made of an aluminum plate having a thickness of 3 mm. At this time, the ceramic insulating substrate 14 is fixed on the base plate 2B so that the lower side is the metal foil 30B and the upper side is the first wiring pattern 4B.
  • an epoxy resin sheet containing alumina powder in a B-stage state is placed as a second insulating layer 5B on a predetermined region which is a part on the first wiring pattern 4B of the first layer, and further a second insulating layer is formed thereon.
  • a 0.3 mm thick copper foil (second layer) having the same size as the layer 5B is stacked.
  • the first wiring pattern 4B and the copper foil (second layer) are fixed via the second insulating layer 5B by the curing of the second insulating layer 5B. Thereafter, the copper foil (second layer) is etched into a predetermined shape to form the second wiring pattern 6B of the second layer.
  • the first wiring pattern 4B is provided with an element mounting portion for mounting the power semiconductor element 7 at a predetermined position.
  • the second insulating layer 5B and the second wiring pattern 6B are the first wiring pattern. 4 is formed in a predetermined region other than the element mounting portion on the upper side.
  • a metal circuit board is formed by laminating the base plate 2B, the ceramic insulating substrate 14, the second insulating layer 5B, and the second wiring pattern 6B.
  • a solder resist (not shown), which is an insulating film for protecting the first wiring pattern 4B and the second wiring pattern 6B, is formed at an arbitrary position on the surface of the metal circuit board. Also good. Further, a solder resist may be formed on the ceramic insulating substrate 14 in advance before the base plate 2B and the ceramic insulating substrate 14 are fixed.
  • the power semiconductor element 7 is placed on the element mounting portion provided at a predetermined location on the first wiring pattern 4B of the first layer, and at any location on the first wiring pattern 4B and the second wiring pattern 6B.
  • the terminals 10b for external connection are joined using solder 8 respectively.
  • the power semiconductor element 7 is disposed only on the first wiring pattern 4B and is not disposed on the second wiring pattern 6B.
  • two power self-extinguishing semiconductor elements 7a and a freewheeling diode 7b connected in antiparallel are connected in parallel. This is composed of a circuit in which two sets are connected in series. Therefore, as shown in FIG.
  • the two self-extinguishing semiconductor elements 7a and the two return diodes 7b arranged in the left half in the drawing constitute the negative arm 70b and arranged in the right half in the drawing.
  • the two self-extinguishing semiconductor elements 7a and the two free-wheeling diodes 7b constitute a positive arm 70a.
  • the connection between each wiring pattern 4B, 6B and the power semiconductor element 7 and the connection between each power semiconductor element 7 are performed by the wire bond 9, but the present invention is not limited to this. Other methods may be used as long as electrical connection can be made.
  • the outer peripheral portion 12a of the case 12 provided so as to surround the metal circuit board on which the power semiconductor element 7 and the terminals 10b are mounted is fixed to the peripheral portion of the upper surface of the base plate 2B with an adhesive.
  • the inside is filled with a gel-like sealing resin 13 and heated to cure the sealing resin 13.
  • the lid 12b of the case 12 is covered, and the outer peripheral portion 12a and the lid 12b are fixed with an adhesive to form the case 12.
  • an epoxy resin sheet containing alumina powder is used as the second insulating layer 5B.
  • an insulating resin film or sheet such as polyimide may be used.
  • the case-type power semiconductor module 1B is employed.
  • the first layer of the first layer is used.
  • a pattern lamination region Y1 in which the second wiring pattern 6B of the second layer is laminated only through the second insulating layer 5B is provided in a partial region on the wiring pattern 4B. For this reason, the wiring from the positive terminal serving as the main circuit of the power semiconductor module 1B to the positive arm 70a and the wiring from the negative arm 70b to the negative terminal can be stacked in the pattern stacking region Y1, and the current path Can be parallel flattened.
  • effects such as reduction of the wiring inductance inside the power semiconductor module 1B, efficient reduction of the wiring inductance in the commutation loop, and miniaturization of the power semiconductor module 1B can be obtained. Further, since the power semiconductor element 7 serving as a heat source is disposed on the first wiring pattern 4B in the first layer, the heat generated from the power semiconductor element 7 can be efficiently transferred to the base plate 2B. As in the first embodiment, a power semiconductor module 1B having high cooling performance can be obtained.
  • a ceramic insulating layer is used as the first insulating layer 3B between the first wiring pattern 4B on which the power semiconductor element 7 serving as a heat source is mounted and the base plate 2B.
  • Ceramics such as silicon nitride and aluminum nitride have a lower thermal resistance than that of a resin insulating layer, and heat generated from the power semiconductor element 7 can be more efficiently transferred to the base plate 2B. Can be improved.
  • the configuration of the second embodiment may be applied to the configuration of the third embodiment, and the gate electrode wiring and the emitter electrode control wiring of the self-extinguishing semiconductor element 7a may be stacked. .
  • the third embodiment two self-extinguishing semiconductor elements 7a and freewheeling diodes 7b connected in reverse parallel are connected in parallel to form one set, and these sets are connected in series.
  • the self-extinguishing semiconductor element 7a and the freewheeling diode 7b are connected in reverse parallel to each other, and two sets are connected in series.
  • the third embodiment can be applied to such a circuit.
  • the third embodiment can be applied to a power semiconductor module having a 6-in-1 structure as in the first embodiment and a power semiconductor module having a 1-in-1 structure.
  • the third embodiment when the third embodiment is applied to a 6-in-1 structure, the first and second wiring patterns 4 and 6 are stacked, and the wiring inductance can be reduced efficiently. small. Therefore, by applying the present invention to a 6-in-1 structure, the effect that the variation in switching speed between phases and the variation in surge voltage are reduced can be obtained.
  • FIG. 8 is a plan view schematically showing a configuration of a power semiconductor module 1C according to the fourth embodiment of the present invention
  • FIG. 9 is a cross-sectional view along D1-D2 in the plan view of FIG. Note that the transfer mold resin 11 is not shown in the plan view of FIG. 8 so that the internal configuration of the power semiconductor module 1C can be easily understood.
  • a power semiconductor module having a 6-in-1 structure is adopted, and the self-extinguishing semiconductor element 7a and the free-wheeling diode 7b connected in reverse parallel are used.
  • a circuit in which two sets (arms) are connected in series is one phase, and this circuit is provided for three phases.
  • the basic configuration such as the arrangement of the power semiconductor elements 7a and 7b, is substantially the same as in the first and second embodiments, but the wiring for the gate electrode that is the control electrode of each self-extinguishing semiconductor element 7a
  • the pattern wiring place of the control wiring of the emitter electrode which is the output electrode is different.
  • symbol is attached
  • the power semiconductor module 1C of the fourth embodiment includes a base plate 2C, a first insulating layer 3C, a first wiring pattern 4C, a second insulating layer 5C, and a second wiring pattern 6C.
  • a base plate 2C a first insulating layer 3C
  • a first wiring pattern 4C a second insulating layer 5C
  • a second wiring pattern 6C a second wiring pattern 6C.
  • the materials of the base plate 2C, the first insulating layer 3C, the first wiring pattern 4C, the second insulating layer 5C, and the second wiring pattern 6C are the same as those used in the first embodiment.
  • the third layer of the third layer further laminated on the pattern lamination region Z1 where the first wiring pattern 4C of the first layer and the second wiring pattern 6C of the second layer are laminated.
  • a wiring pattern 16 and a fourth wiring pattern 18 in the fourth layer are provided.
  • the third insulating layer 15 is provided in a partial region on the second wiring pattern 6 ⁇ / b> C in the pattern stacking region Z ⁇ b> 1, and 3 of approximately the same size as the second insulating layer 15 is provided on the third insulating layer 15.
  • a third wiring pattern 16 of a layer is provided, a fourth insulating layer 17 is provided on a part of the third wiring pattern 16, and 4 of the same size as the fourth insulating layer 17 is provided on the fourth insulating layer 17.
  • a fourth wiring pattern 18 of the layer is provided, and a four-layer stacked region (Z2 to Z4) in which four wiring patterns are stacked is formed.
  • a total of three four-layer stacked regions are provided (regions indicated by Z2 to Z4 in the figure), and the three self-extinguishing arcs constituting the positive arm 70a.
  • a wiring for a gate electrode and a control wiring for an emitter electrode of the type semiconductor element 7a are provided in the third wiring pattern 16 and the fourth wiring pattern 18 of the four-layer stacked regions Z2 to Z4, respectively. Further, each of the third wiring pattern 16 and the fourth wiring pattern 18 is provided with an external connection terminal 10c (10).
  • the third-layer third wiring including the four-layer stacked region Z2 is provided as the emitter electrode control wiring.
  • the wiring pattern 16 is provided, and the gate electrode wiring is provided in the fourth wiring pattern 18 of the fourth layer in the four-layer stacked region Z2.
  • the gate electrode wiring of the self-extinguishing semiconductor element 7a and the emitter electrode control wiring are laminated.
  • the third wiring pattern 16 and the fourth wiring pattern 18 are connected to the emitter electrode and the gate electrode of the self-extinguishing semiconductor element 7a through wire bonds 9, respectively, and the emitter electrode and the gate electrode are respectively connected to the control terminal 10c ( 10).
  • the self-extinguishing semiconductor elements 7a constituting the positive arm 70a the two self-extinguishing semiconductor elements 7a other than the self-extinguishing semiconductor element 7a arranged on the leftmost side are similarly described.
  • the gate electrode wiring and the emitter electrode control wiring are stacked.
  • the self-extinguishing semiconductor element 7a constituting the negative arm 70b is both the gate electrode wiring and the emitter electrode control wiring, as in the first embodiment. Is provided in a predetermined region of the first wiring pattern 4C of the first layer.
  • the thing made from resin is used for the 3rd insulating layer 15 and the 4th insulating layer 17,
  • the resin insulating sheet containing inorganic powder, the resin insulating sheet containing glass fiber, etc. can be used.
  • the thicknesses of the third insulating layer 15 and the fourth insulating layer 17 are set to about 20 to 400 ⁇ m, for example.
  • insulating resin films and sheets such as polyimide may be used.
  • each wiring pattern uses a polyimide sheet with adhesive on both sides. You may adhere
  • the materials of the third wiring pattern 16 and the fourth wiring pattern 18 are the same as those of the first wiring pattern 4C and the second wiring pattern 6C.
  • the third wiring pattern 16 and the fourth wiring pattern 18 are formed by etching a copper foil having a thickness of 0.3 mm. Yes.
  • the third and fourth wirings of the third layer and the fourth layer which are further stacked on the first and second wiring patterns 4 and 6 of the first and second layers.
  • Patterns 16 and 18 are provided, and control wiring for the emitter electrode of the self-extinguishing semiconductor element 7a and wiring for the gate electrode are provided in the third and fourth wiring patterns, respectively, and are laminated. Therefore, in addition to the effects of the first and second embodiments, in the power semiconductor module 1C, it is possible to eliminate a region that is divided only for the emitter electrode control wiring and the gate electrode wiring.
  • the module 1C can be further downsized.
  • the emitter electrode control wiring is provided in the third wiring pattern 16 in the third layer, and the gate electrode wiring is provided in the fourth wiring pattern 18 in the fourth layer.
  • the gate electrode wiring may be provided in the third wiring pattern 16 of the third layer, and the control wiring of the emitter electrode may be provided in the fourth wiring pattern 18 of the fourth layer.
  • the present invention is not limited to this, and only the gate electrode wiring and the emitter electrode control wiring of the self-extinguishing semiconductor element 7a constituting the negative arm 70b have a laminated structure.
  • the gate electrode wiring and the emitter electrode control wiring of all the self-extinguishing semiconductor elements 7a can be appropriately set, for example, to have a laminated structure.
  • the semiconductor material of the power semiconductor element 7 is not particularly limited, and generally silicon can be used. However, if a wide band gap semiconductor material using a wide band gap semiconductor material, for example, a material such as silicon carbide, a gallium nitride-based material, or diamond, is employed as the power semiconductor element 7, each of the first to fourth embodiments described above. It is possible to reduce the loss of the power semiconductor modules 1, 1A to 1C while maintaining the effect of the above, and it is possible to increase the efficiency of the power conversion device configured using the power semiconductor modules 1, 1A to 1C. .
  • the power converter can be downsized.
  • a wide band gap semiconductor may be used for only some of the power semiconductor elements 7 among the plurality of power semiconductor elements 7.
  • wide bandgap semiconductors have high heat resistance, so they can operate at high temperatures, and heat sink fins for heat sinks in power converters can be downsized and water cooling units can be cooled by air. Miniaturization is possible.
  • a wide band gap semiconductor can perform high-speed switching.
  • the switching speed and the surge voltage due to the wiring inductance are proportional, there is a limit to increasing the switching speed. Even in such a case, if the inventions of the first to fourth embodiments are applied, it is possible to perform high-speed switching by reducing the wiring inductance.

Abstract

金属放熱体であるベース板(2)と、ベース板(2)上に設けられた第1絶縁層(3)と、第1絶縁層(3)上に設けられた第1配線パターン(4)とを備え、第1配線パターン(4)上の一部である所定領域には、樹脂製の第2絶縁層(5)のみを介して2層目の第2配線パターン(6)が積層されてパターン積層領域(X1)を形成している。そして、電力用半導体素子(7)は、第1配線パターン(4)上のパターン積層領域(X1)以外の領域に搭載されている。そしてベース板(2)、第1絶縁層(3)、第1配線パターン(4)、第2絶縁層(5)、第2配線パターン(6)、電力用半導体素子(7)がトランスファーモールド樹脂(11)により一体的に封止されることで電力用半導体モジュール(1)が構成される。

Description

電力用半導体モジュール
 この発明は、インバータなどの電力変換装置に使用される絶縁型の電力用半導体モジュールに関するものである。
 近年、電力変換装置の小型化が求められており、これに使用される電力用半導体モジュールの小型化が重要となっている。
 電力用半導体モジュールの構造としては、放熱板となる金属板に絶縁層を介して配線パターンが形成され、その上に電力用半導体素子が設けられて各端子とワイヤボンドなどにより接続され、樹脂にて封止されるものが一般的である。
 このような電力用半導体モジュールは大きく2種類に分類でき、シリコーンゲルで封止されたケース型モジュールとエポキシ樹脂で封止されたトランスファーモールド型モジュールがある(例えば、前者は特許文献1、後者は特許文献2参照)。前者のケース型モジュールでは、絶縁層としてセラミックス絶縁層が使用され、後者のトランスファーモールド型モジュールでは、樹脂絶縁層が使用されることが多い。
 ところで、大電流、高電圧でスイッチング動作する電力用半導体モジュールでは、電力用半導体素子がオフする際の電流の時間変化率di/dtと電力変換装置に含まれる配線インダクタンスLとにより、サージ電圧ΔV=L・di/dtが電力用半導体素子に印加される。配線インダクタンスLが大きいと電力用半導体素子の耐圧を超えるサージ電圧が発生し、電力用半導体素子の劣化の原因となることがある。
 このため、電力用半導体モジュールは、小型化が求められるとともに、低インダクタンス化も重要となる。
 例えば従来の半導体モジュールは、3層以上のセラミック基板が積層されて互いに接合されたセラミック多層基板と、セラミック多層基板の上面および下面に接合された表層金属回路板と、内層のセラミック基板に形成された回路貫通孔内に配置された内層金属回路板と、一端が内層金属回路板に、他端が他の内層金属回路板または表層金属回路板にそれぞれろう材によって接合され、内層金属回路板と他の内層金属回路板または表層金属回路板とを接続する金属柱とを備えたセラミック回路基板に、電子部品としての半導体素子が搭載されている(例えば、特許文献3参照)。
 また、例えば従来の半導体モジュールは、モジュール内部のブスバーを積層構造としてブスバー部分の低インダクタンスを図ることで、半導体モジュールの低インダクタンス化を図っている(例えば、特許文献4参照)。
特開平08-316357号公報 特開平10-135377号公報 特開2011-199275号公報 特許第4430497号公報
 上記特許文献3に記載の従来の半導体モジュールは、セラミック多層基板を用いたため、半導体モジュールを小型化することができ、回路が重なる部分ではインダクタンス低減の効果も得られると考えられる。しかし、セラミック多層基板は、多層構造であるため熱抵抗が大きく、セラミック多層基板に搭載された電力用半導体素子のスイッチング時等における発熱を効率よく放熱することができないという問題があった。また、多層金属回路板同士を接続するために金属柱を用い、電流経路とする方法は、電流容量の大きなパワーモジュールに不向きである。
 また、上記特許文献4に記載の従来の半導体モジュールは、ブスバーの積層部分での低インダクタンス化が可能であるが、ブスバーの出力端子の形状や、ブスバーと半導体素子との接続についての説明はなく、出力端子の形状や電力用半導体素子との接続構造が複雑化することが推測される。また、ブスバー間に絶縁紙を挟んでケースとインサート成形するなど、製造工程が煩雑であることが推測される。また、ケースの樹脂流動性が悪く、ブスバー間の距離を広げる必要があり、インダクタンスの低減効果が弱くなることも懸念される。
 この発明は、上記のような課題を解決するためになされたもので、簡単な構成で小型化・低インダクタンス化を実現するとともに、熱抵抗の増大を抑えた電力用半導体モジュールを得ることを目的とする。
 この発明に係る電力用半導体モジュールは、内部に複数の電力用半導体素子を収納して構成される絶縁型の電力用半導体モジュールであって、金属放熱体であるベース板と、上記ベース板上に設けられた第1絶縁層と、上記第1絶縁層上に設けられた第1配線パターンとを備え、上記第1配線パターン上の所定領域は、樹脂製の第2絶縁層のみを介して2層目の第2配線パターンが積層されるパターン積層領域である。
 この発明に係る電力用半導体モジュールは、内部に複数の電力用半導体素子を収納して構成される絶縁型の電力用半導体モジュールであって、金属放熱体であるベース板と、上記ベース板上に設けられた第1絶縁層と、上記第1絶縁層上に設けられた第1配線パターンとを備え、上記第1配線パターン上の所定領域は、樹脂製の第2絶縁層のみを介して2層目の第2配線パターンが積層されるパターン積層領域である。このため、電力用半導体モジュールにおける配線をパターン積層領域にて積層することができ、電力半導体モジュールの小型化・低インダクタンス化を簡単な構成で実現することができる。これに加え、電力用半導体素子は、第1配線パターン上のパターン積層領域以外の領域に配置することができ、電力用半導体素子からの発熱を効率よく放熱することができる。
この発明の実施の形態1における電力用半導体モジュールの構成を模式的に示す平面図である。 図1の平面図におけるA1-A2断面図である。 この発明の実施の形態1における電力用半導体モジュールの回路構成を説明するための回路図である。 この発明の実施の形態2における電力用半導体モジュールの構成を模式的に示す平面図である。 図4の平面図におけるB1-B2断面図である。 この発明の実施の形態3における電力用半導体モジュールの構成を模式的に示す平面図である。 図6の平面図におけるC1-C2断面図である。 この発明の実施の形態4における電力用半導体モジュールの構成を模式的に示す平面図である。 図8の平面図におけるD1-D2断面図である。
実施の形態1.
 図1は、この発明の実施の形態1における電力用半導体モジュール1の構成を模式的に示す平面図、図2は図1の平面図におけるA1-A2断面図である。本実施の形態1では、一例として、いわゆる6in1構造と呼ばれ、3相交流に適用可能な電力用半導体モジュールを採用している。6in1構造の電力用半導体モジュールは、逆並列に接続された自己消弧型半導体素子と還流用ダイオードとの組が2組直列に接続された回路を1相分とし、この回路を3相分備えたものである。
 まず、図1、図2を参照して、電力用半導体モジュール1の構成を簡単に説明する。なお、電力用半導体モジュール1の内部の構成が分かりやすいよう、図1の平面図においてトランスファーモールド樹脂の記載を省略している。
 電力用半導体モジュール1は、内部に複数の電力用半導体素子7を収納して構成される絶縁型の電力用半導体モジュールであり、電力用半導体モジュール1で発生する熱を外部へ放熱するための金属放熱体であるベース板2と、ベース板2上に設けられた第1絶縁層3と、第1絶縁層3上に設けられた金属箔からなる1層目の第1配線パターン4とを備えている。そして、第1配線パターン4上の一部分である所定領域には、第2絶縁層5を介して配設される金属箔からなる2層目の第2配線パターン6が積層され、2層の第1、第2配線パターン4、6が積層するパターン積層領域X1が形成されている。
 第1配線パターン4上であって、パターン積層領域X1とは異なる領域に、複数の電力用半導体素子7が搭載されており、はんだ8によって第1配線パターン4に接合されている。また、各電力用半導体素子7間や、各電力用半導体素子7と第1、第2配線パターン4、6間等の必要な箇所は、ワイヤボンド9により電気的に接続されている。第1、第2配線パターン4、6上の必要箇所には、それぞれ外部接続用のソケット型の端子10が設けられ、端子10は、はんだ8により第1、第2配線パターン4、6に接合されている。端子10の孔部100には、棒状の外部端子(図示なし)が挿入接続される。
 そして、これらの各部材(ベース板2、第1絶縁層3、第1配線パターン4、第2絶縁層5、第2配線パターン6、電力用半導体素子7、ワイヤボンド9、端子10等)が、トランスファーモールド樹脂11により一体的に封止されることで電力用半導体モジュール1が構成されている。
 なお、本実施の形態1では、端子10として、外部端子を挿入接続するソケット型端子を採用しているが、ネジ接続用の端子など、外部回路と接続できるようなものであればどのような端子であってもよい。
 次に、各部材の材質等について説明する。
 ベース板2は、熱伝導性に優れた金属、例えば、アルミニウム、アルミニウム合金、銅、銅合金、鉄、および鉄合金等、あるいは、複合材料である銅/鉄-ニッケル合金/銅およびアルミニウム/鉄-ニッケル合金/アルミニウム等を用いることができる。特に、電力用半導体素子の電流容量が大きい場合には、電気伝導性にも優れた銅を用いることが好ましい。また、ベース板2の厚み、長さ、幅は、例えば電力用半導体素子7の電流容量により、適宜決定される。電力用半導体素子7の電流容量が大きくなるほど、ベース板2の厚み、長さ、幅を大きく設定することが好ましい。
 本実施の形態1では、ベース板2として厚み3mmのアルミニウム板を使用している。
 第1絶縁層3は、例えば、各種セラミックスや、無機粉末を含有する樹脂絶縁シート、ガラス繊維を含有する樹脂絶縁シート等を用いることができる。
 第2絶縁層5には、樹脂製のものを使用し、例えば、無機粉末を含有する樹脂絶縁シート、ガラス繊維を含有する樹脂絶縁シート等を用いることができる。
 本実施の形態1では、第1、第2絶縁層3、5ともに、無機粉末としてアルミナ粉末を含有するエポキシ樹脂絶縁シートにより形成している。なお、その他の無機粉末としては、ベリリヤ、ボロンナイトライド、マグネシア、シリカ、窒化珪素、窒化アルミニウム等が挙げられる。なお、樹脂絶縁シートにより形成された第1、第2絶縁層3、5の厚みは、例えば20~400μm程度に設定される。
 第1配線パターン4および第2配線パターン6を形成する金属箔には例えば銅箔を用い、銅箔の厚みは0.3mmとしている。
 また、ワイヤボンド9には、アルミニウム線や、銅線等を用いることができ、ここでは、ワイヤボンド9としてアルミニウム線を使用している。
 なお、第1、第2配線パターン4、6を形成する銅箔の厚み、ワイヤボンド9に用いられる金属線の線径・本数は、電力用半導体素子7の電流容量により適宜決定され、本実施の形態1の例に限られるものではない。
 次に、電力用半導体モジュール1の製造方法の一例について説明する。
 まず、厚み3mmのアルミニウム板からなるベース板2上に、Bステージ状態のアルミナ粉末を含有するエポキシ樹脂シートを第1絶縁層3として載せ、さらにその上に厚み0.3mmの銅箔(1層目)を重ねる。なお、Bステージ状態とは、エポキシ樹脂等の熱硬化性樹脂の硬化中間状態をいう。そして、ベース板2、第1絶縁層3、銅箔(1層目)を重ねたものを加熱・加圧し、ベース板2と銅箔(1層目)とは、第1絶縁層3の硬化により固着される。その後、銅箔(1層目)を所定の形状にエッチングし、1層目の第1配線パターン4を形成する。なお、第1配線パターン4には、電力用半導体素子7を搭載するための素子搭載部分が所定の位置に設けられている。
 次に、1層目の第1配線パターン4上の一部である所定領域に、Bステージ状態のアルミナ粉末を含有するエポキシ樹脂シートを第2絶縁層5として載せ、さらにその上に第2絶縁層5と略同じサイズの厚み0.3mmの銅箔(2層目)を重ねる。そして、これらを再度加熱・加圧し、第1配線パターン4と銅箔(2層目)とは、第2絶縁層5の硬化により固着される。その後、銅箔(2層目)を所定の形状にエッチングし、2層目の第2配線パターン6を形成する。
 このようにして、ベース板2、第1絶縁層3、第1配線パターン4、第2絶縁層5、第2配線パターン6が積層してなる金属回路基板を形成する。本実施の形態1では、第1絶縁層3、第2絶縁層5をエポキシ樹脂絶縁シートにより形成しているため、ベース板2と第1配線パターン4間、第1配線パターン4と第2配線パターン6間に配置されることで、各部材を絶縁するとともに、各部材を固着する接着剤としての役割も担っている。
 なお、金属回路基板の形成後、金属回路基板の表面の任意の場所に、第1配線パターン4、第2配線パターン6を保護する絶縁膜である、ソルダーレジスト(図示せず)を形成してもよい。
 次に、1層目の第1配線パターン4上の所定の場所に設けられる素子搭載部分に電力用半導体素子7を、そして第1配線パターン4、第2配線パターン6上の任意の場所に外部接続用の端子10を、各々はんだ8を用いて接合する。なお、電力用半導体素子7は第1配線パターン4上にのみ配置され、第2配線パターン6上には配置されない。
 そして、第1配線パターン4もしくは第2配線パターン6と各電力用半導体素子7との間、および、各電力用半導体素子7間において、導通が必要な箇所をワイヤボンド9で接続する。なお、本実施の形態1では、第1、第2配線パターン4、6と電力用半導体素子7との接続、および各電力用半導体素子7間の接続をワイヤボンド9により行っているが、これに限られるものではなく、電気的接続を行えるものであれば、他の方法を用いてもよい。
 次に、電力用半導体素子7や端子10等を搭載した金属回路基板を金型にセットし、金型内に例えばシリカ粉末が充填されたエポキシ樹脂系トランスファーモールド樹脂11を注入して、電力用半導体素子7や端子10等を搭載した金属回路基板を封止する。
 なお、本実施の形態1では、2層目の絶縁層となる第2絶縁層5として、アルミナ粉末を含有するエポキシ樹脂シートを用いたが、この他、ポリイミドなどの絶縁性のある樹脂のフィルムやシートを用いても良く、また加熱・加圧での加工だけでなく、両面に粘着剤のついたポリイミドシートなどを使用することで、第1配線パターン4と第2配線パターン6とを接着してもよい。
 ところで、一般に言う絶縁基板とは、金属製のベース板上に絶縁層を介して配線パターンが1層のみ配置されたものであり、このような絶縁基板は市販等されている。例えば、本実施の形態1の電力用半導体モジュール1を、この一般に市販等されている絶縁基板を利用して形成してもよい。すなわち一般の絶縁基板の配線パターンを1層目の配線パターンとし、この配線パターンの上の一部の領域に、2層目の配線パターンを絶縁層を介して設けることとしてもよい。
 次に、実施の形態1の電力用半導体モジュール1における電力用半導体素子7の配置と、それらの接続関係について詳しく説明する。
 上述の通り、本実施の形態1では6in1の電力用半導体モジュール1を採用しており、電力用半導体モジュール1は、電力用半導体素子7としての自己消弧型半導体素子7aと、電力用半導体素子7としての還流用ダイオード7bとが逆並列に接続された組が2組直列に接続された回路を1相分として、これを3相分備えている。
 本実施の形態1の電力用半導体モジュール1では、例えば、図1中一番左側に配置されている自己消弧型半導体素子7aと還流用ダイオード7bとで正極側アーム70aを構成し、その隣りに配置されている自己消弧型半導体素子7aと還流用ダイオード7bとで負極側アーム70bを構成し、この正極側アーム70a、負極側アーム70bにより1相分の回路を形成する構成となっている。
 なお、自己消弧型半導体素子7aとしては、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transister)などが代表的である。ただし、これらに限られるものではなく、その他の自己消弧型半導体素子であってもよい。本実施の形態1では、自己消弧型半導体素子7aとしてIGBTを採用し、制御電極としてのゲート電極、入力電極としてのコレクタ電極、出力電極としてのエミッタ電極を備えている。なお、MOSFETを採用した場合には、一般に、入力電極としてドレイン電極、出力電極としてソース電極が該当する。
 ここで、図3に、電力用半導体モジュール1の3相の内、1相分が2レベル電力変換回路を構成する場合における、外部回路を含めた等価回路図を示す。図3に示すように、この回路は、自己消弧型半導体素子7aと還流用ダイオード7bとを逆並列に接続した組を2直列に接続したものを、コンデンサ110の両端となる正極端子10pと負極端子10nに接続して構成されている。コンデンサ110の正極と接続されるアームが正極側アーム70a、コンデンサ110の負極と接続されるアームが負極側アーム70bである。なお、正極側アーム70aと負極側アーム70bとの中点ACは、負荷Lを介して、他相の正極側アーム71aと負極側アーム71bとの中点に接続されている。
 図1上において、一番左側の正極側アーム70aとその隣りの負極側アーム70bにより構成された1相分の回路について、その接続関係を図3を参照しながら説明する。
 まず、図3で示す点線部分、すなわち正極端子10pと正極側アーム70aのコレクタ電極側の点C1との接続経路を点線で示すとともに、図1において、当該接続経路を点C1と10Pとの間における点線で示す。図1に示すように、第1配線パターン4の第1領域4a上に、正極端子10p、正極側アーム70aが設けられることにより、正極端子10pと正極側アーム70aとの接続経路は、1層目の第1配線パターン4上となる。
 次に、図3で示す一点鎖線部分、すなわち負極側アーム70bのエミッタ電極側の点E1と負極端子10nとの接続経路を一点鎖線で示すとともに、図1において、当該経路を点E1と10nとの間の一点鎖線で示す。図1に示すように第1配線パターン4の第2領域4b上に負極側アーム70bが設けられており、負極側アーム70bはワイヤボンド9b(9)により2層目の第2配線パターン6と接続されている。そして、2層目の第2配線パターン6上に負極端子10nが設けられていることにより、負極側アーム70bと負極端子10nとの接続経路は、主に2層目の第2配線パターン6上となる。
 なお、正極側アーム70aと負極側アーム70bとの接続は、ワイヤボンド9a(9)および第1配線パターン4の第2領域4bを介して行われている。
 また、正極側アーム70aを構成する自己消弧型半導体素子7aのゲート電極用の配線は1層目の第1配線パターン4の一部である第3領域4cに、エミッタ電極の制御用配線は第3領域4cの隣りに配置される第1配線パターン4の一部である第4領域4dにそれぞれ形成されている。
 以上の通り、正極端子10pと正極側アーム70aとの電気的接続は1層目の第1配線パターン4を介し、負極側アーム70bと負極端子10nとの電気的接続は第1配線パターン4の上側に重なる2層目の第2配線パターン6を介して行われている。
 このように、第1配線パターン4、第2配線パターン6を積層化することにより、正極端子10pと正極側アーム70a間や、負極側アーム70bと負極端子10n間を繋ぐ主回路における電流経路を平行平板化することができる。従って、回路の電流経路を短くすることができ、電力用半導体モジュール1内部の配線インダクタンスを低減することができる。
 ところで、上記でも説明したように、大電流、高電圧でスイッチング動作する電力用半導体モジュールでは、電力用半導体素子である自己消弧型半導体素子がオフする際の電流の時間変化di/dtと配線インダクタンスLとにより、サージ電圧ΔV=L・di/dtが自己消弧型半導体素子に印加される。配線インダクタンスLが大きいと自己消弧型半導体素子の耐圧を超えるサージ電圧が発生し、自己消弧型半導体素子の劣化の原因となることがある。従って、サージ電圧を抑えることが、自己消弧型半導体素子の能力を効率的に発揮させることにつながる。サージ電圧を抑えるためには、サージ電圧が発生する経路、すなわち、スイッチング動作時に電流の時間変化di/dtが発生する経路である転流ループにおける配線インダクタンスLを小さくすることが求められる。
 図3に示す回路における転流ループRをグレー実線(一部に点線、一点鎖線を含む)で示す。また、図3に対応させて、図1上における、一番左側の正極側アーム70aとその隣りの負極側アーム70bにより構成された1相分の回路にも同様にグレー実線(一部に点線、一点鎖線を含む)で転流ループRを示す。
 上記で説明した正極端子10pから正極側アーム70aまでの経路(点線部分)と、負極側アーム70bから負極端子10nまでの経路(一点鎖線部分)とは、転流ループに含まれており、転流ループの主部分となっている。上述の通り、正極端子10pから正極側アーム70aまでの経路は第1配線パターン4の第1領域4aを通り、負極側アーム70bから負極端子10nまでの経路は第1配線パターン4の第1領域4a部分に重なる第2配線パターン6を通る。そして、重なった部分の転流ループでは、電流の向きが逆であるため、電流の時間変化di/dtにより発生する磁束を互いに打ち消す。すなわち、第1配線パターン4の第1領域4a部分と第2配線パターン6とが積層されて経路が短くなったことに加え、di/dtによる磁束が打ち消されるため、転流ループにおける配線インダクタンスLを効率的に低減することができる。
 上記において、第2絶縁層5、第2配線パターン6は、第1配線パターン4上の素子搭載部分以外の任意の箇所に配置されることを説明した。第2配線パターン6の配置は、第1配線パターン4上の素子搭載部分以外の任意の箇所であって、上記のように転流ループの配線が積層し、かつその電流の向きが逆となるような配置に決定されている。
 なお、自己消弧型半導体素子7aや還流用ダイオード7b等の電力用半導体素子7は、第1配線パターン4上のみに配置され、第2配線パターン6上には配置されない。これによる効果を説明する。
 電力用半導体素子7では、スイッチング時等に熱を発生するため、この発生熱を効率よく放熱することが必要となる。一般に、電力用半導体モジュールは放熱器に接続して使用するが、電力用半導体素子から放熱器に接触するベース板までの積層された部材の熱抵抗を小さくすることが、放熱効率を上げることに繋がる。特に、導体に比べて熱伝導率の低い絶縁体は熱抵抗を増大させるので、絶縁体による熱抵抗を下げることが放熱効率を上げると言える。第2配線パターン6が設けられたパターン積層領域X1では、絶縁体である絶縁層が2層に積層されているため熱抵抗が大きくなるが、パターン積層領域以外の部分では絶縁層が単層であり、第1配線パターン4の下部は第1絶縁層3を介して直接ベース板2に固着されている。このため、電力用半導体素子7を第1配線パターン4上に配置しておくことで、電力用半導体素子7から発生する熱は、効率よくベース板2に伝熱して放熱される。
 以上のように、本実施の形態1の電力用半導体モジュール1は、1層目の第1配線パターン4上の一部の領域に第2絶縁層5のみを介して2層目の第2配線パターン6が積層されるパターン積層領域X1を備えた。このため、電力用半導体モジュール1の主回路となる正極端子10pから正極側アーム70aへの配線を1層目の第1配線パターン4に設け、負極側アーム70bから負極端子10nへの配線を2層目の第2配線パターン6に設けることができ、電流経路を平行平板化することができる。これにより回路の電流経路を短くすることができ、電力用半導体モジュール1内部の配線インダクタンスの低減を図ることができる。
 さらに、第1、第2配線パターン4、6が積層された部分の転流ループでは、電流の向きが逆となるため、電流の時間変化di/dtにより発生する磁束を互いに打ち消すことができ、転流ループにおける配線インダクタンスを効率的に低減することができる。
 また、第1、第2配線パターン4、6が積層されることにより、配線に必要なスペースを縮小でき、電力用半導体モジュール1を小型化することができる。
 また、熱源となる電力用半導体素子7は、1層目の第1配線パターン4上に配置されているため、電力用半導体素子7からの発生熱を効率よくベース板2伝熱することができ、冷却性能の高い電力用半導体モジュール1を得ることができる。
 なお、本実施の形態1では、一例として6in1構造の電力用半導体モジュール1を採用したが、これに限られるものではなく、いわゆる2in1や、1in1構造の電力用半導体モジュールであっても本実施の形態1を適用することができ、同様の効果が得られる。
 一方、本実施の形態1で記載の6in1構造においては、第1、第2配線パターン4、6が積層され、配線インダクタンスを効率的に低減できるため、特に、負極側の相間のインダクタンスのばらつきが小さい。したがって、6in1構造において本発明を適用することにより、相間のスイッチング速度のばらつきやサージ電圧のばらつきが小さくなるという効果が得られる。
実施の形態2.
 図4は、この発明の実施の形態2における電力用半導体モジュール1Aの構成を模式的に示す平面図、図5は図4の平面図におけるB1-B2断面図である。なお、電力用半導体モジュール1Aの内部の構成が分かりやすいよう、図4の平面図においてトランスファーモールド樹脂11の記載を省略している。
 本実施の形態2でも、上記実施の形態1と同様、6in1構造の電力用半導体モジュールを採用しており、逆並列に接続された自己消弧型半導体素子7aと還流用ダイオード7bとの組が2組直列に接続された回路を1相分とし、この回路を3相分備えている。各電力用半導体素子7a、7bの配置等、基本的な構成は上記実施の形態1とほぼ同様であるが、各自己消弧型半導体素子7aのゲート電極用の配線およびエミッタ電極の制御用配線のパターン配設場所が異なっている。なお、上記実施の形態1と同様の構成については、同一符号を付して説明を省略する。
 上記実施の形態1では自己消弧型半導体素子7aのゲート電極用の配線、エミッタ電極の制御用配線は両方とも1層目の第1配線パターン4上(第3領域4c、第4領域4d)に設けられていた。
 これに対し、本実施の形態2では、図4、図5に示すように、1層目の第1配線パターン4と2層目の第2配線パターン6とが積層されるパターン積層領域が複数箇所に存在し、自己消弧型半導体素子7aのゲート電極用の配線とエミッタ電極の制御用配線は、一方が1層目の第1配線パターンに、他方が2層目の第2配線パターンにそれぞれ設けられ、ゲート電極用の配線とエミッタ電極の制御用配線とがパターン積層領域にて積層されている。
 具体的には、本実施の形態2では、パターン積層領域X1以外に6箇所のパターン積層領域X2~X7を有している。例えば、図4、5中、一番左側に配置されている自己消弧型半導体素子7aのエミッタ電極の制御用配線を1層目の第1配線パターン4(第1配線パターン4の第5領域4e)に設け、ゲート電極用の配線をパターン積層領域X2における2層目の第2配線パターン6(第1配線パターン4の第5領域4e上に第2絶縁層を介して積層される2層目の配線パターン6)に設けている。これにより自己消弧型半導体素子7aのゲート電極用の配線と、エミッタ電極の制御用配線とが積層される。第1配線パターン4e(4)、第2配線パターン6(X2)は、自己消弧型半導体素子7aのエミッタ電極、ゲート電極にそれぞれワイヤボンド9(図中9cで示すワイヤボンド)を介して接続され、エミッタ電極、ゲート電極が制御用の端子10(図中10aで示す端子)とそれぞれ接続される。そして、各端子10aに外部回路が接続されることになる。
 なお、一番左側に配置されている自己消弧型半導体素子7a以外の5個の自己消弧型半導体素子7aについても同様であり、各パターン積層領域X3~X7においてゲート電極用の配線とエミッタ電極の制御用配線とが積層される構成となっている。
 以上のように、本実施の形態2では、自己消弧型半導体素子7aのゲート電極用の配線とエミッタ電極の制御用配線を積層することにより、ゲート電極とエミッタ電極との間の経路が短くなる。このため、上記実施の形態1の効果に加え、ゲート・エミッタ間の経路におけるインピーダンスを下げることができ、ゲートの振動・発振などを抑制することが可能となる。また、ゲート電極用の配線、エミッタ電極の制御用配線を積層させることにより、電力用半導体モジュール1Aのさらなる小型化が可能となる。
 なお、本実施の形態2では、エミッタ電極の制御用配線を1層目の第1配線パターン4、ゲート電極用の配線を2層目の第2配線パターン6に設けたが、これに限られるものではなく、ゲート電極用の配線を1層目の第1配線パターン4に、エミッタ電極の制御用配線を2層目の第2配線パターン6に設ける構成としてもよい。
実施の形態3.
 図6は、この発明の実施の形態3における電力用半導体モジュール1Bの構成を模式的に示す平面図、図7は図6の平面図におけるC1-C2断面図である。本実施の形態3では、一例として、2in1構造と呼ばれる電力用半導体モジュールを採用している。
 本実施の形態3での電力用半導体モジュール1Bは、電力用半導体素子7としての自己消弧型半導体素子7aと、電力用半導体素子7としての還流用ダイオード7bとが逆並列に接続されたものを2個並列に接続して1組とし、この組を2組直列接続した回路により構成されている。
 本実施の形態3の電力用半導体モジュール1Bは上記実施の形態1や実施の形態2とは異なり、トランスファーモールド樹脂により封止されるトランスファーモールド型の電力用半導体モジュールではない。本実施の形態3の電力用半導体モジュール1Bは、トランスファーモールド型よりも広く普及しているケース型の電力用半導体モジュール1Bである。ケース型の電力用半導体モジュールとは、樹脂製のケースの内部にゲル封止樹脂等を注入して、配線パターンや電力用半導体素子等を封止し、一体化したものである。
 一般にケース型の電力用半導体モジュールでは、金属放熱体であるベース板上に配置される絶縁層としてセラミック製の絶縁層が用いられる。本実施の形態3においても、ベース板上に配置される1層目の第1絶縁層としてセラミック製の第1絶縁層3Bを使用する。
 まず、図6、図7を参照して、電力用半導体モジュール1Bの構成を説明する。なお、上記実施の形態1と同様の構成については、同一符号を付して説明を省略する。また、電力用半導体モジュール1Bのケース内部の構成が分かりやすいよう、図6の平面図においてケースの記載を省略している。
 電力用半導体モジュール1Bは、金属放熱体であるベース板2B上に、第1絶縁層としてのセラミックス製の第1絶縁層3Bが設けられている。実際には、第1絶縁層3Bの下面には金属箔30Bがロウ付けにより接合されており、この金属箔30Bがはんだ8によりベース板2Bに接合されている。これにより、ベース板2B上に第1絶縁層3Bが固着される。ベース板2B上に固定された第1絶縁層3Bの上面には、金属箔をエッチングして形成された1層目の第1配線パターン4Bが、ロウ付けなどにより固着されている。そして、第1配線パターン4B上の一部分である所定領域には、第2絶縁層5Bを介して配設される金属箔からなる2層目の第2配線パターン6Bが積層され、2層の配線パターン4B、6Bが積層されるパターン積層領域Y1が形成されている。
 第1配線パターン4B上であって、パターン積層領域Y1とは異なる領域には、複数の電力用半導体素子7が搭載されており、はんだ8によって第1配線パターン4Bに接合されている。また、各電力用半導体素子7間や、各電力用半導体素子7と第1、第2配線パターン4B、6B間等の必要な箇所は、ワイヤボンド9により電気的に接続されている。また、第1、第2配線パターン4B、6B上の任意の箇所には、複数の外部接続用の端子10bが設けられ、端子10bは、はんだ8により第1、第2配線パターン4B、6Bに接合されている。なお、上記実施の形態1、2では、外部接続用の端子としてソケット型の端子を採用していたが、本実施の形態3では端子10として、ねじ止め型の端子10bを採用している。
 そして、これらの各部材(ベース板2B、第1絶縁層3B、第1配線パターン4B、第2絶縁層5B、第2配線パターン6B、電力用半導体素子7、ワイヤボンド9、端子10b等)が、ケース12により覆われ、ケース12内部にはゲル状の封止樹脂13が充填されている。
 次に、各構成の材質等について説明する。
 ベース板2Bについては上記実施の形態1のベース板2の場合と同様であり、説明を省略する。
 第1絶縁層3Bについては、上記実施の形態1の樹脂製の第1絶縁層3とは異なり、セラミックス製の第1絶縁層3Bを採用している。セラミックスとしては例えば窒化珪素、窒化アルミニウムなどが挙げられる。そして、第1絶縁層3Bの厚みは、例えば300~1000μm程度に設定される。なお、第2絶縁層5Bについては、上記実施の形態1と同様であり、第2絶縁層5Bは無機粉末としてアルミナ粉末を含有するエポキシ樹脂絶縁シートにより形成され、その厚みは、例えば20~400μm程度に設定される。
 第1配線パターン4B、第2配線パターン6B、ワイヤボンド9等については、上記実施の形態1の場合と同様であり、説明を省略する。
 ここで、ケース型の電力用半導体モジュールによく使われる一般に言うセラミックス絶縁基板について説明する。セラミックス絶縁基板は、セラミックス製の絶縁層の一方側の面にロウ付けにより銅などの金属箔が固着され、他方側の面に銅箔などの金属箔をエッチング等して形成された配線パターンが同じくロウ付けなどにより固着されたものである。
 本実施の形態3の電力用半導体モジュール1Bにおいて、金属箔30B、第1絶縁層3B、第1配線パターン4Bとして、一般的に市販等されている上記セラミックス絶縁基板を用いることとし、金属箔30B、第1絶縁層3B、第1配線パターン4Bをセラミックス絶縁基板14とする。
 次に、電力用半導体モジュール1Bの製造方法の一例について説明する。
 まず、厚み3mmのアルミニウム板からなるベース板2B上にセラミックス絶縁基板14をはんだ8により固着する。なお、この時、セラミックス絶縁基板14の下側が金属箔30B、上側が第1配線パターン4Bとなるようにベース板2B上に固着する。
 次に、1層目の第1配線パターン4B上の一部である所定領域に、Bステージ状態のアルミナ粉末を含有するエポキシ樹脂シートを第2絶縁層5Bとして載せ、さらにその上に第2絶縁層5Bと略同じサイズの厚み0.3mmの銅箔(2層目)を重ねる。そして、これらを加熱・加圧することで、第1配線パターン4Bと銅箔(2層目)とが、第2絶縁層5Bの硬化により第2絶縁層5Bを介して固着される。その後、銅箔(2層目)を所定の形状にエッチングし、2層目の第2配線パターン6Bを形成する。なお、第1配線パターン4Bには、電力用半導体素子7を搭載するための素子搭載部分が所定の位置に設けられており、第2絶縁層5B、第2配線パターン6Bは、第1配線パターン4上の素子搭載部分以外の所定領域に形成される。
 このようにして、ベース板2B、セラミックス絶縁基板14、第2絶縁層5B、第2配線パターン6Bを積層してなる金属回路基板を形成する。なお、金属回路基板の形成後、金属回路基板の表面の任意の場所に、第1配線パターン4B、第2配線パターン6Bを保護する絶縁膜である、ソルダーレジスト(図示せず)を形成してもよい。また、ベース板2Bとセラミックス絶縁基板14とを固着する前に、予めセラミックス絶縁基板14にソルダーレジストを形成しておいてもよい。
 次に、1層目の第1配線パターン4B上の所定の場所に設けられた素子搭載部分に電力用半導体素子7を、そして第1配線パターン4B、第2配線パターン6B上の任意の場所に外部接続用の端子10bを、各々はんだ8を用いて接合する。なお、電力用半導体素子7は第1配線パターン4B上にのみ配置され、第2配線パターン6B上には配置されない。
 ここで、上述の通り、本実施の形態3の電力用半導体モジュール1Bは、電自己消弧型半導体素子7aと、還流用ダイオード7bとが逆並列に接続されたものを2個並列に接続してこれを1組とし、この組を2組直列接続した回路により構成されている。従って、図6にも示すように、第1配線パターン4上には、自己消弧型半導体素子7aと還流用ダイオード7bとの組が4組配置されており、本実施の形態3の電力用半導体モジュール1Bでは、例えば、図中左側半分に配置されている2個の自己消弧型半導体素子7aと2個の還流用ダイオード7bとで負極側アーム70bを構成し、図中右側半分に配置されている2個の自己消弧型半導体素子7aと2個の還流用ダイオード7bとで正極側アーム70aを構成している。
 そして、第1配線パターン4Bもしくは第2配線パターン6Bと電力用半導体素子7との間、および、各電力用半導体素子7間において、導通が必要な箇所をワイヤボンド9で接続する。なお、本実施の形態3では、各配線パターン4B、6Bと電力用半導体素子7との接続、および各電力用半導体素子7間の接続をワイヤボンド9により行っているが、これに限るものではなく、電気的接続を行えるものであれば、他の方法を用いてもよい。
 次に、電力用半導体素子7や端子10b等を搭載した金属回路基板を取り囲む様に設けられたケース12の外周部12aを、ベース板2Bの上面の周囲部分に接着剤により固着する。そして、その内部にゲル状の封止樹脂13を充填し、加温して封止樹脂13を硬化させる。その後、ケース12の蓋部12bを被せ、外周部12aと蓋部12bを接着剤にて固着し、ケース12を形成する。
 なお、本実施の形態3では、第2絶縁層5Bとして、アルミナ粉末を含有するエポキシ樹脂シートを用いたが、この他、ポリイミドなどの絶縁性のある樹脂のフィルムやシートを用いても良く、また加熱・加圧での加工だけでなく、両面に粘着剤のついたポリイミドシートなどを使用することで、第1配線パターン4Bと第2配線パターン6Bとを接着してもよい。
 以上のように、本実施の形態3では、上記実施の形態1とは異なり、ケース型の電力用半導体モジュール1Bを採用したが、上記実施の形態1の構成と同様、1層目の第1配線パターン4B上の一部の領域に第2絶縁層5Bのみを介して2層目の第2配線パターン6Bが積層されるパターン積層領域Y1を備えた。このため、電力用半導体モジュール1Bの主回路となる正極端子から正極側アーム70aへの配線および負極側アーム70bから負極端子への配線をパターン積層領域Y1にて積層配置することができ、電流経路を平行平板化することができる。従って、上記実施の形態1と同様、電力用半導体モジュール1B内部の配線インダクタンスの低減、転流ループにおける配線インダクタンスの効率的低減、電力用半導体モジュール1Bの小型化等の効果が得られる。また、熱源となる電力用半導体素子7は、1層目の第1配線パターン4B上に配置されているため、電力用半導体素子7からの発生熱を効率よくベース板2Bに伝熱することができ、上記実施の形態1と同様、冷却性能の高い電力用半導体モジュール1Bを得ることができる。
 なお、冷却性能について、本実施の形態3では、熱源となる電力用半導体素子7を搭載する第1配線パターン4Bとベース板2Bとの間の第1絶縁層3Bとして、セラミックス製の絶縁層を採用している。窒化珪素、窒化アルミニウムなどのセラミックスは、樹脂製の絶縁層に比べ熱抵抗が小さく、電力用半導体素子7からの発熱をより効率的にベース板2Bに伝熱することができ、冷却性能をより向上させることができる。
 また、本実施の形態3の構成に上記実施の形態2の構成を適用してもよく、自己消弧型半導体素子7aのゲート電極用の配線、エミッタ電極の制御用配線を積層させることもできる。
 また、本実施の形態3では、自己消弧型半導体素子7aと還流用ダイオード7bとが逆並列接続されたものを2個並列に接続してこれを1組とし、この組を2組直列接続した回路について説明したが、一般的な2in1構造では、自己消弧型半導体素子7aと還流用ダイオード7bとが逆並列接続されたものを1組として、これを2組直列接続した回路により構成されるものも多く、当然ながらこのような回路でも本実施の形態3を適用することができる。もちろん、上記実施の形態1のような6in1構造の電力用半導体モジュールや、1in1構造の電力用半導体モジュールであっても本実施の形態3を適用することができる。また、本実施の形態3を6in1構造に適用した場合、第1、第2配線パターン4、6が積層され、配線インダクタンスを効率的に低減できるため、特に、負極側の相間のインダクタンスのばらつきが小さい。したがって、6in1構造において本発明を適用することにより、相間のスイッチング速度のばらつきやサージ電圧のばらつきが小さくなるという効果が得られる。
実施の形態4.
 図8は、この発明の実施の形態4における電力用半導体モジュール1Cの構成を模式的に示す平面図、図9は図8の平面図におけるD1-D2断面図である。なお、電力用半導体モジュール1Cの内部の構成が分かりやすいよう、図8の平面図においてトランスファーモールド樹脂11の記載を省略している。
 本実施の形態4では、上記実施の形態1、2と同様、6in1構造の電力用半導体モジュールを採用しており、逆並列に接続された自己消弧型半導体素子7aと還流用ダイオード7bとの組(アーム)が2組直列に接続された回路を1相分とし、この回路を3相分備えている。各電力用半導体素子7a、7bの配置等、基本的な構成は上記実施の形態1、2とほぼ同様であるが、各自己消弧型半導体素子7aの制御電極であるゲート電極用の配線と、出力電極であるエミッタ電極の制御用配線のパターン配設場所が異なっている。なお、上記実施の形態1と同様の構成については、同一符号を付して説明を省略する。
 図8、図9に示すように、本実施の形態4の電力用半導体モジュール1Cは、ベース板2C、第1絶縁層3C、第1配線パターン4C、第2絶縁層5C、第2配線パターン6Cが順に積層されて構成されており、ここまでは上記実施の形態1の電力用半導体モジュール1と基本的に同様である。ベース板2C、第1絶縁層3C、第1配線パターン4C、第2絶縁層5C、第2配線パターン6Cの材質等についても上記実施の形態1で使用するものと同様である。そして、本実施の形態4では、1層目の第1配線パターン4Cと2層目の第2配線パターン6Cとが積層されるパターン積層領域Z1上に、さらに積層される3層目の第3配線パターン16、4層目の第4配線パターン18が設けられている。
 具体的には、パターン積層領域Z1における第2配線パターン6C上の一部の領域に、第3絶縁層15が設けられ、第3絶縁層15上に第2絶縁層15と略同じサイズの3層目の第3配線パターン16が設けられ、さらに第3配線パターン16上の一部に第4絶縁層17が設けられ、第4絶縁層17上に第4絶縁層17と略同じサイズの4層目の第4配線パターン18が設けられ、配線パターンが4層積層された4層積層領域(Z2~Z4)が形成される。
 なお、本実施の形態4では、一例として、4層積層領域が計3箇所設けられており(図中Z2~Z4で示す領域)、正極側アーム70aを構成している3個の自己消弧型半導体素子7aのゲート電極用の配線とエミッタ電極の制御用配線が、4層積層領域Z2~Z4の第3配線パターン16と第4配線パターン18にそれぞれ設けられている。また、各第3配線パターン16、第4配線パターン18にはそれぞれ外部接続用の端子10c(10)が設けられている。
 例えば、図8中、一番左側に配置されている正極側アーム70aを構成する自己消弧型半導体素子7aでは、エミッタ電極の制御用配線を4層積層領域Z2を含む3層目の第3配線パターン16に設け、ゲート電極用の配線を4層積層領域Z2における4層目の第4配線パターン18に設けている。これによりこの自己消弧型半導体素子7aのゲート電極用の配線と、エミッタ電極の制御用配線とが積層される。第3配線パターン16、第4配線パターン18は、自己消弧型半導体素子7aのエミッタ電極、ゲート電極とそれぞれワイヤボンド9を介して接続され、エミッタ電極、ゲート電極はそれぞれ制御用の端子10c(10)と接続される。そして、端子10c(10)に外部回路が接続されることになる。
 正極側アーム70aを構成する自己消弧型半導体素子7aのうち、一番左側に配置されている自己消弧型半導体素子7a以外の2個の自己消弧型半導体素子7aについても同様にして、4層積層領域Z3、Z4においてゲート電極用の配線とエミッタ電極の制御用配線とが積層される構成となっている。なお、本実施の形態4では、負極側アーム70bを構成する自己消弧型半導体素子7aについては、上記実施の形態1の場合と同様、ゲート電極用の配線、エミッタ電極の制御用配線の両方が1層目の第1配線パターン4Cの所定領域に設けられている。
 なお、第3絶縁層15、第4絶縁層17には樹脂製のものを使用し、例えば、無機粉末を含有する樹脂絶縁シート、ガラス繊維を含有する樹脂絶縁シート等を用いることができる。ここでは、第1絶縁層3Cや第2絶縁層5Cと同様、無機粉末としてアルミナ粉末を含有するエポキシ樹脂絶縁シートにより形成されている。従って、第2配線パターン6Cと第3配線パターン16、第3配線パターン16と第4配線パターン18との固着は、上記の通り、Bステージ状態の第3絶縁層15、第4絶縁層17を加熱・加圧により硬化させることで行う。なお、第3絶縁層15、第4絶縁層17の厚みは、例えば20~400μm程度に設定される。この他、ポリイミドなどの絶縁性のある樹脂のフィルムやシートを用いても良く、また加熱・加圧での加工だけでなく、両面に粘着剤のついたポリイミドシートなどを使用し、各配線パターン6C、16、18間を接着してもよい。
 また、第3配線パターン16、第4配線パターン18の材質等は、第1配線パターン4C、第2配線パターン6Cと同様であり、例えば厚み0.3mmの銅箔をエッチングすることにより形成されている。
 以上のように、本実施の形態4では、1層目、2層目の第1、第2配線パターン4、6上にさらに積層される3層目、4層目の第3、第4配線パターン16、18を備え、自己消弧型半導体素子7aのエミッタ電極の制御用配線とゲート電極用の配線をそれぞれ第3、第4配線パターンに設けて積層している。このため、上記実施の形態1、2の効果に加え、電力用半導体モジュール1Cにおいて、エミッタ電極の制御用配線、ゲート電極用の配線のためにのみ割かれる領域をなくすことができ、電力用半導体モジュール1Cをより小型化することができる。
 なお、本実施の形態4では、エミッタ電極の制御用配線を3層目の第3配線パターン16、ゲート電極用の配線を4層目の第4配線パターン18に設けたが、これに限られるものではなく、ゲート電極用の配線を3層目の第3配線パターン16に、エミッタ電極の制御用配線を4層目の第4配線パターン18に設ける構成としてもよい。
 なお、本実施の形態4では、一例として、正極側アーム70aを構成する自己消弧型半導体素子7aのゲート電極用の配線、エミッタ電極の制御用配線のみ第3配線パターン16、第4配線パターン18に設けて積層する構成としたが、これに限るものではなく、負極側アーム70bを構成する自己消弧型半導体素子7aのゲート電極用の配線、エミッタ電極の制御用配線のみを積層構造としたり、全ての自己消弧型半導体素子7aのゲート電極用の配線、エミッタ電極の制御用配線を積層構造とする等、適宜設定することができる。
 以上の実施の形態1~4の電力用半導体モジュール1、1A~1Cにおいて、電力用半導体素子7の半導体材料は特に限定しておらず、一般的には珪素が使用できる。しかしながら、電力用半導体素子7として、ワイドバンドギャップ半導体材料、例えば、炭化珪素、窒化ガリウム系材料、またはダイヤモンドなどの材料を使用したワイドバンドギャップ半導体を採用すれば、上記各実施の形態1~4における効果を維持したまま電力用半導体モジュール1、1A~1Cの低損失化が可能となり、この電力用半導体モジュール1、1A~1Cを用いて構成される電力変換装置の高効率化が可能となる。
 また、このような電力用半導体モジュール1、1A~1Cは、耐電圧性が高く、許容電流密度も高いため、電力変換装置の小型化が可能となる。なお、複数の電力用半導体素子7の内、一部の電力用半導体素子7のみにワイドバンドギャップ半導体を用いてもよい。
 さらにワイドバンドギャップ半導体は、耐熱性が高いので、高温動作が可能であり、電力変換装置におけるヒートシンクの放熱フィンの小型化や、水冷部の空冷化も可能となるので、電力変換装置の一層の小型化が可能になる。
 なお、ワイドバンドギャップ半導体は、高速スイッチングが可能であるが、スイッチング速度と配線インダクタンスによるサージ電圧は比例するために、スイッチング速度の高速化には限界が生じる。このような場合でも、本実施の形態1~4の発明を適用すれば、配線インダクタンスを低減することにより、高速スイッチングが可能となる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (9)

  1. 内部に複数の電力用半導体素子を収納して構成される絶縁型の電力用半導体モジュールであって、
    金属放熱体であるベース板と、
    上記ベース板上に設けられた第1絶縁層と、
    上記第1絶縁層上に設けられた第1配線パターンとを備え、
    上記第1配線パターン上の所定領域は、樹脂製の第2絶縁層のみを介して2層目の第2配線パターンが積層されるパターン積層領域である電力用半導体モジュール。
  2. 上記複数の電力用半導体素子は、上記第1配線パターン上の上記パターン積層領域以外の領域に搭載される請求項1に記載の電力用半導体モジュール。
  3. 上記複数の電力用半導体素子は、ゲート電極、入力電極および出力電極を有する自己消弧型半導体素子を含み、
    上記自己消弧型半導体素子の上記ゲート電極用の配線又は上記出力電極の制御用配線の一方が第1配線パターンに設けられ、他方が上記第2配線パターンに設けられて、上記ゲート電極用の配線と上記出力電極の制御用配線とが上記パターン積層領域にて積層されている請求項1または請求項2に記載の電力用半導体モジュール。
  4. 上記複数の電力用半導体素子は、ゲート電極、入力電極および出力電極を有する自己消弧型半導体素子を含み、
    上記第2配線パターン上に第3絶縁層のみを介して積層される3層目の第3配線パターンと、上記第3配線パターン上に第4絶縁層のみを介して積層される4層目の第4配線パターンとを備え、
    上記自己消弧型半導体素子の上記ゲート電極用の配線又は上記出力電極の制御用配線の一方が上記第3配線パターンに設けられ、他方が上記第4配線パターンに設けられて、上記ゲート電極用の配線と上記出力電極の制御用配線とが積層されている請求項1または請求項2に記載の電力用半導体モジュール。
  5. 上記第1配線パターン及び上記第2配線パターンは、上記電力用半導体素子の入出力電極及びゲート電極と接続され、上記第1配線パターン及び上記第2配線パターン同士は絶縁されている請求項1または請求項2に記載の電力用半導体モジュール。
  6. 上記第1絶縁層は樹脂製である請求項1または請求項2に記載の電力用半導体モジュール。
  7. 上記第1絶縁層はセラミック製である請求項1または請求項2に記載の電力用半導体モジュール。
  8. 上記複数の電力用半導体素子は、ワイドバンドギャップ半導体により構成される素子を含む請求項1または請求項2に記載の電力用半導体モジュール。
  9. 上記ワイドバンドギャップ半導体の材料は、炭化珪素、窒化ガリウム又はダイヤモンドである請求項8に記載の電力用半導体モジュール。
PCT/JP2013/069380 2012-07-19 2013-07-17 電力用半導体モジュール WO2014014012A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/409,301 US9196604B2 (en) 2012-07-19 2013-07-17 Power semiconductor module having pattern laminated region
CN201380038280.9A CN104488078B (zh) 2012-07-19 2013-07-17 功率用半导体模块
DE112013003161.2T DE112013003161T5 (de) 2012-07-19 2013-07-17 Leistungs-Halbleitermodul
JP2014525838A JP6147256B2 (ja) 2012-07-19 2013-07-17 電力用半導体モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-160113 2012-07-19
JP2012160113 2012-07-19

Publications (1)

Publication Number Publication Date
WO2014014012A1 true WO2014014012A1 (ja) 2014-01-23

Family

ID=49948837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069380 WO2014014012A1 (ja) 2012-07-19 2013-07-17 電力用半導体モジュール

Country Status (5)

Country Link
US (1) US9196604B2 (ja)
JP (2) JP6147256B2 (ja)
CN (1) CN104488078B (ja)
DE (1) DE112013003161T5 (ja)
WO (1) WO2014014012A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046356A (ja) * 2014-08-21 2016-04-04 三菱マテリアル株式会社 放熱板付パワーモジュール用基板及びパワーモジュール
CN105609473A (zh) * 2014-08-01 2016-05-25 英飞凌科技股份有限公司 有安装构造及外部可访问电连接结构的密封电子芯片器件
JP2016174055A (ja) * 2015-03-16 2016-09-29 株式会社東芝 半導体装置
WO2017071976A1 (en) * 2015-10-29 2017-05-04 Abb Schweiz Ag Semiconductor module
JP2017108075A (ja) * 2015-12-11 2017-06-15 住友電気工業株式会社 半導体モジュール及び半導体モジュールユニット
US11145634B2 (en) 2017-07-21 2021-10-12 Mitsubishi Electric Corporation Power converter
JP2022533606A (ja) * 2019-05-14 2022-07-25 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 低インダクタンスゲート交差部を有するパワー半導体モジュール

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150391A1 (zh) * 2015-03-23 2016-09-29 广东美的制冷设备有限公司 智能功率模块及其制造方法
CN105811787A (zh) * 2016-05-18 2016-07-27 珠海格力电器股份有限公司 一种全密封换流组件
JP6759784B2 (ja) * 2016-07-12 2020-09-23 三菱電機株式会社 半導体モジュール
CN107464785A (zh) * 2017-08-30 2017-12-12 扬州国扬电子有限公司 一种多支路交错排布的双面散热功率模块
US11063025B2 (en) * 2017-09-04 2021-07-13 Mitsubishi Electric Corporation Semiconductor module and power conversion device
JP6819540B2 (ja) * 2017-10-23 2021-01-27 三菱電機株式会社 半導体装置
CN112119492A (zh) 2018-05-17 2020-12-22 京瓷株式会社 功率半导体模块
DE112019000169T5 (de) * 2018-06-06 2020-08-20 Fuji Electric Co., Ltd. Halbleitereinrichtung
JP7392308B2 (ja) 2019-07-19 2023-12-06 富士電機株式会社 半導体装置
US11527456B2 (en) * 2019-10-31 2022-12-13 Ut-Battelle, Llc Power module with organic layers
DE202021004370U1 (de) * 2020-10-14 2023-12-12 Rohm Co., Ltd. HalbleitermoduL
JP7352753B2 (ja) * 2020-10-14 2023-09-28 ローム株式会社 半導体モジュール

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031590A (ja) * 2002-06-25 2004-01-29 Hitachi Unisia Automotive Ltd 半導体装置
JP2004063682A (ja) * 2002-07-26 2004-02-26 Hitachi Unisia Automotive Ltd 半導体装置
JP2004063681A (ja) * 2002-07-26 2004-02-26 Hitachi Unisia Automotive Ltd 半導体装置
JP2007067084A (ja) * 2005-08-30 2007-03-15 Toshiba Corp 電力用半導体素子及び半導体電力変換装置
JP2007234690A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd パワー半導体モジュール
JP2008061474A (ja) * 2006-09-04 2008-03-13 Nissan Motor Co Ltd 電力変換装置
JP2010118699A (ja) * 2010-02-24 2010-05-27 Mitsubishi Electric Corp 電力用半導体装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725954B2 (ja) * 1992-07-21 1998-03-11 三菱電機株式会社 半導体装置およびその製造方法
JPH08316357A (ja) 1995-05-15 1996-11-29 Hitachi Ltd 樹脂封止型パワーモジュール装置
JP2902993B2 (ja) * 1996-05-21 1999-06-07 三洋電機株式会社 混成集積回路
JPH10135377A (ja) 1996-11-01 1998-05-22 Hitachi Ltd モールド型半導体装置
JPH11145376A (ja) * 1997-11-04 1999-05-28 Hitachi Ltd 半導体装置
JP4594477B2 (ja) * 2000-02-29 2010-12-08 三菱電機株式会社 電力半導体モジュール
JP2001274322A (ja) * 2000-03-27 2001-10-05 Mitsubishi Electric Corp パワー半導体モジュール
JP2002043510A (ja) * 2000-07-24 2002-02-08 Mitsubishi Electric Corp 半導体パワーモジュールおよびその製造方法
JP4490041B2 (ja) * 2001-04-02 2010-06-23 三菱電機株式会社 電力用半導体装置
JP2004221552A (ja) * 2002-12-26 2004-08-05 Yamaha Motor Co Ltd 電子基板、パワーモジュール、およびモータ駆動装置
JP4430497B2 (ja) 2004-09-17 2010-03-10 ニチコン株式会社 半導体モジュール
JP4695918B2 (ja) 2005-05-12 2011-06-08 株式会社京三製作所 パワーモジュール
US7564129B2 (en) * 2007-03-30 2009-07-21 Nichicon Corporation Power semiconductor module, and power semiconductor device having the module mounted therein
JP4580997B2 (ja) * 2008-03-11 2010-11-17 日立オートモティブシステムズ株式会社 電力変換装置
JP2009259990A (ja) * 2008-04-16 2009-11-05 Mitsubishi Electric Corp 半導体モジュール
JP4668301B2 (ja) * 2008-06-25 2011-04-13 株式会社日立製作所 電力変換装置
JP5207862B2 (ja) * 2008-07-16 2013-06-12 三菱電機株式会社 半導体モジュール
JP5293473B2 (ja) * 2009-07-16 2013-09-18 富士電機株式会社 半導体パワーモジュール
JP5780777B2 (ja) 2010-02-24 2015-09-16 京セラ株式会社 セラミック回路基板およびそれを用いた電子装置
JP5341824B2 (ja) * 2010-06-14 2013-11-13 日立オートモティブシステムズ株式会社 半導体装置
WO2013008424A1 (ja) * 2011-07-11 2013-01-17 三菱電機株式会社 電力用半導体モジュール
JP5960522B2 (ja) 2011-07-29 2016-08-02 京セラ株式会社 セラミック回路基板およびそれを用いた電子装置
KR101255946B1 (ko) * 2011-09-16 2013-04-23 삼성전기주식회사 전력 모듈 패키지
JP2012074730A (ja) * 2011-12-07 2012-04-12 Mitsubishi Electric Corp 電力用半導体モジュール
CN104396011B (zh) * 2012-07-04 2017-06-06 松下知识产权经营株式会社 半导体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031590A (ja) * 2002-06-25 2004-01-29 Hitachi Unisia Automotive Ltd 半導体装置
JP2004063682A (ja) * 2002-07-26 2004-02-26 Hitachi Unisia Automotive Ltd 半導体装置
JP2004063681A (ja) * 2002-07-26 2004-02-26 Hitachi Unisia Automotive Ltd 半導体装置
JP2007067084A (ja) * 2005-08-30 2007-03-15 Toshiba Corp 電力用半導体素子及び半導体電力変換装置
JP2007234690A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd パワー半導体モジュール
JP2008061474A (ja) * 2006-09-04 2008-03-13 Nissan Motor Co Ltd 電力変換装置
JP2010118699A (ja) * 2010-02-24 2010-05-27 Mitsubishi Electric Corp 電力用半導体装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609473A (zh) * 2014-08-01 2016-05-25 英飞凌科技股份有限公司 有安装构造及外部可访问电连接结构的密封电子芯片器件
CN105609473B (zh) * 2014-08-01 2019-02-15 英飞凌科技股份有限公司 有安装构造及外部可访问电连接结构的密封电子芯片器件
JP2016046356A (ja) * 2014-08-21 2016-04-04 三菱マテリアル株式会社 放熱板付パワーモジュール用基板及びパワーモジュール
JP2016174055A (ja) * 2015-03-16 2016-09-29 株式会社東芝 半導体装置
WO2017071976A1 (en) * 2015-10-29 2017-05-04 Abb Schweiz Ag Semiconductor module
CN108475668A (zh) * 2015-10-29 2018-08-31 Abb瑞士股份有限公司 半导体模块
US10276552B2 (en) 2015-10-29 2019-04-30 Abb Schweiz Ag Semiconductor module
CN108475668B (zh) * 2015-10-29 2019-09-27 Abb瑞士股份有限公司 半导体模块
JP2017108075A (ja) * 2015-12-11 2017-06-15 住友電気工業株式会社 半導体モジュール及び半導体モジュールユニット
US11145634B2 (en) 2017-07-21 2021-10-12 Mitsubishi Electric Corporation Power converter
JP2022533606A (ja) * 2019-05-14 2022-07-25 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 低インダクタンスゲート交差部を有するパワー半導体モジュール
JP7233570B2 (ja) 2019-05-14 2023-03-06 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 低インダクタンスゲート交差部を有するパワー半導体モジュール

Also Published As

Publication number Publication date
US9196604B2 (en) 2015-11-24
JP6300978B2 (ja) 2018-03-28
CN104488078B (zh) 2017-11-21
DE112013003161T5 (de) 2015-03-12
JPWO2014014012A1 (ja) 2016-07-07
JP2017108187A (ja) 2017-06-15
CN104488078A (zh) 2015-04-01
JP6147256B2 (ja) 2017-06-14
US20150115288A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6300978B2 (ja) 電力用半導体モジュール
EP3107120B1 (en) Power semiconductor module
KR102115502B1 (ko) 전기 도전층이 열전도 유전체 시트를 넘어서 연장되는 칩 캐리어
CN108735692B (zh) 半导体装置
WO2013018343A1 (ja) 半導体モジュール及びそれを搭載したインバータ
CN108735689B (zh) 具有空间限制的导热安装体的芯片模块
US9385107B2 (en) Multichip device including a substrate
JP6988345B2 (ja) 半導体装置
JP5895220B2 (ja) 半導体装置の製造方法
JP7040032B2 (ja) 半導体装置
WO2014006814A1 (ja) 半導体装置
JP2007305702A (ja) 半導体装置およびその製造方法
JP7183594B2 (ja) 半導体装置
JP2021141275A (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
CN116325135A (zh) 半导体封装、半导体装置以及电力变换装置
JP2015126168A (ja) パワーモジュール
WO2013118275A1 (ja) 半導体装置
JP2019134018A (ja) 半導体装置
US10888036B1 (en) Thermal management assemblies for electronic assemblies circumferentially mounted on a motor
CN210379025U (zh) 功率器件封装结构
JP6305362B2 (ja) 電力用半導体モジュール
US11545874B2 (en) Thermal management assemblies for electronic assemblies circumferentially mounted around a motor using a flexible substrate
KR102464477B1 (ko) 양면 냉각 파워 모듈 및 이의 제조방법
JP7142784B2 (ja) 電気回路装置
WO2021199261A1 (ja) 部品モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525838

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14409301

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130031612

Country of ref document: DE

Ref document number: 112013003161

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820559

Country of ref document: EP

Kind code of ref document: A1