WO2016031732A1 - 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス - Google Patents

硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス Download PDF

Info

Publication number
WO2016031732A1
WO2016031732A1 PCT/JP2015/073610 JP2015073610W WO2016031732A1 WO 2016031732 A1 WO2016031732 A1 WO 2016031732A1 JP 2015073610 W JP2015073610 W JP 2015073610W WO 2016031732 A1 WO2016031732 A1 WO 2016031732A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
curable composition
carbon atoms
optical element
Prior art date
Application number
PCT/JP2015/073610
Other languages
English (en)
French (fr)
Inventor
秀一 中山
優美 松井
幹広 樫尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2016541450A priority Critical patent/JP6062119B2/ja
Publication of WO2016031732A1 publication Critical patent/WO2016031732A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a curable composition from which a cured product having excellent peel resistance and heat resistance and high adhesive strength is obtained, a cured product obtained by curing the composition, and the composition as an adhesive for optical elements. Or it is related with the method used as a sealing material for optical elements, and an optical device.
  • the curable composition has been variously improved according to the application, and has been widely used in industry as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like.
  • the curable composition has attracted attention as a composition for optical element fixing materials such as an optical element adhesive and an optical element sealing material when producing an optical element sealing body.
  • the optical element examples include various lasers such as a semiconductor laser (LD), light emitting elements such as a light emitting diode (LED), a light receiving element, a composite optical element, and an optical integrated circuit.
  • LD semiconductor laser
  • LED light emitting diode
  • a composite optical element a composite optical element
  • optical integrated circuit an optical integrated circuit
  • the cured product of the composition for optical element fixing materials is exposed to higher energy light or higher temperature heat generated from the optical element for a long time, and deteriorates and peels off. Or a problem that the adhesive strength is reduced.
  • Patent Documents 1 to 3 an optical element fixing material composition containing a polysilsesquioxane compound as a main component is disclosed in Patent Document 4, and a hydrolyzate / polycondensate of a silane compound is disclosed in Patent Document 4.
  • a member for a semiconductor light emitting device to be used has been proposed.
  • the cured products such as the compositions and members described in Patent Documents 1 to 4 sometimes have difficulty in obtaining peeling resistance and heat resistance while maintaining sufficient adhesive force. Therefore, development of the curable composition which is excellent in peeling resistance and heat resistance, and can obtain the hardened
  • JP 2004-359933 A JP 2005-263869 A JP 2006-328231 A JP 2007-1212975 A (US2009008673A1)
  • the present invention has been made in view of the situation of such prior art, and is a curable composition from which a cured product having excellent peel resistance (delamination resistance), heat resistance, and high adhesive strength can be obtained, It is an object to provide a cured product obtained by curing a composition, a method of using the composition as an optical element adhesive or an optical element sealing material, and an optical device.
  • the present inventors have found that a composition containing a specific silane compound copolymer, fine particles, and a silane coupling agent in a specific ratio as described below is resistant to It has been found that the cured product has excellent peelability and heat resistance and high adhesive force, and has completed the present invention.
  • the curable composition characterized by containing.
  • X 0 represents a halogen atom, a cyano group, or a group represented by the formula: OG (wherein G represents a hydroxyl-protecting group), and D represents a single bond or a substituent. Or a divalent organic group having 1 to 20 carbon atoms and having no substituent.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or a phenyl group having or not having a substituent.
  • Z 1 to Z 4 each independently represent a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
  • m and n each independently represent a positive integer.
  • silane compound copolymer (B) represented by formula (B) Fine particles having an average primary particle size of more than 0.04 ⁇ m and 8 ⁇ m or less (C) A silane coupling agent having a nitrogen atom in the molecule (D) An acid anhydride structure in the molecule Silane coupling agent (E) having a sulfur atom-containing functional group in the molecule
  • the total amount of the component (A), the component (B), the component (C), the component (D) and the component (E) is 50 with respect to the total components excluding the diluent of the curable composition.
  • a method of using the curable composition according to [1] as an adhesive for an optical element fixing material [12] A method of using the curable composition according to [1] as a sealing material for an optical element fixing material. [13] An optical device using the curable composition according to [1] as an adhesive for an optical element fixing material or an encapsulant for an optical element fixing material.
  • cured material which is excellent in peeling resistance and heat resistance, and has high adhesive force can be obtained.
  • the curable composition of this invention can be used when forming an optical element fixing material, and can be used especially suitably as an adhesive for optical elements and a sealing material for optical elements.
  • the cured product of the present invention is excellent in peeling resistance and heat resistance and has high adhesive strength in fixing an optical element.
  • the present invention will be described in detail by dividing it into 1) a curable composition, 2) a cured product, 3) a method for using the curable composition, and 4) an optical device.
  • the component (A) used in the present invention is a silane compound copolymer represented by the following formula (a-1).
  • Component (A) used in the curable composition of the present invention is a silane compound copolymer represented by the formula (a-1) (hereinafter referred to as “silane compound copolymer (A)”). There is.)
  • X 0 represents a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; a cyano group; or a group represented by the formula: OG.
  • G represents a hydroxyl-protecting group. There is no restriction
  • acyl protecting groups for example, acyl protecting groups; silyl protecting groups such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group; methoxymethyl group, methoxyethoxymethyl group, 1-ethoxyethyl group
  • An acetal type protective group such as tetrahydropyran-2-yl group or tetrahydrofuran-2-yl group
  • an alkoxycarbonyl type protective group such as t-butoxycarbonyl group
  • ether-based protecting groups such as allyl group, triphenylmethyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, and benzhydryl group.
  • G an acyl-type protecting group is preferable
  • the acyl-based protecting group is specifically a group represented by the formula: —C ( ⁇ O) R 5 .
  • R 5 represents 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, and n-pentyl group. Or a phenyl group having a substituent or not having a substituent.
  • Examples of the substituent of the phenyl group having a substituent of R 5 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n- Alkyl groups such as a pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group; It is done.
  • a chlorine atom a group represented by the formula: OG ′ (wherein G ′ is an acyl group) And a group selected from a cyano group, a group selected from a chlorine atom, an acetoxy group and a cyano group is more preferable, and a cyano group is particularly preferable.
  • D represents a single bond or a divalent organic group having 1 to 20 carbon atoms which has a substituent or does not have a substituent.
  • the divalent organic group having 1 to 20 carbon atoms include an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, an alkynylene group having 2 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, And a divalent group having 7 to 20 carbon atoms and a combination of (an alkylene group, an alkenylene group, or an alkynylene group) and an arylene group.
  • Examples of the alkylene group having 1 to 20 carbon atoms include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group and hexamethylene group.
  • Examples of the alkenylene group having 2 to 20 carbon atoms include vinylene group, propenylene group, butenylene group and pentenylene group.
  • Examples of the alkynylene group having 2 to 20 carbon atoms include an ethynylene group and a propynylene group.
  • Examples of the arylene group having 6 to 20 carbon atoms include an o-phenylene group, an m-phenylene group, a p-phenylene group, and a 2,6-naphthylene group.
  • alkylene group having 1 to 20 carbon atoms, alkenylene group having 2 to 20 carbon atoms, and alkynylene group having 2 to 20 carbon atoms may have include a halogen atom such as a fluorine atom and a chlorine atom.
  • Alkoxy groups such as methoxy group and ethoxy group; alkylthio groups such as methylthio group and ethylthio group; alkoxycarbonyl groups such as methoxycarbonyl group and ethoxycarbonyl group;
  • Examples of the substituent of the arylene group having 6 to 20 carbon atoms include cyano group; nitro group; halogen atom such as fluorine atom, chlorine atom and bromine atom; alkyl group such as methyl group and ethyl group; methoxy group, ethoxy group and the like An alkylthio group such as a methylthio group or an ethylthio group; These substituents may be bonded at arbitrary positions in groups such as an alkylene group, an alkenylene group, an alkynylene group, and an arylene group, and a plurality of them may be bonded in the same or different manner.
  • a divalent group consisting of a combination of a substituted or non-substituted group (alkylene group, alkenylene group or alkynylene group) and a substituted or non-substituted arylene group , At least one of the above-mentioned substituents or no substituents (an alkylene group, an alkenylene group, or an alkynylene group) and at least one of the arylene groups having the above-mentioned substituents or no substituents. Examples include groups bonded in series. Specific examples include groups represented by the following formula.
  • D is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and a methylene group or an ethylene group is preferable because a cured product having high adhesive strength can be obtained. Particularly preferred.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, and n-pentyl group. And n-hexyl group.
  • R 1 is preferably a hydrogen atom.
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or a phenyl group having a substituent or not having a substituent.
  • alkyl group having 1 to 20 carbon atoms of R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group.
  • Examples of the substituent of the phenyl group having a substituent of R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n- Examples thereof include alkyl groups such as pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; alkoxy groups such as methoxy group and ethoxy group; halogen atoms such as fluorine atom and chlorine atom.
  • phenyl group having or not having the substituent examples include a phenyl group, a 2-chlorophenyl group, a 4-methylphenyl group, a 3-ethylphenyl group, a 2,4-dimethylphenyl group, 2 -Methoxyphenyl group and the like can be mentioned.
  • R 2 is more preferably an alkyl group having 1 to 6 carbon atoms, or a phenyl group having or not having a substituent, and particularly an alkyl group having 1 to 6 carbon atoms or a phenyl group. preferable.
  • Z 1 to Z 4 each independently represent a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
  • the alkoxy group having 1 to 10 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, t-butoxy group, pentyloxy group, hexyloxy group and octyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • Z 1 to Z 4 are preferably each independently a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
  • M and n each independently represent a positive integer.
  • o, p, q, and r each independently represent 0 or a positive integer.
  • the production method of the silane compound copolymer (A) is not particularly limited, but is represented by the formula (1): R 1 —CH (X 0 ) —D—Si (OR 4 ) v (X 1 ) 3-v
  • a method of condensing the silane compound (1) and the silane compound (2) represented by the formula (2): R 2 Si (OR 5 ) w (X 2 ) 3-w is preferable.
  • condensation is used in a broad concept including hydrolysis and polycondensation reactions (the same applies hereinafter).
  • OR 4 or X 1 of the silane compound (1) remains in the silane compound copolymer (A) when dehydration and dealcohol condensation reactions are not performed.
  • OR 4 or X 1 that was not subjected to the condensation reaction, it remained as (CHR 1 X 0 -D-SiZ 1 O 2/2 ) in the formula (a-1) and was not subjected to the condensation reaction.
  • OR 4 or X 1 it remains as (CHR 1 X 0 -D-SiZ 3 2 O 1/2 ) in the formula (a-1).
  • silane compound (2) when OR 5 or X 2 is not subjected to dehydration and dealcohol condensation reaction, it remains in the silane compound copolymer (A).
  • OR 5 or X 2 that has not undergone condensation reaction it remains as (R 2 SiZ 2 O 2/2 ) in formula (a-1), and OR 5 or X 2 that has not undergone condensation reaction is In the case of two, it remains as (R 2 SiZ 4 2 O 1/2 ) in the formula (a-1).
  • R 1, X 0, and D are as defined above.
  • R 4 represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, and v represents an integer of 0 to 3.
  • Examples of the alkyl group having 1 to 10 carbon atoms of R 4 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, Examples thereof include an n-pentyl group and an n-hexyl group.
  • Examples of the halogen atom for X 1 include a fluorine atom, a chlorine atom, and a bromine atom.
  • OR 4 may be the same or different.
  • (3-v) is 2 or more, X 1 may be the same or different.
  • silane compound (1) examples include chloromethyltrimethoxysilane, bromomethyltriethoxysilane, 2-chloroethyltripropoxysilane, 2-bromoethyltributoxysilane, 3-chloropropyltrimethoxysilane, 3-chloro Propyltriethoxysilane, 3-chloropropyltripropoxysilane, 3-chloropropyltributoxysilane, 3-bromopropyltrimethoxysilane, 3-bromopropyltriethoxysilane, 3-bromopropyltripropoxysilane, 3-bromopropyltri Butoxysilane, 3-fluoropropyltrimethoxysilane, 3-fluoropropyltriethoxysilane, 3-fluoropropyltripropoxysilane, 3-fluoropropyltributoxysilane, 3-iodopropylto Methoxysilane, 2-chlor
  • trialkoxysilane compounds are preferred as the silane compound (1) because a cured product having better adhesion can be obtained.
  • Trialkoxysilane compounds having a 3-chloropropyl group, 3- Trialkoxysilane compounds having an acetoxypropyl group, trialkoxysilane compounds having a 2-cyanoethyl group, or trialkoxysilane compounds having a 3-cyanopropyl group are more preferred, trialkoxysilane compounds having a 2-cyanoethyl group Are particularly preferred.
  • R 2 represents the same meaning as described above.
  • R 5 represents the same alkyl group having 1 to 10 carbon atoms as R 4
  • X 2 represents the same halogen atom as X 1
  • w represents an integer of 0 to 3.
  • the ORs 5 may be the same or different.
  • (3-w) is 2 or more, X 2 may be the same or different.
  • silane compound (2) examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, i-butyltrimethoxy.
  • Alkyltrialkoxysilane compounds such as silane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, i-octyltriethoxysilane, dodecyltrimethoxysilane, methyldimethoxyethoxysilane, methyldiethoxymethoxysilane;
  • Alkyl halogenoalkoxysilanes such as methylchlorodimethoxysilane, methyldichloromethoxysilane, methyldichloromethoxysilane, methylchlorodiethoxysilane, ethylchlorodimethoxysilane, ethyldichloromethoxysilane, n-propylchlorodimethoxysilane, n-propyldichloromethoxysilane Compounds; Alkyltrihalogenosilane compounds such as methyltrichloros
  • silane compounds (2) can be used singly or in combination of two or more.
  • silane compound (2) alkyltrialkoxysilane compounds having 1 to 6 carbon atoms and phenyltrialkoxysilane compounds having a substituent or not having a substituent are preferable.
  • the method for condensing the silane compound is not particularly limited, and examples thereof include a method in which the silane compound (1) and the silane compound (2) are dissolved in a solvent, a predetermined amount of catalyst is added, and the mixture is stirred at a predetermined temperature.
  • the catalyst used may be either an acid catalyst or a base catalyst.
  • an acid catalyst and a base catalyst can be used in combination.
  • a basic catalyst may be added to the reaction solution to make it basic, and the condensation reaction may be further performed under basic conditions.
  • the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, and trifluoroacetic acid; It is done.
  • Base catalysts include trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picoline, 1,4-diazabicyclo [2 2.2]
  • Organic bases such as octane and imidazole; ammonia (water); quaternary ammonium salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxide, sodium ethoxide, sodium t-butoxide, Metal alkoxides such as potassium t-butoxide; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; sodium carbonate, potassium carbonate and magnesium carbonate Sodium hydrogen carbonate, metal bicarbonates such as potassium bicarbonate; metal carbonates such as
  • the amount of the catalyst used is usually in the range of 0.1 mol% to 10 mol%, preferably 1 mol% to 5 mol%, based on the total molar amount of the silane compound used.
  • the solvent to be used can be appropriately selected according to the type of the silane compound.
  • water aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl i-butyl ketone and cyclohexanone
  • alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, i-butyl alcohol, s-butyl alcohol and t-butyl alcohol.
  • the amount of the solvent used is 0.1 to 10 liters, preferably 0.1 to 2 liters per mol of the total molar amount of the silane compound.
  • the temperature at which the silane compound is condensed (reacted) is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. to 100 ° C. If the reaction temperature is too low, the progress of the condensation reaction may be insufficient. On the other hand, if the reaction temperature is too high, it is difficult to suppress gelation. The reaction is usually completed in 30 minutes to 20 hours.
  • an acid catalyst is used, an alkaline aqueous solution such as sodium hydrogen carbonate is added to the reaction solution.
  • an acid such as hydrochloric acid. Summing is performed, and the salt generated at that time is removed by filtration or washing with water, etc., and the desired silane compound copolymer can be obtained.
  • the silane compound copolymer (A) may be any copolymer such as a random copolymer, a block copolymer, a graft copolymer, and an alternating copolymer, but from the viewpoint of ease of manufacture and the like. Is preferably a random copolymer.
  • the structure of the silane compound copolymer (A) may be any of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure, and a random structure.
  • the mass average molecular weight (Mw) of the silane compound copolymer (A) is usually in the range of 800 to 30,000, preferably 1,000 to 2,500, more preferably 1,200 to 2,000. By being in the said range, the hardened
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent (the same applies below). .)
  • the molecular weight distribution (Mw / Mn) of the silane compound copolymer (A) is not particularly limited, but is usually in the range of 1.0 to 3.0, preferably 1.1 to 2.0. By being in the said range, the hardened
  • the silane compound copolymer (A) can be used alone or in combination of two or more.
  • the curable composition of this invention contains the microparticles
  • the fine particles are not particularly limited, and may be fine particles made of an inorganic material or fine particles made of an organic material.
  • the constituents of fine particles made of inorganic materials include metals; metal oxides; minerals; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; metal hydroxides such as aluminum hydroxide; Examples thereof include metal silicates such as aluminum silicate, calcium silicate and magnesium silicate; silica; silicone; metal oxide whose surface is coated with silicone; Examples of the constituent component of the fine particles made of an organic material include acrylic beads. Two or more kinds of these fine particles may be used in combination.
  • the metal refers to Group 1 (excluding H), Group 2 to 11, Group 12 (excluding Hg), Group 13 (excluding B), Group 14 (excluding C and Si) in the periodic table, An element belonging to Group 15 (excluding N, P, As and Sb) or Group 16 (excluding O, S, Se, Te and Po).
  • Silica may be any of dry silica, wet silica, and organically modified silica, and may be a mixture of two or more of these.
  • Silicone means an artificial polymer compound having a main skeleton with a siloxane bond.
  • dimethyl polysiloxane, diphenyl polysiloxane, methylphenyl polysiloxane and the like can be mentioned.
  • metal oxide examples include titanium oxide, alumina, boehmite, chromium oxide, nickel oxide, copper oxide, titanium oxide, zirconium oxide, indium oxide, zinc oxide, and composite oxides thereof.
  • the metal oxide fine particles include sol particles composed of these metal oxides.
  • Examples of minerals include smectite and bentonite.
  • Examples of the smectite include montmorillonite, beidellite, hectorite, saponite, stevensite, nontronite, and soconite.
  • silica, silicone, or metal oxide fine particles whose surface is coated with silicone is preferable, and silica and silicone are more preferable.
  • the shape of the fine particles may be any of spherical, chain-like, needle-like, plate-like, piece-like, rod-like, and fiber-like, but is preferably spherical.
  • the spherical shape means a substantially spherical shape including a polyhedron shape that can be approximated to a spherical shape, a spheroidal shape, an oval shape, a confetti shape, an eyebrow shape, and the like.
  • the average primary particle diameter of the fine particles is more than 0.04 ⁇ m and not more than 8 ⁇ m. When it is larger than 0.04 ⁇ m, the effect of adding fine particles can be obtained.
  • the dispersibility of the curable composition obtained as it is 8 micrometers or less becomes a favorable thing.
  • the average primary particle size is preferably 0.06 to 7 ⁇ m, more preferably 0.3 to 6 ⁇ m, and particularly preferably 1 to 4 ⁇ m from the viewpoint of achieving both peel resistance and dispersibility.
  • the average primary particle size of the fine particles is determined by measuring the particle size distribution by a laser scattering method using a laser diffraction / scattering particle size distribution measuring device (for example, product name “LA-920” manufactured by Horiba, Ltd.). What is required by doing.
  • the amount of component (B) used is usually such that the proportion of component (A) and component (B) used is the mass ratio of component (A) to component (B) (component (A): component (B)).
  • the amount is from 100: 0.3 to 100: 20, preferably from 100: 0.5 to 100: 15, and more preferably from 100: 0.8 to 100: 12.
  • the amount of the component (B) used is less than the above range, it is difficult to obtain the intended peeling resistance effect, and when it is more than the above range, the adhesive strength decreases, which is not preferable.
  • the curable composition of this invention contains the silane coupling agent which has a nitrogen atom in a molecule
  • numerator deoxysilylator
  • the silane coupling agent (C) is not particularly limited as long as it has a nitrogen atom in the molecule.
  • Examples thereof include trialkoxysilane compounds represented by the following formula (c-1), dialkoxyalkylsilane compounds or dialkoxyarylsilane compounds represented by the formula (c-2), and the like.
  • R a represents an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, or a t-butoxy group.
  • a plurality of R a may be the same or different.
  • R b represents an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or a t-butyl group; or a phenyl group, a 4-chlorophenyl group, a 4- An aryl group having a substituent or not having a substituent, such as a methylphenyl group;
  • R c represents a C 1-10 organic group having a nitrogen atom. R c may further be bonded to a group containing another silicon atom. Specific examples of the organic group having 1 to 10 carbon atoms of R c include N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N- (1,3-dimethyl-butylidene) amino. Examples thereof include a propyl group, 3-ureidopropyltriethoxysilane, N-phenyl-aminopropyl group and the like.
  • the compound in the case where R c is an organic group bonded to another group containing a silicon atom includes an isocyanurate skeleton. And an isocyanurate-based silane coupling agent bonded to another silicon atom, and an urea-based silane coupling agent bonded to another silicon atom via a urea skeleton.
  • silane coupling agent (C) an isocyanurate-based silane coupling agent and a urea-based silane coupling agent are preferable from the viewpoint of obtaining a cured product having higher adhesive force.
  • those having 4 or more alkoxy groups bonded to silicon atoms are preferred. Having 4 or more alkoxy groups bonded to silicon atoms means that the total count of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is 4 or more.
  • a compound represented by the following formula (c-3) is a urea-based silane cup having 4 or more alkoxy groups bonded to silicon atoms.
  • the ring agent include compounds represented by the following formula (c-4).
  • t1 to t5 each independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
  • Specific examples of the compound represented by the formula (c-3) include 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3,5, -N-tris (3- Triethoxysilylpropyl) isocyanurate, 1,3,5, -N-tris (3-trii-propoxysilylpropyl) isocyanurate, 1,3,5, -N-tris (3-tributoxysilylpropyl) isocyanate 1,3,5-N-tris [(tri (C1-6) alkoxy) silyl (C1-10) alkyl] isocyanurate such as nurate; 1,3,5, -N-tris (3-ditoxymethylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dimethoxyethylsilylpropyl) isocyanurate, 1,3,5,- N-tris (3-dimethoxy i-propylsilylpropyl) isocyan
  • Specific examples of the compound represented by the formula (c-4) include N, N′-bis (3-trimethoxysilylpropyl) urea, N, N′-bis (3-triethoxysilylpropyl) urea, N N, N′-bis (3-tripropoxysilylpropyl) urea, N, N′-bis (3-tributoxysilylpropyl) urea, N, N′-bis (2-trimethoxysilylethyl) urea, N′-bis [(tri (C1-6) alkoxysilyl) (C1-10) alkyl] urea; N, N′-bis (3-dimethoxymethylsilylpropyl) urea, N, N′-bis (3-dimethoxyethylsilylpropyl) urea, N, N′-bis (3-diethoxymethylsilylpropyl) urea, etc.
  • the component (C) of the present invention includes 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-triethoxysilylpropyl).
  • Isocyanurate hereinafter referred to as “isocyanurate compound”
  • N, N′-bis (3-trimethoxysilylpropyl) urea N, N′-bis (3-triethoxysilylpropyl) urea
  • the use ratio of both is preferably 100: 1 to 100: 200 in terms of the mass ratio of (isocyanurate compound) and (urea compound).
  • the isocyanurate compound is used alone or in combination with the urea compound.
  • the component (A) and the component (C) are mixed at a mass ratio of the component (A) to the component (C) (component (A): component (C)) 100: 0. It is preferably contained in a ratio of 3 to 100: 40, more preferably in a ratio of 100: 1 to 100: 30, and further preferably in a ratio of 100: 3 to 100: 25.
  • a ratio of 3 to 100: 40 it is possible to obtain a curable composition from which a cured product having excellent heat resistance and high adhesive strength can be obtained.
  • silane coupling agent (D) Component
  • silane coupling agent (D) a silane coupling agent having an acid anhydride structure in the molecule
  • the silane coupling agent (D) is an organosilicon compound having both a group (Q) having an acid anhydride structure and a hydrolyzable group (R e ) in one molecule. Specifically, it is a compound represented by the following formula (d).
  • Q represents an acid anhydride structure
  • R d represents an alkyl group having 1 to 6 carbon atoms, or a phenyl group having or not having a substituent
  • R e having 1 to 6 represents an alkoxy group or a halogen atom
  • i and k represent an integer of 1 to 3
  • j represents an integer of 0 to 2
  • i + j + k 4.
  • R d may be the same or different.
  • k is 2 or 3
  • among a plurality of R e may be different from each be the same.
  • i is 2 or 3
  • a plurality of Qs may be the same or different.
  • Q is the following formula
  • examples of the alkoxy group having 1 to 6 carbon atoms represented by R e include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, and a t-butoxy group.
  • examples of the halogen atom include a chlorine atom and a bromine atom.
  • Examples of the alkyl group having 1 to 6 carbon atoms of R d include the same groups as those exemplified as the alkyl group having 1 to 6 carbon atoms represented by R 1. Examples of the phenyl group that does not include the same groups as those exemplified for R 2 above. Among these, as the compound represented by the formula (d), the following formula (d-1)
  • h is preferably 2 to 8, more preferably 2 or 3, and particularly preferably 3.
  • silane coupling agent represented by the formula (d-1) examples include 2- (trimethoxysilyl) ethyl succinic anhydride, 2- (triethoxysilyl) ethyl succinic anhydride, 3- (trimethoxy Tri (carbon number 1-6) alkoxysilyl (carbon number 2-8) alkyl succinic anhydride, such as silyl) propyl succinic anhydride, 3- (triethoxysilyl) propyl succinic anhydride; Di (C 1-6) alkoxymethylsilyl (C 2-8) alkyl succinic anhydride, such as 2- (dimethoxymethylsilyl) ethyl succinic anhydride; (C1-C6) alkoxydimethylsilyl (C2-C8) alkyl succinic anhydride, such as 2- (methoxydimethylsilyl) ethyl succinic anhydride;
  • Trihalogenosilyl (2 to 8 carbon atoms) alkyl succinic anhydride such as 2- (trichlorosilyl) ethyl succinic anhydride, 2- (tribromosilyl) ethyl succinic anhydride; Dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2- (dichloromethylsilyl) ethyl succinic anhydride; And halogenodimethylsilyl (having 2 to 8 carbon atoms) alkyl succinic anhydride such as 2- (chlorodimethylsilyl) ethyl succinic anhydride.
  • a component can be used individually by 1 type or in combination of 2 or more types.
  • the component (A) and the component (D) are mixed at a mass ratio of the component (A) to the component (D) (component (A): component (D)) 100: 0. It is preferably contained in a ratio of 01 to 100: 30, more preferably in a ratio of 100: 0.1 to 100: 10.
  • the cured product of the curable composition of the present invention has excellent heat resistance, adhesiveness, and peel resistance.
  • the curable composition of this invention may be called a silane coupling agent (henceforth "silane coupling agent (E)") which has a sulfur atom containing functional group in a molecule
  • the silane coupling agent (E) includes, in the molecule, a thiol group (—SH); an acylthio group (—S—CO—R ′); a sulfide group (—S—); a disulfide group (—S—S—).
  • Any silane coupling agent having a sulfur atom-containing functional group such as a polysulfide group [— (S) n —]; such as a tetrasulfide group (—S—S—S—S—);
  • silane coupling agent (E) examples include silane coupling agents represented by any one of the following formulas (e-1) to (e-4), other silane coupling agents having a sulfur atom-containing functional group, and the like. And the like.
  • Y 1 and Y 2 each independently represents an alkoxy group having 1 to 10 carbon atoms, and A 1 and A 2 each independently represents a carbon having a substituent or no substituent.
  • v represents an integer of 1 to 4.
  • Y 1 and Y 2 may be the same as or different from each other.
  • alkoxy group having 1 to 10 carbon atoms of Y 1 and Y 2 examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, an isobutoxy group, and a t-butoxy group.
  • Etc. Y 1 and Y 2 are more preferably an alkoxy group having 1 to 6 carbon atoms.
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms having or not having a substituent of A 1 and A 2 include an alkylene group having 1 to 20 carbon atoms and an alkenylene having 2 to 20 carbon atoms.
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms having or not having a substituent include an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, and 2 to 20 carbon atoms.
  • the divalent group comprising a combination of an alkynylene group, an arylene group having 6 to 20 carbon atoms, (an alkylene group, an alkenylene group, or an alkynylene group) and an arylene group the same as those exemplified in the above D can be used. Can be mentioned.
  • a 1 and A 2 are preferably alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, a trimethylene group, and a tetramethylene group.
  • R ′ is not particularly limited as long as —CO—R ′ can function as a protecting group.
  • Examples of the substituent of the phenyl group having a substituent of R ′ include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n- Alkyl groups such as pentyl group and n-hexyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group; R ′ is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • v represents an integer of 1 to 4, preferably 1, 2 or 4, more preferably 2 or 4.
  • Examples of the silane coupling agent represented by the formula (e-1) include mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltripropoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, And mercaptoalkyltrialkoxysilanes such as 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyltripropoxysilane.
  • silane coupling agent represented by the formula (e-2) examples include 2-hexanoylthioethyltrimethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltrimethoxysilane, and 2-octanoyl.
  • Examples of the silane coupling agent represented by the formula (e-3) include 2-trimethoxysilylethylsulfanyltrimethoxysilane, 2-trimethoxysilylethylsulfanyltriethoxysilane, 2-triethoxysilylethylsulfanyltrimethoxysilane, 2 -Triethoxysilylethylsulfanyltriethoxysilane, 3-trimethoxysilylpropylsulfanyltrimethoxysilane, 3-trimethoxysilylpropylsulfanyltriethoxysilane, 3-triethoxysilylpropylsulfanyltrimethoxysilane, 3-triethoxysilylpropylsulfanylpropylsulfanyltrimethoxysilane, 3-triethoxysilylpropylsulfanyl Examples include triethoxysilane.
  • Examples of the silane coupling agent represented by the formula (e-4) include bis (2-trimethoxysilylethyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis Disulfide compounds such as (3-triethoxysilylpropyl) disulfide, bis (4-trimethoxysilylbutyl) disulfide, bis (4-triethoxysilylbutyl) disulfide; bis (2-triethoxysilylethyl) tetrasulfide, bis ( And tetrasulfide compounds such as 3-trimethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) tetrasulfide;
  • silane coupling agents having a sulfur atom-containing functional group include 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, Thiocarbamoyl group-containing silane coupling agents such as 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide and 2-trimethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide; 3-trimethoxysilylpropyl Benzothiazolyl group-containing silane coupling agents such as benzothiazolyl tetrasulfide and 3-triethoxysilylpropylbenzothiazolyl tetrasulfide; 3-triethoxysily
  • (meth) acrylate group-containing silane coupling agent [ "(meth) acrylate” means acrylate or methacrylate. And bis (3-triethoxysilylpropyl) polysulfide, bis (2-triethoxysilylpropyl) polysulfide, bis (4-triethoxysilylbutyl) polysulfide and other polysulfide group-containing silane coupling agents.
  • Oligomers are partial hydrolysis products of these compounds and have a molecular weight of usually 300 to 3000.
  • a silane coupling agent represented by the formula (e-1) or the formula (e-3) and oligomers thereof are preferable, and 2-mercaptoethyltrimethoxysilane, 2- In formula (e-1), Y 1 such as mercaptoethyltriethoxysilane, 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltripropoxysilane, etc.
  • a silane coupling agent in which is an alkoxy group having 1 to 10 carbon atoms 2-trimethoxysilylethylsulfanyltrimethoxysilane, 2-trimethoxysilylethylsulfanyltriethoxysilane, 2-triethoxysilylethylsulfanyltrimethoxysilane, 2 -Triethoxy Rylethylsulfanyltriethoxysilane, 3-trimethoxysilylpropylsulfanyltrimethoxysilane, 3-trimethoxysilylpropylsulfanyltriethoxysilane, 3-triethoxysilylpropylsulfanyltrimethoxysilane, 3-triethoxysilylpropylsulfanyltriethoxysilane, More preferred are silane coupling agents in which Y 1 and Y 2 are alkoxy groups having 1 to 10 carbon atoms in formula (e-3); and oli
  • the amount of component (E) used is preferably the mercapto equivalent [the number of moles of mercapto group per 1 g of curable composition (or the number of moles converted to mercapto group, the same applies hereinafter)]. 0.001 to 1.00 mmol / g, more preferably 0.005 to 0.80 mmol / g, and particularly preferably 0.015 to 0.60 mmol / g.
  • the mercapto equivalent can be measured and determined by a known method.
  • cured material of the curable composition containing (A) component and (E) component in such a ratio becomes excellent in peeling resistance and heat resistance, and has high adhesive force.
  • the content ratio of the component (E) is less than the above range, the object of the present invention cannot be achieved, and when it is large, the obtained cured product may be colored and the adhesive strength at high temperature may be lowered.
  • the total mass of the components (A) to (E) is preferably 60% by mass or more, more preferably 70% by mass or more of the total composition.
  • the curable composition of the present invention preferably further contains a diluent for the purpose of imparting fluidity.
  • a diluent for example, diethylene glycol monobutyl ether acetate, glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether, cyclohexane dimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether Polypropylene glycol diglycidyl ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, and the like.
  • the amount of the diluent used is preferably 50 to 100% by mass, more preferably 60 to 90% by mass, and 70 to 85% by mass of the solid content of the curable composition of the present invention. Is more preferable.
  • the total amount of (A) component, (B) component, (C) component, (D) component, and (E) component is curable composition. It is preferably 50 to 100% by mass, and more preferably 60 to 100% by mass, based on the entire component excluding the diluent.
  • the total amount of the component (A), the component (B), the component (C), the component (D), and the component (E) is within the above range, so that the curable composition of the present invention has heat resistance and Excellent adhesion.
  • the curable composition of the present invention may further contain other components in the above-described component within a range not impairing the object of the present invention.
  • examples of other components include an antioxidant, an ultraviolet absorber, and a light stabilizer.
  • An antioxidant is added to prevent oxidative degradation during heating.
  • examples of the antioxidant include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants and the like.
  • Examples of phosphorus antioxidants include phosphites and oxaphosphaphenanthrene oxides.
  • phenolic antioxidants include monophenols, bisphenols, and high-molecular phenols.
  • sulfur-based antioxidant include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and the like.
  • antioxidants can be used singly or in combination of two or more.
  • the usage-amount of antioxidant is 10 mass% or less normally with respect to (A) component.
  • the ultraviolet absorber is added for the purpose of improving the light resistance of the resulting cured product.
  • examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
  • An ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
  • the usage-amount of a ultraviolet absorber is 10 mass% or less normally with respect to (A) component.
  • the light stabilizer is added for the purpose of improving the light resistance of the resulting cured product.
  • the light stabilizer include poly [ ⁇ 6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6 , 6-tetramethyl-4-piperidine) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine) imino ⁇ ] and the like.
  • These light stabilizers can be used alone or in combination of two or more.
  • the total amount of these other components (excluding the diluent) is usually 20% by mass or less based on the component (A).
  • the above components (A) to (E) and optionally (F) and (G) components are blended in a predetermined ratio, and mixed and defoamed by a known method. Can be obtained.
  • the curable composition of the present invention obtained as described above, a cured product having excellent peel resistance and heat resistance and high adhesive strength can be obtained. Therefore, the curable composition of the present invention is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like. In particular, since the problem relating to deterioration of the optical element fixing material accompanying the increase in luminance of the optical element can be solved, the curable composition of the present invention can be suitably used as an optical element fixing composition. .
  • the second of the present invention is a cured product obtained by curing the curable composition of the present invention.
  • Heat curing is mentioned as a method of hardening the curable composition of this invention.
  • the heating temperature for curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • cured material of this invention has high adhesive force, and is excellent in peeling resistance and heat resistance. Therefore, the hardened
  • the cured product obtained by heating the curable composition of the present invention is excellent in peel resistance.
  • the sapphire chip is pressure-bonded and cured by heat treatment at 170 ° C. for 2 hours, and then the sealing material is poured into the cup and heated at 150 ° C. for 1 hour. Process to obtain a cured specimen.
  • This test piece was exposed to an environment of 85 ° C. and 85% RH for 168 hours, then pre-heated at 160 ° C. and treated by IR reflow with a maximum temperature of 260 ° C. for 1 minute, and then a heat cycle tester The test is allowed to stand at ⁇ 40 ° C. and + 100 ° C.
  • the sealing material is removed, and it is examined whether or not the elements are peeled off together.
  • the probability of peeling is usually 45% or less, more preferably 25% or less.
  • the cured product obtained by curing the curable composition of the present invention has a high adhesive force, for example, by measuring the adhesive force as follows. That is, a curable composition is applied to the mirror surface of a silicon chip, the coated surface is placed on an adherend, pressure-bonded, and heat-treated to be cured. This is left for 30 seconds on a measurement stage of a bond tester that has been heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and in a horizontal direction (shearing) with respect to the adhesion surface from a position 50 ⁇ m high from the adherend. Direction) and measure the adhesive force between the test piece and the adherend.
  • a predetermined temperature for example, 23 ° C., 100 ° C.
  • the adhesive strength of the cured product is preferably 60 N / 2 mm ⁇ or more at 23 ° C., more preferably 80 N / 2 mm ⁇ or more, and particularly preferably 100 N / 2 mm ⁇ or more.
  • the adhesive strength of the cured product is preferably 40 N / 2 mm ⁇ or more at 100 ° C., more preferably 50 N / 2 mm ⁇ or more, and particularly preferably 60 N / 2 mm ⁇ or more.
  • the third aspect of the present invention is a method of using the curable composition of the present invention as a composition for an optical element fixing material such as an optical element adhesive or an optical element sealing material. It is.
  • optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
  • the curable composition of this invention can be used conveniently as an adhesive agent for optical elements.
  • the composition is applied to one or both adhesive surfaces of a material to be bonded (such as an optical element and its substrate), followed by pressure bonding. Then, the method of making it heat-cure and adhere
  • Main substrate materials for bonding optical elements include glass such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and these metals Metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether Synthetic resins such as ether ketone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, glass epoxy resin; And the like.
  • glass such as soda lime glass and heat-resistant hard glass
  • ceramics such as soda lime glass and heat-resistant hard glass
  • sapphire iron, copper, aluminum, gold,
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the curable composition of this invention can be used suitably as a sealing material of an optical element sealing body.
  • the composition is molded into a desired shape to obtain a molded body containing the optical element, and then heated.
  • cure are mentioned.
  • the method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be employed.
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the obtained optical element sealing body uses the curable composition of the present invention, it has excellent peel resistance and heat resistance, and has high adhesive strength.
  • Optical device A fourth aspect of the present invention is an optical device using the curable composition of the present invention as an adhesive for optical element fixing materials or a sealing material for optical element fixing materials.
  • optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
  • the optical device of the present invention is obtained by fixing the optical element using the curable composition of the present invention as an adhesive or sealing material for fixing the optical element. For this reason, the optical element is fixed with a high adhesive force and has excellent durability.
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) of the silane compound copolymer obtained in the following production examples were standard polystyrene equivalent values, and were measured using the following apparatus and conditions.
  • the IR spectrum of the silane compound copolymer obtained in the production example was measured using a Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by Perkin Elmer).
  • the reaction solution was concentrated to 50 ml with an evaporator, 100 ml of ethyl acetate was added to the concentrate, and neutralized with a saturated aqueous sodium hydrogen carbonate solution. After leaving still for a while, the organic layer was fractionated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, and the resulting concentrate was dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation.
  • the obtained precipitate was dissolved in methyl ethyl ketone (MEK) and collected, and the solvent was distilled off under reduced pressure using an evaporator. The residue was vacuum dried to obtain 13.5 g of a silane compound copolymer (A1).
  • MEK methyl ethyl ketone
  • the silane compound copolymer (A1) had a weight average molecular weight (Mw) of 1,870 and a molecular weight distribution (PDI) of 1.42.
  • IR spectrum data of the silane compound copolymer (A1) are shown below. Si—Ph: 698 cm ⁇ 1 , 740 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , —CN: 2259 cm ⁇ 1
  • Example 1 To 100 parts (parts by mass, the same shall apply hereinafter) of the silane compound copolymer (A1) obtained in Production Example 1, As component (B), 3 parts of silicone fine particles having an average primary particle size of 0.8 ⁇ m (manufactured by Nikko Jamaica Co., Ltd .: MSP-SN08, referred to as “(B2)” in Table 1 below), As component (C), 10 parts of 1,3,5-N-tris [3- (trimethoxysilyl) propyl] isocyanurate (referred to as “(C1)” in Table 1 below), As component (D), 1 part of 3- (trimethoxysilyl) propyl succinic anhydride (referred to as “(D1)” in Table 1 below), As component (E), 0.5 part of 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803, referred to as “(E1)” in Table 1 below), and
  • Example 1 (Examples 2 to 27, Comparative Examples 1 to 9)
  • the type of component (B), the amount used (part), the amount used (C), the amount used (D) of component (part), the type of component (E), the amount used (part) are shown in Table 1
  • the curable compositions 2 to 27 of Examples 2 to 27 and the curable compositions 1r to 9r of Comparative Examples 1 to 9 were obtained in the same manner as in Example 1, except that the changes were made as described above.
  • types of component (B): B1 to B4, B9, types of component (E): E1 to E3 represent the following.
  • E1 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803, mercapto equivalent (number of moles of mercapto group per 1 g of E1): 5.10 mmol / g)
  • E2 3-trimethoxysilylpropylsulfanyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., X-12-1056ES, mercapto equivalent (number of moles of mercapto group per 1 g of E2): 2.79 mmol / g)
  • E3 oligomer [molecular weight: 700, manufactured by Shin-Etsu Chemical Co., Ltd., X-41-1810, mercapto equivalent (number of moles of mercapto group per 1 g of E3): 2.22 mmol / g]
  • each of the curable compositions 1-27 and 1r-9r is applied to the mirror surface of a 2 mm square silicon chip so that the thickness is about 2 ⁇ m, and the coated surface is placed on the adherend (silver-plated copper plate). Placed and crimped. Then, it heat-processed at 170 degreeC for 2 hours, it was made to harden
  • the test piece-attached adherend is left for 30 seconds on a measurement stage of a bond tester (series 4000, manufactured by Daisy) heated in advance to a predetermined temperature (23 ° C., 100 ° C.), and has a height of 50 ⁇ m from the adherend.
  • Comparative Example 5 except for Comparative Example 5, the evaluation of peel resistance was low. Although the curable composition of Comparative Example 5 had an evaluation of peel resistance of B, the adhesive strength at 100 ° C. was 18.85 N / 2 mm ⁇ , and the adhesive strength and heat resistance were poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明は、下記(A)~(E)成分を有し、(A)と(B)の成分を、質量比で、〔(A):(B)〕=100:0.3~100:20の割合で含有する硬化性組成物;硬化物;硬化性組成物の使用方法;及び光デバイスである。 (A)式(a-1)で示されるシラン化合物共重合体(Xはシアノ基等を、Dは単結合等を、Rは水素原子等を、Rは炭素数1~20のアルキル基等を、Z~Zはヒドロキシル基等を、m、nは正の整数を、o~rは0又は正の整数を示す。) (B)平均一次粒子径が0.04μm超、8μm以下の微粒子、(C)窒素原子を有するシランカップリング剤、(D)酸無水物構造を有するシランカップリング剤、(E)硫黄原子含有官能基を有するシランカップリング剤 本発明によれば、耐剥離性及び耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、該組成物を光素子用接着剤等として使用する方法、及び光デバイスが提供される。(CHR1X0-D-SiO3/2)m(R2SiO3/2)n(CHR1X0-D-SiZ1O2/2)o(R2SiZ2O2/2)p(CHR1X0-D-SiZ3 2O1/2)q(R2SiZ4 2O1/2)r・・・(a-1)

Description

硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
 本発明は、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、前記組成物を光素子用接着剤又は光素子用封止材として使用する方法、及び光デバイスに関する。
 従来、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。
 また、硬化性組成物は、光素子封止体を製造する際に、光素子用接着剤や光素子用封止材等の光素子固定材用組成物としても注目を浴びてきている。
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い光素子の発熱量がさらに大きくなっていく傾向にある。
 ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間さらされ、劣化して剥離したり、接着力が低下したりするという問題が生じた。
 この問題を解決するべく、特許文献1~3において、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が、特許文献4には、シラン化合物の加水分解・重縮合物を用いる半導体発光デバイス用部材等が提案されている。
 しかしながら、特許文献1~4に記載された組成物や部材等の硬化物であっても、十分な接着力を保ちつつ、耐剥離性、耐熱性を得るのは困難な場合があった。
 従って、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物の開発が切望されている。
特開2004-359933号公報 特開2005-263869号公報 特開2006-328231号公報 特開2007-112975号公報(US2009008673A1)
 本発明は、かかる従来技術の実情に鑑みてなされたものであり、耐剥離性(耐デラミネーション)、耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、該組成物を光素子用接着剤又は光素子用封止材として使用する方法、及び光デバイスを提供することを課題とする。
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、以下に述べるように、特定のシラン化合物共重合体、微粒子及びシランカップリング剤を特定の割合で含有する組成物は、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物となることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記〔1〕~〔8〕の硬化性組成物、〔9〕、〔10〕の硬化物、〔11〕、〔12〕の硬化性組成物を使用する方法、及び、〔13〕の光デバイスが提供される。
〔1〕下記(A)~(E)成分を有する硬化性組成物であって、(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:20の割合で含有することを特徴とする硬化性組成物。
(A)下記式(a-1)
Figure JPOXMLDOC01-appb-C000002
〔式中、Xは、ハロゲン原子、シアノ基、又は、式:OGで表される基(式中、Gは水酸基の保護基を表す。)を表し、Dは単結合、又は、置換基を有する、若しくは置換基を有さない炭素数1~20の2価の有機基を表す。Rは、水素原子又は炭素数1~6のアルキル基を表し、Rは炭素数1~20のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表す。Z~Zはそれぞれ独立して、ヒドロキシル基、炭素数1~10のアルコキシ基、又は、ハロゲン原子を示す。m、nはそれぞれ独立して正の整数を示す。o、p、q、rはそれぞれ独立して、0又は正の整数を示す。〕で示されるシラン化合物共重合体
(B)平均一次粒子径が0.04μm超、8μm以下の微粒子
(C)分子内に窒素原子を有するシランカップリング剤
(D)分子内に酸無水物構造を有するシランカップリング剤
(E)分子内に硫黄原子含有官能基を有するシランカップリング剤
〔2〕前記(B)成分が、シリカ、シリコーン、及び、シリコーンで表面が被覆された金属酸化物、から選ばれる少なくとも1種の微粒子である〔1〕に記載の硬化性組成物。
〔3〕前記(A)成分の質量平均分子量が800~30,000である、〔1〕又は〔2〕に記載の硬化性組成物。
〔4〕前記(A)成分が、前記式(a-1)中、(m+o+q)と(n+p+r)とが、(m+o+q):(n+p+r)=5:95~60:40の割合の化合物である、〔1〕に記載の硬化性組成物。
〔5〕さらに、希釈剤を含有する〔1〕~〔4〕のいずれかに記載の硬化性組成物。
〔6〕前記(A)成分、(B)成分、(C)成分、(D)成分及び(E)成分の合計量が、硬化性組成物の希釈剤を除いた成分全体に対して、50~100質量%であることを特徴とする、〔1〕に記載の硬化性組成物。
〔7〕前記硬化性組成物の固形分濃度が、50~100質量%であることを特徴とする、〔1〕に記載の硬化性組成物。
〔8〕光素子固定材用組成物である〔1〕に記載の硬化性組成物。
〔9〕前記〔1〕に記載の硬化性組成物を硬化してなる硬化物。
〔10〕光素子固定材である〔9〕に記載の硬化物。
〔11〕前記〔1〕に記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔12〕前記〔1〕に記載の硬化性組成物を、光素子固定材用封止材として使用する方法。
〔13〕前記〔1〕に記載の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として用いた光デバイス。
 本発明の硬化性組成物によれば、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物を得ることができる。
 本発明の硬化性組成物は、光素子固定材を形成する際に使用することができ、特に、光素子用接着剤、及び光素子用封止材として好適に使用することができる。
 本発明の硬化物は、光素子固定において、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する。
 以下、本発明を、1)硬化性組成物、2)硬化物、3)硬化性組成物の使用方法、及び、4)光デバイス、に項分けして詳細に説明する。
1)硬化性組成物
 本発明の硬化性組成物は、下記(A)~(E)成分を有する硬化性組成物であって、(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:20の割合で含有することを特徴とする。
(A)下記式(a-1)で示されるシラン化合物共重合体
 本発明に用いる(A)成分は、下記式(a-1)で示されるシラン化合物共重合体である。
Figure JPOXMLDOC01-appb-C000003
(B)平均一次粒子径が0.04μm超、8μm以下の微粒子
(C)分子内に窒素原子を有するシランカップリング剤
(D)分子内に酸無水物構造を有するシランカップリング剤
(E)分子内に硫黄原子含有官能基を有するシランカップリング剤
(A)成分
 本発明の硬化性組成物に用いる(A)成分は、前記式(a-1)で表されるシラン化合物共重合体(以下、「シラン化合物共重合体(A)」ということがある。)である。
 前記式(a-1)中、Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;シアノ基;又は式:OGで表される基;を表す。
 Gは水酸基の保護基を表す。水酸基の保護基としては、特に制約はなく、水酸基の保護基として知られている公知の保護基が挙げられる。例えば、アシル系の保護基;トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等のシリル系の保護基;メトキシメチル基、メトキシエトキシメチル基、1-エトキシエチル基、テトラヒドロピラン-2-イル基、テトラヒドロフラン-2-イル基等のアセタール系の保護基;t-ブトキシカルボニル基等のアルコキシカルボニル系の保護基;メチル基、エチル基、t-ブチル基、オクチル基、アリル基、トリフェニルメチル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基等のエーテル系の保護基;等が挙げられる。これらの中でも、Gとしては、アシル系の保護基が好ましい。
 アシル系の保護基は、具体的には、式:-C(=O)Rで表される基である。式中、Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基等の炭素数1~6のアルキル基;又は、置換基を有する、若しくは置換基を有さないフェニル基を表す。
 Rの、置換基を有するフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;が挙げられる。
 これらの中でも、Xとしては、入手容易性、及び、高い接着力を有する硬化物が得られることから、塩素原子、式:OG’で表される基(式中、G’はアシル系の保護基を表す。)、及びシアノ基から選ばれる基が好ましく、塩素原子、アセトキシ基及びシアノ基から選ばれる基がより好ましく、シアノ基が特に好ましい。
 Dは、単結合、又は、置換基を有する、若しくは置換基を有さない炭素数1~20の2価の有機基を表す。
 炭素数1~20の2価の有機基としては、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、炭素数2~20のアルキニレン基、炭素数6~20のアリーレン基、(アルキレン基、アルケニレン基、又はアルキニレン基)とアリーレン基との組み合わせからなる炭素数7~20の2価の基等が挙げられる。
 炭素数1~20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
 炭素数2~20のアルケニレン基としては、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。
 炭素数2~20のアルキニレン基としては、エチニレン基、プロピニレン基等が挙げられる。
 炭素数6~20のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、2,6-ナフチレン基等が挙げられる。
 これらの炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、及び炭素数2~20のアルキニレン基が有していてもよい置換基としては、フッ素原子、塩素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;等が挙げられる。
 前記炭素数6~20のアリーレン基の置換基としては、シアノ基;ニトロ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;等が挙げられる。
 これらの置換基は、アルキレン基、アルケニレン基、アルキニレン基及びアリーレン基等の基において任意の位置に結合していてよく、同一若しくは相異なって複数個が結合していてもよい。
 置換基を有する、又は置換基を有さない(アルキレン基、アルケニレン基、又はアルキニレン基)と、置換基を有する、又は置換基を有さないアリーレン基との組み合わせからなる2価の基としては、前記置換基を有する、又は置換基を有さない(アルキレン基、アルケニレン基、又はアルキニレン基)の少なくとも一種と、前記置換基を有する、又は置換基を有さないアリーレン基の少なくとも一種とが直列に結合した基等が挙げられる。具体的には、下記式で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 これらの中でも、Dとしては、高い接着力を有する硬化物が得られることから、炭素数1~10のアルキレン基が好ましく、炭素数1~6のアルキレン基がより好ましく、メチレン基又はエチレン基が特に好ましい。
 Rは、水素原子又は炭素数1~6のアルキル基を表す。Rの炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。
 これらの中でも、Rとしては水素原子が好ましい。
 Rは、炭素数1~20のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表す。
 Rの炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソオクチル基、n-ノニル基、n-デシル基、n-ドデシル基等が挙げられる。
 Rの、置換基を有するフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;フッ素原子、塩素原子等のハロゲン原子等が挙げられる。
 前記置換基を有する、又は置換基を有さないフェニル基の具体例としては、フェニル基、2-クロロフェニル基、4-メチルフェニル基、3-エチルフェニル基、2,4-ジメチルフェニル基、2-メトキシフェニル基等が挙げられる。
 これらの中でも、Rは、炭素数1~6のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基がより好ましく、炭素数1~6のアルキル基又はフェニル基が特に好ましい。
 Z~Zはそれぞれ独立して、ヒドロキシル基、炭素数1~10のアルコキシ基又はハロゲン原子を示す。炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。
 これらの中でも、Z~Zはそれぞれ独立して、ヒドロキシル基又は炭素数1~6のアルコキシ基が好ましい。
 m、nはそれぞれ独立して、正の整数を示す。o、p、q、rはそれぞれ独立して、0又は正の整数を示す。(m+o+q)と(n+p+r)は、本発明の効果がより得られやすいことから、(m+o+q):(n+p+r)=5:95~60:40、好ましくは10:90~30:70の比率を有する正の整数であるのが好ましい。
 シラン化合物共重合体(A)の製造方法は特に限定されないが、式(1):R-CH(X)-D-Si(OR(X3-vで表されるシラン化合物(1)、及び、式(2):RSi(OR(X3-wで表されるシラン化合物(2)を縮合させる方法が好ましい。ここで、「縮合」は、加水分解及び重縮合反応を含む広い概念で用いている(以下にて同じ。)。
 シラン化合物(1)のOR又はXは、脱水及び脱アルコール縮合反応されなかった場合は、シラン化合物共重合体(A)中に残存する。縮合反応されなかったOR又はXが1つだった場合は、前記式(a-1)において(CHR-D-SiZ2/2)として残存し、縮合反応されなかったOR又はXが2つだった場合は、式(a-1)において(CHR-D-SiZ 1/2)として残存する。
 シラン化合物(2)についても同様に、OR又はXが、脱水及び脱アルコール縮合反応されなかった場合は、シラン化合物共重合体(A)に残存する。縮合反応されなかったOR又はXが1つだった場合は、式(a-1)において(RSiZ2/2)として残存し、縮合反応されなかったOR又はXが2つだった場合は、式(a-1)において(RSiZ 1/2)として残存する。
〔シラン化合物(1)〕
 前記式(1)中、R、X、及びDは、前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、vは0~3の整数を表す。
 Rの炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、及びn-ヘキシル基等が挙げられる。
 Xのハロゲン原子としては、フッ素原子、塩素原子、及び臭素原子等が挙げられる。
 vが2以上のとき、OR同士は同一であっても相異なっていてもよい。また、(3-v)が2以上のとき、X同士は同一であっても相異なっていてもよい。
 シラン化合物(1)の具体例としては、クロロメチルトリメトキシシラン、ブロモメチルトリエトキシシラン、2-クロロエチルトリプロポキシシラン、2-ブロモエチルトリブトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-クロロプロピルトリプロポキシシラン、3-クロロプロピルトリブトキシシラン、3-ブロモプロピルトリメトキシシラン、3-ブロモプロピルトリエトキシシラン、3-ブロモプロピルトリプロポキシシラン、3-ブロモプロピルトリブトキシシラン、3-フルオロプロピルトリメトキシシラン、3-フルオロプロピルトリエトキシシラン、3-フルオロプロピルトリプロポキシシラン、3-フルオロプロピルトリブトキシシラン、3-アイオドプロピルトリメトキシシラン、2-クロロエチルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、4-クロロブチルトリプロポキシシラン、5-クロロペンチルトリプロポキシシラン、4-クロロブチルクロロジエトキシシラン、2-クロロプロピルトリメトキシシラン、o-(2-クロロエチル)フェニルトリプロポキシシラン、m-(2-クロロエチル)フェニルトリメトキシシラン、p-(2-クロロエチル)フェニルトリエトキシシラン、p-(2-フルオロエチル)フェニルトリメトキシシラン等の、Xがハロゲン原子であるトリアルコキシシラン化合物類;
クロロメチルクロロジメトキシシラン、ブロモメチルブロモジメトキシシラン、2-クロロエチルクロロジメトキシシラン、3-クロロプロピルクロロジメトキシシラン、3-ブロモプロピルクロロジメトキシシラン、3-フルオロプロピルクロロジメトキシシラン、3-フルオロプロピルクロロジエトキシシラン、3-クロロ-n-ブチルクロロジエトキシシラン等の、Xがハロゲン原子であるハロゲノジアルコキシシラン化合物類;
2-クロロエチルジクロロメトキシシラン、2-ブロモエチルジクロロエトキシシラン、3-クロロプロピルジクロロメトキシシラン、3-フルオロプロピルジクロロメトキシシラン、3-クロロプロピルジクロロエトキシシラン、3-クロロプロピルクロロジエトキシシラン、3-ブロモプロピルジクロロエトキシシラン等の、Xがハロゲン原子であるジハロゲノアルコキシシラン化合物類;
クロロメチルトリクロロシラン、
3-ブロモプロピルトリブロモシラン、3-ブロモプロピルトリクロロシラン、3-フルオロプロピルトリクロロシラン、3-クロロプロピルトリクロロシラン、3-クロロプロピルトリブロモシラン、3-アイオドプロピルトリクロロシラン、等の、Xがハロゲン原子であるトリハロゲノシラン化合物類;
シアノメチルトリメトキシシラン、シアノメチルトリエトキシシラン、1-シアノエチルトリメトキシシラン、2-シアノエチルトリメトキシシラン、2-シアノエチルトリエトキシシラン、2-シアノエチルトリプロポキシシラン、3-シアノプロピルトリメトキシシラン、3-シアノプロピルトリエトキシシラン、3-シアノプロピルトリプロポキシシラン、3-シアノプロピルトリブトキシシラン、4-シアノブチルトリメトキシシラン、5-シアノペンチルトリメトキシシラン、2-シアノプロピルトリメトキシシラン、2-(シアノメトキシ)エチルトリメトキシシラン、2-(2-シアノエトキシ)エチルトリメトキシシラン、o-(シアノメチル)フェニルトリプロポキシシラン、m-(シアノメチル)フェニルトリメトキシシラン、p-(シアノメチル)フェニルトリエトキシシラン、p-(2-シアノエチル)フェニルトリメトキシシラン等の、Xがシアノ基であるトリアルコキシシラン化合物類;
シアノメチルトリクロロシラン、シアノメチルブロモジメトキシシラン、2-シアノエチルジクロロメトキシシラン、2-シアノエチルジクロロエトキシシラン、3-シアノプロピルトリクロロシラン、3-シアノプロピルトリブロモシラン、3-シアノプロピルジクロロメトキシシラン、3-シアノプロピルジクロロエトキシシラン、3-シアノプロピルクロロジメトキシシラン、3-シアノプロピルクロロジエトキシシラン、4-シアノブチルクロロジエトキシシラン、3-シアノ-n-ブチルクロロジエトキシシラン、2-(2-シアノエトキシ)エチルトリクロロシラン、2-(2-シアノエトキシ)エチルブロモジエトキシシラン、2-(2-シアノエトキシ)エチルジクロロプロポキシシラン、o-(2-シアノエチル)フェニルトリクロロシラン、m-(2-シアノエチル)フェニルメトキシジブロモシラン、p-(2-シアノエチル)フェニルジメトキシクロロシラン、p-(2-シアノエチル)フェニルトリブロモシラン等の、Xがシアノ基であるハロゲノシラン化合物類;
3-アセトキシプロピルトリメトキシシラン、3-アセトキシプロピルトリエトキシシラン、3-アセトキシプロピルトリプロポキシシラン、3-アセトキシプロピルトリブトキシシラン、3-プロピオニルオキシプロピルトリメトキシシラン、3-プロピオニルオキシプロピルトリエトキシシラン、3-ベンゾイルオキシプロピルトリメトキシシラン、3-ベンゾイルオキシプロピルトリエトキシシラン、3-ベンゾイルオキシプロピルトリプロポキシシラン、3-ベンゾイルオキシプロピルトリブトキシシラン、2-トリメチルシリルオキシエチルトリメトキシシラン、3-トリエチルシリルオキシプロピルトリエトキシシラン、3-(2-テトラヒドロピラニルオキシ)プロピルトリプロポキシシラン、3-(2-テトラヒドロフラニルオキシ)プロピルトリブトキシシラン、3-メトキシメチルオキシプロピルトリメトキシシラン、3-メトキシエトキシメチルオキシプロピルトリエトキシシラン、3-(1-エトキシエチルオキシ)プロピルトリプロポキシシラン、3-(t-ブトキシカルボニルオキシ)プロピルトリメトキシシラン、3-t-ブトキシプロピルトリメトキシシラン、3-ベンジロキシプロピルトリエトキシシラン、3-トリフェニルメトキシプロピルトリエトキシシラン等の、Xが前記式:OGで表される基であるトリアルコキシシラン化合物類;
3-アセトキシプロピルトリクロロシラン、3-アセトキシプロピルトリブロモシラン、3-アセトキシプロピルジクロロメトキシシラン、3-アセトキシプロピルジクロロエトキシシラン、3-アセトキシプロピルクロロジメトキシシラン、3-アセトキシプロピルクロロジエトキシシラン、3-ベンゾイルオキシプロピルトリクロロシラン、3-トリメチルシリルオキシプロピルクロロジメトキシシラン、3-トリエチルシリルオキシプロピルジクロロメトキシシラン、3-(2-テトラヒドロピラニルオキシ)プロピルクロロジエトキシシラン、3-(2-テトラヒドロフラニルオキシ)プロピルジクロロエトキシシラン、3-メトキシメチルオキシプロピルトリブロモシラン、3-メトキシエトキシメチルオキシプロピルトリクロロシラン、3-(1-エトキシエチルオキシ)プロピルクロロジメトキシシラン、3-t-ブトキシカルボニルオキシプロピルジクロロメトキシシラン、3-t-ブトキシプロピルクロロジエトキシシラン、3-トリフェニルメトキシプロピルジクロロエトキシシラン、3-ベンジロキシプロピルトリブロモシラン等の、Xが前記式:OGで表される基であるハロゲノシラン化合物類;等が挙げられる。
 これらのシラン化合物(1)は一種単独で、或いは二種以上を組み合わせて用いることができる。
 これらの中でも、シラン化合物(1)としては、より優れた接着性を有する硬化物が得られることから、トリアルコキシシラン化合物類が好ましく、3-クロロプロピル基を有するトリアルコキシシラン化合物類、3-アセトキシプロピル基を有するトリアルコキシシラン化合物類、2-シアノエチル基を有するトリアルコキシシラン化合物類、又は3-シアノプロピル基を有するトリアルコキシシラン化合物類がより好ましく、2-シアノエチル基を有するトリアルコキシシラン化合物類が特に好ましい。
〔シラン化合物(2)〕
 前記式(2)中、Rは前記と同じ意味を表す。Rは前記Rと同様の炭素数1~10のアルキル基を表し、Xは前記Xと同様のハロゲン原子を表し、wは0~3の整数を表す。
 wが2以上のとき、OR同士は同一であっても相異なっていてもよい。また、(3-w)が2以上のとき、X同士は同一であっても相異なっていてもよい。
 シラン化合物(2)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-ブチルトリエトキシシラン、i-ブチルトリメトキシシラン、n-ペンチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、i-オクチルトリエトキシシラン、ドデシルトリメトキシシラン、メチルジメトキシエトキシシラン、メチルジエトキシメトキシシラン等のアルキルトリアルコキシシラン化合物類;
 メチルクロロジメトキシシラン、メチルジクロロメトキシシラン、メチルジクロロメトキシシラン、メチルクロロジエトキシシラン、エチルクロロジメトキシシラン、エチルジクロロメトキシシラン、n-プロピルクロロジメトキシシラン、n-プロピルジクロロメトキシシラン等のアルキルハロゲノアルコキシシラン化合物類;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン、n-プロピルトリクロロシラン等のアルキルトリハロゲノシラン化合物類;
 フェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、2-クロロフェニルトリメトキシシラン、フェニルトリエトキシシラン、2-メトキシフェニルトリエトキシシラン、フェニルジメトキシエトキシシラン、フェニルジエトキシメトキシシラン等の、置換基を有する、又は置換基を有さないフェニルトリアルコキシシラン化合物類;
 フェニルクロロジメトキシシラン、フェニルジクロロメトキシシラン、フェニルクロロメトキシエトキシシラン、フェニルクロロジエトキシシラン、フェニルジクロロエトキシシラン等の、置換基を有する、又は置換基を有さないフェニルハロゲノアルコキシシラン化合物類;
 フェニルトリクロロシラン、フェニルトリブロモシラン、4-メトキシフェニルトリクロロシラン、フェニルトリクロロシラン、2-エトキシフェニルトリクロロシラン、2-クロロフェニルトリクロロシラン等の、置換基を有する、又は置換基を有さないフェニルトリハロゲノシラン化合物;が挙げられる。
 これらのシラン化合物(2)は一種単独で、或いは二種以上を組み合わせて用いることができる。
 これらの中でも、シラン化合物(2)としては、炭素数1~6のアルキルトリアルコキシシラン化合物類、置換基を有する、又は置換基を有さないフェニルトリアルコキシシラン化合物類が好ましい。
 シラン化合物(1)とシラン化合物(2)との使用割合は、モル比で、〔シラン化合物(1)〕:〔シラン化合物(2)〕=60:40~5:95であるのが好ましく、40:60~10:90であるのがより好ましい。
 前記シラン化合物を縮合させる方法としては、特に限定されないが、シラン化合物(1)及びシラン化合物(2)を溶媒に溶解し、所定量の触媒を添加し、所定温度で撹拌する方法が挙げられる。
 用いる触媒は、酸触媒及び塩基触媒のいずれであってもよい。
 また、酸触媒と塩基触媒を組み合わせて用いることもできる。例えば、酸触媒の存在下、シラン化合物の縮合反応を行った後に、反応液に塩基触媒を添加して塩基性とし、塩基性条件下に、さらに縮合反応を行ってもよい。
 酸触媒としては、塩酸、硫酸、硝酸、リン酸等の無機酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、酢酸、トリフルオロ酢酸等の有機酸;等が挙げられる。
 塩基触媒としては、トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;アンモニア(水);水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の四級アンモニウム塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。
 触媒の使用量は、用いるシラン化合物の総モル量に対して、通常、0.1mol%~10mol%、好ましくは1mol%~5mol%の範囲である。
 用いる溶媒は、シラン化合物の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルi-ブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、i-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、或いは二種以上を混合して用いることができる。
 溶媒の使用量は、シラン化合物の総モル量1mol当たり、0.1~10リットル、好ましくは0.1~2リットルである。
 シラン化合物を縮合(反応)させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃~100℃の範囲である。反応温度があまりに低いと縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から20時間で完結する。
 反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするシラン化合物共重合体を得ることができる。
 シラン化合物共重合体(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれの共重合体であってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
 また、シラン化合物共重合体(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
 シラン化合物共重合体(A)の質量平均分子量(Mw)は、通常800~30,000、好ましくは1,000~2,500、より好ましくは1,200~2,000の範囲である。当該範囲内にあることで、組成物の取扱性に優れ、かつ、接着性、耐熱性に優れる硬化物が得られる。
 質量平均分子量(Mw)および数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる(以下にて同じである。)。
 シラン化合物共重合体(A)の分子量分布(Mw/Mn)は、特に制限されないが、通常1.0~3.0、好ましくは1.1~2.0の範囲である。当該範囲内にあることで、接着性、耐熱性に優れる硬化物が得られる。
 シラン化合物共重合体(A)は一種単独で、あるいは二種以上を組み合わせて用いることができる。
(B)成分
 本発明の硬化性組成物は、(B)成分として、平均一次粒子径が0.04μm超、8μm以下の微粒子を含む。
 微粒子としては、特に制限はなく、無機物からなる微粒子であっても、有機物からなる微粒子であってもよい。無機物からなる微粒子の構成成分としては、金属;金属酸化物;鉱物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;硫酸カルシウム、硫酸バリウム等の金属硫酸塩;水酸化アルミニウム等の金属水酸化物;珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム等の金属珪酸塩;シリカ;シリコーン;シリコーンで表面が被覆された金属酸化物;等が挙げられる。有機物からなる微粒子の構成成分としては、アクリルビーズ等が挙げられる。
 これらの微粒子は2種類以上を併用してもよい。
 ここで、金属とは、周期表における、1族(Hを除く)、2~11族、12族(Hgを除く)、13族(Bを除く)、14族(C及びSiを除く)、15族(N、P、As及びSbを除く)、又は16族(O、S、Se、Te及びPoを除く)に属する元素をいう。
 シリカとしては、乾式シリカ、湿式シリカ及び有機修飾シリカのいずれであってもよく、これらの2種以上からなる混合物であってもよい。
 シリコーンとは、シロキサン結合による主骨格を持つ、人工高分子化合物を意味する。例えば、ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサン等が挙げられる。
 金属酸化物としては、例えば、酸化チタン、アルミナ、ベーマイト、酸化クロム、酸化ニッケル、酸化銅、酸化チタン、酸化ジルコニウム、酸化インジウム、酸化亜鉛、及びこれらの複合酸化物等が挙げられる。金属酸化物の微粒子には、これらの金属酸化物からなるゾル粒子も含まれる。
 鉱物としては、スメクタイト、ベントナイト等が挙げられる。
 スメクタイトとしては、例えば、モンモリロナイト、バイデライト、ヘクトライト、サポナイト、スチブンサイト、ノントロナイト、ソーコナイト等が挙げられる。
 これらの中でも、本発明においては、本発明の目的を発現しやすいことから、シリカ、シリコーン、又は、シリコーンで表面が被覆された金属酸化物の微粒子が好ましく、シリカ、シリコーンがより好ましい。
 微粒子の形状は、球状、鎖状、針状、板状、片状、棒状、繊維状等のいずれであってもよいが、球状であるのが好ましい。ここで、球状とは、真球状の他、回転楕円体、卵形、金平糖状、まゆ状等球体に近似できる多面体形状を含む略球状を意味する。
 微粒子の平均一次粒子径は、0.04μm超、8μm以下である。0.04μmより大きいと微粒子の添加の効果が得られる。8μm以下であると得られる硬化性組成物の分散性が良好なものとなる。
 平均一次粒子径としては、耐剥離性と分散性を両立させる観点から、0.06~7μmがより好ましく、0.3~6μmがさらに好ましく、1~4μmが特に好ましい。
 本発明において、微粒子の平均一次粒子径は、レーザー回折・散乱式粒度分布測定装置(例えば堀場製作所社製、製品名「LA-920」)等を用いて、レーザー散乱法による粒度分布の測定を行うことにより求められるものをいう。
 (B)成分の使用量は、前記(A)成分と(B)成分の使用割合が、(A)成分と(B)成分の質量比〔(A)成分:(B)成分〕で、通常100:0.3~100:20、好ましくは100:0.5~100:15、より好ましくは100:0.8~100:12となる量である。(B)成分の使用量が上記範囲より少ないと、目的とする耐剥離性の効果が得られにくくなり、上記範囲より多いと、接着力が低下して好ましくない。
(C)成分
 本発明の硬化性組成物は、(C)成分として、分子内に窒素原子を有するシランカップリング剤(以下、「シランカップリング剤(C)」ということがある。)を含む。
 シランカップリング剤(C)としては、分子内に窒素原子を有するものであれば特に制限はない。例えば、下記式(c-1)で表されるトリアルコキシシラン化合物、式(c-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
 Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
 Rは、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、さらに他のケイ素原子を含む基と結合していてもよい。
 Rの炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピルトリエトキシシラン、N-フェニル-アミノプロピル基等が挙げられる。
 前記式(c-1)又は(c-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。
 これらの中でも、シランカップリング剤(C)としては、より高い接着力を有する硬化物が得られる観点から、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、さらに、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
 ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
 ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(c-3)で表される化合物が、ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(c-4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 式中、Rは前記と同じ意味を表す。
 t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数であるのが好ましく、3であるのが特に好ましい。
 式(c-3)で表される化合物の具体例としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリi-プロポキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリブトキシシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(トリ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;
1,3,5,-N-トリス(3-ジトキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシフェニルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシフェニルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシフェニルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシフェニルシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(ジ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;等が挙げられる。
 式(c-4)で表される化合物の具体例としては、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア、N,N’-ビス(3-トリプロポキシシリルプロピル)ウレア、N,N’-ビス(3-トリブトキシシリルプロピル)ウレア、N,N’-ビス(2-トリメトキシシリルエチル)ウレア等のN,N’-ビス〔(トリ(炭素数1~6)アルコキシシリル)(炭素数1~10)アルキル〕ウレア;
N,N’-ビス(3-ジメトキシメチルシリルプロピル)ウレア、N,N’-ビス(3-ジメトキシエチルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシメチルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数1~6)アルキルシリル(炭素数1~10)アルキル)ウレア;
N,N’-ビス(3-ジメトキシフェニルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシフェニルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数6~20)アリールシリル(炭素数1~10)アルキル)ウレア;等が挙げられる。
 これらは1種単独で、或いは2種以上を組み合わせて用いることができる。
 これらの中でも、本発明の(C)成分としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、「ウレア化合物」という。)、及び、前記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましい。
 前記イソシアヌレート化合物とウレア化合物とを組み合わせて用いる場合、両者の使用割合は、(イソシアヌレート化合物)と(ウレア化合物)の質量比で、100:1~100:200であるのが好ましい。
 なお、イソシアヌレート化合物の使用割合は、前記(A)成分100質量部に対して、35質量部以下であるのが好ましく、25質量部以下であるのがより好ましい。イソシアヌレート化合物単独で用いる場合も、ウレア化合物と併用して用いる場合においても同様である。
 また、ウレア化合物の使用割合は、前記(A)成分100質量部に対して、20質量部以下であるのが好ましく、15質量部以下であるのがより好ましい。ウレア化合物単独で用いる場合も、イソシアヌレート化合物と併用して用いる場合においても同様である。
 本発明の硬化性組成物は、前記(A)成分及び(C)成分を、(A)成分と(C)成分の質量比〔(A)成分:(C)成分〕で、100:0.3~100:40の割合で含有するのが好ましく、100:1~100:30の割合で含有するのがより好ましく、100:3~100:25の割合で含有するのがさらに好ましい。
 このような割合で(A)成分及び(C)成分を用いることにより、耐熱性に優れ、高い接着力を有する硬化物が得られる硬化性組成物を得ることができる。
(D)成分
 本発明の硬化性組成物は、(D)成分として、分子内に酸無水物構造を有するシランカップリング剤(以下、「シランカップリング剤(D)」ということがある。)を含む。
 シランカップリング剤(D)は、一つの分子中に、酸無水物構造を有する基(Q)と、加水分解性基(R)の両者を併せ持つ有機ケイ素化合物である。具体的には下記式(d)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
 式中、Qは酸無水物構造を表し、Rは炭素数1~6のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表し、Rは炭素数1~6のアルコキシ基又はハロゲン原子を表し、i、kは1~3の整数を表し、jは0~2の整数を表し、i+j+k=4である。jが2であるとき、R同士は同一であっても相異なっていてもよい。kが2又は3のとき、複数のR同士は同一であっても相異なっていてもよい。iが2又は3のとき、複数のQ同士は同一であっても相異なっていてもよい。
 Qとしては、下記式
Figure JPOXMLDOC01-appb-C000008
(式中、hは0~10の整数を表す。)で表される基等が挙げられ、(Q1)で表される基が特に好ましい。
 式(d)中、Rの炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基等が挙げられる。
 ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 Rの炭素数1~6のアルキル基としては、前記Rで表される炭素数1~6のアルキル基として例示したのと同様の基が挙げられ、置換基を有する、又は置換基を有さないフェニル基としては、前記Rで例示したのと同様の基が挙げられる。
 なかでも、式(d)で表される化合物としては、下記式(d-1)
Figure JPOXMLDOC01-appb-C000009
(式中、R、h、i、j、kは前記と同じ意味を表す。)
で表される化合物が好ましい。式中、hは2~8であるのが好ましく、2又は3であるのがより好ましく、3であるのが特に好ましい。
 前記式(d-1)で表されるシランカップリング剤の具体例としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
 これらの中でも、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸が特に好ましい。
 (D)成分は一種単独で、或いは二種以上を組み合わせて用いることができる。
 本発明の硬化性組成物は、前記(A)成分及び(D)成分を、(A)成分と(D)成分の質量比〔(A)成分:(D)成分〕で、100:0.01~100:30の割合で含有するのが好ましく、100:0.1~100:10の割合で含有するのがより好ましい。
 このような割合で(A)成分及び(D)成分を用いることにより、本発明の硬化性組成物の硬化物は、耐熱性、接着性、かつ、耐剥離性に優れるものとなる。
(E)成分
 本発明の硬化性組成物は、(E)成分として、分子内に硫黄原子含有官能基を有するシランカップリング剤(以下、「シランカップリング剤(E)」ということがある。)を含む。
 シランカップリング剤(E)としては、分子内に、チオール基(-SH);アシルチオ基(-S-CO-R’);スルフィド基(-S-);ジスルフィド基(-S-S-)、テトラスルフィド基(-S-S-S-S-)等のポリスルフィド基〔-(S)-〕;等の硫黄原子含有官能基を有するシランカップリング剤であれば特に制限はない。
 シランカップリング剤(E)としては、下記式(e-1)~式(e-4)のいずれかで示されるシランカップリング剤、硫黄原子含有官能基を有するその他のシランカップリング剤、これらのオリゴマー等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
〔式中、Y、Yは、それぞれ独立に、炭素数1~10のアルコキシ基を表し、A、Aは、それぞれ独立に、置換基を有する、又は置換基を有さない炭素数1~20の2価の炭化水素基を表し、R’は、炭素数1~20の1価の有機基を表す。vは、1~4の整数を表す。Y同士、Y同士は、互いに同一であっても相異なっていてもよい。〕
 Y、Yの、炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、イソブトキシ基、t-ブトキシ基等が挙げられる。
 Y、Yとしては、炭素数1~6のアルコキシ基がより好ましい。
 A、Aの、置換基を有する、又は置換基を有さない炭素数1~20の2価の炭化水素基としては、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、炭素数2~20のアルキニレン基、炭素数6~20のアリーレン基、(アルキレン基、アルケニレン基、又はアルキニレン基)とアリーレン基との組み合わせからなる2価の基等が挙げられる。
 置換基を有する、又は置換基を有さない炭素数1~20の2価の炭化水素基としては、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、炭素数2~20のアルキニレン基、炭素数6~20のアリーレン基、(アルキレン基、アルケニレン基、又はアルキニレン基)とアリーレン基との組み合わせからなる2価の基としては、前記Dで例示したのと同様のものが挙げられる。
 これらの中でも、A、Aとしては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基等の炭素数1~4のアルキレン基が好ましい。
 R’としては、-CO-R’が保護基として機能し得るものであれば特に制限されない。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等のアルキル基;置換基を有する、又は置換基を有さないフェニル基;等が挙げられる。
 R’の、置換基を有するフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;が挙げられる。
 R’としては、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。
 vは、1~4の整数を表し、1、2又は4が好ましく、2又は4がより好ましい。
 式(e-1)で示されるシランカップリング剤としては、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリプロポキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルトリプロポキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリプロポキシシラン等のメルカプトアルキルトリアルコキシシラン類が挙げられる。
 式(e-2)で示されるシランカップリング剤としては、2-ヘキサノイルチオエチルトリメトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリエトキシシラン等のアルカノイルチオアルキルトリアルコキシシラン化合物類が挙げられる。
 式(e-3)で示されるシランカップリング剤としては、2-トリメトキシシリルエチルスルファニルトリメトキシシラン、2-トリメトキシシリルエチルスルファニルトリエトキシシラン、2-トリエトキシシリルエチルスルファニルトリメトキシシラン、2-トリエトキシシリルエチルスルファニルトリエトキシシラン、3-トリメトキシシリルプロピルスルファニルトリメトキシシラン、3-トリメトキシシリルプロピルスルファニルトリエトキシシラン、3-トリエトキシシリルプロピルスルファニルトリメトキシシラン、3-トリエトキシシリルプロピルスルファニルトリエトキシシラン等が挙げられる。
 式(e-4)で示されるシランカップリング剤としては、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(4-トリメトシシリルブチル)ジスルフィド、ビス(4-トリエキトシシリルブチル)ジスルフィド等のジスルフィド化合物;ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィド等のテトラスルフィド化合物;等が挙げられる。
 硫黄原子含有官能基を有するその他のシランカップリング剤としては、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド等のチオカルバモイル基含有シランカップリング剤;3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド等のベンゾチアゾリル基含有シランカップリング剤;3-トリエトキシシリルプロピル(メタ)アクリレートモノスルフィド、3-トリメトキシシリルプロピル(メタ)アクリレートモノスルフィド等の(メタ)アクリレート基含有シランカップリング剤〔「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。〕;ビス(3-トリエトキシシリルプロピル)ポリスルフィド、ビス(2-トリエトキシシリルプロピル)ポリスルフィド、ビス(4-トリエトキシシリルブチル)ポリスルフィド等のポリスルフィド基含有シランカップリング剤;等が挙げられる。
 オリゴマーは、これらの化合物の部分加水分解生成物であって、分子量が通常300~3000のものである。
 これらの中でも、(E)成分としては、前記式(e-1)又は式(e-3)で示されるシランカップリング剤、及びこれらのオリゴマーが好ましく、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルトリプロポキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリプロポキシシラン等の、式(e-1)中、Yが炭素数1~10のアルコキシ基であるシランカップリング剤;2-トリメトキシシリルエチルスルファニルトリメトキシシラン、2-トリメトキシシリルエチルスルファニルトリエトキシシラン、2-トリエトキシシリルエチルスルファニルトリメエトキシシラン、2-トリエトキシシリルエチルスルファニルトリエトキシシラン、3-トリメトキシシリルプロピルスルファニルトリメトキシシラン、3-トリメトキシシリルプロピルスルファニルトリエトキシシラン、3-トリエトキシシリルプロピルスルファニルトリメトキシシラン、3-トリエトキシシリルプロピルスルファニルトリエトキシシラン等の、式(e-3)中、Y及びYが炭素数1~10のアルコキシ基であるシランカップリング剤;及びこれらのオリゴマー;がより好ましく、3-メルカプトプロピルトリメトキシシラン、3-トリメトキシシリルプロピルスルファニルトリエトキシシラン、及びこれらのオリゴマーがさらに好ましい。
 シランカップリング剤(E)は、1種単独で、或いは2種以上を組み合わせて用いることができる。
 (E)成分の使用量は、硬化性組成物に対するメルカプト当量〔硬化性組成物1gあたりのメルカプト基のモル数(又はメルカプト基に換算したモル数、以下にて同じ。)〕が、好ましくは、0.001~1.00mmol/g、より好ましくは0.005~0.80mmol/g、特に好ましくは0.015~0.60mmol/gとなる量である。前記メルカプト当量は、公知の方法により測定し求めることができる。
 (A)成分と(E)成分との含有割合(質量比)は、〔(A)成分〕:〔(E)成分〕=100:0.1~100:50、好ましくは100:0.3~100:30であり、特に好ましくは100:0.4~100:25である。
 このような割合で(A)成分及び(E)成分を含有する硬化性組成物の硬化物は、耐剥離性、耐熱性に優れ、かつ、高い接着力を有するものとなる。(E)成分の含有割合が上記範囲より少ないと、本発明の目的が達成できず、多いと、得られる硬化物が着色し、高温時の接着強度が低下するおそれがある。
 本発明において、前記(A)~(E)成分の質量の合計は、全組成物の、60質量%以上であるのが好ましく、70質量%以上であるのがより好ましい。
(F)希釈剤
 本発明の硬化性組成物においては、流動性をもたせる目的で、希釈剤を更に含有するのが好ましい。
 希釈剤としては、例えば、ジエチレングリコールモノブチルエーテルアセテート、グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ジグリシジルアニリン、ネオペンチルグリコールグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ポリグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド等が挙げられる。
 これらの希釈剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 希釈剤の使用量は、本発明の硬化性組成物の固形分濃度を50~100質量%とするのが好ましく、60~90質量%とするのがより好ましく、70~85質量%とするのがさらに好ましい。
 また、本発明の硬化性組成物が希釈剤を含有する場合、(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分の合計量が、硬化性組成物の希釈剤を除いた成分全体に対して、50~100質量%であることが好ましく、60~100質量%であることがより好ましい。(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分の合計量が、上記範囲内にあることで、本発明の硬化性組成物は、耐熱性及び接着性により優れたものとなる。
(G)その他の成分
 本発明の硬化性組成物には、本発明の目的を阻害しない範囲で、上記成分に、さらに他の成分を含有させてもよい。
 他の成分としては、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
 酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
 これらの酸化防止剤は一種単独で、或いは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分に対して、通常、10質量%以下である。
 紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 紫外線吸収剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 紫外線吸収剤の使用量は、(A)成分に対して、通常、10質量%以下である。
 光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
 これらの光安定剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 これらの他の成分(希釈剤を除く)の総使用量は、(A)成分に対して、通常、20質量%以下である。
 本発明の硬化性組成物は、例えば、前記(A)~(E)成分、及び、所望により(F)、(G)成分を所定割合で配合して、公知の方法により混合、脱泡することにより得ることができる。
 以上のようにして得られる本発明の硬化性組成物によれば、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物を得ることができる。
 したがって、本発明の硬化性組成物は、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。特に、光素子の高輝度化に伴う、光素子固定材の劣化に関する問題を解決することができることから、本発明の硬化性組成物は、光素子固定用組成物として好適に使用することができる。
2)硬化物
 本発明の第2は、本発明の硬化性組成物を硬化してなる硬化物である。
 本発明の硬化性組成物を硬化する方法としては加熱硬化が挙げられる。硬化するときの加熱温度は、通常、100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
 本発明の硬化物は、高い接着力を有し、耐剥離性、耐熱性に優れる。
 したがって、本発明の硬化物は、光素子の高輝度化に伴う劣化に関する問題を解決し、光素子固定材として好適に使用することができる。例えば、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。
 本発明の硬化性組成物を加熱して得られる硬化物が耐剥離性に優れることは、例えば、次のようにして確認することができる。
 LEDリードフレームに、硬化性組成物を塗布した上に、サファイアチップを圧着し、170℃で2時間加熱処理して硬化させた後、封止材をカップ内に流し込み、150℃で1時間加熱処理して硬化物の試験片を得る。この試験片を85℃、85%RHの環境に168時間曝したのち、プレヒート160℃で、最高温度が260℃になる加熱時間1分間のIRリフローにて処理を行い、次いで、熱サイクル試験機にて、-40℃及び+100℃で各30分放置する試験を1サイクルとして、300サイクル実施する。その後、封止材を除去し、その際に素子が一緒に剥がれるか否かを調べる。本発明の硬化物においては、剥離する確率は通常45%以下、より好ましくは25%以下である。
 本発明の硬化性組成物を硬化してなる硬化物が高い接着力を有することは、例えば、次のようにして接着力を測定することで確認することができる。すなわち、シリコンチップのミラー面に硬化性組成物を塗布し、塗布面を被着体の上に載せ、圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
 硬化物の接着力は、23℃において60N/2mm□以上であることが好ましく、80N/2mm□以上であることがより好ましく、100N/2mm□以上であることが特に好ましい。また硬化物の接着力は、100℃において40N/2mm□以上であることが好ましく、50N/2mm□以上であることがより好ましく、60N/2mm□以上であることが特に好ましい。
3)硬化性組成物の使用方法
 本発明の第3は、本発明の硬化性組成物を、光素子用接着剤又は光素子用封止材等の光素子固定材用組成物として使用する方法である。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
〈光素子用接着剤〉
 本発明の硬化性組成物は、光素子用接着剤として好適に使用することができる。
 本発明の硬化性組成物を光素子用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。
 光素子を接着するための主な基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;サファイア;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
〈光素子用封止材〉
 本発明の硬化性組成物は、光素子封止体の封止材として好適に用いることができる。
 本発明の硬化性組成物を光素子用封止材として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、そのものを加熱硬化させることにより光素子封止体を製造する方法等が挙げられる。
 本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
 加熱硬化する際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
 得られる光素子封止体は、本発明の硬化性組成物を用いているので、耐剥離性、耐熱性に優れ、かつ、高い接着力を有するものである。
4)光デバイス
 本発明の第4は、本発明の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として用いた光デバイスである。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
 本発明の光デバイスは、本発明の硬化性組成物を、光素子固定用の接着剤又は封止材として用い、光素子を固定して得られるものである。そのため、光素子が高い接着力で固定された、耐久性に優れたものとなっている。
 次に実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記の実施例に限定されるものではない。なお、「%」、「部」は、特に断りのない限り、質量基準である。
(質量平均分子量測定)
 下記製造例で得たシラン化合物共重合体の質量平均分子量(Mw)及び数平均分子量(Mn)は、標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 注入量:80μl
 測定温度:40℃
 流速:1ml/分
 検出器:示差屈折計
(IRスペクトルの測定)
 製造例で得たシラン化合物共重合体のIRスペクトルは、フーリエ変換赤外分光光度計(Spectrum100、パーキンエルマー社製)を使用して測定した。
(製造例1)
 300mlのナス型フラスコに、フェニルトリメトキシシラン(東京化成工業社製、以下にて同じ)20.2g(102mmol)と、2-シアノエチルトリメトキシシラン(アヅマックス社製、以下にて同じ)3.15g(18mmol)、並びに、溶媒として、アセトン96ml及び蒸留水24mlを仕込んだ後、内容物を攪拌しながら、触媒としてリン酸(関東化学社製、以下にて同じ)0.15g(1.5mmol)を加え、25℃でさらに16時間攪拌を継続した。
 反応終了後、反応液をエバポレーターで50mlまで濃縮し、濃縮物に酢酸エチル100mlを加え、飽和炭酸水素ナトリウム水溶液にて中和した。しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液をエバポレーターにて50mlまで濃縮し、得られた濃縮物を多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解させて回収し、エバポレーターで溶媒を減圧留去した。残留物を真空乾燥することにより、シラン化合物共重合体(A1)を13.5g得た。
 シラン化合物共重合体(A1)の質量平均分子量(Mw)は1,870、分子量分布(PDI)は1.42であった。
 シラン化合物共重合体(A1)のIRスペクトルデータを以下に示す。
Si-Ph:698cm-1,740cm-1,Si-O:1132cm-1,-CN:2259cm-1
(実施例1)
 製造例1で得たシラン化合物共重合体(A1)100部(質量部、以下同じ)に、
(B)成分として、平均一次粒子径が0.8μmのシリコーン系微粒子(日興リカ社製:MSP-SN08、下記表1において、「(B2)」という。)3部、
(C)成分として、1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート(下記表1において、「(C1)」という。)10部、
(D)成分として、3-(トリメトキシシリル)プロピルコハク酸無水物(下記表1において、「(D1)」という。)1部、
(E)成分として、3-メルカプトプロピルトリメトキシシラン(信越化学工業社製、KBM-803、下記表1において、「(E1)」という。)0.5部、及び、
固形分が80%になるようジエチレンクリコールモノブチルエーテルアセテートを添加し、全容を十分に混合、脱泡することにより硬化性組成物1を得た。
(実施例2~27、比較例1~9)
 実施例1において、(B)成分の種類、使用量(部)、(C)、(D)成分の使用量(部)、(E)成分の種類、使用量(部)を、下記表1に記載した通りに変更した以外は、実施例1と同様にして、実施例2~27の硬化性組成物2~27、比較例1~9の硬化性組成物1r~9rを得た。
 下記表中、(B)成分の種類:B1~B4、B9、(E)成分の種類:E1~E3は以下を表す。
・B1:シリコーン系微粒子(平均一次粒子径:0.5μm)、日興リカ社製、MSP-SN05
・B2:シリコーン系微粒子(平均一次粒子径:0.8μm)、日興リカ社製、MSP-SN08
・B3:シリコーン系微粒子(平均一次粒子径:2μm)、モメンティブ・パフォーマンス・マテ・リアルズ・ジャパン合同会社製、トスパール120
・B4:シリコーン系微粒子(平均一次粒子径:4.5μm)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製、トスパール145
・B9:シリカ系微粒子(平均一次粒子径:0.07μm)、トクヤマ社製、シルフィル NSS-5N
・E1:3-メルカプトプロピルトリメトキシシラン〔信越化学工業社製、KBM-803、メルカプト当量(E1 1gあたりのメルカプト基のモル数):5.10mmol/g〕
・E2:3-トリメトキシシリルプロピルスルファニルトリエトキシシラン〔信越化学工業社製、X-12-1056ES、メルカプト当量(E2 1gあたりのメルカプト基のモル数):2.79mmol/g〕
・E3:オリゴマー〔分子量:700、信越化学工業社製、X-41-1810、メルカプト当量(E3 1gあたりのメルカプト基のモル数):2.22mmol/g〕
 実施例1~27及び比較例1~9で得た硬化性組成物1~27、1r~9rの硬化物につき、下記のようにして、接着強度の測定、及び耐剥離性の評価を行った。
 測定結果及び評価を下記表1に示す。
(接着強度の測定)
 2mm角のシリコンチップのミラー面に、硬化性組成物1~27、1r~9rのそれぞれを、厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(シリーズ4000、デイジ社製)の測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、スピード200μm/sで接着面に対し水平方法(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着強度(N/2mm□)を測定した。
(耐剥離性試験)
 LEDリードフレーム(エノモト社製、製品名:5050 D/G PKG LEADFRAME)に、硬化性組成物1~27、1r~9rを、0.4mmφ程度塗布した上に、0.5mm角のサファイアチップを圧着した。その後、170℃で2時間加熱処理して硬化させた後、封止材(信越化学工業社製、製品名:EG6301)をカップ内に流し込み、150℃で1時間加熱処理して試験片を得た。
 この試験片を85℃、85%RHの環境に168時間曝したのち、プレヒート160℃で、最高温度が260℃になる加熱時間1分間のIRリフロー(リフロー炉:相模理工社製、製品名「WL-15-20DNX型」)にて処理を行った。その後、熱サイクル試験機にて、-40℃及び+100℃で各30分放置する試験を1サイクルとして、300サイクル実施した。その後、封止材を除去する操作を行い、その際に素子が一緒に剥がれるか否かを調べた。この試験を、各硬化性組成物につき12回行った。
 下記表1に、素子が一緒に剥がれた回数を数え、剥離発生率が25%以下であれば「A」、25%より大きく50%以下であれば「B」、50%より大きければ「C」と評価した。
 下記表中、(E)の右欄は硬化性組成物に対するメルカプト当量(硬化性組成物1gあたりのメルカプト基のモル数)(mmol/g)を示す。
Figure JPOXMLDOC01-appb-T000011
 表1から、実施例1~27の硬化性組成物1~27の硬化物はすべて、耐剥離性の評価がA又はBであり、耐剥離性に優れていることがわかる。接着強度も、23℃においては、すべて87N/2mm□以上(ほとんどが95N/2mm□以上)であり、100℃においても42N/2mm□以上であり、接着力、耐熱性に優れていることがわかる。
 一方、比較例1~9の硬化性組成物1r~9rの硬化物は、接着強度がすべて94N/2mm□以下であり、100℃においても、42N/2mm□未満のものが多く、接着強度に劣るものであることがわかる。また、比較例5以外は、すべて耐剥離性の評価は低いものであった。比較例5の硬化性組成物は、耐剥離性の評価はBであったものの、100℃における接着強度が18.85N/2mm□であり、接着力、耐熱性に劣っていた。

Claims (13)

  1.  下記(A)~(E)成分を有する硬化性組成物であって、(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:20の割合で含有することを特徴とする硬化性組成物。
    (A)下記式(a-1)
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Xは、ハロゲン原子、シアノ基、又は、式:OGで表される基(式中、Gは水酸基の保護基を表す。)を表し、Dは単結合、又は、置換基を有する、若しくは置換基を有さない炭素数1~20の2価の有機基を表す。Rは、水素原子又は炭素数1~6のアルキル基を表し、Rは炭素数1~20のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表す。Z~Zはそれぞれ独立して、ヒドロキシル基、炭素数1~10のアルコキシ基、又は、ハロゲン原子を示す。m、nはそれぞれ独立して正の整数を示す。o、p、q、rはそれぞれ独立して、0又は正の整数を示す。〕で示されるシラン化合物共重合体
    (B)平均一次粒子径が0.04μm超、8μm以下の微粒子
    (C)分子内に窒素原子を有するシランカップリング剤
    (D)分子内に酸無水物構造を有するシランカップリング剤
    (E)分子内に硫黄原子含有官能基を有するシランカップリング剤
  2.  前記(B)成分が、シリカ、シリコーン、及び、シリコーンで表面が被覆された金属酸化物、から選ばれる少なくとも1種の微粒子である請求項1に記載の硬化性組成物。
  3.  前記(A)成分の質量平均分子量が800~30,000である、請求項1に記載の硬化性組成物。
  4.  前記(A)成分が、前記式(a-1)中、(m+o+q)と(n+p+r)とが、(m+o+q):(n+p+r)=5:95~60:40の割合の化合物である、請求項1に記載の硬化性組成物。
  5.  さらに、希釈剤を含有する請求項1に記載の硬化性組成物。
  6.  前記(A)成分、(B)成分、(C)成分、(D)成分及び(E)成分の合計量が、硬化性組成物の希釈剤を除いた成分全体に対して、50~100質量%であることを特徴とする、請求項1に記載の硬化性組成物。
  7.  前記硬化性組成物の固形分濃度が、50~100質量%であることを特徴とする、請求項1に記載の硬化性組成物。
  8.  光素子固定材用組成物である請求項1に記載の硬化性組成物。
  9.  請求項1に記載の硬化性組成物を硬化してなる硬化物。
  10.  光素子固定材である請求項9に記載の硬化物。
  11.  請求項1に記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
  12.  請求項1に記載の硬化性組成物を、光素子固定材用封止材として使用する方法。
  13.  請求項1に記載の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として用いた光デバイス。
PCT/JP2015/073610 2014-08-26 2015-08-21 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス WO2016031732A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016541450A JP6062119B2 (ja) 2014-08-26 2015-08-21 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014171420 2014-08-26
JP2014-171420 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031732A1 true WO2016031732A1 (ja) 2016-03-03

Family

ID=55399624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073610 WO2016031732A1 (ja) 2014-08-26 2015-08-21 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス

Country Status (3)

Country Link
JP (1) JP6062119B2 (ja)
TW (1) TWI660009B (ja)
WO (1) WO2016031732A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313621A (ja) * 2001-04-17 2002-10-25 Nippon Kayaku Co Ltd シリコーン樹脂組成物、樹脂結合型金属成型部品
JP2007507583A (ja) * 2003-09-30 2007-03-29 スリーエム イノベイティブ プロパティズ カンパニー 印刷可能な絶縁組成物および印刷可能物品
JP2009138059A (ja) * 2007-12-04 2009-06-25 Canon Inc 成形用材料、それを用いた成形品およびその製造方法
WO2009101753A1 (ja) * 2008-02-14 2009-08-20 Lintec Corporation ポリオルガノシロキサン化合物からなる成形材料、封止材及び光素子封止体
WO2009104505A1 (ja) * 2008-02-19 2009-08-27 リンテック株式会社 ポリオルガノシロキサン化合物を主成分とする接着剤
JP2011173738A (ja) * 2010-02-23 2011-09-08 Nagase Chemtex Corp 透明焼成体
WO2011111667A1 (ja) * 2010-03-08 2011-09-15 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2013141360A1 (ja) * 2012-03-23 2013-09-26 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2014069508A1 (ja) * 2012-10-30 2014-05-08 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313621A (ja) * 2001-04-17 2002-10-25 Nippon Kayaku Co Ltd シリコーン樹脂組成物、樹脂結合型金属成型部品
JP2007507583A (ja) * 2003-09-30 2007-03-29 スリーエム イノベイティブ プロパティズ カンパニー 印刷可能な絶縁組成物および印刷可能物品
JP2009138059A (ja) * 2007-12-04 2009-06-25 Canon Inc 成形用材料、それを用いた成形品およびその製造方法
WO2009101753A1 (ja) * 2008-02-14 2009-08-20 Lintec Corporation ポリオルガノシロキサン化合物からなる成形材料、封止材及び光素子封止体
WO2009104505A1 (ja) * 2008-02-19 2009-08-27 リンテック株式会社 ポリオルガノシロキサン化合物を主成分とする接着剤
JP2011173738A (ja) * 2010-02-23 2011-09-08 Nagase Chemtex Corp 透明焼成体
WO2011111667A1 (ja) * 2010-03-08 2011-09-15 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2013141360A1 (ja) * 2012-03-23 2013-09-26 リンテック株式会社 硬化性組成物、硬化物および硬化性組成物の使用方法
WO2014069508A1 (ja) * 2012-10-30 2014-05-08 リンテック株式会社 硬化性ポリシルセスキオキサン化合物、その製造方法、硬化性組成物、硬化物、及び、硬化性組成物等の使用方法

Also Published As

Publication number Publication date
JP6062119B2 (ja) 2017-01-18
TW201609976A (zh) 2016-03-16
JPWO2016031732A1 (ja) 2017-04-27
TWI660009B (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
JP6761491B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP5744221B2 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP6009120B2 (ja) 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
JP6151458B2 (ja) 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
JP6064094B2 (ja) 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
JP6151457B2 (ja) 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
JP6151459B2 (ja) 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス
JP6228591B2 (ja) 硬化性組成物、硬化物、硬化性組成物の使用方法、並びに、光素子封止体及びその製造方法
WO2015041339A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法
JP6062120B2 (ja) 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2017110947A1 (ja) 硬化性組成物、硬化性組成物の製造方法、硬化物、及び硬化性組成物の使用方法
JP6062119B2 (ja) 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
WO2015041343A1 (ja) 硬化性組成物、硬化物および硬化性組成物の使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016541450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834992

Country of ref document: EP

Kind code of ref document: A1