WO2013140700A1 - 防振装置 - Google Patents

防振装置 Download PDF

Info

Publication number
WO2013140700A1
WO2013140700A1 PCT/JP2012/084191 JP2012084191W WO2013140700A1 WO 2013140700 A1 WO2013140700 A1 WO 2013140700A1 JP 2012084191 W JP2012084191 W JP 2012084191W WO 2013140700 A1 WO2013140700 A1 WO 2013140700A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer cylinder
rubber
cylindrical member
peripheral surface
cylinder part
Prior art date
Application number
PCT/JP2012/084191
Other languages
English (en)
French (fr)
Inventor
俊一 信夫
紀光 古澤
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to CN201280060907.6A priority Critical patent/CN103987988B/zh
Priority to MX2014010604A priority patent/MX2014010604A/es
Priority to US14/368,470 priority patent/US10316920B2/en
Priority to DE112012005861.5T priority patent/DE112012005861B4/de
Publication of WO2013140700A1 publication Critical patent/WO2013140700A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3807Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type characterised by adaptations for particular modes of stressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3828End stop features or buffering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3863Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type characterised by the rigid sleeves or pin, e.g. of non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal

Definitions

  • the present invention relates to a vibration isolator, and more particularly to a vibration isolator capable of increasing the spring constant in the axial direction while reducing the spring constant in the twisting direction and the spring constant in the direction perpendicular to the axis.
  • the inner cylinder member and the outer cylinder member are connected by a rubber base made of a rubber-like elastic body. It is required to reduce the spring constant.
  • a spherical bulging portion 4 bulging outward in the radial direction is provided at an axially intermediate portion of the inner cylinder 1 (inner cylinder member).
  • An anti-vibration bush 101 antioxidant-vibration device that forms an inner peripheral surface portion of the outer cylinder 2 (outer cylinder member) surrounding the bulging portion 4 into a concave spherical surface that is concentric with the convex spherical surface of the bulging portion 4.
  • the rubber-like elastic body 3 (rubber base) is mainly formed between a convex spherical surface and a concentric concave spherical surface with respect to an input of displacement in the twisting direction. Since it can be deformed in the shearing direction, the spring constant in the twisting direction can be reduced.
  • JP 2008-019927 paragraphs 0006, 0020, FIG. 1, etc.
  • the conventional anti-vibration bushing 101 described above has a problem that it is not possible to sufficiently increase the spring constant in the axial direction while reducing the spring constant in the twisting direction and the spring constant in the direction perpendicular to the axis.
  • the present invention has been made to solve the above-described problems, and is a vibration isolator capable of increasing the spring constant in the axial direction while reducing the spring constant in the twisting direction and the spring constant in the direction perpendicular to the axis.
  • the purpose is to provide.
  • the inner cylinder member having a spherical bulge that bulges radially outward, and the concave shape that is a concave spherical surface that surrounds the bulge of the inner cylinder member. Since it has an outer cylinder member having an inner peripheral surface and a rubber base that connects between the outer peripheral surface of the bulging portion of the inner cylindrical member and the concave inner peripheral surface of the outer cylindrical member, Thus, the rubber substrate can be deformed mainly in the shear direction. Therefore, there is an effect that the spring constant in the twisting direction can be reduced.
  • the outer cylinder member is divided into two parts in the axial direction, the first outer cylinder part and the second outer cylinder part, and the concave inner peripheral surface and the second outer cylinder part in the first outer cylinder part.
  • the first inner cylindrical portion and the second outer cylindrical portion are connected to each other between the concave inner peripheral surface of the outer cylindrical portion and the outer peripheral surface of the bulging portion of the inner cylindrical member by the first rubber portion and the second rubber portion, respectively. Is held and fixed by a cylindrical cylindrical member disposed on the outer peripheral side.
  • the dividing surface of the first rubber portion and the dividing surface of the second rubber portion are separated in the axial direction so that there is a space between the dividing surfaces.
  • the first outer cylinder part and the second outer cylinder part can be held and fixed by the cylindrical member.
  • the shear component of the rubber substrate in the twisting direction and the rubber substrate in the direction perpendicular to the axis can be formed.
  • the compression component of the rubber base in the axial direction can be ensured while suppressing the compression component.
  • the first rubber portion and the second rubber portion do not need to be completely divided (divided) in the axial direction, and it is sufficient that the rubber base is divided in the axial direction at least on the outer cylinder member side. Therefore, the 1st rubber part and the 2nd rubber part may be connected by the inner cylinder member side (it does not need to be divided in the direction of an axis). That is, the first rubber part and the second rubber part may be connected by a part of the rubber base that covers the outer peripheral surface of the inner cylinder member.
  • the maximum outer diameter of the bulging portion of the inner cylinder member is the first outer cylinder portion and the second outer cylinder. Since it is made larger than the minimum inner diameter at the axial end opening of the cylindrical portion, the pressure receiving area can be increased with respect to displacement in the axial direction, and the compression component of the rubber base can be secured. As a result, the effect of increasing the spring constant in the axial direction can be made remarkable while reducing the spring constant in the twisting direction and the spring constant in the direction perpendicular to the axis.
  • the configuration according to claim 2 is the rubber in the axial direction.
  • the shear component of the rubber base in the twisting direction and the compressive component of the rubber base in the direction perpendicular to the axis also increase, and thus cannot be employed.
  • This is possible for the first time by forming a space between the dividing surface and the dividing surface of the second rubber part, thereby ensuring the compression component of the rubber base in the axial direction and the rubber in the twisting direction.
  • the shear component of the substrate and the compression component of the rubber substrate in the direction perpendicular to the axis can be suppressed. That is, the spring constant in the axial direction can be increased while reducing the spring constant in the twisting direction and the spring constant in the direction perpendicular to the axis.
  • the first rubber part and the second rubber part are prevented from peeling and cracking while There is an effect that preliminary compression in the radial direction (perpendicular to the axis) can be applied to the first rubber portion and the second rubber portion.
  • the vibration isolator imparts a radial pre-compression to the rubber substrate in order to ensure its durability.
  • the provision of the precompression in the radial direction to the rubber base is usually performed by drawing the outer cylinder member.
  • the concave spherical surface and the concave spherical surface are not formed. A difference in thickness occurs between the portions and the thickness of the portion where the concave spherical surface is not formed becomes thick, so that drawing of the outer cylinder member becomes difficult.
  • a plurality of concave grooves extending in the axial direction and having a depth equivalent to that of the concave spherical surface are formed on the inner peripheral surface of the outer cylinder member in the circumferential direction.
  • the outer cylinder member undergoes drawing deformation so that the groove width of each concave groove becomes narrow with drawing, so there is a difference in thickness and the thickness of the portion where the concave spherical surface is not formed. Drawing can be performed even if the thickness is large.
  • the spring constant in the twisting direction can be reduced, but by forming a concave groove in the outer cylindrical member to enable drawing, the rubber base (rubber-like elastic body) can be pre-compressed. Since it is a structure to be applied, when the outer cylinder member is drawn, deformation concentrates on the concave groove, and the rubber-like elastic body is peeled off at the portion bonded to the concave groove, and the groove width is narrowed. Cracks are generated in the rubber substrate between the concave grooves.
  • the first outer cylinder portion and the second outer cylinder portion are held and fixed by the cylindrical member in a state where the first outer cylinder portion and the second outer cylinder portion are drawn. Therefore, there is an effect that preliminary compression in the radial direction can be applied to the first rubber portion and the second rubber portion.
  • the first outer cylinder part and the second outer cylinder part are formed from a material having a constant plate thickness into a shape having a concave inner peripheral surface, the first outer cylinder part and the second outer cylinder part can be drawn. It is not necessary to form a concave groove for Therefore, there is an effect that radial compression can be applied to the first rubber portion and the second rubber portion while suppressing occurrence of peeling and cracking of the first rubber portion and the second rubber portion.
  • the cylindrical member holds and fixes the first outer cylinder part and the second outer cylinder part
  • the shape as an attachment site to the mating member for example, press-fitting into the press-fitting hole of the suspension arm is possible.
  • the outer shape can be carried by the cylindrical member, and the first outer cylinder portion and the second outer cylinder portion do not need to take into account the shape as an attachment site to the mating member. Therefore, the first outer cylinder part and the second outer cylinder part can be formed from a material having a constant plate thickness, for example, by pressing, and as a result, the first outer cylinder part and the second outer cylinder part can be formed without providing a concave groove.
  • the second outer cylinder portion can be drawn.
  • the cylindrical member is subjected to drawing processing, that is, the first outer cylinder portion. Since the first outer cylinder part and the second outer cylinder part are held and fixed by the cylindrical member by tightening the outer peripheral surface side of the second outer cylinder part by the inner peripheral surface side of the cylindrical member, the holding and fixing are performed. There is an effect that it can be performed easily. Further, since the inner diameter of the cylindrical member before the drawing process can be made larger than the outer diameters of the first outer cylinder part and the second outer cylinder part, the first outer cylinder part and the second outer cylinder in the assembly process. There is an effect that the operation of inserting the portion into the inner peripheral side of the tubular member along the axial direction can be efficiently performed.
  • a rubber film portion composed of a rubber-like elastic body is provided on at least a part of at least one of the outer peripheral surface of the first outer cylinder portion and the second outer cylinder portion or the inner peripheral surface of the cylindrical member. Since it is covered, the friction coefficient can be secured by the intervention of the rubber film portion. Further, the rubber film portion is interposed, so that the shortage of the tightening allowance due to the spring back of the cylindrical member can be compensated by the compressive force due to the elastic recovery of the rubber film portion. Therefore, there is an effect that it is possible to secure a holding force against the axial withdrawal and to prevent the first outer cylinder portion and the second outer cylinder portion from coming out of the cylindrical member in the axial direction.
  • the first outer cylindrical portion and the second outer cylindrical portion are radially arranged (perpendicular to the axis) on the inner peripheral side of the cylindrical member.
  • the inner surface of the outer peripheral surface of the first outer cylinder part and the second outer cylinder part and the inner peripheral surface of the cylindrical member Since the rubber film part is covered only on the outer peripheral surfaces of the first outer cylinder part and the second outer cylinder part, and the rubber film part continues to at least one of the first rubber part or the second rubber part, There is no need to cover the rubber film part, and the rubber film part can be vulcanized and formed at the same time as the first rubber part and the second rubber part, so that the manufacturing cost can be reduced accordingly. There is.
  • segmentation surface of a 2nd outer cylinder part Are spaced apart in the axial direction, and the outer peripheral surface of the stopper rubber portion and the inner peripheral surface of the cylindrical member are radially separated, and are interposed between the divided surfaces of the first outer cylindrical portion and the second outer cylindrical portion.
  • the stopper protruding part is inserted into the cylindrical member via the stopper rubber part. It is possible to exert a stopper function that abuts the inner peripheral surface of the rubber substrate and restricts the deformation of the rubber base accompanying the input displacement to a predetermined amount. Thereby, there is an effect that the durability of the rubber substrate can be improved.
  • the portion for exerting the stopper function can be accommodated in the space formed between the divided surface of the first rubber part and the divided surface of the second rubber part. There is an effect that it is possible to reduce the size of the vibration isolator by effectively utilizing the space that becomes the dead space while improving the durability of the rubber base by exerting the stopper function.
  • the vibration isolator according to claim 7 in addition to the effect of the vibration isolator according to any one of claims 1 to 5, while reducing the spring constant in the twisting direction and the spring constant in the direction perpendicular to the axis,
  • the spring constant in the direction can be increased, and the first outer cylinder portion and the second outer cylinder portion can be prevented from being displaced in the direction in which the split surfaces are brought close to the cylindrical member. .
  • the outer peripheral surface of the bulging part in the first inner cylinder part and the first outer cylinder part is configured such that the concave inner peripheral surfaces are connected by the first rubber part, and the divided surface of the second inner cylinder part and the divided surface of the second outer cylinder part are arranged at the same axial position.
  • the outer peripheral surface of the bulging portion in the portion and the concave inner peripheral surface in the second outer cylinder portion are connected by the second rubber portion, and the first rubber portion is formed between the split surface of the first outer cylinder portion and the first inner cylinder portion.
  • the second rubber portion is positioned so as to be retracted in the axial direction from the dividing surface, and the second rubber portion is positioned so as to be retracted in the axial direction from the dividing surface of the second outer cylindrical portion and the dividing surface of the second inner cylindrical portion.
  • the first outer cylinder portion and the second outer cylinder in a state in which the division surfaces of the inner cylinder portion and the first outer cylinder portion are brought into contact with the division surfaces of the second inner cylinder portion and the second outer cylinder portion.
  • the space between the dividing surface of the first rubber part and the dividing surface of the second rubber part is set, and the dividing surface of the first outer cylinder part and the dividing surface of the second outer cylinder part are brought into contact with each other. Since it can be made to contact, it can control that these 1st outer cylinder parts and the 2nd outer cylinder part move to the direction which makes a mutual division surface approach. That is, since the movement in such a direction can be regulated without relying on the friction with the inner peripheral surface of the cylindrical member, when the large displacement is input in the axial direction, the first outer cylinder portion or the second outer cylinder It can suppress reliably that a part shifts position with respect to a cylindrical member.
  • the cylindrical member is subjected to drawing processing, so that one end side of the cylindrical member in the axial direction, the axial direction, etc. Since the end side is formed in a shape reduced in diameter along the outer peripheral surface which is the back side of the concave inner peripheral surface of the first outer cylindrical portion and the second outer cylindrical portion, There is an effect that it is possible not only to move the cylindrical portion and the second outer cylindrical portion in a direction in which the divided surfaces are brought close to each other but also to move in a direction in which the divided surfaces are separated from each other.
  • the first outer cylinder part and the second outer cylinder part move in the direction in which the respective divided surfaces are brought close to each other, the movement is restricted by the contact of the divided surfaces and the divided surfaces are separated from each other.
  • the movement can be restricted by one axial end side or the other axial end side of the cylindrical member.
  • the movement in both directions can be regulated without relying on the friction with the inner peripheral surface of the cylindrical member. Therefore, when a large displacement is input in the axial direction, the first outer cylinder portion or the second outer It is possible to reliably suppress the displacement of the tubular portion with respect to the tubular member.
  • FIG. 4A is a top view of the cylindrical member, and FIG.
  • FIG. 4B is a cross-sectional view of the cylindrical member taken along line IVb-IVb in FIG.
  • A) is a top view of the vulcanized molded body
  • (b) is a cross-sectional view of the vulcanized molded body taken along the line Vb-Vb in FIG. 5 (a).
  • A) is a sectional view of a vulcanized molded body in a state before being drawn in the outer cylinder drawing step
  • (b) is a vulcanization in a state after being drawn in the outer cylinder drawing step. It is sectional drawing of a molded object.
  • (A) is sectional drawing of a vulcanization molded object and a cylindrical member in the state where a rubber base was compressed in the direction of an axis in a rubber base compression process
  • (b) is a cylindrical member in a cylindrical member squeezing process. It is sectional drawing of a vulcanization molded object and a cylindrical member in the state after drawing processing.
  • (A) is sectional drawing of the vulcanization molded object and a cylindrical member in the state before a bending process is given in a bending process
  • (b) is in the state after a bending process was given in the bending process. It is sectional drawing of a vulcanization molded object and a cylindrical member.
  • (A) is sectional drawing of the vulcanization molded object B which comprises the vibration isolator in 2nd Embodiment
  • (b) is sectional drawing of the vibration isolator in 2nd Embodiment.
  • (A) is sectional drawing of the vulcanization molded object which comprises the vibration isolator in 3rd Embodiment
  • FIG.10 (b) is sectional drawing of the vibration isolator in 3rd Embodiment.
  • (A) is a top view of the vibration isolator in 4th Embodiment
  • (b) is sectional drawing of the vibration isolator in the XIb-XIb line
  • (A) is a top view of a 1st outer cylinder part
  • (b) is sectional drawing of the 1st outer cylinder part in the XIIb-XIIb line
  • (A) is a side view of the vulcanized molded body, and (b) is a cross-sectional view of the vulcanized molded body taken along line XIIIb-XIIIb in FIG. 13 (a).
  • (A) is a sectional view of a vulcanized molded body in a state before being drawn in the outer cylinder drawing step, and (b) is a vulcanization in a state after being drawn in the outer cylinder drawing step. It is sectional drawing of a molded object.
  • (A) is sectional drawing of the vulcanization molded object and a cylindrical body in the state before a cylindrical member is drawn in a cylindrical member drawing process
  • (b) is a cylindrical member drawing process. It is sectional drawing of the vibration isolator in the state after the drawing process was given to the cylindrical member. It is sectional drawing of the vibration isolator in 5th Embodiment. It is sectional drawing of the vulcanization molded object in 6th Embodiment.
  • (A) is a cross-sectional view of the vulcanized molded body that has been subjected to drawing in the outer cylinder drawing step and the cylindrical member in a state before drawing in the cylindrical member drawing step, and (b) These are sectional drawings of the vibration isolator in the state after a cylindrical member was drawn in the cylindrical member drawing process. It is sectional drawing of the vibration isolator in 7th Embodiment.
  • FIG. 1A is a top view of the vibration isolator 100 according to the first embodiment of the present invention
  • FIG. 1B is a cross-sectional view of the vibration isolator 100 taken along the line Ib-Ib in FIG. FIG.
  • a vibration isolator 100 is a vibration isolating bush used for an automobile suspension device (suspension device), and is arranged on a cylindrical inner cylinder member 10 and an outer peripheral side of the inner cylinder member 10.
  • the outer cylinder member 20 is provided, the inner cylinder member 10 and the outer cylinder member 20 are connected to each other, and the rubber base 30 formed of a rubber-like elastic body is disposed on the outer peripheral side of the outer cylinder member 20.
  • a tubular member 40 having a tubular shape.
  • the vibration isolator 100 is configured such that the end surface in the axial O direction of the inner cylinder member 10 is clamped and fixed between a pair of clamping portions in the bracket of the suspension member via an attachment bolt inserted into the inner cylinder member 10.
  • the shaped member 40 is press-fitted into a press-fitting hole at one end of the suspension arm (in this embodiment, the lower arm), and is thereby mounted on the suspension device of the automobile.
  • FIG. 2A is a top view of the inner cylinder member 10
  • FIG. 2B is a cross-sectional view of the inner cylinder member 10 taken along the line IIb-IIb in FIG. 2A.
  • the inner cylinder member 10 includes a cylindrical shaft part 11 in which an insertion hole through which a mounting bolt is inserted is formed along the axis O, and a radially outer side from the outer peripheral surface of the shaft part 11. And a spherical bulging portion 12 that bulges toward the direction, and these are integrally formed of a metal material.
  • the shaft portion 11 and the bulging portion 12 may be configured separately from different materials (for example, the bulging portion 12 is a resin material).
  • the bulging portion 12 is disposed at the center of the shaft portion 11 in the axis O direction (the center in the vertical direction in FIG. 2B), and the center of the convex spherical surface of the bulging portion 12 is on the axis O of the shaft portion 11.
  • the inner cylinder member 10 is formed in a rotationally symmetric shape with the axis O as the axis of symmetry (rotation center).
  • FIG. 3A is a top view of the first outer cylinder portion 21, and FIG. 3B is a cross-sectional view of the first outer cylinder portion 21 taken along the line IIIb-IIIb of FIG. 3A.
  • FIG. 3 shows a state before the drawing process (see FIG. 6) in the outer cylinder drawing process.
  • the outer cylinder member 20 is divided into a first outer cylinder part 21 and a second outer cylinder part 22 at the center in the direction of the axis O (see FIG. 1). Since the first outer cylinder portion 21 and the second outer cylinder portion 22 are the same member (configuration) and are different only in names, the first outer cylinder portion 21 will be described below. Description of the 2 outer cylinder part 22 is abbreviate
  • the first outer cylinder portion 21 is a member obtained by forming a plate-like metal material (steel material in the present embodiment) with a constant plate thickness into a vessel shape by pressing, It is formed in rotational symmetry with the axis O as the axis of symmetry (rotation center).
  • the 1st outer cylinder part 21 is formed from a raw material with a fixed plate
  • the first outer cylinder portion 21 (and the second outer cylinder portion 22) is held and fixed to the cylindrical member 40 (see FIG. 1), the shape (this embodiment) as an attachment site to the counterpart member Then, the cylindrical member 40 can be made to bear the outer shape that can be press-fitted into the press-fitting hole of the lower arm, and the first outer cylinder portion 21 does not need to consider the shape as an attachment site to the counterpart member. Therefore, the 1st outer cylinder part 21 can be shape
  • the first outer cylinder portion 21 includes an annular portion 20a formed in an annular plate shape orthogonal to the axis O, a curved portion 20b that is connected to the inner edge of the annular portion 20a and whose cross-sectional shape is curved in an arc shape, A conical cylindrical enlarged portion 20c that is connected to the end of the curved portion 20b (lower side in FIG. 3 (b)) and is spaced apart from the curved portion 20b so that the inner diameter is gradually enlarged, and the largest diameter side of the enlarged portion 20c And a cylindrical part 20d having a substantially constant inner diameter, and these parts 20a to 20d are integrally formed coaxially along the axis O.
  • the enlarged diameter portion 20c and the cylindrical portion 20d are smoothly connected in an arc shape in cross section. Further, when the annular portion 20a is formed in an annular plate shape orthogonal to the axis O, and the end portion in the axis O direction of the cylindrical member 40 is bent radially inward in a bending step (see FIG. 8) described later. The bent portion overlaps the annular portion 20a in the direction of the axis O (see FIG. 1). Therefore, the engagement between the bent portion of the tubular member 40 and the annular portion 20a can be strengthened.
  • the inner peripheral surface of the enlarged diameter portion 20c and the cylindrical portion 20d is a concave inner peripheral surface IS.
  • the concave inner peripheral surface IS is a portion surrounding the bulging portion 12 of the inner cylinder member 10, and the diameter-expanded portion 20c and the cylindrical portion 20d are drawn in the outer cylinder drawing step (see FIG. 6).
  • the shape of the concave inner peripheral surface IS is formed as a concave spherical surface concentric with the convex spherical surface in the bulging portion 12 of the inner cylinder member 10 (see FIG. 1).
  • the outer diameter of the annular portion 20a (the diameter at the outer edge of the annular portion 20a) D1 is the outer diameter of the cylindrical portion 20d (the diameter of the outer peripheral surface of the cylindrical portion 20d) D2. (D1 ⁇ D2).
  • FIG. 4A is a top view of the cylindrical member 40
  • FIG. 4B is a cross-sectional view of the cylindrical member 40 taken along line IVb-IVb in FIG. 4A. 4 shows a state before the cylindrical member drawing step (see FIG. 7) (that is, the cylindrical member 40 before drawing).
  • the cylindrical member 40 is a member formed in a cylindrical shape having an axis O from a metal material (a steel material in the present embodiment). That is, the cylindrical member 40 is formed in a shape that is rotationally symmetric with the axis O as the axis of symmetry (rotation axis).
  • the inner diameter of the cylindrical member 40 is the maximum outer diameter of the vulcanized molded body A after the drawing process (see FIG. 6B) in the outer cylinder drawing process described later (the outer peripheral surfaces of the rubber film portions 33 and 34). Larger than the diameter). In the present embodiment, it is made larger than the maximum outer diameter (outer diameter D2 of the cylindrical portion 20d) of the vulcanized molded body A before drawing. Thereby, in the assembly work of the vibration isolator 100, the work of inserting the vulcanized molded body A into the inner peripheral side of the tubular member 40 along the axis O direction can be efficiently performed (FIG. 7A). reference).
  • chamfering is performed on the corner on the inner peripheral surface side to form a chamfered surface 40a having a linear cross section.
  • the formation of the chamfered surface 40a can also improve the workability of inserting the vulcanized molded body A along the axis O direction into the inner peripheral side of the cylindrical member 40.
  • the chamfered surface 40a it is possible to easily bend the end portion in the axial O direction of the tubular member 40 radially inward in a bending step (see FIG. 8) described later.
  • FIG. 5A is a top view of the vulcanized molded body A
  • FIG. 5B is a cross-sectional view of the vulcanized molded body A along the line Vb-Vb in FIG. 5A.
  • the vulcanized molded body A is a part molded by a vulcanization mold and constitutes one element of the vibration isolator 100. That is, the vibration isolator 100 is configured by mounting the tubular member 40 on the vulcanized molded body A.
  • the vulcanized molded body A is manufactured by placing the inner cylinder member 10 and the outer cylinder member 20 (the first outer cylinder portion 21 and the second outer cylinder portion 22) in a vulcanization mold, and after clamping the mold, a rubber material And the rubber substrate 30 is vulcanized and molded. Thereby, the outer peripheral surface of the inner cylindrical member 10 and the inner peripheral surface of the outer cylindrical member 20 (the first outer cylindrical portion 21 and the second outer cylindrical portion 22) are connected by the rubber base 30, and the vulcanized molded body A Is manufactured.
  • the 1st outer cylinder part 21 and the 2nd outer cylinder part 22 are coaxially installed in a vulcanization metal mold
  • the vulcanization mold includes an intermediate mold located in the center of the inner cylinder member 10 in the direction of the axis O (the vertical direction in FIG. 5 (b)).
  • the intermediate mold has an annular shape after clamping, The inner peripheral front end edge of the middle mold is in close contact with the outer peripheral surface of the bulging portion 12 and the top of the spherical surface.
  • the middle type is interposed between the split surfaces of the first outer cylinder portion 21 and the second outer cylinder portion 22, so that the first outer cylinder portion 21 and the second outer cylinder portion 22 have their split surfaces
  • the end portion of the cylindrical portion 20d in the axis O direction and the lower side surface of FIG. 3 (b) are placed in the vulcanization mold in a state of being separated in the direction of the axis O, and the rubber base 30 includes the first rubber portion 31 and the second rubber. It is vulcanized and molded into a portion 32 divided into two in the direction of the axis O.
  • the rubber base 30 (the first rubber portion 31 and the second rubber portion 32) of the vulcanized molded body A has a split surface of the first outer cylinder portion 21 and a split surface of the second outer cylinder portion 21 in the axis O direction. And a state in which a predetermined interval is provided.
  • the first rubber portion 31 is a portion that connects the outer peripheral surface of the bulging portion 12 of the inner cylinder member 10 and the concave inner peripheral surface IS of the first outer cylinder portion 21, and the second rubber portion 32 is the inner cylinder member 10. This is a portion for connecting the outer peripheral surface of the bulging portion 12 and the concave inner peripheral surface IS in the second outer cylindrical portion 22.
  • the first rubber part 31 and the second rubber part 32 are disposed with a predetermined interval between the divided surfaces. The interval between the divided surfaces is formed so as to become narrower from the first outer cylinder portion 21 and the second outer cylinder portion 22 toward the bulging portion 12 of the inner cylinder member 10.
  • the first rubber part 31 and the second rubber part 32 do not need to be completely divided (divided) in the direction of the axis O. For example, even if the first rubber part 31 and the second rubber part 32 are connected by a part (for example, a film-like body) of the rubber base 30 that covers the outer peripheral surface of the bulging part 12 of the inner cylinder member 10. good.
  • the rubber base 30 includes rubber film portions 33 and 34 that are covered on the outer peripheral surfaces of the first outer cylinder portion 21 and the second outer cylinder portion 22.
  • the rubber film portions 33 and 34 are portions that form a circular outer peripheral surface with the axis O as the center, and are formed in a range from the annular portion 20a to the middle of the conical portion 20c, and the annular portion 20a.
  • the outer diameter of the rubber film portions 33, 34 is the outer diameter of the cylindrical portion 20d (cylindrical portion 20d). Is smaller than D2 (D3 ⁇ D2).
  • the covering range of the rubber film portions 33 and 34 is a range up to the middle of the conical portion 20c, and the rubber film portion 33 and the remaining portion of the conical portion 20c on the cylindrical portion 20d side are disposed on the cylindrical portion 20d. 34 is not covered (that is, the outer peripheral surface is exposed).
  • the cylindrical portion 20d and the conical portion 20c can be directly pressed by the drawing die (not shown) without using the rubber film portions 33 and 34.
  • the drawing process can be performed with high accuracy.
  • the rubber film portions 33 and 34 are provided with receiving recesses 33a and 34a that are recessed from the outer peripheral surface thereof toward the conical portion 20c and are located on the cylindrical portion 20d side.
  • the contact area between the vulcanization mold and the conical portion 20c can be secured and the sealing performance at the time of vulcanization molding can be improved, so that the rubber film portions 33 and 34 are formed on the outer peripheral surface of the cylindrical portion 20d.
  • a space is formed between the inner peripheral surface of the cylindrical member 40 and the outer peripheral surface of the conical portion 20c in the cylindrical member drawing step (see FIG. 7). In the space, the rubber film portions 33 and 34 that have become surplus can be received.
  • the vibration isolator 100 is assembled by an outer cylinder drawing step (see FIG. 6) for drawing the outer cylinder member 20 (first outer cylinder portion 21 and second outer cylinder portion 22), and a rubber base 30 (first rubber portion). 31 and the second rubber portion 32) in the direction of the axis O, a rubber base compression step (see FIG. 7), a cylindrical member drawing step for drawing the cylindrical member 40 (see FIG. 7), and a cylindrical member This is performed by sequentially performing a bending step (see FIG. 8) for bending the end portions of the 40 axis O directions.
  • FIG. 6A is a cross-sectional view of the vulcanized molded body A in a state before the drawing process is performed in the outer cylinder drawing process
  • FIG. 6B is a diagram after the drawing process is performed in the outer cylinder drawing process. It is sectional drawing of the vulcanization molding A in the state.
  • the drawing die for drawing the outer cylinder member 20 (the first outer cylinder portion 21 and the second outer cylinder portion 22) is an annular die and an annular shape that holds and guides the annular die from the outer peripheral side. (All are not shown).
  • the die is divided into a plurality of die pieces in the circumferential direction, and a tapered surface is formed on the outer peripheral surface.
  • the holder has a tapered surface corresponding to the tapered surface of the die formed on the inner periphery.
  • the die is held by a holder installed on the table of the press device, the vulcanized molded body A is set on the inner peripheral side of the die, and then the die is pressed against the holder by the pressing force of the press device.
  • each die piece is guided radially by the taper surface of the inner peripheral surface of the holder to the axial center O of the vulcanized molded body A toward the axis O. Are moved closer to each other and the diameter of the die is reduced.
  • the cylindrical portion 20d of the first outer cylinder portion 21 and the second outer cylinder portion 22 is reduced in diameter from the outer diameter D2 to the outer diameter D4 (D4 ⁇ D2). Thereby, preliminary compression in the radial direction (direction perpendicular to the axis O) can be applied to the rubber base 30 (the first rubber portion 31 and the second rubber portion 32).
  • the conical portion 20c and the cylindrical portion 20d are drawn and deformed so as to be bent radially inward with the curved portion 20b as a fulcrum. Is curved.
  • the shape of the concave inner peripheral surface IS can be brought close to a concave spherical surface that is concentric with the convex spherical surface of the bulging portion 12 of the inner cylinder member 10.
  • the outer diameter D2 is 53.6 mm and the outer diameter D4 is 52.0 mm. Further, the outer diameter D4 is made smaller than the outer diameter D3 (see FIG. 5) of the rubber film portions 33 and 34 (D4 ⁇ D3). That is, in the vulcanized molded body A shown in FIG. 6B after the outer cylinder drawing process is performed, the rubber film portions 33 and 34 have a larger diameter than the cylindrical portion 20d, and the rubber film portions 33 and 34 are formed.
  • the outer peripheral surface is disposed radially outward (a position spaced apart from the axis O) from the outer peripheral surface of the cylindrical portion 20d.
  • FIG. 7A is a cross-sectional view of the vulcanized molded body A and the cylindrical member 40 in a state where the rubber base 30 is compressed in the axis O direction in the rubber base compression step
  • FIG. It is sectional drawing of the vulcanization molded object A and the cylindrical member 40 in the state after the drawing process was given to the cylindrical member 40 in the member drawing process.
  • the vulcanized molded body A is inserted into the cylindrical member 40 along the direction of the axis O, and the vulcanized molded body A is inserted into the cylindrical member 40. Install on the circumference side. Subsequently, the first outer cylinder portion 21 and the second outer cylinder portion 22 of the vulcanized molded body A are divided into the split surfaces of both the outer cylinder portions 21 and 22 (the end surface in the axis O direction of the cylindrical portion 20d, FIG. 3B lower). Side surface) Relatively move in the direction of axis O so that they are close to each other.
  • the annular part 20a of the first outer cylinder part 21 and the annular part 20a of the second outer cylinder part 22 are sandwiched between the end surfaces of the pair of cylindrical jigs J, and the upper jig J is placed on the lower side. Push down toward the jig J by a predetermined amount in the direction of the axis O. In the present embodiment, as shown in FIG. 7A, a predetermined gap is formed between the divided surface of the first outer cylinder part 21 and the divided surface of the second outer cylinder part 22. The pair of jigs J is fixed.
  • the drawing of the tubular member 40 by the tubular member drawing step is performed with the pair of jigs J fixed (that is, the rubber base 30 (the first rubber portion 31 and the second rubber member 30).
  • the rubber part 32) is carried out while maintaining the state compressed in the direction of the axis O).
  • the configuration of the drawing die for drawing the cylindrical member 40 and the operation thereof are the same as those of the drawing die used in the outer cylinder drawing step, and the description thereof will be omitted.
  • the drawing of the cylindrical member 40 is performed by pressing the cylindrical portion 20d of the first outer cylindrical portion 21 and the second outer cylindrical portion 22 inward in the radial direction by the inner peripheral surface of the cylindrical member 40.
  • a predetermined fastening allowance (in the present embodiment, about 0.01 mm to 0.02 mm in radius) is given to the portion 20d, so that the first outer cylinder portion 21 and the second outer cylinder portion 22 are placed in the cylindrical member 40.
  • the purpose is to hold on.
  • the tightening margin is set to a small value, and drawing can be performed by the operation of the drawing die with a relatively low pressure, so that the press device can be downsized.
  • the inner peripheral surface of the tubular member 40 and the rubber film portions 33 and 34 are brought into close contact with each other by the elastic recovery force of the compressed rubber film portions 33 and 34.
  • FIG. 8A is a cross-sectional view of the vulcanized molded body A and the cylindrical member 40 in a state before the bending process is performed in the bending process
  • FIG. 8B is a diagram illustrating the bending process performed in the bending process. It is sectional drawing of the vulcanization molded object A and the cylindrical member 40 in the state after being done.
  • the caulking die for bending the end of the cylindrical member 40 in the axis O direction includes a pair of annular dies and a holder that holds the pair of dies so as to be movable in the axis O direction.
  • a curved concave portion which is a concave portion in which a cross-sectional shape cut along a plane including the axis O curves in a circular arc shape, is recessed at a portion where the end portion in the axial O direction of the cylindrical member 40 abuts.
  • the cylindrical member 40 has been subjected to the drawing process in the cylindrical member drawing step described above (see FIG. 7), so that the pair of jigs J are removed as shown in FIG. Even in this state, the first outer cylinder part 21 and the second outer cylinder part 22 can be held on the inner peripheral side.
  • the first outer cylinder portion 21 and the second outer cylinder portion 22 and the inner peripheral surface of the cylindrical member 40 are in direct contact (that is, the metal materials are in contact with each other), It is difficult to ensure the coefficient of friction. Further, since the spring back after the drawing process is enlarged by the cylindrical member 40 located on the outer peripheral side, it is difficult to secure the tightening allowance. Therefore, the first outer cylinder portion 21 and the second outer cylinder portion 22 may come out from the cylindrical member 40 in the axis O direction.
  • rubber film portions 33 and 34 made of a rubber-like elastic body are covered on part of the outer peripheral surfaces of the first outer cylinder portion 21 and the second outer cylinder portion 22.
  • the friction coefficient can be secured by the intervention of the rubber film portion.
  • the rubber film portions 33 and 34 are interposed, so that the shortage of the tightening allowance due to the spring back of the tubular member 40 can be compensated by the compression force due to the elastic recovery of the rubber film portions 33 and 34. Therefore, it is possible to secure a holding force against the withdrawal in the axis O direction, and to prevent the first outer cylinder portion 21 and the second outer cylinder portion 22 from coming out of the cylindrical member 40 in the axis O direction.
  • the caulking die used in the bending process does not need to consider the relationship with the jig J (that is, the bending process can be performed with the jig J removed). It can be simplified.
  • first outer cylinder portion 21 and the second outer cylinder portion 22 are slightly shifted in the direction of the axis O (moved in the direction of withdrawal) by removing the pair of jigs J,
  • the bent portions are used to push back the first outer cylindrical portion 21 and the second outer cylindrical portion 22 to define the position in the axial O direction. (Can be placed at an appropriate position).
  • the cylindrical member 40 is subjected to drawing processing, and the inner peripheral surface thereof is in close contact with the first outer cylinder portion 21 and the second outer cylinder portion 22 and the rubber film portions 33 and 34, thereby preventing vibration.
  • the vulcanized molded body A can be prevented from rattling in the radial direction (perpendicular to the axis O) on the inner peripheral side of the tubular member 40.
  • the rubber base 30 (the first rubber portion 31 and the second rubber portion 32) includes the outer peripheral surface of the bulging portion 12 of the inner cylinder member 10 and the outer cylinder member 20 ( Since the connection is made between the concave inner peripheral surface IS of the first outer cylinder portion 21 and the second outer cylinder portion 22) (that is, the concentric concave spherical surface surrounding the bulging portion 12 of the inner cylinder member 10).
  • the rubber base 30 In response to the input of the directional displacement, the rubber base 30 can be deformed mainly in the shearing direction. Therefore, the spring constant in the twisting direction of the vibration isolator 100 can be reduced.
  • the division surface of the first outer cylinder portion 21 and the division surface of the second outer cylinder portion 22 are separated in the axis O direction by a vulcanization process (with a predetermined interval).
  • the first rubber portion 31 and the second rubber portion 32 are vulcanized (see FIG. 6A).
  • the vulcanized molded body A vulcanized and molded in such a form has a rubber base compression step (see FIGS. 6B and 7A) and a cylindrical member squeezing step (FIGS. 7A and 7). (B)) and the bending process (see FIGS.
  • the first outer cylinder portion 21 and the second outer cylinder portion 22 are relatively moved in the axis O direction and divided. It is held and fixed by the cylindrical member 40 in a state where the surfaces are close to each other. Thereby, preliminary compression in the direction of the axis O can be applied to the first rubber part 31 and the second rubber part 32.
  • the first outer cylinder part 21 and the second outer cylinder part 22 that are relatively moved in the direction of the axis O can be provided only by adopting a structure in which the cylindrical member 40 holds and fixes the first outer cylinder part 21 and the second outer cylinder part 22.
  • the spring constant in the direction of the axis O can be increased, and the durability against the displacement in the direction of the axis O can be improved.
  • the vulcanized molded body A has the divided surface of the first outer cylinder part 21 and the divided surface of the second outer cylinder part 22 separated in the axis O direction.
  • Vulcanization molding is performed in a state (with a predetermined interval) (see FIG. 6A), and after the vulcanization molding, the first outer cylinder portion 21 and the second outer cylinder portion 22 are relatively moved in the direction of the axis O. (Refer to FIG. 6B and FIG. 7A) Since it is configured to be held and fixed by the cylindrical member 40 (see FIG. 8B), it is between the first outer cylinder portion 21 and the second outer cylinder portion 22.
  • the relative distance in the axis O direction (that is, the separation distance in the axis O direction between the split surfaces when held and fixed to the cylindrical member 40 (the vertical distance in FIG. 8B)) can be adjusted. Thereby, since the amount of preliminary compression in the direction of the axis O applied to the first rubber part 31 and the second rubber part 32 can be adjusted, the value of the spring constant in the direction of the axis O can be increased or decreased.
  • FIG. 9A is a cross-sectional view of the vulcanized molded body B constituting the vibration isolator 200 in the second embodiment
  • FIG. 9B is a cross section of the vibration isolator 200 in the second embodiment.
  • FIG. 9A shows the vulcanized molded body B in a state before the outer cylinder member 20 is drawn by the outer cylinder drawing step.
  • the vulcanized molded body B in the second embodiment has other configurations except that the configuration (formation range) of the rubber film portions 233 and 234 is different from the configuration of the rubber film portions 33 and 34 in the first embodiment. Is the same as the vulcanized molded product A in the first embodiment.
  • the method for manufacturing the vibration isolator 200 is the same as that for the vibration isolator 100. Therefore, these descriptions are omitted.
  • the rubber film portions 233 and 234 in the second embodiment are covered over the entire outer peripheral surfaces of the first outer cylinder portion 21 and the second outer cylinder portion 22. That is, the covering range of the rubber film portions 33 and 34 in the first embodiment is a range extending from the annular portion 20a to the middle of the conical portion 20c (see FIG. 5B). The range is extended, and the rubber film portions 233 and 234 are also covered on the outer peripheral surface of the conical portion 20c and the outer peripheral surface of the cylindrical portion 20d.
  • the rubber film parts 233 and 234 form a circular outer peripheral surface with the axis O as the center, as in the case of the first embodiment.
  • the outer diameters of these rubber film parts 233 and 234 are made smaller than the inner diameter of the tubular member 40.
  • the contact area with the inner peripheral surface of the tubular member 40 can be increased by expanding the covering range of the rubber film portions 233 and 234. Accordingly, the holding force of the vulcanized molded body B by the cylindrical member 40 can be secured, and therefore, after the cylindrical member 40 is drawn by the cylindrical member drawing process, the process proceeds to the bending process (see FIG. 8), it is possible to more reliably suppress the vulcanized molded body B from coming out in the direction of the axis O from the inner peripheral side of the tubular member 40.
  • FIG. 10A is a cross-sectional view of the vulcanized molded body C constituting the vibration isolator 300 in the third embodiment
  • FIG. 10B is a cross section of the vibration isolator 300 in the third embodiment.
  • the configuration of the first outer cylinder part 321 and the second outer cylinder part 322 is the same as that of the first outer cylinder part 21 and the second outer cylinder part 22 in the first embodiment. Except for the differences from the configuration, the other configurations are the same as those of the vulcanized molded body A in the first embodiment. However, the rubber film portions 233 and 234 are the same as the vulcanized molded body B in the second embodiment.
  • the manufacturing method of the vibration isolator 300 is the same as that of the vibration isolator 100 except that the outer cylinder drawing step (see FIG. 6, drawing of the outer cylinder member 320) is omitted. . Therefore, these descriptions are omitted.
  • the outer cylinder member 320 in the third embodiment is a solid member (a member made of aluminum die casting in the present embodiment) formed by casting, and on the inner peripheral side.
  • a concave inner peripheral surface IS formed as a concave spherical surface is provided, and is divided into a first outer cylindrical portion 321 and a second outer cylindrical portion 322 at the central portion in the axis O direction of the concave inner peripheral surface IS.
  • the first outer cylinder part 321 and the second outer cylinder part 322 are the same member (configuration).
  • the divided surface of the first outer cylinder portion 321 and the divided surface of the second outer cylinder portion 322 are spaced apart in the axis O direction as in the case of the vulcanized molded body A in the first embodiment. Then, it is vulcanized and formed at a predetermined interval.
  • the concave inner circumferential surface IS is formed so that the first outer cylinder part 321 and the second outer cylinder part 322 are close to each other in the divided surfaces of the outer cylinder parts 321 and 322 in the rubber base compression process (see FIG. 7). Further, by being relatively moved in the direction of the axis O, a convex spherical surface is formed concentrically with the convex spherical surface in the bulging portion 12 of the inner cylinder member 10.
  • the rubber base 30 (the first rubber part 31 and the second rubber part 32) can be mainly deformed in the shearing direction in response to the input of the displacement in the twisting direction.
  • the spring constant at can be reduced.
  • first outer cylinder part 321 and the second outer cylinder part 322 are relatively moved in the direction of the axis O and the divided surfaces are brought close to each other, the first outer cylinder part 321 and the second outer cylinder part 322 are held and fixed by the cylindrical member 40. Preliminary compression in the direction of the axis O can be applied to the part 31 and the second rubber part 32.
  • the outer cylinder member 320 (the first outer cylinder portion 321 and the second outer cylinder portion 322) has a shape that cannot be subjected to drawing processing (diameter reduction processing)
  • the first rubber portion 31 and the second rubber portion 31 are provided.
  • the spring constant in the axis O direction can be increased, and durability against displacement in the axis O direction can be improved.
  • FIG. 11A is a top view of the vibration isolator 400 according to the fourth embodiment
  • FIG. 11B is a cross-sectional view of the vibration isolator 400 taken along the line XIb-XIb in FIG. .
  • symbol is attached
  • the inner cylinder member 410 is a member formed in a rotationally symmetric shape having an axis O as a symmetric axis (rotation center), and a cylindrical shape in which an insertion hole is formed through the axis O.
  • a shaft portion 411 and a spherical bulging portion 412 that bulges radially outward from the outer peripheral surface of the shaft portion 411 are formed integrally from a metal material.
  • the bulging portion 412 is disposed in the center of the shaft portion 411 in the axis O direction (the center in the vertical direction in FIG. 11B), and the center of the convex spherical surface of the bulging portion 412 is on the axis O of the shaft portion 411. To position.
  • the outer cylinder member 420 is divided into a first outer cylinder part 421 and a second outer cylinder part 422 at the center in the axis O direction.
  • the detailed structure of the outer cylinder member 420 is demonstrated.
  • the 1st outer cylinder part 421 and the 2nd outer cylinder part 422 are the same members (structure), and are only members from which a name differs, the 1st outer cylinder part 421 is demonstrated below, The description of the second outer cylinder portion 422 is omitted.
  • FIG. 12A is a top view of the first outer cylinder portion 421, and FIG. 12B is a cross-sectional view of the first outer cylinder portion 421 taken along the line XIIb-XIIb in FIG.
  • FIG. 12 shows a state before the drawing process (see FIG. 14) in the outer cylinder drawing process.
  • the first outer cylinder portion 421 is a member obtained by forming a plate-like metal material (steel material in the present embodiment) having a constant plate thickness into a container shape by pressing, It is formed in rotational symmetry with the axis O as the axis of symmetry (rotation center).
  • groove for enabling a drawing process like the conventional product with respect to the 1st outer cylinder part 421, and the effect are the 1st outer cylinder parts 21 in 1st Embodiment. Since this is the same, the description thereof is omitted.
  • the first outer cylinder portion 421 is located on one end side in the axis O direction (upper side in FIG. 12B), and has a cylindrical portion having a substantially constant diameter (inner diameter and outer diameter), and the cylindrical portion. And the diameter is gradually enlarged toward the dividing surface (lower end surface in FIG. 12 (b)) and the cross-sectional shape is curved in an arc shape.
  • the first outer cylinder portion 421 has an inner diameter dimension of the cylindrical portion (that is, an opening at the end of the first outer cylinder portion 421 in the direction of the axis O in the state before being drawn by an outer cylinder drawing step described later).
  • the minimum inner diameter dimension in FIG. 12B (upper side) is made smaller than the maximum outer diameter dimension in the bulging portion 412 of the inner cylinder member 410 (see FIG. 13B).
  • a plurality of (four in the present embodiment) through-holes 421a are formed at equal intervals in the circumferential direction at a portion where the cross-sectional shape is curved in an arc shape.
  • the inner peripheral surface of the portion curved in an arc shape is a concave inner peripheral surface IS surrounding the bulging portion 412 of the inner cylinder member 410.
  • the concave inner circumferential surface IS is a concentric concave spherical surface that is concentric with the convex spherical surface in the bulging portion 412 of the inner cylindrical member 410 by drawing (drawing deformation) in the outer cylinder drawing step (see FIG. 14). To be close to.
  • the cylindrical member 440 has the same configuration as that of the cylindrical member 40 in the first embodiment except that the formation of the chamfered surface 40a is omitted (see FIGS. 4 and 15A). Is omitted.
  • FIG. 11 the cylindrical member 440 after drawing by the cylindrical member drawing process (refer FIG. 15) is illustrated.
  • FIG. 13A is a side view of the vulcanized molded body D
  • FIG. 13B is a cross-sectional view of the vulcanized molded body D along the line XIIIb-XIIIb of FIG. 13A.
  • the vulcanized molded body D includes an inner cylinder member 410 and an outer cylinder member 420 (first outer cylinder part 421 and second outer cylinder part 422), as in the case of the first embodiment.
  • the rubber base 430 (the first rubber portion 431 and the second rubber portion 432) is vulcanized to form the outer peripheral surface of the inner cylinder member 410 and the outer cylinder member 420 (first outer cylinder).
  • the part 421 and the inner peripheral surface of the second outer cylinder part 422) are connected by a rubber base 430 to be manufactured.
  • the vulcanization mold is provided with an intermediate mold that is located in the center of the inner cylinder member 410 in the axis O direction (the vertical direction in FIG. 13 (b)) and has an annular shape after the mold clamping.
  • the inner peripheral front end edge of the middle mold faces the outer circumferential surface (top) of the bulging portion 412 with a predetermined interval, and the upper and lower surfaces of the middle mold are the first outer cylinder portion 421 and the second outer cylinder portion 422. Support the split surface.
  • type of this division surface is intermittently arrange
  • the first outer cylinder part 421 and the second outer cylinder part 422 are installed in the vulcanization mold with their divided surfaces spaced apart in the direction of the axis O, and the rubber base 430 is the first rubber.
  • the part 431 and the second rubber part 432 are vulcanized and molded into two parts in the direction of the axis O. That is, the vulcanized molded body D has a space between the dividing surface of the first rubber portion 431 and the dividing surface of the second rubber portion 432 (and the dividing surface of the first outer cylinder portion 421 and the division of the second outer cylinder portion 422).
  • a space SP having a shape corresponding to the middle size in the present embodiment, a U-shaped cross section
  • the first rubber portion 431 is a portion that connects the outer peripheral surface of the bulging portion 412 of the inner cylinder member 410 and the concave inner peripheral surface IS of the first outer cylinder portion 421, and the second rubber portion 432 is the inner cylinder member 410.
  • the outer peripheral surface of the bulging portion 412 and the concave inner peripheral surface IS in the second outer cylinder portion 422 are connected to each other.
  • the rubber base 430 includes rubber film parts 431a and 431b that are provided on the outer peripheral surface of the first outer cylinder part 421.
  • the rubber film portions 431a and 431b are two belt-like films that are continuous in the circumferential direction.
  • the rubber film portion 431a is passed through the through hole 421a of the first outer cylinder portion 421, and the rubber film portion 431b is the first outer cylinder.
  • the first rubber portions 431 are connected to each other through the dividing surface of the portion 421.
  • the rubber film portion 431b employs a configuration that continues to the first rubber portion 431 via the dividing surface of the first outer cylinder portion 421, in addition to the through hole 421a, a rubber film is further provided. There is no need to form a through hole in the first outer cylinder part 421 for connecting the part 431b to the first rubber part 431. Therefore, since formation of a through-hole can be suppressed to the minimum, the rigidity of the 1st outer cylinder part 421 can be ensured by that much, and the durable improvement can be aimed at.
  • the covering range of the rubber film portions 431a and 431b is partial, and there is a rubber film portion in the region above the rubber film portion 431a (upper side in FIG. 13B) and between the rubber film portions 431a and 431b. 431a and 431b are not covered (that is, the outer peripheral surface of the first outer cylinder portion 421 is exposed).
  • the outer peripheral surface of the first outer cylinder part 421 can be directly pressed by a drawing die (not shown) without using the rubber film parts 431a and 431b. Drawing can be performed with high accuracy.
  • the rubber base 430 includes rubber film portions 432a and 432b that are covered on the outer peripheral surface of the second outer cylinder portion 422.
  • the rubber film portions 432a and 432b are configured in the same manner as the rubber film portions 431a and 431b, respectively, and thus description thereof is omitted.
  • FIG. 14A is a cross-sectional view of the vulcanized molded body D in a state before the drawing process is performed in the outer cylinder drawing process
  • FIG. 14B is a diagram after the drawing process is performed in the outer cylinder drawing process. It is sectional drawing of the vulcanization molding D in the state.
  • the first outer cylinder part 421 and the second outer cylinder part 422 are reduced in diameter from the outer diameter D401 to the outer diameter D402 (D402 ⁇ D401).
  • preliminary compression in the radial direction perpendicular to the axis O
  • the configuration and operation of the drawing die are the same as in the case of the first embodiment, and a description thereof will be omitted.
  • FIG. 15A is a cross-sectional view of the vulcanized molded body D and the cylindrical body 440 in a state before the cylindrical member 440 is drawn in the cylindrical member drawing process
  • FIG. FIG. 5 is a cross-sectional view of the vibration isolator 400 in a state after the cylindrical member 440 has been subjected to drawing processing in the cylindrical member drawing step.
  • the vulcanized molded body D is inserted into the tubular member 440 along the axis O direction, and the vulcanized molded body D is inserted.
  • the cylindrical member 440 is drawn in the cylindrical member drawing step (FIG. 15B).
  • the cylindrical member drawing process two-stage drawing is performed on the cylindrical member 440. That is, the entire cylindrical member 440 is reduced from the outer diameter D403 to the outer diameter D404 by the first stage drawing (D404 ⁇ D403).
  • the cylindrical member 440 has the first outer cylinder portion 421 and the second outer cylinder at the one end side in the axis O direction and the other end side in the axis O direction excluding the central portion in the axis O direction.
  • the diameter of the portion 422 is reduced to a shape close to the outer peripheral surface of the concave inner peripheral surface IS of the concave inner peripheral surface IS (that is, a portion where the cross-sectional shape is curved in an arc shape) (inward in the radial direction in a cross-sectional view). Bend).
  • the tubular member 440 is mounted on the vulcanized molded body D, and the assembly thereof (manufacture of the vibration isolator 400) is completed.
  • first stage drawing and the second stage drawing may be performed by different drawing dies, or may be performed by the same drawing dies.
  • the first stage drawing and the second stage drawing may proceed simultaneously.
  • the first outer cylindrical portion 421 and the second outer cylindrical portion 422 are pressed radially inward by the inner peripheral surface of the cylindrical member 440, and the first outer cylindrical portion 421 and the second outer cylindrical portion 422 are pressed.
  • a predetermined fastening allowance (in the present embodiment, a radius of about 0.01 mm to 0.02 mm) is given to the cylindrical portion 422.
  • the 1st outer cylinder part 421 and the 2nd outer cylinder part 422 can be firmly hold
  • the inner peripheral surface of the tubular member 440 and the rubber film portions 431a to 432b are brought into close contact with each other by the elastic recovery force of the compressed rubber film portions 431a to 432b.
  • the inner diameter of the cylindrical member 440 is the outer cylinder member 420 (first outer cylinder) after the drawing process (see FIG. 14B) by the outer cylinder drawing process.
  • Part 421 and second outer cylinder part 422) are made larger than the outer diameter D402.
  • the inner diameter of the tubular member 440 is made larger than the maximum outer diameter of the vulcanized molded body D (the outer diameter on the outer peripheral surface of the rubber film portions 431b and 432b).
  • the inner diameter of the cylindrical member 440 is larger than the outer diameter D402 of the outer cylindrical member 420 and smaller than the maximum outer diameter of the vulcanized molded body D (the diameter on the outer peripheral surface of the rubber film portions 431b and 432b).
  • the rubber film portions 431b and 432b may be press-fitted while being elastically deformed. The processing amount of the drawing process applied to the cylindrical member 440 can be suppressed, and the yield can be improved and the processing cost can be reduced.
  • the friction coefficient is ensured as in the case of the first embodiment, and the shortage of the fastening allowance due to the spring back of the cylindrical member 440 can be compensated by the compressive force due to the elastic recovery of the rubber film portions 431a to 432b. Therefore, even if the dividing surface of the first outer cylinder portion 421 and the dividing surface of the second outer cylinder portion 422 are separated from each other, a holding force against movement in the axis O direction can be ensured.
  • the rubber base compression step is omitted, and the divided surface of the first rubber part 431 and the divided surface of the second rubber part 432 are separated from each other in the axis O direction.
  • the first outer cylinder portion 421 and the second outer cylinder in a state in which the space SP is formed between them (that is, the first rubber portion 431 and the second rubber portion 432 are not preliminarily compressed in the direction of the axis O).
  • the portion 422 is held and fixed by the cylindrical member 440.
  • the first rubber portion 431 and the first rubber portion 431 in the twisting direction corresponding to the space SP.
  • the compression component of the first rubber part 431 and the second rubber part 432 in the axis O direction while suppressing the shear component of the two rubber parts 432 and the compression component of the first rubber part 431 and the second rubber part 432 in the direction perpendicular to the axis O Can be secured.
  • the spring constant in the axis O direction can be increased while the spring constant in the twisting direction and the spring constant in the direction perpendicular to the axis O are reduced.
  • the maximum outer diameter dimension (outer diameter at the central portion in the axis O direction) of the bulging portion 412 of the inner cylinder member 410 is the first outer cylinder portion 421 and the second outer cylinder portion 422. Is larger than the minimum inner diameter dimension (inner diameter dimension of the cylindrical portion) at the end opening in the axis O direction, so that the pressure receiving area is increased with respect to the displacement in the axis O direction, and the first rubber section 431 and The compression component of the second rubber part 432 can be ensured.
  • the effect of increasing the spring constant in the axis O direction can be made remarkable while reducing the spring constant in the twisting direction and the spring constant in the direction perpendicular to the axis O.
  • the relationship between the maximum outer diameter of the bulging portion 412 and the minimum inner diameter of the outer cylindrical member 420 is between the bulging portion 412 of the inner cylindrical member 410 and the concave inner peripheral surface IS of the outer cylindrical member 420.
  • the rubber base in which the rubber base is continuously disposed (that is, having no space SP)
  • the rubber base shear component in the twisting direction and the direction perpendicular to the base O are simultaneously with the compressive component of the rubber base in the axial O direction. Since the compression component of the rubber base is also increased, it is impossible to employ the compression component, and the space SP is formed between the divided surface of the first rubber portion 431 and the divided surface of the second rubber portion 432 as in the vibration isolator 400. Can be adopted for the first time.
  • the present embodiment omits the rubber base compression step (see FIG. 7) compared to the first embodiment, and pre-compresses the first rubber portion 431 and the second rubber portion 432 in the axis O direction.
  • the cylindrical member squeezing step see FIG. 15
  • the first rubber portion 431 and the cylindrical member 440 are deformed on one end side in the axis O direction and the other end side in the axis O direction.
  • the second rubber portion 432 is allowed to be compressed and deformed in the axis O direction. That is, it is sufficient that a space SP is secured between the dividing surface of the first rubber part 431 and the dividing surface of the second rubber part 432.
  • FIG. 16 is a cross-sectional view of a vibration isolator 500 according to the fifth embodiment.
  • the vibration isolator 500 according to the fifth embodiment is the same as that according to the fourth embodiment except that the configuration of the inner cylinder member 510 is different from that of the inner cylinder member 410 according to the fourth embodiment. Identical to device 400. Therefore, description of these same parts is omitted.
  • the inner cylinder member 510 of the vibration isolator 500 includes a cylindrical shaft portion 411 and a spherical expansion that bulges outward from the shaft portion 411 in the radial direction.
  • the bulging part 512 is made of a resin material. That is, the shaft portion 411 and the bulging portion 512 are configured separately from different materials. Also in the vibration isolator 500 that employs the inner cylinder member 510 configured as described above, the same operational effects as those of the vibration isolator 400 in the fourth embodiment can be achieved.
  • a vibration isolator 600 according to the sixth embodiment will be described with reference to FIGS. 17 and 18.
  • the first embodiment only the outer cylinder member 20 is divided into two at the center portion in the axis O direction.
  • the inner cylinder member 610 is also the center in the axis O direction. Divided into two parts.
  • symbol is attached
  • the first inner cylinder part 610 a, the first outer cylinder part 621, and the first rubber part 631 are the same members (configuration) as the second inner cylinder part 610 b, the second outer cylinder part 622, and the second rubber part 632. Yes, since only the names are different members, only the former will be described below, and description of the latter will be omitted.
  • FIG. 17 is a cross-sectional view of a vulcanized molded body E according to the sixth embodiment.
  • the inner cylinder member 610 in the sixth embodiment is the first inner cylinder part at the center in the axis O direction of the inner cylinder member 410 (see FIG. 13B) in the fourth embodiment.
  • 610a and the second inner cylinder portion 610b are formed into two divided shapes. That is, the inner cylinder member 610 has a cylindrical shaft portion 411 and a radial direction from the shaft portion 411 by bringing the divided surfaces of the first inner cylinder portion 610a and the second inner cylinder portion 610b into contact with each other. It is formed in the same shape as the inner cylinder member 410 having a spherical bulging portion 412 that bulges outward (see FIG. 18A).
  • the outer cylinder member 620 (first outer cylinder part 621 and second outer cylinder part 622) in the sixth embodiment is the same as the outer cylinder member 420 (first outer cylinder part 421 and second outer cylinder part in the fourth embodiment). 422) (see FIG. 13 (b)), the cross-sectional shape is formed into a shape extending in the direction of the axis O at the part where the section is curved in an arc shape.
  • the first outer cylinder portion 621 is located on one end side in the axis O direction (upper side in FIG. 17), and is connected to a cylindrical portion having a substantially constant diameter and the cylindrical portion, and a split surface ( The cross-sectional shape in which the diameter is gradually increased toward the lower end surface in FIG.
  • the vulcanized molded body E is obtained by vulcanizing and molding the first rubber portion 631 in a vulcanization mold in which the first inner cylinder portion 610a and the first outer cylinder portion 621 are installed, and expanding the first inner cylinder portion 610a. It is manufactured by connecting the outer peripheral surface of the protruding portion 412 and the concave inner peripheral surface IS of the first outer cylinder portion 621 with a first rubber portion 631. That is, the vulcanized molded body E has the same shape (configuration) in the upper half and the lower half shown in FIG.
  • the divided surface of the first inner cylinder portion 610a and the divided surface of the first outer cylinder portion 621 are arranged at the same position in the direction of the axis O (that is, both divided surfaces are the same).
  • the first rubber portion 631 is positioned so as to recede in the axis O direction from the dividing surface of the first inner cylinder portion 610a and the dividing surface of the first outer cylinder portion 621. It is formed.
  • the first rubber portion 631 includes the first inner cylinder portion 610a between the outer peripheral surface of the bulging portion 412 of the first inner cylinder portion 610a and the concave inner peripheral surface IS of the first outer cylinder portion 621.
  • the split surface side of the 1st outer cylinder part 621 is open
  • FIG. 18A is a cross-sectional view of the vulcanized molded body E that has been subjected to drawing in the outer cylinder drawing step and the cylindrical member 440 in a state before drawing in the cylindrical member drawing step.
  • FIG. 18B is a cross-sectional view of the vibration isolator 600 in a state after the cylindrical member 440 has been subjected to drawing processing in the cylindrical member drawing step.
  • the vulcanized molded body E was subjected to drawing processing on the first outer cylinder portion 621 and the second outer cylinder portion 622 in the outer cylinder drawing step, and the outer diameter was reduced. Then, it inserts in the cylindrical member 440 along the axis
  • the divided surface of the first inner cylinder part 610a and the divided surface of the second inner cylinder part 610b are brought into contact with each other, and the inner cylinder member 610 is moved by a jig (not shown).
  • Drawing is applied to the outer cylindrical member 620 or the cylindrical member 440 in a state where the pressure is held from both sides in the axis O direction.
  • the first outer cylinder part 621 and the second outer cylinder part 622 are also in a state in which the divided surfaces are in contact with each other.
  • the first outer cylinder part 621 and the second outer cylinder part 622 can be held and fixed by the cylindrical member 440 in a state where the part 610b and the split surface of the second outer cylinder part 622 are in contact with each other. Therefore, it is possible to avoid the preliminary compression in the direction of the axis O being applied to the first rubber portion 631 and the second rubber portion 632.
  • a space SP can be formed between the dividing surface of the first rubber portion 631 and the dividing surface of the second rubber portion 632, and the space SP reduces the spring constant in the twisting direction and the spring constant in the direction perpendicular to the axis O.
  • the spring constant in the direction of the axis O can be increased.
  • the space SP is set between the divided surface of the first rubber portion 631 and the divided surface of the second rubber portion 632, and the first outer cylinder portion 621 is divided. Since the surface and the split surface of the second outer cylinder part 622 can be kept in contact with each other, the first outer cylinder part 621 and the second outer cylinder part 622 are separated from each other inside the cylindrical member 440. It is possible to restrict movement in the direction in which the surfaces are brought close to each other.
  • the first outer cylinder portion 421 and the second outer cylinder are provided on the one end side in the axis O direction and the other end side in the axis O direction excluding the central portion in the axis O direction of the cylindrical member 440.
  • the diameter of the portion 422 is reduced to a shape close to the outer peripheral surface of the concave inner peripheral surface IS of the concave inner peripheral surface IS (that is, a portion where the cross-sectional shape is curved in an arc shape) (inward in the radial direction in a cross-sectional view). Therefore, the movement of the first outer cylinder part 621 and the second outer cylinder part 622 in the direction in which the divided surfaces are separated from each other can be restricted with respect to the cylindrical member 440.
  • the movement is restricted by the contact of the divided surfaces, and the divided surfaces are also made.
  • the movement can be restricted by the portion of the cylindrical member 440 on one end side in the axis O direction or the other end side in the axis O direction.
  • FIG. 19 is a cross-sectional view of a vibration isolator 700 according to the seventh embodiment.
  • the stopper protruding portion 713 protrudes radially outward from the center portion in the axis O direction of the bulging portion 412 on the inner cylinder member 710.
  • the stopper projecting portion 713 is formed continuously in the circumferential direction, and its projecting tip surface is formed as an outer peripheral surface of a cylinder centering on the axis O (that is, the projecting tip surface is an axis O in the cross-sectional view shown in FIG. 19). Formed in a straight line parallel to the
  • the outer cylinder member 720 (first outer cylinder part 721 and second outer cylinder part 722) is different from the outer cylinder member 420 (first outer cylinder part 421 and second outer cylinder part 422) in the fourth embodiment (see FIG. 13 (b)), the sectional shape of the portion whose cross-sectional shape is curved in an arc shape is formed in a shape shortened in the axis O direction. Therefore, the dimension of the space SP in the axis O direction is increased with respect to the vibration isolator 400 according to the fourth embodiment.
  • a separation dimension along the axis O direction between the dividing surface of the first outer cylinder portion 721 and the dividing surface of the second outer cylinder portion 722 is set to a size that allows a stopper rubber portion 735 to be described later to pass.
  • the rubber base 730 includes a stopper rubber portion 735 that covers the entire stopper protruding portion 713, and the stopper rubber portion 735 includes the concave inner peripheral surface and the inner cylinder of the first outer cylinder portion 721 and the second outer cylinder portion 722.
  • the first rubber portion 731 and the second rubber portion 732 are connected to the outer peripheral surface of the bulging portion 412 of the member 710, respectively.
  • the stopper rubber portion 735 has a thickness dimension (dimension in the left-right direction in FIG. 19) such that a predetermined gap is formed in the radial direction between the outer peripheral surface and the inner peripheral surface of the cylindrical member 440.
  • the stopper protruding portion 713 is inserted into the tubular member 440 via the stopper rubber portion 735. It is possible to exert a stopper function for restricting the deformation of the rubber base body 730 due to the input displacement to a predetermined amount. Thereby, the durability of the rubber base 730 can be improved.
  • the portions for performing the stopper function are divided between the divided surface of the first rubber portion 731 and the divided surface of the second rubber portion 732. Since the space can be accommodated in the space SP formed between them, the durability of the rubber base 730 can be improved by exhibiting the stopper function, and the space SP that becomes a dead space can be effectively used to reduce the size of the vibration isolator 700. Can be achieved.
  • a part or all of the vibration isolator in each of the above embodiments is combined with a part or all of the vibration isolator in the other embodiment, or a part or all of the vibration isolator in the other embodiment.
  • a vibration isolator may be configured.
  • the bulging portion 412 of the inner cylinder member 710 in the seventh embodiment is replaced with the bulging portion 512 of the inner cylinder member 510 in the fifth embodiment, and the stopper protruding portion is added to the resin bulging portion 512. 713 may be combined and formed integrally. Since it is not necessary to perform a cutting process or a complicated forging process for forming the stopper protruding portion 713, it is possible to improve the yield and reduce the manufacturing cost.
  • the first rubber part 31 and the second rubber part 32 are divided (the respective divided surfaces are separated in the axis O direction).
  • the present invention is not necessarily limited thereto, and a part of the dividing surface of the first rubber part 31 and the dividing surface of the second rubber part 32 (the outer peripheral surface of the bulging part 12 of the inner cylinder member 10) (A part of the side) may be connected.
  • the fourth and fifth embodiments the case where the divided surface of the first rubber portion 431 and the divided surface of the second rubber portion 432 are partially connected is described, but the present invention is not necessarily limited thereto.
  • the first rubber part 431 and the second rubber part 432 may be divided.
  • the divided surfaces of the first outer cylinder portions 21 and 321 and the divided surfaces of the second outer cylinder portions 22 and 322 in the completed state (state of the vibration isolator 100 to 300).
  • the present invention is not necessarily limited to this, and in the completed state, the divided surfaces of the first outer cylinder portions 21 and 321 and the divided surfaces of the second outer cylinder portions 22 and 322 May be in contact with each other.
  • the rubber base 430 (the first rubber portion 31 and the first rubber portion 31) is moved to a position where the split surfaces of the first outer cylinder portions 21 and 321 and the split surfaces of the second outer cylinder portions 22 and 322 abut. 2) the rubber part 32) is compressed in the direction of the axis O, and in this state, the cylindrical member 40 is drawn in the cylindrical member drawing process, and in the bending process, the end of the cylindrical member 40 in the axial O direction direction.
  • the vibration isolator 100 to 300 may be manufactured so as to be in the above state by bending.
  • the rubber base compression step may be omitted. That is, after the outer cylinder squeezing process, the process may be shifted to the cylindrical member squeezing process without performing the rubber base compression process (without providing the rubber base 430 with preliminary compression in the axis O direction).
  • the rubber film portions 33, 34, 233, 234, 431a, 431b are covered on the outer peripheral surface of the outer cylinder member 20, 320, 420, 620, 720 has been described.
  • the rubber film portions 33, 34, 233, 234, 431 a and 431 b may be provided on the inner peripheral surface of the cylindrical members 40 and 440 instead of or in addition to this. .
  • the vibration isolator 100 to 300 may be manufactured by omitting. That is, the vulcanized molded products A to C are formed on the cylindrical member 40 by the holding force between the cylindrical member 40 that has been subjected to drawing processing in the cylindrical member drawing step and the rubber film portions 33, 34, 333, and 334. You may hold
  • the description is omitted, but through holes may be formed in the first outer cylinder portions 21 and 321 and the second outer cylinder portions 22 and 322. Since the fluidity of the rubber-like elastic body in the vulcanization molding process can be ensured by the through holes, the yield of the rubber film portions 33, 34, 333, 334 connected to the first rubber portion 31 and the second rubber portion 32 is increased. be able to.
  • the description is omitted, but after the bending step, the inner cylinder members 10, 410, 510, 610, 710 are subjected to diameter expansion processing (the inner cylinder member 10 is compressed in the direction of the axis O, and the axis O You may give the process which expands the area of a seat surface by enlarging a direction edge part.
  • the outer cylinder squeezing step is performed (outer cylinder members 20, 420, 620, 720 (first outer cylinder portions 21, 421, 621, 721 and second cylinders).
  • outer cylinder members 20, 420, 620, 720 first outer cylinder portions 21, 421, 621, 721 and second cylinders.
  • the present invention is not necessarily limited to this, and the outer cylinder drawing step is omitted and the vibration isolation devices 100, 200, 400 to 700 may be manufactured.
  • the present invention is not necessarily limited thereto, and the outer cylinder member 320 may be formed by forging or cutting, for example.
  • the case where the rubber base compression step is omitted has been described.
  • the invention is not necessarily limited to this, and the rubber bases 430, 630, and 730 are moved in the axis O direction by the rubber base compression step.
  • the anti-vibration devices 400 to 700 may be manufactured in a state where the preliminary compression is applied.
  • the present invention is not necessarily limited to this, and is formed intermittently in the circumferential direction. Also good.
  • the “concave spherical surface” described in claim 1 does not require a complete spherical shape, but is formed as a concave surface disposed opposite to the convex spherical surface at least in the bulging portion of the inner cylinder member. If it is done, it is enough.
  • “concentric with a convex spherical surface” does not require that the centers coincide completely, and the center of the concave spherical surface is viewed from the first outer cylindrical portion and the second outer cylindrical portion, This means that it suffices if it is located on the same side as the center of the convex spherical surface.
  • Vibration isolator 10 410, 510, 610, 710 Inner cylinder member 610a First inner cylinder part 610b Second inner cylinder part 12, 412 Swelling part 713 Stopper protrusion 20, 320, 420, 620, 720 Outer cylinder member 21, 321, 421, 621, 721 First outer cylinder part 22, 322, 422, 622, 722 Second outer cylinder part IS Concave inner peripheral surface 30, 430, 630 , 730 Rubber base 31,431,631,731 First rubber part 32,432,632,732 Second rubber part 33,333,431a, 431b Rubber film part 34,334,432a, 432 Rubber film portion 735 stopper rubber portion 40,440 tubular member O shaft SP space

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

 こじり方向におけるばね定数および軸直角方向におけるばね定数を小さくしつつ、軸方向におけるばね定数を大きくすることができる防振装置を提供する。第1ゴム部(431)の分割面と第2ゴム部(432)の分割面とが軸(O)方向に離間し互いの分割面の間に空間(SP)が形成された状態で、第1外筒部(421)及び第2外筒部(422)が筒状部材(440)により保持固定される。この第1ゴム部(431)の分割面と第2ゴム部(431)の分割面との間の空間(SP)により、こじり方向におけるゴム基体(430)のせん断成分および軸(O)直角方向におけるゴム基体(430)の圧縮成分を抑制しつつ、軸(O)方向におけるゴム基体(430)の圧縮成分を確保することができる。その結果、こじり方向におけるばね定数および軸(O)直角方向におけるばね定数を小さくしつつ、軸(O)方向におけるばね定数を大きくすることができる。

Description

防振装置
 本発明は、防振装置に関し、特に、こじり方向におけるばね定数および軸直角方向におけるばね定数を小さくしつつ、軸方向におけるばね定数を大きくすることができる防振装置に関するものである。
 内筒部材と外筒部材との間をゴム状弾性体からなるゴム基体で連結し、サスペンション装置に使用されるブッシュ(防振装置)では、自動車の乗り心地を確保するために、こじり方向におけるばね定数を小さくすることが要請される。
 特許文献1には、こじり方向におけるばね定数を小さくするために、内筒1(内筒部材)の軸方向中間部に、径方向外方へ膨出する球状の膨出部4を設け、その膨出部4を囲む外筒2(外筒部材)の内周面部分を、膨出部4の凸状の球面と同心状の凹状の球面に形成する防振ブッシュ101(防振装置)が開示される。
 この防振ブッシュ101によれば、こじり方向の変位の入力に対し、凸状の球面と、これに同心状の凹状の球面との間で、ゴム状弾性体3(ゴム基体)を、主にせん断方向に変形させることができるので、こじり方向におけるばね定数を小さくできる。
特開2008-019927(段落0006,0020、図1など)
 しかしながら、上述した従来の防振ブッシュ101では、こじり方向におけるばね定数および軸直角方向におけるばね定数を小さくしつつ、軸方向におけるばね定数を大きくすることが十分にできないという問題点があった。
 本発明は、上述した問題点を解決するためになされたものであり、こじり方向におけるばね定数および軸直角方向におけるばね定数を小さくしつつ、軸方向におけるばね定数を大きくすることができる防振装置を提供することを目的としている。
課題を解決するための手段および発明の効果
 請求項1記載の防振装置によれば、径方向外方へ向けて膨出する球状の膨出部を有する内筒部材と、その内筒部材の膨出部を取り囲む凹状の球面である凹状内周面を有する外筒部材と、それら内筒部材の膨出部の外周面および外筒部材の凹状内周面の間を連結するゴム基体とを備えるので、こじり方向の変位の入力に対しては、ゴム基体を、主にせん断方向に変形させることができる。よって、こじり方向におけるばね定数を小さくできるという効果がある。
 この場合、請求項1によれば、外筒部材が、第1外筒部と第2外筒部とに軸方向に2分割されると共に、第1外筒部における凹状内周面および第2外筒部における凹状内周面と内筒部材の膨出部の外周面との間が、第1ゴム部および第2ゴム部によって、それぞれ連結され、第1外筒部および第2外筒部をその外周側に配設される筒状の筒状部材により保持固定する構造である。
 よって、第1ゴム部および第2ゴム部が加硫成形された後、第1ゴム部の分割面と第2ゴム部の分割面とが軸方向に離間し互いの分割面の間に空間が形成された状態で、第1外筒部および第2外筒部を筒状部材により保持固定できる。このように、第1ゴム部の分割面と第2ゴム部の分割面との間に空間を形成できることで、その空間の分、こじり方向におけるゴム基体のせん断成分および軸直角方向におけるゴム基体の圧縮成分を抑制しつつ、軸方向におけるゴム基体の圧縮成分を確保することができる。その結果、こじり方向におけるばね定数および軸直角方向におけるばね定数を小さくしつつ、軸方向におけるばね定数を大きくすることができる。
 なお、ゴム基体は、第1ゴム部と第2ゴム部とが軸方向に完全に分割(分断)されている必要はなく、少なくとも外筒部材側で軸方向に分割されていれば足りる。よって、内筒部材側で第1ゴム部と第2ゴム部とが連結されていても(軸方向に分割されていなくても)良い。即ち、内筒部材の外周面を被覆するゴム基体の一部によって、第1ゴム部と第2ゴム部とが連結されていても良い。
 請求項2記載の防振装置によれば、請求項1記載の防振装置の奏する効果に加え、内筒部材の膨出部における最大の外径寸法が、第1外筒部および第2外筒部の軸方向端部開口における最小の内径寸法よりも大きくされるので、軸方向への変位に対し、受圧面積を大きくして、ゴム基体の圧縮成分を確保することができる。その結果、こじり方向におけるばね定数および軸直角方向におけるばね定数を小さくしつつ、軸方向におけるばね定数を大きくする効果を顕著とすることができる。
 なお、このような請求項2の構成は、内筒部材の膨出部と外筒部材の凹状内周面との間にゴム基体が連続して配設される従来品では、軸方向におけるゴム基体の圧縮成分と同時に、こじり方向におけるゴム基体のせん断成分および軸直角方向におけるゴム基体の圧縮成分も増大させるため、採用することが不可能であり、本発明のように、第1ゴム部の分割面と第2ゴム部の分割面との間に空間を形成することで初めて採用可能となったものであり、これにより、軸方向におけるゴム基体の圧縮成分は確保しつつ、こじり方向におけるゴム基体のせん断成分および軸直角方向におけるゴム基体の圧縮成分を抑制することができる。即ち、こじり方向におけるばね定数および軸直角方向におけるばね定数を小さくしつつ、軸方向におけるばね定数を大きくすることができる。
 請求項3記載の防振装置によれば、請求項1又は2に記載の防振装置の奏する効果に加え、第1ゴム部および第2ゴム部の剥がれや亀裂の発生を抑制しつつ、第1ゴム部および第2ゴム部に径方向(軸直角方向)への予備圧縮を付与できるという効果がある。
 ここで、防振装置は、その耐久性を確保するために、ゴム基体に径方向への予備圧縮を付与する。ゴム基体への径方向への予備圧縮の付与は、通常、外筒部材に絞り加工を施すことにより行われる。この場合、従来品のように、外筒部材(外筒)の内周面部分に部分的に凹状の球面を形成する構造では、凹状の球面を形成した部分と凹状の球面が非形成となる部分との間に肉厚の差が生じると共に、凹状の球面が非形成となる部分の肉厚が厚くなるため、外筒部材の絞り加工が困難となる。
 そのため、従来品では、外筒部材の内周面に、軸方向に延びると共に凹状の球面と同等の深さを有する複数の凹溝を周方向に分散して形成する。これにより、絞り加工に伴って、外筒部材は、各凹溝の溝幅が狭くなるように絞り変形するので、肉厚の差があり、かつ、凹状の球面が非形成となる部分の肉厚が厚くても、絞り加工を施すことができる。
 しかしながら、この従来品では、こじり方向におけるばね定数は小さくできるが、外筒部材に凹溝を形成して、その絞り加工を可能とすることで、ゴム基体(ゴム状弾性体)に予備圧縮を付与する構造であるので、外筒部材に絞り加工を施すと、凹溝に変形が集中し、この凹溝に接着される部位でゴム状弾性体の剥がれが発生すると共に、溝幅が狭まった凹溝に挟まれてゴム基体に亀裂が発生する。
 これに対し、請求項3によれば、第1外筒部および第2外筒部に絞り加工が施された状態で、第1外筒部および第2外筒部が筒状部材により保持固定されるので、第1ゴム部および第2ゴム部に径方向への予備圧縮を付与することができるという効果がある。また、第1外筒部および第2外筒部の板厚が一定の素材から凹状内周面を備える形状に形成されるので、第1外筒部および第2外筒部に絞り加工を可能とするための凹溝を形成する必要がない。よって、第1ゴム部および第2ゴム部の剥がれや亀裂の発生を抑制しつつ、第1ゴム部および第2ゴム部に径方向への予備圧縮を付与できるという効果がある。
 即ち、本発明では、第1外筒部および第2外筒部を筒状部材が保持固定する構造であるので、相手部材への取り付け部位としての形状(例えば、サスペンションアームの圧入穴へ圧入可能な外形形状)を筒状部材に担わせることができ、第1外筒部および第2外筒部は、相手部材への取り付け部位としての形状を考慮する必要がない。よって、第1外筒部および第2外筒部を、板厚が一定の素材から例えばプレス加工により形成することができ、その結果、凹溝を設けなくても、これら第1外筒部および第2外筒部に絞り加工を施すことが可能となる。
 請求項4記載の防振装置によれば、請求項1から3のいずれかに記載の防振装置の奏する効果に加え、筒状部材に絞り加工が施される、即ち、第1外筒部および第2外筒部の外周面側が筒状部材の内周面側によって締め付けられることで、第1外筒部および第2外筒部が筒状部材により保持固定されるので、かかる保持固定を簡易に行うことができるという効果がある。また、絞り加工を施す前の筒状部材の内径を第1外筒部および第2外筒部の外径よりも大きくしておけるので、組み立て工程において、第1外筒部および第2外筒部を筒状部材の内周側へ軸方向に沿って挿入する作業を効率的に行うことができるという効果がある。
 この場合、第1外筒部および第2外筒部の外周面と筒状部材の内周面とが直接接触する(即ち、金属材料どうしが接触する)場合には、両者の間での摩擦係数の確保が困難となる。また、絞り加工後のスプリングバックは、外周側に位置する部材が大きくなるので、締め代の確保が困難となる。そのため、筒状部材から第1外筒部および第2外筒部が軸方向へ抜け出すおそれがある。
 これに対し、本発明では、第1外筒部および第2外筒部の外周面または筒状部材の内周面の少なくとも一方の少なくとも一部にゴム状弾性体から構成されるゴム膜部が覆設されるので、かかるゴム膜部の介在により、摩擦係数を確保することができる。また、ゴム膜部が介在することで、筒状部材のスプリングバックによる締め代の不足分を、ゴム膜部の弾性回復による圧縮力で補うことができる。よって、軸方向への抜け出しに対する保持力を確保して、第1外筒部および第2外筒部が筒状部材から軸方向へ抜け出すことを抑制できるという効果がある。
 また、請求項4によれば、筒状部材に絞り加工が施されるので、かかる筒状部材の内周側で第1外筒部および第2外筒部が径方向(軸直角方向)にがたつくことを抑制することができるという効果がある。
 請求項5記載の防振装置によれば、請求項4記載の防振装置の奏する効果に加え、第1外筒部および第2外筒部の外周面および筒状部材の内周面の内の第1外筒部および第2外筒部の外周面のみにゴム膜部が覆設され、そのゴム膜部が第1ゴム部または第2ゴム部の少なくとも一方に連なるので、筒状部材にゴム膜部を覆設する必要がなく、かかるゴム膜部を第1ゴム部および第2ゴム部と同時に加硫成形することができるので、その分、製造コストの削減を図ることができるという効果がある。
 請求項6記載の防振装置によれば、請求項1から5のいずれかに記載の防振装置の奏する効果に加え、第1外筒部の分割面と第2外筒部の分割面とが軸方向に離間されると共に、ストッパゴム部の外周面と筒状部材の内周面とが径方向に離間され、第1外筒部および第2外筒部の分割面の間を介してストッパゴム部の外周面が筒状部材の内周面に当接可能とされるので、径方向(軸直角方向)への大変位入力時には、ストッパ突出部をストッパゴム部を介して筒状部材の内周面に当接させ、その入力変位に伴うゴム基体の変形を所定量に規制するストッパ機能を発揮させることができる。これにより、ゴム基体の耐久性の向上を図ることができるという効果がある。特に、請求項6によれば、ストッパ機能を発揮するための部位を、第1ゴム部の分割面と第2ゴム部の分割面との間に形成される空間内に収めることができるので、ストッパ機能の発揮によるゴム基体の耐久性の向上を図りつつ、デッドスペースとなる空間を有効活用して、防振装置の小型化を図ることができるという効果がある。
 請求項7記載の防振装置によれば、請求項1から5のいずれかに記載の防振装置の奏する効果に加え、こじり方向におけるばね定数および軸直角方向におけるばね定数を小さくしつつ、軸方向におけるばね定数を大きくすることができると共に、筒状部材に対して第1外筒部および第2外筒部が互いの分割面を近接させる方向へ位置ずれすることを抑制できるという効果がある。
 即ち、第1内筒部の分割面および第1外筒部の分割面が同じ軸方向位置に配置される状態で、第1内筒部における膨出部の外周面および第1外筒部における凹状内周面の間が第1ゴム部により連結されると共に、第2内筒部の分割面および第2外筒部の分割面が同じ軸方向位置に配置される状態で、第2内筒部における膨出部の外周面および第2外筒部における凹状内周面の間が第2ゴム部により連結され、第1ゴム部が第1外筒部の分割面および第1内筒部の分割面よりも軸方向に後退して位置すると共に、第2ゴム部が第2外筒部の分割面および第2内筒部の分割面よりも軸方向に後退して位置するので、第1内筒部および第1外筒部の分割面と第2内筒部および第2外筒部の分割面とを当接させた状態で、第1外筒部および第2外筒部を筒状部材により保持固定することができ、これにより、第1ゴム部の分割面と第2ゴム部の分割面との間に空間を形成できるので、その空間により、こじり方向におけるばね定数および軸直角方向におけるばね定数を小さくしつつ、軸方向におけるばね定数を大きくすることができる。
 また、このように第1ゴム部の分割面と第2ゴム部の分割面との間に空間を設定しつつ、第1外筒部の分割面と第2外筒部の分割面とを当接させておくことができるので、これら第1外筒部および第2外筒部が、互いの分割面を近接させる方向へ移動することを規制することができる。即ち、かかる方向への移動を筒状部材の内周面との間の摩擦に頼らずに規制することができるので、軸方向への大変位入力時に、第1外筒部または第2外筒部が筒状部材に対して位置ずれすることを確実に抑制できる。
 請求項8記載の防振装置によれば、請求項7記載の防振装置の奏する効果に加え、筒状部材には、絞り加工が施され、筒状部材の軸方向一端側および軸方向他端側が、第1外筒部および第2外筒部の凹状内周面の背面側となる外周面に沿って縮径された形状に形成されるので、筒状部材に対して、第1外筒部および第2外筒部が、互いの分割面を近接させる方向へ移動することだけでなく、互いの分割面を離間させる方向へ移動することも規制することができるという効果がある。
 即ち、第1外筒部および第2外筒部が、互いの分割面を近接させる方向へ移動する場合にはその移動を互いの分割面の当接により規制すると共に、互いの分割面を離間させる方向へ移動する場合にはその移動を筒状部材の軸方向一端側または軸方向他端側により規制することができる。これにより、これら両方向への移動を筒状部材の内周面との間の摩擦に頼らずに規制することができるので、軸方向への大変位入力時に、第1外筒部または第2外筒部が筒状部材に対して位置ずれすることを確実に抑制できる。
(a)は、本発明の第1実施の形態における防振装置の上面図であり、(b)は、図1(a)のIb-Ib線における防振装置の断面図である。 (a)は、内筒部材の上面図であり、(b)は、図2(a)のIIb-IIb線における内筒部材の断面図である。 (a)は、第1外筒部の上面図であり、(b)は、図3(a)のIIIb-IIIb線における第1外筒部の断面図である。 (a)は、筒状部材の上面図であり、(b)は、図4(a)のIVb-IVb線における筒状部材の断面図である。 (a)は、加硫成形体の上面図であり、(b)は、図5(a)のVb-Vb線における加硫成形体の断面図である。 (a)は外筒絞り工程において絞り加工が施される前の状態における加硫成形体の断面図であり、(b)は外筒絞り工程において絞り加工が施された後の状態における加硫成形体の断面図である。 (a)は、ゴム基体圧縮工程においてゴム基体が軸方向に圧縮された状態における加硫成形体および筒状部材の断面図であり、(b)は、筒状部材絞り工程において筒状部材に絞り加工が施された後の状態における加硫成形体および筒状部材の断面図である。 (a)は、曲げ工程において曲げ加工が施される前の状態における加硫成形体および筒状部材の断面図であり、(b)は、曲げ工程において曲げ加工が施された後の状態における加硫成形体および筒状部材の断面図である。 (a)は、第2実施の形態における防振装置を構成する加硫成形体Bの断面図であり、(b)は、第2実施の形態における防振装置の断面図である。 (a)は、第3実施の形態における防振装置を構成する加硫成形体の断面図であり、図10(b)は、第3実施の形態における防振装置の断面図である。 (a)は、第4実施の形態における防振装置の上面図であり、(b)は、図11(a)のXIb-XIb線における防振装置の断面図である。 (a)は、第1外筒部の上面図であり、(b)は、図12(a)のXIIb-XIIb線における第1外筒部の断面図である。 (a)は、加硫成形体の側面図であり、(b)は、図13(a)のXIIIb-XIIIb線における加硫成形体の断面図である。 (a)は外筒絞り工程において絞り加工が施される前の状態における加硫成形体の断面図であり、(b)は外筒絞り工程において絞り加工が施された後の状態における加硫成形体の断面図である。 (a)は、筒状部材絞り工程において筒状部材に絞り加工が施される前の状態における加硫成形体及び筒状体の断面図であり、(b)は、筒状部材絞り工程において筒状部材に絞り加工が施された後の状態における防振装置の断面図である。 第5実施の形態における防振装置の断面図である。 第6実施の形態における加硫成形体の断面図である。 (a)は外筒絞り工程において絞り加工が施された加硫成形体と筒状部材絞り工程にいて絞り加工が施される前の状態における筒状部材との断面図であり、(b)は、筒状部材絞り工程において筒状部材に絞り加工が施された後の状態における防振装置の断面図である。 第7実施の形態における防振装置の断面図である。
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。まず、図1を参照して、防振装置100の全体構成について説明する。図1(a)は、本発明の第1実施の形態における防振装置100の上面図であり、図1(b)は、図1(a)のIb-Ib線における防振装置100の断面図である。
 図1に示すように、防振装置100は、自動車のサスペンション装置(懸架装置)に使用される防振ブッシュであり、筒状の内筒部材10と、その内筒部材10の外周側に配設される外筒部材20と、それら内筒部材10及び外筒部材20の間を連結すると共にゴム状弾性体から構成されるゴム基体30と、外筒部材20の外周側に配設される筒状の筒状部材40とを備える。
 防振装置100は、サスペンションメンバーのブラケットにおける一対の挟持部の間に、内筒部材10に挿通される取り付けボルトを介して、内筒部材10の軸O方向端面が挟持固定されると共に、筒状部材40が、サスペンションアーム(本実施の形態では、ロアアーム)の一端における圧入穴に圧入され、これにより、自動車のサスペンション装置に装着される。
 次いで、図2から図4を参照して、防振装置100を構成する各部の詳細構成について説明する。まず、図2を参照して、内筒部材1の詳細構成について説明する。図2(a)は、内筒部材10の上面図であり、図2(b)は、図2(a)のIIb-IIb線における内筒部材10の断面図である。
 図2に示すように、内筒部材10は、取り付けボルトが挿通される挿通孔が軸Oに沿って貫通形成された筒状の軸部11と、その軸部11の外周面から径方向外方へ向けて膨出する球状の膨出部12とを備え、これらが金属材料から一体に構成される。なお、軸部11と膨出部12とは別材料(例えば、膨出部12が樹脂材料)から別体に構成されていても良い。
 膨出部12は、軸部11の軸O方向中央(図2(b)上下方向中央)に配設され、膨出部12における凸状の球面の中心は、軸部11の軸O上に位置する。即ち、内筒部材10は、軸Oを対称軸(回転中心)とする回転対称形状に形成される。
 図3を参照して、外筒部材20の詳細構成について説明する。図3(a)は、第1外筒部21の上面図であり、図3(b)は、図3(a)のIIIb-IIIb線における第1外筒部21の断面図である。なお、図3では、外筒絞り工程における絞り加工(図6参照)が施される前の状態が図示される。
 なお、外筒部材20は、軸O方向の中央部で第1外筒部21と第2外筒部22とに2分割される(図1参照)。これら第1外筒部21と第2外筒部22とは、同一の部材(構成)であり、名称のみが異なる部材であるので、以下においては、第1外筒部21について説明し、第2外筒部22の説明は省略する。
 図3に示すように、第1外筒部21は、板厚が一定の板状の金属材料(本実施の形態では鉄鋼材料)をプレス加工により器状に成形して得られる部材であり、軸Oを対称軸(回転中心)とする回転対称に形成される。
 なお、第1外筒部21は、板厚が一定の素材から形成されるので、従来品のように絞り加工を可能とするための凹溝を形成する必要がない。よって、第1外筒部21及び第2外筒部22に絞り加工を施す外筒絞り工程(図6参照)において、第1ゴム部31及び第2ゴム部32の剥がれや亀裂の発生を抑制しつつ、第1ゴム部31及び第2ゴム部32に径方向(軸O直角方向)への予備圧縮を付与することができる。
 即ち、第1外筒部21(及び、第2外筒部22)は、筒状部材40に保持固定されるので(図1参照)、相手部材への取り付け部位としての形状(本実施の形態では、ロアアームの圧入穴へ圧入可能な外形形状)を筒状部材40に担わせることができ、第1外筒部21は、相手部材への取り付け部位としての形状を考慮する必要がない。よって、第1外筒部21を、板厚が一定の素材からプレス加工により成形することができ、その結果、凹溝を設けなくても、第1外筒部21(及び、第2外筒部22)に絞り加工を施すことが可能となる。
 第1外筒部21は、軸Oに直交する円環板状に形成される環状部20aと、その環状部20aの内縁に接続されると共に断面形状が円弧状に湾曲する湾曲部20bと、その湾曲部20bの終端(図3(b)下側)に接続され湾曲部20bから離間する従って内径が漸次拡大される円錐筒状の拡径部20cと、その拡径部20cの最大径側に接続されると共に内径が略一定に形成される円筒状の円筒部20dとを備え、これら各部20a~20dが軸Oに沿って同軸に一体に形成される。
 拡径部20cと円筒部20dとの間は断面円弧状に滑らかに接続される。また、環状部20aが軸Oに直交する環状板状に形成され、後述する曲げ工程(図8参照)において筒状部材40の軸O方向端部が径方向内方に曲げられた場合には、その曲げられた部分が環状部20aと軸O方向で重なる(図1参照)。よって、筒状部材40の曲げられた部分と環状部20aとの係合を強固とすることができる。
 ここで、拡径部20c及び円筒部20dの内周面が凹状内周面ISとされる。凹状内周面ISは、内筒部材10の膨出部12を取り囲む部位であり、外筒絞り工程(図6参照)において、拡径部20c及び円筒部20dが絞り加工が施されることで、その凹状内周面ISの形状が、内筒部材10の膨出部12における凸状の球面と同心状の凹状の球面に形成される(図1参照)。
 なお、本実施の形態では、図3に示すように、環状部20aの外径(環状部20aの外縁における径)D1が、円筒部20dの外径(円筒部20dの外周面における径)D2よりも小さくされる(D1<D2)。これにより、外筒絞り工程(図6参照)において、円筒部20dの部分のみをダイス片(図示せず)に当接させ、そのダイス片により径方向内方へ押圧(移動)させることができるので、凹状内周面ISの形状を、内筒部材10の膨出部12における凸状の球面と同心状の凹状の球面に近づけることができる。
 図4を参照して、筒状部材40について説明する。図4(a)は、筒状部材40の上面図であり、図4(b)は、図4(a)のIVb-IVb線における筒状部材40の断面図である。なお、図4では、筒状部材絞り工程(図7参照)前の状態(即ち、絞り加工前の筒状部材40)が図示される。
 図4に示すように、筒状部材40は、金属材料(本実施の形態では鉄鋼材料)から軸Oを有する筒状に形成される部材である。即ち、筒状部材40は、軸Oを対称軸(回転軸)として回転対称となる形状に形成される。
 筒状部材40の内径は、後述する外筒絞り工程による絞り加工(図6(b)参照)が施された後の加硫成形体Aの最大外径(ゴム膜部33,34の外周面における径)よりも大きくされる。本実施の形態では、絞り加工前の加硫成形体Aの最大外径(円筒部20dの外径D2)よりも大きくされる。これにより、防振装置100の組み立て作業において、加硫成形体Aを筒状部材40の内周側へ軸O方向に沿って挿入する作業を効率的に行うことができる(図7(a)参照)。
 また、筒状部材40の軸O方向(図4(b)上下方向)端部には、内周面側の角部に面取り加工が施され、断面直線状の面取り面40aが形成される。この面取り面40aの形成によっても、筒状部材40の内周側へ加硫成形体Aを軸O方向に沿って挿入する作業性の向上を図ることができる。更に、面取り面40aを備えることで、後述する曲げ工程(図8参照)において、筒状部材40の軸O方向端部を径方向内方へ曲げ加工し易くすることができる。
 次いで、図5から図8を参照して、防振装置100の製造方法について説明する。まず、図5を参照して、加硫成形体Aの製造方法について説明し、併せて、ゴム基体30の構成について説明する。図5(a)は、加硫成形体Aの上面図であり、図5(b)は、図5(a)のVb-Vb線における加硫成形体Aの断面図である。
 図5に示すように、加硫成形体Aは、加硫金型により成形された部品であり、防振装置100の一要素を構成する。即ち、加硫成形体Aに筒状部材40を装着することで、防振装置100が構成される。加硫成形体Aの製造は、内筒部材10と外筒部材20(第1外筒部21及び第2外筒部22)とを加硫金型内に設置し、型締め後、ゴム材料を充填して、ゴム基体30を加硫成形することで行われる。これにより、内筒部材10の外周面と外筒部材20(第1外筒部21及び第2外筒部22)の内周面との間がゴム基体30により連結され、加硫成形体Aが製造される。
 なお、第1外筒部21及び第2外筒部22は、互いの円筒部20dどうしを向かい合わせた姿勢で同軸状に加硫金型内に設置される。加硫金型は、内筒部材10の軸O方向(図5(b)上下方向)中央に位置する中型を備え、この中型は、型締め後の形状が円環状となり、型締め時は、その中型の内周先端縁部が、膨出部12の外周面であって球面の頂部に密着される。
 これにより、第1外筒部21及び第2外筒部22の分割面どうしの間に中型が介在されることで、第1外筒部21及び第2外筒部22は、その分割面(円筒部20dの軸O方向端面、図3(b)下側面)を軸O方向に離間させた状態で加硫金型内に設置され、ゴム基体30は、第1ゴム部31と第2ゴム部32とに軸O方向に2分割された状態に加硫成形される。即ち、加硫成形体Aのゴム基体30(第1ゴム部31及び第2ゴム部32)は、第1外筒部21の分割面と第2外筒部21の分割面とが軸O方向に離間し所定の間隔を隔てた状態を形成する。
 第1ゴム部31は、内筒部材10の膨出部12の外周面および第1外筒部21における凹状内周面ISを連結する部位であり、第2ゴム部32は、内筒部材10の膨出部12の外周面および第2外筒部22における凹状内周面ISを連結する部位である。これら第1ゴム部31及び第2ゴム部32は、互いの分割面の間に所定の間隔を隔てて配設される。この分割面の間の間隔は、第1外筒部21及び第2外筒部22から内筒部材10の膨出部12へ近接するに従って狭くなるように形成される。
 なお、第1ゴム部31と第2ゴム部32とは、軸O方向に完全に分割(分断)されている必要はない。例えば、内筒部材10の膨出部12の外周面を被覆するゴム基体30の一部(例えば、膜状体)によって、第1ゴム部31と第2ゴム部32とが連結されていても良い。
 ゴム基体30は、第1外筒部21及び第2外筒部22の外周面に覆設されるゴム膜部33,34を備える。ゴム膜部33,34は、軸Oを中心とする上面視円形の外周面を形成する部位であり、円環部20aから円錐部20cの中途に亘る範囲に形成されると共に、円環部20aの上面または下面(例えば、ゴム膜33であれば図5(b)上側面)と湾曲部20bの内周面を介して、第1ゴム部31又は第2ゴム部32に連なる。
 なお、本実施の形態では、図5に示すように、ゴム膜部33,34の外径(ゴム膜部33,34の外周面における径)D3が、円筒部20dの外径(円筒部20dの外周面における径)D2よりも小さくされる(D3<D2)。
 ここで、ゴム膜部33,34の覆設範囲は、円錐部20cの中途までの範囲であり、円筒部20d及びその円筒部20d側となる円錐部20cの残部には、ゴム膜部33,34が覆設されない(即ち、外周面が露出される)。これにより、外筒絞り工程(図6参照)において、ゴム膜部33,34を介さずに、円筒部20dを絞り金型(図示せず)により直接押圧可能として、円筒部20d及び円錐部20cの絞り加工を高精度に行うことができる。
 ゴム膜部33,34は、その外周面から円錐部20cへ向けて凹設されると共に円筒部20d側に位置する受入凹部33a,34aを備える。これにより、加硫金型と円錐部20cとの当接面積を確保して、加硫成形時のシール性を高めることができるので、円筒部20dの外周面にゴム膜部33,34が形成されることを抑制できる。また、この受入凹部33a,34aの凹設により、筒状部材絞り工程(図7参照)において、筒状部材40の内周面と円錐部20cの外周面との間に空間を形成して、その空間に、余肉となったゴム膜部33,34を受け入れることができる。
 図6から図8を参照して、加硫成形体Aと筒状部材40とから防振装置100を組み立てる組み立て方法について説明する。防振装置100の組み立ては、外筒部材20(第1外筒部21及び第2外筒部22)に絞り加工を施す外筒絞り工程(図6参照)、ゴム基体30(第1ゴム部31及び第2ゴム部32)を軸O方向へ圧縮するゴム基体圧縮工程(図7参照)、筒状部材40に絞り加工を施す筒状部材絞り工程(図7参照)、及び、筒状部材40の軸O方向端部に曲げ加工を施す曲げ工程(図8参照)を順に実施することで行われる。
 図6を参照して、外筒絞り工程について説明する。図6(a)は外筒絞り工程において絞り加工が施される前の状態における加硫成形体Aの断面図であり、図6(b)は外筒絞り工程において絞り加工が施された後の状態における加硫成形体Aの断面図である。
 外筒部材20(第1外筒部21及び第2外筒部22)に絞り加工を施すための絞り金型は、環状のダイスと、その環状のダイスを外周側から保持して案内する環状のホルダとを備える(いずれも図示せず)。ダイスは、周方向に複数のダイス片に分割されると共に外周面にテーパ面が形成され、ホルダは、ダイスのテーパ面に対応するテーパ面が内周に形成される。
 外筒絞り工程は、プレス装置の台上に設置されたホルダにダイスを保持させ、加硫成形体Aをダイスの内周側にセットした後、プレス装置の加圧力により、ダイスをホルダに対して相対移動させる。かかる相対移動により、各ダイス片は、その外周面のテーパ面がホルダの内周面のテーパ面によって案内されることで、加硫成形体Aの径方向内方であって軸心Oへ向けて互いに接近するように移動され、ダイスの径寸法が小さくなる。
 これにより、図6(b)に示すように、第1外筒部21及び第2外筒部22の円筒部20dの外周面が、各ダイス片の内周面により、径方向内方へ押圧され、第1外筒部21及び第2外筒部22に絞り加工が施される。
 この外筒絞り工程により、第1外筒部21及び第2外筒部22の円筒部20dは、外径D2から外径D4まで縮径される(D4<D2)。これにより、ゴム基体30(第1ゴム部31及び第2ゴム部32)に径方向(軸O直角方向)への予備圧縮を付与することができる。
 また、円筒部20dの縮径に伴い、円錐部20c及び円筒部20dが湾曲部20b側を支点として径方向内方へ曲げられるように絞り変形されることで、これら円錐部20c及び円筒部20dが湾曲される。その結果、凹状内周面ISの形状を、内筒部材10の膨出部12における凸状の球面と同心状の凹状の球面に近づけることができる。
 なお、本実施の形態では、外径D2が53.6mmとされ、外径D4が52.0mmとされる。また、外径D4は、ゴム膜部33,34の外径D3(図5参照)よりも小さくされる(D4<D3)。即ち、外筒絞り工程が行われた後の図6(b)に示す加硫成形体Aにおいては、ゴム膜部33,34が円筒部20dよりも大径とされ、ゴム膜部33,34の外周面が、円筒部20dの外周面よりも、径方向外方(軸Oから離間した位置)に配設される。
 図7を参照して、ゴム基体圧縮工程および筒状部材絞り工程について説明する。図7(a)は、ゴム基体圧縮工程においてゴム基体30が軸O方向に圧縮された状態における加硫成形体A及び筒状部材40の断面図であり、図7(b)は、筒状部材絞り工程において筒状部材40に絞り加工が施された後の状態における加硫成形体A及び筒状部材40の断面図である。
 図7(a)に示すように、ゴム基体圧縮工程では、まず、筒状部材40に加硫成形体Aを軸O方向に沿って挿入し、加硫成形体Aを筒状部材40の内周側に設置する。次いで、加硫成形体Aの第1外筒部21及び第2外筒部22を、それら両外筒部21,22の分割面(円筒部20dの軸O方向端面、図3(b)下側面)どうしが互いに近接するように、軸O方向に相対移動させる。
 具体的には、一対の筒状の治具Jの端面間に、第1外筒部21の環状部20a及び第2外筒部22の環状部20aを挟み込み、上方の治具Jを下方の治具Jへ向けて軸O方向へ所定量だけ押し下げる。なお、本実施の形態では、図7(a)に示すように、第1外筒部21の分割面と第2外筒部22の分割面との間に所定の隙間が形成される位置で、一対の治具Jが固定される。
 図7(b)に示すように、筒状部材絞り工程による筒状部材40の絞り加工は、一対の治具Jを固定した状態で(即ち、ゴム基体30(第1ゴム部31及び第2ゴム部32)が軸O方向に圧縮された状態を維持しつつ)行われる。なお、筒状部材40に絞り加工を施すための絞り金型の構成およびその作用は、外筒絞り工程で使用される絞り金型と同様であるので、その説明は省略する。
 ここで、筒状部材40の絞り加工は、筒状部材40の内周面によって第1外筒部21及び第2外筒部22の円筒部20dを径方向内方へ押圧して、かかる円筒部20dに所定の締め代(本実施の形態では、半径で0.01mm~0.02mm程度)を付与することで、第1外筒部21及び第2外筒部22を筒状部材40内に保持することを目的とする。このように、締め代が小さな値に設定され、比較的低い加圧力での絞り金型の動作により絞り加工を行うことができるため、プレス装置の小型化を図ることができる。なお、この場合には、後述するように、圧縮されたゴム膜部33,34の弾性回復力により、筒状部材40の内周面とゴム膜部33,34とが密着される。
 図8を参照して、曲げ工程について説明する。図8(a)は、曲げ工程において曲げ加工が施される前の状態における加硫成形体A及び筒状部材40の断面図であり、図8(b)は、曲げ工程において曲げ加工が施された後の状態における加硫成形体A及び筒状部材40の断面図である。
 筒状部材40の軸O方向端部に曲げ加工を施すためのかしめ金型は、一対の環状のダイスと、それら一対のダイスを軸O方向に移動可能に保持するホルダとを備える。一対のダイスの対向面には、筒状部材40の軸O方向端部が当接される部位に、軸Oを含む平面で切断した断面形状が円弧状に湾曲する凹部である湾曲凹部が凹設される。
 曲げ工程は、プレス装置の台上に設置されたかしめ金型の一対のダイス間に、図8(a)に示す状態の加硫成形体A及び筒状部材40をセットした後、プレス装置の加圧力により、一対のダイスを互いに近接する方向へ相対移動させる。かかる相対移動に伴い、筒状部材40の軸O方向端部が、ダイスの湾曲凹部の内面形状に沿って変形され、径方向内方へ向けて曲げられる。その結果、図8(b)に示すように、加硫成形体Aに筒状部材40が装着され、これらの組み立て(防振装置100の製造)が完了される。
 ここで、筒状部材40には、上述した筒状部材絞り工程における絞り加工が施されていることで(図7参照)、図8(a)に示すように、一対の治具Jが取り外された状態でも、その内周側に、第1外筒部21及び第2外筒部22を保持しておくことができる。
 この場合、第1外筒部21及び第2外筒部22の外周面と筒状部材40の内周面とが直接接触する(即ち、金属材料どうしが接触する)場合には、両者の間での摩擦係数の確保が困難となる。また、絞り加工後のスプリングバックは、外周側に位置する筒状部材40で大きくなるので、締め代の確保が困難となる。そのため、筒状部材40から第1外筒部21及び第2外筒部22が軸O方向へ抜け出すおそれがある。
 これに対し、本実施の形態では、第1外筒部21及び第2外筒部22の外周面の一部にゴム状弾性体から構成されるゴム膜部33,34が覆設されるので、かかるゴム膜部の介在により、摩擦係数を確保することができる。また、ゴム膜部33,34が介在することで、筒状部材40のスプリングバックによる締め代の不足分を、ゴム膜部33,34の弾性回復による圧縮力で補うことができる。よって、軸O方向への抜け出しに対する保持力を確保して、第1外筒部21及び第2外筒部22が筒状部材40から軸O方向へ抜け出すことを抑制できる。これにより、曲げ工程において使用するかしめ金型は、治具Jとの関係を考慮する必要がない(即ち、治具Jが取り外された状態で曲げ加工を行うことができる)ので、その構造を簡素化することができる。
 なお、一対の治具Jを取り外すことで、筒状部材40に対して第1外筒部21及び第2外筒部22が軸O方向へ多少ずれた(抜け出す方向へ移動した)としても、曲げ工程において筒状部材40の軸O方向端部に曲げ加工を施す際に、その曲げられた部分により第1外筒部21及び第2外筒部22を押し戻し、軸O方向の位置を規定する(適正な位置に配置する)ことができる。
 また、筒状部材40に絞り加工が施され、その内周面が、第1外筒部21及び第2外筒部22とゴム膜部33,34とに密着されていることで、防振装置100の使用時において、かかる筒状部材40の内周側で加硫成形体Aが径方向(軸O直角方向)にがたつくことを抑制することができる。
 以上のように、防振装置100によれば、ゴム基体30(第1ゴム部31及び第2ゴム部32)が、内筒部材10の膨出部12の外周面と、外筒部材20(第1外筒部21及び第2外筒部22)の凹状内周面IS(即ち、内筒部材10の膨出部12を取り囲む同心状の凹状の球面)との間を連結するので、こじり方向の変位の入力に対しては、ゴム基体30を、主にせん断方向に変形させることができる。よって、防振装置100のこじり方向におけるばね定数を小さくすることができる。
 この場合、加硫成形体Aは、加硫工程により、第1外筒部21の分割面と第2外筒部22の分割面とを軸O方向に離間させた(所定の間隔を隔てた)状態に第1ゴム部31及び第2ゴム部32が加硫成形される(図6(a)参照)。このような形態に加硫成形された加硫成形体Aは、ゴム基体圧縮工程(図6(b)及び図7(a)参照)、筒状部材絞り工程(図7(a)及び図7(b)参照)、及び、曲げ工程(図8(a)及び図8(b)参照)により、第1外筒部21及び第2外筒部22が、軸O方向に相対移動されて分割面どうしを互いに近接させた状態で、筒状部材40により保持固定される。これにより、第1ゴム部31及び第2ゴム部32に軸O方向への予備圧縮を付与することができる。
 なお、このような軸O方向への予備圧縮の付与は、従来品のように絞り加工に伴う外筒部材の縮径を利用する構造では付与不可能なものであり、防振装置100のように、軸O方向へ相対移動させた第1外筒部21及び第2外筒部22を、筒状部材40により保持固定する構造を採用したことで始めて付与可能となったものである。これにより、軸O方向におけるばね定数を大きくすることができると共に、軸O方向変位に対する耐久性の向上を図ることができる。
 また、防振装置100によれば、上述したように、加硫成形体Aは、第1外筒部21の分割面と第2外筒部22の分割面とを軸O方向に離間させた(所定の間隔を隔てた)状態で加硫成形され(図6(a)参照)、その加硫成形後に、第1外筒部21及び第2外筒部22を軸O方向へ相対移動させ(図6(b)及び図7(a)参照)、筒状部材40により保持固定する構成なので(図8(b)参照)、第1外筒部21と第2外筒部22との間の軸O方向における相対距離(即ち、筒状部材40に保持固定された際の分割面どうしの軸O方向における離間距離(図8(b)上下方向距離))を調整することができる。これにより、第1ゴム部31及び第2ゴム部32に付与する軸O方向への予備圧縮量を調整することができるので、軸O方向におけるばね定数の値を増減させることができる。
 なお、この場合には、筒状部材40の軸O方向端部の曲げ変形の量を調整する必要があり、曲げ工程(図8参照)で使用するかしめ金型の湾曲凹部の形状を調整する。この曲げ変形の量(湾曲凹部の形状)の調整で不足する場合には、筒状部材40の軸O方向寸法を変更する。
 次いで、図9を参照して、第2実施の形態における防振装置200について説明する。なお、上述した第1実施の形態と同一の部分には同一の符号を付して、その説明は省略する。図9(a)は、第2実施の形態における防振装置200を構成する加硫成形体Bの断面図であり、図9(b)は、第2実施の形態における防振装置200の断面図である。なお、図9(a)では、外筒絞り工程により外筒部材20に絞り加工が施されれる前の状態の加硫成形体Bが図示される。
 第2実施の形態における加硫成形体Bは、ゴム膜部233,234の構成(形成範囲)が、第1実施の形態におけるゴム膜部33,34の構成と異なる点を除き、他の構成は第1実施の形態における加硫成形体Aと同一である。また、防振装置200の製造方法は、防振装置100の場合と同一である。よって、これらの説明は省略する。
 図9(a)に示すように、第2実施の形態におけるゴム膜部233,234は、第1外筒部21及び第2外筒部22の外周面の全体に亘って覆設される。即ち、第1実施の形態におけるゴム膜部33,34の覆設範囲が円環部20aから円錐部20cの中途に亘る範囲であったのに対し(図5(b)参照)、この覆設範囲が延長され、円錐部20cの外周面および円筒部20dの外周面にもゴム膜部233,234が覆設される。
 ゴム膜部233,234は、第1実施の形態の場合と同様に、軸Oを中心とする上面視円形の外周面を形成する。これらゴム膜部233,234の外径(ゴム膜部233,234の外周面における径)は、筒状部材40の内径よりも小さくされる。
 第2実施の形態における防振装置200によれば、ゴム膜部233,234の覆設範囲が拡大されたことで、筒状部材40の内周面との接触面積を増加させることができる。これにより、筒状部材40による加硫成形体Bの保持力を確保できるので、筒状部材絞り工程により筒状部材40に絞り加工を施した後、曲げ工程へ移行するまでの間に(図8参照)、筒状部材40の内周側から加硫成形体Bが軸O方向へ抜け出すことをより確実に抑制することができる。
 次いで、図10を参照して、第3実施の形態における防振装置300について説明する。なお、上述した各実施の形態と同一の部分には同一の符号を付して、その説明は省略する。図10(a)は、第3実施の形態における防振装置300を構成する加硫成形体Cの断面図であり、図10(b)は、第3実施の形態における防振装置300の断面図である。
 第3実施の形態における加硫成形体Cは、第1外筒部321及び第2外筒部322の構成が、第1実施の形態における第1外筒部21及び第2外筒部22の構成と異なる点を除き、他の構成は第1実施の形態における加硫成形体Aと同一である。但し、ゴム膜部233,234については、第2実施の形態における加硫成形体Bと同一である。また、防振装置300の製造方法は、外筒絞り工程(図6参照、外筒部材320の絞り加工)が省略される点を除き、他の工程は防振装置100の場合と同一である。よって、これらの説明は省略する。
 図10(a)に示すように、第3実施の形態における外筒部材320は、鋳造により形成される中実状の部材(本実施の形態ではアルミダイカスト製の部材)であり、内周側に凹状の球面として形成される凹状内周面ISを備えると共に、その凹状内周面ISの軸O方向における中央部で第1外筒部321と第2外筒部322とに2分割される。これら第1外筒部321と第2外筒部322とは、同一の部材(構成)である。
 加硫成形体Cは、第1実施の形態における加硫成形体Aの場合と同様に、第1外筒部321の分割面と第2外筒部322の分割面とが軸O方向に離間し所定の間隔を隔てた状態に加硫形成される。凹状内周面ISは、ゴム基体圧縮工程(図7参照)において、第1外筒部321及び第2外筒部322が、それら両外筒部321,322の分割面どうしが互いに近接するように、軸O方向に相対移動されることで、内筒部材10の膨出部12における凸状の球面と同心状の凹状の球面に形成される。
 防振装置300によれば、こじり方向の変位の入力に対して、ゴム基体30(第1ゴム部31及び第2ゴム部32)を、主にせん断方向に変形させることができるので、こじり方向におけるばね定数を小さくすることができる。
 また、第1外筒部321及び第2外筒部322が、軸O方向に相対移動させて分割面どうしを互いに近接させた状態で、筒状部材40により保持固定されるので、第1ゴム部31及び第2ゴム部32に軸O方向への予備圧縮を付与することができる。
 即ち、外筒部材320(第1外筒部321及び第2外筒部322)が絞り加工(縮径加工)を施すことができない形状の場合であっても、第1ゴム部31及び第2ゴム部32に軸O方向への予備圧縮を付与して、軸O方向におけるばね定数を大きくすることができると共に、軸O方向変位に対する耐久性の向上を図ることができる。
 次いで、図11から図15を参照して、第4実施の形態における防振装置400について説明する。図11(a)は、第4実施の形態における防振装置400の上面図であり、図11(b)は、図11(a)のXIb-XIb線における防振装置400の断面図である。なお、上述した各実施の形態と同一の部分には同一の符号を付して、その説明は省略する。
 図11に示すように、内筒部材410は、軸Oを対称軸(回転中心)とする回転対称形状に形成される部材であり、挿通孔が軸Oに沿って貫通形成された筒状の軸部411と、その軸部411の外周面から径方向外方へ向けて膨出する球状の膨出部412とを備え、これらが金属材料から一体に構成される。膨出部412は、軸部411の軸O方向中央(図11(b)上下方向中央)に配設され、膨出部412における凸状の球面の中心は、軸部411の軸O上に位置する。
 外筒部材420は、軸O方向の中央部で第1外筒部421と第2外筒部422とに2分割される。ここで、図12を参照して、外筒部材420の詳細構成について説明する。なお、第1外筒部421と第2外筒部422とは、同一の部材(構成)であり、名称のみが異なる部材であるので、以下においては、第1外筒部421について説明し、第2外筒部422の説明は省略する。
 図12(a)は、第1外筒部421の上面図であり、図12(b)は、図12(a)のXIIb-XIIb線における第1外筒部421の断面図である。なお、図12では、外筒絞り工程における絞り加工(図14参照)が施される前の状態が図示される。
 図12に示すように、第1外筒部421は、板厚が一定の板状の金属材料(本実施の形態では鉄鋼材料)をプレス加工により器状に成形して得られる部材であり、軸Oを対称軸(回転中心)とする回転対称に形成される。なお、第1外筒部421に対し、従来品のように絞り加工を可能とするための凹溝を形成する必要がない点およびその効果は、第1実施の形態における第1外筒部21と同様であるので、その説明は省略する。
 第1外筒部421は、軸O方向一端側(図12(b)上側)に位置し、直径(内径および外径)が略一定に形成される円筒状の部位と、その円筒状の部位に接続され、分割面(図12(b)下側端面)へ向かうに従って直径が漸次拡大されると共に断面形状が円弧状に湾曲される部位とからなる。
 第1外筒部421は、後述する外筒絞り工程による絞り加工が施される前の状態において、円筒状の部位の内径寸法(即ち、第1外筒部421の軸O方向端部開口(図12(b)上側)における最小の内径寸法)が、内筒部材410の膨出部412における最大の外径寸法よりも小さくされる(図13(b)参照)。
 断面形状が円弧状に湾曲される部位には、周方向等間隔に複数(本実施の形態では4個)の貫通孔421aが貫通形成される。また、円弧状に湾曲される部位の内周面が、内筒部材410の膨出部412を取り囲む凹状内周面ISとされる。凹状内周面ISは、外筒絞り工程(図14参照)において、絞り加工(絞り変形される)ことで、内筒部材410の膨出部412における凸状の球面と同心状の凹状の球面に近づけられる。
 図11に戻って説明する。筒状部材440は、面取り面40aの形成が省略される点を除き、第1実施の形態における筒状部材40と同様の構成であるため(図4及び図15(a)参照)、その説明は省略する。なお、図11では、筒状部材絞り工程(図15参照)により絞り加工が施された後の筒状部材440が図示される。
 次いで、図13から図15を参照して、防振装置400の製造方法について説明する。まず、図13を参照して、加硫成形体Dの製造方法について説明し、併せて、ゴム基体430の構成について説明する。図13(a)は、加硫成形体Dの側面図であり、図13(b)は、図13(a)のXIIIb-XIIIb線における加硫成形体Dの断面図である。
 図13に示すように、加硫成形体Dは、第1実施の形態の場合と同様に、内筒部材410と外筒部材420(第1外筒部421及び第2外筒部422)とを加硫金型内に設置すると共に、ゴム基体430(第1ゴム部431及び第2ゴム部432)を加硫成形し、内筒部材410の外周面と外筒部材420(第1外筒部421及び第2外筒部422)の内周面との間がゴム基体430により連結されることで、製造される。
 この場合、加硫金型は、内筒部材410の軸O方向(図13(b)上下方向)中央に位置すると共に型締め後の形状が円環状となる中型を備え、型締め時には、その中型の内周先端縁部が、膨出部412の外周面(頂部)に所定の間隔を隔てて対面すると共に、中型の上面および下面が、第1外筒部421及び第2外筒部422の分割面を支持する。なお、この分割面の中型による支持部分(図示せず)は、周方向に断続して配置される。
 中型の介在により、第1外筒部421及び第2外筒部422は、その分割面を軸O方向に離間させた状態で加硫金型内に設置され、ゴム基体430は、第1ゴム部431と第2ゴム部432とに軸O方向に2分割された状態に加硫成形される。即ち、加硫成形体Dには、第1ゴム部431の分割面と第2ゴム部432の分割面との間(及び第1外筒部421の分割面および第2外筒部422の分割面との間)に中型に対応する形状(本実施の形態では断面コ字状)の空間SPが形成される。
 第1ゴム部431は、内筒部材410の膨出部412の外周面および第1外筒部421における凹状内周面ISを連結する部位であり、第2ゴム部432は、内筒部材410の膨出部412の外周面および第2外筒部422における凹状内周面ISを連結する部位である。
 ゴム基体430は、第1外筒部421の外周面に覆設されるゴム膜部431a,431bを備える。ゴム膜部431a,431bは、周方向に連続する2本の帯状の膜であり、ゴム膜部431aは第1外筒部421の貫通孔421aを介して、ゴム膜部431bは第1外筒部421の分割面を介して、それぞれ第1ゴム部431に連なる。
 なお、本実施の形態では、ゴム膜部431bが、第1外筒部421の分割面を介して、第1ゴム部431に連なる構成を採用するので、貫通孔421aに加え、更に、ゴム膜部431bを第1ゴム部431に連ならせるための貫通孔を第1外筒部421に貫通形成する必要がない。よって、貫通孔の形成を最小限に抑制できるので、その分、第1外筒部421の剛性を確保して、その耐久性の向上を図ることができる。
 ここで、ゴム膜部431a,431bの覆設範囲は部分的であり、ゴム膜部431aの上方(図13(b)上側)及びゴム膜部431a,431bの間の領域には、ゴム膜部431a,431bが覆設されない(即ち、第1外筒部421の外周面が露出される)。これにより、外筒絞り工程(図14参照)において、ゴム膜部431a,431bを介さずに、第1外筒部421の外周面を絞り金型(図示せず)により直接押圧可能として、その絞り加工を高精度に行うことができる。
 ゴム基体430は、第2外筒部422の外周面に覆設されるゴム膜部432a,432bを備える。これらゴム膜部432a,432bは、ゴム膜部431a,431bとそれぞれ同一に構成されるので、その説明は省略する。
 図14及び図15を参照して、加硫成形体Dと筒状部材440とから防振装置400を組み立てる組み立て方法について説明する。第1実施の形態(防振装置100)では、ゴム基体圧縮工程(図7参照)によりゴム基体30(第1ゴム部31及び第2ゴム部32)が軸O方向へ圧縮されたが、第4実施の形態(防振装置400)では、かかるゴム基体圧縮工程は省略される。
 図14(a)は外筒絞り工程において絞り加工が施される前の状態における加硫成形体Dの断面図であり、図14(b)は外筒絞り工程において絞り加工が施された後の状態における加硫成形体Dの断面図である。
 図14に示すように、加硫成形体Dは、外筒絞り工程において、第1外筒部421及び第2外筒部422が、外径D401から外径D402に縮径される(D402<D401)。これにより、ゴム基体430(第1ゴム部431及び第2ゴム部432)に径方向(軸O直角方向)への予備圧縮を付与することができる。なお、絞り金型の構成および作用は、第1実施の形態の場合と同様であるので、その説明は省略する。
 図15(a)は、筒状部材絞り工程において筒状部材440に絞り加工が施される前の状態における加硫成形体D及び筒状体440の断面図であり、図15(b)は、筒状部材絞り工程において筒状部材440に絞り加工が施された後の状態における防振装置400の断面図である。
 図15に示すように、第4実施の形態では、ゴム基体圧縮工程が省略されるので、筒状部材440に加硫成形体Dを軸O方向に沿って挿入し、加硫成形体Dを筒状部材440の内周側に設置した後は(図15(a))、筒状部材絞り工程において筒状部材440に絞り加工が施される(図15(b))。
 筒状部材絞り工程では、2段階の絞り加工が筒状部材440に施される。即ち、第1段階の絞り加工により、筒状部材440の全体が、外径D403から外径D404に縮径される(D404<D403)。次いで、第2段階の絞り加工により、筒状部材440は、軸O方向中央部分を除く軸O方向一端側および軸O方向他端側の部位が、第1外筒部421及び第2外筒部422の凹状内周面ISの背面側となる(即ち、断面形状が円弧状に湾曲される部位の)外周面に沿って密着する形状に縮径される(断面視において径方向内方へ折り曲げられる)。その結果、加硫成形体Dに筒状部材440が装着され、これらの組み立て(防振装置400の製造)が完了される。
 なお、第1段階の絞り加工と第2段階の絞り加工とは、異なる絞り金型によって行われるものであっても良く、或いは、同じ絞り金型により行われるものであっても良い。同じ絞り金型により行われる場合には、第1段階の絞り加工と第2段階の絞り加工とが同時に進行するものであっても良い。
 筒状部材絞り工程では、筒状部材440の内周面によって第1外筒部421及び第2外筒部422を径方向内方へ押圧して、かかる第1外筒部421及び第2外筒部422に所定の締め代(本実施の形態では、半径で0.01mm~0.02mm程度)を付与する。これにより、第1外筒部421及び第2外筒部422を筒状部材440内に強固に保持できる。この場合、圧縮されたゴム膜部431a~432bの弾性回復力により、筒状部材440の内周面とゴム膜部431a~432bとが密着される。
 なお、図15(a)に示すように、筒状部材440の内径は、外筒絞り工程による絞り加工(図14(b)参照)が施された後の外筒部材420(第1外筒部421及び第2外筒部422)の外径D402よりも大きくされる。本実施の形態では、筒状部材440の内径が、加硫成形体Dの最大外径(ゴム膜部431b,432bの外周面における外径)よりも大きくされる。これにより、防振装置400の組み立て作業において、加硫成形体Dを筒状部材440の内周側へ軸O方向に沿って挿入する作業を効率的に行うことができる。
 但し、筒状部材440の内径が、外筒部材420の外径D402よりも大きく、かつ、加硫成形体Dの最大外径(ゴム膜部431b,432bの外周面における径)よりも小さくされ、ゴム膜部431b,432bが弾性変形されつつ圧入される関係にあっても良い。筒状部材440に施す絞り加工の加工量を抑制して、歩留まりの向上や加工コストの削減を図ることができる。
 また、第1外筒部421及び第2外筒部422の外周面にゴム膜部431a~432bが覆設されるので、第1実施の形態の場合と同様に、摩擦係数を確保すると共に、筒状部材440のスプリングバックによる締め代の不足分を、ゴム膜部431a~432bの弾性回復による圧縮力で補うことができる。よって、第1外筒部421の分割面と第2外筒部422の分割面との間が離間されていても、軸O方向への移動に対する保持力を確保できる。これにより、軸O方向への大変位入力時に、第1外筒部421及び第2外筒部422が互いの分割面を近接させる方向へ筒状部材440内で移動することを抑制することができる。
 以上のように、防振装置400によれば、ゴム基体圧縮工程が省略され、第1ゴム部431の分割面と第2ゴム部432の分割面とが軸O方向に離間し互いの分割面の間に空間SPが形成された状態(即ち、第1ゴム部431及び第2ゴム部432に軸O方向への予備圧縮が付与されない状態)で、第1外筒部421及び第2外筒部422が筒状部材440により保持固定される。
 このように、第1ゴム部431の分割面と第2ゴム部432の分割面との間に空間SPが形成されることで、その空間SPの分、こじり方向における第1ゴム部431及び第2ゴム部432のせん断成分および軸O直角方向における第1ゴム部431及び第2ゴム部432の圧縮成分を抑制しつつ、軸O方向における第1ゴム部431及び第2ゴム部432の圧縮成分を確保することができる。その結果、こじり方向におけるばね定数および軸O直角方向におけるばね定数を小さくしつつ、軸O方向におけるばね定数を大きくすることができる。
 特に、防振装置400によれば、内筒部材410の膨出部412における最大の外径寸法(軸O方向中央部分における外径)が、第1外筒部421及び第2外筒部422の軸O方向端部開口における最小の内径寸法(円筒状の部位の内径寸法)よりも大きくされるので、軸O方向への変位に対し、受圧面積を大きくして、第1ゴム部431及び第2ゴム部432の圧縮成分を確保することができる。その結果、こじり方向におけるばね定数および軸O直角方向におけるばね定数を小さくしつつ、軸O方向におけるばね定数を大きくする効果を顕著とすることができる。
 なお、このような膨出部412の最大外径と外筒部材420の最小内径との関係は、内筒部材410の膨出部412と外筒部材420の凹状内周面ISとの間にゴム基体が連続して配設される(即ち、空間SPを有さない)従来品では、軸O方向におけるゴム基体の圧縮成分と同時に、こじり方向におけるゴム基体のせん断成分および軸O直角方向におけるゴム基体の圧縮成分も増大させるため、採用することが不可能であり、防振装置400のように、第1ゴム部431の分割面と第2ゴム部432の分割面との間に空間SPを形成することで初めて採用可能となったものである。
 ここで、本実施の形態は、第1実施の形態に対し、ゴム基体圧縮工程(図7参照)を省略し、第1ゴム部431及び第2ゴム部432に軸O方向への予備圧縮を付与しないことを技術思想とするが、筒状部材絞り工程(図15参照)において、筒状部材440の軸O方向一端側および軸O方向他端側の変形に伴い、第1ゴム部431及び第2ゴム部432が軸O方向に圧縮変形されることは許容される。即ち、第1ゴム部431の分割面と第2ゴム部432の分割面との間に空間SPが確保されていれば足りる趣旨である。
 次いで、図16を参照して、第5実施の形態における防振装置500について説明する。なお、上述した各実施の形態と同一の部分には同一の符号を付して、その説明は省略する。図16は、第5実施の形態における防振装置500の断面図である。
 第5実施の形態における防振装置500は、内筒部材510の構成が、第4実施の形態における内筒部材410の構成と異なる点を除き、他の構成は第4実施の形態における防振装置400と同一である。よって、これら同一の部分の説明は省略する。
 図16に示すように、第5実施の形態における防振装置500の内筒部材510は、筒状の軸部411と、その軸部411から径方向外方へ向けて膨出する球状の膨出部512とを備え、膨出部512が樹脂材料からなる。即ち、軸部411と膨出部512とが別材料から別体に構成される。このように構成される内筒部材510を採用した防振装置500においても、第4実施の形態における防振装置400と同一の作用効果を奏することができる。
 次いで、図17及び図18を参照して、第6実施の形態における防振装置600について説明する。第1実施の形態では、外筒部材20のみが軸O方向の中央部で2分割されたが、第6実施の形態では、外筒部材620に加え、内筒部材610も軸O方向の中央部で2分割される。なお、上述した各実施の形態と同一の部分には同一の符号を付して、その説明は省略する。
 また、第1内筒部610a、第1外筒部621及び第1ゴム部631は、第2内筒部610b、第2外筒部622及び第2ゴム部632と同一の部材(構成)であり、名称のみが異なる部材であるので、以下においては、前者についてのみ説明し、後者についての説明は省略する。
 図17は、第6実施の形態における加硫成形体Eの断面図である。図17に示すように、第6実施の形態における内筒部材610は、第4実施の形態における内筒部材410(図13(b)参照)を軸O方向の中央部で第1内筒部610aと第2内筒部610bとに2分割した形状に形成される。即ち、内筒部材610は、第1内筒部610a及び第2内筒部610bの互いの分割面どうしが当接されることで、筒状の軸部411と、その軸部411から径方向外方へ向けて膨出する球状の膨出部412とを有する内筒部材410と同一の形状に形成される(図18(a)参照)。
 第6実施の形態における外筒部材620(第1外筒部621及び第2外筒部622)は、第4実施の形態における外筒部材420(第1外筒部421及び第2外筒部422)に対し(図13(b)参照)、断面形状が円弧状に湾曲される部位の分割面側を軸O方向に延長した形状に形成される。
 即ち、第1外筒部621は、軸O方向一端側(図17上側)に位置し、直径が略一定に形成される円筒状の部位と、その円筒状の部位に接続され、分割面(図17下側端面)へ向かうに従って直径が漸次拡大される断面形状が円弧状に湾曲した部位とからなる。
 加硫成形体Eは、第1内筒部610a及び第1外筒部621が設置された加硫金型内で、第1ゴム部631を加硫成形し、第1内筒部610aの膨出部412における外周面と第1外筒部621における凹状内周面ISとの間を第1ゴム部631により連結することで製造される。即ち、加硫成形体Eは、図17に図示される上半分と下半分とが互いに同一の形状(構成)とされる。
 この場合、加硫成形体Eは、第1内筒部610aの分割面および第1外筒部621の分割面が、同じ軸O方向位置に配置される状態(即ち、両者の分割面が同一平面内に位置する状態)とされると共に、第1ゴム部631が第1内筒部610aの分割面および第1外筒部621の分割面よりも軸O方向に後退して位置する形状に形成される。これにより、第1ゴム部631には、第1内筒部610aの膨出部412における外周面と第1外筒部621の凹状内周面ISとの間に、これら第1内筒部610a及び第1外筒部621の分割面側が開放されると共に周方向に連続する空間である空間SPが形成される。
 図18を参照して、加硫成形体Eと筒状部材440とから防振装置600を組み立てる組み立て方法について説明する。なお、第6実施の形態(防振装置600)では、第4実施の形態(防振装置400)と同様に、ゴム基体圧縮工程が省略される。他の工程は、第4実施の形態と同一である。
 図18(a)は外筒絞り工程において絞り加工が施された加硫成形体Eと筒状部材絞り工程にいて絞り加工が施される前の状態における筒状部材440との断面図であり、図18(b)は、筒状部材絞り工程において筒状部材440に絞り加工が施された後の状態における防振装置600の断面図である。
 図18(a)に示すように、加硫成形体Eは、外筒絞り工程において、第1外筒部621及び第2外筒部622に絞り加工が施され、外径が縮径された後、筒状部材440に軸O方向に沿って挿入され、筒状部材絞り工程に移行される。筒状部材絞り工程では、第4実施の形態の場合と同様に、2段階の絞り加工が筒状部材440に施される。その結果、図18(b)に示すように、加硫成形体Eに筒状部材440が装着され、これらの組み立て(防振装置600の製造)が完了される。
 なお、外筒絞り工程および筒状部材絞り工程においては、第1内筒部610aの分割面と第2内筒部610bの分割面とを当接させ、内筒部材610が図示しない治具により軸O方向両側から挟圧保持された状態で、外筒部材620又は筒状部材440に絞り加工が施される。この場合、第1外筒部621及び第2外筒部622も互いの分割面どうしを当接させた状態となる。
 以上のように、第6実施の形態における防振装置600によれば、図18(b)に示すように、第1内筒部610a及び第1外筒部621の分割面と第2内筒部610b及び第2外筒部622の分割面とを当接させた状態で、第1外筒部621及び第2外筒部622を筒状部材440により保持固定させることができる。よって、第1ゴム部631及び第2ゴム部632に軸O方向の予備圧縮が付与されることを回避できる。また、第1ゴム部631の分割面と第2ゴム部632の分割面との間に空間SPを形成でき、その空間SPにより、こじり方向におけるばね定数および軸O直角方向におけるばね定数を小さくしつつ、軸O方向におけるばね定数を大きくすることができる。
 また、防振装置600によれば、上述の通り、第1ゴム部631の分割面と第2ゴム部632の分割面との間に空間SPを設定しつつ、第1外筒部621の分割面と第2外筒部622の分割面とを当接させておくことができるので、これら第1外筒部621及び第2外筒部622が、筒状部材440の内部で、互いの分割面を近接させる方向へ移動することを規制することができる。
 同様に、防振装置600によれば、筒状部材440の軸O方向中央部分を除く軸O方向一端側および軸O方向他端側の部位が、第1外筒部421及び第2外筒部422の凹状内周面ISの背面側となる(即ち、断面形状が円弧状に湾曲される部位の)外周面に沿って密着する形状に縮径される(断面視において径方向内方へ折り曲げられる)ので、筒状部材440に対して、第1外筒部621及び第2外筒部622が、互いの分割面を離間させる方向へ移動することも規制することができる。
 即ち、第1外筒部621及び第2外筒部622が、互いの分割面を近接させる方向へ移動する場合にはその移動を互いの分割面の当接により規制すると共に、互いの分割面を離間させる方向へ移動する場合にはその移動を筒状部材440の軸O方向一端側または軸O方向他端側の部位により規制することができる。これにより、これら両方向への移動を筒状部材440の内周面との間の摩擦に頼らずに規制することができるので、軸O方向への大変位入力時に、第1外筒部621又は第2外筒部622が筒状部材440に対して軸O方向に位置ずれすることを確実に抑制できる。
 次いで、図19を参照して、第7実施の形態における防振装置700について説明する。なお、上述した各実施の形態と同一の部分には同一の符号を付して、その説明は省略する。図19は、第7実施の形態における防振装置700の断面図である。
 図19に示すように、第7実施の形態における防振装置700は、内筒部材710に、膨出部412の軸O方向中央部からストッパ突出部713が径方向外方へ向けて突出される。ストッパ突出部713は、周方向に連続して形成され、その突出先端面が軸Oを中心とする円筒の外周面として形成される(即ち、突出先端面が図19に示す断面視において軸Oと平行な直線状に形成される)。
 外筒部材720(第1外筒部721及び第2外筒部722)は、第4実施の形態における外筒部材420(第1外筒部421及び第2外筒部422)に対し(図13(b)参照)、断面形状が円弧状に湾曲される部位の分割面側を軸O方向に短縮した形状に形成される。よって、その短縮の分、第4実施の形態における防振装置400に対し、空間SPの軸O方向寸法が大きくされる。また、第1外筒部721の分割面と第2外筒部722の分割面との間の軸O方向に沿った離間寸法は、後述するストッパゴム部735が通過可能な大きさに設定される。
 ゴム基体730は、ストッパ突出部713全体に覆設されるストッパゴム部735を備え、そのストッパゴム部735は、第1外筒部721及び第2外筒部722の凹状内周面と内筒部材710の膨出部412の外周面との間をそれぞれ連結する第1ゴム部731及び第2ゴム部732に連なる。ストッパゴム部735は、その外周面と筒状部材440の内周面との間に径方向において所定の隙間が形成されるように厚さ寸法(図19左右方向寸法)が設定される。
 以上のように、第7実施の形態における防振装置700によれば、径方向(軸O直角方向)への大変位入力時には、ストッパ突出部713をストッパゴム部735を介して筒状部材440の内周面に当接させ、その入力変位に伴うゴム基体730の変形を所定量に規制するストッパ機能を発揮させることができる。これにより、ゴム基体730の耐久性の向上を図ることができる。
 特に、防振装置700によれば、ストッパ機能を発揮するための部位(ストッパ突出部713及びストッパゴム部735)を、第1ゴム部731の分割面と第2ゴム部732の分割面との間に形成される空間SP内に収めることができるので、ストッパ機能の発揮によるゴム基体730の耐久性の向上を図りつつ、デッドスペースとなる空間SPを有効活用して、防振装置700の小型化を図ることができる。
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
 上記各実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。例えば、各構成の寸法(外径D1~D4,D401~D404など)や締め代などの値は任意に設定することができる。
 上記各実施の形態における防振装置の一部または全部を、他の実施の形態における防振装置の一部または全部と組み合わせて、又は、他の実施の形態における防振装置の一部または全部と置き換えて、防振装置を構成しても良い。例えば、第7実施の形態における内筒部材710の膨出部412を、第5実施の形態における内筒部材510の膨出部512に置き換えると共に、その樹脂製の膨出部512にストッパ突出部713を組み合わせて一体に形成しても良い。ストッパ突出部713の形成のための切削加工や複雑な鍛造加工を行うことを不要とできるので、歩留まりの向上と製造コストの削減とを図ることができる。
 上記第1から第3実施の形態では、加硫成形体A~Cにおいて、第1ゴム部31と第2ゴム部32とが分割される(互いの分割面が軸O方向に離間される)場合を説明したが、必ずしもこれに限られるものではなく、第1ゴム部31の分割面と第2ゴム部32の分割面とがその一部(内筒部材10の膨出部12の外周面側の一部)で連結されていても良い。一方、第4及び第5実施の形態では、第1ゴム部431の分割面と第2ゴム部432の分割面とがその一部で連なる場合を説明したが、必ずしもこれに限られるものではなく、第1ゴム部431と第2ゴム部432とが分割されていても良い。
 上記第1から第3実施の形態では、完成状態(防振装置100~300の状態)において、第1外筒部21,321の分割面と第2外筒部22,322の分割面とが軸O方向に離間されている場合を説明したが、必ずしもこれに限られるものではなく、完成状態において、第1外筒部21,321の分割面と第2外筒部22,322の分割面とが当接されていても良い。
 即ち、ゴム基体圧縮工程において、第1外筒部21,321の分割面と第2外筒部22,322の分割面とが当接される位置までゴム基体430(第1ゴム部31及び第2ゴム部32)を軸O方向へ圧縮し、その状態で、筒状部材絞り工程において、筒状部材40に絞り加工を施すと共に、曲げ工程において、筒状部材40の軸O方向端部に曲げ加工を施すことで、上記状態となるように防振装置100~300を製造しても良い。
 一方、第1から第3実施の形態において、ゴム基体圧縮工程を省略しても良い。即ち、外筒絞り工程の後、ゴム基体圧縮工程を行うことなく(ゴム基体430に軸O方向への予備圧縮を付与することなく)、筒状部材絞り工程に移行しても良い。
 上記各実施の形態では、ゴム膜部33,34,233,234,431a,431bを外筒部材20,320,420,620,720の外周面に覆設する場合を説明したが、必ずしもこれに限られるものではなく、これに代えて、或いは、これに加えて、筒状部材40,440の内周面にゴム膜部33,34,233,234,431a,431bを覆設しても良い。
 上記第1から第3実施の形態では、曲げ工程を行う(筒状部材40の軸O方向端部に曲げ加工を施す)場合を説明したが、必ずしもこれに限られるものではなく、曲げ工程を省略して、防振装置100~300を製造しても良い。即ち、筒状部材絞り工程において絞り加工が施された筒状部材40とゴム膜部33,34,333,334との間の保持力により、加硫成形品A~Cを筒状部材40の内周側に保持しても良い。
 上記第1から第3実施の形態では、その説明を省略したが、第1外筒部21,321及び第2外筒部22,322に貫通孔を形成しても良い。加硫成形工程におけるゴム状弾性体の流動性を貫通孔により確保することができるので、第1ゴム部31及び第2ゴム部32に連なるゴム膜部33,34,333,334の歩留まりを高めることができる。
 上記各実施の形態では、説明を省略したが、曲げ工程の後、内筒部材10,410,510,610,710に拡径加工(内筒部材10を軸O方向に圧縮して、軸O方向端部を拡径させることで、座面の面積を拡大させる加工)を施しても良い。
 上記第1、第2及び第4から第7実施の形態では、外筒絞り工程を行う(外筒部材20,420,620,720(第1外筒部21,421,621,721及び第2外筒部22,422,622,722)に絞り加工を施す)場合を説明したが、必ずしもこれに限られるものではなく、外筒絞り工程を省略して、防振装置100,200,400~700を製造しても良い。
 上記第3実施の形態では、外筒部材320を鋳造により形成する場合を説明したが、必ずしもこれに限られるものではなく、外筒部材320を、例えば、鍛造や切削により形成しても良い。
 上記第4から第7実施の形態では、ゴム基体圧縮工程を省略する場合を説明したが、必ずしもこれに限られるものではなく、ゴム基体圧縮工程によりゴム基体430,630,730に軸O方向への予備圧縮を付与した状態で、防振装置400~700を製造しても良い。
 上記第7実施の形態では、ストッパ突出部713が周方向に連続して形成される場合を説明したが、必ずしもこれに限られるものではなく、周方向に断続的に形成されるものであっても良い。
 ここで、請求項1記載の「凹状の球面」とは、完全な球面形状を要求するものではなく、少なくとも内筒部材の膨出部における凸状の球面に対向配置される凹状の面として形成されていれば足りる趣旨である。同様に、「凸状の球面と同心状」も、完全に中心が一致することを要求するものではなく、第1外筒部および第2外筒部から視て、凹状の球面の中心が、凸状の球面の中心と同じ側に位置すれば足りる趣旨である。
100,200,300,400,500,600,700  防振装置
10,410,510,610,710           内筒部材
610a                         第1内筒部
610b                         第2内筒部
12,412                       膨出部
713                          ストッパ突出部
20,320,420,620,720           外筒部材
21,321,421,621,721           第1外筒部
22,322,422,622,722           第2外筒部
IS                           凹状内周面
30,430,630,730               ゴム基体
31,431,631,731               第1ゴム部
32,432,632,732               第2ゴム部
33,333,431a,431b             ゴム膜部
34,334,432a,432b             ゴム膜部
735                          ストッパゴム部
40,440                       筒状部材
O                            軸
SP                           空間
 

Claims (8)

  1.  径方向外方へ向けて膨出する球状の膨出部を軸方向中央に有する内筒部材と、
     前記内筒部材の膨出部における凸状の球面と同心状の凹状の球面に形成され前記内筒部材の膨出部を取り囲む凹状内周面を有すると共に、前記内筒部材の外周側に配設される外筒部材と、
     前記内筒部材の膨出部の外周面および外筒部材の凹状内周面の間を連結すると共にゴム状弾性体から構成されるゴム基体とを備えた防振装置において、
     筒状に形成され前記外筒部材の外周側に配設されると共に前記外筒部材を保持固定する筒状部材を備え、
     前記外筒部材が、第1外筒部と第2外筒部とに軸方向に2分割されると共に、前記ゴム基体が、前記内筒部材の膨出部の外周面および第1外筒部における凹状内周面の間を連結する第1ゴム部と、前記内筒部材の膨出部の外周面および第2外筒部における凹状内周面の間を連結する第2ゴム部とに少なくとも前記外筒部材側で軸方向に2分割され、
     前記第1ゴム部の分割面と第2ゴム部の分割面とが軸方向に離間し互いの分割面の間に空間が形成された状態で、前記第1外筒部および第2外筒部が前記筒状部材により保持固定されることを特徴とする防振装置。
  2.  前記内筒部材の膨出部における最大の外径寸法が、前記第1外筒部および第2外筒部の軸方向端部開口における最小の内径寸法よりも大きくされることを特徴とする請求項1記載の防振装置。
  3.  前記第1外筒部および第2外筒部は、板厚が一定の素材から前記凹状内周面を備える形状に形成され、
     前記第1外筒部および第2外筒部に絞り加工が施された状態で、前記第1外筒部および第2外筒部が前記筒状部材により保持固定されることを特徴とする請求項1又は2に記載の防振装置。
  4.  前記第1外筒部および第2外筒部の外周面または前記筒状部材の内周面の少なくとも一方の少なくとも一部に覆設されると共にゴム状弾性体から構成されるゴム膜部を備え、
     前記第1外筒部および第2外筒部と筒状部材とが金属材料からなり、
     前記筒状部材に絞り加工が施されることで、前記第1外筒部および第2外筒部が前記筒状部材により保持固定されることを特徴とする請求項1から3のいずれかに記載の防振装置。
  5.  前記第1外筒部および第2外筒部の外周面および前記筒状部材の内周面の内の前記第1外筒部および第2外筒部の外周面のみに前記ゴム膜部が覆設され、
     前記ゴム膜部が前記第1ゴム部または第2ゴム部の少なくとも一方に連なることを特徴とする請求項4記載の防振装置。
  6.  軸方向における前記膨出部の中央部から径方向外方へ向けて突出されるストッパ突出部と、
     前記ストッパ突出部に覆設されると共にゴム状弾性体から構成され前記第1ゴム部または第2ゴム部の少なくとも一方に連なるストッパゴム部とを備え、
     前記第1外筒部の分割面と第2外筒部の分割面とが軸方向に離間されると共に、前記ストッパゴム部の外周面と前記筒状部材の内周面とが径方向に離間され、前記第1外筒部および第2外筒部の分割面の間を介して前記ストッパゴム部の外周面が前記筒状部材の内周面に当接可能とされることを特徴とする請求項1から5のいずれかに記載の防振装置。
  7.  前記内筒部材が、軸方向における前記膨出部の中央部で第1内筒部と第2内筒部とに2分割され、
     前記第1内筒部の分割面および第1外筒部の分割面が同じ軸方向位置に配置される状態で、前記第1内筒部における膨出部の外周面および前記第1外筒部における凹状内周面の間が前記第1ゴム部により連結されると共に、前記第1ゴム部が前記第1外筒部の分割面および第1内筒部の分割面よりも軸方向に後退して位置し、
     前記第2内筒部の分割面および第2外筒部の分割面が同じ軸方向位置に配置される状態で、前記第2内筒部における膨出部の外周面および前記第2外筒部における凹状内周面の間が前記第2ゴム部により連結されると共に、前記第2ゴム部が前記第2外筒部の分割面および第2内筒部の分割面よりも軸方向に後退して位置し、
     第1内筒部および第1外筒部の分割面と第2内筒部および第2外筒部の分割面とを当接させた状態で、前記第1外筒部および第2外筒部が前記筒状部材により保持固定されることを特徴とする請求項1から5のいずれかに記載の防振装置。
  8.  前記第1外筒部および第2外筒部は、板厚が一定の素材から前記凹状内周面を備える形状に形成されることで、前記凹状内周面の背面側となる外周面が軸方向端部へ向かうほど縮径された形状とされ、
     前記筒状部材には、絞り加工が施され、前記筒状部材の軸方向一端側および軸方向他端側が、前記第1外筒部および第2外筒部の前記凹状内周面の背面側となる外周面に沿って縮径された形状に形成されることを特徴とする請求項7記載の防振装置。
PCT/JP2012/084191 2012-03-20 2012-12-28 防振装置 WO2013140700A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280060907.6A CN103987988B (zh) 2012-03-20 2012-12-28 防振装置
MX2014010604A MX2014010604A (es) 2012-03-20 2012-12-28 Amortiguador de vibracion.
US14/368,470 US10316920B2 (en) 2012-03-20 2012-12-28 Anti-vibration device
DE112012005861.5T DE112012005861B4 (de) 2012-03-20 2012-12-28 Antischwingungsvorrichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012062955 2012-03-20
JP2012-062955 2012-03-20
JP2012143573A JP5400929B2 (ja) 2012-03-20 2012-06-26 防振装置
JP2012-143573 2012-06-26

Publications (1)

Publication Number Publication Date
WO2013140700A1 true WO2013140700A1 (ja) 2013-09-26

Family

ID=49222186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084191 WO2013140700A1 (ja) 2012-03-20 2012-12-28 防振装置

Country Status (6)

Country Link
US (1) US10316920B2 (ja)
JP (1) JP5400929B2 (ja)
CN (1) CN103987988B (ja)
DE (1) DE112012005861B4 (ja)
MX (1) MX2014010604A (ja)
WO (1) WO2013140700A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752637B2 (en) 2013-06-27 2017-09-05 Sumitomo Riko Company Limited Vibration damping bushing and manufacturing method of vibration damping bushing
US11433725B2 (en) * 2018-10-04 2022-09-06 Mazda Motor Corporation Bushing and vehicle suspension device
US20220307570A1 (en) * 2021-03-23 2022-09-29 Yamashita Rubber Co., Ltd. Vibration-damping device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055084A2 (en) * 2012-10-05 2014-04-10 Yusa Corporation Suspension bushing
US10767721B2 (en) 2015-08-18 2020-09-08 Hendrickson Usa, L.L.C. Bar pin bushing for vehicle suspension
US10704637B2 (en) * 2015-08-18 2020-07-07 Hendrickson Usa, L.L.C. Bar pin bushing for vehicle suspension
JP6532367B2 (ja) * 2015-09-30 2019-06-19 住友理工株式会社 ブラケット付き筒形防振装置
JP6867138B2 (ja) * 2016-10-31 2021-04-28 Toyo Tire株式会社 防振ブッシュ
DE112016005943B4 (de) * 2016-12-15 2022-12-22 Sumitomo Riko Company Limited Röhrenförmige Schwingungsdämpfungsvorrichtung
JP6886286B2 (ja) * 2016-12-21 2021-06-16 Toyo Tire株式会社 防振装置
CN106737158A (zh) * 2016-12-23 2017-05-31 泉州智信专利技术开发有限公司 一种具有消震作用的磨头及磨光机
DE112017002475T5 (de) * 2017-05-12 2019-01-24 Sumitomo Riko Company Limited Röhrenförmige Schwingungsdämpfungsvorrichtung
JP7009300B2 (ja) * 2018-04-25 2022-01-25 倉敷化工株式会社 防振装置
JP7094199B2 (ja) * 2018-10-26 2022-07-01 Toyo Tire株式会社 防振ブッシュ
FR3107327B1 (fr) * 2020-02-14 2022-03-25 Hutchinson Articulation antivibratoire à limitation axiale.
US11794828B2 (en) 2020-06-30 2023-10-24 Soucy International Inc. Pivot assembly for a ground-contacting wheel assembly
CN112268088B (zh) * 2020-10-24 2022-05-24 上海耘奇汽车部件有限公司 一种悬挂衬套及其生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229929A (ja) * 1989-01-24 1990-09-12 Caoutchouc Manuf Plast 弾性連接玉継手
JPH04185924A (ja) * 1990-11-21 1992-07-02 Bridgestone Corp 防振装置
JPH04210134A (ja) * 1990-11-30 1992-07-31 Bridgestone Corp 防振装置
JPH0567839U (ja) * 1992-02-21 1993-09-10 エヌ・オー・ケー・メグラスティック株式会社 防振マウント
JP2007139003A (ja) * 2005-11-15 2007-06-07 Toyo Tire & Rubber Co Ltd 防振装置
JP2008019927A (ja) * 2006-07-12 2008-01-31 Toyo Tire & Rubber Co Ltd 防振ブッシュ、及び、この防振ブッシュを備えたマルチリンク式サスペンション装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2126016A5 (ja) * 1971-02-20 1972-09-29 Jorn Raoul
JPH0650135B2 (ja) * 1988-07-28 1994-06-29 東洋ゴム工業株式会社 液体封入式ボディマウント
DE3933163A1 (de) * 1988-10-27 1990-05-03 Toyoda Gosei Kk Zylindrische daempfungsbuchse
JPH0567839A (ja) 1991-09-10 1993-03-19 Toshiba Corp 半導体レーザ装置
JP3486818B2 (ja) * 1993-06-15 2004-01-13 東洋ゴム工業株式会社 ブッシュ形防振ゴム
JP2587215Y2 (ja) * 1993-09-30 1998-12-16 武蔵精密工業株式会社 摺動ブッシュ
DE19634215C2 (de) * 1996-08-24 2000-11-09 Porsche Ag Zentrallager für eine Hinterachse eines Kraftfahrzeuges
US6113030A (en) * 1997-11-17 2000-09-05 Lord Corporation Readily changeable isolator and method of assembly thereof
JPH11325145A (ja) 1998-05-15 1999-11-26 Bridgestone Corp 防振ゴムブッシュ
JP2000046110A (ja) * 1998-07-28 2000-02-18 Tokai Rubber Ind Ltd スタビライザブッシュ
JP2001082533A (ja) * 1999-09-17 2001-03-27 Kinugawa Rubber Ind Co Ltd 液体封入型防振装置及びその製造方法
IT1320612B1 (it) 2000-08-31 2003-12-10 Gomma C F Spa Supporto elastico antivibrante e procedimento per la definizione dellesue caratteristiche.
JP2003341546A (ja) * 2002-05-27 2003-12-03 Toyo Tire & Rubber Co Ltd ボディマウント
EP1605173A1 (de) * 2004-06-08 2005-12-14 Woco AVS S.A.S. Elastiches Gelenk mit rotationssymmetrischem Kern
JP4740818B2 (ja) * 2006-10-12 2011-08-03 東洋ゴム工業株式会社 防振ブッシュを備えたリンク部材
JP4716387B2 (ja) 2008-09-02 2011-07-06 東洋ゴム工業株式会社 防振ブッシュ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229929A (ja) * 1989-01-24 1990-09-12 Caoutchouc Manuf Plast 弾性連接玉継手
JPH04185924A (ja) * 1990-11-21 1992-07-02 Bridgestone Corp 防振装置
JPH04210134A (ja) * 1990-11-30 1992-07-31 Bridgestone Corp 防振装置
JPH0567839U (ja) * 1992-02-21 1993-09-10 エヌ・オー・ケー・メグラスティック株式会社 防振マウント
JP2007139003A (ja) * 2005-11-15 2007-06-07 Toyo Tire & Rubber Co Ltd 防振装置
JP2008019927A (ja) * 2006-07-12 2008-01-31 Toyo Tire & Rubber Co Ltd 防振ブッシュ、及び、この防振ブッシュを備えたマルチリンク式サスペンション装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752637B2 (en) 2013-06-27 2017-09-05 Sumitomo Riko Company Limited Vibration damping bushing and manufacturing method of vibration damping bushing
US11433725B2 (en) * 2018-10-04 2022-09-06 Mazda Motor Corporation Bushing and vehicle suspension device
US20220307570A1 (en) * 2021-03-23 2022-09-29 Yamashita Rubber Co., Ltd. Vibration-damping device
US11946520B2 (en) * 2021-03-23 2024-04-02 Yamashita Rubber Co., Ltd. Vibration-damping device

Also Published As

Publication number Publication date
US20150014906A1 (en) 2015-01-15
JP2013224728A (ja) 2013-10-31
MX2014010604A (es) 2014-11-25
DE112012005861T5 (de) 2015-04-16
JP5400929B2 (ja) 2014-01-29
DE112012005861B4 (de) 2022-01-05
CN103987988A (zh) 2014-08-13
CN103987988B (zh) 2016-08-24
US10316920B2 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
JP5400929B2 (ja) 防振装置
US9010716B2 (en) Vibration-damping device
JP6356223B2 (ja) 車両用アーム部品の製造方法と車両用アーム部品
JP5687400B1 (ja) 防振連結ロッド用筒型防振装置とそれを用いた防振連結ロッド、防振連結ロッドの製造方法
JP6165810B2 (ja) 軸ハリ用筒形弾性連結装置
JP2013072484A (ja) 防振装置
JP5331228B1 (ja) 防振装置
JP2008185193A (ja) 防振装置
CN112805487B (zh) 碟形弹簧、碟形弹簧装置、以及碟形弹簧的制造方法
JP5654913B2 (ja) フランジ付き筒形防振ゴムの製造方法
JP5913821B2 (ja) 防振装置の製造方法
JP2015206402A (ja) 防振装置
JP4832344B2 (ja) 防振ブッシュの製造方法及び防振ブッシュ
CN108506397B (zh) 防振装置
JP2009180330A (ja) 自動車用筒形防振装置の製造方法
JP5629228B2 (ja) ストラットマウント
JP5537467B2 (ja) ストラットマウント及びストラットマウントの製造方法
JP2012042041A (ja) 防振ゴムの製造方法
JP5629226B2 (ja) ストラットマウント
JP2003269509A (ja) 防振ブッシュ
JP2014122661A (ja) 防振ブッシュ
JP4282712B2 (ja) 防振ブッシュの製造方法及び防振ブッシュ
JP4315972B2 (ja) 防振ブッシュの製造方法及び防振ブッシュ
JP2008221897A (ja) 車両サスペンション用アッパーサポートおよびその製造方法
JP2007232189A (ja) 防振ブッシュ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14368470

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120058615

Country of ref document: DE

Ref document number: 112012005861

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/010604

Country of ref document: MX

122 Ep: pct application non-entry in european phase

Ref document number: 12871689

Country of ref document: EP

Kind code of ref document: A1