WO2013141360A1 - 硬化性組成物、硬化物および硬化性組成物の使用方法 - Google Patents

硬化性組成物、硬化物および硬化性組成物の使用方法 Download PDF

Info

Publication number
WO2013141360A1
WO2013141360A1 PCT/JP2013/058301 JP2013058301W WO2013141360A1 WO 2013141360 A1 WO2013141360 A1 WO 2013141360A1 JP 2013058301 W JP2013058301 W JP 2013058301W WO 2013141360 A1 WO2013141360 A1 WO 2013141360A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
curable composition
carbon atoms
represented
Prior art date
Application number
PCT/JP2013/058301
Other languages
English (en)
French (fr)
Inventor
優美 松井
幹広 樫尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020147026070A priority Critical patent/KR101983423B1/ko
Priority to CN201380016059.3A priority patent/CN104245849B/zh
Priority to JP2013539826A priority patent/JP5744221B2/ja
Priority to US14/387,142 priority patent/US9359533B2/en
Priority to EP13763711.2A priority patent/EP2829579A4/en
Publication of WO2013141360A1 publication Critical patent/WO2013141360A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5455Silicon-containing compounds containing nitrogen containing at least one group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5477Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention provides a curable composition capable of obtaining a cured product having excellent adhesion and high transparency and heat resistance, a cured product obtained by curing the composition, and adhesion of the composition to an optical element.
  • the present invention relates to a method for use as an agent or a sealant for an optical element.
  • the curable composition is variously improved according to a use, and is widely used industrially as a raw material of an optical component or a molded object, an adhesive agent, a coating agent, etc.
  • a curable composition for forming a cured product excellent in transparency is used as a raw material of an optical component or a coating agent thereof
  • a curable composition for forming a cured product having high adhesive strength is an adhesive or a coating agent
  • the curable composition has also been used as a composition for fixing an optical element, such as an adhesive for an optical element or a sealing agent for an optical element, when producing an optical element sealing body.
  • the optical elements include various lasers such as semiconductor lasers (LDs), light emitting elements such as light emitting diodes (LEDs), light receiving elements, composite optical elements, optical integrated circuits, and the like.
  • LDs semiconductor lasers
  • LEDs light emitting diodes
  • composite optical elements optical integrated circuits, and the like.
  • an optical device of blue light or white light whose emission peak wavelength is shorter is developed and widely used. As the luminance of such a light emitting element having a short peak wavelength of light emission is dramatically increased, the calorific value of the optical element tends to be further increased.
  • the cured product of the composition for fixing an optical device is exposed to light of higher energy and higher temperature heat generated from the optical device for a long time to deteriorate and crack Problems such as a decrease in adhesion or a decrease in adhesion.
  • Patent Documents 1 to 3 propose compositions for optical element fixing material containing a polysilsesquioxane compound as a main component.
  • a polysilsesquioxane compound as a main component.
  • Patent Document 4 proposes an epoxy resin composition using an alicyclic epoxy resin
  • Patent Document 5 proposes an epoxy resin composition containing a polythiol compound. ing.
  • a curable composition capable of obtaining a cured product having higher heat resistance and transparency and higher adhesion is desired.
  • the present invention has been made in view of the circumstances of the prior art, and is a curable composition which is excellent in heat resistance and transparency, and which can obtain a cured product having high adhesion even at high temperatures, and the composition
  • An object of the present invention is to provide a cured product obtained by curing and a method of using the composition as an adhesive for optical devices or a sealant for optical devices.
  • a composition containing a specific silane compound copolymer and a silane coupling agent in a specific ratio is excellent over a long period of time It has been found that it becomes a cured product having high adhesion even at high temperatures while maintaining transparency and heat resistance, and the present invention has been completed.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X 0 represents a halogen atom, a cyano group or a group represented by the formula: OG
  • G represents a hydroxyl protecting group
  • D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent
  • R 2 has an alkyl group having 1 to 20 carbon atoms which may have a substituent (excluding a halogen atom, a cyano group and a group represented by the above formula: OG), or a substituent It also represents a good phenyl group.
  • Z represents a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
  • m and n each independently represent a positive integer.
  • o, p, q and r each independently represent 0 or a positive integer.
  • the silane compound copolymer (B) component whose weight average molecular weight is 800-30,000 represented by: Silane coupling agent having a nitrogen atom in the molecule
  • the curable composition according to [1], wherein m and n in the component (A) are in the ratio of m: n 60: 40 to 5:95.
  • the component (B) is represented by the following formula (b-3): 1,3,5-N-tris (trialkoxysilylalkyl) isocyanurate represented by the following formula (b-3):
  • R a represents an alkoxy group having 1 to 6 carbon atoms, and a plurality of R a s may be the same as or different from each other.
  • T1 to t5 are each independently 1 to 10) Represents an integer
  • the component (B) is represented by the 1,3,5-N-tris (trialkoxysilylalkyl) isocyanurate represented by the formula (b-3), or the formula (b-4)
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X 0 represents a halogen atom, a cyano group or a group represented by the formula: OG
  • G represents a hydroxyl protecting group
  • D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent
  • R 2 may have an alkyl group having 1 to 20 carbon atoms which may have a substituent (excluding a halogen atom, a cyano group and the group represented by the above formula: OG) or a substituent Represents a good phenyl group.
  • the component (B) is represented by the 1,3,5-N-tris (trialkoxysilylalkyl) isocyanurate represented by the formula (b-3), or the formula (b-4)
  • the curable composition according to any one of [1] to [8], which is a composition for fixing an optical element [10] A cured product obtained by curing the curable composition according to any one of the above [1] to [8]. [11] The cured product according to [10], which is an optical element fixing material.
  • the curable composition of the present invention even when irradiated with high energy light or placed in a high temperature state, it does not become colored and the transparency is not reduced, and is excellent over a long period of time A cured product having high transparency and high adhesion can be obtained.
  • the curable composition of the present invention can be used when forming an optical element fixing material, and in particular, can be suitably used as an adhesive for optical elements and a sealing agent for optical elements.
  • Curable composition of the present invention comprises the following components (A) and (B) in the mass ratio of the components (A) to (B): B) Component] It is characterized by containing at a ratio of 100: 0.3 to 100: 40.
  • Component (A) (silane compound copolymer (A))
  • the component (A) used in the curable composition of the present invention is a silane compound copolymer (A) represented by the following formula (a-1) and having a weight average molecular weight of 800 to 30,000.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms of R 1 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl and n-pentyl groups And n-hexyl group.
  • a hydrogen atom is preferable as R 1 .
  • X 0 represents a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; a cyano group; or a group represented by the formula: OG.
  • G represents a hydroxyl protecting group.
  • the protective group for hydroxyl group is not particularly limited, and includes known protective groups known as protective groups for hydroxyl group.
  • protecting group of acyl type protecting group of silyl type such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, etc .
  • Acetal-based protecting groups such as tetrahydropyran-2-yl group and tetrahydrofuran-2-yl group
  • alkoxycarbonyl-based protecting groups such as t-butoxycarbonyl group; methyl group, ethyl group, t-butyl group, octyl group
  • ether protecting groups such as allyl group, triphenylmethyl group, benzyl group, p-methoxybenzyl
  • R 5 has 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group and n-pentyl group Or a phenyl group which may have a substituent.
  • substituent of the phenyl group which may have a substituent represented by R 5 , methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, Alkyl groups such as t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; methoxy group, ethoxy group And alkoxy groups such as
  • X 0 is a chlorine atom, a group represented by the formula: OG ′ (wherein G ′ is an acyl group, since a cured product having high availability and high adhesive strength can be obtained.
  • G ′ is an acyl group, since a cured product having high availability and high adhesive strength can be obtained.
  • a group selected from a protective group) and a cyano group is preferable, a group selected from a chlorine atom, an acetoxy group and a cyano group is more preferable, and a cyano group is particularly preferable.
  • D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which may have a substituent.
  • the divalent organic group having 1 to 20 carbon atoms include an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, an alkynylene group having 2 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms.
  • Examples thereof include divalent groups having 7 to 20 carbon atoms, which are formed of a combination of an (alkylene group, an alkenylene group, or an alkynylene group) and an arylene group.
  • Examples of the alkylene group having 1 to 20 carbon atoms include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group and the like.
  • Examples of the alkenylene group having 2 to 20 carbon atoms include vinylene group, propenylene group, butenylene group and pentenylene group.
  • Examples of the alkynylene group having 2 to 20 carbon atoms include ethynylene group and propynylene group.
  • Examples of the arylene group having 6 to 20 carbon atoms include o-phenylene group, m-phenylene group, p-phenylene group and 2,6-naphthylene group.
  • these C1-C20 alkylene group, C2-C20 alkenylene group, and C2-C20 alkynylene group may have, halogen atoms such as fluorine atom and chlorine atom And alkoxy groups such as methoxy and ethoxy; alkylthio groups such as methylthio and ethylthio; and alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl.
  • Substituents of the arylene group having 6 to 20 carbon atoms include cyano group; nitro group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkyl groups such as methyl group and ethyl group; methoxy group, ethoxy group and the like And alkoxythio groups such as alkylthio groups such as methylthio group and ethylthio group; and the like. These substituents may be bonded at arbitrary positions in a group such as an alkylene group, an alkenylene group, an alkynylene group and an arylene group, and a plurality of them may be bonded the same or different.
  • a divalent group consisting of a combination of an optionally substituted (alkylene group, alkenylene group, or alkynylene group) and an optionally substituted arylene group has the above-mentioned substituent group
  • groups in which at least one of an optionally substituted (alkylene group, alkenylene group, or alkynylene group) and at least one type of an arylene group which may have one or more substituents are linked in series. Specific examples thereof include groups represented by the following formulae.
  • an alkylene group having 1 to 10 carbon atoms is preferable, an alkylene group having 1 to 6 carbon atoms is more preferable, and a methylene group or ethylene group is more preferable. Particularly preferred.
  • R 2 has an alkyl group having 1 to 20 carbon atoms which may have a substituent (excluding a halogen atom, a cyano group and a group represented by the above formula: OG), or a substituent It also represents a good phenyl group.
  • Examples of the alkyl group having 1 to 20 carbon atoms represented by R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n -Pentyl group, n-hexyl group, n-octyl group, isooctyl group, n-nonyl group, n-decyl group, n-dodecyl group and the like.
  • Examples of the substituent of the alkyl group having 1 to 20 carbon atoms which may have a substituent represented by R 2 include alkoxy groups having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group; phenyl group, 4- And aryl groups which may have a substituent such as methylphenyl group, 3-methoxyphenyl group, 2,4-dichlorophenyl group, 1-naphthyl group, 2-naphthyl group and the like.
  • substituent of the phenyl group which may have a substituent represented by R 2 , methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, Alkyl groups such as t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; alkoxy groups such as methoxy group and ethoxy group; halogens such as fluorine atom and chlorine atom An atom etc. are mentioned.
  • R 2 Specific examples of the optionally substituted phenyl group represented by R 2 include phenyl group, 2-chlorophenyl group, 4-methylphenyl group, 3-ethylphenyl group and 2,4-dimethylphenyl group And 2-methoxyphenyl group.
  • R 2 is preferably an alkyl group having 1 to 20 carbon atoms or a phenyl group which may have a substituent, and an alkyl group having 1 to 6 carbon atoms or a phenyl which may have a substituent A group is more preferable, and an alkyl group having 1 to 6 carbon atoms or a phenyl group is particularly preferable.
  • Z represents a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
  • the alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a t-butoxy group, a pentyloxy group, a hexyloxy group and an octyloxy group.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, etc. are mentioned.
  • Z is preferably a hydroxy group or an alkoxy group having 1 to 6 carbon atoms.
  • n and n each independently represent a positive integer.
  • o, p, q and r each independently represent 0 or a positive integer.
  • the silane compound copolymer (A) may be any copolymer such as a random copolymer, a block copolymer, a graft copolymer, or an alternating copolymer.
  • the structure of the silane compound copolymer (A) may be any of ladder-type structure, double-decker-type structure, cage-type structure, partially-cleaved cage-type structure, cyclic-type structure, and random-type structure.
  • the weight average molecular weight (Mw) of the silane compound copolymer (A) is in the range of 800 to 30,000, preferably in the range of 1,000 to 6,000, and more preferably 1,500 to 2,2, It is in the range of 000. By being in the said range, the hardened
  • the weight average molecular weight (Mw) can be determined, for example, as a standard polystyrene equivalent value by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent (the same applies in the following).
  • the molecular weight distribution (Mw / Mn) of the silane compound copolymer (A) is not particularly limited, but is usually in the range of 1.0 to 3.0, preferably 1.1 to 2.0. By being in the said range, the hardened
  • the silane compound copolymer (A) can be used singly or in combination of two or more.
  • the method for producing the silane compound copolymer (A) which is the component (A) is not particularly limited, but like the method for producing the silane compound copolymer (A ') described later And the method of condensing silane compound (1) and (2) is preferable.
  • the component (A) may be the following component (A ′).
  • the silane compound (1) is a compound represented by the formula (1): R 1 -CH (X 0 ) -D-Si (OR 3 ) u (X 1 ) 3-u .
  • R 1 -CH (X 0 ) -D-Si (OR 3 ) u (X 1 ) 3-u By using the silane compound (1), it is possible to obtain a silane compound copolymer having good transparency and adhesion even after curing.
  • R 1 , X 0 and D have the same meanings as described above.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms
  • X 1 represents a halogen atom
  • u represents an integer of 0 to 3.
  • alkyl group having 1 to 10 carbon atoms for R 3 a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, an i-butyl group, an t-butyl group, Examples include n-pentyl and n-hexyl groups.
  • the halogen atom of X 1 include a fluorine atom, a chlorine atom, and a bromine atom.
  • silane compound (1) examples include cyanomethyltrimethoxysilane, cyanomethyltriethoxysilane, 1-cyanoethyltrimethoxysilane, 2-cyanoethyltrimethoxysilane, 2-cyanoethyltriethoxysilane, 2-cyanoethyltripropoxysilane , 3-cyanopropyltrimethoxysilane, 3-cyanopropyltriethoxysilane, 3-cyanopropyltripropoxysilane, 3-cyanopropyltributoxysilane, 4-cyanobutyltrimethoxysilane, 5-cyanopentyltrimethoxysilane, 2 -Cyanopropyltrimethoxysilane, 2- (cyanomethoxy) ethyltrimethoxysilane, 2- (2-cyanoethoxy) ethyltrimethoxysilane, o- (cyanomethyl) phenyltripropoxysilane,
  • trialkoxysilane compounds are preferable as the silane compound (1) because a cured product having more excellent adhesion can be obtained, and 2-cyanoethyl group, 3-cyanopropyl group, 3-acetoxypropyl group. More preferred are trialkoxysilane compounds having a group or 3-halogenopropyl group.
  • the silane compound (2) is a compound represented by the formula (2): R 2 Si (OR 4 ) v (X 2 ) 3-v .
  • R 2 represents the same meaning as described above.
  • R 4 represents an alkyl group having 1 to 10 carbon atoms similar to R 3 above,
  • X 2 represents a halogen atom similar to X 1 above, and
  • v represents an integer of 0 to 3.
  • OR 4 may be the same or different.
  • (3-v) is 2 or more, X 2 may be the same or different.
  • silane compound (2) examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, i-butyltrimethoxysilane
  • Alkyltrialkoxysilane compounds such as silane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, i-octyltriethoxysilane, dodecyltrimethoxysilane, methyldimethoxyethoxysilane, methyldiethoxymethoxysilane and the like;
  • Alkyl halogenoalkoxysilanes such as methylchlorodimethoxysilane, methyldichloromethoxysilane, methyldichloromethoxysilane,
  • Alkyltrihalogenosilane compounds such as methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, ethyltribromosilane and n-propyltrichlorosilane;
  • Optionally substituted phenyltrialkoxysilane compounds optionally substituted phenyl halogenoalkoxysilane compounds such as phenylchlorodimethoxysilane, phenyldichloromethoxysilane, phenylchloromethoxyethoxysilane, phenylchlorodiethoxysilane, phenyldichloroethoxysilane and the like; Phenyltrihalogenosilane compounds which may have a substituent, such as phenyltrichlorosilane, phenyltribromosilane, 4-methoxyphenyltrichlorosilane, phenyltrichlorosilane, 2-ethoxyphenyltrichlorosilane, 2-chlorophenyltrichlorosilane and the like; It can be mentioned.
  • silane compounds (2) can be used singly or in combination of two or more.
  • silane compound (2) alkyltrialkoxysilane compounds having 1 to 6 carbon atoms, and phenyltrialkoxysilane compounds which may have a substituent are preferable.
  • the mixture of silane compounds used in producing the silane compound copolymer (A ′) is, even if it is a mixture of the silane compound (1) and the silane compound (2), the object of the present invention is further inhibited. Although it may be a mixture containing other silane compounds within the range not limiting, a mixture consisting of the silane compound (1) and the silane compound (2) is preferable.
  • the method for condensing the mixture of silane compounds is not particularly limited, and the silane compound (1), the silane compound (2), and optionally other silane compounds are dissolved in a solvent, and a predetermined amount of catalyst is added, The method of stirring at predetermined temperature is mentioned.
  • the catalyst used may be either an acid catalyst or a base catalyst.
  • the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid and trifluoroacetic acid; Be
  • Organic bases such as octane and imidazole; hydroxides of organic salts such as tetramethyl ammonium hydroxide and tetraethyl ammonium hydroxide; metals such as sodium methoxide, sodium ethoxide, sodium t-butoxide and potassium t-butoxide Alkoxide; metal hydride such as sodium hydride and calcium hydride; metal hydroxide such as sodium hydroxide, potassium hydroxide and calcium hydroxide; metal carbonate such as sodium carbonate, potassium carbonate and magnesium carbonate; carbonated water And the like are; sodium, metal hydrogen carbonates such as potassium hydrogen carbonate.
  • the amount of the catalyst used is usually in the range of 0.1 mol% to 10 mol%, preferably 1 mol% to 5 mol%, based on the total molar amount of the silane compound.
  • the solvent to be used can be suitably selected according to the kind etc. of a silane compound.
  • a silane compound For example, water; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl i-butyl ketone and cyclohexanone; methyl Alcohols such as alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, i-butyl alcohol, s-butyl alcohol, t-butyl alcohol and the like; These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is such that the total molar amount of the silane compound is usually 0.1 mol to 10 mol, preferably 0.5 mol to 10 mol, per liter of the solvent.
  • the temperature at which the silane compound is condensed (reacted) is usually in the range of 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. to 100 ° C. If the reaction temperature is too low, the progress of the condensation reaction may be insufficient. On the other hand, when the reaction temperature is too high, it is difficult to suppress gelation. The reaction is usually completed in 30 minutes to 20 hours.
  • an acid catalyst is used, an alkaline aqueous solution such as sodium bicarbonate is added to the reaction solution, and when a base catalyst is used, the acid is added to the reaction solution, such as hydrochloric acid. Summing can be carried out, and the salt produced at that time can be removed by filtration, washing with water or the like to obtain the target silane compound copolymer.
  • the weight average molecular weight (Mw) of the silane compound copolymer (A ′) is in the range of 800 to 30,000, preferably in the range of 1,000 to 6,000, and more preferably in the range of 1,500 to 2 In the range of By being in the said range, the hardened
  • the molecular weight distribution (Mw / Mn) of the silane compound copolymer (A ′) is not particularly limited, but is usually in the range of 1.0 to 3.0, preferably 1.1 to 2.0. By being in the said range, the hardened
  • the component (A) may be the following component (A ′ ′).
  • the silane compound copolymer (A ′ ′) may have one type or two or more types of repeating units represented by (i), (ii) and (iii), respectively.
  • the cured product thus obtained is excellent in transparency and adhesion, and is excellent in heat resistance, so that the properties of these properties can be obtained even after being placed at high temperature. The decline is suppressed.
  • the amount of the group represented by the formula: R 1 —CH (X 0 ) —D— and the amount of R 2 can be quantified, for example, by measuring the NMR spectrum of the silane compound copolymer (A ′ ′).
  • the silane compound copolymer (A ′ ′) may be any copolymer such as a random copolymer, a block copolymer, a graft copolymer, or an alternating copolymer.
  • the weight average molecular weight (Mw) of the silane compound copolymer (A ′ ′) is in the range of 800 to 30,000, preferably in the range of 1,000 to 6,000, and more preferably in the range of 1,500 to 2 In this range, a cured product which is excellent in the handleability of the composition and excellent in adhesion and heat resistance can be obtained.
  • the molecular weight distribution (Mw / Mn) of the silane compound copolymer (A ′ ′) is not particularly limited, but is usually in the range of 1.0 to 3.0, preferably 1.1 to 2.0. In the above, a cured product having excellent adhesion and heat resistance can be obtained.
  • the silane compound copolymer (A ′ ′) can be used singly or in combination of two or more.
  • composition of the present invention contains, as the component (B), a silane coupling agent having a nitrogen atom in the molecule (hereinafter sometimes referred to as "silane coupling agent (B)"). Since the curable composition of the present invention contains the silane coupling agent (B), it may be colored and the transparency may be reduced even when irradiated with high energy light or in a high temperature state. It is possible to obtain a cured product having excellent transparency over a long period of time and having high adhesion.
  • silane coupling agent (B) silane coupling agent
  • the silane coupling agent (B) is not particularly limited as long as it has a nitrogen atom in the molecule.
  • a trialkoxysilane compound represented by the following formula (b-1), a dialkoxyalkylsilane compound or a dialkoxyarylsilane compound represented by the formula (b-2), and the like can be mentioned.
  • R a represents an alkoxy group having 1 to 6 carbon atoms, such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group and a t-butoxy group.
  • R b represents an alkyl group having a carbon number of 1 to 6, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and t-butyl group; or phenyl group, 4-chlorophenyl group, 4- An aryl group which may have a substituent such as a methylphenyl group;
  • R c represents a C 1-10 organic group having a nitrogen atom.
  • R c may be further bonded to another group containing a silicon atom.
  • Specific examples of the organic group having 1 to 10 carbon atoms of R c include N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N- (1,3-dimethyl-butylidene) amino And propyl, 3-ureidopropyltriethoxysilane, N-phenyl-aminopropyl and the like.
  • an isocyanurate skeleton can be used as a compound where R c is an organic group bonded to a group containing another silicon atom.
  • an isocyanurate skeleton can be used as a compound where R c is an organic group bonded to a group containing another silicon atom.
  • a silane coupling agent (B) an isocyanurate type silane coupling agent and a urea type silane coupling agent are preferable from the viewpoint that a cured product having higher adhesive strength can be obtained, and further, an intramolecular It is preferable that the resin has four or more alkoxy groups bonded to a silicon atom. Having four or more alkoxy groups bonded to silicon atoms means that the total count of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is four or more.
  • a compound represented by the following formula (b-3) is a urea type silane cup having 4 or more alkoxy groups bonded to silicon atoms
  • Examples of the ring agent include compounds represented by the following formula (b-4).
  • R a are as defined above.
  • a plurality of R a each other may be different from each be the same.
  • Each of t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
  • Specific examples of the compound represented by the formula (b-3) include 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-) Triethoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-trii-propoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-tributoxysilylpropyl) isocyanate 1,3,5-N-tris [(tri (C 1 -C 6) alkoxy) silyl (C 1 -C 10) alkyl] isocyanurate such as nurate; 1,3,5-N-tris (3-dihydroxymethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dimethoxyethylsilylpropyl) isocyanurate, 1,3,5- N-tris (3-dimethoxy i-propylsilylpropyl)
  • Specific examples of the compound represented by the formula (b-4) include N, N′-bis (3-trimethoxysilylpropyl) urea, N, N′-bis (3-triethoxysilylpropyl) urea, N N, N 'such as N, N'-bis (3-tripropoxysilylpropyl) urea, N, N'-bis (3-tributoxysilylpropyl) urea, N, N'- bis (2-trimethoxysilylethyl) urea, etc.
  • 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-triethoxysilylpropyl) ) Isocyanurate hereinafter referred to as “isocyanurate compound”
  • isocyanurate compound N, N′-bis (3-trimethoxysilylpropyl) urea
  • an isocyanurate compound It is preferable to use a combination of the above-mentioned isocyanurate compound and a urea compound, and it is preferable to use a combination of the above-mentioned isocyanurate compound and a urea compound from the viewpoint of obtaining a cured product which is excellent in adhesion. Is more preferred.
  • the ratio of the two used is preferably 100: 1 to 100: 200 by mass ratio of (isocyanurate compound) to (urea compound), and 100: More preferably, it is 110.
  • the use ratio of the urea compound is preferably 20 parts by mass or less, and more preferably 15 parts by mass or less with respect to 100 parts by mass of the component (A). The same applies when the urea compound is used alone or when used in combination with the isocyanurate compound.
  • the curable composition of the present invention comprises the component (A) (or the component (A ') or the component (A "). The same applies below) and the component (B) together with the components (A) and (B) Component (A) :( B) component] in a ratio of 100: 0.3 to 100: 40.
  • the curing property is excellent in transparency and adhesiveness, and further excellent in heat resistance, and a cured product in which the adhesiveness is hardly reduced even at high temperature is obtained.
  • the above components may further contain other components as long as the object of the present invention is not impaired.
  • the other components include silane coupling agents other than the component (B), antioxidants, ultraviolet light absorbers, light stabilizers, and diluents.
  • silane coupling agent other than the said (B) component it is silane coupling agents other than a silane coupling agent (B), Comprising: There is no restriction
  • a silane coupling agent having an acid anhydride structure such as 2-trimethoxysilylethyl succinic anhydride, 3-triethoxysilyl propyl succinic anhydride, etc. is used Is preferred.
  • the silane coupling agent which has an acid anhydride structure can be used individually by 1 type or in combination of 2 or more types.
  • the antioxidant is added to prevent oxidative deterioration during heating.
  • examples of the antioxidant include phosphorus-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants and the like.
  • Examples of phosphorus antioxidants include phosphites and oxaphosphaphenanthrene oxides. As a phenol type antioxidant, monophenols, bisphenols, polymeric phenols, etc. are mentioned. Examples of sulfur-based antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate and the like.
  • antioxidants can be used singly or in combination of two or more.
  • the amount of the antioxidant used is usually 10% by mass or less based on the component (A).
  • the ultraviolet absorber is added for the purpose of improving the light resistance of the resulting cured product.
  • UV absorbers include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
  • the ultraviolet absorbers can be used singly or in combination of two or more.
  • the amount of the ultraviolet absorber used is usually 10% by mass or less with respect to the component (A).
  • a light stabilizer is added in order to improve the light resistance of the resulting cured product.
  • light stabilizers include poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6) Hindered amines such as 6,6-tetramethyl-4-piperidine) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine) imino ⁇ ] and the like can be mentioned.
  • These light stabilizers can be used alone or in combination of two or more.
  • the total amount of these other components used is usually 20% by mass or less with respect to the component (A).
  • a diluent is added to adjust the viscosity of the curable composition.
  • a diluent for example, glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether, cyclohexane dimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether, polypropylene glycol diglycidyl Ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, 4-vinylcyclohexene monoxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide and the like can be mentioned. These diluents can be used alone or in combination of two or more.
  • the curable composition of the present invention can be obtained, for example, by blending the components (A) and (B) and, if desired, other components in a predetermined ratio, mixing and defoaming by a known method. it can.
  • the curable composition of the present invention obtained as described above, even when irradiated with high energy light or when placed in a high temperature state, it is colored and its transparency is lowered It is possible to obtain a cured product having high adhesion without any problems. Therefore, the curable composition of the present invention is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent and the like.
  • the curable composition of the present invention can be suitably used as a composition for fixing an optical element, since it is possible to solve the problems related to the deterioration of the optical element fixing material as the brightness of the optical element increases. .
  • the second of the present invention is a cured product obtained by curing the curable composition of the present invention.
  • the method of curing the curable composition of the present invention includes heat curing.
  • the heating temperature upon curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the cured product of the present invention is excellent in transparency over a long period of time without being colored to deteriorate transparency even when irradiated with high energy light or when placed in a high temperature state. And has high adhesion. Therefore, the cured product of the present invention can be suitably used as an optical element fixing material because it can solve the problem related to the deterioration of the optical element fixing material as the brightness of the optical element increases.
  • it is suitably used as a raw material of an optical component or a molded article, an adhesive, a coating agent and the like.
  • the cured product obtained by curing the curable composition of the present invention has high adhesive strength can be confirmed, for example, by measuring the adhesive strength as follows. That is, the curable composition is applied to the mirror surface of the silicon chip, the applied surface is placed on the adherend and pressure-bonded, and heat treatment is performed to cure. This is left for 30 seconds on the measurement stage of a bond tester which has been preheated to a predetermined temperature (for example, 23 ° C., 100 ° C.), and the horizontal direction (shearing) Stress), and measure the adhesion between the test piece and the adherend.
  • the adhesive strength of the cured product is preferably 80 N / 2 mm or more at 23 ° C. and 100 ° C., and more preferably 100 N / 2 mm or more.
  • the light transmittance of the cured product is preferably, for example, 80% or more for light with a wavelength of 400 nm and 450 nm.
  • the excellent heat resistance of the cured product can be confirmed from the fact that the change in transparency is small even after the cured product is placed under high temperature.
  • the transmittance at a wavelength of 400 nm and 450 nm is at least 80% of the initial transmittance after being placed at 150 ° C. for 500 hours.
  • the third of the present invention is a method of using the curable composition of the present invention as a composition for fixing an optical element such as an adhesive for an optical element or a sealing agent for an optical element. It is.
  • the light element include light emitting elements such as LEDs and LDs, light receiving elements, composite light elements, and optical integrated circuits.
  • the curable composition of the present invention can be suitably used as an adhesive for optical devices.
  • the composition is applied to one or both adhesive surfaces of a material to be adhered (optical element and its substrate etc.) Then, heat curing is carried out to firmly bond the materials to be bonded together.
  • Main substrate materials for bonding optical elements include glasses such as soda lime glass and heat resistant hard glass; ceramics; iron, copper, aluminum, gold, silver, platinum, chromium, titanium and alloys of these metals Metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone And synthetic resins such as polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, glass epoxy resin, etc. .
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition to be used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the curable composition of the present invention can be suitably used as a sealant for an optical element package.
  • a method of using the curable composition of the present invention as a sealant for an optical element for example, the composition is molded into a desired shape to obtain a molded body including the optical element, and then the resultant is heated.
  • cure are mentioned. It does not specifically limit as method to shape
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition to be used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the resulting optical element sealing body uses the curable composition of the present invention, and therefore, an optical element having a light emission peak wavelength as short as 400 to 490 nm, such as white or blue light emitting LED, is used. Also, it is excellent in transparency and heat resistance which are not deteriorated in color by heat or light.
  • the weight average molecular weight (Mw) of the silane compound copolymer obtained in the following production example was taken as a standard polystyrene conversion value, and was measured under the following apparatus and conditions.
  • Device name HLC-8220GPC, Tosoh Corp.
  • Solvent Tetrahydrofuran Injection volume: 80 ⁇ l Measurement temperature: 40 ° C Flow rate: 1 ml / min Detector: Differential refractometer
  • IR spectrum of the silane compound copolymer obtained in the production example was measured using the following apparatus. Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by Perkin Elmer)
  • the reaction solution was concentrated to 50 ml with an evaporator, 100 ml of ethyl acetate was added, and the mixture was neutralized with saturated aqueous sodium hydrogen carbonate solution. After standing for a while, the organic layer was separated. Then, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, and this was dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation.
  • the obtained precipitate was dissolved in methyl ethyl ketone (MEK) and recovered, the solvent was distilled off under reduced pressure with an evaporator, and vacuum drying was performed to obtain 13.5 g of a silane compound copolymer (A1).
  • MEK methyl ethyl ketone
  • the weight average molecular weight (Mw) of the silane compound copolymer (A1) was 1,900. Moreover, IR spectrum data of a silane compound copolymer (A1) are shown below. Si-Ph: 698 cm -1 , 740 cm -1 , Si-O: 1132 cm -1 , -CN: 2259 cm -1
  • the weight average molecular weight (Mw) of the silane compound copolymer (A2) was 2,000. Moreover, IR spectrum data of a silane compound copolymer (A2) are shown below. Si-Ph: 698 cm -1 , 740 cm -1 , Si-O: 1132 cm -1 , -CN: 2255 cm -1
  • the obtained precipitate was dissolved in methyl ethyl ketone (MEK) and recovered, the solvent was distilled off under reduced pressure with an evaporator, and vacuum drying was performed to obtain 14.7 g of a silane compound copolymer (A3).
  • MEK methyl ethyl ketone
  • the weight average molecular weight (Mw) of the silane compound copolymer (A3) was 2,700. Moreover, IR spectrum data of a silane compound copolymer (A3) are shown below. Si-Ph: 699 cm -1 , 741 cm -1 , Si-O: 1132 cm -1 , -CO: 1738 cm -1
  • the reaction mixture was neutralized with saturated aqueous sodium hydrogen carbonate solution.
  • 100 ml of ethyl acetate was added and stirred, and after standing, the organic layer was separated. Then, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, the filtrate was precipitated by dropping into a large amount of n-hexane, and the precipitate was separated by decantation.
  • the obtained precipitate was dissolved in methyl ethyl ketone (MEK) and recovered, the solvent was distilled off under reduced pressure with an evaporator, and vacuum drying was performed to obtain 13.6 g of a silane compound copolymer (A4).
  • MEK methyl ethyl ketone
  • the weight average molecular weight (Mw) of the silane compound copolymer (A4) was 3,000. Moreover, IR spectrum data of a silane compound copolymer (A4) are shown below. Si-Ph: 700cm -1, 741cm -1, Si-O: 1132cm -1, -Cl: 648cm -1
  • Example 1 In 10 g of the silane compound copolymer (A1) obtained in Production Example 1, tris [3- (trimethoxysilyl) propyl] isocyanurate (Shin-Etsu Chemical Co., Ltd., following “Silane cup” as a silane coupling agent (B) A curable composition was obtained by adding 0.1 g of the ring agent (B1) and thoroughly mixing and degassing the whole volume.
  • Example 1 (Examples 2 to 27, Comparative Examples 1 to 5)
  • the silane compound copolymer (A1) and the silane coupling agent (B1) instead of the silane compound copolymer (A1) and the silane coupling agent (B1), the silane compound copolymers (A1) to (A4) of the amounts shown in Table 1 below and the silane coupling agent Curable compositions of Examples 2 to 27 and Comparative Examples 1 to 5 were obtained in the same manner as Example 1 except that (B1) and (B2) were used.
  • the silane coupling agent (B2) is N, N′-bis (3-trimethoxysilylpropyl) urea (manufactured by Amax Co., Ltd.).
  • the adhesive strength, the initial transmittance, and the transmittance after heating are measured as follows. Transparency and heat resistance (transparency after heating) were evaluated. The measurement results and the evaluation are shown in Table 1 below.
  • the adherend with this test piece is left for 30 seconds on the measurement stage of a bond tester (series 4000, manufactured by Dage Corporation) preheated to a predetermined temperature (23 ° C., 100 ° C.), and the height of 50 ⁇ m from the adherend Stress was applied horizontally (in the shear direction) to the adhesive surface at a speed of 200 ⁇ m / s, and the adhesive strength (N / 2 mm ⁇ ) between the test piece and the adherend at 23 ° C. and 100 ° C. was measured. .
  • a bond tester series 4000, manufactured by Dage Corporation
  • the transmittance at 400 nm was evaluated as “o” for 80% or more, “ ⁇ ” for 70% or more and less than 80%, and “x” for less than 70%.
  • the cured products of the curable compositions obtained in Examples 1 to 27 were excellent in adhesion and adhesion heat resistance. Further, the initial transmittance at wavelengths of 400 nm and 450 nm and the transmittance after heating were all high, and the initial transparency and heat resistance (transparency after heating) were also excellent. On the other hand, a curable composition in which the amount of the component (B) used is small in Comparative Example 1, a curable composition in which the amount of the component (B) in Comparative Example 2 is too large, and Each hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明は、下記の(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:40の割合で含有する硬化性組成物、該組成物を硬化してなる硬化物、並びに、該組成物を光素子用接着剤等として使用する方法である。 (A)成分:下記式(a-1)〔式中、Rは水素原子等を、Xはハロゲン原子等を、Dは単結合等を、Rは炭素数1~20のアルキル基等を、Zはヒドロキシル基等を、m、nは正の整数を、o、p、q、rは0又は正の整数を示す。〕で表される、重量平均分子量が800~30,000であるシラン化合物共重合体 (B)成分:分子内に窒素原子を有するシランカップリング剤 本発明によれば、耐熱性及び透明性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、並びに、該組成物を光素子用接着剤等として使用する方法が提供される。 (CHR1X0-D-SiO3/2)m(R2SiO3/2)n(CHR1X0-D-SiZO2/2)o(R2SiZO2/2)p(CHR1X0-D-SiZ2O1/2)q(R2SiZ2O1/2)r・・・(a-1)

Description

硬化性組成物、硬化物および硬化性組成物の使用方法
 本発明は、透明性及び耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、並びに、該組成物を光素子用接着剤又は光素子用封止剤として使用する方法に関する。
 これまで、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。例えば、透明性に優れる硬化物を形成する硬化性組成物は、光学部品の原料やそのコーティング剤として、また、高い接着力を有する硬化物を形成する硬化性組成物は、接着剤やコーティング剤として好ましく用いられる。
 また、近年、硬化性組成物は、光素子封止体を製造する際に、光素子用接着剤や光素子用封止剤等の光素子固定材用組成物としても利用されてきている。
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い光素子の発熱量がさらに大きくなっていく傾向にある。
 ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間さらされ、劣化してクラックが発生したり、接着力が低下したりするという問題が生じた。
 この問題を解決するべく、特許文献1~3において、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が提案されている。
 しかしながら、特許文献1~3に記載されたポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物の硬化物であっても、十分な接着力を保ちつつ、耐熱性及び透明性を得るのは困難な場合があった。
 また、光素子封止用に用いる組成物として、特許文献4には、脂環式エポキシ樹脂を用いるエポキシ樹脂組成物が、特許文献5には、ポリチオール化合物を含有するエポキシ樹脂組成物が提案されている。
 しかしながら、これらの組成物を用いる場合であっても、経時変化に伴う十分な耐光劣化性を満足しなかったり、接着力が低下する場合があった。
 従って、耐熱性、透明性により優れ、高い接着力を有する硬化物が得られる硬化性組成物の開発が切望されている。
特開2004-359933号公報 特開2005-263869号公報 特開2006-328231号公報 特開平7-309927号公報 特開2009-001752号公報
 本発明は、かかる従来技術の実情に鑑みてなされたものであり、耐熱性及び透明性に優れ、かつ、高温においても高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、並びに、該組成物を光素子用接着剤又は光素子用封止剤として使用する方法を提供することを課題とする。
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、以下に述べるように、特定のシラン化合物共重合体及びシランカップリング剤を特定の割合で含有する組成物は、長期にわたって優れた透明性、耐熱性を保ちつつ、かつ、高温においても高い接着力を有する硬化物となることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記〔1〕~〔9〕の硬化性組成物、〔10〕、〔11〕の硬化物、〔12〕、〔13〕の硬化性組成物の使用方法が提供される。
〔1〕下記の(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:40の割合で含有することを特徴とする硬化性組成物。
(A)成分:下記式(a-1)
Figure JPOXMLDOC01-appb-C000006
〔式中、Rは水素原子又は炭素数1~6のアルキル基を表し、Xはハロゲン原子、シアノ基又は式:OGで表される基(式中、Gは水酸基の保護基を表す。)を表し、Dは単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは、置換基(ただしハロゲン原子、シアノ基及び前記式:OGで表される基を除く)を有していてもよい炭素数1~20のアルキル基、又は置換基を有していてもよいフェニル基を表す。Zは、ヒドロキシル基、炭素数1~10のアルコキシ基又はハロゲン原子を示す。m、nはそれぞれ独立して、正の整数を示す。o、p、q、rはそれぞれ独立して、0または正の整数を示す。〕で表される、重量平均分子量が800~30,000であるシラン化合物共重合体
(B)成分:分子内に窒素原子を有するシランカップリング剤
〔2〕前記(A)成分において、mとnとが、m:n=60:40~5:95の割合である〔1〕に記載の硬化性組成物。
〔3〕前記(B)成分が、下記式(b-3)で表される1,3,5-N-トリス(トリアルコキシシリルアルキル)イソシアヌレート、又は、式(b-4)で表されるN,N’-ビス(トリアルコキシシリルアルキル)ウレアであることを特徴とする〔1〕に記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、炭素数1~6のアルコキシ基を表し、複数のR同士は同一であっても相異なっていてもよい。t1~t5はそれぞれ独立して、1~10の整数を表す。)
〔3〕下記の(A’)成分と(B)成分とを、(A’)成分と(B)成分の質量比で、〔(A’)成分:(B)成分〕=100:0.3~100:40の割合で含有することを特徴とする硬化性組成物。
(A’)成分:式(1):R-CH(X)-D-Si(OR(X3-u
〔式中、Rは水素原子又は炭素数1~6のアルキル基を表し、Xはハロゲン原子、シアノ基又は式:OGで表される基(式中、Gは水酸基の保護基を表す。)を表し、Dは単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、uは0~3の整数を表す。〕
で表されるシラン化合物(1)の少なくとも一種、及び
式(2):RSi(OR(X3-v
(式中、Rは、置換基(ただしハロゲン原子、シアノ基及び前記式:OGで表される基を除く)を有していてもよい炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表し、Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、vは0~3の整数を表す。)
で表されるシラン化合物(2)の少なくとも一種を含むシラン化合物の混合物を縮合させて得られる、重量平均分子量が800~30,000であるシラン化合物共重合体
(B)成分:分子内に窒素原子を有するシランカップリング剤
〔4〕前記(A’)成分が、シラン化合物(1)とシラン化合物(2)とを、モル比で、〔シラン化合物(1)〕:〔シラン化合物(2)〕=60:40~5:95の割合で縮合させて得られるシラン化合物共重合体である〔3〕に記載の硬化性組成物。
〔5〕前記(B)成分が、前記式(b-3)で表される1,3,5-N-トリス(トリアルコキシシリルアルキル)イソシアヌレート、又は、式(b-4)で表されるN,N’-ビス(トリアルコキシシリルアルキル)ウレアであることを特徴とする〔3〕又は〔4〕に記載の硬化性組成物。
〔6〕下記の(A”)成分と(B)成分とを、(A”)成分と(B)成分の質量比で、〔(A”)成分:(B)成分〕=100:0.3~100:40の割合で含有することを特徴とする硬化性組成物。
(A”)成分:分子内に、下記式(i)、(ii)及び(iii)
Figure JPOXMLDOC01-appb-C000008
〔式中、Rは水素原子又は炭素数1~6のアルキル基を表し、Xはハロゲン原子、シアノ基又は式:OGで表される基(式中、Gは水酸基の保護基を表す。)を表し、Dは単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは、置換基(ただしハロゲン原子、シアノ基及び前記式:OGで表される基を除く)を有していてもよい炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表す。〕
で表される繰り返し単位のうち、(i)及び(ii)、(i)及び(iii)、(ii)及び(iii)、又は(i)、(ii)及び(iii)の繰り返し単位を有し、重量平均分子量が800~30,000であるシラン化合物共重合体
(B)成分:分子内に窒素原子を有するシランカップリング剤
〔7〕前記(A”)成分のシラン化合物共重合体が、該共重合体中における、式:R-CH(X)-D-で表される基の存在量(〔R-CH(X)-D-〕)とRの存在量(〔R〕)が、モル比で〔R-CH(X)-D-〕:〔R〕=60:40~5:95の高分子であることを特徴とする〔6〕に記載の硬化性組成物。
〔8〕前記(B)成分が、前記式(b-3)で表される1,3,5-N-トリス(トリアルコキシシリルアルキル)イソシアヌレート、又は、式(b-4)で表されるN,N’-ビス(トリアルコキシシリルアルキル)ウレアであることを特徴とする〔6〕又は〔7〕に記載の硬化性組成物。
〔9〕光素子固定材用組成物である〔1〕~〔8〕のいずれかに記載の硬化性組成物。
〔10〕前記〔1〕~〔8〕のいずれかに記載の硬化性組成物を硬化してなる硬化物。
〔11〕光素子固定材である〔10〕に記載の硬化物。
〔12〕前記〔1〕~〔8〕のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔13〕前記〔1〕~〔8〕のいずれかに記載の硬化性組成物を、光素子固定材用封止剤として使用する方法。
 本発明の硬化性組成物によれば、高エネルギーの光が照射される場合や高温状態に置かれた場合であっても、着色して透明性が低下したりすることがなく、長期にわたって優れた透明性と高い接着力を有する硬化物を得ることができる。
 本発明の硬化性組成物は、光素子固定材を形成する際に使用することができ、特に、光素子用接着剤、及び光素子用封止剤として好適に使用することができる。
 以下、本発明を、1)硬化性組成物、2)硬化物、及び、3)硬化性組成物の使用方法、に項分けして詳細に説明する。
1)硬化性組成物
 本発明の硬化性組成物は、下記の(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:40の割合で含有することを特徴とする。
(A)成分(シラン化合物共重合体(A))
 本発明の硬化性組成物に用いる(A)成分は、下記式(a-1)で表される、重量平均分子量が800~30,000であるシラン化合物共重合体(A)である。
Figure JPOXMLDOC01-appb-C000009
 前記式(a-1)中、Rは、水素原子又は炭素数1~6のアルキル基を表す。Rの炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。
 これらの中でも、Rとしては水素原子が好ましい。
 Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;シアノ基;又は式:OGで表される基;を表す。
 Gは水酸基の保護基を表す。水酸基の保護基としては、特に制約はなく、水酸基の保護基として知られている公知の保護基が挙げられる。例えば、アシル系の保護基;トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等のシリル系の保護基;メトキシメチル基、メトキシエトキシメチル基、1-エトキシエチル基、テトラヒドロピラン-2-イル基、テトラヒドロフラン-2-イル基等のアセタール系の保護基;t-ブトキシカルボニル基等のアルコキシカルボニル系の保護基;メチル基、エチル基、t-ブチル基、オクチル基、アリル基、トリフェニルメチル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基等のエーテル系の保護基;等が挙げられる。これらの中でも、Gとしては、アシル系の保護基が好ましい。
 アシル系の保護基は、具体的には、式:-C(=O)Rで表される基である。式中、Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基等の炭素数1~6のアルキル基;又は置換基を有していてもよいフェニル基を表す。
 Rで表される置換基を有していてもよいフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;が挙げられる。
 これらの中でも、Xとしては、入手容易性、及び、高い接着力を有する硬化物が得られることから、塩素原子、式:OG’で表される基(式中、G’はアシル系の保護基を表す。)、及びシアノ基から選ばれる基が好ましく、塩素原子、アセトキシ基及びシアノ基から選ばれる基がより好ましく、シアノ基が特に好ましい。
 Dは、単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。
 炭素数1~20の2価の有機基としては、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、炭素数2~20のアルキニレン基、炭素数6~20のアリーレン基、(アルキレン基、アルケニレン基、又はアルキニレン基)とアリーレン基との組み合わせからなる炭素数7~20の2価の基等が挙げられる。
 炭素数1~20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
 炭素数2~20のアルケニレン基としては、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。
 炭素数2~20のアルキニレン基としては、エチニレン基、プロピニレン基等が挙げられる。
 炭素数6~20のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、2,6-ナフチレン基等が挙げられる。
 これらの炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、及び炭素数2~20のアルキニレン基が有していてもよい置換基としては、フッ素原子、塩素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;等が挙げられる。
 前記炭素数6~20のアリーレン基の置換基としては、シアノ基;ニトロ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;等が挙げられる。
 これらの置換基は、アルキレン基、アルケニレン基、アルキニレン基及びアリーレン基等の基において任意の位置に結合していてよく、同一若しくは相異なって複数個が結合していてもよい。
 置換基を有していてもよい(アルキレン基、アルケニレン基、又はアルキニレン基)と置換基を有していてもよいアリーレン基との組み合わせからなる2価の基としては、前記置換基を有していてもよい(アルキレン基、アルケニレン基、又はアルキニレン基)の少なくとも一種と、前記置換基を有していてもよいアリーレン基の少なくとも一種とが直列に結合した基等が挙げられる。具体的には、下記式で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 これらの中でも、Dとしては、高い接着力を有する硬化物が得られることから、炭素数1~10のアルキレン基が好ましく、炭素数1~6のアルキレン基がより好ましく、メチレン基又はエチレン基が特に好ましい。
 Rは、置換基(ただしハロゲン原子、シアノ基及び前記式:OGで表される基を除く)を有していてもよい炭素数1~20のアルキル基、又は置換基を有していてもよいフェニル基を表す。
 Rで表される炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソオクチル基、n-ノニル基、n-デシル基、n-ドデシル基等が挙げられる。
 Rで表される置換基を有していてもよい炭素数1~20のアルキル基の置換基としては、メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;フェニル基、4-メチルフェニル基、3-メトキシフェニル基、2,4-ジクロロフェニル基、1-ナフチル基、2-ナフチル基等の置換基を有していてもよいアリール基;等が挙げられる。
 Rで表される置換基を有していてもよいフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;フッ素原子、塩素原子等のハロゲン原子等が挙げられる。
 Rで表される置換基を有していてもよいフェニル基の具体例としては、フェニル基、2-クロロフェニル基、4-メチルフェニル基、3-エチルフェニル基、2,4-ジメチルフェニル基、2-メトキシフェニル基等が挙げられる。
 これらの中でも、Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基が好ましく、炭素数1~6のアルキル基又は置換基を有していてもよいフェニル基がより好ましく、炭素数1~6のアルキル基又はフェニル基が特に好ましい。
 Zは、ヒドロキシ基、炭素数1~10のアルコキシ基又はハロゲン原子を示す。炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、及び臭素原子等が挙げられる。
 これらの中でも、Zはヒドロキシ基又は炭素数1~6のアルコキシ基が好ましい。
 m、nはそれぞれ独立して、正の整数を示す。mとnは、本発明の効果がより得られやすいことから、m:n=60:40~5:95の比率を有する正の整数であるのが好ましい。
 o、p、q、rはそれぞれ独立して、0又は正の整数を示す。
 シラン化合物共重合体(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれの共重合体であってもよい。また、シラン化合物共重合体(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
 シラン化合物共重合体(A)の重量平均分子量(Mw)は、800~30,000の範囲であり、好ましくは1,000~6,000の範囲であり、さらに好ましくは1,500~2,000の範囲である。当該範囲内にあることで、組成物の取扱性に優れ、かつ、接着性、耐熱性に優れる硬化物が得られる。重量平均分子量(Mw)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる(以下にて同じである。)。
 シラン化合物共重合体(A)の分子量分布(Mw/Mn)は、特に制限されないが、通常1.0~3.0、好ましくは1.1~2.0の範囲である。当該範囲内にあることで、接着性、耐熱性に優れる硬化物が得られる。
 シラン化合物共重合体(A)は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 本発明の硬化性組成物においては、(A)成分であるシラン化合物共重合体(A)の製造方法は特に限定されないが、後述するシラン化合物共重合体(A’)の製造法のように、シラン化合物(1)及び(2)を縮合させる方法が好ましい。
 シラン化合物共重合体(A)である(A)成分を、後述するシラン化合物共重合体(A’)の製造法のように縮合(反応)により得る際、シラン化合物(1)のOR又はXは、脱水及び脱アルコール縮合反応されなかった場合は、シラン化合物共重合体(A)中に残存する。縮合反応されなかったOR又はXが1つだった場合は、前記式(a-1)において(CHR-D-SiZO2/2)として残存し、縮合反応されなかったOR又はXが2つだった場合は、式(a-1)において(CHR-D-SiZ1/2)として残存する。
 シラン化合物(2)についても同様に、OR又はXが、脱水及び脱アルコール縮合反応されなかった場合は、シラン化合物共重合体(A)に残存する。縮合反応されなかったOR又はXが1つだった場合は、式(a-1)において(RSiZO2/2)として残存し、縮合反応されなかったOR又はXが2つだった場合は、式(a-1)において(RSiZ1/2)として残存する。
 本発明においては、前記(A)成分は、下記の(A’)成分であってもよい。
(A’)成分:式(1):R-CH(X)-D-Si(OR(X3-uで表されるシラン化合物(1)の少なくとも一種、及び式(2):RSi(OR(X3-vで表されるシラン化合物(2)の少なくとも一種を含むシラン化合物の混合物を縮合させて得られる、重量平均分子量が、800~30,000であるシラン化合物共重合体(以下、「シラン化合物共重合体(A’)」ということがある。)
〔シラン化合物(1)〕
 シラン化合物(1)は、式(1):R-CH(X)-D-Si(OR(X3-uで表される化合物である。シラン化合物(1)を用いることにより、硬化後においても透明性、接着力が良好なシラン化合物共重合体を得ることができる。
 式(1)中、R、X、及びDは、前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、uは0~3の整数を表す。
 Rの炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、及びn-ヘキシル基等が挙げられる。
 Xのハロゲン原子としては、フッ素原子、塩素原子、及び臭素原子等が挙げられる。
 uが2以上のとき、OR同士は同一であっても相異なっていてもよい。また、(3-u)が2以上のとき、X同士は同一であっても相異なっていてもよい。
 シラン化合物(1)の具体例としては、シアノメチルトリメトキシシラン、シアノメチルトリエトキシシラン、1-シアノエチルトリメトキシシラン、2-シアノエチルトリメトキシシラン、2-シアノエチルトリエトキシシラン、2-シアノエチルトリプロポキシシラン、3-シアノプロピルトリメトキシシラン、3-シアノプロピルトリエトキシシラン、3-シアノプロピルトリプロポキシシラン、3-シアノプロピルトリブトキシシラン、4-シアノブチルトリメトキシシラン、5-シアノペンチルトリメトキシシラン、2-シアノプロピルトリメトキシシラン、2-(シアノメトキシ)エチルトリメトキシシラン、2-(2-シアノエトキシ)エチルトリメトキシシラン、o-(シアノメチル)フェニルトリプロポキシシラン、m-(シアノメチル)フェニルトリメトキシシラン、p-(シアノメチル)フェニルトリエトキシシラン、p-(2-シアノエチル)フェニルトリメトキシシラン等のトリアルコキシシラン化合物類;
 シアノメチルトリクロロシラン、シアノメチルブロモジメトキシシラン、2-シアノエチルジクロロメトキシシラン、2-シアノエチルジクロロエトキシシラン、3-シアノプロピルトリクロロシラン、3-シアノプロピルトリブロモシラン、3-シアノプロピルジクロロメトキシシラン、3-シアノプロピルジクロロエトキシシラン、3-シアノプロピルクロロジメトキシシラン、3-シアノプロピルクロロジエトキシシラン、4-シアノブチルクロロジエトキシシラン、3-シアノ-n-ブチルクロロジエトキシシラン、2-(2-シアノエトキシ)エチルトリクロロシラン、2-(2-シアノエトキシ)エチルブロモジエトキシシラン、2-(2-シアノエトキシ)エチルジクロロプロポキシシラン、o-(2-シアノエチル)フェニルトリクロロシラン、m-(2-シアノエチル)フェニルメトキシジブロモシラン、p-(2-シアノエチル)フェニルジメトキシクロロシラン、p-(2-シアノエチル)フェニルトリブロモシラン等のハロゲノシラン化合物類;等が挙げられる。
 これらのシラン化合物(1)は一種単独で、或いは二種以上を組み合わせて用いることができる。
 これらの中でも、シラン化合物(1)としては、より優れた接着性を有する硬化物が得られることから、トリアルコキシシラン化合物類が好ましく、2-シアノエチル基、3-シアノプロピル基、3-アセトキシプロピル基又は3-ハロゲノプロピル基を有するトリアルコキシシラン化合物類がより好ましい。
〔シラン化合物(2)〕
 シラン化合物(2)は、式(2):RSi(OR(X3-vで表される化合物である。
 式(2)中、Rは前記と同じ意味を表す。Rは前記Rと同様の炭素数1~10のアルキル基を表し、Xは前記Xと同様のハロゲン原子を表し、vは0~3の整数を表す。
 vが2以上のとき、OR同士は同一であっても相異なっていてもよい。また、(3-v)が2以上のとき、X同士は同一であっても相異なっていてもよい。
 シラン化合物(2)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-ブチルトリエトキシシラン、i-ブチルトリメトキシシラン、n-ペンチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、i-オクチルトリエトキシシラン、ドデシルトリメトキシシラン、メチルジメトキシエトキシシラン、メチルジエトキシメトキシシラン等のアルキルトリアルコキシシラン化合物類;
 メチルクロロジメトキシシラン、メチルジクロロメトキシシラン、メチルジクロロメトキシシラン、メチルクロロジエトキシシラン、エチルクロロジメトキシシラン、エチルジクロロメトキシシラン、n-プロピルクロロジメトキシシラン、n-プロピルジクロロメトキシシラン等のアルキルハロゲノアルコキシシラン化合物類;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン、n-プロピルトリクロロシラン等のアルキルトリハロゲノシラン化合物類;
 フェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、2-クロロフェニルトリメトキシシラン、フェニルトリエトキシシラン、2-メトキシフェニルトリエトキシシラン、フェニルジメトキシエトキシシラン、フェニルジエトキシメトキシシラン等の置換基を有していてもよいフェニルトリアルコキシシラン化合物類;
 フェニルクロロジメトキシシラン、フェニルジクロロメトキシシラン、フェニルクロロメトキシエトキシシラン、フェニルクロロジエトキシシラン、フェニルジクロロエトキシシラン等の置換基を有していてもよいフェニルハロゲノアルコキシシラン化合物類;
 フェニルトリクロロシラン、フェニルトリブロモシラン、4-メトキシフェニルトリクロロシラン、フェニルトリクロロシラン、2-エトキシフェニルトリクロロシラン、2-クロロフェニルトリクロロシラン等の置換基を有していてもよいフェニルトリハロゲノシラン化合物;が挙げられる。
 これらのシラン化合物(2)は一種単独で、或いは二種以上を組み合わせて用いることができる。
 これらの中でも、シラン化合物(2)としては、炭素数1~6のアルキルトリアルコキシシラン化合物類、置換基を有していてもよいフェニルトリアルコキシシラン化合物類が好ましい。
〔シラン化合物の混合物〕
 シラン化合物共重合体(A’)を製造する際に用いられるシラン化合物の混合物としては、シラン化合物(1)及びシラン化合物(2)からなる混合物であっても、さらに、本発明の目的を阻害しない範囲でその他のシラン化合物を含む混合物であってもよいが、シラン化合物(1)及びシラン化合物(2)からなる混合物が好ましい。
 シラン化合物(1)とシラン化合物(2)との使用割合は、モル比で、〔シラン化合物(1)〕:〔シラン化合物(2)〕=60:40~5:95であるのが好ましく、40:60~10:90がより好ましい。
 前記シラン化合物の混合物を縮合させる方法としては、特に限定されないが、シラン化合物(1)、シラン化合物(2)、及び所望によりその他のシラン化合物を溶媒に溶解し、所定量の触媒を添加し、所定温度で撹拌する方法が挙げられる。
 用いる触媒は、酸触媒及び塩基触媒のいずれであってもよい。
 酸触媒としては、塩酸、硫酸、硝酸、リン酸等の無機酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、酢酸、トリフルオロ酢酸等の有機酸;等が挙げられる。
 塩基触媒としては、トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。
 触媒の使用量は、シラン化合物の総モル量に対して、通常、0.1mol%~10mol%、好ましくは1mol%~5mol%の範囲である。
 用いる溶媒は、シラン化合物の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルi-ブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、i-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、或いは二種以上を混合して用いることができる。
 溶媒の使用量は、溶媒1リットルあたり、シラン化合物の総モル量が、通常0.1mol~10mol、好ましくは0.5mol~10molとなる量である。
 シラン化合物を縮合(反応)させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃~100℃の範囲である。反応温度があまりに低いと縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から20時間で完結する。
 反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするシラン化合物共重合体を得ることができる。
 シラン化合物共重合体(A’)の重量平均分子量(Mw)は、800~30,000の範囲であり、好ましくは1,000~6,000の範囲であり、さらに好ましくは1,500~2,000の範囲である。当該範囲内にあることで、組成物の取扱性に優れ、かつ、接着性、耐熱性に優れる硬化物が得られる。
 シラン化合物共重合体(A’)の分子量分布(Mw/Mn)は、特に制限されないが、通常1.0~3.0、好ましくは1.1~2.0の範囲である。当該範囲内にあることで、接着性、耐熱性に優れる硬化物が得られる。
 本発明においては、前記(A)成分は、下記の(A”)成分であってもよい。
(A”)成分:分子内に、下記式(i)、(ii)及び(iii)
Figure JPOXMLDOC01-appb-C000011
(式中、R、R、D、及びXは前記と同じ意味を表す。)で表される繰り返し単位のうち、(i)及び(ii)、(i)及び(iii)、(ii)及び(iii)、又は(i)、(ii)及び(iii)の繰り返し単位を有し、重量平均分子量が800~30,000であるシラン化合物共重合体(以下、「シラン化合物共重合体(A”)」ということがある。)
 シラン化合物共重合体(A”)は、(i)、(ii)、(iii)で表される繰り返し単位をそれぞれ一種有していてもよく、二種以上有していてもよい。
 シラン化合物共重合体(A”)においては、式:R-CH(X)-D-で表される基の存在量(〔R-CH(X)-D〕)とRの存在量(〔R〕)が、モル比で〔R-CH(X)-D〕:〔R〕=60:40~5:95であるのが好ましく、40:60~10:90であるのがより好ましい。当該範囲内にあることで、得られる硬化物は透明性及び接着性に優れ、かつ、耐熱性に優れるため高温に置いた後であってもこれらの性質の低下が抑えられる。
 式:R-CH(X)-D-で表される基及びRの存在量は、例えば、シラン化合物共重合体(A”)のNMRスペクトルを測定して定量することができる。
 シラン化合物共重合体(A”)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれの共重合体であってもよい。
 シラン化合物共重合体(A”)の重量平均分子量(Mw)は、800~30,000の範囲であり、好ましくは1,000~6,000の範囲であり、さらに好ましくは1,500~2,000の範囲である。当該範囲内にあることで、組成物の取扱性に優れ、かつ、接着性、耐熱性に優れる硬化物が得られる。
 シラン化合物共重合体(A”)の分子量分布(Mw/Mn)は、特に制限されないが、通常1.0~3.0、好ましくは1.1~2.0の範囲である。当該範囲内にあることで、接着性、耐熱性に優れる硬化物が得られる。
 シラン化合物共重合体(A”)は一種単独で、あるいは二種以上を組み合わせて用いることができる。
(B)成分(シランカップリング剤)
 本発明の硬化性組成物は、(B)成分として、分子内に窒素原子を有するシランカップリング剤(以下、「シランカップリング剤(B)」ということがある。)を含む。本発明の硬化性組成物は、シランカップリング剤(B)を含有するため、高エネルギーの光が照射される場合や高温状態であっても、着色して透明性が低下したりすることがなく、長期にわたって優れた透明性を有し、かつ、高い接着力を有する硬化物を得ることができる。
 シランカップリング剤(B)としては、分子内に窒素原子を有するシランカップリング剤であれば特に制限はない。例えば、下記式(b-1)で表されるトリアルコキシシラン化合物、式(b-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。
 Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基等の置換基を有していてもよいアリール基;を表す。
 Rは、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、さらに他のケイ素原子を含む基と結合していてもよい。
 Rの炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピルトリエトキシシラン、N-フェニル-アミノプロピル基等が挙げられる。
 前記式(b-1)又は(b-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。
 これらの中でも、シランカップリング剤(B)としては、より高い接着力を有する硬化物が得られる観点から、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、さらに、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
 ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
 ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(b-3)で表される化合物が、ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(b-4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式中、Rは前記と同じ意味を表す。複数のR同士は同一であっても相異なっていてもよい。
 t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数であるのが好ましく、3であるのが特に好ましい。
 式(b-3)で表される化合物の具体例としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリi-プロポキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリブトキシシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(トリ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;
1,3,5,-N-トリス(3-ジトキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシフェニルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシフェニルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシフェニルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシフェニルシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(ジ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;等が挙げられる。
 式(b-4)で表される化合物の具体例としては、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア、N,N’-ビス(3-トリプロポキシシリルプロピル)ウレア、N,N’-ビス(3-トリブトキシシリルプロピル)ウレア、N,N’-ビス(2-トリメトキシシリルエチル)ウレア等のN,N’-ビス〔(トリ(炭素数1~6)アルコキシシリル)(炭素数1~10)アルキル〕ウレア;
N,N’-ビス(3-ジメトキシメチルシリルプロピル)ウレア、N,N’-ビス(3-ジメトキシエチルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシメチルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数1~6)アルキルシリル(炭素数1~10)アルキル)ウレア;
N,N’-ビス(3-ジメトキシフェニルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシフェニルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数6~20)アリールシリル(炭素数1~10)アルキル)ウレア;等が挙げられる。
 これらは1種単独で、或いは2種以上を組み合わせて用いることができる。
 これらの中でも、本発明の(B)成分としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、「ウレア化合物」という。)、及び、前記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましく、接着力により優れる硬化物が得られる観点から、前記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのがより好ましい。
 前記イソシアヌレート化合物とウレア化合物とを組み合わせて用いる場合、両者の使用割合は、(イソシアヌレート化合物)と(ウレア化合物)の質量比で、100:1~100:200であるのが好ましく、100:110であるのがより好ましい。
 なお、イソシアヌレート化合物の使用割合は、前記(A)成分100質量部に対して、35質量部以下であるのが好ましく、25質量部以下であるのがより好ましい。イソシアヌレート化合物単独で用いる場合も、ウレア化合物と併用して用いる場合においても同様である。
 また、ウレア化合物の使用割合は、前記(A)成分100質量部に対して、20質量部以下であるのが好ましく、15質量部以下であるのがより好ましい。ウレア化合物単独で用いる場合も、イソシアヌレート化合物と併用して用いる場合においても同様である。
 本発明の硬化性組成物は、前記(A)成分(又は、(A’)成分、或いは(A”)成分。以下にて同じ。〕及び(B)成分を、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:40の割合で含有する。
 このような割合で(A)成分及び(B)成分を用いることにより、透明性、接着性に優れ、さらに耐熱性に優れ、高温にしても接着力が低下しにくい硬化物が得られる硬化性組成物を得ることができる。当該観点から、〔(A)成分:(B)成分〕=100:1~100:30の割合がより好ましく、〔(A)成分:(B)成分〕=100:3~100:25の割合がよりさらに好ましい。
 本発明の硬化性組成物には、本発明の目的を阻害しない範囲で、上記成分に、さらに他の成分を含有させてもよい。
 他の成分としては、前記(B)成分以外のシランカップリング剤、酸化防止剤、紫外線吸収剤、光安定剤、希釈剤等が挙げられる。
 前記(B)成分以外のシランカップリング剤としては、シランカップリング剤(B)以外のシランカップリング剤であって、本発明の目的を阻害しないものであれば特に制約はない。なかでも、より接着力の高い硬化物が得られる観点から、2-トリメトキシシリルエチル無水コハク酸、3-トリエトキシシリルプロピル無水コハク酸等の酸無水物構造を有するシランカップリング剤を用いるのが好ましい。
 酸無水物構造を有するシランカップリング剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 前記酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。
 フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。
 硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
 これら酸化防止剤は一種単独で、或いは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分に対して、通常、10質量%以下である。
 紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 紫外線吸収剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 紫外線吸収剤の使用量は、(A)成分に対して、通常、10質量%以下である。
 光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
 これらの光安定剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 これらの他の成分の総使用量は、(A)成分に対して、通常、20質量%以下である。
 希釈剤は、硬化性組成物の粘度を調整するため添加される。
 希釈剤としては、例えば、グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ジグリシジルアニリン、ネオペンチルグリコールグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ポリグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド等が挙げられる。
 これらの希釈剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 本発明の硬化性組成物は、例えば、前記(A)、(B)成分、及び、所望により他の成分を所定割合で配合して、公知の方法により混合、脱泡することにより得ることができる。
 以上のようにして得られる本発明の硬化性組成物によれば、高エネルギーの光が照射される場合や高温状態に置かれた場合であっても、着色して透明性が低下したりすることがなく、かつ、高い接着力を有する硬化物を得ることができる。
 したがって、本発明の硬化性組成物は、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。特に、光素子の高輝度化に伴う、光素子固定材の劣化に関する問題を解決することができることから、本発明の硬化性組成物は、光素子固定用組成物として好適に使用することができる。
2)硬化物
 本発明の第2は、本発明の硬化性組成物を硬化してなる硬化物である。
 本発明の硬化性組成物を硬化する方法としては加熱硬化が挙げられる。硬化するときの加熱温度は、通常、100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
 本発明の硬化物は、高エネルギーの光が照射される場合や高温状態に置かれた場合であっても、着色して透明性が低下したりすることがなく、長期にわたって優れた透明性を有し、かつ、高い接着力を有する。
 したがって、本発明の硬化物は、光素子の高輝度化に伴う光素子固定材の劣化に関する問題を解決することができることから、光素子固定材として好適に使用することができる。例えば、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。
 本発明の硬化性組成物を硬化してなる硬化物が高い接着力を有することは、例えば、次のようにして接着力を測定することで確認することができる。すなわち、シリコンチップのミラー面に硬化性組成物を塗布し、塗布面を被着体の上に載せ圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
 硬化物の接着力は、23℃および100℃において80N/2mm□以上であることが好ましく、100N/2mm□以上であることがより好ましい。
 前記硬化物が透明性に優れることは、光透過率を測定することで確認することができる。硬化物の光透過率は、例えば、波長400nm、450nmの光で、80%以上が好ましい。
 前記硬化物が耐熱性に優れることは、硬化物を高温下に置いた後であっても透明性の変化が小さいことから確認することができる。透明性は、150℃で500時間置いた後に、波長400nm、450nmの透過率が、共に初期透過率の80%以上であることが好ましい。
3)硬化性組成物の使用方法
 本発明の第3は、本発明の硬化性組成物を、光素子用接着剤又は光素子用封止剤等の光素子固定材用組成物として使用する方法である。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
〈光素子用接着剤〉
 本発明の硬化性組成物は、光素子用接着剤として好適に使用することができる。
 本発明の硬化性組成物を光素子用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。
 光素子を接着するための主な基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
〈光素子用封止剤〉
 本発明の硬化性組成物は、光素子封止体の封止剤として好適に用いることができる。
 本発明の硬化性組成物を光素子用封止剤として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、そのものを加熱硬化させることにより光素子封止体を製造する方法等が挙げられる。
 本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
 加熱硬化する際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
 得られる光素子封止体は、本発明の硬化性組成物を用いているので、光素子に、白色や青色発光LED等の、発光のピーク波長が400~490nmと短波長のものを用いても、熱や光により着色劣化することがない透明性、耐熱性に優れるものである。
 次に実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記の実施例に限定されるものではない。
(重量平均分子量測定)
 下記製造例で得たシラン化合物共重合体の重量平均分子量(Mw)は標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 注入量:80μl
 測定温度:40℃
 流速:1ml/分
 検出器:示差屈折計
(IRスペクトルの測定)
 製造例で得たシラン化合物共重合体のIRスペクトルは、以下の装置を使用して測定した。
フーリエ変換赤外分光光度計(Spectrum100、パーキンエルマー社製)
(製造例1)
 300mlのナス型フラスコに、フェニルトリメトキシシラン(東京化成工業社製、以下にて同じ)20.2g(102mmol)と、2-シアノエチルトリメトキシシラン(アヅマックス社製、以下にて同じ)3.15g(18mmol)、並びに、溶媒として、アセトン96ml及び蒸留水24mlを仕込んだ後、攪拌しながら、触媒としてリン酸(関東化学社製、以下にて同じ)0.15g(1.5mmol)を加え、室温でさらに16時間攪拌を継続した。
 反応終了後、反応液をエバポレーターで50mlまで濃縮し、酢酸エチル100mlを加え、飽和炭酸水素ナトリウム水溶液にて中和した。しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液をエバポレーターにて50mlまで濃縮し、これを多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解して回収し、エバポレーターで溶媒を減圧留去し、真空乾燥することにより、シラン化合物共重合体(A1)を13.5g得た。
 シラン化合物共重合体(A1)の重量平均分子量(Mw)は1,900であった。
 また、シラン化合物共重合体(A1)のIRスペクトルデータを以下に示す。
Si-Ph:698cm-1,740cm-1,Si-O:1132cm-1,-CN:2259cm-1
(製造例2)
 製造例1において、フェニルトリメトキシシランの使用量を16.6g(84mmol)とし、2-シアノエチルトリメトキシシランの使用量を6.30g(36mmol)とした以外は製造例1と同様にして、シラン化合物共重合体(A2)を12.9g得た。
 シラン化合物共重合体(A2)の重量平均分子量(Mw)は2,000であった。
 また、シラン化合物共重合体(A2)のIRスペクトルデータを以下に示す。
Si-Ph:698cm-1,740cm-1,Si-O:1132cm-1,-CN:2255cm-1
(製造例3)
 300mlのナス型フラスコに、フェニルトリメトキシシラン20.2g(102mmol)と、3-アセトキシプロピルトリメトキシシラン(アヅマックス社製)4.0g(18mmol)、並びに、溶媒としてトルエン60ml及び蒸留水30mlを仕込んだ後、攪拌しながら、触媒としてリン酸0.15g(1.5mmol)を加え、室温でさらに16時間攪拌を継続した。
 反応終了後、反応混合物に酢酸エチル100mlを加え、飽和炭酸水素ナトリウム水溶液にて中和した。しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液をエバポレーターにて50mlまで濃縮し、これを多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解して回収し、エバポレーターで溶媒を減圧留去し、真空乾燥することにより、シラン化合物共重合体(A3)を14.7g得た。
 シラン化合物共重合体(A3)の重量平均分子量(Mw)は2,700であった。
 また、シラン化合物共重合体(A3)のIRスペクトルデータを以下に示す。
Si-Ph:699cm-1,741cm-1,Si-O:1132cm-1,-CO:1738cm-1
(製造例4)
 300mlのナス型フラスコに、フェニルトリメトキシシラン20.2g(102mmol)と、3-クロロプロピルトリメトキシシラン(東京化成工業社製)3.58g(18mmol)、並びに、溶媒としてトルエン60ml及び蒸留水30mlを仕込んだ後、攪拌しながら、触媒としてリン酸0.15g(1.5mmol)を加え、室温でさらに16時間攪拌を継続した。
 反応終了後、反応混合物を飽和炭酸水素ナトリウム水溶液にて中和した。これに酢酸エチル100mlを加えて撹拌し、静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液を多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解して回収し、エバポレーターで溶媒を減圧留去し、真空乾燥することにより、シラン化合物共重合体(A4)を13.6g得た。
 シラン化合物共重合体(A4)の重量平均分子量(Mw)は3,000であった。
 また、シラン化合物共重合体(A4)のIRスペクトルデータを以下に示す。
Si-Ph:700cm-1,741cm-1,Si-O:1132cm-1,-Cl:648cm-1
(実施例1)
 製造例1で得たシラン化合物共重合体(A1)10gに、シランカップリング剤(B)として、トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート(信越化学工業社製、以下「シランカップリング剤(B1)」という。)0.1gを加え、全容を十分に混合、脱泡することにより硬化性組成物を得た。
(実施例2~27、比較例1~5)
 実施例1において、シラン化合物共重合体(A1)とシランカップリング剤(B1)の代わりに、下記第1表に示す量のシラン化合物共重合体(A1)~(A4)とシランカップリング剤(B1)、(B2)を用いたことを除き、実施例1と同様にして実施例2~27、比較例1~5の硬化性組成物を得た。
 なお、シランカップリング剤(B2)は、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア(アヅマックス社製)である。
 実施例1~27及び比較例1~5で得た硬化性組成物の硬化物につき、下記のようにして、接着力、初期透過率、及び加熱後透過率を測定し、接着耐熱性、初期透明性、耐熱性(加熱後透明性)を評価した。
 測定結果及び評価を下記第1表に示す。
(接着力試験)
 2mm角のシリコンチップのミラー面に、実施例1~16及び比較例1~5で得た硬化性組成物のそれぞれを厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、180℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(シリーズ4000、デイジ社製)の測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、スピード200μm/sで接着面に対し水平方法(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着力(N/2mm□)を測定した。
(接着耐熱性)
 接着力試験において、23℃及び100℃における接着力が、いずれも100N/2mm□以上である場合を「◎」、23℃における接着力が100N/2mm□以上であり100℃における接着力が80N/2mm□以上100N/2mm□未満である場合を「○」、23℃における接着力が100N/2mm□以上であり100℃における接着力が60N/2mm□以上80N/2mm□未満である場合を「△」、23℃における接着力が100N/2mm□未満である場合を「×」と評価した。
(初期透過率の測定)
 実施例1~27及び比較例1~5で得た硬化性組成物のそれぞれを、長さ25mm、幅20mm、厚さ1mmとなるように鋳型に流し込み、140℃で6時間加熱して硬化させ、試験片をそれぞれ作製した。得られた試験片につき、分光光度計(MPC-3100、島津製作所社製)にて、波長400nm、450nmの初期透過率(%)を測定した。
(初期透明性)
 初期透過率測定において、400nmの透過率が80%以上を「○」、70%以上80%未満を「△」、70%未満を「×」と評価した。
(加熱後の透過率の測定)
 初期透過率を測定した各試験片を150℃のオーブン中に500時間静置し、再度、波長400nm、450nmの透過率(%)を測定した。これを加熱後透過率とした。
〔耐熱性(加熱後透明性)〕
 加熱後透過率測定において、400nmの透過率が、初期透過率の80%以上であれば「○」、70%以上80%未満であれば「△」、70%未満であれば「×」と評価した。
Figure JPOXMLDOC01-appb-T000014
 第1表から、実施例1~27で得られた硬化性組成物の硬化物は、接着性及び接着耐熱性に優れていた。また、波長400nm、450nmの初期透過率、加熱後透過率がいずれも高く、初期透明性、耐熱性(加熱後透明性)にも優れていた。
 一方、比較例1の、(B)成分の使用量が少ない硬化性組成物、比較例2の(B)成分の使用量が多すぎる硬化性組成物、及び、比較例3~5の、(B)成分を使用しない硬化性組成物の各硬化物は、接着性、接着耐熱性に劣っていた。

Claims (14)

  1.  下記の(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:40の割合で含有することを特徴とする硬化性組成物。
    (A)成分:下記式(a-1)
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Rは水素原子又は炭素数1~6のアルキル基を表し、
    はハロゲン原子、シアノ基又は式:OGで表される基(式中、Gは水酸基の保護基を表す。)を表し、
    Dは単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。
    は、置換基(ただしハロゲン原子、シアノ基及び前記式:OGで表される基を除く)を有していてもよい炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表す。
    Zは、ヒドロキシル基、炭素数1~10のアルコキシ基又はハロゲン原子を示す。
    m、nはそれぞれ独立して正の整数を示す。
    o、p、q、rはそれぞれ独立して、0または正の整数を示す。〕
    で表される、重量平均分子量が800~30,000であるシラン化合物共重合体
    (B)成分:分子内に窒素原子を有するシランカップリング剤
  2.  前記(A)成分において、mとnとが、m:n=60:40~5:95の割合である請求項1に記載の硬化性組成物。
  3.  前記(B)成分が、下記式(b-3)で表される1,3,5-N-トリス(トリアルコキシシリルアルキル)イソシアヌレート、又は、式(b-4)で表されるN,N’-ビス(トリアルコキシシリルアルキル)ウレアであることを特徴とする請求項1に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、炭素数1~6のアルコキシ基を表し、複数のR同士は同一であっても相異なっていてもよい。t1~t5はそれぞれ独立して、1~10の整数を表す。)
  4.  下記の(A’)成分と(B)成分とを、(A’)成分と(B)成分の質量比で、〔(A’)成分:(B)成分〕=100:0.3~100:40の割合で含有することを特徴とする硬化性組成物。
    (A’)成分:式(1):R-CH(X)-D-Si(OR(X3-u
    〔式中、Rは水素原子又は炭素数1~6のアルキル基を表し、Xはハロゲン原子、シアノ基又は式:OGで表される基(式中、Gは水酸基の保護基を表す。)を表し、Dは単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、uは0~3の整数を表す。〕
    で表されるシラン化合物(1)の少なくとも一種、及び
    式(2):RSi(OR(X3-v
    (式中、Rは、炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表し、Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、vは0~3の整数を表す。)
    で表されるシラン化合物(2)の少なくとも一種を含むシラン化合物の混合物を縮合させて得られる、重量平均分子量が800~30,000であるシラン化合物共重合体
    (B)成分:分子内に窒素原子を有するシランカップリング剤
  5.  前記(A’)成分が、シラン化合物(1)とシラン化合物(2)とを、モル比で、〔シラン化合物(1)〕:〔シラン化合物(2)〕=60:40~5:95の割合で縮合させて得られるシラン化合物共重合体である請求項3に記載の硬化性組成物。
  6.  前記(B)成分が、下記式(b-3)で表される1,3,5-N-トリス(トリアルコキシシリルアルキル)イソシアヌレート、又は、式(b-4)で表されるN,N’-ビス(トリアルコキシシリルアルキル)ウレアであることを特徴とする請求項3又は4に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。t1~t5はそれぞれ独立して、1~10の整数を表す。)
  7.  下記の(A”)成分と(B)成分とを、(A”)成分と(B)成分の質量比で、〔(A”)成分:(B)成分〕=100:0.3~100:40の割合で含有することを特徴とする硬化性組成物。
    (A”)成分:分子内に、下記式(i)、(ii)及び(iii)
    Figure JPOXMLDOC01-appb-C000004
    〔式中、Rは水素原子又は炭素数1~6のアルキル基を表し、
    はハロゲン原子、シアノ基又は式:OGで表される基(式中、Gは水酸基の保護基を表す。)を表し、
    Dは単結合又は置換基を有していてもよい炭素数1~20の2価の有機基を表す。
    は、置換基(ただしハロゲン原子、シアノ基及び前記式:OGで表される基を除く)を有していてもよい炭素数1~20のアルキル基又は置換基を有していてもよいフェニル基を表す。〕
    で表される繰り返し単位のうち、(i)及び(ii)、(i)及び(iii)、(ii)及び(iii)、又は(i)、(ii)及び(iii)の繰り返し単位を有し、重量平均分子量が800~30,000であるシラン化合物共重合体
    (B)成分:分子内に窒素原子を有するシランカップリング剤
  8.  前記(A”)成分が、該共重合体中における、式:R-CH(X)-D-で表される基の存在量(〔R-CH(X)-D-〕)とRの存在量(〔R〕)が、モル比で〔R-CH(X)-D-〕:〔R〕=60:40~5:95の高分子であることを特徴とする請求項6に記載の硬化性組成物。
  9.  前記(B)成分が、下記式(b-3)で表される1,3,5-N-トリス(トリアルコキシシリルアルキル)イソシアヌレート、又は、式(b-4)で表されるN,N’-ビス(トリアルコキシシリルアルキル)ウレアであることを特徴とする請求項6又は7に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは、炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。t1~t5はそれぞれ独立して、1~10の整数を表す。)
  10.  光素子固定材用組成物である請求項1~8のいずれかに記載の硬化性組成物。
  11.  請求項1~8のいずれかに記載の硬化性組成物を硬化してなる硬化物。
  12.  光素子固定材である請求項10に記載の硬化物。
  13.  請求項1~8のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
  14.  請求項1~8のいずれかに記載の硬化性組成物を、光素子固定材用封止剤として使用する方法。
PCT/JP2013/058301 2012-03-23 2013-03-22 硬化性組成物、硬化物および硬化性組成物の使用方法 WO2013141360A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147026070A KR101983423B1 (ko) 2012-03-23 2013-03-22 경화성 조성물, 경화물 및 경화성 조성물의 사용 방법
CN201380016059.3A CN104245849B (zh) 2012-03-23 2013-03-22 固化性组合物、固化物和固化性组合物的使用方法
JP2013539826A JP5744221B2 (ja) 2012-03-23 2013-03-22 硬化性組成物、硬化物および硬化性組成物の使用方法
US14/387,142 US9359533B2 (en) 2012-03-23 2013-03-22 Curable composition, cured product, and method for using curable composition
EP13763711.2A EP2829579A4 (en) 2012-03-23 2013-03-22 HARDENABLE COMPOSITION, HARDENED PRODUCT, AND METHOD FOR USE OF A HARDENABLE COMPOSITION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-067245 2012-03-23
JP2012067245 2012-03-23
JP2012213417 2012-09-27
JP2012-213417 2012-09-27

Publications (1)

Publication Number Publication Date
WO2013141360A1 true WO2013141360A1 (ja) 2013-09-26

Family

ID=49222808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058301 WO2013141360A1 (ja) 2012-03-23 2013-03-22 硬化性組成物、硬化物および硬化性組成物の使用方法

Country Status (8)

Country Link
US (1) US9359533B2 (ja)
EP (1) EP2829579A4 (ja)
JP (1) JP5744221B2 (ja)
KR (1) KR101983423B1 (ja)
CN (1) CN104245849B (ja)
MY (1) MY171190A (ja)
TW (1) TW201400572A (ja)
WO (1) WO2013141360A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197425A (ja) * 2011-03-10 2012-10-18 Lintec Corp 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015041339A1 (ja) * 2013-09-20 2015-03-26 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015170710A1 (ja) * 2014-05-07 2015-11-12 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物及び硬化性組成物の使用方法
WO2015170709A1 (ja) * 2014-05-07 2015-11-12 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法
WO2016013625A1 (ja) * 2014-07-23 2016-01-28 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031731A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031733A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031729A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031728A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031730A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031732A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
JP2016166268A (ja) * 2015-03-09 2016-09-15 東ソー株式会社 ポリアリーレンスルフィド組成物
WO2017110948A1 (ja) * 2015-12-22 2017-06-29 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、および光デバイス
WO2020067451A1 (ja) * 2018-09-28 2020-04-02 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、硬化性組成物、硬化物、及び、硬化性組成物の使用方法
WO2020067454A1 (ja) * 2018-09-28 2020-04-02 リンテック株式会社 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
WO2020067452A1 (ja) * 2018-09-28 2020-04-02 リンテック株式会社 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
JP2020176212A (ja) * 2019-04-18 2020-10-29 リンテック株式会社 ダイボンド材、発光装置、及び、発光装置の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213302B1 (ko) * 2013-09-20 2021-02-05 린텍 가부시키가이샤 경화성 조성물, 경화물 및 경화성 조성물의 사용 방법
JPWO2015041342A1 (ja) * 2013-09-20 2017-03-02 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
JP7021046B2 (ja) * 2018-10-22 2022-02-16 信越化学工業株式会社 付加硬化型シリコーン組成物、シリコーン硬化物、及び、光学素子

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309927A (ja) 1994-05-17 1995-11-28 Nitto Denko Corp 光半導体装置
JP2004359933A (ja) 2003-05-14 2004-12-24 Nagase Chemtex Corp 光素子用封止材
JP2005263869A (ja) 2004-03-16 2005-09-29 Nagase Chemtex Corp 光半導体封止用樹脂組成物
JP2006328231A (ja) 2005-05-26 2006-12-07 Nagase Chemtex Corp 光素子用封止樹脂組成物
JP2009001752A (ja) 2007-06-25 2009-01-08 Nitto Denko Corp 光半導体素子封止用エポキシ樹脂組成物およびそれを用いた光半導体装置
JP2009030013A (ja) * 2007-06-29 2009-02-12 Lintec Corp ポリシルセスキオキサン化合物からなる成形材料、封止材および光素子封止体
WO2009101753A1 (ja) * 2008-02-14 2009-08-20 Lintec Corporation ポリオルガノシロキサン化合物からなる成形材料、封止材及び光素子封止体
WO2009104505A1 (ja) * 2008-02-19 2009-08-27 リンテック株式会社 ポリオルガノシロキサン化合物を主成分とする接着剤
JP2010152302A (ja) * 2008-11-28 2010-07-08 Toray Ind Inc ネガ型感光性樹脂組成物およびそれを用いたタッチパネル用材料
JP2011002517A (ja) * 2009-06-16 2011-01-06 Jsr Corp ポジ型感放射線性組成物、層間絶縁膜及びその形成方法
WO2011111667A1 (ja) * 2010-03-08 2011-09-15 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
JP2012037866A (ja) * 2010-07-16 2012-02-23 Jsr Corp 感放射線性組成物、保護膜、層間絶縁膜、及びそれらの形成方法
JP2012155200A (ja) * 2011-01-27 2012-08-16 Jsr Corp 感放射線性組成物、硬化膜及びその形成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020019A1 (fr) 1994-01-21 1995-07-27 Toshiba Silicone Co., Ltd. Composition adhesive et procede permettant de la faire durcir
US20050288415A1 (en) 2004-06-23 2005-12-29 Beers Melvin D Highly elastomeric and paintable silicone compositions
JP5281901B2 (ja) * 2007-02-13 2013-09-04 株式会社カネカ 硬化性組成物
US8481669B2 (en) 2007-06-29 2013-07-09 Lintec Corporation Molding material comprising polysilsesquioxane compound, sealing material, and sealed optical element
JP5179302B2 (ja) * 2008-09-11 2013-04-10 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 自己接着性ポリオルガノシロキサン組成物
WO2010050357A1 (ja) * 2008-10-27 2010-05-06 Jsr株式会社 感光性絶縁樹脂組成物及びその硬化物
TW201038684A (en) 2009-01-09 2010-11-01 Momentive Performance Mat Inc Silane coating compositions containing silicon-based polyether copolymers, methods for coating metal surfaces and articles made therefrom
JP5585065B2 (ja) * 2009-01-30 2014-09-10 Jsr株式会社 感光性絶縁樹脂組成物及びその硬化物並びに絶縁膜の製造方法
JP5404474B2 (ja) * 2009-03-31 2014-01-29 富士フイルム株式会社 レーザー彫刻用レリーフ印刷版原版、および、レリーフ印刷版の製造方法
JP5459033B2 (ja) * 2010-04-14 2014-04-02 信越化学工業株式会社 接着剤組成物
US9783715B2 (en) * 2013-02-28 2017-10-10 Lintec Corporation Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309927A (ja) 1994-05-17 1995-11-28 Nitto Denko Corp 光半導体装置
JP2004359933A (ja) 2003-05-14 2004-12-24 Nagase Chemtex Corp 光素子用封止材
JP2005263869A (ja) 2004-03-16 2005-09-29 Nagase Chemtex Corp 光半導体封止用樹脂組成物
JP2006328231A (ja) 2005-05-26 2006-12-07 Nagase Chemtex Corp 光素子用封止樹脂組成物
JP2009001752A (ja) 2007-06-25 2009-01-08 Nitto Denko Corp 光半導体素子封止用エポキシ樹脂組成物およびそれを用いた光半導体装置
JP2009030013A (ja) * 2007-06-29 2009-02-12 Lintec Corp ポリシルセスキオキサン化合物からなる成形材料、封止材および光素子封止体
WO2009101753A1 (ja) * 2008-02-14 2009-08-20 Lintec Corporation ポリオルガノシロキサン化合物からなる成形材料、封止材及び光素子封止体
WO2009104505A1 (ja) * 2008-02-19 2009-08-27 リンテック株式会社 ポリオルガノシロキサン化合物を主成分とする接着剤
JP2010152302A (ja) * 2008-11-28 2010-07-08 Toray Ind Inc ネガ型感光性樹脂組成物およびそれを用いたタッチパネル用材料
JP2011002517A (ja) * 2009-06-16 2011-01-06 Jsr Corp ポジ型感放射線性組成物、層間絶縁膜及びその形成方法
WO2011111667A1 (ja) * 2010-03-08 2011-09-15 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
JP2012037866A (ja) * 2010-07-16 2012-02-23 Jsr Corp 感放射線性組成物、保護膜、層間絶縁膜、及びそれらの形成方法
JP2012155200A (ja) * 2011-01-27 2012-08-16 Jsr Corp 感放射線性組成物、硬化膜及びその形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2829579A4

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197425A (ja) * 2011-03-10 2012-10-18 Lintec Corp 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015041339A1 (ja) * 2013-09-20 2015-03-26 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
US10113035B2 (en) 2014-05-07 2018-10-30 Lintec Corporation Curable polysilsesquioxane compound, production method therefor, curable composition, cured product and use method of curable composition
WO2015170710A1 (ja) * 2014-05-07 2015-11-12 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物及び硬化性組成物の使用方法
WO2015170709A1 (ja) * 2014-05-07 2015-11-12 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法
CN106414559A (zh) * 2014-05-07 2017-02-15 琳得科株式会社 固化性聚倍半硅氧烷化合物、其制备方法、固化性组合物、固化物、和固化性组合物等的使用方法
KR102253196B1 (ko) * 2014-05-07 2021-05-17 린텍 가부시키가이샤 경화성 폴리실세스퀴옥산 화합물, 그 제조 방법, 경화성 조성물, 경화물, 및 경화성 조성물 등의 사용 방법
KR102244168B1 (ko) * 2014-05-07 2021-04-23 린텍 가부시키가이샤 경화성 폴리실세스퀴옥산 화합물, 그 제조 방법, 경화성 조성물, 경화물 및 경화성 조성물의 사용 방법
KR20170008218A (ko) * 2014-05-07 2017-01-23 린텍 가부시키가이샤 경화성 폴리실세스퀴옥산 화합물, 그 제조 방법, 경화성 조성물, 경화물 및 경화성 조성물의 사용 방법
CN106414559B (zh) * 2014-05-07 2019-09-20 琳得科株式会社 固化性聚倍半硅氧烷化合物、其制备方法、固化性组合物、固化物、和固化性组合物等的使用方法
US10370498B2 (en) 2014-05-07 2019-08-06 Lintec Corporation Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
KR20170007296A (ko) * 2014-05-07 2017-01-18 린텍 가부시키가이샤 경화성 폴리실세스퀴옥산 화합물, 그 제조 방법, 경화성 조성물, 경화물, 및 경화성 조성물 등의 사용 방법
KR102338448B1 (ko) * 2014-07-23 2021-12-10 린텍 가부시키가이샤 경화성 조성물, 경화성 조성물의 제조 방법, 경화물, 경화성 조성물의 사용 방법, 및 광 디바이스
US10308850B2 (en) 2014-07-23 2019-06-04 Lintec Corporation Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
JP6009120B2 (ja) * 2014-07-23 2016-10-19 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
EP3173445A4 (en) * 2014-07-23 2018-03-14 LINTEC Corporation Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
TWI663213B (zh) * 2014-07-23 2019-06-21 日商琳得科股份有限公司 硬化性組成物、硬化性組成物的製造方法、硬化物、硬化性組成物的使用方法及光裝置
CN106661330B (zh) * 2014-07-23 2020-11-06 琳得科株式会社 固化性组合物、固化性组合物的制造方法、固化物、固化性组合物的使用方法和光学器件
CN106661330A (zh) * 2014-07-23 2017-05-10 琳得科株式会社 固化性组合物、固化性组合物的制造方法、固化物、固化性组合物的使用方法和光学器件
KR20170033272A (ko) * 2014-07-23 2017-03-24 린텍 가부시키가이샤 경화성 조성물, 경화성 조성물의 제조 방법, 경화물, 경화성 조성물의 사용 방법, 및 광 디바이스
WO2016013625A1 (ja) * 2014-07-23 2016-01-28 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
JP2017122216A (ja) * 2014-08-26 2017-07-13 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031730A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
JPWO2016031728A1 (ja) * 2014-08-26 2017-04-27 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
KR20170046648A (ko) * 2014-08-26 2017-05-02 린텍 가부시키가이샤 경화성 조성물, 경화물, 경화성 조성물의 사용 방법, 및 광 디바이스
JPWO2016031730A1 (ja) * 2014-08-26 2017-04-27 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
KR102354544B1 (ko) * 2014-08-26 2022-01-21 린텍 가부시키가이샤 경화성 조성물, 경화물, 경화성 조성물의 사용 방법, 및 광 디바이스
CN106574115A (zh) * 2014-08-26 2017-04-19 琳得科株式会社 固化性组合物、固化性组合物的制造方法、固化物、固化性组合物的使用方法及光器件
JP6062120B2 (ja) * 2014-08-26 2017-01-18 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
EP3187547A4 (en) * 2014-08-26 2018-04-25 Lintec Corporation Curable composition, cured product, method for using curable composition, and optical device
US9963624B2 (en) 2014-08-26 2018-05-08 Lintec Corporation Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
WO2016031731A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
JP6064094B2 (ja) * 2014-08-26 2017-01-18 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
US10266734B2 (en) 2014-08-26 2019-04-23 Lintec Corporation Curable composition, cured product, method for using curable composition, and optical device
US10294398B2 (en) 2014-08-26 2019-05-21 Lintec Corporation Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
JP6062119B2 (ja) * 2014-08-26 2017-01-18 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031733A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031732A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
JPWO2016031729A1 (ja) * 2014-08-26 2017-04-27 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031729A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2016031728A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
US10774249B2 (en) 2014-08-26 2020-09-15 Lintec Corporation Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
CN106574115B (zh) * 2014-08-26 2020-07-14 琳得科株式会社 固化性组合物、固化性组合物的制造方法、固化物、固化性组合物的使用方法及光器件
JP2016166268A (ja) * 2015-03-09 2016-09-15 東ソー株式会社 ポリアリーレンスルフィド組成物
US10920117B2 (en) 2015-12-22 2021-02-16 Lintec Corporation Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device
JPWO2017110948A1 (ja) * 2015-12-22 2018-10-11 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、および光デバイス
WO2017110948A1 (ja) * 2015-12-22 2017-06-29 リンテック株式会社 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、および光デバイス
WO2020067452A1 (ja) * 2018-09-28 2020-04-02 リンテック株式会社 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
WO2020067454A1 (ja) * 2018-09-28 2020-04-02 リンテック株式会社 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
JPWO2020067454A1 (ja) * 2018-09-28 2021-02-15 リンテック株式会社 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
JPWO2020067451A1 (ja) * 2018-09-28 2021-02-15 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、硬化性組成物、硬化物、及び、硬化性組成物の使用方法
JPWO2020067452A1 (ja) * 2018-09-28 2021-02-15 リンテック株式会社 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
WO2020067451A1 (ja) * 2018-09-28 2020-04-02 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、硬化性組成物、硬化物、及び、硬化性組成物の使用方法
JP2020176212A (ja) * 2019-04-18 2020-10-29 リンテック株式会社 ダイボンド材、発光装置、及び、発光装置の製造方法
JP7246238B2 (ja) 2019-04-18 2023-03-27 リンテック株式会社 ダイボンド材、発光装置、及び、発光装置の製造方法

Also Published As

Publication number Publication date
US20150065663A1 (en) 2015-03-05
TWI560253B (ja) 2016-12-01
JP5744221B2 (ja) 2015-07-08
CN104245849B (zh) 2016-08-17
EP2829579A4 (en) 2015-10-28
JPWO2013141360A1 (ja) 2015-08-03
KR20140135763A (ko) 2014-11-26
KR101983423B1 (ko) 2019-09-10
CN104245849A (zh) 2014-12-24
EP2829579A1 (en) 2015-01-28
US9359533B2 (en) 2016-06-07
MY171190A (en) 2019-10-01
TW201400572A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5744221B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
KR101768246B1 (ko) 경화성 조성물, 경화물 및 경화성 조성물의 사용 방법
JP6761491B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP6779235B2 (ja) 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、および光デバイス
JP5940456B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP6046898B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP6228591B2 (ja) 硬化性組成物、硬化物、硬化性組成物の使用方法、並びに、光素子封止体及びその製造方法
WO2015041339A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
TWI664237B (zh) 硬化性組成物、硬化物以及硬化性組成物的使用方法
KR101757497B1 (ko) 경화성 조성물, 경화물 및 경화성 조성물의 사용 방법
WO2016031733A1 (ja) 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2015041343A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015041344A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2015041340A1 (ja) シラン化合物重合体、硬化性組成物、硬化物および硬化性組成物の使用方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013539826

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026070

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387142

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013763711

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE