WO2013097816A1 - 电动汽车的充电系统及具有其的电动汽车 - Google Patents
电动汽车的充电系统及具有其的电动汽车 Download PDFInfo
- Publication number
- WO2013097816A1 WO2013097816A1 PCT/CN2012/088061 CN2012088061W WO2013097816A1 WO 2013097816 A1 WO2013097816 A1 WO 2013097816A1 CN 2012088061 W CN2012088061 W CN 2012088061W WO 2013097816 A1 WO2013097816 A1 WO 2013097816A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charging
- module
- control
- switch
- charge
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/006—Supplying electric power to auxiliary equipment of vehicles to power outlets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/003—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0069—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/52—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/11—DC charging controlled by the charging station, e.g. mode 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/16—Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/18—Cables specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/24—Using the vehicle's propulsion converter for charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L55/00—Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/25—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J5/00—Circuit arrangements for transfer of electric power between ac networks and dc networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0036—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/342—The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
- H04B3/542—Systems for transmission via power distribution lines the information being in digital form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/12—Buck converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/14—Boost converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
- B60L2210/42—Voltage source inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/527—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/529—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/12—Driver interactions by confirmation, e.g. of the input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/22—Standstill, e.g. zero speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/26—Transition between different drive modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/147—Emission reduction of noise electro magnetic [EMI]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/20—Inrush current reduction, i.e. avoiding high currents when connecting the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/40—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
- H02J7/007194—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/126—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Definitions
- Electric vehicle charging system and electric vehicle having the same
- the present invention relates to the field of electric vehicle technology, and in particular to a charging system for an electric vehicle and an electric vehicle therewith. Background technique
- the vehicle charging and discharging device in this scheme mainly comprises a three-phase power transformer 1', six thyristor components forming a three-phase bridge circuit 2', a constant voltage control device AUR and The constant current control device AC, but this solution seriously wastes space and cost.
- Solution (2) As shown in Figure 3, the vehicle charging and discharging device in this solution installs two charging sockets 15', 16' for single/three-phase charging, which increases the cost; the motor drive circuit includes the inductance L1' and The filter module composed of capacitor C1', when the motor is driven, the three-phase current is generated by the filter module, which is a waste of battery power; when the program is charged and discharged, the inverter 13' rectifies/inverts the alternating current, rectification/ The voltage after inverter is not adjustable, and the applicable battery operating voltage range is narrow.
- the motor drive circuit includes the inductance L1' and The filter module composed of capacitor C1', when the motor is driven, the three-phase current is generated by the filter module, which is a waste of battery power; when the program is charged and discharged, the inverter 13' rectifies/inverts the alternating current, rectification/ The voltage after inverter is not adjustable, and the applicable battery operating voltage range is narrow.
- the object of the present invention is to at least solve one of the above technical drawbacks.
- an object of the present invention is to provide a charging system for an electric vehicle that can be used for civilian use.
- the industrial AC grid can carry out high-power AC charging on electric vehicles, so that users can charge efficiently and quickly anytime and anywhere, without constant voltage control device and constant current control device, saving space and cost, and wide range of battery operating voltage.
- Another object of the present invention is to provide an electric vehicle.
- an embodiment of the first aspect of the present invention provides a charging system for an electric vehicle, including: a power battery; a high voltage distribution box, the high voltage distribution box is connected to the power battery; and the first charging interface And the second charging interface, the first charging interface and the second charging interface are connected to an external power source; a first charging control branch and a second charging control branch, wherein the first charging control branch is connected to the power battery And the first charging interface, the second charging control branch is connected between the power battery and the second charging interface; and a controller, the controller and the high voltage distribution box, The first charging interface is connected to the second charging interface.
- the charging system of the electric vehicle can realize high-power AC charging of the electric vehicle by using the civil or industrial AC grid, so that the user can efficiently and quickly charge at any time and place, save charging time, and eliminate the need for constant voltage control device. And constant current control device, saving space and cost, and suitable for a wide range of battery operating voltage.
- an embodiment of another aspect of the present invention provides an electric vehicle including the charging system of the electric vehicle according to the first aspect of the invention.
- the electric vehicle according to the embodiment of the invention can perform high-power charging by three-phase or single-phase electric power, so that the user can quickly charge the electric vehicle anytime and anywhere, saving time cost and satisfying people's needs.
- FIG. 1 is a circuit diagram of a conventional vehicle charging and discharging device
- FIG. 2 is a schematic diagram of control of a conventional vehicle charging and discharging device
- FIG. 3 is a circuit diagram of another conventional vehicle charging and discharging device
- FIG. 4 is a block schematic diagram of a charging system in accordance with one embodiment of the present invention.
- FIG. 5 is a top plan view of a charging system in accordance with one embodiment of the present invention.
- FIG. 6 is a further block schematic diagram of a charging system in accordance with one embodiment of the present invention.
- FIG. 7 is a block schematic diagram of a controller in accordance with one embodiment of the present invention.
- 8 is a schematic diagram of a DSP and peripheral hardware circuit interface in a controller according to an example of the present invention;
- FIG. 9 is a functional judgment flow chart of a charging system according to an embodiment of the present invention.
- FIG. 10 is a block diagram showing a motor drive control function of a charging system according to an embodiment of the present invention
- FIG. 11 is a flowchart of a charge and discharge function start determination of a charging system according to an embodiment of the present invention
- FIG. 13 is a flow chart showing control of a charging system in a charging mode of operation
- FIG. 13 is a control flow chart of a charging system at the end of charging of an electric vehicle according to an embodiment of the present invention
- FIG. 14 is an electric drawing according to an embodiment of the present invention.
- FIG. 15 is a schematic diagram of a charging system according to another embodiment of the present invention.
- 16 is a schematic diagram of battery management interaction of a charging system in accordance with one embodiment of the present invention.
- 17 is a flow chart of single gun charging of a charging system in accordance with one embodiment of the present invention.
- Figure 20 is a schematic view of a charging and discharging socket of an example of the present invention.
- Figure 21 is a schematic illustration of an off-grid loaded discharge plug in accordance with another example of the present invention.
- Figure 22 is a block diagram showing a power carrier communication system of an electric vehicle according to still another embodiment of the present invention.
- Figure 23 is a block diagram showing a power carrier communication device;
- 24 is a schematic diagram of communication between eight power carrier communication devices and corresponding control devices
- 25 is a flow chart of a method for data reception by a power carrier communication system
- FIG. 26 is a block diagram showing the structure of a charging system in accordance with still another embodiment of the present invention. detailed description
- first feature described below on the "on" of the second feature may include an embodiment in which the first and second features are formed in direct contact, or Embodiments are formed between the first and second features including additional features such that the first and second features may not be in direct contact.
- the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be, for example, mechanical or electrical, or both.
- the internal communication of the components may be directly connected or indirectly connected through an intermediate medium.
- the specific meanings of the above terms may be understood according to specific situations.
- a charging system for an electric vehicle will first be described below. After the introduction of the charging system of the electric vehicle according to the embodiment of the present invention, the charging system of the electric vehicle is charged with one and two charging guns in detail in the embodiment of the present invention. It should be further noted that in the following embodiments, two charging guns are taken as an example. However, the present invention does not limit the number of charging guns, and multiple charging guns can be realized according to the technical solutions and principles described in the following embodiments. Charging.
- a charging system 100 for an electric vehicle includes: a power battery 10, a high voltage distribution box 90, a first charging interface INT1, a second charging interface INT2, and a first charging control branch. 401.
- the high voltage distribution box 90 is connected to the power battery 10.
- the first charging interface INT1 and the second charging interface INT2 are connected to an external power supply.
- the first charging control branch 401 is connected between the power battery 10 and the first charging interface INT1
- the second charging control branch 402 is connected between the power battery 10 and the second charging interface INT2.
- the controller 80 is connected to the high voltage distribution box 90, the first charging interface INT1, and the second charging interface INT2.
- the controller 80 controls the first charging control branch 401 to be activated to establish the power battery 10 and the first charging interface.
- the controller 80 adjusts the operating power of the first charging control branch 401 and the second charging control branch 402 to bring the first charging control branch 401 and the second charging control branch 402 into a fully loaded operating state.
- the high voltage distribution box includes: a first pre-charge control module 101, a first switch K1, and a drive control Switch 40.
- the first pre-charge control module 101 and the first switch K1 are connected in parallel, and one end of the first pre-charge control module 101 and the first switch K1 is connected to one end of the power battery 10, and the first pre-charge control module 101 and the first switch K1 are connected.
- the other end is connected to the first charging control branch 401 and the second end a2 of the second charging control branch 402.
- One end of the drive control switch 40 is connected to one end (positive pole) of the power battery 10, and the drive control switch 40 is connected to the third end a3 of the first charging control branch 401 and the second charging control branch 402, wherein the first pre- The charge control module 101, the first switch K1, and the drive control switch 40 are all connected to the controller 80.
- the controller 80 precharges the first charging control branch 401 and the second charging control branch 402 through the first pre-charging control module 101 while closing the first pre-charging control module 101.
- the first pre-charge control module 101 is controlled to be turned off and the first switch K1 is closed.
- the first charging control branch 401 and the second charging control branch 402 have the same structure.
- the first charging control branch 401 is taken as an example for the structure of the first charging control branch 401. Carry out a detailed description.
- the first charging control branch 401 includes a bidirectional DC/DC module 30, a bidirectional DC/AC module 50, and a charge and discharge control module 70.
- the first DC terminal al of the bidirectional DC/DC module 30 is connected to the other end of the power battery 10, and is bidirectional.
- the second DC terminal a2 of the DC/DC module 30 is connected to one end of the power battery 10, and the first DC terminal al is a common DC terminal input and output of the two-way DC/DC module 30.
- the first DC terminal bl of the bidirectional DC/AC module 50 is connected to the other end of the drive control switch 40, and the second DC terminal b2 of the bidirectional DC/AC module 50 is connected to the other end of the power battery 10.
- One end of the charge and discharge control module 70 is connected to the AC terminal c of the bidirectional DC/AC module 50, wherein the other end of the charge and discharge control module 70 of the first charge control branch 401 is connected to the first charging interface INT1, and the second charging control is performed.
- the other end of the charge and discharge control module 70 of the branch 402 is connected to the second charging interface INT2.
- the first charging interface INT1 and the second charging interface INT2 can be connected not only to the charging gun for charging, but also to the charging socket for charging.
- the charging system 100 for an electric vehicle further includes: a motor control switch 60.
- One end of the motor control switch 60 is connected to the AC terminal c of the bidirectional DC/AC module 50, and the other end of the motor control switch 60 is connected to the motor M.
- the motor control switch 60 is controlled by a controller 80 that closes the motor control switch 60 when the electric vehicle is in the drive mode.
- the controller 80 controls the driving control switch 40 to close to turn off the bidirectional DC/DC module 30, and controls the motor control switch 60 to be closed, and controls the charge and discharge control. Module 70 is disconnected.
- the bidirectional DC/DC module 30 further includes a first open The switch Q l , the second switch Q2 , the first diode D l , the second diode D2 , the first inductor L 1 and the first capacitor C l are closed.
- the first switch tube Q 1 and the second switch tube Q2 are connected in series with each other, and the first switch tube Q 1 and the second switch tube Q2 connected in series are connected to the first DC end of the bidirectional DC/DC module 30 and the first Between the three DC terminals a3, the first switch tube Q1 and the second switch tube Q2 are controlled by the controller module 80, and the first switch tube Q1 and the second switch tube Q2 have a first node A therebetween.
- the first diode D 1 is connected in anti-parallel with the first switching transistor Q l
- the second diode D2 is connected in anti-parallel with the second switching transistor Q2 .
- One end of the first inductor L 1 is connected to the first node A, first The other end of the inductor L 1 is connected to one end of the power battery 10.
- One end of the first capacitor C 1 is connected to the other end of the first inductor L 1 , and the other end of the first capacitor C 1 is connected to the other end of the power battery 10 .
- the first charging control branch 401 further includes: a leakage current reducing module 102.
- the leakage current reduction module 102 is connected between the first DC terminal al of the bidirectional DC/DC module 30 and the third DC terminal a3 of the bidirectional DC/DC module 30.
- the leakage current reduction module 102 includes a second capacitor C2 and a third capacitor C3.
- One end of the second capacitor C2 is connected to one end of the third capacitor C3, and the other end of the second capacitor C2 is connected to the bidirectional DC/DC module 30.
- the other end of the third capacitor C3 is connected to the third DC terminal a3 of the bidirectional DC/DC module 30.
- the second capacitor C2 and the third capacitor C3 have a second node B.
- the charging system 100 increases the leakage current reduction module 102 at the positive and negative ends of the DC bus, which can effectively reduce the leakage current.
- the leakage current reduction module 102 includes two capacitors C2 and C3 of the same type, which are installed between the positive and negative terminals of the DC bus and the midpoint potential of the three-phase AC. When the system is in operation, the generated high-frequency current can be fed back to the DC side. That is to effectively reduce the high-frequency leakage current of the system during operation.
- the charging system of the electric vehicle further includes a filtering module 103, a filtering control module 104, and a second pre-charging control module 106.
- the filter module 103 is connected between the bidirectional DC/AC module 50 and the charge and discharge control module 70.
- the filtering module 103 includes inductors L A , L B , L c and capacitors C4, C5, C6, and the bidirectional DC/AC module 50 may include six IGBTs between the upper and lower IGBTs.
- the connection points are respectively connected to the filter module 103 and the motor control switch 60 via a power bus.
- the filter control module 104 is connected between the second node B and the filter module 103, and the filter control module 104 is controlled by the controller module 80.
- the controller module 80 is currently driven in the working mode of the charging system.
- the mode control filter control module 104 is turned off during mode.
- the filter control module 104 can be a capacitor switching relay, and is composed of a contactor K10.
- the first charging interface INT 1 is connected between the charging gun 1 and the corresponding charging and discharging control module 70.
- the second pre-charge module 106 is connected in parallel with the charge and discharge control module 70.
- the second pre-charge control module 106 is configured to pre-charge the capacitors C4, C5, and C6 in the filter module 103.
- the second pre-charge control module 106 includes three resistors R A , R B , R c and a three-phase pre-charge switch K9 connected in series.
- the charge and discharge control module 70 further includes a three-phase switch ⁇ 8 and/or a single-phase switch ⁇ 7 for achieving three-phase charge and discharge or single-phase charge and discharge.
- the controller module 80 controls the first pre-charging module 101 to be closed to pre-charge the first capacitor C1 and the bus capacitor CO in the bidirectional DC/DC module 30, and
- the voltage of the bus capacitor CO is at a preset multiple of the voltage of the power battery 10
- the first pre-charging module 101 is controlled to be turned off while the first switch K1 is controlled to be closed.
- the main components of the battery low temperature activation technology are realized by the bidirectional DC/DC module 30 and the large-capacity bus capacitor CO directly connected between the power bus, that is, the DC bus, for passing the power of the power battery 10 through the bidirectional DC/DC module.
- the bidirectional DC/DC module 30 is charged into the large-capacity bus capacitor CO, and then the electric energy stored in the large-capacity bus capacitor C0 is charged back to the power battery 10 through the bidirectional DC/DC module 30 (that is, when the power battery is charged), and the power battery 10 is cyclically charged and discharged.
- the temperature of the power battery rises to the optimum operating temperature range.
- the controller module 80 controls the driving control switch 40 to close to close the bidirectional DC/DC module 30, and controls the motor control switch 60 to close to drive the motor M normally, and to control the charging and discharging.
- Control module 70 is turned off.
- the motor control switch 60 of FIG. 5 includes three switches connected to the three-phase input of the motor, it may include two phases with the motor in other embodiments of the present invention. Enter the two connected switches, or even one. As long as the control of the motor can be realized. Therefore, other embodiments are not described herein again.
- the DC power of the power battery 10 is inverted into AC power by the bidirectional DC/AC module 50 and sent to the motor M, and the rotation transformer decoder technology and the space vector pulse width modulation (SVPWM) control algorithm can be used to control the operation of the motor M. .
- SVPWM space vector pulse width modulation
- the controller module 80 controls the driving control switch 40 to open to activate the bidirectional DC/DC module 30, and controls the motor control switch 60 to be disconnected.
- an external power source such as three-phase power or single-phase power can be charged through the charging gun 1 to normally charge the power battery 10. That is to say, by detecting the charging connection signal, the AC grid power system and the vehicle battery management related information, the bidirectional DC/AC module 50 is used for the controllable rectification function, and combined with the bidirectional DC/DC module 30, the single phase/three can be realized.
- the phase power charges the vehicle power battery 10.
- the charging system of the electric vehicle can realize high-power AC charging of the electric vehicle by using the civil or industrial AC grid, so that the user can efficiently and quickly charge at any time and place, save charging time, and eliminate the need for constant voltage control device. And constant current control device, saving space and cost, and suitable for a wide range of battery operating voltage. Charging the power battery with two or more charging guns can provide a large charging current, which greatly shortens the charging time, and is more suitable for applications such as electric buses that require a large-capacity power battery.
- the charging system of the electric vehicle may further include an instrument 107, a battery manager 108, and a vehicle signal 109.
- the controller module 80 includes a control board 201 and a driver board.
- the control module on the control board 201 is controlled by two high-speed digital signal processing chips (DSP1 and DSP2).
- the control module on the control board 201 is connected to the vehicle information interface 203 and exchanges information with each other.
- the control module on the control board 201 receives the bus voltage sampling signal, the IPM protection signal, and the IGBT temperature sampling signal output from the driving module on the driving board 202, and simultaneously outputs the pulse width modulation PWM signal to the driving module.
- DSP1 is mainly used for control
- DSP2 is used for information collection.
- the sampling unit in DSP1 outputs throttle signal, bus voltage sampling signal, brake signal, DC side voltage sampling signal, motor current Hall V phase signal, motor current Hall W phase signal, charging control current Hall U phase signal, charging control Current Hall V-phase signal, charge control current Hall W-phase signal, DC current Hall signal, inverter voltage U-phase signal, inverter voltage V-phase signal, inverter voltage W-phase signal, grid voltage U-phase signal, grid Sampling signals such as voltage V-phase signal, grid voltage W-phase signal, inverter U-phase capture signal, grid U-phase capture signal, switch control unit in DSP1 output motor A-phase switching signal, motor B-phase switching signal, grid A-phase switch Signal, grid B-phase switching signal, grid C-phase switching signal, three-phase pre-charge switching signal and capacitor switching relay signal, etc., the driving unit in DSP1 outputs phase PWM1 signal, A-phase PWM2 signal, B-
- the DSP1 also features functions such as resolver signal output control, serial communication, hardware protection, CAN communication, and gear position control.
- the sampling unit in DSP2 outputs power supply monitoring signal, power supply monitoring signal, throttle 1 signal, brake 2 signal, throttle 2 signal, brake 1 signal, motor analog temperature signal, leakage sensor signal, heat sink temperature signal, DC side inductor temperature sampling.
- V-phase inductor temperature sampling signal V-phase inductor temperature sampling signal, U-phase inductor temperature sampling signal, W-phase inductor temperature sampling signal, discharge PWM voltage sampling signal, tilt sensor read signal, tilt sensor chip select signal, IGBT temperature sampling W-phase signal, IGBT temperature sampling U-phase signal, IGBT temperature sampling buck-boost phase signal, IGBT temperature sampling V-phase signal, motor temperature switch signal, single/three-phase switching switch signal, etc.
- the charge and discharge control unit in DSP2 outputs charge and discharge switch signal, sleep signal,
- the discharge PWM signal, the battery manager BMS signal, the charge and discharge output control signal, the CP signal, and the CC signal, etc., and the DSP 2 also has CAN communication and serial communication functions.
- the charging system of the electric vehicle integrates the motor driving function, the vehicle control function, the AC charging function, the grid-connecting function, the off-net loading function, and the vehicle-to-vehicle charging function. and,
- the charging system does not integrate the physical modules of various functional modules into one, but on the basis of motor drive control, by adding some peripheral devices, the functions of the system are diversified, maximizing space saving and cost, and improving power. density.
- the DC power of the power battery 10 is inverted into AC power by the bidirectional DC/AC module 50 and sent to the motor M, which can be controlled by a rotary transformer decoder technology and a space vector pulse width modulation (SVPWM) control algorithm. The operation of the motor M.
- SVPWM space vector pulse width modulation
- the system function judging process includes the following steps:
- the throttle, gear and brake signals are also required to be judged.
- the gear position is N
- the hand brake, and the charging connection that is, the CC signal is valid (that is, the charging and discharging socket 20 is connected with the charging connection device)
- the charging and discharging control flow is entered.
- the controller module 80 controls the motor control switch 60 to be closed, notifies the battery manager 108 via CAN communication, and the battery manager 108 controls the high voltage distribution box 90 to precharge C1 and CO, the controller module 80 detects the bus voltage 187, determines whether the pre-charge is successful, and successfully informs the battery manager 108 to close the drive control switch 40 after successful, the system enters the drive mode, and the controller module 80 collects the vehicle information, and processes the motor M through comprehensive judgment. Drive.
- the controller module 80 transmits a PWM signal to control the bidirectional DC/AC module 50, inverts the DC power of the power battery 10 to AC power, and supplies it to the motor M, and the controller module 80
- the rotor position is solved by a resolver, and the bus voltage and the motor BC phase current are collected to enable the motor M to operate accurately. That is to say, the controller module 80 adjusts the PWM signal according to the motor BC phase current signal sampled by the current sensor and the feedback information of the resolver, and finally enables the motor M to operate accurately.
- the throttle, brake and gear position information of the vehicle are judged, the current operating conditions are judged, and the acceleration, deceleration and energy feedback functions of the vehicle are realized, so that the whole vehicle can safely and reliably operate under various working conditions, and the vehicle is guaranteed. Safety, power and peace.
- the charging and discharging connection device that is, the charging gun is physically connected, and the power supply is normal.
- Power supply equipment detects the charging signal CC connection is normal. If yes, the process goes to step S1103; if no, the process returns to step S1102 to continue the detection.
- the power supply device detects whether the voltage at the CP detection point is 9V. If yes, go to step S1106; if no, return to step S1102 to continue the detection. Among them, 9V is a preset example value.
- the controller module detects the charging signal whether the CC connection is normal. If yes, go to step S1105; if no, go back to step S1104 to continue the detection.
- control flow of the charging system in the charging mode includes the following steps:
- step S1201 judging whether the system is fully started after the system is powered. If yes, go to step S1202; if no, go back to step S1201 to continue the determination.
- step S1203 Determine whether the CP detection point detects a PWM signal with a fixed duty ratio. If yes, go to step S1204; if no, go to step S1205.
- step S1206 sending a charging connection to the normal charging ready message, receiving the BMS charging permission, and charging the contactor to pick up the message, and proceeding to step S1206.
- the controller module pulls in the internal switch.
- step S1207 Determine whether the external charging device detects no PWM wave transmission within a preset time, for example, 1.5 seconds. If yes, go to step S1208; if no, go to step S1209.
- 51210 Determine whether the AC input is normal within a preset time, for example, within 3 seconds. If yes, go to step S1213; if no, go to step S1211.
- the battery manager 108 controls the high voltage distribution box 90 to be closed.
- the first switch K1 performs pre-charging, and after the pre-charging is completed, the first pre-charging module 101 is disconnected, the first switch K1 is sucked, the controller module 80 receives the BMS charging permission, the first switch K1 picks up the message, and the charging and discharging preparation is completed.
- the charging system receives the meter charging command, and the battery manager 108 allows the maximum charging current, the maximum supply current of the power supply device, and the charging and discharging connection device (ie, the charging and discharging socket 20 or the charging gun 1)
- the rated current of the controller, the controller module 80 determines the minimum charging current among the three, and automatically selects the charging related parameters.
- the charging system samples the alternating current delivered by the power supply device through the grid voltage sampling 183, and the controller module 80 calculates the effective value of the alternating current voltage through the sampled value, determines the alternating current frequency by capturing, and determines the alternating current electric power according to the voltage value and the frequency. According to the grid system, the control parameters are selected.
- the controller module 80 controls the K9 in the second pre-charging module 106 and the contactor K10 in the filter control module 104 to pick up, charge the PWM DC side bus capacitor C0, and the controller module 80 passes the 187 pair bus.
- the voltage of the capacitor is sampled, and when the capacitor voltage reaches a predetermined control parameter, for example, a predetermined multiple of the voltage of the power battery, the three-phase switch K8 is controlled to be pulled, and K9 is turned off.
- the charging system sends a PWM signal according to the pre-selected parameters, and controls the bidirectional DC/AC module 50 to rectify the alternating current, and then controls the bidirectional DC/DC module 30 to adjust the voltage according to the power battery voltage, and finally
- the DC power is supplied to the power battery 10, and in the process, the controller module 80 performs a closed loop current loop adjustment on the entire charging system according to the phase currents previously selected by the target charging current and the current sampling 184, and finally realizes the on-board power battery. 10 to charge.
- the bidirectional DC/AC module 50 is used for the controllable rectification function, and the bidirectional DC/DC module 30 is combined to realize the single phase/three phase Charging the vehicle power battery 10 by electricity.
- V to L Off-grid load function
- the charging system receives the V to L command from the meter. First, it is judged whether the SOC of the power battery is in the dischargeable range. If the discharge is allowed, the output is selected according to the command. According to the rated current of the charging and discharging connection device, the maximum output power is intelligently selected and given the control parameters, and the system enters the control flow.
- the controller module 80 controls the pull-in three-phase switch K8 and the contactor K10, and sends a PWM signal according to the battery voltage and the given output voltage to control the bidirectional DC/DC module 30 to adjust the voltage, and after reaching the target value, the signal is sent to the bidirectional DC.
- the /AC module 50 inverts the direct current into alternating current, and can directly supply power to the powered device through a dedicated charging socket. During this process, the controller module 80 adjusts according to the voltage sample 183 feedback. Section, to ensure safe and reliable work load.
- the system is powered on, when connected to the V to L control command of the instrument and the output electrical system requirements, the charging connection signal and the battery management information of the vehicle are detected, and the DC/DC voltage conversion is performed according to the voltage of the battery, and the bidirectional DC is borrowed.
- the /AC module 50 performs an AC inverter function to output a stable single-phase/three-phase AC voltage.
- V to G Grid-connected function
- the charging system receives the V to G command from the meter. First, it determines whether the SOC of the power battery is within the dischargeable range. If the discharge is allowed, the output system is selected according to the command. The rated current of the device, intelligently selects the output maximum output power and gives the control parameters, and the charging system enters the control flow.
- the controller module 80 controls the pull-in three-phase switch K8 and the contactor K10, and sends a PWM signal according to the battery voltage and the given output voltage to control the bidirectional DC/DC module 30 to adjust the voltage after passing through the bidirectional DC/AC module 50. Inverting the direct current into alternating current, according to the pre-selected discharge current target value and the phase current fed back by the current sampling 184, the closed loop current loop adjustment is performed on the entire charging system to realize grid-connected discharge.
- the charging system is powered on, when connected to the V to G control command of the meter, detecting the charging connection signal, the AC grid power system and the vehicle battery management information, and performing DC/DC voltage conversion according to the voltage of the battery, borrowing
- the bidirectional DC/AC module 50 performs AC inverter to realize single-phase/three-phase vehicle-to-grid discharge function.
- V to V Vehicle-to-vehicle charging function
- the V to V function requires a dedicated connection plug.
- the charging system detects that the charging connection signal CC is valid, and detects that its level is confirmed as a VTOV dedicated charging plug, wait Instrument command.
- the vehicle A charges the vehicle B
- the vehicle A is set to the discharge state, that is, set to the off-net load function
- the vehicle B is set to the AC charging state
- the controller module of the vehicle A transmits the charging connection normal charge ready message to The battery manager
- the battery manager controls the charging and discharging circuit to pre-charge, after the completion of the transmission of the charging permission
- the charging contactor pulls the message to the controller module
- the charging system performs the discharging function, and sends the PWM signal.
- the vehicle B detects the CP signal, and determines that the powered vehicle A is ready.
- the controller module 80 sends a connection normal message to the battery manager, and the battery manager completes the pre-filling process after receiving the command.
- the controller module is notified, the entire charging system is ready for charging, the charging function (G to V) is activated, and finally the vehicle charging function is implemented.
- the system is powered on, when connected to the V to V control command of the instrument, detecting the charging connection signal and the relevant information of the vehicle battery management, setting the vehicle to the AC output power state, and simulating the external charging device outputting the CP signal function, Realize interaction with vehicles that need to be recharged.
- the vehicle performs DC/DC voltage conversion according to the voltage of the battery, and uses the bidirectional DC/AC module 50 for AC inversion to realize the charging function of the single-phase/three-phase vehicle to the vehicle.
- control flow of the charging system at the end of charging of the electric vehicle includes the following steps:
- step S1301 The power supply device turns off the power supply switch, stops the AC output, and proceeds to step S1305. 51302, the controller module controls to stop charging, performs unloading, and proceeds to the next step S1303.
- the power supply device 301 is connected to the vehicle plug 303 of the electric vehicle 1000 through the power supply plug 302, thereby realizing charging of the electric vehicle 1000.
- the charging system of the electric vehicle detects the CP signal through the detection point 3 and detects the CC signal through the detection point 4, and the power supply device detects the CP signal through the detection point 1 and detects the CC signal through the detection point 2.
- the internal switch S2 in the power supply plug 302 and the vehicle plug 303 is controlled to be disconnected.
- the first charging control branch 401 and the second charging control branch 402 are simultaneously charged to the power battery, wherein the first charging control branch 401 A controller 80 is shared with the second charging control branch 402.
- the charging system of the electric vehicle includes a power battery 10, a first charging control branch 401, a second charging control branch 402, and a controller 80.
- the first charging control branch 401 is connected to the charging gun 1
- the second charging control branch 402 is connected to the charging gun 2.
- the first charging control branch 401 and the second charging control branch 402 further include a fuse FU.
- the power battery 10 is connected to the first charging control branch 401 through the first pre-charging control module 101.
- the power battery 10 is also connected to the second charging control branch 402 through the first pre-charging control module 101.
- the controller 80 is respectively associated with the first
- the charging control branch 401 is connected to the second charging control branch 402.
- the controller module 80 is configured to control the power grid to pass through the first charging control branch 401 and the second charging control branch 402 to the power battery respectively when receiving the charging signal. 10 to charge.
- Step S 161 the charging gun connection is completed, that is, the charging induction signal is received, and the external AC charging device (charge gun) is connected with the vehicle, and the connection is completed.
- Step S162 The controller collects relevant information and enters a charging mode. Specifically, the controller detects the charging induction signal and automatically switches to the charging function.
- Step S 163 the controller self-tests the faultless transmission ready message. That is, the controller checks itself, and after detecting no fault, sends ready information through the CAN signal.
- Step S 164 picking up the DC pre-charge contactor. That is, after the battery management receives the information. Firstly, the first pre-charge control module is sucked in, and the large capacitance at the bus bar is pre-charged. In step S165, the controller transmits the bus voltage in real time.
- Step S166 determining whether the difference between the received voltage and the actual power battery voltage is less than a threshold value of 1. That is, when the precharge voltage differs from the actual battery voltage by a threshold of 1 (e.g., threshold 1 is 50 ⁇ ), it is considered that the precharge is successful, and step S167 is performed, otherwise step S168 is performed.
- a threshold of 1 e.g., threshold 1 is 50 ⁇
- Step S167 picking up the charging contactor (ie, the first switch K1), and delaying disconnecting the pre-charging contactor (ie, the first pre-charging control module). That is, the charging contactor is pulled in and the pre-charge contactor is disconnected.
- Step S168 sending a precharge failure fault, disconnecting the precharge contactor
- Step S169 indicating a fault.
- the controller communicates with the external AC power supply device to notify the external AC power supply device (charging pile) to output three-phase AC power.
- the three-phase AC input the three-phase AC voltage amplitude, frequency and phase sequence
- the detection is performed and the detection is correct, as shown in Fig. 17, the control flow at the time of single gun charging is shown.
- control flow when charging a single charging gun is as follows:
- Step S171 The charging contactor (the first switch K1) is sucked, and the controller communicates with the power supply device (charging pile).
- Step S172 The power supply device outputs three-phase or single-phase alternating current.
- Step S173 It is judged whether the detection of the frequency, amplitude and phase sequence of the three-phase or single-phase alternating current is normal. If it is normal, step S174 is performed, otherwise step S182 is performed.
- Step S 174 Pull in the capacitive contactor (ie, filter control module 104).
- Step S175 Pulling in the AC pre-charge contactor (ie, the second pre-charge control module 106).
- Step S176 It is judged whether the bus voltage reaches the set threshold 2, and if yes, step S177 is performed, otherwise step S181 is performed.
- Step S177 Pull in the AC contactor (ie, the three-phase switch K8 or the single-phase switch K7), and delay the disconnection of the AC pre-charge contactor (ie, the three-phase precharge switch K9).
- Step S178 Set the bus voltage target value to start the bidirectional DC/AC module 50 operation.
- Step S179 The bus voltage target value is stable, and the bidirectional DC/DC module 30 is started to operate.
- Step S180 Adjust the charging power to the rated power to complete the charging.
- Step S181 Send a precharge failure fault, and disconnect the precharge contactor (ie, the first precharge control module 101).
- Step S182 Prompt the fault and end the charging.
- the controller is connected to the same power battery on the DC side, and The AC power distribution on the AC side is also from the same power distribution device, so when the first precharge control module 101 is working, When the second pre-charge control module 102 is restarted, the bus voltage rapidly rises to the rated voltage of the capacitor, so that the capacitor is damaged.
- the method proposes another charging startup process. Both charging guns simultaneously charge the power battery. Specifically, the process of charging the power battery by using the dual charging gun is as shown in FIG. 18, and specifically includes the following steps:
- Step S191 The charging contactor is sucked (ie, the first switch K1), and the controller communicates with the power supply device.
- Step S193 Determine whether the three-phase AC frequency, amplitude, and phase sequence detection are normal. If it is normal, step S194 is performed, otherwise step S204 is performed.
- Step S194 The target voltage of the bus voltage is stable, and the bidirectional DC/DC module 30 is started to operate, and the charging power is kept at zero.
- Step S 195 Pull in the capacitive contactor (ie, filter control module 104).
- Step S196 Pulling in the AC pre-charge contactor (ie, the second pre-charge control module 106).
- Step S197 It is judged whether the bus voltage reaches the set threshold 3, if yes, step S198 is performed, otherwise step S204 is performed.
- Step S198 Pull in the AC contactor (ie, the three-phase switch K8 or the single-phase switch K7), and delay the AC pre-charge contactor (ie, the three-phase precharge switch K9).
- Step S199 Set the bus voltage target value to start the bidirectional DC/AC module 50 operation.
- Step S200 Determine whether it is a single gun (single charging gun) or a double charging gun. If it is a dual charging gun, step S201 is performed, otherwise step S203 is performed.
- Step S201 First adjust the charging power to half load (half load working state).
- Step S202 Determine whether the charging power of the other branch reaches half load. If yes, go to step S203, otherwise go to step S201.
- Step S203 Adjust the charging power to the rated power until the charging is completed.
- Step S204 Send a precharge failure fault, and disconnect the precharge contactor (ie, the first precharge control module 101).
- Step S205 prompting the fault and ending the charging.
- the bidirectional DC/DC module is controlled to start working, and the bidirectional DC/DC module converts the higher DC voltage into a lower DC voltage.
- the bidirectional DC/DC module converts the higher DC voltage into a lower DC voltage.
- the main purpose is to use the SPWM algorithm for control.
- the main purpose is to stabilize the voltage at the busbar.
- the target value of the controllable rectifier bus voltage is determined according to the maximum power required for charging and the rated capacity of the battery pack, when the bus voltage reaches the set value.
- the bidirectional DC/DC module is adjusted according to the given target charging power, and finally it can be stably operated at the target charging power.
- the dual charging gun When the dual charging gun is charged in parallel, it is assumed that the first pre-charging control module 101 has started to work, and the second pre-charging control module 102 is ready to start working. At this time, the second pre-charging control module 102 has a first pre-operation when starting the working.
- the interference of the charging control module 101 in order to solve the problem, the power distribution control method is added, and the half load operation is performed first, after the two charging branches are both half-loaded and stable, and then the two charging branches are controlled to gradually adjust to full load to work. .
- the three-phase controllable rectifier bus voltage target values of the first pre-charge control module 101 and the second pre-charge control module 102 are consistent, but due to differences in bus voltage sampling and parallel charging of dual guns
- the circuit causes the presence of a DC component at the AC side during the parallel charging of the dual guns, and causes the AC current waveform to move up or down as a whole. This has a large impact on the entire system or on the power supply equipment, and there are security risks.
- a DC component algorithm is proposed. This method is used to eliminate the DC component in the system. As shown in Figure 19, the following steps are specifically included:
- Step S210 Collect three-phase alternating current.
- Step S211 Calculate the sum sum of the three-phase alternating current sampling values.
- Step S212 Determine whether the sum of the three-phase current exchange sum is equal to zero. If not 0, step S213 is performed, otherwise the adjustment is ended.
- Step S213 PI ring adjustment.
- Step S214 The PI ring is output until the end.
- the main principle is that according to the characteristics of the three-phase alternating current, the theoretical value of the three-phase current sampling value is added to zero. By calculating the three-phase actual current of the system, the calculated value is used as a feedback value to form a PI ring. The adjustment is made to apply the regulated output to the three-phase controlled rectifier bridge.
- the first charging control branch and the second charging control branch of the embodiment of the present invention further include: a detection module, configured to detect a first phase to a third phase current of the AC side of the bidirectional DC/AC module; an adjustment module (PI ring adjustment), wherein the adjustment module is in the first phase of the AC side detected by the detection module to The first phase to the third phase current are adjusted when the sum of the third phase currents is not zero.
- a detection module configured to detect a first phase to a third phase current of the AC side of the bidirectional DC/AC module
- an adjustment module PI ring adjustment
- Still another embodiment of the present invention also provides a charging control method for an electric vehicle, the charging control method comprising the following steps:
- Step S1 the controller module detects that the first charging branch passes through the charging gun or the charging and discharging socket and the power supply device When connected, and the second charging branch is connected to the power supply device through the charging gun or the charging and discharging socket, the charging connection signal is sent to the battery manager.
- Step S2 After receiving the charging connection signal sent by the controller module, the battery manager detects and determines whether the power battery needs to be charged. When the power battery needs to be charged, the next step is performed.
- Step S3 The battery manager sends a charging signal to the controller module.
- Step S4 When the controller module receives the charging signal, the control power grid charges the power battery through the first charging branch and the second charging branch respectively.
- the controller module charges the power battery through the first charging branch and the second charging branch respectively by controlling the power grid, so that the charging power of the electric vehicle is increased, thereby The charging time is greatly shortened, the fast charging is realized, and the time cost is saved.
- the charging system of the above electric vehicle has a wide range of compatibility, has a single-phase three-phase switching function, and is adapted to different national grid electrical standards.
- the charging gun can be replaced by a charging and discharging socket 20, as shown in Fig. 20, having the function of switching between two charging sockets (for example, American standard and European standard).
- the charging and discharging socket 20 includes a single-phase charging socket 501, such as an American standard, a three-phase charging socket 502 such as an European standard, two high voltage contactors K503, and 504.
- the single-phase charging socket 501 is shared with the CC, CP and PE of the three-phase charging socket 502, and the L and N phase lines of the single-phase charging socket 501 are connected to the ⁇ and ⁇ of the three-phase charging socket 503 through the contactors K503 and 504.
- the control contactors ⁇ 503 and ⁇ 504 are closed, so that the ⁇ and ⁇ phases of the three-phase charging socket 502 are electrically connected to the L and N phase lines of the single-phase charging socket 501, and the three-phase charging is performed.
- the socket 502 is not used for use.
- the L and N phase lines of the single-phase charging socket 501 are connected to the charging plug by the A and B phases of the three-phase charging socket 502, and the controller module 80 can normally realize the single-phase charging function.
- a single-phase switch K7 is added between the N-line and the B-phase line by using a standard 7-pin socket, and the controller module 80 receives a single-phase charge and discharge command, and controls the single-phase switch K7 to be closed.
- the B phase line and the N line are connected.
- the A and B phases are used as the L and N phase wires.
- the connection plug needs to use a dedicated connection plug, or the connection plugs whose B and C phases are not used.
- the charging system will detect the voltage of the power grid according to the controller module 80, calculate the frequency of the power grid and single-phase/three-phase through calculation, according to the calculation information and after obtaining the electric system, the controller
- the module 80 selects different control parameters according to the type of the charging and discharging plug 20 and the grid system, controls the bidirectional DC/AC module 50 to perform controlled rectification of the AC voltage, and the bidirectional DC/DC module 30 regulates the DC voltage according to the battery voltage. Finally, it is delivered to the power battery 10.
- the off-grid loaded discharge plug is two-core, three-core, and four-core.
- the socket connected to the charging plug, can output single-phase, three-phase, four-phase electrical power.
- Figure 22 is a block diagram showing a power carrier communication system of an electric vehicle according to still another embodiment of the present invention.
- the electric carrier communication system 2000 of the electric vehicle includes a plurality of control devices 10, a vehicle power line 120, and a plurality of power carrier communication devices 130.
- the plurality of control devices 1 10 each have a communication interface, such as but not limited to: a serial communication interface SCI.
- the automotive power line 120 supplies power to a plurality of control devices 1 10 and communicates between the plurality of control devices 1 10 via the automotive power line 120.
- the plurality of power carrier communication devices 103 are connected to the plurality of control devices 110, and the plurality of control devices 110 are connected to the corresponding power carrier communication device 130 through respective communication interfaces, and the plurality of power carrier communication devices 130 pass through the automobile.
- the power lines 120 are connected to each other, wherein the plurality of power carrier communication devices 130 acquire carrier signals from the vehicle power line 120 to demodulate the carrier signals and then transmit the signals to the corresponding control device, and receive the information sent by the corresponding control device, and modulate the information. Sent to the car power line 120.
- a plurality of control devices 1 10 include control device 1 to control device N (N > 2, N is an integer).
- a plurality of power carrier communication devices 130 corresponding thereto include power carrier device 1 to power carrier device N.
- the control device 1 needs to communicate with the control device 2, the power carrier device 1 acquires a carrier signal transmitted from the power carrier device 2 from the vehicle power line 120, the carrier signal is from the control device 2, and is powered by the power carrier device 2. After modulation, it is sent to the car power line 120.
- each of the power carrier communication devices 130 includes a coupler 131, a filter 133, an amplifier 134, and a modem 132 which are sequentially connected.
- a plurality of power carrier communication devices are connected to the gateway 300 through the vehicle power harnesses 121, 122, and each power carrier communication device corresponds to one control device.
- the power carrier communication device 1 corresponds to the transmission control device 1 1 1
- the power carrier communication device 2 corresponds to the engine control device 12
- the power carrier communication device 3 corresponds to the active suspension device
- power carrier communication device 5 corresponds to safety device 1 15
- power carrier communication device 6 corresponds to meter display 1 16
- power carrier communication device 7 corresponds to fault diagnosis 1 17
- power carrier communication device 8 corresponds to the lighting device 1 18.
- the method for receiving data by the power carrier communication system includes the following steps:
- the system is powered on, and the system program enters the state of receiving data from the power line.
- step S2103 if yes, go to step S2103; if no, go to step S2104.
- 52103 Start receiving data uploaded from the power line, and proceed to the next step S2105.
- 52104 Detect the SCI port and determine whether the SCI port has data. If yes, proceed to the next step S2105; if no, return to step S2101.
- the power carrier communication system of the electric vehicle According to the power carrier communication system of the electric vehicle according to the embodiment, data transmission and sharing between the various control systems in the vehicle can be realized without increasing the wiring harness of the automobile, and power carrier communication using the power line as the communication medium can be avoided. Building and investing in new communication networks reduces manufacturing costs and maintenance.
- the charging system of the electric vehicle described above adopts a water cooling method.
- the layout of the box structure is shared by the inductor water channel and the IGBT water channel, which solves the problem of heat dissipation and space.
- the layout of the cabinet structure is divided into upper and lower layers.
- the back of the IGBT cooling water channel heats the filter module.
- the shape of the inductor it is made into an inductor slot 601.
- the heat is transmitted from the side of the inductor slot 601, and finally the heat is taken through the water channel 602.
- the high thermal conductivity of the glue is fixed, increasing the thermal conductivity and mechanical strength of the overall design.
- the charging system in this embodiment adopts water cooling to dissipate heat, and the heat dissipation effect is better than air cooling mode. Under the same power, the volume of the filtering module can be reduced, and the volume and weight of the overall charging system can be reduced.
- an embodiment of another aspect of the present invention also provides an electric vehicle including the above-described charging system.
- the electric vehicle can be charged with high power through three-phase or single-phase electric power, which is convenient for users to quickly charge electric vehicles anytime and anywhere, saving time and cost and meeting people's needs.
- a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by the instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
- Computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
- electrical connections electronic devices
- portable computer disk cartridges magnetic devices
- RAM random access memory
- ROM Read only memory
- EPROM or flash memory erasable editable read only memory
- CDROM portable compact disk read only memory
- computer The readable medium may even be paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if necessary, processing in other suitable manners.
- the program is obtained electronically and then stored in computer memory.
- portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
- multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
- a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented with any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
- each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
- the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
- the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
- the description of the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means a specific feature described in connection with the embodiment or example.
- a structure, material or feature is included in at least one embodiment or example of the invention.
- the schematic representation of the above terms does not necessarily mean the same embodiment or example.
- the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
一种电动汽车的充电系统(100)和包含该充电系统的电动汽车,该系统包括:动力电池(10);与外部电源相连的第一充电接口(INT1)和第二充电接口(INT2);连接在动力电池(10)和第一充电接口(INT1)之间的第一充电控制支路(401);连接在动力电池(10)和第二充电接口(INT2)之间的第二充电控制支路(402);与第一充电接口(INT1)和第二充电接口(INT2)相连的控制器(80)。该充电系统(100)能够实现民用或者工业交流电网对电动汽车进行大功率交流充电,使用户可以随时随地高效、快捷地充电,并且适用的电池工作电压范围宽。
Description
电动汽车的充电系统及具有其的电动汽车 技术领域
本发明涉及电动汽车技术领域, 特别涉及一种电动汽车的充电系统及具有其的电 动汽车。 背景技术
随着科技的发展, 环保节能的电动汽车正在扮演着取代燃油车的角色, 然而电动 汽车的普及还面临着一些问题, 其中高的续航里程和快捷的充电技术, 已成为电动汽 车推广的一大难题。
目前, 电动汽车大多采用大容量的电池, 虽然可以提高电动汽车的续航能力, 但 同样大容量的电池又带来了充电时间过长的问题。 虽然专业的直流充电站可以快速的 为电池进行充电, 但高额的成本和较大占地面积等问题使得这种基础设施的普及还面 临着一定的难度, 同时又由于车辆的空间有限, 车载充电器受到体积的制约而无法满 足充电功率。
现在市场上所采取的充电方案有以下几种:
方案 ( 1 ) : 如图 1和图 2所示, 此方案中的车载充放电装置主要包括三相电源变 压器 1 '、 六个晶闸管元件组成三相桥式电路 2'、 恒压控制装置 AUR和恒流控制装置 AC , 但是该方案严重浪费空间和成本。
方案(2 ) : 如图 3所示, 此方案中的车载充放电装置为适应单 /三相充电而安装两 个充电插座 15 '、 16' , 增加了成本; 电机驱动回路包含电感 L1 '和电容 C1 '组成的滤波 模块, 在电机驱动时, 三相电流经过滤波模块产生损耗, 是对电池电量的浪费; 该方 案充放电工作时逆变器 13 '对交流电进行整流 /逆变, 整流 /逆变后电压不可调节, 适用 电池工作电压范围窄。
综上所述, 目前市场上所采取的交流充电技术大多采用单项充电技术, 该技术存 在充电功率小、 充电时间长、 硬件体积较大、 功能单一、 受限于不同地区电网的电压 等级限制等缺点。 发明内容
本发明的目的旨在至少解决上述的技术缺陷之一。
为此, 本发明的一个目的在于提出一种电动汽车的充电系统, 能够实现使用民用
或工业交流电网对电动汽车进行大功率交流充电, 使用户可以随时随地高效、 快捷的 充电, 无需恒压控制装置和恒流控制装置, 节省空间和成本, 并且适用电池工作电压 范围宽。
本发明的另一个目的还在于提出一种电动汽车。
为达到上述目的, 本发明第一方面的实施例提供了一种电动汽车的充电系统, 包 括: 动力电池; 高压配电箱, 所述高压配电箱与所述动力电池相连; 第一充电接口和 第二充电接口, 所述第一充电接口和第二充电接口与外部电源相连; 第一充电控制支 路和第二充电控制支路, 所述第一充电控制支路连接在所述动力电池和所述第一充电 接口之间, 所述第二充电控制支路连接在所述动力电池和所述第二充电接口之间; 以 及控制器, 所述控制器与所述高压配电箱、 所述第一充电接口和第二充电接口相连。
根据本发明实施例的电动汽车的充电系统, 能够实现使用民用或工业交流电网对 电动汽车进行大功率交流充电, 使用户可以随时随地高效、 快捷的充电, 节省充电时 间, 同时无需恒压控制装置和恒流控制装置, 节省空间和成本, 并且适用电池工作电 压范围宽。
此外, 本发明另一方面的实施例提出了一种电动汽车, 包括上述第一方面实施例 所述的电动汽车的充电系统。
根据本发明实施例的电动汽车, 能够通过三相或单相电进行大功率充电, 方便用 户随时随地对电动汽车进行快速充电, 节约了时间成本, 满足人们的需求。
本发明附加的方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变 得明显, 或通过本发明的实践了解到。 附图说明
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1为现有的一种车载充放电装置的电路图;
图 2为现有的一种车载充放电装置的控制示意图;
图 3为现有的另一种车载充放电装置的电路图;
图 4为根据本发明一个实施例的充电系统的方框示意图;
图 5为根据本发明一个实施例的充电系统的拓朴图;
图 6为根据本发明一个实施例的充电系统的进一步的方框示意图;
图 7为根据本发明一个实施例的控制器的方框示意图;
图 8为根据本发明一个示例的控制器中的 DSP与外围硬件电路接口示意图; 图 9为根据本发明一个实施例的充电系统的功能判断流程图;
图 10为根据本发明一个实施例的充电系统进行电机驱动控制功能的方框示意图; 图 1 1为 #居本发明一个实施例的充电系统充放电功能启动判断流程图; 图 12为根据本发明一个实施例的充电系统在充电工作模式下的控制流程图; 图 13为根据本发明一个实施例的充电系统在电动汽车充电结束时的控制流程图; 图 14为根据本发明一个实施例的电动汽车与供电设备之间连接电路图; 图 15为根据本发明另一个实施例的充电系统的示意图;
图 16为根据本发明一个实施例的充电系统的电池管理交互示意图;
图 17为根据本发明一个实施例的充电系统的单枪充电流程图;
图 18为根据本发明一个实施例的充电系统的双枪充电流程图;
图 19为根据本发明一个实施例的直流分量算法控制流程图;
图 20为 #居本发明一个示例的充放电插座的示意图;
图 21为根据本发明另一个示例的离网带载放电插头的示意图;
图 22为根据本发明再一个实施例的电动汽车的电力载波通讯系统的结构图; 图 23为电力载波通讯装置的方框示意图;
图 24为八个电力载波通讯装置与对应的控制装置进行通讯的示意图;
图 25为电力载波通讯系统进行数据接收的方法流程图; 以及
图 26为根据本发明还一个实施例的充电系统的箱体结构示意图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终 相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参 考附图描述的实施例是示例性的, 仅用于解释本发明, 而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。 为了筒 化本发明的公开, 下文中对特定例子的部件和设置进行描述。 当然, 它们仅仅为示例, 并且目的不在于限制本发明。此外, 本发明可以在不同例子中重复参考数字和 /或字母。 这种重复是为了筒化和清楚的目的, 其本身不指示所讨论各种实施例和 /或设置之间的 关系。 此外, 本发明提供了的各种特定的工艺和材料的例子, 但是本领域普通技术人 员可以意识到其他工艺的可应用于性和 /或其他材料的使用。 另外, 以下描述的第一特 征在第二特征之"上"的结构可以包括第一和第二特征形成为直接接触的实施例, 也可
以包括另外的特征形成在第一和第二特征之间的实施例, 这样第一和第二特征可能不 是直接接触。
在本发明的描述中, 需要说明的是, 除非另有规定和限定, 术语"安装"、 "相连"、 "连接 "应做广义理解, 例如, 可以是机械连接或电连接, 也可以是两个元件内部的连 通, 可以是直接相连, 也可以通过中间媒介间接相连, 对于本领域的普通技术人员而 言, 可以根据具体情况理解上述术语的具体含义。
参照下面的描述和附图, 将清楚本发明的实施例的这些和其他方面。 在这些描述 和附图中, 具体公开了本发明的实施例中的一些特定实施方式, 来表示实施本发明的 实施例的原理的一些方式, 但是应当理解, 本发明的实施例的范围不受此限制。 相反, 本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、 修改和 等同物。
为了对本发明有清楚的理解, 以下首先对本发明实施例所涉及的电动汽车的充电 系统进行介绍。 在对本发明实施例的电动汽车的充电系统介绍之后, 再对本发明实施 例通过电动汽车的充电系统采用一个和两个充电枪进行充电进行详细介绍。 需要进一 步说明的是, 在以下实施例中以两个充电枪为例进行介绍, 然而本发明并不限制充电 枪的数量, 根据以下实施例所描述的技术方案及原理还可实现多个充电枪的充电。
如图 4所示, 本发明一个实施例提出的电动汽车的充电系统 100, 包括: 动力电池 10、 高压配电箱 90、第一充电接口 INT1、第二充电接口 INT2、第一充电控制支路 401、 第二充电控制支路 402和控制器 80。
高压配电箱 90与动力电池 10相连。 第一充电接口 INT1和第二充电接口 INT2与 外部电源相连。第一充电控制支路 401连接在动力电池 10和第一充电接口 INT1之间, 第二充电控制支路 402连接在动力电池 10和第二充电接口 INT2之间。控制器 80与高 压配电箱 90、 第一充电接口 INT1和第二充电接口 INT2相连。
当通过第一充电控制支路 401和第二充电控制支路 402同时进行充电时, 即在进 行充电时, 控制器 80控制第一充电控制支路 401启动以建立动力电池 10与第一充电 接口 INT1之间的充电通路直至第一充电控制支路 401进入半载工作状态; 控制器 80 控制第二充电控制支路 402启动以建立动力电池 10与第二充电接口 INT2之间的充电 通路直至第二充电控制支路 402进入半载工作状态。 控制器 80调整第一充电控制支路 401和第二充电控制支路 402的工作功率以使第一充电控制支路 401和第二充电控制支 路 402进入满载工作状态。
如图 5所示, 高压配电箱包括: 第一预充控制模块 101、 第一开关 K1和驱动控制
开关 40。 其中, 第一预充控制模块 101和第一开关 K1 并联, 第一预充控制模块 101 和第一开关 K1的一端与动力电池 10的一端相连, 第一预充控制模块 101和第一开关 K1 的另一端与第一充电控制支路 401和第二充电控制支路 402的第二端 a2相连。 驱 动控制开关 40的一端与动力电池 10的一端 (正极)相连, 且驱动控制开关 40与第一 充电控制支路 401和第二充电控制支路 402的第三端 a3相连, 其中, 第一预充控制模 块 101、 第一开关 K1和驱动控制开关 40均与控制器 80相连。
当电动汽车处于充放电模式时, 控制器 80通过第一预充控制模块 101对第一充电 控制支路 401和第二充电控制支路 402进行预充电同时闭合第一预充控制模块 101 ,当 第一充电控制支路 401和第二充电控制支路 402的母线电压与动力电池 10的电压成预 设倍数时, 控制第一预充控制模块 101关断并闭合第一开关 Kl。
在本发明的一个实施例中, 第一充电控制支路 401和第二充电控制支路 402具有 相同的结构, 以下以第一充电控制支路 401 为例对第一充电控制支路 401 的结构进行 详细描述。如图 5所示,第一充电控制支路 401 包括:双向 DC/DC模块 30、双向 DC/AC 模块 50和充放电控制模块 70。
其中, 双向 DC/DC模块 30的第一直流端 al与动力电池 10的另一端相连, 双向
DC/DC模块 30的第二直流端 a2与动力电池 10的一端相连, 并且第一直流端 al为双 向 DC/DC模块 30输入及输出的共用直流端。 双向 DC/AC模块 50的第一直流端 bl与 驱动控制开关 40的另一端相连, 双向 DC/AC模块 50的第二直流端 b2与动力电池 10 的另一端相连。 充放电控制模块 70的一端与双向 DC/AC模块 50的交流端 c相连, 其 中,第一充电控制支路 401的充放电控制模块 70的另一端与第一充电接口 INT1相连, 第二充电控制支路 402的充放电控制模块 70的另一端与第二充电接口 INT2相连, 第 一充电接口 INT1和第二充电接口 INT2不仅可连接充电枪进行充电, 也可连接充电接 插座进行充电。
进一步地, 电动汽车的充电系统 100还包括: 电机控制开关 60。 其中, 电机控制 开关 60的一端与双向 DC/AC模块 50的交流端 c相连, 电机控制开关 60的另一端与 电机 M相连。 电机控制开关 60由控制器 80进行控制, 控制器 80在电动汽车为驱动 模式时, 闭合电机控制开关 60。
具体而言, 当充电系统 100当前所处的工作模式为驱动模式时, 控制器 80控制驱 动控制开关 40闭合以关闭双向 DC/DC模块 30, 并控制电机控制开关 60闭合, 以及控 制充放电控制模块 70断开。
在本发明的一个实施例中, 如图 5所示, 双向 DC/DC模块 30进一步包括第一开
关管 Q l、 第二开关管 Q2、 第一二极管 D l、 第二二极管 D2、 第一电感 L 1和第一电容 C l。 其中, 第一开关管 Q 1 和第二开关管 Q2相互串联连接, 相互串联的第一开关管 Q 1和第二开关管 Q2连接在双向 DC/DC模块 30的第一直流端 al和第三直流端 a3之 间, 第一开关管 Q 1和第二开关管 Q2受控制器模块 80的控制, 并且第一开关管 Q 1和 第二开关管 Q2之间具有第一节点 A。 第一二极管 D 1与第一开关管 Q l反向并联, 第 二二极管 D2与第二开关管 Q2反向并联, 第一电感 L 1的一端与第一节点 A相连, 第 一电感 L 1的另一端与动力电池 10的一端相连。 第一电容 C 1的一端与第一电感 L 1的 另一端相连, 第一电容 C 1的另一端与动力电池 10的另一端相连。
在本发明的一个实施例中, 如图 5所示, 以第一充电控制支路 401 为例, 第一充 电控制支路 401还包括: 漏电流削减模块 102。 其中, 漏电流削减模块 102连接在双向 DC/DC模块 30的第一直流端 al和双向 DC/DC模块 30的第三直流端 a3之间。具体而 言, 漏电流削减模块 102包括第二电容 C2和第三电容 C3 , 第二电容 C2的一端与第三 电容 C3的一端相连, 第二电容 C2的另一端与双向 DC/DC模块 30的第一直流端 al 相连, 第三电容 C3的另一端与双向 DC/DC模块 30的第三直流端 a3相连, 其中, 第 二电容 C2和第三电容 C3之间具有第二节点 B。
通常由于无变压器隔离的逆变和并网系统, 普遍存在漏电流大的难点。 因此, 该 充电系统 100在直流母线正负端增加漏电流削减模块 102 , 能有效减小漏电流。 漏电流 削减模块 102包含两个同类型电容 C2和 C3 , 其安装在直流母线正负端和三相交流中 点电位之间, 在本系统工作时能将产生的高频电流反馈到直流侧, 即能有效降低了系 统在工作时的高频漏电流。
在本发明的一个实施例中, 如图 5 所示, 该电动汽车的充电系统还包括滤波模块 103、 滤波控制模块 104和第二预充控制模块 106。
其中, 滤波模块 103连接在双向 DC/ AC模块 50和充放电控制模块 70之间。 具体 而言, 如图 5所示, 滤波模块 103包括电感 LA、 LB、 Lc和电容 C4、 C5、 C6 , 而双向 DC/AC模块 50可以包括六个 IGBT , 上下两个 IGBT之间的连接点分别通过电力总线 与滤波模块 103和电机控制开关 60相连接。
如图 5所示, 滤波控制模块 104连接在第二节点 B和滤波模块 103之间, 并且滤 波控制模块 104受控制器模块 80控制, 控制器模块 80在充电系统当前所处的工作模 式为驱动模式时控制滤波控制模块 104断开。 其中, 滤波控制模块 104可以为电容切 换继电器, 由接触器 K10组成。 第一充电接口 INT 1连接在充电枪 1和对应的充放电 控制模块 70之间。
第二预充模块 106与充放电控制模块 70并联, 第二预充控制模块 106用于对滤波 模块 103中的电容 C4、 C5、 C6进行预充电。 其中, 第二预充控制模块 106包括相互 串联的三个电阻 RA、 RB、 Rc和三相预充开关 K9。
在本发明的一个实施例中, 如图 5所示, 充放电控制模块 70进一步包括三相开关 Κ8和 /或单相开关 Κ7, 用于实现三相充放电或单相充放电。
在本发明的实施例中, 当充电系统启动时, 控制器模块 80控制第一预充模块 101 闭合以对双向 DC/DC模块 30中的第一电容 C1及母线电容 CO进行预充电, 并在母线 电容 CO的电压与动力电池 10的电压成预设倍数时, 控制第一预充模块 101断开同时 控制第一开关 K1闭合。 这样, 通过双向 DC/DC模块 30和直接连接在电力总线即直流 母线之间的大容量母线电容 CO组成实现电池低温激活技术的主要部件,用于将动力电 池 10的电能通过双向 DC/DC模块 30充到大容量母线电容 CO中, 再将大容量母线电 容 C0中储存的电能通过双向 DC/DC模块 30充回动力电池 10(即对动力电池充电时), 对动力电池 10循环充放电使得动力电池的温度上升到最佳工作温度范围。
当充电系统当前所处的工作模式为驱动模式时, 控制器模块 80控制驱动控制开关 40闭合以关闭双向 DC/DC模块 30, 并控制电机控制开关 60闭合以正常驱动电机 M, 以及控制充放电控制模块 70断开。 需要说明的是, 在本发明的实施例中, 虽然图 5中 电机控制开关 60包括了与电机三相输入相连的三个开关, 但是在本发明的其他实施例 中也可包括与电机两相输入相连的两个开关, 甚至一个开关。 在此只要能实现对电机 的控制即可。 因此, 其他实施例在此不再赘述。 这样, 通过双向 DC/AC模块 50把动 力电池 10的直流电逆变为交流电并输送给电机 M,可以利用旋转变压解码器技术和空 间矢量脉宽调制 ( SVPWM )控制算法来控制电机 M的运行。
以单充电枪为例, 当充电系统当前所处的工作模式为充放电模式时, 控制器模块 80控制驱动控制开关 40断开以启动双向 DC/DC模块 30, 并控制电机控制开关 60断 开以将电机 M移出, 以及控制充放电控制模块 70闭合, 使外部电源例如三相电或者 单相电通过充电枪 1可以正常地为动力电池 10进行充电。 即言, 通过检测充电连接信 号、 交流电网电制和整车电池管理的相关信息, 借用双向 DC/AC模块 50进行可控整 流功能, 并结合双向 DC/DC模块 30, 可实现单相 \三相电对车载动力电池 10的充电。
根据本发明实施例的电动汽车的充电系统, 能够实现使用民用或工业交流电网对 电动汽车进行大功率交流充电, 使用户可以随时随地高效、 快捷的充电, 节省充电时 间, 同时无需恒压控制装置和恒流控制装置, 节省空间和成本, 并且适用电池工作电 压范围宽。
通过两个甚至多个充电枪对动力电池进行充电, 可以提供大的充电电流, 从而极 大地缩短充电时间, 对于一些电动巴士等需要大容量动力电池的应用场景更为适合。
此外, 在本发明的实施例中, 如图 6所示, 该电动汽车的充电系统还可以包括仪 表 107、 电池管理器 108和整车信号 109。
在本发明的一个实施例中, 如图 7所示, 控制器模块 80包括控制板 201和驱动板
202。其中,控制板 201上的控制模块采用两个高速数字信号处理芯片(DSP1和 DSP2 ) 进行控制。 控制板 201上的控制模块与整车信息接口 203相连, 并相互进行信息交互。 控制板 201上的控制模块接收驱动板 202上的驱动模块输出的母线电压采样信号、 IPM 保护信号以及 IGBT温度采样信号等, 同时输出脉冲宽度调制 PWM信号至驱动模块。
其中, 如图 8所示, DSP1主要用于控制, DSP2用于信息采集。 DSP1中的采样单 元输出油门信号、 母线电压采样信号、 刹车信号、 直流侧电压采样信号、 电机电流霍 尔 V相信号、 电机电流霍尔 W相信号、 充电控制电流霍尔 U相信号、 充电控制电流 霍尔 V相信号、 充电控制电流霍尔 W相信号、 直流电流霍尔信号、 逆变电压 U相信 号、 逆变电压 V相信号、 逆变电压 W相信号、 电网电压 U相信号、 电网电压 V相信 号、 电网电压 W相信号、 逆变 U相捕获信号、 电网 U相捕获信号等采样信号, DSP1 中的开关控制单元输出电机 A相开关信号、 电机 B相开关信号、 电网 A相开关信号、 电网 B相开关信号、 电网 C相开关信号、三相预充开关信号和电容切换继电器信号等, DSP1中的驱动单元输出 相 PWM1信号、 A相 PWM2信号、 B相 PWM1信号、 B相 PWM2信号、 C相 PWM1信号、 C相 PWM2信号、 DC相 PWM1信号、 DC相 PWM2 信号和 IPM保护信号等, DSP1还具有旋变信号输出控制、 串行通信、 硬件保护、 CAN 通讯和档位控制等功能。 DSP2中的采样单元输出供电电源监测信号、 电源监测信号、 油门 1信号、 刹车 2信号、 油门 2信号、 刹车 1信号、 电机模拟温度信号、 漏电传感 器信号、 散热器温度信号、 直流侧电感温度采样信号、 V相电感温度采样信号、 U相 电感温度采样信号、 W相电感温度采样信号、 放电 PWM 电压采样信号、 倾角传感器 读信号、 倾角传感器片选信号、 IGBT温度采样 W相信号、 IGBT温度采样 U相信号、 IGBT温度采样升降压相信号、 IGBT温度采样 V相信号、 电机温度开关信号、 单 /三相 切换开关信号等, DSP2 中的充放电控制单元输出充放电开关信号、 休眠信号、 放电 PWM信号、 电池管理器 BMS信号、 充放电输出控制信号、 CP信号和 CC信号等, 并 且 DSP2还具有 CAN通讯、 串行通信功能。
综上所述, 在本发明实施例的电动汽车的充电系统集电机驱动功能、 车辆控制功 能、 交流充电功能、 并网功能、 离网带载功能、 车辆对车辆充电功能于一体。 并且,
该充电系统不是通过把各种功能模块筒单的物理组合为一体, 而是在电机驱动控制的 基础上, 通过添加一些外围器件, 实现系统的功能多样化, 最大化节省空间和成本, 提高功率密度。
具体而言, 电动汽车的充电系统的功能筒单介绍如下:
1、 电机驱动功能: 通过双向 DC/AC模块 50把动力电池 10的直流电逆变为交流 电并输送给电机 M, 可以利用旋转变压解码器技术和空间矢量脉宽调制(SVPWM )控 制算法来控制电机 M的运行。
也就是说, 当本充电系统得电工作时, 如图 9所示, 该系统功能判断流程包括以 下步骤:
S901 , 充电系统得电。
5902 , 判断充电连接信号。 如果有充电连接信号, 则转至步骤 S903 , 如果没有则 转至步骤 904。
5903 , 进入充放电控制流程。 在本发明的一个实施例中, 还需要对油门、 档位及 刹车信号进行判断。 当油门为 0、 档位为 N档、 手刹、 充电连接即 CC信号有效时(即 充放电插座 20连接有充电连接装置) , 则进入充放电控制流程。
5904 , 进入车辆控制流程。
在步骤 S904进入车辆控制流程后, 控制器模块 80控制电机控制开关 60闭合, 通 过 CAN通讯通知电池管理器 108 , 电池管理器 108控制高压配电箱 90对 C1和 CO进 行预充, 控制器模块 80检测母线电压 187, 判断预充是否成功, 成功后通知电池管理 器 108闭合驱动控制开关 40 , 该系统进入驱动模式, 同时控制器模块 80对整车信息进 行采集, 通过综合判断处理对电机 M进行驱动。
进行电机驱动控制功能: 如图 10所示, 控制器模块 80发送 PWM信号, 对双向 DC/AC模块 50进行控制, 把动力电池 10的直流电逆变为交流电并输送给电机 M , 控 制器模块 80通过旋转变压器解算转子位置, 并采集母线电压和电机 BC相电流使电机 M能精准的运行。 即言, 控制器模块 80根据电流传感器采样的电机 BC相电流信号和 旋转变压器的反馈信息对 PWM信号进行调节, 最终使电机 M能精准的运行。
这样, 通过通信模块对整车油门、 刹车以及档位信息, 判断当前运行工况, 实现 车辆的加速、 减速和能量回馈功能, 使得整车在各种工况下下安全可靠运行, 保证车 辆的安全性、 动力性和平顺性。
2、 以单充电枪为例, 充放电功能
( 1 ) 充放电功能连接确认和启动: 如图 1 1 所示, 该充电系统充放电功能启动判
断流程包括如下步骤:
51101, 充放电连接装置即充电枪物理连接完成, 并且电源正常。
51102, 供电设备 (充电桩)检测充电信号 CC连接是否正常。 如果是, 则进入步 骤 S1103; 如果否, 则返回步骤 S1102, 继续检测。
S1103, 供电设备检测 CP检测点的电压是否为 9V。 如果是, 则进入步骤 S1106; 如果否, 返回步骤 S1102, 继续检测。 其中, 9V是一个预设示例值。
51104, 控制器模块检测充电信号 CC连接是否正常。 如果是, 则进入步骤 S1105; 如果否, 则返回步骤 S1104, 继续检测。
51105, 拉低输出充电连接信号、 充电指示灯信号。
S1106, 进入充放电功能。
如图 12所示, 以单充电枪充电为例, 该充电系统在充电工作模式下的控制流程包 括如下步骤:
S1201, 判断系统得电后是否完全启动工作。 如果是, 则进入步骤 S1202; 如果否, 则返回步骤 S1201, 继续判断。
S1202, 检测 CC检测点电阻值, 确定充电连接装置容量。
51203, 判断 CP检测点是否检测到固定占空比的 PWM信号。 如果是, 则进入步 骤 S1204; 如果否, 则进入步骤 S1205。
51204, 发送充电连接正常充电准备就绪报文, 收到 BMS充电允许、 充电接触器 吸合报文, 进入步骤 S1206。
S1205, 充电连接故障。
51206, 控制器模块吸合内部开关。
51207, 判断预设时间例如 1.5秒内检测到外部充电设备是否无 PWM波发送。 如 果是, 则进入步骤 S1208; 如果否, 则进入步骤 S1209。
51208, 判断为外部国标充电桩, 充电过程中不发送 PWM波。
S1209, 向供电设备发送 PWM波。
51210, 判断预设时间例如 3 秒内检测交流输入是否正常。 如果是, 则进入步骤 S1213; 如果否, 则进入步骤 S1211。
51211, 交流外部充电设备故障。
51212, 进行异常处理。
S1213, 进入充电阶段。
也就是说, 如图 11和图 12所示, 供电设备和控制器模块 80 自检无故障后, 根据
检测 CC信号电阻值确定充电连接装置容量, 检测 CP信号确定是否完全连接, 充放电 连接装置完全连接确认后, 发送充电连接正常和充电准备就绪报文, 电池管理器 108 控制高压配电箱 90闭合第一开关 K1进行预充, 预充完成后断开第一预充电模块 101 , 吸合第一开关 K1 , 控制器模块 80收到 BMS充电允许、 第一开关 K1吸合报文, 充放 电准备就绪,即可通过仪表设置功能,如下: 交流充电功能(G to V, 电网对电动汽车)、 离网带载功能 (V to L, 电动汽车对负载) 、 并网功能 (V to G, 电动汽车对电网) 和 车辆对车辆充电功能 (V to V, 电动汽车对电动汽车) 。 并网功能
( 2 )交流充电功能(G to V ): 该充电系统接收到仪表充电指令, 电池管理器 108 允许最大充电电流、 供电设备最大供电电流和充放电连接装置(即充放电插座 20或者 充电枪 1 ) 的额定电流, 控制器模块 80判断三者中最小的充电电流, 自动选择充电相 关参数。 并且, 该充电系统通过电网电压采样 183对供电设备输送的交流电进行采样, 控制器模块 80通过采样值计算出交流电电压有效值, 通过捕获来确定交流电频率, 根 据电压值和频率判断出交流电电制, 根据电网电制选取控制参数。 确定控制参数后, 控制器模块 80控制第二预充模块 106中的 K9和滤波控制模块 104中的接触器 K10吸 合, 对 PWM直流侧母线电容 C0进行充电, 控制器模块 80通过 187对母线电容的电 压进行采样, 当电容电压达到选定控制参数例如与动力电池的电压成预设倍数后再控 制吸合三相开关 K8 , 同时断开 K9。 此时该充电系统根据预先选定参数, 控制器模块 80发送 PWM信号, 控制双向 DC/AC模块 50对交流电进行整流, 再根据动力电池电 压, 控制双向 DC/DC模块 30对电压进行调节, 最后把直流电输送给动力电池 10 , 在 此过程中, 控制器模块 80根据预先选定目标充电电流和电流采样 184反馈的相电流, 对整个充电系统进行闭环的电流环调节,最终实现对车载动力电池 10进行充电。由此, 通过检测充电连接信号、 交流电网电制和整车电池管理的相关信息, 借用双向 DC/AC 模块 50进行可控整流功能, 结合双向 DC/DC模块 30 , 可实现单相 \三相电对车载动力 电池 10的充电。
( 3 ) 离网带载功能 (V to L ) : 该充电系统接收到仪表 V to L指令, 首先判断动 力电池荷电状态 SOC是否在可以放电范围,如果允许放电,再根据指令选择输出电制, 根据充放电连接装置的额定电流, 智能选择输出最大输出功率并给定控制参数, 系统 进入控制流程。 首先控制器模块 80控制吸合三相开关 K8、 接触器 K10 , 根据电池电 压和给定的输出电压, 发送 PWM信号控制双向 DC/DC模块 30对电压进行调节, 达 到目标值后输送给双向 DC/AC模块 50把直流电逆变为交流电, 通过专用的充电插座 即可直接为用电设备供电。 在此过程中, 控制器模块 80根据电压采样 183反馈进行调
节, 保证负载安全可靠的工作。
即言, 系统上电, 当接到仪表的 V to L控制指令以及输出电制要求, 检测充电连 接信号和整车电池管理的相关信息, 根据电池的电压进行 DC/DC电压转换, 借用双向 DC/AC模块 50进行交流逆变功能, 输出稳定单相 \三相交流电压。
( 4 ) 并网功能 (V to G ) : 该充电系统接收到仪表 V to G指令, 首先判断动力电 池 SOC是否在可以放电范围, 如果允许放电, 再根据指令选择输出电制, 根据充放电 连接装置的额定电流, 智能选择输出最大输出功率并给定控制参数, 充电系统进入控 制流程。 首先控制器模块 80控制吸合三相开关 K8、 接触器 K10, 根据电池电压和给 定的输出电压, 发送 PWM信号控制双向 DC/DC模块 30对电压进行调节, 在经过双 向 DC/AC模块 50把直流电逆变为交流电, 根据预先选定放电电流目标值和电流采样 184反馈的相电流, 对整个充电系统进行闭环的电流环调节, 实现并网放电。
也就是说, 充电系统上电, 当接到仪表的 V to G控制指令, 检测充电连接信号、 交流电网电制和整车电池管理的相关信息, 根据电池的电压进行 DC/DC电压转换, 借 用双向 DC/AC模块 50进行交流逆变, 实现单相\三相车辆对电网放电功能。
( 5 ) 车辆对车辆充电功能 ( V to V ) : V to V功能需要使用专用的连接插头, 当 充电系统检测到充电连接信号 CC有效, 并检测到其电平确认为 VTOV专用充电插头, 等待仪表命令。 例如, 假设车辆 A向车辆 B充电, 则车辆 A设置为放电状态即设置为 离网带载功能, 车辆 B设置为交流充电状态, 车辆 A的控制器模块发送充电连接正常 充电准备就绪报文至电池管理器, 电池管理器控制充放电回路预充, 完成后发送充电 允许、 充电接触器吸合报文至控制器模块, 该充电系统进行放电功能, 并发送 PWM信 号。 车辆 B接收到充电指令后, 其系统检测到 CP信号, 判断为供电车辆 A已准备就 绪, 控制器模块 80发送连接正常报文至电池管理器, 电池管理器接到指令后完成预充 流程, 通知控制器模块, 整个充电系统充电准备就绪, 启动充电功能(G to V ) , 最后 实现车辆对充功能。
也就是说, 系统上电, 当接到仪表的 V to V控制指令, 检测充电连接信号和整车 电池管理的相关信息, 设置车辆为交流输出电源状态, 同时模拟外部充电设备输出 CP 信号功能, 实现和需要充电的车辆进行交互。 该车辆根据电池的电压进行 DC/DC电压 转换,借用双向 DC/AC模块 50进行交流逆变, 实现单相\三相车辆对车辆的对充功能。
在本发明的一个实施例中, 以单充电枪为例, 如图 13所示, 该充电系统在电动汽 车充电结束时的控制流程包括如下步骤:
S1301 , 供电设备断开供电开关, 停止交流输出, 进入步骤 S1305。
51302 , 控制器模块控制停止充电, 进行卸载, 进入下一步骤 S 1303。
51303 , 卸载完成后断开内部开关, 发送充电结束 4艮文。
51304 , 发送断电请求。
51305 , 充电结束。
其中, 如图 14所示, 供电设备 301通过供电插头 302与电动汽车 1000的车辆插 头 303相连, 从而实现对电动汽车 1000进行充电。 其中, 电动汽车的充电系统通过检 测点 3检测 CP信号和通过检测点 4检测 CC信号, 而供电设备通过检测点 1检测 CP 信号和通过检测点 2检测 CC信号。 并且, 在充电完成后, 均控制断开供电插头 302 和车辆插头 303中的内部开关 S2。
在本发明的另一个实施例中, 当采用多充电枪进行充电时, 例如采用第一充电控 制支路 401和第二充电控制支路 402同时对动力电池充电,其中第一充电控制支路 401 和第二充电控制支路 402共用一个控制器 80。
在本实施例中, 如图 15所示, 该电动汽车的充电系统包括动力电池 10、 第一充电 控制支路 401、 第二充电控制支路 402和控制器 80。 其中, 第一充电控制支路 401连 接充电枪 1 ,第二充电控制支路 402连接充电枪 2。双向 DC/DC模块 30、母线电容 C0、 双向 DC/AC模块 50、 滤波模块 103、 充放电控制模块 70和第二预充模块 106。 并且, 第一充电控制支路 401和第二充电控制支路 402还包括熔断器 FU。 动力电池 10通过 第一预充控制模块 101与第一充电控制支路 401相连, 动力电池 10还通过第一预充控 制模块 101与第二充电控制支路 402相连, 控制器 80分别与第一充电控制支路 401和 第二充电控制支路 402相连, 其中控制器模块 80用于接收到充电信号时, 控制电网分 别通过第一充电控制支路 401和第二充电控制支路 402对动力电池 10进行充电。
作为一个具体的示例, 电动汽车的充电系统在实现充电功能时的主要流程如图 16 所示,
步骤 S 161 , 充电枪连接完成, 即接收到充电感应信号即将外部交流充电设备(充 电枪) 与车辆进行连接, 连接完成后。
步骤 S 162 , 控制器采集相关信息, 进入充电模式。 具体地, 控制器检测到充电感 应信号, 自动切换为充电功能。
步骤 S 163 , 控制器自检无故障发送准备就绪报文。 即控制器对本身进行检查, 检 查无故障后, 通过 CAN信号发送准备就绪信息。
步骤 S 164 , 吸合直流预充接触器。 即电池管理接收到该信息后。 首先吸合第一预 充控制模块, 对母线处大电容进行预充。
步骤 S165, 控制器实时发送母线电压。
步骤 S166, 判断接收到电压与实际动力电池电压差值是否小于阈值 1。 即, 当预 充电压与电池实际电压相差在阈值 1以内 (例如阈值 1为 50ν) , 则认为预充成功, 执 行步骤 S167, 否则执行步骤 S168。
步骤 S167, 吸合充电接触器(即第一开关 K1 ) , 延迟断开预充接触器(即第一预 充控制模块) 。 即吸合充电接触器并且断开预充接触器。
步骤 S168, 发送预充失败故障, 断开预充接触器
步骤 S169, 提示故障。
在完成这些步骤后, 控制器与外部交流供电设备进行通讯, 通知外部交流供电设 备 (充电桩) 可以输出三相交流电, 待三相交流电输入后, 对三相交流电压幅值、 频 率和相序进行检测, 检测无误后, 如图 17所示, 示出了单枪充电时控制流程。
具体地, 如图 17所示, 单充电枪充电时控制流程如下:
步骤 S171: 充电接触器(第一开关 K1 )吸合, 控制器与供电设备(充电桩)通讯 完成。
步骤 S172: 供电设备输出三相或单相交流电。
步骤 S173: 判断对三相或单相交流电频率、 幅值和相序检测是否正常。 如果正常, 则执行步骤 S 174 , 否则执行步骤 S 182。
步骤 S 174: 吸合电容接触器 (即滤波控制模块 104) 。
步骤 S175: 吸合交流预充接触器 (即第二预充控制模块 106) 。
步骤 S176: 判断母线电压是否达到设定阈值 2, 如果达到, 则执行步骤 S177, 否 则执行步骤 S181。
步骤 S177: 吸合交流接触器 (即三相开关 K8或单相开关 K7) , 延迟断开交流预 充接触器 (即三相预充开关 K9) 。
步骤 S178: 设定母线电压目标值, 启动双向 DC/AC模块 50工作。
步骤 S179: 母线电压目标值稳定, 启动双向 DC/DC模块 30工作。
步骤 S180: 调节充电功率至额定功率以完成充电。
步骤 S181: 发送预充失败故障, 断开预充接触器 (即第一预充控制模块 101 ) 。 步骤 S182: 提示故障并结束充电。
在本发明的一个实施例中, 如果两个充电枪同时充电采用如图 17所示的充电控制 方式, 此时会存在一个问题是由于控制器在直流侧是接在同一个动力电池上, 而交流 侧的交流配电也是从同一个配电装置中出来的, 故当第一预充控制模块 101 工作时,
第二预充控制模块 102再启动工作时会出现母线电压迅速飙升到电容的额定电压, 这 样电容就存在损坏的风险。 为解决该问题, 本方法提出了另外一种充电启动流程。 两 个充电枪同时对动力电池进行充电。 具体地, 采用双充电枪对动力电池进行充电的流 程如图 18所示, 具体包括以下步骤:
步骤 S191: 充电接触器吸合 (即第一开关 K1 ) , 控制器与供电设备通讯完成。 步骤 S192: 供电设备输出三相或单相交流电。
步骤 S193: 判断对三相交流频率、 幅值和相序检测是否正常。 如果正常, 执行步 骤 S 194 , 否则执行步骤 S204。
步骤 S194: 母线电压目标值稳定, 启动双向 DC/DC模块 30工作, 保持充电功率 为零。
步骤 S 195: 吸合电容接触器 (即滤波控制模块 104) 。
步骤 S196: 吸合交流预充接触器 (即第二预充控制模块 106) 。
步骤 S197: 判断母线电压是否达到设定阈值 3, 如果是则执行步骤 S198, 否则执 行步骤 S204。
步骤 S198: 吸合交流接触器 (即三相开关 K8或单相开关 K7) , 延时断开交流预 充接触器 (即三相预充开关 K9) 。
步骤 S199: 设定母线电压目标值, 启动双向 DC/AC模块 50工作。
步骤 S200: 判断是单枪 (单充电枪)还是双充电枪。 如果是双充电枪, 则执行步 骤 S201 , 否则执行步骤 S203。
步骤 S201: 先调节充电功率至半载 (半载工作状态) 。
步骤 S202: 判断另一支路充电功率是否达到半载。 如果是则执行步骤 S203, 否则 执行步骤 S201。
步骤 S203: 调节充电功率至额定功率直至充电完成。
步骤 S204: 发送预充失败故障, 断开预充接触器 (即第一预充控制模块 101 ) 。 步骤 S205: 提示故障, 并结束充电。
也就是说, 首先, 先控制双向 DC/DC模块启动进行工作, 此时该双向 DC/DC模 块将较高的直流电压转换为较低的直流电压。 根据三相可控整流处母线电压与电池侧 电压计算出给定 IGBT的初始占空比, 以此来保证双向 DC/DC模块启动进行工作时无 冲击电流且保证此种状态下系统工作的电流为 0。其次吸合预充接触器,根据电网的电 压对预充电压进行判断, 当达到某一电压值时则判断为预充成功, 预充成功后吸合第 一开关, 吸合完成后, 延迟设定时间断开预充接触器。 最后启动双向 DC/AC模块, 该
处主要是利用 SPWM算法进行控制, 主要目的稳定母线处的电压, 根据充电需要达到 的最大功率和电池组的额定容量来确定可控整流母线电压的目标值, 当母线电压达到 设定值时。 根据给定的目标充电功率对双向 DC/DC模块进行调节, 最后可以稳定在目 标充电功率下进行工作。
在双充电枪并联充电时, 假设第一预充控制模块 101 已经启动工作, 此时第二预 充控制模块 102准备启动工作, 这时第二预充控制模块 102启动工作时存在对第一预 充控制模块 101 的干扰, 为解决该问题, 加入功率分配的控制方法以及先进行半载工 作待两个充电支路均半载稳定工作后, 再控制两个充电支路逐步调节到满载进行工作。
具体地, 双枪并联充电时, 第一预充控制模块 101和第二预充控制模块 102的三 相可控整流母线电压目标值是一致的, 但由于母线电压采样存在差异和双枪并联充电 的电路, 导致在双枪并联充电过程中存在交流侧处存在直流分量, 及导致交流电流波 形整体上移或下移。 这样对整个系统或者是对供电设备都存在较大的影响, 存在安全 隐患。 为解决该问题, 本发明的实施例中, 提出了一种直流分量算法。 通过该方法来 消除系统中的直流分量。 如图 19所示, 具体包括如下步骤:
步骤 S210: 采集三相交流电流。
步骤 S211 : 计算三相交流电流采样值的和 sum。
步骤 S212:判断三相电流交流之和 sum是否等于 0。如果不为 0,则执行步骤 S213 , 否则结束调节。
步骤 S213 : PI环调节。
步骤 S214: PI环输出直至结束。
其主要原理为根据三相交流电流的特性, 其三相电流采样值相加的理论值为 0, 通 过对该系统的三相实际电流的采集计算, 该计算值作为反馈值, 构成一个 PI环进行调 节, 将调节输出作用到三相可控整流桥上。 这样就可以消除双枪并联充电存在的直流 分量问题, 在本发明的一个实施例中, 为实现上述调节, 本发明实施例的第一充电控 制支路和第二充电控制支路分别进一步包括: 检测模块, 用于检测双向 DC/AC模块中 交流侧的第一相至第三相电流; 调整模块 (PI 环调节) , 所述调整模块在所述检测模 块检测的交流侧的第一相至第三相电流之和不为零时对所述第一相至第三相电流进行 调整。
此外, 本发明的又一个实施例还提出了一种电动车辆的充电控制方法, 该充电控 制方法包括以下步骤:
步骤 S1 , 控制器模块检测到第一充电支路通过充电枪或者充放电插座与供电设备
相连, 且第二充电支路通过充电枪或者充放电插座与供电设备相连时, 向电池管理器 发送充电连接信号。
步骤 S2, 电池管理器接收到控制器模块发送的充电连接信号后, 检测并判断动力 电池是否需要充电, 当动力电池需要充电时, 执行下一步骤。
步骤 S3 , 电池管理器向控制器模块发送充电信号。
步骤 S4, 控制器模块接收到充电信号时, 控制电网分别通过第一充电支路和第二 充电支路对动力电池进行充电。
采用上述技术方案的电动汽车充电系统及其充电控制方法, 控制器模块通过控制 电网分别通过第一充电支路和第二充电支路对动力电池进行充电, 使得电动车的充电 功率增大, 从而大大缩短充电时间, 实现快速充电, 节约了时间成本。
在本发明的实施例中, 上述电动汽车的充电系统兼容范围广泛, 具有单相三相切 换功能, 并且适应不同国家电网电制标准。
具体地, 如图 20所示, 充电枪可用充放电插座 20代替, 如图 20所示, 具有两个 充电插座(例如美标和欧标)切换的功能。 该充放电插座 20包括单相充电插座 501例 如美标、 三相充电插座 502例如欧标、 两个高压接触器 K503、 Κ504组成。 单相充电 插座 501与三相充电插座 502的 CC、 CP和 PE共用, 单相充电插座 501的 L、 N相线 通过接触器 K503、 Κ504与三相充电插座 503的 Α、 Β相连接。 控制器模块 80接收到 单相充放电指令时, 控制接触器 Κ503、 Κ504闭合, 使三相充电插座 502的 Α、 Β相与 单相充电插座 501 的 L、 N相线导通, 三相充电插座 502不故使用, 由三相充电插座 502的 A、 B相代替单相充电插座 501 的 L、 N相线与充电插头连接, 控制器模块 80 即可正常实现单相充电功能。
或者, 如图 5所示, 利用标准 7芯插座, 在 N线与 B相线之间增加单相开关 K7, 控制器模块 80接收到单相充放电指令,控制单相开关 K7吸合,使 B相线和 N线连接, 由 A、 B相作为 L、 N相线使用, 连接插头需使用专用连接插头, 或其 B、 C相不做使 用的连接插头。
也就是说,在本发明的实施例中,充电系统将根据控制器模块 80检测电网的电压, 通过计算判断电网的频率及单相 /三相, 根据计算信息和得出电制后, 控制器模块 80 根据充放电插头 20的类型和电网电制, 选择不同的控制参数, 控制双向 DC/AC模块 50对交流电压进行可控整流, 双向 DC/DC模块 30根据电池电压对直流电进行调压, 最后输送给动力电池 10。
在本发明的另一个示例中, 如图 21所示, 离网带载放电插头为两芯、 三芯和四芯
的插座, 与充电插头相连, 可以输出单相、 三相、 四相电制的电。
图 22为根据本发明再一个实施例的电动汽车的电力载波通讯系统的结构图。
如图 22所示, 该电动汽车的电力载波通讯系统 2000包括多个控制装置 1 10、 汽车 电力线 120和多个电力载波通讯装置 130。
具体地, 多个控制装置 1 10 均具有通讯接口, 通讯接口例如为但不限于: 串行通 信接口 SCI。汽车电力线 120为多个控制装置 1 10供电且多个控制装置 1 10之间通过汽 车电力线 120进行通讯。 多个电力载波通讯装置 103与多个控制装置 1 10——对应, 多个控制装置 1 10通过各自的通讯接口与对应的电力载波通讯装置 130相连, 多个电 力载波通讯装置 130之间通过汽车电力线 120相连, 其中, 多个电力载波通讯装置 130 从汽车电力线 120上获取载波信号以便将载波信号解调后发送给对应的控制装置, 并 接收对应的控制装置发送的信息, 并将信息调制后发送至汽车电力线 120上。
结合图 22所示, 多个控制装置 1 10包括控制装置 1至控制装置 N ( N>2 , N为整 数)。与之相对应的多个电力载波通讯装置 130包括电力载波装置 1至电力载波装置N。 例如, 控制装置 1 需要与控制装置 2进行通讯, 则电力载波装置 1从汽车电力线 120 中获取来自于电力载波装置 2发送的载波信号, 该载波信号来自于控制装置 2 , 并由电 力载波装置 2调制后发送至汽车电力线 120上。
其中, 如图 23所示, 每个电力载波通讯装置 130包括依次相连的耦合器 131、 滤 波器 133、 放大器 134和调制解调器 132。
进一步地, 如图 24所示, 多个电力载波通讯装置例如八个电力载波通讯装置 1 -8 通过汽车电力线束 121、 122与网关 300相连, 每个电力载波通讯装置与一个控制装置 对应。 例如, 电力载波通讯装置 1 与传动控制装置 1 1 1相对应, 电力载波通讯装置 2 与发动机控制装置 1 12相对应, 电力载波通讯装置 3与主动悬挂装置对应, 电力载波 通讯装置 4与空调控制装置 1 14相对应, 电力载波通讯装置 5与安全气嚢 1 15相对应, 电力载波通讯装置 6与仪表显示 1 16相对应, 电力载波通讯装置 7与故障诊断 1 17相 对应, 电力载波通讯装置 8与照明装置 1 18相对应。
在本实施例中, 如图 25所示, 该电力载波通讯系统进行数据接收的方法包括如下 步骤:
52101 , 系统加电启动, 系统程序进入从电力线接收数据的状态。
52102 , 检测载波信号的有无及正确与否。 如果是, 则执行步骤 S2103 ; 如果否, 则执行步骤 S2104。
52103 , 开始接收从电力线上传来的数据, 进入下一步骤 S2105。
52104, 检测 SCI口, 判断 SCI口是否有数据。 如果是, 则进入下一步骤 S2105; 如果否, 则返回步骤 S2101。
52105 , 进入数据接收状态。
根据本实施例的电动汽车的电力载波通讯系统, 在不增加汽车内线束的基础上, 可实现车内各个控制系统之间的数据传输和共享, 而利用电力线作为通讯介质的电力 载波通讯, 避免建设和投资新的通讯网络, 降低了制造成本和维护难度。
在本发明的还一个实施例中, 上述的电动汽车的充电系统采用采用水冷方式, 如 图 26所示, 箱体结构布局为电感水道散热和 IGBT水道共用, 很好的解决了散热和空 间问题。 箱体结构布局分为上下两层, IGBT散热水道背面对滤波模块进行散热, 根据 电感形状制作, 制作成电感槽 601 , 利用电感槽 601 的侧面传导热量, 最后通过水道 602带走热量, 电感利用高导热系数的胶进行固定, 增加了热量传导能力和整体设计的 机械强度。 本实施例中的充电系统采用采用水冷方式进行散热, 散热效果优于风冷方 式, 同等功率下可以减小滤波模块体积, 减小整体充电系统的体积和重量。
此外, 本发明的另一方面的实施例还提出了一种电动汽车, 包括上述的充电系统。 该电动汽车能够通过三相或单相电进行大功率充电, 方便用户随时随地对电动汽车进 行快速充电, 节约了时间成本, 满足人们的需求。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为, 表示包括 一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、 片段 或部分, 并且本发明的优选实施方式的范围包括另外的实现, 其中可以不按所示出或 讨论的顺序, 包括根据所涉及的功能按基本同时的方式或按相反的顺序, 来执行功能, 这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和 /或步骤, 例如, 可以被认为是用 于实现逻辑功能的可执行指令的定序列表, 可以具体实现在任何计算机可读介质中, 以供指令执行系统、 装置或设备(如基于计算机的系统、 包括处理器的系统或其他可 以从指令执行系统、 装置或设备取指令并执行指令的系统) 使用, 或结合这些指令执 行系统、装置或设备而使用。就本说明书而言, "计算机可读介质"可以是任何可以包含、 存储、 通信、 传播或传输程序以供指令执行系统、 装置或设备或结合这些指令执行系 统、 装置或设备而使用的装置。 计算机可读介质的更具体的示例 (非穷尽性列表) 包 括以下: 具有一个或多个布线的电连接部(电子装置), 便携式计算机盘盒(磁装置), 随机存取存储器(RAM ) , 只读存储器(ROM ) , 可擦除可编辑只读存储器( EPROM 或闪速存储器) , 光纤装置, 以及便携式光盘只读存储器 (CDROM ) 。 另外, 计算机
可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质, 因为可以例如通 过对纸或其他介质进行光学扫描, 接着进行编辑、 解译或必要时以其他合适方式进行 处理来以电子方式获得所述程序, 然后将其存储在计算机存储器中。
应当理解, 本发明的各部分可以用硬件、 软件、 固件或它们的组合来实现。 在上 述实施方式中, 多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行 的软件或固件来实现。 例如, 如果用硬件来实现, 和在另一实施方式中一样, 可用本 领域公知的下列技术中的任一项或他们的组合来实现: 具有用于对数据信号实现逻辑 功能的逻辑门电路的离散逻辑电路, 具有合适的组合逻辑门电路的专用集成电路, 可 编程门阵列 (PGA ) , 现场可编程门阵列 (FPGA ) 等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤 是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 该程序在执行时, 包括方法实施例的步骤之一或其组合。
此外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块中, 也可以 是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个模块中。 上述集成 的模块既可以采用硬件的形式实现, 也可以采用软件功能模块的形式实现。 所述集成 的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时, 也可以存储 在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
在本说明书的描述中, 参考术语"一个实施例"、 "一些实施例"、 "示例"、 "具体示 例"、 或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结构、 材料或 者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语的示意 性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或者 特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 对于本领域的普通技术人员而言, 可以 理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的范围由所附权利要求及其等同限定。
Claims
1、 一种电动汽车的充电系统, 其特征在于, 包括:
动力电池;
第一充电接口和第二充电接口, 所述第一充电接口和第二充电接口与外部电源相 连;
第一充电控制支路和第二充电控制支路, 所述第一充电控制支路连接在所述动力 电池和所述第一充电接口之间, 所述第二充电控制支路连接在所述动力电池和所述第 二充电接口之间; 以及
控制器, 所述控制器与所述第一充电接口和第二充电接口相连。
2、 如权利要求 1所述的电动汽车的充电系统, 其特征在于,
在进行充电时, 所述控制器控制所述第一充电控制支路启动以建立所述动力电池 与所述第一充电接口之间的充电通路直至所述第一充电控制支路进入半载工作状态; 所述控制器控制所述第二充电控制支路启动以建立所述动力电池与所述第二充电 接口之间的充电通路直至所述第二充电控制支路进入半载工作状态;
所述控制器调整所述第一充电控制支路和第二充电控制支路的工作功率以使所述 第一充电控制支路和第二充电控制支路进入满载工作状态。
3、 如权利要求 1或 2所述的电动汽车的充电系统, 其特征在于, 所述系统还包括 高压配电箱, 所述高压配电箱与所述动力电池相连, 所述高压配电箱包括:
第一预充控制模块和与所述第一预充控制模块并联的第一开关, 所述第一预充控 制模块和所述第一开关的一端与所述动力电池的一端相连, 所述第一预充控制模块和 所述第一开关的另一端与所述第一充电控制支路和第二充电控制支路的第二端相连; 驱动控制开关, 所述驱动控制开关的一端与所述动力电池的一端相连, 且所述驱 动控制开关与所述第一充电控制支路和第二充电控制支路的第三端相连,
其中, 所述第一预充控制模块、 第一开关和驱动控制开关均与所述控制器相连。
4、 如权利要求 3所述的电动汽车的充电系统, 其特征在于,
当所述电动汽车处于充放电模式时, 所述控制器通过所述第一预充控制模块对所 述第一充电控制支路和第二充电控制支路进行预充电同时闭合所述第一预充控制模 块, 当所述第一充电控制支路和第二充电控制支路的母线电压与所述动力电池的电压 成预设倍数时, 控制所述第一预充控制模块关断并闭合所述第一开关。
5、 如权利要求 4所述的电动汽车的充电系统, 其特征在于, 所述第一充电控制支 路和第二充电控制支路分别进一步包括:
双向 DC/DC模块, 所述双向 DC/DC模块的第二直流端与所述第一开关的另一端 相连, 所述双向 DC/DC模块的第一直流端与所述动力电池的另一端相连, 其中, 所述 第一直流端为所述双向 DC/DC模块输入及输出的共用直流端;
双向 DC/AC模块, 所述双向 DC/AC模块的第一直流端与所述驱动控制开关的另 一端相连, 所述双向 DC/AC模块的第二直流端与所述动力电池的另一端相连;
充放电控制模块, 所述充放电控制模块的一端与所述双向 DC/AC模块的交流端相 连, 所述第一充电控制支路的充放电控制模块的另一端与所述第一充电接口相连, 所 述第二充电控制支路的充放电控制模块的另一端与所述第二充电接口相连。
6、 如权利要求 5所述的电动汽车的充电系统, 其特征在于, 还包括:
电机控制开关, 所述电机控制开关的一端与所述双向 DC/AC模块的交流端相连, 所述电机控制开关的另一端与电机相连, 所述电机控制开关由所述控制器进行控制, 所述控制器在所述电动汽车为驱动模式时, 闭合所述电机控制开关。
7、 如权利要求 6所述的电动汽车的充电系统, 其特征在于, 当所述充电系统当前 所处的工作模式为驱动模式时, 所述控制器控制所述驱动控制开关闭合以关闭所述双 向 DC/DC模块, 并控制所述电机控制开关闭合, 以及控制所述充放电控制模块断开。
8、 如权利要求 7所述的电动汽车的充电系统, 其特征在于,
当所述充电系统当前所处的工作模式为充放电模式时, 所述控制器控制所述驱动 控制开关断开以启动所述双向 DC/DC模块, 并控制所述电机控制开关断开, 以及控制 所述充放电控制模块闭合。
9、 如权利要求 5所述的电动汽车的充电系统, 其特征在于, 所述双向 DC/DC模 块进一步包括:
相互串联的第一开关管和第二开关管, 所述相互串联的第一开关管和第二开关管 连接在所述双向 DC/DC模块的第一直流端和第三直流端之间, 所述第一开关管和第二 开关管受所述控制器的控制, 其中, 所述第一开关管和第二开关管之间具有第一节点; 第一二极管, 所述第一二极管与所述第一开关管反向并联;
第二二极管, 所述第二二极管与所述第二开关管反向并联;
第一电感, 所述第一电感的一端与所述第一节点相连, 所述第一电感的另一端与 所述动力电池的一端相连; 以及
第一电容, 所述第一电容的一端与所述第一电感的另一端相连, 所述第一电容的 另一端与所述动力电池的另一端相连。
10、 如权利要求 5 所述的电动汽车的充电系统, 其特征在于, 所述第一充电控制 支路和第二充电控制支路分别还包括:
漏电流削减模块, 所述漏电流削减模块连接在所述双向 DC/DC模块的第一直流端 和所述双向 DC/DC模块的第三直流端之间。
11、 如权利要求 10所述的电动汽车的充电系统, 其特征在于, 所述漏电流削减模 块进一步包括:
第二电容和第三电容, 所述第二电容的一端与所述第三电容的一端相连, 所述第 二电容的另一端与所述双向 DC/DC模块的第一直流端相连, 所述第三电容的另一端与 所述双向 DC/DC模块的第三直流端相连, 其中, 所述第二电容和第三电容之间具有第 二节点。
12、 如权利要求 1 1所述的电动汽车的充电系统, 其特征在于, 所述第一充电控制 支路和第二充电控制支路分别还包括:
滤波模块,所述滤波模块连接在所述双向 DC/AC模块和所述充放电控制模块之间。
13、 如权利要求 12所述的电动汽车的充电系统, 其特征在于, 所述第一充电控制 支路和第二充电控制支路分别还包括:
滤波控制模块, 所述滤波控制模块连接在所述第二节点和所述滤波模块之间, 所 述滤波控制模块受所述控制器控制, 所述控制器在所述充电系统当前所处的工作模式 为驱动模式时控制所述滤波控制模块断开。
14、 如权利要求 12所述的电动汽车的充电系统, 其特征在于, 所述第一充电控制 支路和第二充电控制支路分别还包括:
第二预充控制模块, 所述第二预充模块与所述充放电控制模块并联, 所述第二预 充控制模块用于对所述滤波模块中的电容进行预充电。
15、 如权利要求 5 所述的电动汽车的充电系统, 其特征在于, 所述充放电控制模 块进一步包括:
三相开关和 /或单相开关, 用于实现三相充放电或单相充放电。
16、 如权利要求 5 所述的电动汽车的充电系统, 其特征在于, 所述第一充电控制 支路和第二充电控制支路分别还包括:
检测模块, 用于检测双向 DC/AC模块中交流侧的第一相至第三相电流; 调整模块, 所述调整模块在所述检测模块检测的交流侧的第一相至第三相电流之 和不为零时对所述第一相至第三相电流进行调整。 、 一种电动汽车, 其特征在于, 包括如权利要求 1-16任一项所述的充电系统-
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12862873.2A EP2802056B1 (en) | 2011-12-31 | 2012-12-31 | Charging sysem for elecric vehicle and electric vehicle comprising the same |
US14/369,946 US9969290B2 (en) | 2011-12-31 | 2012-12-31 | Charging system for electric vehicle and electric vehicle comprising the same |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011205719323U CN202455130U (zh) | 2011-12-31 | 2011-12-31 | 电动车辆的充放电控制系统及电动车 |
CN201120571932.3 | 2011-12-31 | ||
CN201110458395 | 2011-12-31 | ||
CN201110458395.6 | 2011-12-31 | ||
CN201210185660.2 | 2012-06-07 | ||
CN201220266009.3 | 2012-06-07 | ||
CN 201220266009 CN202679006U (zh) | 2012-06-07 | 2012-06-07 | 车辆供电系统、充电系统、对充充电系统及车辆 |
CN201210185660 | 2012-06-07 | ||
CN201220303636.X | 2012-06-27 | ||
CN201210214502 | 2012-06-27 | ||
CN201210214502.5 | 2012-06-27 | ||
CN201220303636XU CN202712941U (zh) | 2012-06-27 | 2012-06-27 | 车辆及其充电系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013097816A1 true WO2013097816A1 (zh) | 2013-07-04 |
Family
ID=48696349
Family Applications (21)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/088058 WO2013097815A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及在充放电和驱动功能之间切换的动力系统 |
PCT/CN2012/088056 WO2013097814A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的控制系统及具有其的电动汽车 |
PCT/CN2012/088107 WO2013097828A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充电时的相序识别方法及相序识别装置 |
PCT/CN2012/088074 WO2013097820A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其的充电控制系统 |
PCT/CN2012/088094 WO2013097824A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的动力系统和电机控制器 |
PCT/CN2012/088113 WO2013097829A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充电时外部电源的电制识别方法及装置 |
PCT/CN2012/088084 WO2013097821A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及电动汽车向外供电的系统 |
PCT/CN2012/088010 WO2013097803A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的充电系统 |
PCT/CN2012/088048 WO2013097811A1 (zh) | 2011-12-31 | 2012-12-31 | 用于电动汽车的放电系统 |
PCT/CN2012/088041 WO2013097808A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的主动泄放系统 |
PCT/CN2012/088086 WO2013097823A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车之间相互充电的系统及充电连接器 |
PCT/CN2012/088008 WO2013097801A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其集成控制系统 |
PCT/CN2012/088069 WO2013097819A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充放电的载波装置及通讯方法与系统 |
PCT/CN2012/088035 WO2013097807A1 (zh) | 2011-12-31 | 2012-12-31 | 用于车辆充电与行驶的互锁方法 |
PCT/CN2012/088114 WO2013097830A1 (zh) | 2011-12-31 | 2012-12-31 | 用于电动汽车的大功率充电系统及其控制方法 |
PCT/CN2012/088044 WO2013097810A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车与其交流充电通讯方法及充电桩 |
PCT/CN2012/088067 WO2013097818A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的充电方法及充电装置 |
PCT/CN2012/087997 WO2013097798A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/087992 WO2013097797A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/088098 WO2013097825A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/088061 WO2013097816A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的充电系统及具有其的电动汽车 |
Family Applications Before (20)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/088058 WO2013097815A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及在充放电和驱动功能之间切换的动力系统 |
PCT/CN2012/088056 WO2013097814A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的控制系统及具有其的电动汽车 |
PCT/CN2012/088107 WO2013097828A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充电时的相序识别方法及相序识别装置 |
PCT/CN2012/088074 WO2013097820A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其的充电控制系统 |
PCT/CN2012/088094 WO2013097824A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的动力系统和电机控制器 |
PCT/CN2012/088113 WO2013097829A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充电时外部电源的电制识别方法及装置 |
PCT/CN2012/088084 WO2013097821A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及电动汽车向外供电的系统 |
PCT/CN2012/088010 WO2013097803A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的充电系统 |
PCT/CN2012/088048 WO2013097811A1 (zh) | 2011-12-31 | 2012-12-31 | 用于电动汽车的放电系统 |
PCT/CN2012/088041 WO2013097808A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及用于电动汽车的主动泄放系统 |
PCT/CN2012/088086 WO2013097823A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车之间相互充电的系统及充电连接器 |
PCT/CN2012/088008 WO2013097801A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其集成控制系统 |
PCT/CN2012/088069 WO2013097819A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车充放电的载波装置及通讯方法与系统 |
PCT/CN2012/088035 WO2013097807A1 (zh) | 2011-12-31 | 2012-12-31 | 用于车辆充电与行驶的互锁方法 |
PCT/CN2012/088114 WO2013097830A1 (zh) | 2011-12-31 | 2012-12-31 | 用于电动汽车的大功率充电系统及其控制方法 |
PCT/CN2012/088044 WO2013097810A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车与其交流充电通讯方法及充电桩 |
PCT/CN2012/088067 WO2013097818A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车的充电方法及充电装置 |
PCT/CN2012/087997 WO2013097798A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/087992 WO2013097797A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
PCT/CN2012/088098 WO2013097825A1 (zh) | 2011-12-31 | 2012-12-31 | 电动汽车及其放电装置 |
Country Status (3)
Country | Link |
---|---|
US (10) | US9604545B2 (zh) |
EP (10) | EP2800228B1 (zh) |
WO (21) | WO2013097815A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9718374B2 (en) | 2011-12-31 | 2017-08-01 | Shenzhen Byd Auto R&D Company Limited | Electric vehicle and charging system for electric vehicle |
Families Citing this family (169)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8118447B2 (en) | 2007-12-20 | 2012-02-21 | Altair Engineering, Inc. | LED lighting apparatus with swivel connection |
US8360599B2 (en) | 2008-05-23 | 2013-01-29 | Ilumisys, Inc. | Electric shock resistant L.E.D. based light |
US8214084B2 (en) | 2008-10-24 | 2012-07-03 | Ilumisys, Inc. | Integration of LED lighting with building controls |
US8324817B2 (en) | 2008-10-24 | 2012-12-04 | Ilumisys, Inc. | Light and light sensor |
US8901823B2 (en) | 2008-10-24 | 2014-12-02 | Ilumisys, Inc. | Light and light sensor |
US8653984B2 (en) | 2008-10-24 | 2014-02-18 | Ilumisys, Inc. | Integration of LED lighting control with emergency notification systems |
US7938562B2 (en) | 2008-10-24 | 2011-05-10 | Altair Engineering, Inc. | Lighting including integral communication apparatus |
WO2010111433A2 (en) * | 2009-03-25 | 2010-09-30 | Powergetics, Inc. | Bidirectional energy converter |
WO2011119921A2 (en) | 2010-03-26 | 2011-09-29 | Altair Engineering, Inc. | Led light with thermoelectric generator |
WO2011119958A1 (en) | 2010-03-26 | 2011-09-29 | Altair Engineering, Inc. | Inside-out led bulb |
WO2012058556A2 (en) | 2010-10-29 | 2012-05-03 | Altair Engineering, Inc. | Mechanisms for reducing risk of shock during installation of light tube |
WO2013001820A1 (ja) * | 2011-06-28 | 2013-01-03 | 京セラ株式会社 | 系統連系インバータ装置およびその制御方法 |
WO2013131002A1 (en) | 2012-03-02 | 2013-09-06 | Ilumisys, Inc. | Electrical connector header for an led-based light |
CN103419653B (zh) * | 2012-05-22 | 2016-04-27 | 比亚迪股份有限公司 | 电动汽车、电动汽车的动力系统及电池加热方法 |
WO2014008463A1 (en) | 2012-07-06 | 2014-01-09 | Ilumisys, Inc. | Power supply assembly for led-based light tube |
US9271367B2 (en) | 2012-07-09 | 2016-02-23 | Ilumisys, Inc. | System and method for controlling operation of an LED-based light |
JP5968719B2 (ja) * | 2012-08-06 | 2016-08-10 | 京セラ株式会社 | 管理システム、管理方法、制御装置及び蓄電池装置 |
AU2012387794B2 (en) * | 2012-08-13 | 2016-05-19 | Mitsubishi Electric Corporation | Propulsion control device of engine hybrid railroad vehicle |
WO2014111999A1 (ja) * | 2013-01-17 | 2014-07-24 | ソニー株式会社 | 蓄電装置および起動方法 |
KR20140097628A (ko) * | 2013-01-28 | 2014-08-07 | 삼성에스디아이 주식회사 | 배터리 온도 제어 시스템 및 그 제어 방법 |
DE102013204256A1 (de) * | 2013-03-12 | 2014-09-18 | Bayerische Motoren Werke Aktiengesellschaft | Ladevorrichtung für ein Elektrofahrzeug |
US9285084B2 (en) | 2013-03-14 | 2016-03-15 | Ilumisys, Inc. | Diffusers for LED-based lights |
CN104167768B (zh) * | 2013-05-16 | 2018-05-15 | 中兴通讯股份有限公司 | 一种充电装置及充电方法 |
KR101480616B1 (ko) * | 2013-06-05 | 2015-01-09 | 현대자동차주식회사 | 전기자동차용 탑재형 배터리 충전장치 및 이의 제어방법 |
CN104253465B (zh) * | 2013-06-28 | 2017-01-04 | 比亚迪股份有限公司 | 电动汽车的充电控制系统及具有其的电动汽车 |
CN104249630B (zh) * | 2013-06-28 | 2017-08-04 | 比亚迪股份有限公司 | 电动汽车及电动汽车向外供电的系统 |
CN104253471B (zh) * | 2013-06-28 | 2017-02-22 | 比亚迪股份有限公司 | 电动汽车的充电系统及电动汽车的充电控制方法 |
FR3008246B1 (fr) * | 2013-07-03 | 2017-07-07 | Schneider Electric Ind Sas | Systeme de charge electrique d'une pluralite de vehicules electriques et procede de repartition de la puissance electrique delivree par une alimentation electrique d'un tel systeme |
US9267650B2 (en) | 2013-10-09 | 2016-02-23 | Ilumisys, Inc. | Lens for an LED-based light |
EP2866354B1 (en) * | 2013-10-25 | 2019-06-26 | VITO NV (Vlaamse Instelling voor Technologisch Onderzoek NV) | Method and system for providing pulsed power and data on a bus |
JP2015096017A (ja) * | 2013-11-14 | 2015-05-18 | トヨタ自動車株式会社 | 車両およびそれを用いた充放電システム |
CN104753093B (zh) * | 2013-12-26 | 2018-01-19 | 南京德朔实业有限公司 | 充电器和充电控制方法 |
EP3097748A1 (en) | 2014-01-22 | 2016-11-30 | iLumisys, Inc. | Led-based light with addressed leds |
US10046641B2 (en) | 2014-03-19 | 2018-08-14 | Motivo Engineering LLC | Mobile power conversion and distribution system |
US20150295421A1 (en) * | 2014-04-10 | 2015-10-15 | Ford Global Technologies, Llc | Active isolated circuit for precharging and discharging a high voltage bus |
JP2017516441A (ja) * | 2014-04-29 | 2017-06-15 | ハイドロ−ケベック | 電気自動車用両方向充電システム |
US9475398B2 (en) * | 2014-05-08 | 2016-10-25 | Cummins, Inc. | Optimization-based predictive method for battery charging |
US9510400B2 (en) | 2014-05-13 | 2016-11-29 | Ilumisys, Inc. | User input systems for an LED-based light |
CN105814771A (zh) * | 2014-05-30 | 2016-07-27 | 富士电机株式会社 | 充电器 |
US20160079945A1 (en) * | 2014-09-16 | 2016-03-17 | Texas Instruments Incorporated | Programmable impedance network in an amplifier |
US10097078B2 (en) * | 2014-10-21 | 2018-10-09 | Toshiba International Corporation | Multi-mode energy router |
EP3023291A1 (de) * | 2014-11-20 | 2016-05-25 | ABB Technology AG | Umrichtersystem zum elektrischen antreiben eines fahrzeuges |
US9358892B1 (en) * | 2014-12-02 | 2016-06-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for pre-charging a hybrid vehicle for improving reverse driving performance |
CN105730258B (zh) * | 2014-12-10 | 2019-07-26 | 比亚迪股份有限公司 | 汽车的点火控制系统及汽车 |
DE102015101087A1 (de) * | 2015-01-26 | 2015-04-23 | Infineon Technologies Ag | Schaltungsanordnung |
KR102296132B1 (ko) * | 2015-02-16 | 2021-08-31 | 삼성에스디아이 주식회사 | 배터리 팩 및 그의 구동방법 |
DE102015004119A1 (de) * | 2015-03-31 | 2016-10-06 | Audi Ag | Kraftfahrzeug mit einem elektrischen Energiespeicher und zwei Ladeschnittstellen, Ladesystem sowie Verfahren |
US10161568B2 (en) | 2015-06-01 | 2018-12-25 | Ilumisys, Inc. | LED-based light with canted outer walls |
DE102015108789A1 (de) * | 2015-06-03 | 2016-12-08 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Energieversorgungssystem für ein Kraftfahrzeug |
US10560024B2 (en) | 2015-09-17 | 2020-02-11 | Conductive Holding, LLC | Bidirectional DC/DC converter for a charging system |
US9787117B2 (en) | 2015-09-17 | 2017-10-10 | Conductive Holding, LLC | Bidirectional battery charger integrated with renewable energy generation |
CN105182855B (zh) * | 2015-09-23 | 2018-04-06 | 上海大学 | Dsp芯片出现失效时保护的汽车控制器及其控制方法 |
CN105186628A (zh) * | 2015-10-10 | 2015-12-23 | 陶杰 | 一种电动汽车智能充电桩系统 |
CN105846523A (zh) * | 2015-10-10 | 2016-08-10 | 陶杰 | 一种电动汽车智能充电桩系统的控制方法 |
CN105244948A (zh) * | 2015-10-10 | 2016-01-13 | 陶杰 | 一种电动汽车智能充电桩系统 |
CN105162210A (zh) * | 2015-10-10 | 2015-12-16 | 愈先梅 | 电动汽车直流充电桩系统 |
FR3044177B1 (fr) * | 2015-11-23 | 2019-05-24 | Renault S.A.S | Chargeur de batterie embarque dans un vehicule automobile muni d'au moins un moteur electrique |
CN105375572B (zh) * | 2015-11-26 | 2018-04-24 | 上海循道新能源科技有限公司 | 一种电动汽车交流充电桩的智能检测装置 |
US10300791B2 (en) * | 2015-12-18 | 2019-05-28 | Ge Global Sourcing Llc | Trolley interfacing device having a pre-charging unit |
CN106891743B (zh) * | 2015-12-18 | 2019-11-08 | 比亚迪股份有限公司 | 电动汽车及其车载充电器和车载充电器的控制方法 |
JP6439670B2 (ja) * | 2015-12-18 | 2018-12-19 | トヨタ自動車株式会社 | 車載システム |
US20170187200A1 (en) * | 2015-12-28 | 2017-06-29 | Dialog Semiconductor (Uk) Limited | Charger Communication by Load Modulation |
US20170185899A1 (en) * | 2015-12-29 | 2017-06-29 | Cognitive Scale, Inc. | Anonymous Cognitive Profile |
CN105656120B (zh) * | 2016-01-29 | 2019-12-10 | 国网智能科技股份有限公司 | 一种双路充电机负荷智能分配的监控方法 |
CN105553046B (zh) * | 2016-02-22 | 2018-07-06 | 深圳市本特利科技有限公司 | 室内自动激光充电系统及方法 |
US9931949B2 (en) * | 2016-02-26 | 2018-04-03 | Ford Global Technologies, Llc | Fault detection in a multi-high voltage bus system |
US11088549B2 (en) * | 2016-03-22 | 2021-08-10 | Intersil Americas LLC | Multiple chargers configuration in one system |
US10594152B1 (en) | 2016-03-25 | 2020-03-17 | Intersil Americas LLC | Method and system for a battery charger |
TWI595722B (zh) * | 2016-05-18 | 2017-08-11 | 台達電子工業股份有限公司 | 充電槍與電動車充電設備 |
US10086709B2 (en) | 2016-06-14 | 2018-10-02 | Ford Global Technologies, Llc | Variable wakeup of a high-voltage charger based on low-voltage system parameters |
CN106143182B (zh) * | 2016-06-27 | 2018-09-11 | 浙江吉利控股集团有限公司 | 一种增程式发电机控制器及其控制方法 |
CN106080448B (zh) * | 2016-07-29 | 2018-08-24 | 深圳市品川能源电气有限公司 | 一种封装有dc模块和充电模块的电动车高压配电控制箱 |
FR3056357B1 (fr) * | 2016-09-22 | 2018-10-12 | IFP Energies Nouvelles | Dispositif de conversion, procede de commande et vehicule associes |
JP6650854B2 (ja) * | 2016-09-26 | 2020-02-19 | 河村電器産業株式会社 | 電気自動車充放電装置 |
CN106374604B (zh) * | 2016-09-29 | 2020-01-10 | 深圳太研能源科技有限公司 | 智能启动电源系统的启动方法 |
CN106379188A (zh) * | 2016-09-30 | 2017-02-08 | 华南理工大学 | 一种电动汽车动力电池能量管理系统及安全防护方法 |
KR102638534B1 (ko) * | 2016-10-05 | 2024-02-21 | 볼투 모터 인코퍼레이티드 | 전기 자동차 |
CN106646076B (zh) * | 2016-10-14 | 2019-06-04 | 宁德时代新能源科技股份有限公司 | 高压互锁检测电路 |
DK3538396T3 (da) * | 2016-11-11 | 2020-08-10 | Innogy Se | Ladestation, elektrisk køretøj og system med en ladestation og et elektrisk køretøj |
CN106558902B (zh) * | 2017-01-23 | 2021-10-08 | 成都雅骏新能源科技有限公司 | 一种电动汽车充电电路及充电方法 |
WO2018145726A1 (en) * | 2017-02-07 | 2018-08-16 | Volkswagen Aktiengesellschaft | Vehicle-sided conductive charging device, electric vehicle and method for operating vehicle-sided conductive charging device |
CN106828161B (zh) * | 2017-02-13 | 2019-03-26 | 清华大学 | 一种应用于多路充电插口电动汽车充电设备及其控制方法 |
US10479218B2 (en) * | 2017-02-14 | 2019-11-19 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electric vehicle power system with shared converter |
US10116249B2 (en) | 2017-02-17 | 2018-10-30 | Ford Global Technologies, Llc | Reduced ripple inverter for hybrid drive systems |
CN106828108A (zh) * | 2017-02-20 | 2017-06-13 | 江苏大学 | 一种基于电动汽车高压系统上电管理的控制方法 |
FR3065332B1 (fr) * | 2017-04-14 | 2019-07-05 | IFP Energies Nouvelles | Dispositif de conversion, procede de commande et vehicule associes |
US10711576B2 (en) | 2017-04-18 | 2020-07-14 | Mgb Oilfield Solutions, Llc | Power system and method |
WO2018195124A1 (en) * | 2017-04-18 | 2018-10-25 | Mgb Oilfield Solutions, Llc | Power system and method |
KR20180133018A (ko) * | 2017-06-02 | 2018-12-13 | 현대자동차주식회사 | 차량용 배터리 시스템 및 제어방법 |
CN107284259B (zh) * | 2017-06-16 | 2020-05-08 | 武汉科华动力科技有限公司 | 用于低电压电池系统的直流充电系统及其充电方法 |
CN109130905A (zh) * | 2017-06-27 | 2019-01-04 | 蔚来汽车有限公司 | 电池充电系统和包含该系统的电动汽车充电站 |
US10661677B2 (en) * | 2017-07-25 | 2020-05-26 | Hamilton Sundstrand Corporation | Electrical power system for hybrid or electric vehicle |
CN107415742B (zh) * | 2017-08-04 | 2019-08-27 | 北京新能源汽车股份有限公司 | 一种车辆相互充电方法及装置、控制器、汽车 |
GB2551081B (en) | 2017-08-18 | 2018-12-19 | O2Micro Inc | Fault detection for battery management systems |
US10320220B2 (en) * | 2017-08-23 | 2019-06-11 | Ford Global Technologies, Llc | Configurable hybrid drive systems |
KR102433999B1 (ko) * | 2017-08-24 | 2022-08-19 | 현대자동차주식회사 | 모터 구동 및 배터리 충전 장치 및 차량 |
KR102559693B1 (ko) * | 2017-09-05 | 2023-07-26 | 더 가버닝 카운슬 오브 더 유니버시티 오브 토론토 | 전기 차량용 전력 허브 및 동작 모드 |
US11532946B2 (en) | 2017-11-30 | 2022-12-20 | The Board Of Trustees Of The University Of Alabama | Power electronics charge coupler for vehicle-to-vehicle fast energy sharing |
KR102441505B1 (ko) * | 2017-12-11 | 2022-09-07 | 현대자동차주식회사 | 전기 자동차의 배터리 충전 방법 |
EP3737580A4 (en) | 2018-01-08 | 2022-06-08 | Cummins, Inc. | SYSTEMS AND METHODS FOR CHARGING PLUG-IN ELECTRIC VEHICLE ACCESSORIES DURING BATTERY CHARGING |
BR102018001661A2 (pt) * | 2018-01-26 | 2019-08-13 | Eletra Ind Ltda | sistema de gestão de potência de veículo elétrico |
US20200406769A1 (en) * | 2018-03-12 | 2020-12-31 | Jabil Inc. | Multilevel motor drive with integrated battery charger |
KR102542948B1 (ko) * | 2018-04-13 | 2023-06-14 | 현대자동차주식회사 | 차량용 급속충전 시스템 및 방법 |
DE102018110621A1 (de) * | 2018-05-03 | 2019-11-07 | Innofas Gmbh | Hochgeschwindigkeitsentladesystem für einen Hochspannungsenergiespeicher |
US11527909B2 (en) | 2018-05-11 | 2022-12-13 | Assembled Products Corporation | Magnetic charging device |
JP6965830B2 (ja) * | 2018-05-24 | 2021-11-10 | トヨタ自動車株式会社 | 車両用電源装置 |
CN108819779B (zh) * | 2018-07-06 | 2020-07-28 | 北京新能源汽车股份有限公司 | 一种充电系统及电动汽车 |
DE102018121404A1 (de) * | 2018-09-03 | 2020-03-05 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Ladeablaufsteuerung einer Leistungselektronik |
CN109278559A (zh) * | 2018-09-05 | 2019-01-29 | 北京长城华冠汽车科技股份有限公司 | 电动汽车的过压保护方法、系统及电动汽车 |
CN109861357A (zh) * | 2018-09-07 | 2019-06-07 | 台达电子工业股份有限公司 | 充放电方法与装置 |
CN109159685A (zh) * | 2018-09-28 | 2019-01-08 | 北京新能源汽车股份有限公司 | 一种充电控制系统、控制方法及电动汽车 |
CN109353224B (zh) * | 2018-09-30 | 2020-10-30 | 潍柴动力股份有限公司 | 一种电动汽车控制方法及电动汽车整车控制器 |
DE102018124789A1 (de) * | 2018-10-08 | 2020-04-09 | Thyssenkrupp Ag | Schnellladevorrichtung und elektrisches Antriebssystem mit einer derartigen Schnellladevorrichtung |
KR102606836B1 (ko) | 2018-10-22 | 2023-11-27 | 현대자동차주식회사 | 차량 및 그 제어방법 |
JP7200599B2 (ja) * | 2018-10-23 | 2023-01-10 | トヨタ自動車株式会社 | 車両 |
RU2696752C1 (ru) * | 2018-10-30 | 2019-08-05 | Олег Фёдорович Меньших | Тяговая система электромобиля |
CN111129891B (zh) * | 2018-11-01 | 2021-06-29 | 华为终端有限公司 | 一种供电连接装置 |
US11186191B2 (en) * | 2018-12-07 | 2021-11-30 | Delta Electronics, Inc. | Charging device for electric vehicle |
EP3894261A1 (en) | 2018-12-14 | 2021-10-20 | Volvo Truck Corporation | An electric power transmission system for a vehicle |
FR3094150B1 (fr) * | 2019-03-18 | 2021-02-19 | Renault Sas | Procédé de commande des relais électromagnétiques d’un véhicule automobile électrique ou hybride |
CN110060462B (zh) * | 2019-03-19 | 2020-12-08 | 合肥学院 | 一种基于充电桩在线校准的数据采集系统及数据采集装置 |
TWI704744B (zh) * | 2019-03-29 | 2020-09-11 | 威達高科股份有限公司 | 使用移動機器人電池的電源橋接裝置 |
KR102603058B1 (ko) * | 2019-04-22 | 2023-11-16 | 현대자동차주식회사 | 친환경 차량용 충전 제어 시스템 및 방법 |
KR102663664B1 (ko) * | 2019-05-17 | 2024-05-03 | 현대자동차주식회사 | 모터 구동 시스템을 이용한 멀티 입력 충전 시스템 및 방법 |
EP3772151A1 (en) * | 2019-07-30 | 2021-02-03 | Delta Electronics (Thailand) Public Co., Ltd. | Charger protection circuit |
CN112311039A (zh) * | 2019-08-02 | 2021-02-02 | 迈恩移动研究有限公司 | 用于为电池充电的设备、系统和方法 |
CN112389348B (zh) | 2019-08-15 | 2022-12-09 | 比亚迪股份有限公司 | 电动汽车及其集成控制器、集成控制系统 |
KR20210027662A (ko) * | 2019-08-30 | 2021-03-11 | 현대자동차주식회사 | 모터 구동 시스템을 이용한 충전 시스템 및 방법 |
DE102019124213A1 (de) * | 2019-09-10 | 2021-03-11 | Audi Ag | Galvanisch verbundenes AC-Ladegerät mit Überwachungs- und Diagnosesystem |
US11498442B2 (en) * | 2019-09-17 | 2022-11-15 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Systems and methods for noise cancellation in protective earth resistance check of vehicle onboard battery charger |
CN110614930B (zh) * | 2019-09-30 | 2022-11-18 | 重庆长安新能源汽车科技有限公司 | 一种充放电方法、系统、控制器及电动汽车 |
IT201900020336A1 (it) * | 2019-11-04 | 2021-05-04 | Free2Move Esolutions S P A | Dispositivo per ricarica di utenze elettriche |
IT201900020334A1 (it) * | 2019-11-04 | 2021-05-04 | Free2Move Esolutions S P A | Dispositivo per ricarica di utenze elettriche |
CN112776604A (zh) * | 2019-11-04 | 2021-05-11 | 广州汽车集团股份有限公司 | 汽车的主动放电装置及汽车 |
US11768247B2 (en) * | 2019-11-18 | 2023-09-26 | Dish Network Technologies India Private Limited | Method and apparatus for improper power supply detection |
CN110920392B (zh) * | 2019-11-19 | 2021-11-26 | 珠海格力电器股份有限公司 | 一种电源控制电路、电源控制方法及新能源汽车 |
DE102020104732A1 (de) | 2020-02-24 | 2021-08-26 | Bayerische Motoren Werke Aktiengesellschaft | EMV-Baugruppe für ein elektrisch angetriebenes Fahrzeug |
CN113315183A (zh) * | 2020-02-27 | 2021-08-27 | 台达电子企业管理(上海)有限公司 | 充电桩及其功率分配系统与功率分配方法 |
USD916935S1 (en) | 2020-03-09 | 2021-04-20 | Zimeno, Inc. | Tractor front cargo bed |
USD926826S1 (en) | 2020-03-09 | 2021-08-03 | Zimeno, Inc. | Illuminated tractor hood |
CN111146851A (zh) * | 2020-03-12 | 2020-05-12 | 深圳威迈斯新能源股份有限公司 | 一种单三相兼容的转换电路及车载充电机 |
KR20210133374A (ko) * | 2020-04-28 | 2021-11-08 | 현대자동차주식회사 | 모터 구동 시스템을 이용한 충전 시스템 및 방법 |
CN111654212A (zh) * | 2020-06-15 | 2020-09-11 | 湖北三江航天万峰科技发展有限公司 | 一种位置随动伺服控制装置及控制方法 |
IL277303B2 (en) * | 2020-09-13 | 2024-07-01 | Redler Tech Ltd | A versatile unit of power stack |
CN114256891B (zh) * | 2020-09-22 | 2023-08-11 | 上海汽车集团股份有限公司 | 一种电动汽车的充电电路及电动汽车 |
CN112158097A (zh) * | 2020-10-23 | 2021-01-01 | 深圳百跑科技有限公司 | 一种双充电桩联充系统及方法 |
US11958075B2 (en) * | 2020-11-09 | 2024-04-16 | Cirrus Logic Inc. | Driver circuitry |
CN112455271B (zh) * | 2020-11-27 | 2022-07-12 | 南方科技大学 | 0.4kV配电网的智能充电桩互联网系统 |
CN112744101B (zh) * | 2020-12-25 | 2023-02-17 | 中国第一汽车股份有限公司 | 充放电控制系统、方法及交通工具 |
CN114696434A (zh) * | 2020-12-29 | 2022-07-01 | 比亚迪股份有限公司 | 电动汽车的充电控制方法及装置和汽车 |
CN112816817B (zh) * | 2021-01-04 | 2023-12-19 | 阳光电源股份有限公司 | 一种切换单元状态检测方法及应用装置 |
CN112810469B (zh) * | 2021-01-08 | 2023-02-24 | 东风柳州汽车有限公司 | 充放电转换电路、控制方法及充放电合用枪头 |
CN113147442A (zh) * | 2021-02-24 | 2021-07-23 | 广西科技大学 | 一种双枪自调整直流充电装置 |
AU2022234327A1 (en) * | 2021-03-10 | 2023-09-14 | Alakai Technologies Corporation | Mobile emergency power generation and vehicle propulsion power system |
CN113162185A (zh) * | 2021-04-30 | 2021-07-23 | 中国人民解放军海军潜艇学院 | 一种mw级蓄电池组双向充放电系统 |
USD971274S1 (en) | 2021-07-05 | 2022-11-29 | Zimeno, Inc. | Illuminated tractor |
CN113442859A (zh) * | 2021-07-31 | 2021-09-28 | 重庆长安汽车股份有限公司 | 一种纯电动汽车能量优先级分配方法、系统及车辆 |
CN113525109B (zh) * | 2021-08-12 | 2023-02-03 | 长春捷翼汽车零部件有限公司 | 一种放电控制方法、装置、电子设备及存储介质 |
DE102021121396A1 (de) | 2021-08-18 | 2023-02-23 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und System zur Steuerung von Modulströmen einer Wechselstrombatterie |
JP7528912B2 (ja) * | 2021-12-08 | 2024-08-06 | トヨタ自動車株式会社 | 車両 |
WO2023121984A1 (en) * | 2021-12-21 | 2023-06-29 | Our Next Energy, Inc. | Power supply system for powering a home |
FR3133956A1 (fr) * | 2022-03-28 | 2023-09-29 | Psa Automobiles Sa | Module de chargeur embarque pour vehicule, securise vis-a-vis de surcourants, procede et vehicule sur la base d’un tel module |
JP2023158447A (ja) * | 2022-04-18 | 2023-10-30 | トヨタ自動車株式会社 | 電源システム |
NL2031706B1 (en) * | 2022-04-26 | 2023-11-10 | Total Safety Solutions B V | A high-voltage direct current circuit for an electric vehicle with a secondary relay |
US20240066991A1 (en) * | 2022-08-31 | 2024-02-29 | Cnh Industrial America Llc | Charging system for an electric work vehicle and associated method |
FR3145712A1 (fr) * | 2023-02-14 | 2024-08-16 | Schneider Electric Industries Sas | Méthode de diagnostic d’un système de station de recharge pour véhicule électrique et système de station de recharge pour véhicule électrique |
US20240270109A1 (en) * | 2023-02-14 | 2024-08-15 | Schneider Electric Industries Sas | Diagnostic method of a charging station system for an electrical vehicle and charging station system for an electric vehicle |
CN116995714B (zh) * | 2023-09-28 | 2023-12-19 | 中宏科创新能源科技(浙江)有限公司 | 储能变流器及其控制方法 |
CN118473064A (zh) * | 2024-07-12 | 2024-08-09 | 比亚迪股份有限公司 | 充电系统、储能系统和车辆 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009077557A (ja) * | 2007-09-21 | 2009-04-09 | Fuji Heavy Ind Ltd | 電気自動車の充電装置 |
CN202276163U (zh) * | 2011-09-30 | 2012-06-13 | 大连罗宾森电源设备有限公司 | 一种直流充电系统 |
CN202455130U (zh) * | 2011-12-31 | 2012-09-26 | 比亚迪股份有限公司 | 电动车辆的充放电控制系统及电动车 |
Family Cites Families (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4920475A (en) | 1988-03-07 | 1990-04-24 | California Institute Of Technology | Integrated traction inverter and battery charger apparatus |
CN2067875U (zh) * | 1989-11-02 | 1990-12-19 | 中国人民解放军汽车管理学院 | 三相可控硅充电机自动控制装置 |
WO1993002887A1 (en) * | 1991-08-01 | 1993-02-18 | Wavedriver Limited | Battery powered electric vehicle and electrical supply system |
JPH06141488A (ja) | 1992-09-10 | 1994-05-20 | Tatsuno Co Ltd | 電気自動車 |
JP3327631B2 (ja) * | 1993-06-30 | 2002-09-24 | 株式会社日立製作所 | 電気自動車車載充電器 |
US5471655A (en) | 1993-12-03 | 1995-11-28 | Nokia Mobile Phones Ltd. | Method and apparatus for operating a radiotelephone in an extended stand-by mode of operation for conserving battery power |
JP3629094B2 (ja) * | 1996-06-03 | 2005-03-16 | 本田技研工業株式会社 | 電気自動車 |
JP3017128B2 (ja) | 1997-05-13 | 2000-03-06 | 埼玉日本電気株式会社 | 充電制御装置 |
JP3379444B2 (ja) | 1998-09-07 | 2003-02-24 | トヨタ自動車株式会社 | ハイブリッド車の充放電状態制御装置 |
JP4006881B2 (ja) * | 1999-05-10 | 2007-11-14 | 株式会社デンソー | バッテリの放電容量検出方法及びその装置並びに車両用バッテリ制御装置 |
US6690719B1 (en) * | 2000-02-14 | 2004-02-10 | Itran Communications Ltd. | Host to modem interface |
WO2003055047A2 (en) | 2001-12-05 | 2003-07-03 | Montante Charles J | Dual input voltage adapter system and method |
JP4111138B2 (ja) | 2001-12-26 | 2008-07-02 | トヨタ自動車株式会社 | 電気負荷装置、電気負荷装置の制御方法および電気負荷の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体 |
JP3567437B2 (ja) | 2002-03-28 | 2004-09-22 | 本田技研工業株式会社 | 車両駆動装置の給電装置 |
JP2004007950A (ja) | 2002-04-15 | 2004-01-08 | Fuji Electric Holdings Co Ltd | スイッチング電源装置 |
AU2003246492A1 (en) * | 2002-07-19 | 2004-02-09 | Ballard Power Systems Corporation | Apparatus and method employing bi-directional converter for charging and/or supplying power |
KR100461272B1 (ko) | 2002-07-23 | 2004-12-10 | 현대자동차주식회사 | 연료 전지 하이브리드 차량의 전원 단속장치 |
US7317300B2 (en) * | 2003-06-23 | 2008-01-08 | Denso Corporation | Automotive battery state monitor apparatus |
DE10331084A1 (de) * | 2003-07-09 | 2005-03-24 | Aloys Wobben | Kraftfahrzeug |
JP4082336B2 (ja) | 2003-11-14 | 2008-04-30 | 日産自動車株式会社 | モータ駆動4wd車両の制御装置及び制御方法 |
CN100369347C (zh) | 2003-12-04 | 2008-02-13 | 比亚迪股份有限公司 | 电动汽车动力电源管理系统 |
US20050182535A1 (en) | 2004-02-17 | 2005-08-18 | David Huang | Device and method for identifying a specific communication protocol used in an on-board diagnostic tool |
JP2005287136A (ja) | 2004-03-29 | 2005-10-13 | Honda Motor Co Ltd | 平滑コンデンサのプリチャージ装置 |
US7471066B2 (en) | 2004-12-22 | 2008-12-30 | Odyne Corporation | Battery management and equalization system for batteries using power line carrier communications |
CN1634725A (zh) | 2004-12-31 | 2005-07-06 | 吉林大学 | 混合动力汽车车载复合电源装置 |
CN100432681C (zh) * | 2005-02-02 | 2008-11-12 | 艾默生网络能源系统有限公司 | 交流电频率监测方法 |
US20070075661A1 (en) | 2005-10-04 | 2007-04-05 | Ut-Battelle, Llc | Winding Control Improvement of Drive Motor for Hybrid Electric Vehicle |
US7489106B1 (en) | 2006-03-31 | 2009-02-10 | Victor Tikhonov | Battery optimization system and method of use |
JP2008005659A (ja) | 2006-06-23 | 2008-01-10 | Toyota Motor Corp | 電動車両 |
CN1877473A (zh) * | 2006-06-30 | 2006-12-13 | 中国南车集团株洲电力机车研究所 | 一种用于电动车辆的动力电池管理系统 |
CN200947552Y (zh) | 2006-07-24 | 2007-09-12 | 北方工业大学 | 电动汽车动力电池智能充放电系统 |
US20080040296A1 (en) * | 2006-08-10 | 2008-02-14 | V2 Green Inc. | Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources |
JP4905300B2 (ja) | 2006-09-28 | 2012-03-28 | トヨタ自動車株式会社 | 電源システムおよびそれを備えた車両、電源システムの制御方法ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 |
GB0625121D0 (en) | 2006-12-18 | 2007-01-24 | Gendrive Ltd | Electrical energy converter |
JP4447001B2 (ja) | 2006-12-19 | 2010-04-07 | トヨタ自動車株式会社 | 電力制御装置およびそれを備えた車両 |
US20080180058A1 (en) | 2007-01-30 | 2008-07-31 | Bijal Patel | Plug-in battery charging booster for electric vehicle |
JP4699399B2 (ja) * | 2007-02-06 | 2011-06-08 | プライムアースEvエナジー株式会社 | 電源装置 |
JP4270309B2 (ja) | 2007-07-18 | 2009-05-27 | トヨタ自動車株式会社 | 電気自動車および電気自動車の二次電池充電方法 |
JP5118913B2 (ja) | 2007-07-24 | 2013-01-16 | トヨタ自動車株式会社 | 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法 |
FR2919768B1 (fr) | 2007-08-03 | 2016-02-12 | Alstom Transport Sa | Procede d'alimentation de charges auxiliaires de secours, convertisseur auxiliaire et vehicule ferroviaire pour ce procede. |
US8937455B2 (en) * | 2007-09-10 | 2015-01-20 | Toyota Jidosha Kabushiki Kaisha | Charging apparatus for vehicle and method for charging vehicle |
TW200913433A (en) | 2007-09-10 | 2009-03-16 | J Tek Inc | Scattered energy storage control system |
JP4727636B2 (ja) * | 2007-09-13 | 2011-07-20 | トヨタ自動車株式会社 | 車両の充電制御装置および車両 |
US8232786B2 (en) | 2007-09-28 | 2012-07-31 | Astec International Limited | Fast transient step load response in a power converter |
JP4305553B2 (ja) | 2007-10-23 | 2009-07-29 | トヨタ自動車株式会社 | 電動車両 |
JP2009118658A (ja) * | 2007-11-07 | 2009-05-28 | Toyota Motor Corp | 電動車両 |
JP4288333B1 (ja) * | 2007-12-18 | 2009-07-01 | トヨタ自動車株式会社 | 車両の電源装置 |
JP4285578B1 (ja) | 2008-01-15 | 2009-06-24 | トヨタ自動車株式会社 | 車両の充電装置 |
DE102008007662A1 (de) | 2008-02-06 | 2009-08-13 | Robert Bosch Gmbh | Vorrichtung und Verfahren zur Behandlung von Formteilen mittels energiereicher Elektronenstrahlen |
WO2009113757A1 (en) | 2008-03-14 | 2009-09-17 | Jong Deuk Kim | Handle structure for cooking instrument |
JP4315232B1 (ja) * | 2008-03-17 | 2009-08-19 | トヨタ自動車株式会社 | 電動車両 |
JP5259220B2 (ja) * | 2008-03-25 | 2013-08-07 | 富士重工業株式会社 | 電気自動車 |
US7936083B2 (en) * | 2008-05-08 | 2011-05-03 | GM Global Technology Operations LLC | Systems and methods for multiple source power conversion |
JP4969516B2 (ja) * | 2008-05-27 | 2012-07-04 | 株式会社ケーヒン | 電動車両用電源制御装置 |
CN101388560A (zh) | 2008-07-11 | 2009-03-18 | 中国科学院电工研究所 | 一种蓄电池充电系统 |
JP4719776B2 (ja) | 2008-07-14 | 2011-07-06 | トヨタ自動車株式会社 | 充電ケーブル、充電制御装置、及び車両充電システム |
JP4380776B1 (ja) * | 2008-07-25 | 2009-12-09 | トヨタ自動車株式会社 | 充放電システムおよび電動車両 |
CN201257887Y (zh) * | 2008-09-10 | 2009-06-17 | 宁波拜特测控技术有限公司 | 一种电动汽车电池管理系统 |
JP2010081665A (ja) * | 2008-09-24 | 2010-04-08 | Panasonic Corp | コンバータ装置 |
US8019483B2 (en) | 2008-10-01 | 2011-09-13 | Current Communications Services, Llc | System and method for managing the distributed generation of power by a plurality of electric vehicles |
US20100085787A1 (en) * | 2008-10-03 | 2010-04-08 | Ajit Wasant Kane | System and method for powering a hybrid electric vehicle |
JP4969547B2 (ja) | 2008-10-14 | 2012-07-04 | トヨタ自動車株式会社 | 制御装置及び充電制御方法 |
EP2343210B1 (en) | 2008-10-31 | 2018-04-04 | Toyota Jidosha Kabushiki Kaisha | Power supply system for electric vehicle and control method for the same |
JP4877418B2 (ja) * | 2008-12-05 | 2012-02-15 | トヨタ自動車株式会社 | 車両の制御装置および制御方法 |
US8648565B2 (en) | 2008-12-09 | 2014-02-11 | Toyota Jidosha Kabushiki Kaisha | Power supply system of vehicle |
JP4781425B2 (ja) | 2008-12-25 | 2011-09-28 | 本田技研工業株式会社 | 車両と家屋間の電力供給システム |
CN201329816Y (zh) * | 2008-12-31 | 2009-10-21 | 众泰控股集团有限公司 | 一种电动汽车的整车电气系统 |
DE102009000096A1 (de) | 2009-01-09 | 2010-07-15 | Robert Bosch Gmbh | Verfahren für die Steuerung einer Stromversorgungseinrichtung mit einem Wechselrichter |
JP2010178431A (ja) | 2009-01-27 | 2010-08-12 | Aisan Ind Co Ltd | 電動車両用電源の電源管理装置 |
JP5317188B2 (ja) | 2009-02-20 | 2013-10-16 | 株式会社安川電機 | 電動車両のインバータ装置及びその保護方法 |
US8004242B1 (en) * | 2009-03-13 | 2011-08-23 | PH Ingenuities, LLC | System and method for managing distribution of vehicle power in a multiple battery system |
US7928598B2 (en) * | 2009-04-03 | 2011-04-19 | General Electric Company | Apparatus, method, and system for conveying electrical energy |
JP5493441B2 (ja) | 2009-04-15 | 2014-05-14 | 日産自動車株式会社 | 車車間充電方法、車車間充電用ケーブルおよび電動車両 |
EP2431215A4 (en) | 2009-05-14 | 2016-11-02 | Toyota Motor Co Ltd | ELECTRIC CAR AND ITS CONTROL METHOD |
JP5568898B2 (ja) * | 2009-06-12 | 2014-08-13 | 日産自動車株式会社 | リチウムイオンバッテリの充電制御方法 |
US20100320964A1 (en) * | 2009-06-18 | 2010-12-23 | Ford Global Technologies, Llc | Method And System To Charge Batteries Only While Vehicle Is Parked |
US8393423B2 (en) * | 2009-06-18 | 2013-03-12 | Ford Global Technologies, Llc | Method and system to prevent vehicle driveaway during battery charging |
CN201490688U (zh) * | 2009-07-31 | 2010-05-26 | 珠海格力电器股份有限公司 | 相序转换器 |
JP2012151914A (ja) | 2009-07-31 | 2012-08-09 | Panasonic Corp | 車載電力線通信装置およびこれを用いた車両 |
CN101997336B (zh) | 2009-08-05 | 2014-09-24 | 中西金属工业株式会社 | 以双电荷层电容器及二次电池为电源的自行式搬送系统 |
US8478469B2 (en) | 2009-08-07 | 2013-07-02 | Toyota Jidosha Kabushiki Kaisha | Power source system for electric powered vehicle and control method therefor |
US8030884B2 (en) | 2009-08-31 | 2011-10-04 | General Electric Company | Apparatus for transferring energy using onboard power electronics and method of manufacturing same |
US8421271B2 (en) * | 2009-08-31 | 2013-04-16 | General Electric Company | Apparatus for transferring energy using onboard power electronics and method of manufacturing same |
DE102009029091B4 (de) * | 2009-09-02 | 2024-09-12 | Robert Bosch Gmbh | Starthilfeverfahren und Einrichtung für die Durchführung des Verfahrens |
US8253424B2 (en) | 2009-09-11 | 2012-08-28 | Sma Solar Technology Ag | Topology surveying a series of capacitors |
JP5257318B2 (ja) | 2009-10-07 | 2013-08-07 | トヨタ自動車株式会社 | 電気自動車 |
US8314587B2 (en) | 2009-10-09 | 2012-11-20 | Alcatel Lucent | Method and apparatus of stored energy management in battery powered vehicles |
CN102045086A (zh) | 2009-10-10 | 2011-05-04 | 陕西银河电力仪表股份有限公司 | 一种基于arm7与st7538的电力线载波通信方法 |
CN102055226A (zh) | 2009-10-29 | 2011-05-11 | 比亚迪股份有限公司 | 一种车载电池的充放电装置及其控制方法 |
KR101552480B1 (ko) | 2009-10-30 | 2015-09-11 | 지멘스 악티엔게젤샤프트 | 제1 스테이션과 제2 스테이션 사이의 통신을 형성하기 위한 방법 및 장치 |
CN102762409A (zh) | 2009-11-13 | 2012-10-31 | 德莱赛公司 | 再充电电动车辆 |
CN201594757U (zh) * | 2009-11-30 | 2010-09-29 | 比亚迪股份有限公司 | 一种车载充电装置 |
US8698451B2 (en) | 2009-12-18 | 2014-04-15 | General Electric Company | Apparatus and method for rapid charging using shared power electronics |
CN201656900U (zh) * | 2009-12-28 | 2010-11-24 | 南昌大学 | 交流异步电机通用矢量控制器 |
WO2011080816A1 (ja) * | 2009-12-28 | 2011-07-07 | トヨタ自動車株式会社 | 車両および車両の通信装置 |
JP5482280B2 (ja) * | 2010-02-18 | 2014-05-07 | ソニー株式会社 | 情報処理装置、電動移動体、及び放電管理方法 |
CN102118184A (zh) | 2009-12-30 | 2011-07-06 | 比亚迪股份有限公司 | 用于电力线载波通信的装置和方法 |
CN102741084B (zh) | 2010-01-18 | 2016-07-06 | 丰田自动车株式会社 | 车辆的显示系统及具有该系统的车辆 |
JP2011151717A (ja) | 2010-01-25 | 2011-08-04 | Toyota Motor Corp | 車両の情報伝達装置およびそれを備える電動車両 |
JP5455705B2 (ja) | 2010-02-25 | 2014-03-26 | Asti株式会社 | 充電装置と充電方法 |
JP4962583B2 (ja) | 2010-03-11 | 2012-06-27 | 株式会社デンソー | 電力変換システムの放電制御装置 |
CN201752075U (zh) * | 2010-03-11 | 2011-02-23 | 深圳市盛弘电气有限公司 | 一种充放电及储能电路 |
JP5629885B2 (ja) * | 2010-03-16 | 2014-11-26 | ダイキン工業株式会社 | 単相/三相直接変換装置及びその制御方法 |
US8478452B2 (en) * | 2010-04-06 | 2013-07-02 | Battelle Memorial Institute | Grid regulation services for energy storage devices based on grid frequency |
IT1399313B1 (it) * | 2010-04-07 | 2013-04-16 | Ferrari Spa | Impianto elettrico di un veicolo stradale con propulsione elettrica e relativo metodo di controllo |
JP2011223790A (ja) * | 2010-04-13 | 2011-11-04 | Toyota Motor Corp | 電気駆動式車両 |
JP5402816B2 (ja) * | 2010-04-27 | 2014-01-29 | 株式会社デンソー | 車両用電源装置 |
CN201781330U (zh) | 2010-05-07 | 2011-03-30 | 江苏常隆客车有限公司 | 基于dsp的电动汽车电机和超级电容控制系统 |
CN101834464A (zh) * | 2010-05-11 | 2010-09-15 | 梅勒电气(武汉)有限公司 | 电动车充电桩 |
WO2011143158A2 (en) | 2010-05-13 | 2011-11-17 | Coda Automotive, Inc. | Battery charging using multiple chargers |
JP5484192B2 (ja) * | 2010-05-20 | 2014-05-07 | 本田技研工業株式会社 | 電動車両の始動制御装置 |
KR101174891B1 (ko) * | 2010-06-01 | 2012-08-17 | 삼성에스디아이 주식회사 | 전력 저장 시스템 및 그 제어방법 |
US8346423B2 (en) * | 2010-06-07 | 2013-01-01 | Ford Global Technologies, Llc | Plug-in electric vehicle interlock |
CN201839022U (zh) | 2010-07-22 | 2011-05-18 | 北京交通大学 | 一种交流充电集成系统 |
CN201813192U (zh) * | 2010-09-30 | 2011-04-27 | 西北工业大学 | 一种电动汽车非接触式移动智能充电装置 |
CN201877856U (zh) | 2010-11-19 | 2011-06-22 | 上海市电力公司 | 实现电动车辆与电网互动的系统 |
US9026813B2 (en) * | 2010-11-22 | 2015-05-05 | Qualcomm Incorporated | Establishing a power charging association on a powerline network |
CN102025182B (zh) | 2010-11-30 | 2012-10-31 | 梁一桥 | 多功能电动汽车动力电池组模块化充放电系统 |
CN201876820U (zh) | 2010-12-14 | 2011-06-22 | 成都购得福科技有限公司 | 一种键盘的发光装置 |
CN102069715B (zh) * | 2010-12-14 | 2012-10-03 | 湖南南车时代电动汽车股份有限公司 | 一种电动汽车行车充电互锁装置 |
US9278625B2 (en) | 2010-12-16 | 2016-03-08 | Denso Corporation | Power supply apparatus for vehicles that selects between conductive and non-conductive power transfer |
CN201898359U (zh) | 2010-12-17 | 2011-07-13 | 上海市电力公司 | 移动储能系统 |
CN102114788B (zh) * | 2010-12-28 | 2013-03-06 | 吴江合美新能源科技有限公司 | 电动车动力集成数字管理系统 |
CN202006766U (zh) * | 2011-02-25 | 2011-10-12 | 比亚迪股份有限公司 | 一种电动汽车高压控制电路 |
CN102163856A (zh) * | 2011-03-01 | 2011-08-24 | 东南大学 | 一种基于v2g技术的车载充放电装置及其控制方法 |
CN102185343A (zh) | 2011-03-23 | 2011-09-14 | 田鹰 | 一种利用电力线载波通信的电动汽车自动充电装置及方法 |
CN102185375A (zh) | 2011-03-24 | 2011-09-14 | 清华大学 | 智能电网下的电动汽车节能增效评价与监管系统及其方法 |
FR2973963B1 (fr) | 2011-04-08 | 2013-04-12 | Valeo Sys Controle Moteur Sas | Dispositif de transfert de charge et procede de gestion associe |
CN102774284B (zh) | 2011-05-12 | 2016-07-06 | 上海汽车集团股份有限公司 | 充电汽车及其制造方法以及利用该充电汽车的充电方法 |
CN102208824B (zh) * | 2011-06-03 | 2013-12-11 | 中国科学院电工研究所 | 一种电动汽车有序充电控制系统 |
CN102222928B (zh) | 2011-06-16 | 2014-01-15 | 北京许继电气有限公司 | 电动汽车动力电池大型集中储能智能型充放电系统 |
US9021278B2 (en) * | 2011-08-10 | 2015-04-28 | Qualcomm Incorporated | Network association of communication devices based on attenuation information |
JP2013046474A (ja) * | 2011-08-23 | 2013-03-04 | Panasonic Corp | 電動車両用充電装置 |
CN102416882B (zh) | 2011-12-05 | 2014-08-13 | 郑州宇通客车股份有限公司 | 一种纯电动车高压配电箱 |
CN202435108U (zh) | 2011-12-28 | 2012-09-12 | 比亚迪股份有限公司 | 一种充电柜 |
WO2013097815A1 (zh) | 2011-12-31 | 2013-07-04 | 深圳市比亚迪汽车研发有限公司 | 电动汽车及在充放电和驱动功能之间切换的动力系统 |
WO2013111311A1 (ja) * | 2012-01-26 | 2013-08-01 | トヨタ自動車株式会社 | 車載充電通信装置及び車両用充電通信システム |
CN102709972B (zh) * | 2012-05-28 | 2015-09-30 | 重庆长安汽车股份有限公司 | 一种电动汽车充电系统及电动汽车 |
CN102673422B (zh) | 2012-05-30 | 2015-09-16 | 中国汽车技术研究中心 | 一种纯电动汽车能量系统构型及其车辆储能控制系统 |
CN102832663B (zh) * | 2012-08-15 | 2015-11-11 | 中国电力科学研究院 | 基于sdp和v2gtp-exi电动汽车自适应充电控制系统及其控制方法 |
CN102882249B (zh) | 2012-09-13 | 2015-04-29 | 中国电力科学研究院 | 一种非车载直流充电机与电动汽车通信的系统 |
CN102916464B (zh) | 2012-09-26 | 2015-02-04 | 中国电力科学研究院 | 一种交流充电装置与电动汽车通信的系统 |
CN102904300A (zh) | 2012-09-26 | 2013-01-30 | 中国电力科学研究院 | 一种非车载直流充电机与电动汽车通信的系统 |
-
2012
- 2012-12-31 WO PCT/CN2012/088058 patent/WO2013097815A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088056 patent/WO2013097814A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088107 patent/WO2013097828A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088074 patent/WO2013097820A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088094 patent/WO2013097824A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088113 patent/WO2013097829A1/zh active Application Filing
- 2012-12-31 US US14/369,923 patent/US9604545B2/en active Active
- 2012-12-31 WO PCT/CN2012/088084 patent/WO2013097821A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088010 patent/WO2013097803A1/zh active Application Filing
- 2012-12-31 US US14/370,044 patent/US10173545B2/en active Active
- 2012-12-31 WO PCT/CN2012/088048 patent/WO2013097811A1/zh active Application Filing
- 2012-12-31 US US14/369,924 patent/US9272629B2/en active Active
- 2012-12-31 WO PCT/CN2012/088041 patent/WO2013097808A1/zh active Application Filing
- 2012-12-31 EP EP12862847.6A patent/EP2800228B1/en active Active
- 2012-12-31 WO PCT/CN2012/088086 patent/WO2013097823A1/zh active Application Filing
- 2012-12-31 EP EP12863133.0A patent/EP2802057B1/en active Active
- 2012-12-31 EP EP12861810.5A patent/EP2800227B1/en active Active
- 2012-12-31 WO PCT/CN2012/088008 patent/WO2013097801A1/zh active Application Filing
- 2012-12-31 EP EP12863565.3A patent/EP2800231B1/en active Active
- 2012-12-31 WO PCT/CN2012/088069 patent/WO2013097819A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088035 patent/WO2013097807A1/zh active Application Filing
- 2012-12-31 US US14/369,934 patent/US9260022B2/en active Active
- 2012-12-31 WO PCT/CN2012/088114 patent/WO2013097830A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088044 patent/WO2013097810A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/088067 patent/WO2013097818A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/087997 patent/WO2013097798A1/zh active Application Filing
- 2012-12-31 WO PCT/CN2012/087992 patent/WO2013097797A1/zh active Application Filing
- 2012-12-31 US US14/369,966 patent/US9290105B2/en active Active
- 2012-12-31 EP EP12863723.8A patent/EP2800232B1/en active Active
- 2012-12-31 EP EP12861299.1A patent/EP2800284A4/en not_active Ceased
- 2012-12-31 US US14/369,946 patent/US9969290B2/en active Active
- 2012-12-31 EP EP12862112.5A patent/EP2802055B1/en active Active
- 2012-12-31 US US14/370,038 patent/US9718373B2/en active Active
- 2012-12-31 US US14/370,041 patent/US9493088B2/en active Active
- 2012-12-31 WO PCT/CN2012/088098 patent/WO2013097825A1/zh active Application Filing
- 2012-12-31 EP EP12861486.4A patent/EP2802058A4/en not_active Ceased
- 2012-12-31 US US14/370,043 patent/US9718374B2/en active Active
- 2012-12-31 WO PCT/CN2012/088061 patent/WO2013097816A1/zh active Application Filing
- 2012-12-31 EP EP12861681.0A patent/EP2800226B1/en active Active
- 2012-12-31 US US14/370,039 patent/US9796287B2/en active Active
- 2012-12-31 EP EP12862873.2A patent/EP2802056B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009077557A (ja) * | 2007-09-21 | 2009-04-09 | Fuji Heavy Ind Ltd | 電気自動車の充電装置 |
CN202276163U (zh) * | 2011-09-30 | 2012-06-13 | 大连罗宾森电源设备有限公司 | 一种直流充电系统 |
CN202455130U (zh) * | 2011-12-31 | 2012-09-26 | 比亚迪股份有限公司 | 电动车辆的充放电控制系统及电动车 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2802056A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9718374B2 (en) | 2011-12-31 | 2017-08-01 | Shenzhen Byd Auto R&D Company Limited | Electric vehicle and charging system for electric vehicle |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013097816A1 (zh) | 电动汽车的充电系统及具有其的电动汽车 | |
KR101873125B1 (ko) | 전기 차량용 충전 시스템 및 전기 차량의 충전을 제어하는 방법 | |
KR101867190B1 (ko) | 차량 상호-충전 시스템 및 충전 커넥터 | |
CN103187758B (zh) | 电动汽车的充电系统及具有其的电动汽车 | |
JP6400692B2 (ja) | 電気自動車の電力システム及び電気自動車 | |
KR101864516B1 (ko) | 차량부수 전원 공급 시스템 및 전기 차량 | |
KR101867191B1 (ko) | 전기 차량용 전원 시스템, 전기 차량 및 모터 컨트롤러 | |
CN104253465A (zh) | 电动汽车的充电控制系统及具有其的电动汽车 | |
CN104249628A (zh) | 电动汽车及用于电动汽车的动力系统和电机控制器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12862873 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14369946 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012862873 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012862873 Country of ref document: EP |