WO2013085033A1 - 軸受部品、転がり軸受およびこれらの製造方法 - Google Patents

軸受部品、転がり軸受およびこれらの製造方法 Download PDF

Info

Publication number
WO2013085033A1
WO2013085033A1 PCT/JP2012/081788 JP2012081788W WO2013085033A1 WO 2013085033 A1 WO2013085033 A1 WO 2013085033A1 JP 2012081788 W JP2012081788 W JP 2012081788W WO 2013085033 A1 WO2013085033 A1 WO 2013085033A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
ball
rolling
pocket
contact
Prior art date
Application number
PCT/JP2012/081788
Other languages
English (en)
French (fr)
Inventor
上野 崇
大木 力
佐藤 大介
恭平 影山
彰悟 清水
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011269037A external-priority patent/JP5996864B2/ja
Priority claimed from JP2011269102A external-priority patent/JP6005355B2/ja
Priority claimed from JP2012164738A external-priority patent/JP6153705B2/ja
Priority claimed from JP2012164856A external-priority patent/JP6101014B2/ja
Priority claimed from JP2012178416A external-priority patent/JP6162378B2/ja
Priority claimed from JP2012262749A external-priority patent/JP2014109299A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP12855776.6A priority Critical patent/EP2789704A4/en
Priority to CN201280069232.1A priority patent/CN104105801B/zh
Priority to US14/363,750 priority patent/US9206490B2/en
Publication of WO2013085033A1 publication Critical patent/WO2013085033A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/36Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3862Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages comprising two annular parts joined together
    • F16C33/3875Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages comprising two annular parts joined together made from plastic, e.g. two injection moulded parts joined by a snap fit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3887Details of individual pockets, e.g. shape or ball retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/42Ball cages made from wire or sheet metal strips
    • F16C33/422Ball cages made from wire or sheet metal strips made from sheet metal
    • F16C33/427Ball cages made from wire or sheet metal strips made from sheet metal from two parts, e.g. ribbon cages with two corrugated annular parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7893Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a cage or integral therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings
    • F16C33/805Labyrinth sealings in addition to other sealings, e.g. dirt guards to protect sealings with sealing lips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/30Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/36Polyarylene ether ketones [PAEK], e.g. PEK, PEEK
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/52Polyphenylene sulphide [PPS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • F16C2223/16Hardening, e.g. carburizing, carbo-nitriding with carbo-nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/70Positive connections with complementary interlocking parts
    • F16C2226/74Positive connections with complementary interlocking parts with snap-fit, e.g. by clips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/06Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/94Volume
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/65Gear shifting, change speed gear, gear box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • F16C33/782Details of the sealing or parts thereof, e.g. geometry, material of the sealing region
    • F16C33/7823Details of the sealing or parts thereof, e.g. geometry, material of the sealing region of sealing lips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • F16C43/06Placing rolling bodies in cages or bearings
    • F16C43/065Placing rolling bodies in cages or bearings in cages

Definitions

  • the present invention relates to a bearing component, a rolling bearing, and a manufacturing method thereof, and more specifically, a bearing component, a rolling bearing, and a manufacturing method thereof that can achieve both high pressure resistance and rolling fatigue life at a high level. It is about.
  • the rolling fatigue life of the rolling bearing used in the machine is required to be extended.
  • a measure to change the material of bearing parts (track members and rolling elements) which are parts constituting a rolling bearing can be considered.
  • the rolling fatigue life can be extended by adding an alloy component effective for extending the life to steel, which is a typical material for bearing parts.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-190072
  • Patent Document 2 Japanese Patent Application Laid-Open No. 7-190072
  • Patent Document 3 JP-A 2000-161363
  • the present invention has been made in order to solve the above-described problems, and its purpose is to achieve both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials. It is to provide a bearing component capable of supporting, a rolling bearing, and a method of manufacturing the same.
  • the bearing component according to the present invention comprises 0.90 mass% or more and 1.05 mass% or less carbon, 0.15 mass% or more and 0.35 mass% or less silicon, or 0.01 mass% or more and 0.50 mass% or less.
  • a contact surface that is made of quench-hardened steel containing not more than mass% manganese and not less than 1.30 mass% and not more than 1.65 mass% chromium, and is made of the remaining impurities and is in contact with other components.
  • the nitrogen concentration in is 0.25% by mass or more, and the amount of retained austenite on the contact surface is 6% by volume or more and 12% by volume or less.
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • the nitrogen concentration in a contact surface is raised to 0.25 mass% or more, and a rolling fatigue life is prolonged by hardening by hardening. it can.
  • the amount of retained austenite at the contact surface is about 20 to 40% by volume in relation to the amount of nitrogen.
  • the pressure resistance is lowered.
  • the amount of retained austenite at the contact surface is preferably 6% by volume or more.
  • the bearing component of the present invention a JIS standard SUJ2 equivalent material that is easily available in various countries is used as a material, and the nitrogen concentration at the contact surface is 0.25 mass% or more and the residual austenite amount is 6 vol%. It is made into 12 volume% or less above.
  • the bearing component of the present invention it is possible to provide a bearing component capable of achieving both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials.
  • the amount of retained austenite on the contact surface may be 10% or less.
  • the nitrogen concentration on the contact surface is preferably 0.5% by mass or less, and may be 0.4% by mass or less.
  • the hardness of the contact surface may be 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the contact surface may be 64.0 HRC or less.
  • the hardness of the contact surface where the nitrogen concentration is increased to 0.25% by mass or more is maintained in a state exceeding 64.0 HRC, it is difficult to adjust the retained austenite to 12% by volume or less.
  • the hardness of the contact surface is 64.0 HRC or less, it becomes easy to adjust the amount of retained austenite to a range of 12% by volume or less.
  • the rolling bearing according to the present invention includes a race member and a plurality of rolling elements arranged in contact with the race member. At least one of the race member and the rolling element is the bearing component of the present invention.
  • the rolling bearing of the present invention includes the bearing component of the present invention as at least one of a race member and a rolling element. As a result, according to the rolling bearing of the present invention, it is possible to provide a rolling bearing capable of achieving both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials. .
  • the race member has a first race ring having a first raceway surface and a second raceway surface, and the second raceway surface faces the first raceway surface. And a second race ring disposed on the surface.
  • the rolling bearing may further include a seal member disposed so as to close a bearing space that is a space sandwiched between the first raceway ring and the second raceway ring.
  • the seal member has one end fixed to one of the first track ring and the second track ring, and the other end of the seal lip is in contact with the other of the first track ring and the second track ring.
  • the seal lip portion is worn by rotating the second race ring in the circumferential direction relative to the first race ring, and the other of the first race ring and the second race ring does not contact the seal lip portion.
  • the seal lip portion is made of a high wear material so that the contact state between the other one of the first race ring and the second race ring and the seal lip portion is light contact that can be regarded as substantially zero. It may be.
  • the race member may be the bearing component of the present invention. Scratch resistance becomes a problem particularly in the raceway member. Accordingly, the raceway member is the bearing component of the present invention, so that the pressure resistance of the rolling bearing is more reliably improved.
  • the rolling element may be a ball.
  • the rotational torque of the rolling bearing is suppressed.
  • the static load rating of the bearing is significantly reduced as compared with the roller bearing, so that the pressure scar resistance is a particular problem.
  • the rolling bearing of the present invention is provided with a bearing component having excellent pressure scar resistance. Therefore, by adopting a ball as a rolling element in the rolling bearing of the present invention, it is possible to provide a rolling bearing with a high level of pressure resistance and rolling fatigue life and a reduced rotational torque.
  • the rolling bearing may further include a cage that holds a plurality of rolling elements on an annular raceway at a predetermined pitch.
  • the cage is composed of a combination of two annular holding plates having hemispherical bulging portions arranged at predetermined intervals along the circumferential direction.
  • a pocket to be held is formed, and a ball non-contact portion consisting of a recess extending in the circumferential direction of the pocket is provided on the ball facing surface which is a surface facing the rolling element in the pocket, and the pocket non-contact portion in the circumferential direction of the pocket
  • a / (B + C) is set to 0.70 to 0.90, where A is the length of B, B is the diameter of the rolling element, and C is the gap formed between the rolling element and the ball facing surface. May be.
  • the ball-facing surface has a ball contact portion serving as a guide surface and a ball non-contact portion not serving as a guide surface. It is formed.
  • the clearance is a gap between the ball and the pocket guide surface when the ball is brought to one side in the pocket.
  • the pocket circumferential direction length of the recess is increased, the sliding area where the pocket inner wall and the ball come into contact is reduced. , Leading to a reduction in shear resistance.
  • the “pocket circumferential length” is too long, the contact between the ball and the pocket is not the guide surface (ball contact portion) but the boundary between the guide surface and the recess.
  • the “pocket circumferential length” is preferably as large as possible within the range in which the ball can be held by the pocket guide surface (ball contact portion), including the movement of the ball in the pocket.
  • the D / E value is set to 0.25 to 0.40, where D is the length of the non-ball contact portion in the pocket axis direction and E is the total length of the pocket in the pocket axis direction. May be.
  • the cage is made of metal and may be formed by press working.
  • the length of the non-ball contact portion in the pocket axis direction is too large, it becomes difficult to manufacture, and there is a concern in terms of manufacturing. That is, it is preferable to make the length of the non-ball contact portion in the pocket axis direction as large as possible within a range in which the pocket shape does not collapse even when press working.
  • the value of F / G is 0.30 to 0, where F is the depth of the concave portion constituting the non-ball contact portion and G is the thickness of the hemispherical bulging portion of the annular holding plate. .40 may be set.
  • the shear resistance can be made “0”.
  • the depth of the recess is too small, it is difficult to ensure sufficient dimensional accuracy.
  • the depth of the recess is too large, there is a concern that the pocket shape collapses during press working.
  • H / (E / 2) where E is the total length of the pocket in the pocket axis direction, and H is the amount of shift in the pocket axis direction at the center of the non-ball contact portion with respect to the center of the rolling element.
  • the value of may be set to 0 to 0.2.
  • the opening edge in the pocket axis direction of the concave portion constituting the non-ball contact portion may be formed of a curved surface.
  • the recess has a dimension such that the rolling elements do not contact at the boundary.
  • the boundary may contact the rolling elements due to manufacturing variations or the like.
  • the rolling bearing may further include a cage that holds a plurality of rolling elements on an annular raceway at a predetermined pitch.
  • the cage is formed by combining two annular holding plates having hemispherical bulging portions disposed at predetermined intervals along the circumferential direction, and holds the rolling elements at the opposing hemispherical bulging portions.
  • a pocket may be formed, and a ball non-contact portion may be provided on a ball facing surface that is a surface facing the rolling element in the pocket. The contact area with the rolling element in the pocket may be reduced by 15% to 30% than the contact area with the rolling element when the ball non-contact portion is not provided.
  • the resistance when the lubricant passes through the pocket can be reduced. Further, by providing the ball non-contact portion, the amount of oil film formed between the rolling elements and the pocket can be reduced.
  • the ball non-contact portion is too small, the amount of oil film to be sheared is small and torque reduction cannot be achieved.
  • the ball non-contact portion is too large, the amount of oil film formed between the rolling element and the pocket becomes too small, and smooth rolling of the rolling element is impaired. If the contact area with the rolling element, which is reduced by providing the ball non-contact portion, is larger than 30%, the strength of the cage decreases. If the contact area with the rolling element reduced by providing the ball non-contact portion is less than 15%, the torque cannot be reduced sufficiently. Therefore, it is preferable to reduce the contact area with the ball by 15% to 30% by providing the ball non-contact portion.
  • the race member may include an inner ring and an outer ring disposed so as to surround the outer peripheral side of the inner ring, and the groove curvature of the inner ring with respect to the rolling element may be 1.02 or greater and 1.06 or less. .
  • the race member includes an inner ring and an outer ring disposed so as to surround the outer peripheral side of the inner ring, and the groove curvature of the outer ring with respect to the rolling element is 1.02 or more and 1.08 or less. Also good.
  • the groove curvature of the inner ring and the outer ring is increased, the contact surface pressure between the inner ring and the outer ring and the rolling element may increase, and the life of the bearing may be shortened. It is preferable. Specifically, the groove curvature of the inner ring with respect to the ball is preferably 1.06 or less, and the groove curvature of the outer ring with respect to the ball is preferably 1.08 or less. Here, the upper limit of the groove curvature of the outer ring is larger than that of the inner ring. Under normal design, the contact surface pressure between the outer ring and the rolling element is smaller than the contact surface pressure between the inner ring and the rolling element.
  • the “groove curvature” means a ratio of the radius of curvature of the rolling surface in the cross section perpendicular to the circumferential direction of the raceway to the radius of the ball.
  • the rolling bearing may further include a cage for holding the plurality of rolling elements at a predetermined pitch on an annular raceway.
  • the cage is formed by forming hemispherical pockets for accommodating rolling elements on two opposing surfaces of the two annular members facing in the axial direction at a plurality of locations in the circumferential direction, and joining the two annular members by abutting the opposing surfaces. It may be formed.
  • at least one of the inner diameter side and the outer diameter side of the axial end portion of the annular body is provided with a flange portion extending in the radial direction, and a groove portion is formed at a portion corresponding to the flange portion of the track member, A labyrinth may be formed by the flange portion and the groove portion.
  • a flange extending in the radial direction is provided on at least one of the inner diameter side and the outer diameter side of the axial end portion of the annular body, and a groove portion is provided at a portion corresponding to the flange portion of the track member.
  • the labyrinth is formed by the flange portion and the groove portion. This labyrinth can prevent the lubricating oil from flowing into the bearing. As a result, an excessive flow of lubricating oil into the bearing is suppressed, and a reduction in torque is achieved.
  • the labyrinth is formed by the collar part provided in the annular body and the groove part formed in the track member, the formation of the labyrinth can be achieved only by changing the shape of the cage and the track member, for example. Therefore, it is possible to suppress the increase in the number of parts and the number of assembly steps, and to suppress the manufacturing cost.
  • the two annular bodies may have the same shape. By doing in this way, the manufacturing cost of components (annular body) can be reduced.
  • a pocket groove extending in the radial direction of the annular body may be formed in the pocket of the annular body.
  • a groove portion between pockets extending in the radial direction of the annular body and penetrating so as to connect the inner diameter side and the outer diameter side of the annular body is formed on the opposing surface between adjacent pockets of the annular body. It may be formed.
  • the axial thickness of the flange portion is 0.15 mm or more, and may be 20% or less of the diameter of the rolling element.
  • the thickness of the collar portion in the axial direction is smaller than 0.15 mm, the strength of the collar portion is insufficient and molding defects are likely to occur.
  • the axial thickness of the collar is larger than 20% of the diameter of the rolling element, the axial dimension of the inner and outer rings increases with the increase of the axial dimension of the cage, resulting in a compact bearing. Is inhibited. The occurrence of such a problem can be suppressed by setting the thickness of the collar portion in the axial direction within the appropriate range.
  • the end face of the cage may have a planar shape. As a result, it is possible to reduce the agitation resistance of the lubricating oil that enters the thinning portion, and to achieve further reduction in torque.
  • the cage may be made of polyamide resin, polyetheretherketone resin or polyphenylene sulfide resin. These materials are suitable as materials constituting the cage of the rolling bearing.
  • the rolling bearing may further include a cage for holding the plurality of rolling elements at a predetermined pitch on an annular raceway.
  • the track member may include an inner ring having an inner ring raceway groove formed on the outer peripheral side and an outer ring disposed so as to surround the inner ring and having an outer ring raceway groove formed on the inner peripheral side.
  • the height of the shoulder on one side of the outer ring raceway groove and the shoulder on the other side of the inner ring raceway groove is the same as that of the outer ring raceway groove. It may be higher than the shoulder on the other side and the shoulder on one side of the inner ring raceway groove.
  • the cage includes a cylindrical first divided cage made of synthetic resin and a synthetic resin cylindrical second divided cage fitted inside the first divided cage. May be included.
  • Each of the first split cage and the second split cage has an annular body, and is formed at equal intervals so that a plurality of pairs of pocket claws facing each other are arranged on one axial side surface of the annular body. It may be a crown shape provided with a ball holding pocket having a size of more than a half circle that punches an annular body between the pocket claws.
  • the first split cage is inserted into the bearing from the shoulder side of the outer ring having a low shoulder height
  • the second split cage is inserted into the bearing from the shoulder side of the inner ring having a low shoulder height to open the pocket.
  • the ends of the holders are combined in opposite directions, and the first and second divided holders are engaged with each other by fitting the two holders so that the two holders are not separated in the axial direction.
  • a connecting part may be provided.
  • the first split cage and the second split cage may have different hues.
  • retainer based on the hue of a division
  • retainer so that it may be an arrangement
  • a stealing portion that is not in contact with the rolling element may be formed on the inner peripheral surface of the pocket.
  • the retainer is a combination of the first split retainer and the second split retainer
  • the first split retainer And the second split cage are liable to accumulate foreign matter, which may cause a shortened bearing life.
  • the oil permeability of the lubricating oil on the pocket surface can be improved, and the accumulation of foreign matters as described above can be suppressed.
  • the depth of the indentation formed on the race member is 0.5 ⁇ m or less.
  • the depth of the indentation is more preferably 0.3 ⁇ m or less, and further preferably 0.2 ⁇ m or less.
  • the rolling bearing may support a rotating member that rotates in a differential or a transmission so as to be rotatable with respect to another member that is disposed adjacent to the rotating member.
  • the bearings used in differentials and transmissions are subjected to high surface pressure between the rolling elements and the raceway members. For this reason, bearings for such applications are required not only to increase the rolling fatigue life but also to improve the pressure resistance. For this reason, the rolling bearing of the present invention capable of achieving both high pressure scar resistance and rolling fatigue life at a high level is suitable as a bearing used in a differential or a transmission.
  • the method for manufacturing a bearing component according to the present invention includes 0.90 mass% or more and 1.05 mass% or less of carbon, 0.15 mass% or more and 0.35 mass% or less of silicon, and 0.01 mass% or more.
  • a step of carbonitriding, a step of quench-hardening the carbonitrided molded member, a step of tempering the quench-hardened molded member, and processing the tempered molded member And a step of forming a contact surface that is a surface in contact with another component.
  • the formed member is carbonitrided so that the nitrogen concentration of the contact surface is 0.25% by mass or more in the step of forming the contact surface.
  • the step of tempering the molded member the molded member is tempered so that the amount of retained austenite on the contact surface is 6% by volume to 12% by volume in the step of forming the contact surface.
  • the bearing component of the present invention can be manufactured.
  • the molded member in the step of tempering the molded member, may be tempered in a temperature range of 240 ° C. or higher and 300 ° C. or lower. This makes it easy to adjust the amount of retained austenite on the contact surface to a range of 6% by volume to 12% by volume.
  • carbon is dissolved in the hardened steel. This solid solution carbon contributes to solid solution strengthening of the material (steel) in the vicinity of the contact surface.
  • a part of the dissolved carbon precipitates as carbide. This precipitated carbide contributes to precipitation strengthening of the material (steel) in the vicinity of the contact surface.
  • the tempering treatment temperature is less than 240 ° C.
  • the solid solution strengthening of the material in the vicinity of the contact surface is sufficient, but the precipitation strengthening is insufficient.
  • the treatment temperature of the tempering treatment exceeds 300 ° C.
  • precipitation strengthening of the material near the contact surface is sufficient, but solid solution strengthening is insufficient.
  • the process temperature of a tempering process shall be 240 degreeC or more and 300 degrees C or less, the balance of a solid solution strengthening and precipitation strengthening will become favorable, and a pressure
  • the molded member in the step of quenching the molded member, may be quenched by quenching from a temperature range of 860 ° C. or lower. Thereby, it is possible to suppress the difficulty in adjusting the balance between the solid solution amount and the precipitation amount of carbon after quench hardening and the tempering treatment of the retained austenite amount.
  • the molded member in the step of quenching the molded member, may be quenched by quenching from a temperature range of 820 ° C. or higher. Thereby, it is possible to suppress the difficulty in adjusting the balance between the solid solution amount and the precipitation amount of carbon after quench hardening and the tempering treatment of the retained austenite amount.
  • a rolling bearing manufacturing method assembles a rolling bearing by combining a step of preparing a race member, a step of preparing a plurality of rolling elements, and a plurality of rolling members so as to contact the race member. Process. And at least any one of the process of preparing a race member and the process of preparing a plurality of rolling elements is carried out using the manufacturing method of a bearing component of the above-mentioned present invention. Thereby, the rolling bearing of the present invention can be manufactured.
  • a rolling bearing according to the present invention has a first raceway having a first rolling surface and a second rolling surface, and is arranged such that the second rolling surface faces the first rolling surface.
  • a second race ring a plurality of rolling elements that are in contact with the first rolling surface and the second rolling surface at a rolling contact surface, and arranged side by side on an annular raceway; a first race ring and a second race track; And a seal member disposed so as to close a bearing space which is a space sandwiched between the rings.
  • At least one of the first track ring, the second track ring, and the rolling element is 0.90 mass% or more and 1.05 mass% or less of carbon and 0.15 mass% or more and 0.35 mass% or less of silicon.
  • the nitrogen concentration in the bearing contact surface which is the first rolling surface, the second rolling surface or the rolling contact surface is 0.25% by mass or more, and the residual austenite amount in the bearing contact surface is 6% by volume or more and 12% by volume or less.
  • the seal member has one end fixed to one of the first and second race rings, and the other end of the seal lip is in contact with the other one of the first and second race rings. .
  • the seal lip portion is worn by rotating the second race ring in the circumferential direction relative to the first race ring, and the other of the first race ring and the second race ring does not contact the seal lip portion.
  • the seal lip portion is made of a high wear material so that the contact state between the other one of the first race ring and the second race ring and the seal lip portion is light contact that can be regarded as substantially zero. ing.
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • the nitrogen concentration at the bearing contact surface is increased to 0.25% by mass or more, and the rolling fatigue life is extended by quenching and hardening. Can do.
  • the amount of retained austenite at the bearing contact surface is about 20 to 40% by volume in relation to the amount of nitrogen.
  • the pressure resistance is lowered.
  • the amount of retained austenite at the bearing contact surface is preferably 6% by volume or more.
  • the high-strength bearing component constituting the rolling bearing of the present invention employs a JIS standard SUJ2 equivalent material that is easily available in various countries as a material, and the nitrogen concentration at the bearing contact surface is 0.25% by mass or more, The amount of retained austenite is 6 vol% or more and 12 vol% or less.
  • the seal lip portion that comes into contact with the bearing ring is easily worn by the rotation of the bearing ring and does not come into contact with the initially contacted bearing ring, or It is made of a high wear material that is in a light contact state with a contact pressure that can be regarded as substantially zero. As a result, an increase in rotational torque can be suppressed while intrusion of foreign matter is suppressed.
  • a material of the seal lip portion for example, rubber, resin or the like can be employed.
  • the rolling bearing of the present invention includes a high-strength bearing component that achieves both a high level of pressure resistance and a rolling fatigue life as a component while ensuring the availability of materials, and rotational torque.
  • a seal member capable of further improving the rolling fatigue life while suppressing the increase of the.
  • the amount of retained austenite on the bearing contact surface may be set to 10% or less from the viewpoint of further improving the pressure scar resistance. Further, if the nitrogen concentration on the bearing contact surface exceeds 0.5 mass%, the cost for intruding nitrogen into the steel increases, and it becomes difficult to adjust the amount of retained austenite to a desired range. Therefore, the nitrogen concentration in the bearing contact surface is preferably 0.5% by mass or less, and may be 0.4% by mass or less.
  • At least the first and second bearing rings may be the high-strength bearing component. Scratch resistance becomes a problem particularly in a raceway. Therefore, when at least one of the bearing rings is made of the high-strength bearing component, the pressure-proof scar resistance of the rolling bearing is more reliably improved.
  • the rolling element may be a ball.
  • the rotational torque of the rolling bearing is suppressed.
  • the static load rating of the bearing is significantly reduced as compared with the roller bearing, so that the pressure scar resistance is a particular problem.
  • the rolling bearing of the present invention includes the above-described high-strength bearing component that is excellent in pressure proof marks. Therefore, by adopting a ball as a rolling element in the rolling bearing of the present invention, it is possible to provide a rolling bearing with a high level of pressure resistance and rolling fatigue life and a reduced rotational torque.
  • the hardness of the bearing contact surface may be 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the bearing contact surface may be 64.0 HRC or less.
  • the hardness of the bearing contact surface whose nitrogen concentration is increased to 0.25% by mass or more is maintained in a state exceeding 64.0 HRC, it is difficult to adjust the residual austenite to 12% by volume or less.
  • the hardness of the bearing contact surface is 64.0 HRC or less, it becomes easy to adjust the amount of retained austenite to a range of 12% by volume or less.
  • the rolling bearing may support a rotating member that rotates in the differential or the transmission so as to be rotatable with respect to another member that is disposed adjacent to the rotating member.
  • the bearings used in differentials and transmissions are subjected to high surface pressure between the rolling elements and the raceway members. For this reason, bearings for such applications are required not only to increase the rolling fatigue life but also to improve the pressure resistance. Therefore, the rolling bearing of the present invention capable of achieving both high pressure scar resistance and rolling fatigue life at a high level is suitable as a bearing used in a differential or a transmission.
  • the depth of the indentation formed is 0.5 ⁇ m or less. By improving the pressure resistance to this level, it is possible to provide a rolling bearing that can be used in a particularly severe environment. Further, the depth of the indentation is more preferably 0.3 ⁇ m or less, and further preferably 0.2 ⁇ m or less.
  • a rolling bearing according to the present invention includes a race member, a plurality of balls disposed in contact with the race member, and a cage that holds the plurality of balls on an annular raceway at a predetermined pitch.
  • At least one of the race member and the plurality of balls includes 0.90% by mass or more and 1.05% by mass or less of carbon, 0.15% by mass or more and 0.35% by mass or less of silicon, and 0.01% by mass. Containing not less than 0.50% by mass of manganese and 1.30% by mass to not more than 1.65% by mass of chromium, and is made of a hardened and hardened steel composed of the balance iron and impurities, and is in contact with other parts.
  • This is a high-strength bearing component in which the nitrogen concentration at the contact surface, which is the surface to be contacted, is 0.25% by mass or more and the amount of retained austenite at the contact surface is 6% by volume or more and 12% by volume or less.
  • the cage is formed by combining two annular holding plates having hemispherical bulging portions arranged at predetermined intervals along the circumferential direction, and a pocket for holding the ball at the opposing hemispherical bulging portions. Is forming.
  • a ball non-contact portion including a recess extending in the circumferential direction of the pocket is provided on a ball facing surface that is a surface facing the ball in the pocket.
  • the value of A / (B + C) is It is set to 0.70 to 0.90.
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • the above component composition it is possible to use, as a material, the above-mentioned national standard steel that is easily available in various countries around the world. And on the premise of using the steel of the said component composition, the nitrogen concentration in a contact surface is raised to 0.25 mass% or more, and a rolling fatigue life is prolonged by hardening by hardening. it can.
  • the amount of retained austenite is not particularly adjusted, the amount of retained austenite at the contact surface is about 20 to 40% by volume in relation to the amount of nitrogen.
  • the pressure resistance is lowered.
  • pressure scar resistance can be improved by reducing the amount of retained austenite to 12% by volume or less.
  • the amount of retained austenite is reduced to less than 6% by volume, the rolling fatigue life, particularly the rolling fatigue life in an environment in which hard foreign matter enters the bearing (foreign matter mixed environment) is lowered. Therefore, the amount of retained austenite at the contact surface is preferably 6% by volume or more.
  • the bearing part (at least one of the race member and the plurality of balls) employs a JIS standard SUJ2 equivalent material that is easily available in various countries as a material, and the nitrogen concentration at the contact surface is 0.
  • the amount of residual austenite is 25% by mass or more and 6% by volume or more and 12% by volume or less.
  • the bearing component constituting the rolling bearing of the present invention is a high-strength bearing component capable of achieving both a high level of scratch resistance and rolling fatigue life while ensuring the availability of materials. It has become. From the viewpoint of further improving the pressure scar resistance, the amount of retained austenite on the contact surface may be 10% or less.
  • the nitrogen concentration on the contact surface is preferably 0.5% by mass or less, and may be 0.4% by mass or less.
  • the cage constituting the rolling bearing of the present invention by providing a ball non-contact portion made of a recess on the ball facing surface of the pocket, a ball contact portion serving as a guide surface on the ball facing surface, and a guide surface A non-ball contact portion is formed.
  • the clearance is a gap between the ball and the pocket guide surface when the ball is brought to one side in the pocket.
  • the pocket circumferential direction length of the recess is increased, the sliding area where the pocket inner wall and the ball come into contact is reduced. , Leading to a reduction in shear resistance.
  • the “pocket circumferential length” is too long, the contact between the ball and the pocket is not the guide surface (ball contact portion) but the boundary between the guide surface and the recess.
  • the “pocket circumferential length” is preferably as large as possible within the range in which the ball can be held by the pocket guide surface (ball contact portion), including the movement of the ball in the pocket.
  • the pocket circumferential length of the non-ball contact portion is A
  • the diameter of the ball is B
  • the clearance formed between the ball and the ball facing surface of the pocket is C
  • the value of A / (B + C) is set to 0.70 to 0.90.
  • the rolling bearing of the present invention by providing the above-described bearing rings, rolling elements, and cages, it is possible to ensure the availability of the material while maintaining the pressure resistance and rolling. It is possible to provide a rolling bearing capable of achieving both high fatigue life and a low torque.
  • the race member may be the high-strength bearing component. Since the raceway member that is particularly required to improve the resistance to pressure marks is the high-strength bearing component, it becomes easier to apply the ball bearing to the place where the roller bearing has been applied.
  • the contact surface may have a hardness of 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the contact surface may be 64.0 HRC or less.
  • the hardness of the contact surface where the nitrogen concentration is increased to 0.25% by mass or more is maintained in a state exceeding 64.0 HRC, it is difficult to adjust the residual austenite to 12% by volume or less.
  • the hardness of the contact surface is 64.0 HRC or less, it becomes easy to adjust the amount of retained austenite to a range of 12% by volume or less.
  • the depth of the indentation formed on the raceway member is preferably 0.5 ⁇ m or less. As a result, a sufficient level of pressure resistance can be ensured.
  • the D / E value is set to 0.25 to 0.40, where D is the length of the non-ball contact portion in the pocket axis direction and E is the total length of the pocket in the pocket axis direction. May be.
  • the cage is made of metal and may be formed by press working.
  • the length of the non-ball contact portion in the pocket axis direction is too large, it becomes difficult to manufacture, and there is a concern in terms of manufacturing. That is, it is preferable to make the length of the non-ball contact portion in the pocket axis direction as large as possible within a range in which the pocket shape does not collapse even when press working.
  • the value of F / G is 0.30 to 0.00. 40 may be set.
  • a shear resistance can be set to “0” by providing a gap larger than the surface roughness level between the ball and the pocket.
  • the depth of the recess is too small, it is difficult to ensure sufficient dimensional accuracy.
  • the depth of the recess is too large, there is a concern that the pocket shape collapses during press working.
  • H / (E / 2) The value may be set between 0 and 0.2.
  • the opening edge in the pocket axis direction of the concave portion constituting the non-ball contact portion may be formed of a curved surface.
  • the recess is preferably dimensioned so that the ball does not contact at the boundary.
  • the border may come into contact with the ball due to manufacturing variations or the like.
  • the ball non-contact portion may be provided in all pockets of the cage.
  • the cage may be made of metal and molded by pressing, or may be made of resin and molded by injection molding.
  • the race member may include an inner ring and an outer ring disposed so as to surround the outer peripheral side of the inner ring, and the groove curvature of the inner ring with respect to the ball may be 1.02 or greater and 1.06 or less. .
  • the raceway member includes an inner ring and an outer ring disposed so as to surround the outer peripheral side of the inner ring, and the groove curvature of the outer ring with respect to the ball is 1.02 to 1.08. Also good.
  • roller bearings are used in places where relatively large loads are applied. Therefore, when the rolling bearing of the present invention, which is a ball bearing, is applied to a place where the roller bearing has been applied, a relatively large load is applied to the rolling bearing of the present invention. As a result, the contact ellipse between the race member and the ball becomes large, and the slip component (differential slip and spin slip) between the race member and the ball becomes large, so that the rotational torque of the rolling bearing becomes large. On the other hand, by increasing the groove curvature of at least one of the inner ring and the outer ring to 1.02 or more, the slip component can be reduced and the torque can be reduced more reliably.
  • the groove curvature of the inner ring with respect to the ball is preferably 1.06 or less
  • the groove curvature of the outer ring with respect to the ball is preferably 1.08 or less.
  • the upper limit of the groove curvature of the outer ring is larger than that of the inner ring.
  • the contact surface pressure between the outer ring and the ball is smaller than the contact surface pressure between the inner ring and the ball. This is because there is a large room for increasing the groove curvature.
  • the “groove curvature” means a ratio of the radius of curvature of the rolling surface in the cross section perpendicular to the circumferential direction of the raceway to the radius of the ball.
  • the rolling bearing may be used for supporting a power transmission shaft of an automobile.
  • the automobile may be a two-wheeled vehicle.
  • the rolling bearing of the present invention is suitable for the above-mentioned applications in which long life, low torque, and compactness are important.
  • a rolling bearing according to the present invention includes a race member, a plurality of balls disposed in contact with the race member, and a cage that holds the plurality of balls on an annular raceway at a predetermined pitch.
  • At least one of the race member and the plurality of balls includes 0.90% by mass or more and 1.05% by mass or less of carbon, 0.15% by mass or more and 0.35% by mass or less of silicon, and 0.01% by mass. Containing not less than 0.50% by mass of manganese and 1.30% by mass to not more than 1.65% by mass of chromium, and is made of a hardened and hardened steel composed of the balance iron and impurities, and is in contact with other parts.
  • This is a high-strength bearing component in which the nitrogen concentration at the contact surface, which is the surface to be contacted, is 0.25% by mass or more and the amount of retained austenite at the contact surface is 6% by volume or more and 12% by volume or less.
  • the cage is formed by combining two annular holding plates having hemispherical bulging portions arranged at predetermined intervals along the circumferential direction, and holds the ball at the opposing hemispherical bulging portions.
  • a pocket is formed.
  • a ball non-contact portion is provided on a ball facing surface which is a surface facing the ball in the pocket. The contact area with the ball in the pocket is reduced by 15% to 30% compared to the contact area with the ball when the ball non-contact portion is not provided.
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • the nitrogen concentration in a contact surface is raised to 0.25 mass% or more, and a rolling fatigue life is prolonged by hardening by hardening. it can.
  • the amount of retained austenite at the contact surface is about 20 to 40% by volume in relation to the amount of nitrogen.
  • the pressure resistance is lowered.
  • the amount of retained austenite at the contact surface is preferably 6% by volume or more.
  • the rolling bearing of the present invention in the bearing part (at least one of the race member and the plurality of balls), a material equivalent to JIS standard SUJ2 that is easily available in various countries is used as the material, and nitrogen on the contact surface is used.
  • the concentration is 0.25% by mass or more, and the amount of retained austenite is 6% by volume or more and 12% by volume or less.
  • the bearing component constituting the rolling bearing of the present invention is a high-strength bearing component capable of achieving both a high level of scratch resistance and rolling fatigue life while ensuring the availability of materials. It has become.
  • the amount of retained austenite on the contact surface may be 10% or less.
  • the nitrogen concentration on the contact surface is preferably 0.5% by mass or less, and may be 0.4% by mass or less.
  • the resistance when the lubricant passes through the pocket can be reduced by providing the ball non-contact part on the ball facing surface. Further, by providing the ball non-contact portion, the amount of oil film formed between the ball and the pocket can be reduced. Here, if the ball non-contact portion is too small, the amount of oil film to be sheared is small and torque reduction cannot be achieved. On the other hand, if the ball non-contact portion is too large, the amount of oil film formed between the ball and the pocket becomes too small, and the smooth rolling of the ball is impaired. If the contact area with the ball, which is reduced by providing the ball non-contact portion, is larger than 30%, the strength of the cage decreases.
  • the contact area with the ball which is reduced by providing the ball non-contact portion, is less than 15%, the torque cannot be reduced sufficiently. Therefore, in the cage constituting the rolling bearing of the present invention, the contact area with the ball is reduced by 15% to 30% by providing the ball non-contact portion.
  • the rolling bearing of the present invention it is possible to achieve both high pressure scar resistance and rolling fatigue life at a high level and achieve low torque while ensuring the availability of materials. Possible rolling bearings can be provided.
  • the race member may be a high strength bearing part. Since the raceway member that is particularly required to improve the resistance to pressure marks is the high-strength bearing component, it becomes easier to apply the ball bearing to the place where the roller bearing has been applied.
  • the contact surface may have a hardness of 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the contact surface may be 64.0 HRC or less.
  • the hardness of the contact surface where the nitrogen concentration is increased to 0.25% by mass or more is maintained in a state exceeding 64.0 HRC, it is difficult to adjust the retained austenite to 12% by volume or less.
  • the hardness of the contact surface is 64.0 HRC or less, it becomes easy to adjust the amount of retained austenite to a range of 12% by volume or less.
  • a concave portion that is recessed toward the opposite side of the ball is provided in the hemispherical bulging portion, and the concave portion may be used as a non-ball contact portion.
  • a slit may be provided in the hemispherical bulge portion, and the slit may be used as a non-ball contact portion.
  • the ball non-contact portion may be arranged on the outer diameter side of the pitch circle of the plurality of balls.
  • the cage is made of metal and may be molded by pressing.
  • the cage may be made of metal and cast.
  • the cage may be formed by a shaving process.
  • the cage may be made of resin and molded by injection molding. As a result, the cage can be easily molded and the cost can be reduced.
  • the depth of the impression formed on the raceway member is preferably 0.5 ⁇ m or less. . As a result, a sufficient level of pressure resistance can be ensured.
  • the race member may include an inner ring and an outer ring disposed so as to surround the outer peripheral side of the inner ring, and the groove curvature of the inner ring with respect to the ball may be 1.02 or greater and 1.06 or less. .
  • the raceway member includes an inner ring and an outer ring disposed so as to surround the outer peripheral side of the inner ring, and the groove curvature of the outer ring with respect to the ball is 1.02 to 1.08. Also good.
  • ⁇ Roller bearings are used in places where relatively large loads are applied. Therefore, when the rolling bearing of the present invention, which is a ball bearing, is applied to a place where the roller bearing has been applied, a relatively large load is applied to the rolling bearing of the present invention. As a result, the contact ellipse between the race member and the ball is increased, and the slip component (differential slip and spin slip) between the race member and the ball is increased, so that the rotational torque of the rolling bearing is increased. On the other hand, by increasing the groove curvature of at least one of the inner ring and the outer ring to 1.02 or more, the slip component can be reduced and the torque can be reduced more reliably.
  • the groove curvature of the inner ring with respect to the ball is preferably 1.06 or less
  • the groove curvature of the outer ring with respect to the ball is preferably 1.08 or less.
  • the upper limit of the groove curvature of the outer ring is larger than that of the inner ring.
  • the contact surface pressure between the outer ring and the ball is smaller than the contact surface pressure between the inner ring and the ball. This is because there is a large room for increasing the groove curvature.
  • the “groove curvature” means a ratio of the radius of curvature of the rolling surface in the cross section perpendicular to the circumferential direction of the raceway to the radius of the ball.
  • the rolling bearing may be used for supporting a power transmission shaft of an automobile.
  • the automobile may be a two-wheeled vehicle.
  • the rolling bearing of the present invention is suitable for the above-mentioned applications in which long life, low torque, and compactness are important.
  • a rolling bearing according to the present invention includes a race member, a plurality of balls disposed in contact with the race member, and a cage that holds the plurality of balls on an annular raceway at a predetermined pitch.
  • At least one of the race member and the plurality of balls includes 0.90% by mass or more and 1.05% by mass or less of carbon, 0.15% by mass or more and 0.35% by mass or less of silicon, and 0.01% by mass.
  • the cage is formed by forming hemispherical pockets that accommodate the balls in a plurality of locations in the circumferential direction on opposing surfaces of two annular members facing in the axial direction, and joining the two annular members by abutting the opposing surfaces.
  • At least one of the inner diameter side and the outer diameter side of the axial end portion of the annular body is provided with a flange portion extending in the radial direction, and a groove portion is formed at a portion corresponding to the flange portion of the track member, A labyrinth is formed by the flange and the groove.
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • the above component composition it is possible to use, as a material, the above-mentioned national standard steel that is easily available in various countries around the world. And on the premise of using the steel of the said component composition, the nitrogen concentration in a contact surface is raised to 0.25 mass% or more, and a rolling fatigue life is prolonged by hardening by hardening. it can.
  • the amount of retained austenite is not particularly adjusted, the amount of retained austenite at the contact surface is about 20 to 40% by volume in relation to the amount of nitrogen.
  • the pressure resistance is lowered.
  • pressure scar resistance can be improved by reducing the amount of retained austenite to 12% by volume or less.
  • the amount of retained austenite is reduced to less than 6% by volume, the rolling fatigue life, particularly the rolling fatigue life in an environment in which hard foreign matter enters the bearing (foreign matter mixed environment) is lowered. Therefore, the amount of retained austenite at the contact surface is preferably 6% by volume or more.
  • the bearing part (at least one of the race member and the plurality of balls) employs a JIS standard SUJ2 equivalent material that is easily available in various countries as a material, and the nitrogen concentration at the contact surface is 0.
  • the amount of residual austenite is 25% by mass or more and 6% by volume or more and 12% by volume or less.
  • the bearing component constituting the rolling bearing of the present invention is a high-strength bearing component capable of achieving both a high level of scratch resistance and rolling fatigue life while ensuring the availability of materials. It has become. From the viewpoint of further improving the pressure scar resistance, the amount of retained austenite on the contact surface may be 10% or less.
  • the nitrogen concentration on the contact surface is preferably 0.5% by mass or less, and may be 0.4% by mass or less.
  • a radially extending flange is provided on at least one of the inner diameter side and the outer diameter side of the axial end of the annular body, and A groove portion is formed at a portion corresponding to the portion, and a labyrinth is formed by the flange portion and the groove portion.
  • This labyrinth can prevent the lubricating oil from flowing into the bearing.
  • the labyrinth is formed by the collar part provided in the annular body and the groove part formed in the track member, the formation of the labyrinth can be achieved only by changing the shape of the cage and the track member, for example. Therefore, it is possible to suppress the increase in the number of parts and the number of assembly steps, and to suppress the manufacturing cost.
  • the rolling bearing of the present invention by providing the raceway member, the rolling element, and the cage as described above, it is possible to ensure the availability of the material while maintaining the pressure resistance and rolling. It is possible to provide a rolling bearing capable of achieving both high fatigue life and a low torque.
  • the two annular bodies may have the same shape. By doing in this way, the manufacturing cost of components (annular body) can be reduced.
  • the cage may have a target shape in the axial direction.
  • the race member may be the high-strength bearing component. Since the raceway member that is particularly required to improve the pressure dent resistance is the high-strength bearing component, it is easy to apply the bearing to an application in which a large load is applied.
  • the contact surface may have a hardness of 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the contact surface may be 64.0 HRC or less.
  • the hardness of the contact surface where the nitrogen concentration is increased to 0.25% by mass or more is maintained in a state exceeding 64.0 HRC, it is difficult to adjust the residual austenite to 12% by volume or less.
  • the hardness of the contact surface is 64.0 HRC or less, it becomes easy to adjust the amount of retained austenite to a range of 12% by volume or less.
  • pocket grooves extending in the radial direction of the annular body may be formed in the pocket of the annular body.
  • the pocket groove portion may be formed so as to penetrate the inner diameter side and the outer diameter side of the annular body.
  • a groove portion between pockets extends in the radial direction of the annular body on the facing surface between adjacent pockets of the annular body and penetrates so as to connect the inner diameter side and the outer diameter side of the annular body. May be formed.
  • the axial thickness of the flange is preferably 0.15 mm or more and 20% or less of the ball diameter.
  • the thickness of the collar portion in the axial direction is smaller than 0.15 mm, the strength of the collar portion is insufficient and molding defects are likely to occur.
  • the axial thickness of the collar is larger than 20% of the diameter of the ball, the axial dimension of the inner and outer rings increases with the increase of the axial dimension of the cage, and the bearing becomes compact. Be inhibited. The occurrence of such a problem can be suppressed by setting the thickness of the collar portion in the axial direction within the appropriate range.
  • the end face of the cage may have a planar shape. As a result, it is possible to reduce the agitation resistance of the lubricating oil that enters the thinning portion, and to achieve further reduction in torque.
  • the cage is made of polyamide resin, polyether ether ketone resin or polyphenylene sulfide resin. These materials are suitable as materials constituting the cage of the rolling bearing of the present invention.
  • the depth of the indentation formed on the raceway member is preferably 0.5 ⁇ m or less. As a result, a sufficient level of pressure resistance can be ensured.
  • the depth of the indentation is more preferably 0.2 ⁇ m or less.
  • the rolling bearing can be used in, for example, a motor or a speed reducer of a vehicle that uses a motor or a motor as a power source.
  • the collar part of the said cage is located so that the linear inflow of the lubricating oil to the inside of a bearing may be inhibited, and the said collar part comprises a labyrinth structure.
  • a deep groove ball bearing includes an inner ring having an inner ring raceway groove formed on the outer peripheral side, an outer ring disposed so as to surround the inner ring and having an outer ring raceway groove formed on the inner peripheral side, and an inner ring raceway groove and an outer ring.
  • a plurality of balls arranged in contact with the raceway groove on the ball rolling surface, and a cage for holding the plurality of balls on the annular raceway at a predetermined pitch.
  • At least one of the inner ring, the outer ring, and the plurality of balls includes 0.90% by mass or more and 1.05% by mass or less of carbon, 0.15% by mass or more and 0.35% by mass or less of silicon, Other parts made of quench-hardened steel that contains manganese in an amount of 0.5% to 0.50% by mass and chromium in an amount of 1.30% to 1.65% by mass, the balance being iron and impurities.
  • a high-strength bearing component in which the nitrogen concentration in the contact surface, which is a surface in contact with the surface, is 0.25% by mass or more, and the amount of retained austenite in the contact surface is 6% by volume or more and 12% by volume or less.
  • the height of the shoulder on one side of the outer ring raceway groove and the shoulder on the other side of the inner ring raceway groove is the same as that of the outer ring raceway groove.
  • the height is higher than the shoulder on the other side and the shoulder on one side of the inner ring raceway groove.
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • JIS standard SUJ2 equivalent material JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15
  • the above component composition it is possible to use, as a material, the above-mentioned national standard steel that is easily available in various countries around the world. And on the premise of using the steel of the said component composition, the nitrogen concentration in a contact surface is raised to 0.25 mass% or more, and a rolling fatigue life is prolonged by hardening by hardening. it can.
  • the amount of retained austenite is not particularly adjusted, the amount of retained austenite at the contact surface is about 20 to 40% by volume in relation to the amount of nitrogen.
  • the pressure resistance is lowered.
  • pressure scar resistance can be improved by reducing the amount of retained austenite to 12% by volume or less.
  • the amount of retained austenite is reduced to less than 6% by volume, the rolling fatigue life, particularly the rolling fatigue life in an environment in which hard foreign matter enters the bearing (foreign matter mixed environment) is lowered. Therefore, the amount of retained austenite at the contact surface is preferably 6% by volume or more.
  • the nitrogen concentration at the contact surface is adopted in the bearing component (at least one of the outer ring, the inner ring, and the plurality of balls) as a material, which is easily available in various countries around the world. Is 0.25% by mass or more, and the amount of retained austenite is 6% by volume or more and 12% by volume or less.
  • the bearing parts constituting the deep groove ball bearing of the present invention are high-strength bearing parts capable of achieving both high level of scratch resistance and rolling fatigue life while ensuring the availability of materials. It has become. From the viewpoint of further improving the pressure scar resistance, the amount of retained austenite on the contact surface may be 10% or less.
  • the nitrogen concentration on the contact surface is preferably 0.5% by mass or less, and may be 0.4% by mass or less.
  • the shoulder on one side of the outer ring raceway groove and the inner ring raceway groove is higher than the height of the shoulder on the other side of the outer ring raceway groove and the shoulder on one side of the inner ring raceway groove.
  • the deep groove ball bearing of the present invention it is possible to achieve both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials, and to cope with thrust loads. It is possible to provide a deep groove ball bearing.
  • the cage includes a cylindrical first divided cage made of synthetic resin, and a synthetic resin cylindrical second divided cage fitted inside the first divided cage.
  • Each of the first and second divided cages has an annular body, and is formed at equal intervals so that a plurality of pairs of pocket claws facing each other are arranged on one side surface in the axial direction of the annular body
  • a crown shape may be provided in which a ball holding pocket having a size of more than half a circle for punching an annular body between a pair of pocket claws is provided.
  • the first split cage is inserted into the bearing from the shoulder side of the outer ring where the shoulder height is low
  • the second split cage is inserted into the bearing from the side of the inner ring where the shoulder height is low
  • the open end of the pocket Are combined to face each other in the opposite direction, and the first split cage and the second split cage are engaged with each other by the fitting of the two cages so that the two cages are not separated in the axial direction.
  • a connecting part may be provided.
  • an inward engagement claw is provided between the pocket claws of the adjacent pockets of the first divided cage, and an outward direction is provided between the pocket claws of the adjacent pockets of the second divided cage.
  • An engagement claw is provided, the engagement claw of the first split cage is engaged with an engagement recess formed on the outer diameter surface of the second split cage, and the engagement claw of the second split cage is the first You may engage with the engagement recessed part formed in the internal-diameter surface of a division
  • retainer Thereby, a 1st division
  • the number of engaging portions between the engaging claw and the engaging recess may be three or more. Thereby, a 1st division
  • retainer can be combined more reliably.
  • the circumferential clearance formed between the engaging claw and the engaging recess may be set larger than the circumferential pocket clearance formed between the ball and the pocket.
  • the axial clearance formed between the engaging claw and the engaging recess may be set larger than the axial pocket clearance formed between the ball and the pocket.
  • the first split cage and the second split cage may have different hues.
  • retainer based on the hue of a division
  • retainer so that it may be an arrangement
  • a stealing portion that is not in contact with the ball may be formed on the inner peripheral surface of the pocket.
  • the retainer is a combination of the first split retainer and the second split retainer
  • the bearing provided with the retainer is used under a foreign matter mixed lubrication condition
  • Foreign matter tends to accumulate between the second split cage and may cause a shortened bearing life.
  • the oil permeability of the lubricating oil on the pocket surface can be improved, and the accumulation of foreign matters as described above can be suppressed.
  • a pair of the stealing portions may be installed for each pocket so as to include an area that is equidistant from the center of the pocket bottom.
  • the shape of the stealing portion on the surface perpendicular to the thickness direction of the split cage may be a curved surface (for example, a spherical shape or a U-shape).
  • the bottom portion of the pair of stealing portions and the pocket bottom center may be on the same straight line.
  • the deep groove ball bearing may be lubricated with lubricating oil.
  • a synthetic resin excellent in oil resistance examples include polyamide 46 (PA46), polyamide 66 (PA66), and polyphenylene sulfide (PPS).
  • PA46 polyamide 46
  • PA66 polyamide 66
  • PPS polyphenylene sulfide
  • PPS polyphenylene sulfide
  • PA66 polyamide 66
  • the material constituting the cage may be appropriately determined according to the type of lubricating oil.
  • the ratio H 1 / d of the shoulder height H 1 to the ball diameter d is 0.25 to 0. A range of 50 is preferable.
  • the outer ring and the inner ring may be the high-strength bearing component. Since the outer ring and the inner ring that are particularly required to improve the pressure resistance are the above-described high-strength bearing parts, it becomes easier to apply the deep groove ball bearing to the place where the roller bearing has been applied.
  • the hardness of the contact surface may be 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the contact surface may be 64.0 HRC or less.
  • the hardness of the contact surface where the nitrogen concentration is increased to 0.25% by mass or more is maintained in a state exceeding 64.0 HRC, it is difficult to adjust the residual austenite to 12% by volume or less.
  • the hardness of the contact surface is 64.0 HRC or less, it becomes easy to adjust the amount of retained austenite to a range of 12% by volume or less.
  • the depth of the impression formed on the inner ring and the outer ring is 0.5 ⁇ m or less. Is preferred. As a result, a sufficient level of pressure resistance can be ensured.
  • the groove curvature of the inner ring with respect to the ball may be 1.02 or more and 1.06 or less.
  • the groove curvature of the outer ring with respect to the ball may be 1.02 or more and 1.08 or less.
  • roller bearings are used in places where relatively large loads are applied. Therefore, when the deep groove ball bearing of the present invention, which is a ball bearing, is applied to a place where the roller bearing has been applied, a relatively large load is applied to the deep groove ball bearing of the present invention. Then, the contact ellipse between the race member and the ball becomes large, and the slip component (differential slip and spin slip) between the race member and the ball becomes large, so that the rotational torque of the deep groove ball bearing becomes large.
  • the slip component can be reduced and the torque can be reduced more reliably. Further, by increasing the groove curvature of the raceway, it is possible to suppress the ball from riding on the shoulder.
  • the groove curvature of the inner ring with respect to the ball is preferably 1.06 or less
  • the groove curvature of the outer ring with respect to the ball is preferably 1.08 or less.
  • the upper limit of the groove curvature of the outer ring is larger than that of the inner ring.
  • the contact surface pressure between the outer ring and the ball is smaller than the contact surface pressure between the inner ring and the ball. This is because there is a large room for increasing the groove curvature.
  • the “groove curvature” means the ratio of the radius of curvature of the raceway groove surface in the cross section perpendicular to the circumferential direction of the raceway to the radius of the ball.
  • the deep groove ball bearing may be used to support a power transmission shaft of an automobile.
  • the automobile may be a two-wheeled vehicle.
  • the deep groove ball bearing of the present invention is suitable for the above-mentioned applications in which long life, low torque, and compactness are important.
  • the bearing component, the rolling bearing, and the manufacturing method thereof of the present invention the pressure scar resistance and the rolling fatigue life are at a high level while ensuring the availability of the material. It is possible to provide a bearing component, a rolling bearing, and a manufacturing method thereof that can be compatible.
  • FIG. 4 is a schematic partial cross-sectional view of the raceway ring of FIG. 3. It is a schematic sectional drawing of the roller of FIG. It is a flowchart which shows the outline of the manufacturing method of a rolling bearing. It is a schematic sectional drawing which shows the structure of a manual transmission. It is a schematic sectional drawing which shows the structure of a differential. It is the schematic which shows arrangement
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the deep groove ball bearing in the first embodiment. It is a schematic sectional drawing in alignment with the WW line of FIG. It is a schematic perspective view which shows the state which looked at the pocket of the holder
  • FIG. 10 is a schematic cross-sectional view showing a configuration of a deep groove ball bearing in a sixth embodiment. It is a general
  • FIG. 10 is a schematic cross-sectional view showing a configuration of a deep groove ball bearing in a seventh embodiment. It is the schematic which shows the structure of the holder
  • FIG. 10 is a schematic sectional drawing which shows the structure of another deep groove ball bearing. It is a schematic sectional drawing which shows the structure of a deep groove ball bearing.
  • FIG. 37 is a schematic sectional view taken along line AA in FIG. 36.
  • FIG. 37 is a schematic sectional view taken along line BB in FIG. 36.
  • FIG. 40 is a schematic sectional view taken along line CC of FIG. 39.
  • FIG. 40 is a schematic sectional view taken along the line DD of FIG. 39. It is a schematic sectional drawing which shows the structure of the modification of a deep groove ball bearing.
  • FIG. 20 is a schematic cross-sectional view showing a configuration of a deep groove ball bearing in the ninth embodiment. It is a right view which shows a part of holder
  • Deep groove ball bearing 1 that is a rolling bearing in Embodiment 1 includes an outer ring 11 as a first race member that is a bearing component, and an inner ring as a second race member that is a bearing component. 12, balls 13 as a plurality of rolling elements that are bearing parts, and a cage 14.
  • the outer ring 11 is formed with an outer ring rolling surface 11A as an annular first rolling surface.
  • the inner ring 12 is formed with an inner ring rolling surface 12A as an annular second rolling surface facing the outer ring rolling surface 11A.
  • the balls 13 are formed with ball rolling surfaces 13A (the surfaces of the balls 13) as rolling elements rolling surfaces.
  • the outer ring rolling surface 11A, the inner ring rolling surface 12A, and the ball rolling surface 13A are contact surfaces of these bearing components.
  • the balls 13 are in contact with each of the outer ring rolling surface 11A and the inner ring rolling surface 12A on the ball rolling surface 13A, and are arranged at a predetermined pitch in the circumferential direction by an annular retainer 14. It is rotatably held on an annular track.
  • the outer ring 11, the inner ring 12, and the ball 13, which are bearing parts, are 0.90 mass% or more and 1.05 mass% or less carbon, and 0.15 mass% or more and 0.35 mass% or less. Containing silicon, 0.01 mass% or more and 0.50 mass% or less manganese, and 1.30 mass% or more and 1.65 mass% or less chromium, and made of quench-hardened steel consisting of the remaining impurities. ing. In the region including the outer ring rolling surface 11A, the inner ring rolling surface 12A, and the ball rolling surface 13A as contact surfaces, nitrogen enriched layers 11B, 12B, having a higher nitrogen concentration than the inner 11C, 12C, 13C, 13B is formed.
  • the nitrogen concentration in the outer ring rolling surface 11A, the inner ring rolling surface 12A and the ball rolling surface 13A as contact surfaces which are the surfaces of the nitrogen-enriched layers 11B, 12B and 13B is 0.25% by mass or more. Furthermore, the amount of retained austenite on the outer ring rolling surface 11A, the inner ring rolling surface 12A, and the ball rolling surface 13A is 6% by volume or more and 12% by volume or less.
  • the outer ring 11, the inner ring 12 and the ball 13 which are bearing parts in the present embodiment are made of steel having a component composition of the JIS standard SUJ2 equivalent steel, so that the material can be easily obtained all over the world. And on the premise of using the steel of the said composition, the nitrogen concentration in outer ring rolling surface 11A, inner ring rolling surface 12A and ball rolling surface 13A is increased to 0.25% by mass or more and is hardened and hardened. As a result, the rolling fatigue life is extended. And by reducing the amount of retained austenite to 12% by volume or less, the pressure scar resistance is improved, and by making the amount of retained austenite 6% by volume or more, in rolling fatigue life, particularly in a foreign matter mixed environment. The rolling fatigue life of is maintained at an appropriate level. As a result, the outer ring 11, the inner ring 12 and the ball 13 are bearing parts capable of achieving both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials.
  • the hardness of the outer ring rolling surface 11A, the inner ring rolling surface 12A and the ball rolling surface 13A which are contact surfaces is preferably 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the outer ring rolling surface 11A, inner ring rolling surface 12A and ball rolling surface 13A is preferably 64.0 HRC or less. Thereby, it becomes easy to adjust the amount of retained austenite in the outer ring rolling surface 11A, the inner ring rolling surface 12A, and the ball rolling surface 13A to a range of 12% by volume or less.
  • a thrust needle roller bearing 2 which is a rolling bearing in the modification of the first embodiment has basically the same configuration as the deep groove ball bearing 1, and has the same effect. Play.
  • the thrust needle roller bearing 2 is different from the deep groove ball bearing 1 in the configuration of the raceway member and the rolling element. That is, the thrust needle roller bearing 2 has a disk-like shape, and a pair of race rings 21 as race members disposed so that one main surfaces thereof face each other, and a plurality of needle rollers 23 as rolling elements. And an annular retainer 24.
  • the plurality of needle rollers 23 are in contact with a raceway rolling surface 21A formed on one main surface of the pair of raceways 21 facing each other on a roller rolling contact surface 23A that is an outer peripheral surface of the needle roller 23, and By being arranged at a predetermined pitch in the circumferential direction by the cage 24, the cage 24 is held so as to roll on an annular track. With the above configuration, the pair of race rings 21 of the thrust needle roller bearing 2 can rotate relative to each other.
  • the bearing ring 21 of the thrust needle roller bearing 2 corresponds to the outer ring 11 and the inner ring 12 of the deep groove ball bearing
  • the needle roller 23 of the thrust needle roller bearing 2 corresponds to the ball 13 of the deep groove ball bearing, and is made of the same material.
  • it has nitrogen-enriched layers 21B and 23B, internal portions 21C and 23C, raceway rolling surfaces 21A and rolling contact surfaces 23A having the same nitrogen concentration and retained austenite amount.
  • the bearing ring 21 and the needle roller 23 are bearing parts capable of achieving both a high pressure scar resistance and a rolling fatigue life at a high level while ensuring the availability of materials.
  • a steel material preparation step is performed as a step (S10).
  • a steel material made of JIS standard SUJ2 equivalent steel such as JIS standard SUJ2, ASTM standard 52100, DIN standard 100Cr6, GB standard GCr5 or GCr15, and ⁇ OCT standard ⁇ X15 is prepared.
  • a steel bar or a steel wire having the above composition is prepared.
  • a molding step is performed as a step (S20).
  • this step (S20) for example, forging and turning are performed on the steel bars and steel wires prepared in step (S10), the outer ring 11 and the inner ring 12 shown in FIGS. , Molded members formed into shapes such as balls 13, races 21, and needle rollers 23 are produced.
  • a carbonitriding step is performed as a step (S30).
  • the formed member produced in step (S20) is carbonitrided.
  • This carbonitriding process can be performed as follows, for example. First, the molded member is preheated in a temperature range of about 780 ° C. to 820 ° C. for a period of 30 minutes to 90 minutes. Next, the preheated molded member is heated in an atmosphere in which ammonia gas is further introduced into an endothermic gas such as RX gas whose carbon potential is adjusted by adding propane gas or butane gas as an enriched gas. And carbonitrided.
  • the temperature of the carbonitriding process can be set to 820 ° C. or higher and 880 ° C.
  • the carbonitriding time can be set according to the nitrogen concentration of the nitrogen-enriched layer to be formed on the molded member, and can be set to 3 hours or more and 9 hours or less, for example. Thereby, a nitrogen rich layer can be formed, suppressing decarburization of a forming member.
  • a quenching process is performed as a process (S40).
  • the molded member on which the nitrogen-enriched layer is formed by the carbonitriding process in step (S30) is quenched by being rapidly cooled from a predetermined quenching temperature.
  • the quenching temperature By setting the quenching temperature to 860 ° C. or less, it becomes easy to adjust the balance between the solid solution amount and the precipitation amount of carbon and the amount of retained austenite in the subsequent tempering step. Further, by setting the quenching temperature to 820 ° C. or higher, it becomes easy to adjust the balance between the solid solution amount and the precipitation amount of carbon and the amount of retained austenite in the subsequent tempering step.
  • the quenching treatment can be carried out, for example, by immersing the molded member in quenching oil as a coolant maintained at a predetermined temperature.
  • a tempering step is performed as a step (S50).
  • the molded member quenched in the step (S40) is tempered.
  • the tempering treatment is performed by holding the molded member in an atmosphere heated to a temperature range of 210 ° C. or higher and 300 ° C. or lower for a time period of 0.5 hours or longer and 3 hours or shorter.
  • a finishing process is performed as a process (S60).
  • the contact surface that is a surface that comes into contact with other components by processing the molded member that has been tempered in step (S50), that is, the outer ring rolling surface 11A of the deep groove ball bearing 1,
  • the ring rolling surface 12A and the ball rolling surface 13A, and the raceway rolling surface 21A and the rolling contact surface 23A of the thrust needle roller bearing 2 are formed.
  • a grinding process can be performed.
  • the outer ring 11, inner ring 12, ball 13, race ring 21, needle roller 23, etc., which are bearing parts in the present embodiment, are completed through the above steps.
  • an assembly process is performed as a process (S70).
  • the outer ring 11, the inner ring 12, the ball 13, the race ring 21, the needle roller 23 produced in steps (S10) to (S60) and the cages 14 and 24 prepared separately are assembled. Together, the deep groove ball bearing 1 and the thrust needle roller bearing 2 in the above embodiment are assembled. Thereby, the manufacturing method of the rolling bearing in this Embodiment is completed.
  • the outer ring rolling surface 11A, the inner ring rolling surface 12A and the ball rolling surface 13A of the deep groove ball bearing 1 which are contact surfaces by finishing in the subsequent step (S60), and the thrust needle
  • the formed member is carbonitrided so that the nitrogen concentration of the raceway rolling surface 21A and the rolling contact surface 23A of the roller bearing 2 is 0.25% by mass or more. That is, in consideration of the allowance in the step (S60), etc., the nitrogen enriched layer 11B in which the nitrogen amount is adjusted so that the nitrogen concentration on the surface after completion of the contact surface can be 0.25% by mass or more. , 12B, 13B, 21B, and 23B are formed.
  • the outer ring rolling surface 11A, the inner ring rolling surface 12A and the ball rolling surface 13A of the deep groove ball bearing 1 which are contact surfaces by the finishing process in the subsequent step (S60), and the thrust needle roller.
  • the molded member is tempered so that the amount of retained austenite on the raceway rolling surface 21A and the rolling contact surface 23A of the bearing 2 is 6% by volume or more and 12% by volume or less. That is, considering the machining allowance in the step (S60) and the like, the retained austenite is obtained by tempering so that the amount of retained austenite on the surface after completion of the contact surface can be 6% by volume or more and 12% by volume or less. The amount is adjusted. Thereby, the bearing component in the said this Embodiment can be manufactured.
  • the molded member is preferably tempered in a temperature range of 240 ° C. or higher and 300 ° C. or lower.
  • carbon solid-dissolved in the substrate by the quenching process is precipitated as a carbide at an appropriate ratio.
  • an appropriate balance between solid solution strengthening and precipitation strengthening is achieved, and the pressure resistance of the outer ring 11, inner ring 12, ball 13, race ring 21, and needle roller 23 that are bearing parts is improved.
  • manual transmission 100 is a constant-mesh manual transmission, and includes input shaft 111, output shaft 112, counter shaft 113, gears (gears) 114 a to 114 k, and housing 115. It has.
  • the input shaft 111 is supported by the deep groove ball bearing 1 so as to be rotatable with respect to the housing 115.
  • a gear 114a is formed on the outer periphery of the input shaft 111, and a gear 114b is formed on the inner periphery.
  • the output shaft 112 is rotatably supported on the housing 115 by the deep groove ball bearing 1 on one side (right side in the figure), and can be rotated on the input shaft 111 by the rolling bearing 120A on the other side (left side in the figure). It is supported by. Gears 114c to 114g are attached to the output shaft 112.
  • the gear 114c and the gear 114d are respectively formed on the outer periphery and the inner periphery of the same member.
  • the member in which the gear 114c and the gear 114d are formed is rotatably supported with respect to the output shaft 112 by the rolling bearing 120B.
  • the gear 114e is attached to the output shaft 112 so as to rotate integrally with the output shaft 112 and to be slidable in the axial direction of the output shaft 112.
  • each of the gear 114f and the gear 114g is formed on the outer periphery of the same member.
  • the member in which the gear 114f and the gear 114g are formed is attached to the output shaft 112 so as to rotate integrally with the output shaft 112 and to be slidable in the axial direction of the output shaft 112.
  • the gear 114f can mesh with the gear 114b, and when the member slides to the right in the figure, the gear 114g and the gear 114d Engageable.
  • the countershaft 113 is formed with gears 114h to 114k.
  • Two thrust needle roller bearings 2 are arranged between the countershaft 113 and the housing 115, and thereby an axial load (thrust load) of the countershaft 113 is supported.
  • the gear 114h always meshes with the gear 114a, and the gear 114i always meshes with the gear 114c.
  • the gear 114j can mesh with the gear 114e when the gear 114e slides to the left side in the drawing.
  • the gear 114k can mesh with the gear 114e when the gear 114e slides to the right in the drawing.
  • the rotation of the input shaft 111 is transmitted to the countershaft 113 by meshing between the gear 114 a formed on the input shaft 111 and the gear 114 h formed on the countershaft 113.
  • the rotation of the countershaft 113 is transmitted to the output shaft 112 by meshing between the gears 114i to 114k formed on the countershaft 113 and the gears 114c and 114e attached to the output shaft 112.
  • the rotation of the input shaft 111 is transmitted to the output shaft 112.
  • the gear meshing between the input shaft 111 and the counter shaft 113 and the gear meshing between the counter shaft 113 and the output shaft 112 are changed.
  • the rotational speed of the output shaft 112 can be changed stepwise with respect to the rotational speed of the input shaft 111.
  • the rotation of the input shaft 111 can be directly transmitted to the output shaft 112 by directly meshing the gear 114 b of the input shaft 111 and the gear 114 f of the output shaft 112 without using the counter shaft 113.
  • the shifting operation of the manual transmission 100 will be described more specifically.
  • the gear 114f does not mesh with the gear 114b
  • the gear 114g does not mesh with the gear 114d
  • the gear 114e meshes with the gear 114j
  • the driving force of the input shaft 111 is the gear 114a, the gear 114h, the gear 114j
  • It is transmitted to the output shaft 112 via the gear 114e.
  • This is the first speed, for example.
  • the driving force of the input shaft 111 is transmitted via the gear 114a, the gear 114h, the gear 114i, the gear 114c, the gear 114d, and the gear 114g. It is transmitted to the output shaft 112. This is the second speed, for example.
  • the input shaft 111 is directly coupled to the output shaft 112 by meshing with the gear 114b and the gear 114f, and the driving force of the input shaft 111 is Directly transmitted to the output shaft 112.
  • the manual transmission 100 includes the deep groove ball bearing 1 in order to rotatably support the input shaft 111 and the output shaft 112 as rotating members with respect to the housing 115 disposed adjacent thereto. Yes.
  • the manual transmission 100 also includes a thrust needle roller bearing 2 for rotatably supporting a counter shaft 113, which is a rotating member, with respect to a housing 115 disposed adjacent thereto.
  • the deep groove ball bearing 1 and the thrust needle roller bearing 2 in the first embodiment can be used in the manual transmission 100.
  • the deep groove ball bearing 1 and the thrust needle roller bearing 2 that can achieve both high pressure scar resistance and rolling fatigue life at a high level are manuals in which a high surface pressure is applied between the rolling elements and the raceway member. It is suitable for use in the transmission 100.
  • differential 200 includes differential case 201, pinion gears 202a and 202b, sun gear 203, pinion carrier 204, armature 205, pilot clutch 206, electromagnet 207, rotor clutch ( Differential case) 208 and a cam 209.
  • the sun gear 203 is connected to the end of the left drive shaft 220 as the first drive shaft, so that the sun gear 203 and the left drive shaft 220 can rotate together.
  • each of the rotation shafts 202c of the pinion gear 202a and each of the rotation shafts 202d of the pinion gear 202b are held by the pinion carrier 204 so as to be able to rotate.
  • the pinion carrier 204 is connected to the end portion of the right drive shaft 221 as the second drive shaft, so that the pinion carrier 204 and the right drive shaft 221 can rotate together.
  • the electromagnet 207, the pilot clutch 206, the rotor clutch (differential case) 208, the armature 205, and the cam 209 constitute an electromagnetic clutch.
  • the external teeth 201b of the differential case 201 mesh with a gear of a ring gear (not shown), and the differential case 201 rotates by receiving power from the ring gear.
  • the pinion gears 202a and 202b do not rotate, and the three members of the differential case 201, the pinion carrier 204, and the sun gear 203 rotate as a unit. To do. That is, power is transmitted from the ring gear to the left drive shaft 220 as indicated by arrow B, and power is transmitted from the ring gear to the right drive shaft 221 as indicated by arrow A.
  • the electromagnetic clutch is energized when a certain difference or more is generated between the left drive shaft 220 and the right drive shaft 221, and a magnetic field is generated by the electromagnet 207.
  • the pilot clutch 206 and the armature 205 are attracted to the electromagnet 207 by magnetic induction and generate friction torque.
  • the friction torque is converted in the thrust direction by the cam 209.
  • the main clutch is pressed against the differential case 208 via the pinion carrier 204 by the friction torque converted in the thrust direction, thereby generating a differential limiting torque.
  • the thrust needle roller bearing 2 receives a reaction force in the thrust direction generated by the cam 209 and transmits this reaction force to the differential case 208.
  • a thrust force doubled by the cam 209 proportional to the friction torque is generated.
  • the electromagnet 207 can control only the pilot clutch 206, amplify the torque by the boost mechanism, and can arbitrarily control the friction torque.
  • the thrust needle roller bearing 2 in the first embodiment is disposed between the cam 209 and the differential case 208.
  • the deep groove ball bearing 1 according to the first embodiment is disposed between the differential case 208 and a member disposed on the outer peripheral side of the differential case 208.
  • the deep groove ball bearing 1 and the thrust needle roller bearing 2 in the first embodiment can be used in the differential 200.
  • the deep groove ball bearing 1 and the thrust needle roller bearing 2 capable of achieving both high pressure scar resistance and rolling fatigue life at a high level are differentials in which a high surface pressure is applied between the rolling elements and the raceway member. Suitable for use within 200.
  • deep groove ball bearing 301 which is a rolling bearing in the fourth embodiment includes an outer ring 311 as a first race member as a bearing component and an inner ring as a second race member as a bearing component. 312, balls 313 as rolling elements that are bearing parts, a cage 314, and a seal member 317.
  • the outer ring 311 is formed with an outer ring rolling surface 311A as an annular first rolling surface.
  • the inner ring 312 is formed with an inner ring rolling surface 312A as an annular second rolling surface that faces the outer ring rolling surface 311A.
  • a ball rolling surface 313A (the surface of the ball 313) as a rolling element rolling surface (rolling contact surface) is formed on the plurality of balls 313.
  • the outer ring rolling surface 311A, the inner ring rolling surface 312A, and the ball rolling surface 313A are bearing contact surfaces of these bearing components.
  • the balls 313 come into contact with the outer ring rolling surface 311A and the inner ring rolling surface 312A at the ball rolling surface 313A, and are arranged at a predetermined pitch in the circumferential direction by the annular cage 314. It is rotatably held on an annular track.
  • the seal member 317 is disposed so as to close a bearing space that is a space sandwiched between the outer ring 311 and the inner ring 312, and suppresses entry of foreign matter into the bearing space.
  • the outer ring 311, the inner ring 312, and the ball 313, which are bearing parts include 0.90 mass% or more and 1.05 mass% or less carbon, and 0.15 mass% or more and 0.35 mass% or less. Containing silicon, 0.01 mass% or more and 0.50 mass% or less manganese, and 1.30 mass% or more and 1.65 mass% or less chromium, and made of quench-hardened steel consisting of the remaining impurities. ing. In the region including the outer ring rolling surface 311A, the inner ring rolling surface 312A, and the ball rolling surface 313A as bearing contact surfaces, nitrogen enriched layers 311B and 312B having a higher nitrogen concentration than the inner 311C, 312C, and 313C.
  • the nitrogen concentration in the outer ring rolling surface 311A, the inner ring rolling surface 312A, and the ball rolling surface 313A as the bearing contact surfaces which are the surfaces of the nitrogen-enriched layers 311B, 312B, and 313B is 0.25% by mass or more. Furthermore, the amount of retained austenite on the outer ring rolling surface 311A, the inner ring rolling surface 312A, and the ball rolling surface 313A is 6 vol% or more and 12 vol% or less.
  • the outer ring 311, the inner ring 312, and the ball 313, which are bearing parts in the present embodiment, are made of steel having a component composition of the JIS standard SUJ2 equivalent steel, so that the material is easily available in various countries around the world.
  • the nitrogen concentration in outer ring rolling surface 311A, inner ring rolling surface 312A and ball rolling surface 313A is increased to 0.25% by mass or more, and is hardened and hardened.
  • the rolling fatigue life is extended.
  • the pressure scar resistance is improved, and by making the amount of retained austenite 6% by volume or more, in rolling fatigue life, particularly in a foreign matter mixed environment.
  • the outer ring 311, the inner ring 312, and the ball 313 are high-strength bearing parts that can achieve both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials. Yes.
  • seal member 317 is made of metal and has a ring-shaped cored bar 316, and elastic part 315 that is an elastic member made of resin or rubber arranged to surround cored bar 316. Including. With such a structure, the seal member 317 can be elastically deformed at the elastic portion 315 contacting the outer ring 311 and the inner ring 312 while maintaining a desired rigidity by the cored bar 316.
  • the seal member 317 is fixed by fitting an outer peripheral portion into a seal attachment groove 311E formed on the inner peripheral surface of the outer ring 311.
  • a seal lip portion 317 ⁇ / b> A that is an inner peripheral side end portion of the seal member 317 is in contact with the outer peripheral surface of the inner ring 312.
  • the seal lip portion 317A is made of a high wear material such as rubber that easily wears. Therefore, referring to FIG. 11, when the inner ring 312 is rotated relative to the outer ring 311, the seal lip portion 317A is worn immediately after the rotation starts, and the inner ring 312 and the seal lip portion as shown in FIG. It will be in the state which 317A does not contact. As a result, the seal lip portion 317A and the outer peripheral surface of the inner ring 312 are in a state of facing each other with a minute gap therebetween. Thereby, the penetration
  • the deep groove ball bearing 301 in the present embodiment is a high-strength bearing component capable of achieving both a high level of scratch resistance and a rolling fatigue life while ensuring the availability of materials.
  • the deep groove ball bearing 301 in the present embodiment is a rolling bearing that achieves both high pressure scar resistance and rolling fatigue life at a high level.
  • the rolling element may be a roller, from the viewpoint of reducing the rotational torque, a ball is employed instead of the roller for a portion where the roller is employed as in the above embodiment. Is preferred.
  • the pressure resistance of the bearing ring becomes a problem, but the bearing ring (outer ring 311, When the inner ring 312) is the above-described high-strength bearing component, the rotational torque can be reduced while maintaining the pressure proof resistance at a sufficient level.
  • the hardness of the outer ring rolling surface 311A, the inner ring rolling surface 312A and the ball rolling surface 313A which are bearing contact surfaces is preferably 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the outer ring rolling surface 311A, the inner ring rolling surface 312A and the ball rolling surface 313A is preferably 64.0 HRC or less. This makes it easy to adjust the amount of retained austenite on the outer ring rolling surface 311A, the inner ring rolling surface 312A, and the ball rolling surface 313A to a range of 12% by volume or less.
  • the outer ring 311, the inner ring 312 and the ball 313 constituting the deep groove ball bearing 301 and the deep groove ball bearing 301 in the present embodiment can be manufactured by the same manufacturing method as the rolling bearing and the bearing component in the first embodiment. .
  • the deep groove ball bearing 301 in the present embodiment can be used in the manual transmission 100 and the differential 200 described in the second and third embodiments, similarly to the deep groove ball bearing 1 in the first embodiment. .
  • deep groove ball bearing 401 that is a rolling bearing in the present embodiment includes outer ring 411 as a first race member that is a bearing component, and inner ring 412 as a second race member that is a bearing component, A ball 413 as a plurality of rolling elements, which are bearing parts, and a cage 415 are provided.
  • the outer ring 411 is formed with an annular outer ring rolling surface 411A as a first ring rolling surface.
  • the inner ring 412 is formed with an inner ring rolling surface 412A as an annular second rolling surface facing the outer ring rolling surface 411A.
  • a plurality of balls 413 are formed with a ball rolling surface 413A (a surface of the ball 413) as a rolling element rolling surface.
  • the outer ring rolling surface 411A, the inner ring rolling surface 412A, and the ball rolling surface 413A are contact surfaces of these bearing components.
  • the balls 413 are in contact with the outer ring rolling surface 411A and the inner ring rolling surface 412A at the ball rolling surface 413A, and are arranged at a predetermined pitch in the circumferential direction by the annular cage 415. It is rotatably held on an annular track. With the above configuration, the outer ring 411 and the inner ring 412 of the deep groove ball bearing 401 are rotatable relative to each other.
  • the outer ring 411, the inner ring 412 and the ball 413 which are bearing parts are 0.90 mass% or more and 1.05 mass% or less of carbon, 0.15 mass% or more and 0.35 mass% or less of silicon, and 0.01 mass. It is made of a hardened and hardened steel containing not less than 0.5% and not more than 0.50% by mass of manganese and not less than 1.30% and not more than 1.65% by mass of chromium, and the balance iron and impurities.
  • nitrogen enriched layers 411B, 412B, having a higher nitrogen concentration than the inner 411C, 412C, 413C, 413B is formed respectively.
  • the nitrogen concentration in the outer ring rolling surface 411A, the inner ring rolling surface 412A, and the ball rolling surface 413A as contact surfaces which are the surfaces of the nitrogen-enriched layers 411B, 412B, and 413B is 0.25% by mass or more.
  • the amount of retained austenite on the outer ring rolling surface 411A, the inner ring rolling surface 412A, and the ball rolling surface 413A is 6% by volume or more and 12% by volume or less.
  • the cage 415 is made by, for example, pressing a steel strip of cold rolled steel (such as a JIS standard SPCC system).
  • the outer ring 411, the inner ring 412 and the ball 413 which are bearing parts in the present embodiment, are made of steel having a component composition of the JIS standard SUJ2 equivalent steel, so that the material is easily available in various countries around the world. And on the premise of using the steel of the composition, the nitrogen concentration in the outer ring rolling surface 411A, the inner ring rolling surface 412A and the ball rolling surface 413A is increased to 0.25% by mass or more, and is hardened and hardened. As a result, the rolling fatigue life is extended.
  • the outer ring 411, the inner ring 412 and the ball 413 are bearing parts capable of achieving both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials.
  • the cage 415 has two annular holding plates having hemispherical bulging portions 426 arranged at predetermined intervals along the circumferential direction. 427A and 427B are combined. That is, each of the annular holding plates 427A and 427B includes a hemispherical bulging portion 426 disposed along the circumferential direction and a flat portion 428 between adjacent hemispherical bulging portions 426. In the combined state, the flat portions 428 and 428 are overlapped, and the flat portions 428 and 428 are connected by a fixing tool 429 such as a rivet. As a result, the hemispherical bulging portions 426 face each other, and a ring-shaped ball fitting portion (pocket) 430 is formed.
  • a fixing tool 429 such as a rivet
  • a suitable lubrication method for this bearing is oil lubrication.
  • oil lubrication oil in addition to mineral oil such as spindle oil, machine oil, turbine oil, ATF or differential oil can be used.
  • synthetic oils such as diester oil, silicone oil, and fluorocarbon oil can be used as a lubricating oil under conditions of high temperatures of 150 ° C. or higher or low temperatures of ⁇ 30 ° C. or lower.
  • a ball contact portion 431 and a ball non-contact portion 432 are provided on the ball facing surface of the pocket 430. That is, by forming a rectangular convex portion 433 (see FIG. 16) that protrudes toward the anti-ball side on the anti-ball facing surface, a rectangular concave portion 434 that is recessed toward the anti-ball side from the ball contact portion 431 on the ball opposing surface. Is provided at the center of the pocket 430 in the pocket axial direction on the ball facing surface so as to extend in the pocket circumferential direction.
  • the concave portion 434 forms a ball non-contact portion 432.
  • the pocket circumferential direction length (the length in the pocket circumferential direction ⁇ shown in FIG. 15) of the ball non-contact portion 432 configured by the concave portion 434 is A
  • the diameter of the ball 413 is B.
  • the value of A / (B + C) is set to 0.70 to 0.90, where C is the size of the gap formed between the ball 413 and the ball facing surface of the pocket 430.
  • the length in the pocket axial direction of the ball non-contact portion 432 (the length in the pocket axial direction ⁇ (the radial direction of the bearing shown in FIG. 15)) is D, and the total axial length of the pocket 430 is D.
  • E E
  • the value of D / E is preferably set to 0.25 to 0.40.
  • the depth of the concave portion 434 constituting the ball non-contact portion 432 is F and the thickness of the hemispherical bulging portion 426 of the annular holding plate 427A (427B) is G
  • the value of F / G is 0. It is preferably set to 30 to 0.40.
  • the value of H / (E / 2) is It is preferably set to 0 to 0.2.
  • bowl non-contact part 432 is made into the round shape (curved surface shape). More specifically, the radius (R) of the pocket axial direction opening edge 435 can be set to 0.05 to 0.30 mm, for example.
  • the concave portion 434 can be called a low torque groove for obtaining a low torque effect.
  • This low torque groove includes three elements: a groove width (pocket axial length: D), a groove depth (depth of recess 434: F), and a groove length (pocket circumferential length: A). Yes.
  • the shear resistance acting between the ball 413 and the pocket guide surface is determined by the four factors of lubricating oil viscosity, sliding speed, sliding area, and clearance shown in FIG.
  • the shear resistance F according to Newton's law of viscosity is expressed by the following equation.
  • F is the shear resistance
  • is the viscosity of the lubricating oil
  • u is the sliding speed
  • S is the sliding area
  • d is the gap.
  • ⁇ and u are determined by the operating conditions of the bearing. For this reason, the value cannot be changed. If the sliding area S is reduced, the shear resistance is reduced. Therefore, by forming the “low torque groove”, the sliding area of the cage 415 with respect to the ball 413 is reduced, so that the shear resistance is reduced.
  • the clearance d it is understood that if the value is increased, the shear resistance is decreased. When confirming the order of d where normal shear resistance occurs, the order is about the surface roughness. Therefore, if the groove depth (gap d) is set with macro dimensions, the clearance is sufficiently large, and the shear resistance is set to “0”. (It can be made small enough to be regarded as “0”).
  • the sliding area is reduced and the shear resistance is reduced by increasing the pocket circumferential length of the concave portion 434. It leads to.
  • the contact between the ball 413 and the pocket 430 is not the guide surface (ball contact portion 431) but the boundary between the guide surface (ball contact portion 431) and the recess 434. .
  • oil film formation is remarkably lowered, and there is a concern of surface damage.
  • the circumferential length of the concave portion 434 is as large as possible within the range in which the ball 413 can be held by the pocket guide surface, including the movement of the ball 413 in the pocket 430.
  • the value of A / (B + C) is preferably set to 0.70 to 0.90.
  • the deep groove ball bearing 401 includes the outer ring 411, the inner ring 412, the ball 413, and the cage 415, thereby ensuring the availability of materials and the pressure resistance and rolling.
  • the dynamic fatigue life can be achieved at a high level, and a low torque can be achieved.
  • the cage 415 may be formed by press working.
  • the length of the concave portion 434 in the pocket axis direction is too large, there is a concern that manufacturing difficulties may occur. Therefore, it is preferable to make the length of the concave portion 434 in the pocket axis direction as large as possible within a range in which the pocket shape does not collapse even when press working.
  • the value of D / E is preferably set to 0.25 to 0.40.
  • the shear resistance is set to “0” (small enough to be regarded as “0”). Is possible.
  • the press working accuracy of the cage 415 it is difficult to ensure sufficient dimensional accuracy if the depth of the recess 434 is too small.
  • the depth of the concave portion 434 is too large, there is a concern about the collapse of the pocket shape during press working.
  • the value of H / (E / 2) is 0 to 0. It is preferably set to 2.
  • the concave portion 434 has a dimensional relationship such that the ball 413 does not contact at the boundary.
  • the shape of the boundary is not an edge shape (planar shape) but a round shape (curved surface shape) so that damage does not occur immediately even if contact occurs.
  • the ball non-contact portion 432 may be provided in all the pockets 430 of the cage 415, or may be provided only in an arbitrary pocket 430. By providing the ball non-contact portion 432 in all the pockets 430, the bearing using this cage 415 can achieve lower torque more reliably.
  • the maximum low torque effect can be exhibited while satisfying the function as a bearing, and the amount of lubricating oil such as spraying and splashing is small.
  • a torque reduction effect can be particularly obtained, which can contribute to fuel saving.
  • the cage 415 that satisfies the above conditions has a relatively simple overall shape, can be molded by press working or the like, and can reduce costs.
  • the press working conventionally employed in the manufacture of this type of cage can be manufactured by changing only a part of the process, and the manufacturing cost can be reduced.
  • the deep groove ball bearing 401 in the present embodiment is suitable for supporting a power transmission shaft of an automobile including a two-wheeled vehicle.
  • retainer 415 was metal and demonstrated the case where it shape
  • retainer which comprises the rolling bearing of this invention is not restricted to this.
  • the cage 415 may be a synthetic resin molded product.
  • PPS resin polyphenylene sulfide resin
  • PA46 polyamide 46
  • PA66 polyamide 66
  • Such a resin cage can be molded by, for example, injection molding. Note that even a resin cage may be molded by shaving. Even such a resin cage has the same effect as the metal cage as shown in FIG. Further, the number of pockets provided in the holder 415 can be arbitrarily set. Furthermore, as the material of the ball 413, ceramics (silicon nitride Si 3 N 4 , alumina Al 2 O 3 ) may be employed in addition to the SUJ2 equivalent steel as described above.
  • the hardness of the outer ring rolling surface 411A, the inner ring rolling surface 412A and the ball rolling surface 413A which are contact surfaces is preferably 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the outer ring rolling surface 411A, the inner ring rolling surface 412A and the ball rolling surface 413A is preferably 64.0 HRC or less. Thereby, it becomes easy to adjust the amount of retained austenite in the outer ring rolling surface 411A, the inner ring rolling surface 412A, and the ball rolling surface 413A to a range of 12% by volume or less.
  • the deep groove ball bearing 401 and the outer ring 411, the inner ring 412 and the ball 413 constituting the deep groove ball bearing 401 in the present embodiment can be manufactured by the same manufacturing method as the rolling bearing and the bearing component in the first embodiment. .
  • the deep groove ball bearing 401 in the present embodiment can be used in the manual transmission 100 and the differential 200 described in the second and third embodiments, similarly to the deep groove ball bearing 1 in the first embodiment. .
  • a deep groove ball bearing 501 that is a rolling bearing in the sixth embodiment includes an outer ring 511 as a first race member that is a bearing component, an inner ring 512 as a second race member that is a bearing component, An annular seal disposed between the outer ring 511 and the inner ring 512 so as to close the bearing space sandwiched between the balls 513 as the rolling elements, which are bearing parts, the cage 514, and the outer ring 511 and the inner ring 512.
  • Member 517 is provided to close the bearing space sandwiched between the balls 513 as the rolling elements, which are bearing parts, the cage 514, and the outer ring 511 and the inner ring 512.
  • the outer ring 511 is formed with an annular outer ring rolling surface 511A as a first rolling surface.
  • the inner ring 512 is formed with an inner ring rolling surface 512A as an annular second rolling surface facing the outer ring rolling surface 511A.
  • a plurality of balls 513 are formed with a ball rolling surface 513A (a surface of the ball 513) as a rolling element rolling surface.
  • the outer ring rolling surface 511A, the inner ring rolling surface 512A and the ball rolling surface 513A are contact surfaces of these bearing components.
  • the balls 513 are in contact with the outer ring rolling surface 511A and the inner ring rolling surface 512A at the ball rolling surface 513A, and are arranged at a predetermined pitch in the circumferential direction by the annular cage 514. It is rotatably held on an annular track.
  • the outer ring 511 and the inner ring 512 of the deep groove ball bearing 501 are rotatable relative to each other.
  • mounting grooves 520 are formed at both axial ends of the inner peripheral surface (inner diameter surface) of the outer ring 511.
  • concave grooves 521 are formed at both axial ends of the outer peripheral surface (outer diameter surface) of the inner ring 512.
  • a radially outer end portion of the seal member 517 is fitted in the mounting groove 520.
  • the lip portion 522 formed at the radially inner end portion of the seal member 517 is in contact with the bottom surface of the groove 521.
  • the outer ring 511, the inner ring 512, and the ball 513, which are bearing parts, are 0.90 mass% or more and 1.05 mass% or less of carbon, 0.15 mass% or more and 0.35 mass% or less of silicon, and 0.01 mass. It is made of a hardened and hardened steel containing not less than 0.5% and not more than 0.50% by mass of manganese and not less than 1.30% and not more than 1.65% by mass of chromium, and the balance iron and impurities.
  • nitrogen enriched layers 511B, 512B having a higher nitrogen concentration than the internal 511C, 512C, 513C, 513B are formed respectively.
  • the nitrogen concentration in the outer ring rolling surface 511A, the inner ring rolling surface 512A and the ball rolling surface 513A as contact surfaces which are the surfaces of the nitrogen-enriched layers 511B, 512B and 513B is 0.25% by mass or more.
  • the amount of retained austenite on the outer ring rolling surface 511A, the inner ring rolling surface 512A, and the ball rolling surface 513A is 6 vol% or more and 12 vol% or less.
  • the cage 514 is made by, for example, pressing a steel strip of cold rolled steel (such as JIS standard SPCC).
  • the seal member 517 includes a cored bar 518 and a cover part 519 made of a synthetic resin or a rubber material that covers the cored bar 518.
  • the outer ring 511, the inner ring 512, and the ball 513 which are bearing parts in the present embodiment, are made of steel having a component composition of the above-mentioned JIS standard SUJ2 steel, so that the material is easily available in various countries around the world. And on the premise of using the steel of the said composition, the nitrogen concentration in outer ring rolling surface 511A, inner ring rolling surface 512A and ball rolling surface 513A is increased to 0.25% by mass or more, and is hardened and hardened. As a result, the rolling fatigue life is extended.
  • the outer ring 511, the inner ring 512, and the ball 513 are bearing parts capable of achieving both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials.
  • the cage 514 is a combination of two annular holding plates 527A and 527B having hemispherical bulge portions 526 arranged at predetermined intervals along the circumferential direction. Is formed. That is, each annular holding plate 527A, 527B is a flat portion formed between a hemispherical bulging portion 526 arranged at a predetermined interval along the circumferential direction and an adjacent hemispherical bulging portion 526. 528.
  • the flat portions 528 and 528 are overlapped so that the two annular holding plates 527A and 527B are combined, and the flat portions 528 and 528 are connected by a fixing tool 529 such as a rivet.
  • a fixing tool 529 such as a rivet
  • bowl non-contact part 531 is provided in the ball
  • FIG. The contact area with the ball 513 in the pocket 530 is reduced by 15% to 30% than the contact area with the ball 513 when the ball non-contact portion 531 is not provided.
  • a rectangular convex portion 532 projecting toward the anti-ball side on the anti-ball facing surface By forming a rectangular convex portion 532 projecting toward the anti-ball side on the anti-ball facing surface, a rectangular concave portion 533 recessed toward the anti-ball side is provided on the ball facing surface.
  • the recess 533 is a ball non-contact portion 531.
  • Various protrusions 532 can be employed as shown in FIGS.
  • the shape A shown in FIG. 23 has a circumferential length L of LA and a width dimension W of WA.
  • a shape B shown in FIG. 24 has a circumferential length L that is shorter than LA and a width dimension W that is the same as WA.
  • a shape C shown in FIG. 25 is a WC whose circumferential length L is the same as LB and whose width W is larger than WA.
  • the shape D shown in FIG. 26 has a circumferential length L that is the same LD as LA, and a width dimension W that is the same WD as WA.
  • the circumferential length L is the same LE as the LB, and the width dimension W is the same WE as the WA.
  • the shape F shown in FIG. 28 has a circumferential length L that is the same as LB, and a width dimension W that is the same as WA.
  • the shape A shown in FIG. 23, the shape B shown in FIG. 24, and the shape F shown in FIG. 28 are such that the center line O of the convex portion 532 coincides with the pitch circle PCD of the ball 513, A portion 532 is disposed on the pitch circle PCD.
  • the center line O of the convex portion 532 is shifted to the bearing outer diameter side from the pitch circle PCD of the balls 513. .
  • the deviation is slight, but in the shape D shown in FIG. 26 and the shape E shown in FIG. 27, the deviation is large, and one long side is the pitch circle of the ball 513. It matches the PCD.
  • the convex portion 532 those having various shapes as shown in FIGS. 23 to 28 can be adopted.
  • the ball non-contact part 531 comprised by the recessed part 533 formed by this makes the contact area of the holder
  • the convex part 532 is a rectangle (rectangular) whose circumferential dimension is long with respect to the radial dimension, or conversely, it is a rectangular (rectangular) whose radial dimension is long with respect to the circumferential direction, the rotational dimension And squares having the same radial dimension. Further, it may be oval or elliptical instead of rectangular. Even in the case of such an elliptical shape, the circumferential dimension may be longer than the radial dimension, or conversely, the radial dimension may be longer than the circumferential dimension. Furthermore, it may be circular.
  • the ball non-contact portion 531 on the ball facing surface, the resistance when the lubricant passes through the pocket can be reduced. Further, by providing the ball non-contact portion 531, the amount of oil film formed between the ball 513 and the pocket 530 can be reduced.
  • the ball non-contact portion if the ball non-contact portion is too small, the amount of oil film to be sheared is small and the torque cannot be sufficiently reduced.
  • the ball non-contact portion 531 if the ball non-contact portion 531 is too large, the amount of oil film formed between the ball 513 and the pocket 530 becomes too small, and smooth rolling of the ball 513 is impaired. For this reason, by setting the range of the ball non-contact portion 531 as in the present embodiment, it is possible to achieve both the resistance when the lubricant passes through the pocket and the reduction in the amount of oil film to be sheared. . For this reason, the rotational torque of the deep groove ball bearing 501 can be reduced by employing the cage 514 in the present embodiment.
  • the pressure scar resistance and the rolling fatigue life are compatible at a high level and the torque is reduced while ensuring the availability of materials. Can be achieved.
  • the ball non-contact portion 531 can be reliably formed by providing a concave portion 533 that is recessed toward the opposite ball side on the ball facing surface.
  • the ball non-contact part 531 is arranged on the outer diameter side of the pitch circle of the ball 513, the shear resistance at a position where the peripheral speed is high can be reduced, and the torque can be reduced more stably. .
  • the hardness of the outer ring rolling surface 511A, the inner ring rolling surface 512A, and the ball rolling surface 513A, which are contact surfaces, is preferably 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the outer ring rolling surface 511A, the inner ring rolling surface 512A and the ball rolling surface 513A is preferably 64.0 HRC or less. This makes it easy to adjust the amount of retained austenite on the outer ring rolling surface 511A, the inner ring rolling surface 512A, and the ball rolling surface 513A to a range of 12% by volume or less.
  • a deep groove ball bearing 501 shown in FIG. 29 is a type that does not have a seal member 517. That is, the deep groove ball bearing shown in FIG. 29 omits the point that it does not have the seal member 517, the mounting groove 520 in which the seal member 517 is mounted, and the concave groove 521 in which the lip portion 522 of the seal member 517 contacts. 20 has the same structure as the deep groove ball bearing 501 shown in FIG.
  • the deep groove ball bearing 501 shown in FIG. 29 has the same effects as the deep groove ball bearing 501 shown in FIG.
  • deep groove ball bearing 501 in the seventh embodiment has basically the same structure as in the sixth embodiment and has the same effects.
  • the deep groove ball bearing 501 of the seventh embodiment is different from that of the sixth embodiment in the structure of the ball non-contact portion 531 of the cage 514.
  • slit 535 is formed in hemispherical bulging portion 526.
  • the slit 535 functions as a ball non-contact portion 531.
  • the slit 535 has a rectangular shape, and its center line O1 coincides with the pitch circle PCD of the ball 513.
  • the slit 535 is a rectangle (rectangular) whose circumferential dimension is long with respect to the radial dimension, or conversely, the slit 535 has a rotational dimension as long as it is a rectangle (rectangular) whose radial dimension is long with respect to the circumferential dimension.
  • a square having the same radial dimension may be used. Further, it may be oval or elliptical instead of rectangular. Even in the case of such an elliptical shape, the circumferential dimension may be longer than the radial dimension, or conversely, the radial dimension may be longer than the circumferential dimension. Furthermore, it may be circular.
  • the slit 535 may be disposed on the pitch circle PCD of the ball 513 or on the outer diameter side of the pitch circle PCD. Good. The amount of deviation in this case can also be set arbitrarily. That is, the ball non-contact portion 531 constituted by the slit 535 reduces the contact area by 15% to 30% compared to the contact area with the ball 513 when the ball non-contact portion 531 is not provided in the pocket 530. I just need it.
  • the other configuration of the bearing shown in FIG. 30 is the same as that of the bearing shown in FIG.
  • the cage shown in FIGS. 30 and 31 has the same function and effect as the cage shown in FIG.
  • the cage 514 provided with the slit 535 is different from the cage 514 provided with the convex portion 532, and the size of the cage 514 in the bearing axial direction is not increased, and the size reduction can be achieved. That is, the torque can be reduced while maintaining the same dimensions as those of the conventional cage that does not have the ball non-contact portion 531.
  • the deep groove ball bearing 501 shown in FIG. 32 is a type that does not have the seal member 517.
  • the deep groove ball bearing 501 shown in FIG. That is, the deep groove ball bearing shown in FIG. 32 omits the point that it does not have the seal member 517, the mounting groove 520 to which the seal member 517 is mounted, and the concave groove 521 to which the lip portion 522 of the seal member 517 contacts. This is the same as the deep groove ball bearing 501 shown in FIG.
  • retainer 514 was a metal holder formed by pressing
  • retainer with which the rolling bearing of this invention is provided is not restricted to this. That is, the cage 514 may be made of a metal formed by casting.
  • molded by cutting and electric discharge machining (a wire cut is included) may be used.
  • the electric discharge machining is a machining method in which a part of the surface of the workpiece is removed by an arc discharge repeated at a short cycle between the electrode and the workpiece.
  • Wire cutting is a kind of electric discharge machining, which is a method of applying a tension to a wire and processing a metal material using electric discharge.
  • the cage 514 is not limited to metal, and may be a molded product of synthetic resin.
  • resin material of the resin cage those conventionally used for this type of cage, for example, polyphenylene sulfide resin (hereinafter referred to as PPS resin), polyamide 46 (PA46), and the like can be used.
  • PPS resin polyphenylene sulfide resin
  • PA46 polyamide 46
  • a polyimide resin hereinafter referred to as a PI resin
  • a polyamide-imide resin is used as a material constituting the cage 514.
  • Materials such as (hereinafter referred to as PAI resin) or polyetheretherketone resin (hereinafter referred to as PEEK resin) can be used.
  • the resin cage can be molded by injection molding, for example. Moreover, you may shape
  • a rectangular convex portion 532 that protrudes toward the anti-ball side is formed on the anti-ball facing surface, thereby preventing the ball opposing surface.
  • a rectangular recess 533 that is recessed toward the ball may be provided, and the recess 533 may be used as the ball non-contact portion 531.
  • a slit 535 may be provided, and the slit 535 may be used as the ball non-contact portion 531.
  • the cage constituting the rolling bearing of the present invention can be variously modified without being limited to the above embodiment.
  • the ball non-contact part 531 is arranged along the rotation direction in the above embodiment, but may be inclined with respect to the rotation direction.
  • the number of non-ball contact portions 531 formed is not limited to one for the hemispherical bulge portion 526, and two or more ball noncontact portions 531 may be provided in each hemispherical bulge portion 526. Good.
  • a plurality may be arranged along the circumferential direction, or a plurality may be arranged along the radial direction.
  • a rectangular or square convex portion 532 may be provided, or a rectangular or square slit 535 may be provided. Further, each corner portion may have a round shape or may not have a round shape.
  • the protrusion amount (depth of the recessed part 533) of the convex part 532 is 40% or less of the annular holding plates 527A and 527B. If it exceeds 40%, the protruding amount of the convex portion 532 becomes too large, which may make it difficult to mount the seal member or increase the size.
  • the deep groove ball bearing 501 and the outer ring 511, the inner ring 512, and the ball 513 constituting the deep groove ball bearing 501 and the deep groove ball bearing 501 in the sixth and seventh embodiments are manufactured by the same manufacturing method as the rolling bearing and the bearing component in the first embodiment. Can do.
  • the deep groove ball bearing 501 in the sixth and seventh embodiments is used in the manual transmission 100 and the differential 200 described in the second and third embodiments, similarly to the deep groove ball bearing 1 in the first embodiment. Can do.
  • a deep groove ball bearing 601 that is a rolling bearing in the eighth embodiment includes an outer ring 611 as a first race member that is a bearing component, an inner ring 612 as a second race member that is a bearing component, A ball 613 as a plurality of rolling elements, which are bearing parts, and a cage 615 are provided.
  • the outer ring 611 is formed with an outer ring rolling surface 611A as an annular first rolling surface.
  • the inner ring 612 is formed with an inner ring rolling surface 612A as an annular second rolling surface facing the outer ring rolling surface 611A.
  • the plurality of balls 613 are formed with a ball rolling surface 613A (the surface of the ball 613) as a rolling element rolling surface.
  • Outer ring rolling surface 611A, inner ring rolling surface 612A and ball rolling surface 613A are contact surfaces of these bearing components.
  • the balls 613 come into contact with the outer ring rolling surface 611A and the inner ring rolling surface 612A at the ball rolling surface 613A, and are arranged at a predetermined pitch in the circumferential direction by the annular cage 615. It is rotatably held on an annular track.
  • the outer ring 611 and the inner ring 612 of the deep groove ball bearing 601 are rotatable relative to each other.
  • the outer ring 611, the inner ring 612, and the ball 613, which are bearing parts, include 0.90 mass% or more and 1.05 mass% or less of carbon, 0.15 mass% or more and 0.35 mass% or less of silicon, and 0.01 mass. It is made of a hardened and hardened steel containing not less than 0.5% and not more than 0.50% by mass of manganese and not less than 1.30% and not more than 1.65% by mass of chromium, and the balance iron and impurities.
  • the nitrogen enriched layers 611B, 612B, having a higher nitrogen concentration than the internal 611C, 612C, 613C, 613B is formed.
  • the nitrogen concentration in the outer ring rolling surface 611A, the inner ring rolling surface 612A, and the ball rolling surface 613A as contact surfaces which are the surfaces of the nitrogen-enriched layers 611B, 612B, and 613B is 0.25% by mass or more.
  • the amount of retained austenite on the outer ring rolling surface 611A, the inner ring rolling surface 612A, and the ball rolling surface 613A is 6% by volume or more and 12% by volume or less.
  • the cage 615 may be made of metal or resin, but in this embodiment, polyamide resin (PA46, PA66, PA9T, etc.), polyetheretherketone resin (PEEK), or polyphenylene is used. It consists of sulfide resin (PPS).
  • the outer ring 611, the inner ring 612, and the ball 613 which are bearing parts in the present embodiment, are made of steel having a component composition of the JIS standard SUJ2 equivalent steel, so that the material is easily available in various countries around the world. And on the premise of the use of steel of the component composition, the nitrogen concentration in the outer ring rolling surface 611A, the inner ring rolling surface 612A and the ball rolling surface 613A is increased to 0.25% by mass or more, and is hardened and hardened. As a result, the rolling fatigue life is extended.
  • the outer ring 611, the inner ring 612, and the ball 613 are bearing parts that can achieve both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials.
  • the cage 615 is formed with hemispherical pockets 622 for accommodating the balls 613 at a plurality of locations in the circumferential direction on the opposing surfaces 621 of the two annular bodies 620 facing in the axial direction.
  • the two annular bodies 620 are joined by abutting the opposing surface 621.
  • a concave thinned portion 627 is formed between adjacent pockets 622.
  • retainer 615 is reduced in weight.
  • the cage 615 has a symmetrical shape in the axial direction. Further, the end surface of the cage 615 has a planar shape (see FIG. 33).
  • a flange portion 628 extending in the radial direction is provided on the inner diameter side and the outer diameter side of the end portion in the axial direction of the annular body 620.
  • a groove portion 630 is formed in a portion of the inner ring 612 corresponding to the flange portion 628.
  • a groove 631 is formed in a portion of the outer ring 611 corresponding to the flange 628.
  • a labyrinth 640 is formed by the flange portion 628 and the groove portions 630 and 631.
  • the collar portion 628 is formed to extend in a direction orthogonal to the axial direction.
  • the groove 630 on the inner ring 612 side is provided to be recessed so as to form a step at the outer diameter axial end of the inner ring 612.
  • the groove 631 on the outer ring 611 side is provided so as to be recessed so as to form a step at the inner diameter axial end of the outer ring 611.
  • the collar part 628 and the groove parts 630 and 631 of the cage 615 are not in a positional relationship in which they are always in contact. That is, the flange portion 628 and the groove portions 630 and 631 are in contact with each other only under specific conditions or are completely non-contact.
  • the labyrinth 640 constituted by the flange portion 628 of the retainer 615 and the outer ring 611 and the groove portions 630 and 631 of the inner ring 612 prevents the lubricating oil from flowing excessively into the bearing.
  • the cage 615 has an axially symmetrical shape in which a flange 628 is provided at the axial end of the annular body 620. Therefore, when a centrifugal force is applied under high-speed rotation, the two annular bodies 620 constituting the cage 615 suppress the deformation of each other, so that the deformation of the cage 615 can be suppressed.
  • the labyrinth 640 is formed by the flange portion 628 provided integrally with the annular body 620 and the groove portions 630 and 631 formed integrally with the outer ring 611 and the inner ring 612, the formation of the labyrinth 640 is This is achieved only by changing the shape of the cage 615, the outer ring 611, and the inner ring 612. Therefore, an effective labyrinth 640 can be formed while avoiding an increase in the number of parts and the number of assembly steps.
  • the deep groove ball bearing 601 includes the outer ring 611, the inner ring 612, the ball 613, and the cage 615, thereby ensuring the availability of materials and the pressure resistance and rolling.
  • the dynamic fatigue life can be achieved at a high level, and a low torque can be achieved.
  • the axial thickness t of the flange portion 628 is 0.15 mm or more and 20% or less of the diameter D of the ball 613.
  • the strength of the flange portion 628 can be secured and the forming of the flange portion 628 is facilitated, and the axial dimension of the bearing becomes larger than the limit.
  • the thickness t in the axial direction of the flange portion 628 is smaller than 0.15 mm, the strength of the flange portion 628 is insufficient and a molding defect is likely to occur.
  • the outer ring 611 and the inner ring 612 are prevented from protruding from the bearing end surface of the retainer 615.
  • the axial dimension (groove width) of the groove portions 630 and 631 must be increased. As a result, the axial dimensions of the outer ring 611 and the inner ring 612 are increased, and the entire bearing is increased in size. That is, the result is that the downsizing of the deep groove ball bearing 601 is hindered.
  • the cage 615 in the present embodiment is configured by connecting two annular bodies 620 as follows. Referring to FIGS. 34 to 38, in each of the two annular bodies 620, an outer diameter side convex portion 623 is formed by extending the outer diameter side of one circumferential end of the pocket 622 in the axial direction. At the same time, the inner diameter side recess 624 is formed by recessing the inner diameter side. Further, the inner diameter side of the other circumferential end of the pocket 622 is extended in the axial direction to form an inner diameter side convex portion 625 and the outer diameter side is recessed to form an outer diameter side concave portion 626.
  • each of the two annular bodies 620 the outer diameter side convex portion 623 and the inner diameter side concave portion 624 are formed at one circumferential end of the pocket 622, and the inner diameter side convex portion is formed at the other circumferential end.
  • the two annular bodies 620 can have the same shape.
  • the cage 615 can be configured by using a pair of annular bodies 620 manufactured by one mold, and the cost can be reduced.
  • annular bodies 620 having the above structure are prepared, and the outer diameter side convex portion 623 of one annular body 620 is inserted into the outer diameter side concave portion 626 of the other annular body 620, and By inserting the inner diameter side convex portion 625 into the inner diameter side concave portion 624 of the other annular body 620, the outer diameter side convex portion 623 and the inner diameter side convex portion 625 are engaged in the axial direction.
  • engagement surfaces 623a and 625a of the outer diameter side convex portion 623 and the inner diameter side convex portion 625 are thicker on the distal end side than the proximal end sides of the outer diameter side convex portion 623 and the inner diameter side convex portion 625. It is formed to be inclined with respect to the axial direction (see FIGS. 37 and 38).
  • the opposing surfaces 621 of the two annular bodies 620 are brought into contact with each other, and the outer-diameter-side convex portion 623 and the inner-diameter-side convex portion 625 are engaged in the axial direction with a predetermined tightening margin.
  • a frictional force is generated along the engagement surfaces 623a and 625a of the outer diameter side convex portion 623 and the inner diameter side convex portion 625.
  • the engagement surfaces 623a and 625a of the outer diameter side convex portion 623 and the inner diameter side convex portion 625 are thicker on the distal end side than the proximal end sides of the outer diameter side convex portion 623 and the inner diameter side convex portion 625.
  • the outer diameter side convex portion 623, the inner diameter side concave portion 624, the inner diameter side convex portion 625, and the outer diameter side concave portion are provided at both circumferential ends of the pocket 622 of the annular body 620. 626 is provided.
  • the inclination angle ⁇ (see FIGS. 37 and 38) of the engagement surfaces 623a and 625a between the outer diameter side convex portion 623 and the inner diameter side convex portion 625 is 5 ° or more. Is preferred.
  • the inclination angle ⁇ it becomes easy to suppress deformation of the engagement surfaces 623a and 625a when a large centrifugal force is applied due to high rotation.
  • the axial component of the reaction force can be reliably applied to the engagement surfaces 623a and 625a, and it becomes easy to secure the coupling force between the two annular bodies 620.
  • the inner diameter side convex portion 625 is thicker than the outer diameter side convex portion 623 (t IN > t OUT ).
  • the inner diameter side convex portion 625 thicker than the outer diameter side convex portion 623 in this way, the inner diameter side made thicker than the outer diameter side convex portion 623 when a large centrifugal force is applied due to high rotation. Since the mass of the convex portion 625 is larger than that of the outer diameter side convex portion 623, the inner diameter side convex portion 625 is deformed larger than the outer diameter side convex portion 623.
  • the engagement surfaces 623a and 625a of the outer diameter side convex portion 623 and the inner diameter side convex portion 625 are thicker on the distal end side than the proximal end sides of the outer diameter side convex portion 623 and the inner diameter side convex portion 625. Therefore, the deformation of the inner diameter side convex portion 625 increases the coupling force at the engagement surfaces 623a and 625a between the outer diameter side convex portion 623 and the inner diameter side convex portion 625.
  • the two (a pair) annular bodies 620 described above are preferably made of a synthetic resin.
  • any one synthetic resin selected from the group consisting of PPS (polyphenylene sulfide), PA66 (polyamide 66) or PA46 (polyamide 46) is selected as the material of the annular body 620. It is effective to do.
  • the lubricating oil used contains many resin-aggressive components (for example, phosphorus and sulfur), the oil resistance is excellent in the order of PPS, PA46, and PA66, so use PPS. Is preferred.
  • the flange portion 628 is formed so as to extend in a direction orthogonal to the axial direction.
  • the present invention is not limited to this, and the flange portion 628 is attached to the shaft. You may form so that it may extend in the direction inclined with respect to the direction orthogonal to a direction.
  • the flange portion 628A may be formed so as to be bent inward in the axial direction
  • the flange portion 628B is bent so as to be bent outward in the axial direction. It may be formed.
  • Such a collar part 628A, 628B can also form the labyrinth 640 by a combination with the outer ring 611 and the inner ring 612.
  • the cage 615 has an axially symmetrical shape in which the flange 628 is provided at the axial end of the annular body 620.
  • the rolling bearing of the present invention is not limited to this. Absent. Specifically, for example, when the bearing is used under the condition that the inflow direction of the lubricating oil is constant and the influence of the centrifugal force is small, the axially asymmetric shape in which the flange portion 628 is formed only on one side in the axial direction is used. It may be adopted.
  • pocket groove 622A extending in the radial direction of annular body 620 may be formed in pocket 622 of annular body 620.
  • the pocket groove portion 622A may be formed so as to penetrate the annular body 620 so as to connect the inner diameter side and the outer diameter side.
  • the lubricating oil between the cage 615 and the ball 613 is discharged by centrifugal force, and a further reduction in torque can be achieved.
  • a pair of pocket groove portions 622A are formed with the region interposed therebetween so as not to include the region that is the outermost in the axial direction in the pocket 622.
  • the lubricating oil between the cage 615 and the ball 613 is discharged by centrifugal force, and a further reduction in torque can be achieved.
  • the opposing surface 621 between adjacent pockets 622 of the annular body 620 extends in the radial direction of the annular body 620 and connects the inner diameter side and the outer diameter side of the annular body 620.
  • an inter-pocket groove 621A may be formed.
  • the hardness of the outer ring rolling surface 611A, the inner ring rolling surface 612A, and the ball rolling surface 613A as contact surfaces is preferably 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the outer ring rolling surface 611A, the inner ring rolling surface 612A and the ball rolling surface 613A is preferably 64.0 HRC or less. This makes it easy to adjust the amount of retained austenite on the outer ring rolling surface 611A, the inner ring rolling surface 612A, and the ball rolling surface 613A to a range of 12% by volume or less.
  • the deep groove ball bearing 601 in the present embodiment can be used, for example, in a motor or a speed reducer of a vehicle that uses a motor or a motor as a power source.
  • the outer ring 611, the inner ring 612 and the ball 613 constituting the deep groove ball bearing 601 and the deep groove ball bearing 601 in the eighth embodiment can be manufactured by the same manufacturing method as the rolling bearing and the bearing component in the first embodiment. it can.
  • the deep groove ball bearing 601 in the present embodiment can be used in the manual transmission 100 and the differential 200 described in the second and third embodiments, similarly to the deep groove ball bearing 1 in the first embodiment. .
  • deep groove ball bearing 701 in the present embodiment is an outer ring 711 as a first race member as a bearing component, an inner ring 712 as a second race member as a bearing component, and a bearing component.
  • a ball 714 as a plurality of rolling elements and a cage 740 are provided.
  • the height of the shoulder 713a located on one side of the outer ring raceway groove 711A is higher than the height of the shoulder 713b located on the other side.
  • the height of the shoulder 723b located on the other side of the inner ring raceway groove 712A is higher than the height of the shoulder 723a located on one side.
  • the shoulder heights of the low shoulders 713b and 723a are the same as the shoulders of the standard type deep groove ball bearings, but are lower than the shoulder heights of the standard type deep groove ball bearings. May be.
  • the high shoulders 713a and 723b are referred to as the thrust load side shoulders 713a and 723b, and the low shoulders 713b and 723a are referred to as the thrust non-load side shoulders 713b and 723a.
  • a standard deep groove ball bearing 6208C having an outer diameter of the inner ring of ⁇ 53.1 mm and an inner diameter of the outer ring of ⁇ 68.1 mm is used as a comparative product, and on the thrust load side of the inner ring based on the standard deep groove ball bearing.
  • the allowable thrust load is increased. It was measured. As a result, in this deep groove ball bearing, the allowable value of the thrust load was 305% higher than that of the comparative deep groove ball bearing.
  • the outer diameter of the shoulder of the inner ring where the thrust load (axial load) is not applied is changed from the standard ⁇ 53.1 mm to ⁇ 51.9 mm, and the inner diameter of the shoulder of the outer ring where the axial load is not applied is changed to the standard Even when the diameter was changed from ⁇ 68.1 mm to ⁇ 70.4 mm, even when the basic statically constant saddle load C 0 was applied to the bearing, no shoulder climbing occurred.
  • the thrust load may not be received, and the ball 714 may ride on the shoulders 713b and 723a having a low height. Therefore, with reference to FIG. 45, when an identification display portion 755 indicating a thrust load receiving side is provided on at least one width surface side of the outer ring 711, the inner ring 712, the first divided holder 741, and the second divided holder 742, Incorrect assembly can be prevented and assemblability can be improved.
  • the identification display section may be displayed in color or may be by marking.
  • the holder 740 includes a first divided holder 741 and a second divided holder 742 fitted inside the first divided holder 741.
  • a plurality of pair of pocket claws 744 opposed to each other are formed at equal intervals on one side surface in the axial direction of the annular body 743 of the first divided holder 741 so as to be aligned in the circumferential direction. ing. Between each of the pair of opposing pocket claws 744, a pocket 745 having a size exceeding a half circle for punching the annular body 743 is provided.
  • retainer 741 consists of a molded article of a synthetic resin.
  • the inner diameter of the annular body 743 is substantially equal to the pitch circle diameter (PCD) of the ball 714, and the outer diameter is within the range of the inner diameter of the shoulder 713 a having a high height of the outer ring 711 and the inner diameter of a shoulder 713 b having a low height. .
  • the first split cage 741 can be inserted into the bearing from the shoulder 713b side of the outer ring 711 having a low height.
  • a pair of pocket claws 749 facing each other are formed at equal intervals on the other side surface in the axial direction of the annular body 748 of the second split holder 742 so that a plurality of pairs of pocket claws 749 are arranged in the circumferential direction. Between each of the pair of opposing pocket claws 749, a pocket 750 having a size exceeding a half circle for punching out the annular body 748 is provided.
  • the second split cage 742 is made of a synthetic resin molded product.
  • the outer diameter of the annular body 748 is substantially equal to the pitch circle diameter (PCD) of the balls 714, and the inner diameter is within the range of the outer diameter of the high shoulder 723b and the outer diameter of the low shoulder 723a of the inner ring 712.
  • PCD pitch circle diameter
  • the connecting portion X includes an engaging claw 746 provided inwardly between the pocket claws 744 of the adjacent pockets 745 of the first divided holder 741, and an inner diameter surface of the annular body 743 on the same axis as the engaging claw 746.
  • the groove-shaped engaging recess 747 formed on the outer peripheral surface, the engaging claw 751 provided outwardly between the pocket claws 749 of the adjacent pockets 750 of the second divided holder 742, and The engagement claw 751 and the engagement recess 752 formed on the same axis are included.
  • the first divided holder 741 and the second divided holder 742 are engaged with the engagement claw 746 of the first divided holder 741 and the engagement recess 752 of the second divided holder 742, and the second divided holder.
  • the engagement claw 751 of the device 742 and the engagement recess 747 of the first divided holder 741 are not separated in the axial direction.
  • a synthetic resin having excellent oil resistance is used.
  • a synthetic resin include polyamide 46 (PA46), polyamide 66 (PA66), and polyphenylene sulfide (PPS). These resins may be selected and used according to the type of lubricating oil.
  • the deep groove ball bearing 701 in the present embodiment has the above structure.
  • the inner ring 712 is inserted inside the outer ring 711, and a required number of balls 714 are assembled between the inner ring raceway groove 712A and the outer ring raceway groove 711A.
  • the inner ring 712 is offset in the radial direction with respect to the outer ring 711, a part of the outer diameter surface of the inner ring 712 is brought into contact with a part of the inner diameter surface of the outer ring 711, and 180 degrees in the circumferential direction from the contact part.
  • a crescent-shaped space is formed at a position deviated, and the ball 714 is incorporated from one side of the space.
  • the ball 714 Upon incorporation of the ball 714, when the shoulder height H 1 of the thrust load side of the shoulder 723b of the thrust load side of the shoulder 713a and the inner ring 712 of the outer ring 711 is higher than necessary will inhibit the incorporation of the ball 714 .
  • the ratio H 1 / d of the shoulder height H 1 to the ball diameter d of the ball 714 does not exceed 0.50. Therefore, the ball 714 can be easily assembled between the outer ring 711 and the inner ring 712.
  • the center of the inner ring 712 is aligned with the center of the outer ring 711, the balls 714 are arranged at equal intervals in the circumferential direction, and the outer ring 711 and the inner ring 712 are arranged from one side of the shoulder 713b on the thrust non-load side.
  • the first divided holder 741 is inserted so that the ball 714 fits into the pocket 745 formed in the first divided holder 741.
  • a second split cage 742 is provided between the outer ring 711 and the inner ring 712 from one side of the shoulder 723a on the thrust non-load side of the inner ring 712, and a ball 714 is placed in a pocket 750 formed in the second split cage 742. Is inserted so that the second split holder 742 is fitted inside the first split holder 741.
  • the first split cage 741 and the second split cage are internally provided from both sides between the outer ring 711 and the inner ring 712.
  • the deep groove ball bearing 701 can be assembled by a simple operation of inserting the second divided holder 742 and inserting the second divided holder 742 into the first divided holder 741.
  • the heights of the low-thrust shoulders 713b and 723a on the non-load side are the same as the shoulders of the standard deep groove ball bearings, but are lower than the shoulders of the standard deep groove ball bearings. Also good.
  • the thickness in the radial direction of the first split cage 741 and the second split cage 742 is increased accordingly. Therefore, the strength of the cage 740 can be increased.
  • the lower than necessary thrust non-load side shoulders 713b and height 723a of, for riding the ball 714 may occur, for shoulder height H 2 of the shoulder 713b of the outer ring 711, ball 714
  • the ratio H 2 / d of the shoulder height H 2 to the sphere diameter d is 0.09 to 0.50, while the shoulder height H 3 of the shoulder 723a of the inner ring 712 is relative to the sphere diameter of the ball 714.
  • the ratio H 3 / d of the shoulder height H 3 is preferably in the range of 0.18 to 0.50.
  • a stealing portion 745A that is not in contact with the ball may be formed on the inner peripheral surface of the pocket 745 of the first divided holder 741.
  • the oil permeability of the lubricating oil in the pocket 745 can be improved, and foreign matter can be prevented from being collected in the joint portion between the first divided holder 741 and the second divided holder 742.
  • a pair of theft portions 745A may be installed for each pocket 745 so as to include a region that is equidistant from the center of the bottom of the pocket 745.
  • the shape of the stealing portion 745A on the surface perpendicular to the thickness direction of the split cage (the cross section shown in FIG.
  • the stealing part 745A may be a curved surface (for example, a spherical shape or a U shape).
  • the shape of the stealing part 745A is spherical.
  • the bottom of the pair of theft portions 750A and the center of the pocket bottom may be on the same straight line ⁇ . Thereby, the oil permeability of lubricating oil can be improved more reliably.
  • a stealing portion may also be formed in the pocket 750 of the second split holder 742 in the same manner.
  • a pair of pocket claws 744 and 749 that embed the ball 714 in the open ends of the pocket 745 of the first divided holder 741 and the pocket 750 of the second divided holder 742 are opposed to each other.
  • the engagement claws 746, 51 are engaged with the engagement recesses 747, 752, and the first divided holder 741 and the second divided holder 742 are not separated in the axial direction. Even when the moment load is applied and the ball 714 is delayed or advanced, the dropout of the cage 740 is suppressed.
  • the clearance ⁇ 1 of the circumferential clearance 60 formed between the engaging claws 746, 51 and the engaging recesses 747, 752 is set between the ball 714 and the pockets 745, 750.
  • the clearance By making the clearance larger than the clearance amount ⁇ 2 of the circumferential pocket clearance 61 formed on the ball 714, a large moment load is applied and the ball 714 is delayed and advanced, and the first split retainer 741 and the second split retainer Even if it rotates relative to 742, the engaging claws 746, 51 do not come into contact with the side surfaces of the engaging recesses 747, 752 facing each other in the circumferential direction, which is effective in preventing damage to the engaging claws 746, 51. Can be mentioned.
  • the clearance ⁇ 3 of the axial clearance 62 formed between the engaging claws 746 and 51 and the engaging recesses 747 and 752 is set to a ball 714 and pockets 745 and 750.
  • the axial force in the direction of separating the first divided holder 741 and the second divided holder 742 is applied by making it larger than the clearance amount ⁇ 4 of the axial pocket gap 63 formed between
  • the inner surfaces of the pair of pocket claws 744 and 749 facing each other abut against the outer peripheral surface of the ball 714 and the engagement claws 746 and 51 abut against the axial end surfaces of the engagement recesses 747 and 752. An effect can be obtained in preventing damage to the engaging claws 746 and 51.
  • the outer ring 711, the inner ring 712, and the ball 714 which are bearing parts, include 0.90% by mass or more and 1.05% by mass or less of carbon, 0.15% by mass or more and 0.35% by mass or less of silicon; It is made of a hardened and hardened steel containing not less than 01% by mass and not more than 0.50% by mass of manganese and not less than 1.30% by mass and not more than 1.65% by mass of chromium, and the balance iron and impurities.
  • the nitrogen enriched layer 711B having a higher nitrogen concentration than the inner portions 711C, 712C, 713C, 712B and 713B are formed.
  • the nitrogen concentration in the surface of the outer ring raceway groove 711A, the surface of the inner ring raceway groove 712A, and the ball rolling surface 714A as the contact surface, which is the surface of the nitrogen-enriched layer 711B, 712B, 713B, is 0.25% by mass or more.
  • the amount of retained austenite on the surface of the outer ring raceway groove 711A, the surface of the inner ring raceway groove 712A, and the ball rolling surface 714A is 6 vol% or more and 12 vol% or less.
  • the outer ring 711, the inner ring 712, and the ball 714 which are bearing parts in the present embodiment, are made of steel having a component composition of the above-mentioned JIS standard SUJ2 steel. And on the premise of using the steel of the component composition, the nitrogen concentration in the surface of the outer ring raceway groove 711A, the surface of the inner ring raceway groove 712A and the ball rolling surface 714A is increased to 0.25% by mass or more, and quenching is performed. By being hardened, the rolling fatigue life is extended.
  • the outer ring 711, the inner ring 712, and the ball 714 are bearing parts capable of achieving both high pressure scar resistance and rolling fatigue life at a high level while ensuring the availability of materials.
  • the deep groove ball bearing 701 includes the outer ring 711, the inner ring 712, the ball 714, and the cage 740, thereby ensuring the availability of materials and the pressure resistance and rolling.
  • the dynamic fatigue life can be achieved at a high level and the thrust load can be dealt with.
  • the hardness of the outer ring raceway groove 711A, the surface of the inner ring raceway groove 712A, and the ball rolling surface 714A, which are contact surfaces, is preferably 60.0 HRC or more. As a result, the rolling fatigue life and the pressure scar resistance can be further improved.
  • the hardness of the surface of the outer ring raceway groove 711A, the surface of the inner ring raceway groove 712A, and the ball rolling surface 714A is preferably 64.0 HRC or less. This makes it easy to adjust the amount of retained austenite on the surface of outer ring raceway groove 711A, the surface of inner ring raceway groove 712A, and ball rolling surface 714A to a range of 12% by volume or less.
  • the groove curvature of the inner ring 712 with respect to the ball 714 may be 1.02 or more and 1.06 or less. Further, the groove curvature of the outer ring 711 with respect to the ball 714 may be 1.02 or more and 1.08 or less. By doing so, it is possible to suppress the riding of the ball 714 onto the shoulder while suppressing the slip component between the track member and the ball.
  • the outer ring 711, the inner ring 712, and the ball 713 constituting the deep groove ball bearing 701 and the deep groove ball bearing 701 in the ninth embodiment can be manufactured by the same manufacturing method as the rolling bearing and the bearing component in the first embodiment. it can.
  • the deep groove ball bearing 701 in the present embodiment can be used in the manual transmission 100 and the differential 200 described in the second and third embodiments, similarly to the deep groove ball bearing 1 in the first embodiment. .
  • the deep groove ball bearing 701 is incorporated into the manual transmission 100 or the differential 200 so that the shoulder on the thrust load receiving side of the deep groove ball bearing 701 is appropriately positioned, thereby causing damage due to the riding of the ball 714. Can be suppressed.
  • Example 1 Experiments were conducted to investigate the effects of heat treatment conditions on the characteristics of bearing parts.
  • a flat plate made of JIS standard SUJ2 was prepared, preheated at 800 ° C. for 1 hour, then heated to 850 ° C. in an atmosphere in which ammonia gas was added to RX gas and kept for 4 hours for carbonitriding. Thereafter, the flat plate was quenched and hardened by being immersed in the quenching oil as it was from 850 ° C. which is the heating temperature in the carbonitriding treatment. Further, the flat plate was tempered at various temperatures.
  • a SUJ2 standard rolling bearing steel ball having a diameter of 19.05 mm was pressed against the obtained flat plate with a load of 3.18 kN (maximum contact surface pressure 4.4 GPa), held for 10 seconds, and then unloaded. And the pressure dent resistance was investigated by measuring the depth of the dent formed on the flat plate by pressing the steel ball. Further, the surface hardness of the same test piece was measured with a Rockwell hardness meter.
  • FIG. 54 shows the result of investigation of the pressure scar resistance
  • FIG. 55 shows the result of hardness measurement.
  • the surface hardness decreases as the tempering temperature increases, while the indentation depth has a minimum value.
  • the tempering temperature is preferably 240 ° C. or higher and 300 ° C. or lower from the viewpoint of improving the pressure dent.
  • the optimum value of the tempering temperature is determined as follows.
  • carbon is in a solid solution state in the steel substrate.
  • tempering a part of the carbon solid-dissolved in the substrate is precipitated as a carbide (for example, Fe 3 C).
  • the higher the temperature of the tempering treatment the lower the contribution of solid solution strengthening to the yield strength of the steel and the greater the contribution of precipitation strengthening.
  • the balance of these strengthening mechanisms becomes optimal, and the yield strength takes a maximum value, so that the pressure-proof scar resistance is particularly high.
  • the reason why the indentation has the maximum value despite the monotonously decreasing surface hardness measured based on the deformation of the steel by pressing the indentation as in the case of the indentation depth measurement is as follows. It is considered to be street.
  • FIG. 56 is a diagram showing the relationship between the true stress and the true strain at each tempering temperature of a tensile test piece (JIS Z2201 No. 4 test piece) subjected to a treatment in which only the carbonitriding process is omitted in the heat treatment for the flat plate.
  • FIG. 56 is a true stress-true strain diagram modeled by an n-th power hardening elastoplastic material. The characteristics are different according to the following equation at the boundary of ⁇ Y yield stress.
  • is the true stress
  • E is the Young's modulus
  • is the true strain
  • K is the plastic coefficient
  • n is the work hardening index
  • ⁇ Y is the yield stress.
  • E was measured by a resonance method
  • processing effect index n and the composition coefficient K were measured by a tensile test. Then, these were substituted into the above two formulas, and the intersection was defined as ⁇ Y.
  • the true strain level in the measurement of the indentation depth corresponds to the region ⁇ in FIG. 56
  • the true strain level in the hardness measurement corresponds to the region ⁇ or more in FIG.
  • the yield point in the region ⁇ corresponding to the measurement region of the indentation depth is confirmed, the yield point is high in the range of tempering temperature of 240 ° C. to 300 ° C. In the case of low temperature, the yield point is lowered.
  • FIG. 56 it can be seen that, in the region ⁇ corresponding to the surface hardness measurement region, when the same strain amount is applied, a larger stress is required as the tempering temperature is lowered.
  • the tempering temperature is set to 240 ° C. to 300 ° C., although the hardness is lowered as compared with the case where the tempering temperature is 180 ° C. to 220 ° C. It is thought to improve.
  • the surface austenite amount, indentation depth, life, ring crushing strength, and aging rate of the test pieces heat-treated under the conditions of changing the surface nitrogen concentration and the quenching temperature were investigated.
  • the indentation depth was measured in the same manner as described above. B was evaluated when the indentation depth was less than 0.2 ⁇ m, C was evaluated when the indentation depth was 0.2 to 0.4 ⁇ m, and D was evaluated when the indentation depth was 0.4 ⁇ m or more.
  • the service life of the bearing is used for the transmission under the condition that the oil film parameter becomes 0.5 under clean oil lubrication after forming the indentation on the raceway surface under the same conditions as the measurement of the indentation depth. This was carried out by simulating the loading conditions.
  • the life of a test piece having a quenching temperature of 850 ° C., a tempering temperature of 240 ° C., and a surface nitrogen content of 0.4% by mass is defined as a reference (B).
  • the case was rated as D.
  • the ring crushing strength was evaluated by preparing a ring having an outer diameter of 60 mm, an inner diameter of 54 mm, and a width of 15, and compressing the ring with a flat plate in the radial direction, and investigating the load at which cracks occurred.
  • the case where the load at the time of crack generation was 5000 kgf or more was evaluated as A, the case where it was 3500 to 5000 kgf, and the case where it was less than 3500 kgf as D.
  • the secular change rate was evaluated by holding the test piece at 230 ° C. for 2 hours and measuring the dimensional change amount of the outer diameter before the heat treatment.
  • the change amount is 10.0 ⁇ 10 5 or less A
  • the case 10.0 ⁇ 10 5 to 30.0 ⁇ 10 5 is B
  • the case 30.0 ⁇ 10 5 to 90.0 ⁇ 10 5 is C
  • the case of 90.0 ⁇ 10 5 or more was evaluated as D.
  • the test results are shown in Table 1.
  • the quenching temperature is 820 to 860 ° C.
  • the tempering temperature is 240 to 300 ° C.
  • Example 2 A bearing using a cage having a ball non-contact portion 432 in the pocket 430 in the fifth embodiment (deep groove ball bearing; invention) and a conventional cage having no ball non-contact portion in the pocket 430 are used. Torque measurement was performed on a bearing (deep groove ball bearing; conventional product). A bearing having an inner diameter of 35 mm, an outer diameter of 72 mm, and a width of 17 mm (made by NTN: bearing number 6207) was used as the bearing.
  • Radial load is 500 N
  • rotational speed is 1000 r / min
  • lubricant type is ATF
  • lubricant temperature is 30 ° C.
  • kinematic viscosity is 29.6 mm 2 / s ( 40 ° C.)
  • 7.07 mm. 2 / s 100 ° C.
  • the density was 0.87 g / cm 3 .
  • the oil level was the center of the lowest ball.
  • the value of A / (B + C) is 0.77
  • the value of D / E is 0.33
  • the value of F / G is 0.33
  • R is 0.2 mm.
  • the above torque measurement condition is the first condition, and the torque measurement result under this torque measurement condition (the torque reduction rate of the bearing using the cage having a non-ball contact portion with respect to the conventional product) is shown in Table 2 below.
  • the oil level is the height at which the lowest ball is immersed in the oil, and the other conditions are the same as the first condition.
  • the second condition is the torque measurement result under this torque measurement condition (conventional product).
  • Table 3 below shows the torque reduction rate of the bearing using the cage having the non-ball contact portion.
  • the cage constituting the rolling bearing of the present invention has a remarkable low torque effect when the lubricating oil as in the first condition is used in a state where the amount of lubricating oil is small such as “spraying or splashing”.
  • the rolling bearing of the present invention is suitable for these supporting bearings.
  • the rolling bearing of the present invention is suitable for a bearing that supports the shaft included in these.
  • Example 3 (Example A) A cage (metal cage: pressed product) of shapes A, B, C, D, E, and F shown in FIGS. 23 to 28 is manufactured, and a ball bearing shown in FIG. 20 is assembled using these cages. The torque generated was measured. The results are shown in Table 4 below. In Table 4, the standard product is a conventional product in which the ball non-contact portion 531 is not formed.
  • the shape D is formed by shifting the convex portion 532 from the PCD to the outer diameter side by 0.8 mm in the shape A.
  • the shape E is formed by shifting the convex portion 532 from the PCD to the outer diameter side by 0.8 mm in the shape B.
  • the steel ball-cage contact area column shows the percentage (%) when the area of the standard product is 100%.
  • the outer diameter of the outer ring 511 is 72.0 mm
  • the inner diameter of the outer ring 511 is 60.2 mm
  • the outer diameter of the inner ring 512 is 47.0 mm
  • the inner diameter of the inner ring 512 is A ball (steel ball) 513 having an outer diameter of 11.1 mm was used.
  • the experimental conditions are as follows. A rotational speed of 4000 r / min was applied with a radial load of 500 N applied to the bearing. A part of the bearing was immersed in a 30 ° C. lubricating oil (Toyota genuine ATF T-4). More specifically, the bearing axis is kept horizontal so that only the lowest ball in the vertical direction is completely immersed.
  • FIG. 58 is a graph showing changes in torque when the contact area between the ball 513 and the cage 514 is changed and when the convex portion 532 is shifted from the PCD to the outer diameter side.
  • the torque could be reduced by about 50% by reducing the contact area by about 15%.
  • the torque could be reduced by about 60%.
  • Example B As shown in FIG. 31, a cage having a slit 535 (metal cage: pressed product) was manufactured, and the ball bearing shown in FIG. 30 was assembled using this to measure the generated torque. By forming the slit 535 in the cage 514, the contact area between the cage 514 and the ball 513 is reduced by 30% compared to the standard product (the cage without the slit 535). As in the case of Example 1, a rotational speed of 4000 r / min was applied in a state where a radial load of 500 N was applied to the bearing. As in the case of Example A above, a part of the bearing was immersed in 30 ° C. lubricating oil (Toyota genuine ATF T-4).
  • the outer diameter of the outer ring 511 is 72.0 mm
  • the inner diameter of the outer ring 511 is 60.2 mm
  • the outer diameter of the inner ring 512 is 47.0 mm
  • the inner diameter of the inner ring 512 is A ball (steel ball) 513 having an outer diameter of 11.1 mm was used. In Examples C and D described later, the same size was used.
  • Example D Further, a resin cage in which the bearing outer diameter side of the hemispherical bulging portion 526 was cut was manufactured, and the ball bearing shown in FIG. 30 was assembled using this to measure the generated torque.
  • the material of the cage was a resin material (PA66).
  • PA66 resin material
  • the contact area between the cage 514 and the ball 513 was reduced by 30% compared to the standard product.
  • the measurement conditions were the same as in the above example. In this case, a torque reduction of about 18% was obtained. That is, the standard product was 0.152 Nm, whereas the cage with the bearing outer diameter side cut was 0.124 Nm.
  • Example 4 An experiment was conducted to confirm the torque reduction effect according to the present invention.
  • the experimental procedure is as follows.
  • the cage is an ordinary resin cage, and the inner ring, outer ring and ball are subjected to ordinary quenching treatment (the material is JIS standard SUJ2), and the raceway groove curvature is 1.02 for the inner ring and 1.04 for the outer ring.
  • a deep groove ball bearing was produced (Sample A). Further, a deep groove ball bearing in which the structure of the cage is changed to that described in the above embodiment based on FIGS. 33 to 41 with respect to Sample A was also manufactured (Sample B). Further, the heat treatment of the inner ring, outer ring and ball is changed for sample B to provide the high-strength bearing component described in the above embodiment, and the raceway groove curvature is 1.048 for the inner ring and 1.12 for the outer ring. A modified deep groove ball bearing was also produced (Sample C).
  • the samples A to C are mixed with a radial load of 3 kN, a rotational speed of 6000 min ⁇ 1 , a lubricating oil ATF (Automatic Transmission Fluid), and an oil bath lubrication having an oil level height at the lowest rolling element PCD (Pitch Circle Diameter) position. Rotating torque was measured under the conditions described above. The experimental results are shown in FIG.
  • Sample B employing the cage of the present invention achieves a torque reduction of nearly 80% compared to Sample A.
  • sample C which is an Example of this invention implement
  • the inner ring and the outer ring are high-strength bearing parts, so that the pressure-proof scar resistance is improved.
  • the torque reduction is achieved by increasing the raceway groove curvature.
  • One of the factors that increase the bearing torque is the slip component between the raceway surface and the ball (differential slip, spin slip, etc.).
  • the slip component can be reduced. Because.
  • the “groove curvature” means a ratio of the radius of curvature of the rolling surface in the cross section perpendicular to the circumferential direction of the raceway to the radius of the ball.
  • the deep groove ball bearing and the like have been described as an example of the rolling bearing including the bearing component of the present invention.
  • the bearing component and the rolling bearing of the present invention are not limited thereto, and various types are available.
  • the present invention can be applied to a rolling bearing and a bearing component constituting the rolling bearing.
  • the transmission and differential etc. were illustrated as a use of the rolling bearing of this invention, the use of the rolling bearing of this invention is not restricted to this, It is applicable to various machines, When high load is loaded. It is particularly suitable for applications where pressure resistance is required.
  • bearing parts, rolling bearings, and manufacturing methods thereof of the present invention are particularly advantageously applied to bearing parts, rolling bearings, and manufacturing methods thereof that are required to achieve both a high level of scratch resistance and rolling fatigue life. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 軸受部品である外輪(11)、内輪(12)、玉(13)は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部不純物からなる焼入硬化された鋼からなり、他の部品と接触する面である接触面(11A,12A,13A)における窒素濃度が0.25質量%以上であり、接触面における残留オーステナイト量が6体積%以上12体積%以下である。

Description

軸受部品、転がり軸受およびこれらの製造方法
 本発明は軸受部品、転がり軸受およびこれらの製造方法に関し、より特定的には、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品、転がり軸受およびこれらの製造方法に関するものである。
 近年、機械の長寿命化やメンテナンスフリー化が進められている。その結果、当該機械に使用される転がり軸受に対しても、転動疲労寿命の長寿命化が求められている。転動疲労寿命の長寿命化を達成するためには、転がり軸受を構成する部品である軸受部品(軌道部材および転動体)の材料を変更する対策が考えられる。具体的には、軸受部品の代表的な材料である鋼に対して長寿命化に有効な合金成分を添加することにより、転動疲労寿命の長寿命化を図ることができる。
 しかし、軸受部品の素材に特殊な材料を採用した場合、世界各国に製造拠点が広がりつつある現状を考慮すると、製造地によっては材料の調達が困難になるおそれがある。そのため、このような状況を考慮すると、特殊な材料を用いた転動疲労寿命の長寿命化は、必ずしも好ましいとはいえない。
 一方、転動疲労寿命の長寿命化の他の方策として、熱処理による軸受部品および転がり軸受の長寿命化が提案されている(たとえば、特開平7-190072号公報(特許文献1)、特開2003-226918号公報(特許文献2)および特開2000-161363号公報(特許文献3)参照)。
特開平7-190072号公報 特開2003-226918号公報 特開2000-161363号公報
 一方、たとえば自動車用のデファレンシャルやトランスミッションに用いられる円すいころ軸受、深溝玉軸受、アンギュラ玉軸受、タンデム型アンギュラ玉軸受など、大きな荷重を支持する必要がある転がり軸受においては、転動疲労寿命の長寿命化とともに、耐圧痕性(転動体が軌道部材に押し付けられた場合の圧痕の形成されにくさ)が求められる。しかしながら、上記特許文献1~3を含めて従来の熱処理による転動疲労寿命の長寿命化が図られた場合でも、耐圧痕性については不十分になるという問題があった。
 本発明は上述のような問題を解決するためになされたものであり、その目的は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品、転がり軸受およびこれらの製造方法を提供することである。
 本発明に従った軸受部品は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部不純物からなる焼入硬化された鋼からなり、他の部品と接触する面である接触面における窒素濃度が0.25質量%以上であり、接触面における残留オーステナイト量が6体積%以上12体積%以下である。
 本発明者は、世界各国で入手容易なJIS規格SUJ2相当材料(JIS規格SUJ2、ASTM規格52100、DIN規格100Cr6、GB規格GCr5もしくはGCr15、およびΓOCT規格ЩX15)を材料として採用することを前提に、耐圧痕性と転動疲労寿命とを高いレベルで両立するための方策について検討を行なった。その結果、以下のような知見を得て、本発明に想到した。
 上記成分組成を採用することにより、世界各国で入手容易な上記各国規格鋼を材料として使用することができる。そして、当該成分組成の鋼の使用を前提として、接触面における窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されることにより、転動疲労寿命を長寿命化することができる。ここで、残留オーステナイト量について特に調整を行なわない場合、接触面における残留オーステナイト量は窒素量との関係から20~40体積%程度となる。しかし、このように残留オーステナイト量が多い状態では、耐圧痕性が低下するという問題が生じる。そして、残留オーステナイト量を12体積%以下にまで低減することにより、耐圧痕性を向上させることができる。一方、残留オーステナイト量が6体積%未満にまで低下すると、転動疲労寿命、特に軸受内に硬質の異物が侵入する環境(異物混入環境)での転動疲労寿命が低下する。そのため、接触面における残留オーステナイト量は6体積%以上とすることが好ましい。
 これに対し、本発明の軸受部品においては、世界各国で入手容易なJIS規格SUJ2相当材料を材料として採用しつつ、接触面における窒素濃度が0.25質量%以上、残留オーステナイト量が6体積%以上12体積%以下とされている。その結果、本発明の軸受部品によれば、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品を提供することができる。なお、耐圧痕性を一層向上させる観点から、接触面における残留オーステナイト量を10%以下としてもよい。また、接触面における窒素濃度が0.5質量%を超えると、鋼中に窒素を侵入させるためのコストが高くなるとともに、残留オーステナイト量を所望の範囲に調整することが難しくなる。そのため、接触面における窒素濃度は0.5質量%以下とすることが好ましく、0.4質量%以下としてもよい。
 上記軸受部品においては、接触面の硬度は60.0HRC以上であってもよい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 上記軸受部品においては、接触面の硬度は64.0HRC以下であってもよい。窒素濃度が0.25質量%以上にまで高められた接触面の硬度を、64.0HRCを超える状態を維持した場合、残留オーステナイトを12体積%以下に調整することが困難となる。接触面の硬度を64.0HRC以下とすることにより、12体積%以下の範囲に残留オーステナイト量を調整することが容易となる。
 本発明に従った転がり軸受は、軌道部材と、軌道部材に接触して配置される複数の転動体とを備えている。そして、軌道部材および転動体の少なくともいずれか一方は、上記本発明の軸受部品である。
 本発明の転がり軸受は、上記本発明の軸受部品を軌道部材および転動体の少なくともいずれかとして備えている。その結果、本発明の転がり軸受によれば、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な転がり軸受を提供することができる。
 上記転がり軸受においては、上記軌道部材は、第1転走面を有する第1軌道輪と、第2転走面を有し、前記第1転走面に前記第2転走面が対向するように配置された第2軌道輪とを含んでいてもよい。上記転がり軸受は、第1軌道輪と第2軌道輪とに挟まれた空間である軸受空間を閉じるように配置されたシール部材をさらに備えていてもよい。そして、上記シール部材は、一方の端部が第1軌道輪および第2軌道輪の一方に固定され、他方の端部であるシールリップ部が第1軌道輪および第2軌道輪の他方に接触し、第1軌道輪に対して第2軌道輪を周方向に相対的に回転させることによりシールリップ部が摩耗して第1軌道輪および第2軌道輪の他方とシールリップ部とが接触しない状態、または第1軌道輪および第2軌道輪の他方とシールリップ部との接触圧が実質的に零と見なせる程度の軽接触である状態となるように、シールリップ部が高摩耗材からなっていてもよい。
 転動疲労寿命、特に異物混入環境における転動疲労寿命を長寿命化するためには、異物の侵入を抑制する接触型のシール部材を配置することが有効である。しかし、一般的な接触型のシール部材を採用した場合、転がり軸受の回転トルクが上昇するという問題が生じる。これに対し、上記構成においては、軌道輪に接触するシールリップ部が、軌道輪の回転によって容易に摩耗して、当初接触していた軌道輪と接触しない状態、あるいは当該軌道輪との接触圧が実質的に零と見なせる程度の軽接触である状態となる高摩耗材からなっている。その結果、異物の侵入が抑制されつつ、回転トルクの上昇が抑えられる。シールリップ部の材料としては、たとえばゴム、樹脂などを採用することができる。
 上記転がり軸受においては、少なくとも上記軌道部材が上記本発明の軸受部品であってもよい。耐圧痕性は、特に軌道部材において問題となる。したがって、軌道部材が上記本発明の軸受部品であることにより、転がり軸受の耐圧痕性がより確実に向上する。
 上記転がり軸受においては、転動体は玉であってもよい。転動体に玉を用いることにより、転がり軸受の回転トルクが抑制される。一方、転動体に玉を用いる場合、ころ軸受に比べて軸受の静定格荷重が著しく低下するため、耐圧痕性が特に問題となる。これに対し、本発明の転がり軸受は、耐圧痕性に優れた軸受部品を備えている。したがって、本発明の転がり軸受において転動体に玉を採用することにより、耐圧痕性と転動疲労寿命とを高いレベルで両立するとともに、回転トルクが低減された転がり軸受を提供することができる。
 上記転がり軸受は、複数の転動体を円環状の軌道上に所定のピッチで保持する保持器をさらに備えていてもよい。そして、保持器は、円周方向に沿って所定間隔で配設された半球状膨出部を有する2枚の環状保持板が組み合わされてなり、対向する半球状膨出部にて転動体を保持するポケットを形成しており、ポケットにおいて転動体に対向する面であるボール対向面に、ポケットの周方向に延びる凹部からなるボール非接触部が設けられ、ボール非接触部のポケットの周方向における長さをA、転動体の直径をB、転動体とボール対向面との間に形成される隙間をCとしたとき、A/(B+C)の値が0.70~0.90に設定されてもよい。
 このように、保持器において、ポケットのボール対向面に凹部からなるボール非接触部を設けることによって、ボール対向面に、案内面となるボール接触部と、案内面とならないボール非接触部とが形成される。なお、上記すきまとは、ボールをポケットの中で片側に寄せた時の、ボールとポケット案内面との間の隙間である。
 ここで、ポケット内、たとえばポケット軸方向中央部に、ポケット周方向に延びる凹部を設けた場合、この凹部のポケット周方向長さを長くすればポケット内壁とボールとが接触するすべり面積が小さくなり、せん断抵抗の低減に繋がる。しかしながら、「ポケット周方向長さ」を長くし過ぎると、ボールとポケットとの接触が案内面(ボール接触部)ではなく、案内面と凹部との境目となる。このように、境目で接触すると、油膜形成が著しく低下し、表面損傷の懸念がある。すなわち、「ポケット周方向長さ」はポケット内でのボールの動きを含めても、ボールをポケット案内面(ボール接触部)で保持できる範囲内で出来るだけ大きな寸法とするのが好ましい。
 上記構成では、ボール非接触部のポケット周方向長さをAとし、転動体の直径をBとし、転動体とポケットのボール対向面との間に形成されるすきまをCとしたときに、A/(B+C)の値が0.70~0.90に設定される。これによって、軸受としての機能を満足しつつ、最大限の低トルク効果が発揮できる。
 上記転がり軸受においては、ボール非接触部のポケット軸方向の長さをD、ポケットのポケット軸方向の全長さをEとしたとき、D/Eの値が0.25~0.40に設定されてもよい。
 ボール非接触部のポケット軸方向の長さを大きくすれば接触するすべり面積が小さくなり、せん断抵抗の低減に繋がる。一方、保持器は、金属製であってプレス加工にて成形される場合がある。この場合、ボール非接触部のポケット軸方向の長さを大きくし過ぎると製造上困難となり、製造面での懸念がある。すなわち、プレス加工しても、ポケット形状崩れが発生しない範囲内で、出来るだけボール非接触部のポケット軸方向の長さを大きな寸法とすることが好ましい。上記D/Eの値を0.25~0.40に設定することにより、せん断抵抗の低減と製造の容易性とを両立させることができる。
 上記転がり軸受においては、ボール非接触部を構成する上記凹部の深さをF、環状保持板の半球状膨出部の肉厚をGとしたとき、F/Gの値が0.30~0.40に設定されてもよい。
 凹部を形成することで、転動体とポケットとの間に表面粗さの水準より大きな隙間を設ければ、せん断抵抗を「0」にすることが可能である。しかし、保持器へのプレス加工精度を考慮すると、凹部の深さは余りにも小さ過ぎると寸法の精度を充分に確保することが難しくなる。一方、凹部の深さが大き過ぎると、プレス加工でのポケット形状崩れが懸念される。上記F/Gの値を0.30~0.40に設定することにより、せん断抵抗の低減を実現しつつ、凹部の寸法精度の確保とポケット形状崩れ回避とを達成することができる。
 上記転がり軸受においては、上記ポケットのポケット軸方向の全長さをE、転動体の中心に対するボール非接触部の中央の、ポケット軸方向におけるずれ量をHとしたとき、H/(E/2)の値が0~0.2に設定されてもよい。
 凹部のポケット軸方向中心位置が、転動体の中心よりもポケット軸方向にずれれば、バランスが悪くなりプレス加工時の形状崩れの原因となる。上記H/(E/2)の値を0~0.2に設定することにより、これを抑制することができる。
 上記転がり軸受においては、上記ボール非接触部を構成する凹部のポケット軸方向における開口縁が曲面で構成されていてもよい。
 凹部とポケット案内面(ボール接触部)との境目に転動体が接触する状態になると、油膜形成能力が著しく低下する。そのため、上述のように、凹部は境目で転動体が接触しないような寸法とすることが好ましい。しかしながら、設計上で接触しないように設定しても製造上のばらつき等により、上記境目が転動体と接触する可能性がある。凹部のポケット軸方向における開口縁を曲面で構成することにより、すなわち当該開口縁をアール形状とすることにより、このような接触が発生した場合でも、直ちに損傷が発生することを回避することができる。
 上記転がり軸受は、複数の転動体を円環状の軌道上に所定のピッチで保持する保持器をさらに備えていてもよい。保持器は、円周方向に沿って所定間隔で配設された半球状膨出部を有する2枚の環状保持板が組み合わされてなり、対向する半球状膨出部にて転動体を保持するポケットを形成しており、ポケットにおいて転動体に対向する面であるボール対向面にボール非接触部が設けられていてもよい。そして、ポケットにおける転動体との接触面積が、ボール非接触部を設けないときの転動体との接触面積よりも15%~30%低減されていてもよい。
 上記構成においては、ボール対向面にボール非接触部を設けたことによって、ポケット内部を潤滑剤が通過する際の抵抗を低減することができる。また、ボール非接触部を設けたことによって、転動体とポケットとの間に形成される油膜量を少なくできる。ここで、ボール非接触部が小さすぎると、せん断する油膜量の減少量も少なく、トルク低減を達成できない。一方、ボール非接触部が大きすぎると、転動体とポケットとの間に形成される油膜量が小さくなり過ぎて、転動体の滑らかな転動を損なう。ボール非接触部を設けることによって低減される転動体との接触面積が30%よりも大きいと、保持器の強度が低下する。ボール非接触部を設けることによって低減される転動体との接触面積が15%よりも小さいと、トルクを十分に低減することができない。そのため、ボール非接触部を設けることによってボールとの接触面積が15%~30%低減されることが好ましい。
 上記転がり軸受においては、軌道部材は、内輪と、内輪の外周側を取り囲むように配置される外輪とを含み、内輪の転動体に対する溝曲率は1.02以上1.06以下であってもよい。
 また、上記転がり軸受においては、軌道部材は、内輪と、内輪の外周側を取り囲むように配置される外輪とを含み、外輪の転動体に対する溝曲率は1.02以上1.08以下であってもよい。
 内輪および外輪の少なくともいずれか一方の転動体に対する溝曲率を1.02以上にまで大きくすることにより、すべり成分を低減し、より確実に低トルク化を図ることができる。具体的には、JIS規格6207型番の玉軸受においてラジアル荷重Fr=500N、アキシアル荷重Fa=0N、回転数4000rpmの条件を想定すると、内輪および外輪の溝曲率を1.02にまで大きくした場合、通常の構造に比べて差動すべりが半分程度となる。
 一方、内輪および外輪の溝曲率を大きくすると、内輪および外輪と転動体との接触面圧が大きくなり、軸受の寿命が短くなるおそれがあるため、内輪および外輪の溝曲率は所定値以下とすることが好ましい。具体的には、内輪のボールに対する溝曲率は1.06以下、外輪のボールに対する溝曲率は1.08以下とすることが好ましい。ここで、外輪の溝曲率の上限が内輪に比べて大きいのは、通常の設計の下では、外輪と転動体との接触面圧が内輪と転動体との接触面圧に比べて小さく、外輪は内輪に比べて溝曲率を大きくする余地が大きいためである。なお、本願において「溝曲率」とは、軌道輪の周方向に垂直な断面における転走面の曲率半径の、ボールの半径に対する比を意味する。
 上記転がり軸受は、上記複数の転動体を円環状の軌道上に所定のピッチで保持する保持器をさらに備えていてもよい。保持器は、軸方向に向き合う2つの環状体の対向面に転動体を収容する半球状のポケットを周方向の複数箇所に形成し、対向面を衝合させて2つの環状体を結合させて形成されていてもよい。そして、環状体の軸方向端部の内径側および外径側の少なくともいずれか一方に、径方向に延びる鍔部が設けられ、軌道部材の鍔部に対応する部位には溝部が形成され、上記鍔部および上記溝部によりラビリンスが形成されていてもよい。
 上記保持器においては、環状体の軸方向端部の内径側および外径側の少なくともいずれか一方に、径方向に延びる鍔部が設けられ、軌道部材の鍔部に対応する部位には溝部が形成され、鍔部および溝部によりラビリンスが形成されている。このラビリンスにより、潤滑油が軸受内部に流入することを抑制することができる。これにより、軸受内部への過剰な潤滑油の流入が抑制され、低トルク化が達成される。また、環状体に設けられた鍔部と軌道部材に形成された溝部とでラビリンスを形成しているため、ラビリンスの形成を、たとえば保持器および軌道部材の形状変更のみにより達成することができる。そのため、部品点数および組立工数の増加を抑制し、製造コストを抑えることも可能である。
 上記転がり軸受においては、上記2つの環状体は、互いに同一の形状を有していてもよい。このようにすることにより、部品(環状体)の製造コストを低減することができる。
 上記転がり軸受においては、環状体のポケットには、環状体の径方向に延在するポケット溝部が形成されていてもよい。これにより、保持器と転動体との接触面積を低減し、低トルク化を達成することができる。
 上記転がり軸受においては、環状体の隣り合うポケットの間の対向面には、環状体の径方向に延在し、環状体の内径側と外径側とを繋ぐように貫通するポケット間溝部が形成されていてもよい。これにより、保持器と転動体との間の潤滑油が遠心力によって排出され、一層の低トルク化を達成することができる。
 上記転がり軸受においては、鍔部の軸方向の厚みは、0.15mm以上であり、転動体の直径の20%以下であってもよい。
 鍔部の軸方向の厚みが0.15mmよりも小さいと、鍔部の強度不足や成形不良が発生し易くなる。一方、鍔部の軸方向の厚みが転動体の直径の20%よりも大きいと、保持器の軸方向寸法が大きくなるのに伴って内外輪の軸方向の寸法が大きくなり、軸受のコンパクト化が阻害される。鍔部の軸方向の厚みを上記適切な範囲に設定することにより、このような問題の発生を抑制することができる。
 上記転がり軸受においては、保持器の端面は平面状の形状を有していてもよい。これにより、ぬすみ部に侵入する潤滑油の攪拌抵抗を低減することができ、一層の低トルク化を達成することができる。
 上記転がり軸受においては、保持器は、ポリアミド樹脂、ポリエーテルエーテルケトン樹脂またはポリフェニレンサルファイド樹脂からなっていてもよい。これらの材料は、転がり軸受の保持器を構成する材料として好適である。
 上記転がり軸受は、上記複数の転動体を円環状の軌道上に所定のピッチで保持する保持器をさらに備えていてもよい。軌道部材は、外周側に内輪軌道溝が形成された内輪と、内輪を取り囲むように配置され、内周側に外輪軌道溝が形成された外輪とを含んでいてもよい。そして、外輪軌道溝および内輪軌道溝のそれぞれの両側に位置する合計4つの肩のうち、外輪軌道溝の一方側の肩および内輪軌道溝の他方側の肩の高さは、それぞれ外輪軌道溝の他方側の肩および内輪軌道溝の一方側の肩の高さより高くなっていてもよい。
 これにより、スラスト荷重を受ける負荷側の肩が高くなるように軸受を配置して使用することで、転動体の乗り上げの発生を抑制することができる。
 上記転がり軸受においては、保持器は、合成樹脂からなる円筒形の第1分割保持器と、第1分割保持器の内側に嵌合された合成樹脂製の円筒形の第2分割保持器とを含んでいていてもよい。第1分割保持器および第2分割保持器のそれぞれが、環状体を有し、環状体の軸方向一方側面には互いに対向する一対のポケット爪が複数組並ぶように等間隔に形成され、一対のポケット爪間に環状体を刳り抜く2分の1円を超える大きさのボール保持用ポケットが設けられた冠形とされてもよい。そして、第1分割保持器は外輪の肩高さの低い肩側から軸受内に挿入され、第2分割保持器は内輪の肩高さの低い肩側から軸受内に挿入されて、ポケットの開口端が互いに反対方向に向く組み合わせとされ、第1分割保持器と第2分割保持器との相互間に、その両保持器の嵌合により係合して両保持器を軸方向に非分離とする連結部が設けられてもよい。
 このようにすることにより、軸受の組み立てを容易にしつつ、大きなモーメント荷重が負荷された場合でも、ボールの遅れ進みによる保持器の脱落を抑制するとともに、保持器が軌道溝の肩に干渉することを回避することができる。
 上記転がり軸受においては、第1分割保持器と第2分割保持器とは、異なる色相を有していてもよい。このようにすることにより、分割保持器の色相に基づいて作業者が適切な分割保持器の配置となるように第1分割保持器と第2分割保持器とを識別することが可能となり、軸受の組み立てや組み付けが容易となる。
 上記転がり軸受においては、ポケットの内周面には、転動体に対して非接触である盗み部が形成されていてもよい。
 上述のように、保持器を、第1分割保持器と第2分割保持器とを組み合わせたものとする場合、これを備えた軸受が異物混入潤滑条件で使用されると、第1分割保持器と第2分割保持器との間に異物が溜まりやすく、軸受の短寿命化の要因となるおそれがある。これに対し、上述のように盗み部を設けることによりポケット面における潤滑油の通油性を向上させ、上述のように異物が溜まることを抑制することができる。
 上記転がり軸受において好ましくは、転動体を最大接触面圧が4.4GPaとなるように軌道部材に押し付けた場合、軌道部材に形成される圧痕の深さは0.5μm以下となる。このレベルにまで耐圧痕性を向上させることにより、特に厳しい使用環境において使用可能な転がり軸受を提供することができる。また、上記圧痕の深さは、0.3μm以下であることがより好ましく、0.2μm以下であることがさらに好ましい。
 上記転がり軸受は、デファレンシャルまたはトランスミッション内において回転する回転部材を、回転部材に隣接して配置される他の部材に対して回転自在に支持するものであってもよい。
 デファレンシャルやトランスミッションにおいて使用される軸受には、転動体と軌道部材との間に高い面圧が負荷される。そのため、このような用途の軸受には、転動疲労寿命の長寿命化のみならず、耐圧痕性の向上が要求される。そのため、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な本発明の転がり軸受は、デファレンシャルやトランスミッションにおいて使用される軸受として好適である。
 本発明に従った軸受部品の製造方法は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部不純物からなる鋼を成形することにより成形部材を作製する工程と、成形部材を浸炭窒化処理する工程と、浸炭窒化処理された成形部材を焼入硬化処理する工程と、焼入硬化処理された成形部材を焼戻処理する工程と、焼戻処理された成形部材を加工することにより他の部品と接触する面である接触面を形成する工程とを備えている。成形部材を浸炭窒化処理する工程では、接触面を形成する工程において接触面の窒素濃度が0.25質量%以上となるように成形部材が浸炭窒化処理される。そして、成形部材を焼戻処理する工程では、接触面を形成する工程において接触面の残留オーステナイト量が6体積%以上12体積%以下となるように成形部材が焼戻処理される。
 本発明の軸受部品の製造方法によれば、上記本発明の軸受部品を製造することができる。
 上記軸受部品の製造方法においては、成形部材を焼戻処理する工程では、成形部材が240℃以上300℃以下の温度域にて焼戻処理されてもよい。これにより、接触面の残留オーステナイト量を6体積%以上12体積%以下の範囲に調整することが容易となる。また、焼入処理された鋼には炭素が固溶している。この固溶した炭素は接触面付近の材料(鋼)の固溶強化に寄与している。一方、焼入処理された鋼を焼戻処理すると、固溶している炭素の一部が炭化物として析出する。この析出した炭化物は接触面付近の材料(鋼)の析出強化に寄与する。焼戻処理の処理温度が240℃未満では、接触面付近の材料の固溶強化は十分であるものの、析出強化が不十分となる。一方、焼戻処理の処理温度が300℃を超えると、接触面付近の材料の析出強化は十分であるものの、固溶強化が不十分となる。そして、焼戻処理の処理温度を240℃以上300℃以下とすることにより、固溶強化と析出強化のバランスが良好となり、耐圧痕性が向上する。
 上記軸受部品の製造方法においては、成形部材を焼入処理する工程では、成形部材が860℃以下の温度域から急冷されることにより焼入処理されてもよい。これにより、焼入硬化後における炭素の固溶量と析出量とのバランス、および残留オーステナイト量の焼戻処理での調整が困難になることを抑制することができる。
 上記軸受部品の製造方法においては、成形部材を焼入処理する工程では、成形部材が820℃以上の温度域から急冷されることにより焼入処理されてもよい。これにより、焼入硬化後における炭素の固溶量と析出量とのバランス、および残留オーステナイト量の焼戻処理での調整が困難になることを抑制することができる。
 本発明に従った転がり軸受の製造方法は、軌道部材を準備する工程と、複数の転動体を準備する工程と、複数の転動体を軌道部材に接触するように組み合わせることにより、転がり軸受を組み立てる工程とを備えている。そして、軌道部材を準備する工程および複数の転動体を準備する工程との少なくともいずれか一方は、上記本発明の軸受部品の製造方法を用いて実施される。これにより、上記本発明の転がり軸受を製造することができる。
 本発明に従った転がり軸受は、第1転走面を有する第1軌道輪と、第2転走面を有し、第1転走面に第2転走面が対向するように配置された第2軌道輪と、第1転走面および第2転走面に転動接触面において接触し、円環状の軌道上に並べて配置された複数の転動体と、第1軌道輪と第2軌道輪とに挟まれた空間である軸受空間を閉じるように配置されたシール部材とを備えている。第1軌道輪、第2軌道輪および転動体のうち、少なくとも1つは、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上0.65質量%以下のクロムとを含有し、残部不純物からなる焼入硬化された鋼からなり、第1転走面、第2転走面または転動接触面である軸受接触面における窒素濃度が0.25質量%以上であり軸受接触面における残留オーステナイト量が6体積%以上12体積%以下である高強度軸受部品である。シール部材は、一方の端部が第1軌道輪および第2軌道輪の一方に固定され、他方の端部であるシールリップ部が第1軌道輪および第2軌道輪の他方に接触している。そして、第1軌道輪に対して第2軌道輪を周方向に相対的に回転させることによりシールリップ部が摩耗して第1軌道輪および第2軌道輪の他方とシールリップ部とが接触しない状態、または第1軌道輪および第2軌道輪の他方とシールリップ部との接触圧が実質的に零と見なせる程度の軽接触である状態となるように、シールリップ部が高摩耗材からなっている。
 本発明者は、世界各国で入手容易なJIS規格SUJ2相当材料(JIS規格SUJ2、ASTM規格52100、DIN規格100Cr6、GB規格GCr5もしくはGCr15、およびΓOCT規格ЩX15)を材料として採用することを前提に、耐圧痕性と転動疲労寿命とを高いレベルで両立するための方策について検討を行なった。その結果、以下のような知見を得て、本発明に想到した。
 上記成分組成を採用することにより、世界各国で入手容易な上記各国規格鋼を材料として使用することができる。そして、当該成分組成の鋼の使用を前提として、軸受接触面における窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されることにより、転動疲労寿命を長寿命化することができる。ここで、残留オーステナイト量について特に調整を行なわない場合、軸受接触面における残留オーステナイト量は窒素量との関係から20~40体積%程度となる。しかし、このように残留オーステナイト量が多い状態では、耐圧痕性が低下するという問題が生じる。そして、残留オーステナイト量を12体積%以下にまで低減することにより、耐圧痕性を向上させることができる。一方、残留オーステナイト量が6体積%未満にまで低下すると、転動疲労寿命、特に軸受内に硬質の異物が侵入する環境(異物混入環境)での転動疲労寿命が低下する。そのため、軸受接触面における残留オーステナイト量は6体積%以上とすることが好ましい。
 これに対し、本発明の転がり軸受を構成する高強度軸受部品は、世界各国で入手容易なJIS規格SUJ2相当材料を材料として採用しつつ、軸受接触面における窒素濃度が0.25質量%以上、残留オーステナイト量が6体積%以上12体積%以下とされている。
 さらに、転動疲労寿命、特に異物混入環境における転動疲労寿命を長寿命化するためには、異物の侵入を抑制する接触型のシール部材を配置することが有効である。しかし、一般的な接触型のシール部材を採用した場合、転がり軸受の回転トルクが上昇するという問題が生じる。これに対し、本発明の転がり軸受では、軌道輪に接触するシールリップ部が、軌道輪の回転によって容易に摩耗して、当初接触していた軌道輪と接触しない状態、あるいは当該軌道輪との接触圧が実質的に零と見なせる程度の軽接触である状態となる高摩耗材からなっている。その結果、異物の侵入が抑制されつつ、回転トルクの上昇が抑えられる。シールリップ部の材料としては、たとえばゴム、樹脂などを採用することができる。
 このように、本発明の転がり軸受は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立する高強度軸受部品を構成部品として含むとともに、回転トルクの上昇を抑制しつつ転動疲労寿命をさらに向上させることが可能なシール部材を備えている。その結果、本発明の転がり軸受によれば、耐圧痕性と転動疲労寿命とを高いレベルで両立する転がり軸受を提供することができる。
 なお、耐圧痕性を一層向上させる観点から、軸受接触面における残留オーステナイト量を10%以下としてもよい。また、軸受接触面における窒素濃度が0.5質量%を超えると、鋼中に窒素を侵入させるためのコストが高くなるとともに、残留オーステナイト量を所望の範囲に調整することが難しくなる。そのため、軸受接触面における窒素濃度は0.5質量%以下とすることが好ましく、0.4質量%以下としてもよい。
 上記転がり軸受においては、少なくとも第1軌道輪および第2軌道輪が上記高強度軸受部品であってもよい。耐圧痕性は、特に軌道輪において問題となる。したがって、軌道輪の少なくとも一方が上記高強度軸受部品からなることにより、転がり軸受の耐圧痕性がより確実に向上する。
 上記転がり軸受においては、転動体は玉であってもよい。転動体に玉を用いることにより、転がり軸受の回転トルクが抑制される。一方、転動体に玉を用いる場合、ころ軸受に比べて軸受の静定格荷重が著しく低下するため、耐圧痕性が特に問題となる。これに対し、本発明の転がり軸受は、耐圧痕性に優れた上記高強度軸受部品を備えている。したがって、本発明の転がり軸受において転動体に玉を採用することにより、耐圧痕性と転動疲労寿命とを高いレベルで両立するとともに、回転トルクが低減された転がり軸受を提供することができる。
 上記転がり軸受においては、軸受接触面の硬度は60.0HRC以上であってもよい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 上記転がり軸受においては、軸受接触面の硬度は64.0HRC以下であってもよい。窒素濃度が0.25質量%以上にまで高められた軸受接触面の硬度を、64.0HRCを超える状態を維持した場合、残留オーステナイトを12体積%以下に調整することが困難となる。軸受接触面の硬度を64.0HRC以下とすることにより、12体積%以下の範囲に残留オーステナイト量を調整することが容易となる。
 上記転がり軸受は、デファレンシャルまたはトランスミッション内において回転する回転部材を、当該回転部材に隣接して配置される他の部材に対して回転自在に支持するものであってもよい。
 デファレンシャルやトランスミッションにおいて使用される軸受には、転動体と軌道部材との間に高い面圧が負荷される。そのため、このような用途の軸受には、転動疲労寿命の長寿命化のみならず、耐圧痕性の向上が要求される。したがって、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な本発明の転がり軸受は、デファレンシャルやトランスミッションにおいて使用される軸受として好適である。
 上記転がり軸受においては、転動体を最大接触面圧が4.4GPaとなるように第1軌道輪および第2軌道輪のいずれかに押し付けた場合、第1軌道輪および第2軌道輪のいずれかに形成される圧痕の深さは0.5μm以下であることが好ましい。このレベルにまで耐圧痕性を向上させることにより、特に厳しい使用環境において使用可能な転がり軸受を提供することができる。また、上記圧痕の深さは、0.3μm以下であることがより好ましく、0.2μm以下であることがさらに好ましい。
 本発明に従った転がり軸受は、軌道部材と、軌道部材に接触して配置される複数のボールと、複数のボールを円環状の軌道上に所定のピッチで保持する保持器とを備えている。軌道部材および複数のボールの少なくともいずれか一方は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部鉄および不純物からなる焼入硬化された鋼からなり、他の部品と接触する面である接触面における窒素濃度が0.25質量%以上であり、接触面における残留オーステナイト量が6体積%以上12体積%以下である高強度軸受部品である。保持器は、円周方向に沿って所定間隔で配設された半球状膨出部を有する2枚の環状保持板が組み合わされてなり、対向する半球状膨出部にてボールを保持するポケットを形成している。当該ポケットにおいてボールに対向する面であるボール対向面に、ポケットの周方向に延びる凹部からなるボール非接触部が設けられる。そして、ボール非接触部のポケットの周方向における長さをA、ボールの直径をB、ボールとボール対向面との間に形成される隙間をCとしたとき、A/(B+C)の値が0.70~0.90に設定される。
 本発明者は、世界各国で入手容易なJIS規格SUJ2相当材料(JIS規格SUJ2、ASTM規格52100、DIN規格100Cr6、GB規格GCr5もしくはGCr15、およびΓOCT規格ЩX15)を材料として採用することを前提に、耐圧痕性と転動疲労寿命とを高いレベルで両立するための方策について検討を行なった。その結果、上記成分組成を採用しつつ、軸受部品の接触面における窒素濃度を十分に確保するとともに残留オーステナイト量を適切な量にコントロールすることにより、耐圧痕性と転動疲労寿命とを高いレベルで両立可能であることを見出した。
 具体的には、上記成分組成を採用することにより、世界各国で入手容易な上記各国規格鋼を材料として使用することができる。そして、当該成分組成の鋼の使用を前提として、接触面における窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されることにより、転動疲労寿命を長寿命化することができる。ここで、残留オーステナイト量について特に調整を行なわない場合、接触面における残留オーステナイト量は窒素量との関係から20~40体積%程度となる。しかし、このように残留オーステナイト量が多い状態では、耐圧痕性が低下するという問題が生じる。これに対し、残留オーステナイト量を12体積%以下にまで低減することにより、耐圧痕性を向上させることができる。一方、残留オーステナイト量が6体積%未満にまで低下すると、転動疲労寿命、特に軸受内に硬質の異物が侵入する環境(異物混入環境)での転動疲労寿命が低下する。そのため、接触面における残留オーステナイト量は6体積%以上とすることが好ましい。
 本発明の転がり軸受では、軸受部品(軌道部材および複数のボールの少なくともいずれか一方)において、世界各国で入手容易なJIS規格SUJ2相当材料を材料として採用しつつ、接触面における窒素濃度が0.25質量%以上、残留オーステナイト量が6体積%以上12体積%以下とされている。その結果、本発明の転がり軸受を構成する軸受部品は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な高強度軸受部品となっている。なお、耐圧痕性を一層向上させる観点から、接触面における残留オーステナイト量を10%以下としてもよい。また、接触面における窒素濃度が0.5質量%を超えると、鋼中に窒素を侵入させるためのコストが高くなるとともに、残留オーステナイト量を所望の範囲に調整することが難しくなる。そのため、接触面における窒素濃度は0.5質量%以下とすることが好ましく、0.4質量%以下としてもよい。
 さらに、本発明の転がり軸受を構成する保持器においては、ポケットのボール対向面に凹部からなるボール非接触部を設けたことによって、ボール対向面に、案内面となるボール接触部と、案内面とならないボール非接触部とが形成される。なお、上記すきまとは、ボールをポケットの中で片側に寄せた時の、ボールとポケット案内面との間の隙間である。
 ここで、ポケット内、たとえばポケット軸方向中央部に、ポケット周方向に延びる凹部を設けた場合、この凹部のポケット周方向長さを長くすればポケット内壁とボールとが接触するすべり面積が小さくなり、せん断抵抗の低減に繋がる。しかしながら、「ポケット周方向長さ」を長くし過ぎると、ボールとポケットとの接触が案内面(ボール接触部)ではなく、案内面と凹部との境目となる。このように、境目で接触すると、油膜形成が著しく低下し、表面損傷の懸念がある。すなわち、「ポケット周方向長さ」はポケット内でのボールの動きを含めても、ボールをポケット案内面(ボール接触部)で保持できる範囲内で出来るだけ大きな寸法とするのが好ましい。
 本願発明の転がり軸受では、ボール非接触部のポケット周方向長さをAとし、ボールの直径をBとし、ボールとポケットのボール対向面との間に形成されるすきまをCとしたときに、A/(B+C)の値が0.70~0.90に設定される。これによって、軸受としての機能を満足しつつ、最大限の低トルク効果が発揮できる。
 以上のように、本発明の転がり軸受によれば、上述のような軌道輪、転動体および保持器を備えていることにより、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立し、かつ低トルク化を達成することが可能な転がり軸受を提供することができる。
 上記転がり軸受においては、上記軌道部材は上記高強度軸受部品であってもよい。耐圧痕性の向上が特に求められる軌道部材が上記高強度軸受部品であることにより、ころ軸受が適用されていた箇所に玉軸受を適用することが一層容易となる。
 上記転がり軸受においては、上記接触面の硬度は60.0HRC以上であってもよい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 上記転がり軸受においては、上記接触面の硬度は64.0HRC以下であってもよい。窒素濃度が0.25質量%以上にまで高められた接触面の硬度を、64.0HRCを超える状態に維持した場合、残留オーステナイトを12体積%以下に調整することが困難となる。接触面の硬度を64.0HRC以下とすることにより、12体積%以下の範囲に残留オーステナイト量を調整することが容易となる。
 上記転がり軸受においては、最大接触面圧が4.4GPaとなるようにボールを軌道部材に対して押し付けた場合、軌道部材に形成される圧痕の深さは0.5μm以下となることが好ましい。これにより、十分なレベルの耐圧痕性を確保することができる。
 上記転がり軸受においては、ボール非接触部のポケット軸方向の長さをD、ポケットのポケット軸方向の全長さをEとしたとき、D/Eの値が0.25~0.40に設定されてもよい。
 ボール非接触部のポケット軸方向の長さを大きくすれば接触するすべり面積が小さくなり、せん断抵抗の低減に繋がる。一方、保持器は、金属製であってプレス加工にて成形される場合がある。この場合、ボール非接触部のポケット軸方向の長さを大きくし過ぎると製造上困難となり、製造面での懸念がある。すなわち、プレス加工しても、ポケット形状崩れが発生しない範囲内で、出来るだけボール非接触部のポケット軸方向の長さを大きな寸法とすることが好ましい。上記D/Eの値を0.25~0.40に設定することにより、せん断抵抗の低減と製造の容易性とを両立させることができる。
 上記転がり軸受においては、ボール非接触部を構成する凹部の深さをF、環状保持板の半球状膨出部の肉厚をGとしたとき、F/Gの値は0.30~0.40に設定されてもよい。
 凹部を形成することで、ボールとポケットの間に表面粗さの水準より大きな隙間を設ければ、せん断抵抗を「0」にすることが可能である。しかし、保持器へのプレス加工精度を考慮すると、凹部の深さは余りにも小さ過ぎると寸法の精度を充分に確保することが難しくなる。一方、凹部の深さが大き過ぎると、プレス加工でのポケット形状崩れが懸念される。上記F/Gの値を0.30~0.40に設定することにより、せん断抵抗の低減を実現しつつ、凹部の寸法精度の確保とポケット形状崩れ回避とを達成することができる。
 上記転がり軸受においては、上記ポケットのポケット軸方向の全長さをE、ボールの中心に対するボール非接触部の中央の、ポケット軸方向におけるずれ量をHとしたとき、H/(E/2)の値は0~0.2に設定されてもよい。
 凹部のポケット軸方向中心位置が、ボールの中心よりもポケット軸方向にずれれば、バランスが悪くなりプレス加工時の形状崩れの原因となる。上記H/(E/2)の値を0~0.2に設定することにより、これを抑制することができる。
 上記転がり軸受においては、上記ボール非接触部を構成する凹部のポケット軸方向における開口縁が曲面で構成されてもよい。
 凹部とポケット案内面(ボール接触部)との境目にボールが接触する状態になると、油膜形成能力が著しく低下する。そのため、上述のように、凹部は境目でボールが接触しないような寸法とすることが好ましい。しかしながら、設計上で接触しないように設定しても製造上のばらつき等により、上記境目がボールと接触する可能性がある。凹部のポケット軸方向における開口縁を曲面で構成することにより、すなわち当該開口縁をアール形状とすることにより、このような接触が発生した場合でも、直ちに損傷が発生することを回避することができる。
 また、上記ボール非接触部は、保持器の全ポケットに設けられてもよい。また、保持器は、金属製であってプレス加工で成型されてなるものであってもよいし、樹脂製であって射出成型にて成型されてなるものであってもよい。
 上記転がり軸受においては、上記軌道部材は、内輪と、内輪の外周側を取り囲むように配置される外輪とを含み、内輪のボールに対する溝曲率は1.02以上1.06以下であってもよい。
 また、上記転がり軸受においては、上記軌道部材は、内輪と、内輪の外周側を取り囲むように配置される外輪とを含み、外輪のボールに対する溝曲率は1.02以上1.08以下であってもよい。
 ころ軸受は、比較的大きな荷重が負荷される箇所に採用される。したがって、ころ軸受が適用されていた箇所に玉軸受である本発明の転がり軸受を適用する場合、本発明の転がり軸受には比較的大きな荷重が負荷される。そうすると、軌道部材とボールとの間の接触楕円が大きくなって軌道部材とボールとの間のすべり成分(差動すべりおよびスピンすべり)が大きくなるため、転がり軸受の回転トルクが大きくなる。これに対し、内輪および外輪の少なくともいずれか一方のボールに対する溝曲率を1.02以上にまで大きくすることにより、すべり成分を低減し、より確実に低トルク化を図ることができる。具体的には、JIS規格6207型番の玉軸受においてラジアル荷重Fr=500N、アキシアル荷重Fa=0N、回転数4000rpmの条件を想定すると、内輪および外輪の溝曲率を1.02にまで大きくした場合、通常の構造に比べて差動すべりが半分程度となる。
 一方、内輪および外輪の溝曲率を大きくすると、内輪および外輪とボールとの接触面圧が大きくなり、軸受の寿命が短くなるおそれがあるため、内輪および外輪の溝曲率は所定値以下とすることが好ましい。具体的には、内輪のボールに対する溝曲率は1.06以下、外輪のボールに対する溝曲率は1.08以下とすることが好ましい。ここで、外輪の溝曲率の上限が内輪に比べて大きいのは、通常の設計の下では、外輪とボールとの接触面圧が内輪とボールとの接触面圧に比べて小さく、外輪は内輪に比べて溝曲率を大きする余地が大きいためである。なお、本願において「溝曲率」とは、軌道輪の周方向に垂直な断面における転走面の曲率半径の、ボールの半径に対する比を意味する。
 上記転がり軸受は、自動車の動力伝達軸を支持するために用いられてもよい。また、上記自動車は、二輪車であってもよい。長寿命化、低トルク化およびコンパクト化が重要な上記用途に、本発明の転がり軸受は好適である。
 本発明に従った転がり軸受は、軌道部材と、軌道部材に接触して配置される複数のボールと、複数のボールを円環状の軌道上に所定のピッチで保持する保持器とを備えている。軌道部材および複数のボールの少なくともいずれか一方は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部鉄および不純物からなる焼入硬化された鋼からなり、他の部品と接触する面である接触面における窒素濃度が0.25質量%以上であり、接触面における残留オーステナイト量が6体積%以上12体積%以下である高強度軸受部品である。保持器は、円周方向に沿って所定間隔で配設された半球状膨出部を有する2枚の環状保持板が組み合わされてなり、対向する上記半球状膨出部にてボールを保持するポケットを形成している。ポケットにおいてボールに対向する面であるボール対向面にボール非接触部が設けられている。そして、ポケットにおけるボールとの接触面積が、ボール非接触部を設けないときのボールとの接触面積よりも15%~30%低減されている。
 本発明者は、世界各国で入手容易なJIS規格SUJ2相当材料(JIS規格SUJ2、ASTM規格52100、DIN規格100Cr6、GB規格GCr5もしくはGCr15、およびΓOCT規格ЩX15)を材料として採用することを前提に、耐圧痕性と転動疲労寿命とを高いレベルで両立するための方策について検討を行なった。
 上記成分組成を採用することにより、世界各国で入手容易な上記各国規格鋼を材料として使用することができる。そして、当該成分組成の鋼の使用を前提として、接触面における窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されることにより、転動疲労寿命を長寿命化することができる。ここで、残留オーステナイト量について特に調整を行なわない場合、接触面における残留オーステナイト量は窒素量との関係から20~40体積%程度となる。しかし、このように残留オーステナイト量が多い状態では、耐圧痕性が低下するという問題が生じる。そして、残留オーステナイト量を12体積%以下にまで低減することにより、耐圧痕性を向上させることができる。一方、残留オーステナイト量が6体積%未満にまで低下すると、転動疲労寿命、特に軸受内に硬質の異物が侵入する環境(異物混入環境)での転動疲労寿命が低下する。そのため、接触面における残留オーステナイト量は6体積%以上とすることが好ましい。
 これに対し、本発明の転がり軸受では、軸受部品(軌道部材および複数のボールの少なくともいずれか一方)において、世界各国で入手容易なJIS規格SUJ2相当材料を材料として採用しつつ、接触面における窒素濃度が0.25質量%以上、残留オーステナイト量が6体積%以上12体積%以下とされている。その結果、本発明の転がり軸受を構成する軸受部品は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な高強度軸受部品となっている。なお、耐圧痕性を一層向上させる観点から、接触面における残留オーステナイト量を10%以下としてもよい。また、接触面における窒素濃度が0.5質量%を超えると、鋼中に窒素を侵入させるためのコストが高くなるとともに、残留オーステナイト量を所望の範囲に調整することが難しくなる。そのため、接触面における窒素濃度は0.5質量%以下とすることが好ましく、0.4質量%以下としてもよい。
 さらに、本発明の転がり軸受を構成する保持器においては、ボール対向面にボール非接触部を設けたことによって、ポケット内部を潤滑剤が通過する際の抵抗を低減することができる。また、ボール非接触部を設けたことによって、ボールとポケットとの間に形成される油膜量を少なくできる。ここで、ボール非接触部が小さすぎると、せん断する油膜量の減少量も少なく、トルク低減を達成できない。一方、ボール非接触部が大きすぎると、ボールとポケットとの間に形成される油膜量が小さくなり過ぎて、ボールの滑らかな転動を損なう。ボール非接触部を設けることによって低減されるボールとの接触面積が30%よりも大きいと、保持器の強度が低下する。ボール非接触部を設けることによって低減されるボールとの接触面積が15%よりも小さいと、トルクを十分に低減することができない。そのため、本発明の転がり軸受を構成する保持器においては、ボール非接触部を設けることによってボールとの接触面積が15%~30%低減されている。
 以上のように、本発明の転がり軸受によれば、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立し、かつ低トルク化を達成することが可能な転がり軸受を提供することができる。
 上記転がり軸受においては、上記軌道部材は高強度軸受部品であってもよい。耐圧痕性の向上が特に求められる軌道部材が上記高強度軸受部品であることにより、ころ軸受が適用されていた箇所に玉軸受を適用することが一層容易となる。
 上記転がり軸受においては、上記接触面の硬度は60.0HRC以上であってもよい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 上記転がり軸受においては、上記接触面の硬度は64.0HRC以下であってもよい。窒素濃度が0.25質量%以上にまで高められた接触面の硬度を、64.0HRCを超える状態を維持した場合、残留オーステナイトを12体積%以下に調整することが困難となる。接触面の硬度を64.0HRC以下とすることにより、12体積%以下の範囲に残留オーステナイト量を調整することが容易となる。
 上記転がり軸受においては、上記半球状膨出部において、ボール対向面に反ボール側へ凹む凹部を設け、当該凹部をもってボール非接触部としてもよい。また、上記転がり軸受においては、上記半球状膨出部においてスリットを設け、当該スリットをもってボール非接触部としてもよい。このような構造を採用することにより、ボール非接触部を容易に形成することができる。
 上記転がり軸受においては、ボール非接触部を、上記複数のボールのピッチ円よりも外径側に配置してもよい。これにより、周速の高い位置でのせん断抵抗を低減することができ、より安定してトルクの低減を図ることができる。
 上記転がり軸受においては、上記保持器は、金属製であってプレス加工に成型されていてもよい。また、上記転がり軸受においては、上記保持器は、金属製であって鋳造にて成型されていてもよい。また、上記転がり軸受においては、上記保持器は、削り加工にて成型されていてもよい。また、上記転がり軸受においては、上記保持器は、樹脂製であって射出成型にて成型されていてもよい。これにより、保持器を容易に成形し、低コスト化することができる。
 上記転がり軸受においては、最大接触面圧が4.4GPaとなるように上記ボールを軌道部材に対して押し付けた場合、軌道部材に形成される圧痕の深さは0.5μm以下となることが好ましい。これにより、十分なレベルの耐圧痕性を確保することができる。
 上記転がり軸受においては、上記軌道部材は、内輪と、内輪の外周側を取り囲むように配置される外輪とを含み、内輪のボールに対する溝曲率は1.02以上1.06以下であってもよい。
 また、上記転がり軸受においては、上記軌道部材は、内輪と、内輪の外周側を取り囲むように配置される外輪とを含み、外輪のボールに対する溝曲率は1.02以上1.08以下であってもよい。
 ころ軸受は、比較的大きな荷重が負荷される箇所に採用される。したがって、ころ軸受が適用されていた箇所に玉軸受である本発明の転がり軸受を適用する場合、本発明の転がり軸受には比較的大きな荷重が負荷される。そうすると、軌道部材とボールとの間の接触楕円が大きくなって軌道部材とボールとの間のすべり成分(差動すべりおよびスピンすべり)が大きくなるため、転がり軸受の回転トルクが大きくなる。これに対し、内輪および外輪の少なくともいずれか一方のボールに対する溝曲率を1.02以上にまで大きくすることにより、すべり成分を低減し、より確実に低トルク化を図ることができる。具体的には、JIS規格6207型番の玉軸受においてラジアル荷重Fr=500N、アキシアル荷重Fa=0N、回転数4000rpmの条件を想定すると、内輪および外輪の溝曲率を1.02にまで大きくした場合、通常の構造に比べて差動すべりが半分程度となる。
 一方、内輪および外輪の溝曲率を大きくすると、内輪および外輪とボールとの接触面圧が大きくなり、軸受の寿命が短くなるおそれがあるため、内輪および外輪の溝曲率は所定値以下とすることが好ましい。具体的には、内輪のボールに対する溝曲率は1.06以下、外輪のボールに対する溝曲率は1.08以下とすることが好ましい。ここで、外輪の溝曲率の上限が内輪に比べて大きいのは、通常の設計の下では、外輪とボールとの接触面圧が内輪とボールとの接触面圧に比べて小さく、外輪は内輪に比べて溝曲率を大きする余地が大きいためである。なお、本願において「溝曲率」とは、軌道輪の周方向に垂直な断面における転走面の曲率半径の、ボールの半径に対する比を意味する。
 上記転がり軸受は、自動車の動力伝達軸を支持するために用いられてもよい。また、上記自動車は、二輪車であってもよい。長寿命化、低トルク化およびコンパクト化が重要な上記用途に、本発明の転がり軸受は好適である。
 本発明に従った転がり軸受は、軌道部材と、軌道部材に接触して配置される複数のボールと、複数のボールを円環状の軌道上に所定のピッチで保持する保持器とを備えている。軌道部材および前記複数のボールの少なくともいずれか一方は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部鉄および不純物からなる焼入硬化された鋼からなり、他の部品と接触する面である接触面における窒素濃度が0.25質量%以上であり、当該接触面における残留オーステナイト量が6体積%以上12体積%以下である高強度軸受部品である。保持器は、軸方向に向き合う2つの環状体の対向面にボールを収容する半球状のポケットを周方向の複数箇所に形成し、対向面を衝合させて2つの環状体を結合させて形成されている。そして、環状体の軸方向端部の内径側および外径側の少なくともいずれか一方に、径方向に延びる鍔部が設けられ、軌道部材の上記鍔部に対応する部位には溝部が形成され、この鍔部および溝部によりラビリンスが形成されている。
 本発明者は、世界各国で入手容易なJIS規格SUJ2相当材料(JIS規格SUJ2、ASTM規格52100、DIN規格100Cr6、GB規格GCr5もしくはGCr15、およびΓOCT規格ЩX15)を材料として採用することを前提に、耐圧痕性と転動疲労寿命とを高いレベルで両立するための方策について検討を行なった。その結果、上記成分組成を採用しつつ、軸受部品の接触面における窒素濃度を十分に確保するとともに残留オーステナイト量を適切な量にコントロールすることにより、耐圧痕性と転動疲労寿命とを高いレベルで両立可能であることを見出した。
 具体的には、上記成分組成を採用することにより、世界各国で入手容易な上記各国規格鋼を材料として使用することができる。そして、当該成分組成の鋼の使用を前提として、接触面における窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されることにより、転動疲労寿命を長寿命化することができる。ここで、残留オーステナイト量について特に調整を行なわない場合、接触面における残留オーステナイト量は窒素量との関係から20~40体積%程度となる。しかし、このように残留オーステナイト量が多い状態では、耐圧痕性が低下するという問題が生じる。これに対し、残留オーステナイト量を12体積%以下にまで低減することにより、耐圧痕性を向上させることができる。一方、残留オーステナイト量が6体積%未満にまで低下すると、転動疲労寿命、特に軸受内に硬質の異物が侵入する環境(異物混入環境)での転動疲労寿命が低下する。そのため、接触面における残留オーステナイト量は6体積%以上とすることが好ましい。
 本発明の転がり軸受では、軸受部品(軌道部材および複数のボールの少なくともいずれか一方)において、世界各国で入手容易なJIS規格SUJ2相当材料を材料として採用しつつ、接触面における窒素濃度が0.25質量%以上、残留オーステナイト量が6体積%以上12体積%以下とされている。その結果、本発明の転がり軸受を構成する軸受部品は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な高強度軸受部品となっている。なお、耐圧痕性を一層向上させる観点から、接触面における残留オーステナイト量を10%以下としてもよい。また、接触面における窒素濃度が0.5質量%を超えると、鋼中に窒素を侵入させるためのコストが高くなるとともに、残留オーステナイト量を所望の範囲に調整することが難しくなる。そのため、接触面における窒素濃度は0.5質量%以下とすることが好ましく、0.4質量%以下としてもよい。
 さらに、本発明の転がり軸受を構成する保持器においては、環状体の軸方向端部の内径側および外径側の少なくともいずれか一方に、径方向に延びる鍔部が設けられ、軌道部材の鍔部に対応する部位には溝部が形成され、鍔部および溝部によりラビリンスが形成されている。このラビリンスにより、潤滑油が軸受内部に流入することを抑制することができる。また、環状体に設けられた鍔部と軌道部材に形成された溝部とでラビリンスを形成しているため、ラビリンスの形成を、たとえば保持器および軌道部材の形状変更のみにより達成することができる。そのため、部品点数および組立工数の増加を抑制し、製造コストを抑えることも可能である。
 以上のように、本発明の転がり軸受によれば、上述のような軌道部材、転動体および保持器を備えていることにより、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立し、かつ低トルク化を達成することが可能な転がり軸受を提供することができる。
 上記転がり軸受においては、上記2つの環状体は、互いに同一の形状を有していてもよい。このようにすることにより、部品(環状体)の製造コストを低減することができる。
 上記転がり軸受においては、保持器は、軸方向において対象形状であってもよい。このようにすることにより、軸受の運転により保持器に遠心力が負荷された際に、保持器を構成する2つの環状体同士が互いにその変形を抑制し合う。その結果、保持器の変形によるボールの脱落や、保持器と軌道部材との干渉を抑制することができる。
 上記転がり軸受においては、上記軌道部材は上記高強度軸受部品であってもよい。耐圧痕性の向上が特に求められる軌道部材が上記高強度軸受部品であることにより、大きい荷重が負荷される用途に軸受を適用することが容易となる。
 上記転がり軸受においては、上記接触面の硬度は60.0HRC以上であってもよい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 上記転がり軸受においては、上記接触面の硬度は64.0HRC以下であってもよい。窒素濃度が0.25質量%以上にまで高められた接触面の硬度を、64.0HRCを超える状態に維持した場合、残留オーステナイトを12体積%以下に調整することが困難となる。接触面の硬度を64.0HRC以下とすることにより、12体積%以下の範囲に残留オーステナイト量を調整することが容易となる。
 上記転がり軸受においては、上記環状体のポケットには、環状体の径方向に延在するポケット溝部が形成されていてもよい。これにより、保持器とボールとの接触面積を低減し、低トルク化を達成することができる。
 また、ポケット溝部は、環状体の内径側と外径側とを繋ぐように貫通して形成されていてもよい。これにより、保持器とボールとの間の潤滑油が遠心力によって排出され、一層の低トルク化を達成することができる。
 上記転がり軸受においては、環状体の隣り合うポケットの間の上記対向面には、環状体の径方向に延在し、環状体の内径側と外径側とを繋ぐように貫通するポケット間溝部が形成されていてもよい。これにより、保持器とボールとの間の潤滑油が遠心力によって排出され、一層の低トルク化を達成することができる。
 上記転がり軸受においては、上記鍔部の軸方向の厚みは、0.15mm以上であり、ボールの直径の20%以下であることが好ましい。
 鍔部の軸方向の厚みが0.15mmよりも小さいと、鍔部の強度不足や成形不良が発生し易くなる。一方、鍔部の軸方向の厚みがボールの直径の20%よりも大きいと、保持器の軸方向寸法が大きくなるのに伴って内外輪の軸方向の寸法が大きくなり、軸受のコンパクト化が阻害される。鍔部の軸方向の厚みを上記適切な範囲に設定することにより、このような問題の発生を抑制することができる。
 上記転がり軸受においては、保持器の端面は平面状の形状を有していてもよい。これにより、ぬすみ部に侵入する潤滑油の攪拌抵抗を低減することができ、一層の低トルク化を達成することができる。
 上記転がり軸受においては、上記保持器は、ポリアミド樹脂、ポリエーテルエーテルケトン樹脂またはポリフェニレンサルファイド樹脂からなっている。これらの材料は、本発明の転がり軸受の保持器を構成する材料として好適である。
 上記転がり軸受においては、最大接触面圧が4.4GPaとなるようにボールを軌道部材に対して押し付けた場合、軌道部材に形成される圧痕の深さは0.5μm以下となることが好ましい。これにより、十分なレベルの耐圧痕性を確保することができる。また、上記圧痕の深さは、0.2μm以下となることがより好ましい。
 上記転がり軸受は、たとえば発動機または電動機を動力源とする車両の電動機または減速機において用いることができる。また、上記保持器の鍔部は、軸受内部への潤滑油の直線的な流入を阻害するように位置し、当該鍔部がラビリンス構造を構成することが好ましい。
 本発明に従った深溝玉軸受は、外周側に内輪軌道溝が形成された内輪と、内輪を取り囲むように配置され、内周側に外輪軌道溝が形成された外輪と、内輪軌道溝および外輪軌道溝にボール転走面において接触して配置される複数のボールと、複数のボールを円環状の軌道上に所定のピッチで保持する保持器とを備えている。内輪、外輪および複数のボールの少なくともいずれか1つは、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部鉄および不純物からなる焼入硬化された鋼からなり、他の部品と接触する面である接触面における窒素濃度が0.25質量%以上であり、接触面における残留オーステナイト量が6体積%以上12体積%以下である高強度軸受部品である。そして、外輪軌道溝および内輪軌道溝のそれぞれの両側に位置する合計4つの肩のうち、外輪軌道溝の一方側の肩および内輪軌道溝の他方側の肩の高さは、それぞれ外輪軌道溝の他方側の肩および内輪軌道溝の一方側の肩の高さより高くなっている。
 本発明者は、世界各国で入手容易なJIS規格SUJ2相当材料(JIS規格SUJ2、ASTM規格52100、DIN規格100Cr6、GB規格GCr5もしくはGCr15、およびΓOCT規格ЩX15)を材料として採用することを前提に、耐圧痕性と転動疲労寿命とを高いレベルで両立するための方策について検討を行なった。その結果、上記成分組成を採用しつつ、軸受部品(外輪、内輪、ボール)の接触面における窒素濃度を十分に確保するとともに残留オーステナイト量を適切な量にコントロールすることにより、耐圧痕性と転動疲労寿命とを高いレベルで両立可能であることを見出した。
 具体的には、上記成分組成を採用することにより、世界各国で入手容易な上記各国規格鋼を材料として使用することができる。そして、当該成分組成の鋼の使用を前提として、接触面における窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されることにより、転動疲労寿命を長寿命化することができる。ここで、残留オーステナイト量について特に調整を行なわない場合、接触面における残留オーステナイト量は窒素量との関係から20~40体積%程度となる。しかし、このように残留オーステナイト量が多い状態では、耐圧痕性が低下するという問題が生じる。これに対し、残留オーステナイト量を12体積%以下にまで低減することにより、耐圧痕性を向上させることができる。一方、残留オーステナイト量が6体積%未満にまで低下すると、転動疲労寿命、特に軸受内に硬質の異物が侵入する環境(異物混入環境)での転動疲労寿命が低下する。そのため、接触面における残留オーステナイト量は6体積%以上とすることが好ましい。
 本発明の深溝玉軸受では、軸受部品(外輪、内輪および複数のボールの少なくともいずれか1つ)において、世界各国で入手容易なJIS規格SUJ2相当材料を材料として採用しつつ、接触面における窒素濃度が0.25質量%以上、残留オーステナイト量が6体積%以上12体積%以下とされている。その結果、本発明の深溝玉軸受を構成する軸受部品は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な高強度軸受部品となっている。なお、耐圧痕性を一層向上させる観点から、接触面における残留オーステナイト量を10%以下としてもよい。また、接触面における窒素濃度が0.5質量%を超えると、鋼中に窒素を侵入させるためのコストが高くなるとともに、残留オーステナイト量を所望の範囲に調整することが難しくなる。そのため、接触面における窒素濃度は0.5質量%以下とすることが好ましく、0.4質量%以下としてもよい。
 さらに、本発明の深溝玉軸受を構成する外輪および内輪においては、外輪および内輪の軌道溝のそれぞれの両側に位置する合計4つの肩のうち、外輪軌道溝の一方側の肩および内輪軌道溝の他方側の肩の高さが、それぞれ外輪軌道溝の他方側の肩および内輪軌道溝の一方側の肩の高さより高くなっている。これにより、スラスト荷重を受ける負荷側の肩が高くなるように軸受を配置して使用することで、上記ボールの乗り上げの発生を抑制することができる。
 以上のように、本発明の深溝玉軸受によれば、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立し、かつスラスト荷重への対応を可能とする深溝玉軸受を提供することができる。
 上記深溝玉軸受においては、保持器は、合成樹脂からなる円筒形の第1分割保持器と、第1分割保持器の内側に嵌合された合成樹脂製の円筒形の第2分割保持器とを含み、第1分割保持器および第2分割保持器のそれぞれが、環状体を有し、環状体の軸方向一方側面には互いに対向する一対のポケット爪が複数組並ぶように等間隔に形成され、一対のポケット爪間に環状体を刳り抜く2分の1円を超える大きさのボール保持用ポケットが設けられた冠形とされてもよい。そして、第1分割保持器は外輪の肩高さの低い肩側から軸受内に挿入され、第2分割保持器は内輪の肩高さの低い側から軸受内に挿入されて、ポケットの開口端が互いに反対方向に向く組み合わせとされ、第1分割保持器と第2分割保持器との相互間に、その両保持器の嵌合により係合して両保持器を軸方向に非分離とする連結部が設けられてもよい。
 このようにすることにより、軸受の組み立てを容易にしつつ、大きなモーメント荷重が負荷された場合でも、ボールの遅れ進みによる保持器の脱落を抑制するとともに、保持器が軌道溝の肩に干渉することを回避することができる。
 上記深溝玉軸受においては、第1分割保持器の隣接するポケットのポケット爪間には内向きの係合爪が設けられ、第2分割保持器の隣接するポケットのポケット爪間には外向きの係合爪が設けられ、第1分割保持器の係合爪が第2分割保持器の外径面に形成された係合凹部に係合し、第2分割保持器の係合爪が第1分割保持器の内径面に形成された係合凹部に係合していてもよい。これにより、第1分割保持器と第2分割保持器とを、容易に連結することができる。
 このとき、係合爪と係合凹部との係合部の数を3つ以上としてもよい。これにより、第1分割保持器と第2分割保持器とをより確実に結合することができる。
 上記深溝玉軸受においては、係合爪と係合凹部との間に形成される周方向すきまをボールとポケットとの間に形成される周方向のポケットすきまより大きく設定してもよい。
 これにより、大きなモーメント荷重が負荷されてボールに遅れ進みが生じ、第1分割保持器と第2分割保持器とが相対的に回転しても、係合爪が係合凹部の周方向で対向する側面に当接することはなく、係合爪の損傷防止に効果を挙げることができる。
 上記深溝玉軸受においては、係合爪と係合凹部との間に形成される軸方向すきまをボールとポケットとの間に形成される軸方向のポケットすきまより大きく設定してもよい。
 これにより、第1分割保持器と第2分割保持器とを引き離す方向の軸方向力が作用した場合でも、互いに対向する一対のポケット爪の内面がボールの外周面に当接して、係合爪が係合凹部の軸方向端面に当接することが回避され、係合爪の損傷防止に効果を挙げることができる。
 上記深溝玉軸受においては、第1分割保持器と第2分割保持器とは、異なる色相を有していてもよい。このようにすることにより、分割保持器の色相に基づいて作業者が適切な分割保持器の配置となるように第1分割保持器と第2分割保持器とを識別することが可能となり、軸受の組み立てや組み付けが容易となる。
 上記深溝玉軸受においては、ポケットの内周面には、ボールに対して非接触である盗み部が形成されていてもよい。
 上述のように、保持器を第1分割保持器と第2分割保持器とを組み合わせたものとする場合、これを備えた軸受が異物混入潤滑条件で使用されると、第1分割保持器と第2分割保持器との間に異物が溜まりやすく、軸受の短寿命化の要因となるおそれがある。これに対し、上述のように盗み部を設けることによりポケット面における潤滑油の通油性を向上させ、上述のように異物が溜まることを抑制することができる。
 上記深溝玉軸受においては、上記盗み部は、ポケット底中央から等距離となる領域を含むように、各ポケットについて一対設置されてもよい。また、分割保持器の厚み方向に垂直な面における上記盗み部の形状は曲面状(たとえば球面状あるいはU字形状)であってもよい。また、分割保持器の厚み方向に垂直な面において、一対の盗み部の底部とポケット底中央とは同一直線上にあってもよい。このようにすることにより、潤滑油の通油性をより確実に向上させることができる。
 上記深溝玉軸受は、潤滑油により潤滑されてもよい。この場合、第1分割保持器および第2分割保持器は耐油性に優れた合成樹脂で成形するのが好ましい。そのような樹脂として、ポリアミド46(PA46)、ポリアミド66(PA66)、ポリフェニレンスルファイド(PPS)を挙げることができる。それらの樹脂のうち、ポリフェニレンスルファイド(PPS)は、他の樹脂に比較して耐油性が優れているため、耐油性を考慮するならば、ポリフェニレンスルファイド(PPS)を用いるのが最も好ましい。
 また、樹脂材料の価格を考慮するならば、ポリアミド66(PA66)を用いるのが好ましく、保持器を構成する材料は、潤滑油の種類に応じて適宜に決定すればよい。
 上記深溝玉軸受において、高さの高い肩の高さが必要以上に大きくなると、ボールの組込みができなくなり、また、低すぎると、ボールの乗り上げが生じる。このため、高さの高い肩の肩高さをH、ボールの球径をdとしたとき、ボールの球径dに対する肩高さHの比率H/dを0.25~0.50の範囲としておくのがよい。
 上記深溝玉軸受においては、上記外輪および内輪が上記高強度軸受部品であってもよい。耐圧痕性の向上が特に求められる外輪および内輪が上記高強度軸受部品であることにより、ころ軸受が適用されていた箇所に深溝玉軸受を適用することが一層容易となる。
 上記深溝玉軸受においては、上記接触面の硬度は60.0HRC以上であってもよい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 上記深溝玉軸受においては、上記接触面の硬度は64.0HRC以下であってもよい。窒素濃度が0.25質量%以上にまで高められた接触面の硬度を、64.0HRCを超える状態に維持した場合、残留オーステナイトを12体積%以下に調整することが困難となる。接触面の硬度を64.0HRC以下とすることにより、12体積%以下の範囲に残留オーステナイト量を調整することが容易となる。
 上記深溝玉軸受においては、最大接触面圧が4.4GPaとなるようにボールを外輪および内輪に対して押し付けた場合、内輪および外輪に形成される圧痕の深さは0.5μm以下となることが好ましい。これにより、十分なレベルの耐圧痕性を確保することができる。
 上記深溝玉軸受においては、内輪のボールに対する溝曲率は1.02以上1.06以下であってもよい。また、上記深溝玉軸受においては、外輪のボールに対する溝曲率は1.02以上1.08以下であってもよい。
 ころ軸受は、比較的大きな荷重が負荷される箇所に採用される。したがって、ころ軸受が適用されていた箇所に玉軸受である本発明の深溝玉軸受を適用する場合、本発明の深溝玉軸受には比較的大きな荷重が負荷される。そうすると、軌道部材とボールとの間の接触楕円が大きくなって軌道部材とボールとの間のすべり成分(差動すべりおよびスピンすべり)が大きくなるため、深溝玉軸受の回転トルクが大きくなる。これに対し、内輪および外輪の少なくともいずれか一方のボールに対する溝曲率を1.02以上にまで大きくすることにより、すべり成分を低減し、より確実に低トルク化を図ることができる。また、軌道輪の溝曲率を大きくすることにより、ボールの肩への乗り上げを抑制することができる。
 一方、内輪および外輪の溝曲率を大きくすると、内輪および外輪とボールとの接触面圧が大きくなり、軸受の寿命が短くなるおそれがあるため、内輪および外輪の溝曲率は所定値以下とすることが好ましい。具体的には、内輪のボールに対する溝曲率は1.06以下、外輪のボールに対する溝曲率は1.08以下とすることが好ましい。ここで、外輪の溝曲率の上限が内輪に比べて大きいのは、通常の設計の下では、外輪とボールとの接触面圧が内輪とボールとの接触面圧に比べて小さく、外輪は内輪に比べて溝曲率を大きする余地が大きいためである。なお、本願において「溝曲率」とは、軌道輪の周方向に垂直な断面における軌道溝表面の曲率半径の、ボールの半径に対する比を意味する。
 上記深溝玉軸受は、自動車の動力伝達軸を支持するために用いられてもよい。また、上記自動車は、二輪車であってもよい。長寿命化、低トルク化およびコンパクト化が重要な上記用途に、本発明の深溝玉軸受は好適である。
 以上の説明から明らかなように、本発明の軸受部品、転がり軸受およびこれらの製造方法によれば、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品、転がり軸受およびこれらの製造方法を提供することができる。
深溝玉軸受の構成を示す概略断面図である。 図1の要部を拡大して示した概略部分断面図である。 スラストころ軸受の構成を示す概略断面図である。 図3の軌道輪の概略部分断面図である。 図3のころの概略断面図である。 転がり軸受の製造方法の概略を示すフローチャートである。 マニュアルトランスミッションの構成を示す概略断面図である。 デファレンシャルの構成を示す概略断面図である。 図8のピニオンギアの配置を示す概略図である。 深溝玉軸受の構成を示す概略断面図である。 図10の要部を拡大して示した概略部分断面図である。 深溝玉軸受の回転開始後の状態を説明するための概略部分断面図である。 実施の形態1における深溝玉軸受の構成を示す概略断面図である。 図13のW-W線に沿う概略断面図である。 保持器のポケットを内側から見た状態を示す概略斜視図である。 保持器のポケットを外側から見た状態を示す概略斜視図である。 保持器の構造を説明するための概略断面図である。 保持器の構造を説明するための概略断面図である。 転動するボールと保持器との間に生じるせん断抵抗を説明するための概略断面図である。 実施の形態6における深溝玉軸受の構成を示す概略断面図である。 保持器の構造を示す概略部分断面図である。 図21の矢印Xの方向から見た保持器の概略図である。 図20の保持器の凸部を説明するための概略図である。 保持器の凸部の第1変形例を示す概略図である。 保持器の凸部の第2変形例を示す概略図である。 保持器の凸部の第3変形例を示す概略図である。 保持器の凸部の第4変形例を示す概略図である。 保持器の凸部の第5変形例を示す概略図である。 他の深溝玉軸受の構成を示す概略断面図である。 実施の形態7における深溝玉軸受の構成を示す概略断面図である。 実施の形態7における保持器の構成を示す概略図である。 他の深溝玉軸受の構成を示す概略断面図である。 深溝玉軸受の構成を示す概略断面図である。 環状体の組立て前の状態を示す概略斜視図である。 環状体の組立て後の状態を示す概略斜視図である。 環状体の組立て前の状態を示す概略展開図である。 図36のA-A線に沿う概略断面図である。 図36のB-B線に沿う概略断面図である。 環状体の組立て後の状態を示す概略展開図である。 図39のC-C線に沿う概略断面図である。 図39のD-D線に沿う概略断面図である。 深溝玉軸受の変形例の構成を示す概略断面図である。 深溝玉軸受の他の変形例の構成を示す概略断面図である。 保持器の変形例の構成を示す概略斜視図である。 実施の形態9における深溝玉軸受の構成を示す概略断面図である。 図45の保持器の一部分を示す右側面図である。 図45の保持器の一部分を示す左側面図である。 第1分割保持器および第2分割保持器の一部分を示す平面図である。 図48に示す第1分割保持器のポケットにボールを組込んだ状態での周方向のポケットすきまを示す平面図である。 図48に示す第1分割保持器のポケットにボールを組込んだ状態での軸方向のポケットすきまを示す平面図である。 図45の第1分割保持器と第2分割保持器との結合部を拡大して示す断面図である。 ポケットに形成される盗み部を説明するための概略図である。 ポケットに形成される盗み部を説明するための概略断面図である。 焼戻温度と圧痕深さの関係を示す図である。 焼戻温度と硬度との関係を示す図である。 真ひずみと真応力との関係を示す図である。 図56の領域αを拡大して示す図である。 接触面積低減率とトルク低減率との関係を示す図である。 軸受トルクの測定結果を示す図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 (実施の形態1)
 以下、本発明の一実施の形態である実施の形態1について説明する。図1および図2を参照して、実施の形態1における転がり軸受である深溝玉軸受1は、軸受部品である第1軌道部材としての外輪11と、軸受部品である第2軌道部材としての内輪12と、軸受部品である複数の転動体としての玉13と、保持器14とを備えている。外輪11には、円環状の第1転走面しての外輪転走面11Aが形成されている。内輪12には、外輪転走面11Aに対向する円環状の第2転走面としての内輪転走面12Aが形成されている。また、複数の玉13には、転動体転走面としての玉転動面13A(玉13の表面)が形成されている。外輪転走面11A、内輪転走面12Aおよび玉転動面13Aは、これらの軸受部品の接触面である。そして、当該玉13は、外輪転走面11Aおよび内輪転走面12Aの各々に玉転動面13Aにおいて接触し、円環状の保持器14により周方向に所定のピッチで配置されることにより円環状の軌道上に転動自在に保持されている。以上の構成により、深溝玉軸受1の外輪11および内輪12は、互いに相対的に回転可能となっている。
 図2を参照して、軸受部品である外輪11、内輪12および玉13は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部不純物からなる焼入硬化された鋼からなっている。そして、接触面としての外輪転走面11A、内輪転走面12Aおよび玉転動面13Aを含む領域には、内部11C,12C,13Cに比べて窒素濃度が高い窒素富化層11B,12B,13Bが、それぞれ形成されている。窒素富化層11B,12B,13Bの表面である接触面としての外輪転走面11A、内輪転走面12Aおよび玉転動面13Aにおける窒素濃度は0.25質量%以上となっている。さらに、外輪転走面11A、内輪転走面12Aおよび玉転動面13Aにおける残留オーステナイト量は、6体積%以上12体積%以下となっている。
 本実施の形態における軸受部品である外輪11、内輪12および玉13は、上記JIS規格SUJ2相当鋼の成分組成を有する鋼からなることにより、その素材が世界各国にて入手容易となる。そして、当該成分組成の鋼の使用を前提として、外輪転走面11A、内輪転走面12Aおよび玉転動面13Aにおける窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されていることにより、転動疲労寿命が長寿命化されている。そして、残留オーステナイト量が12体積%以下にまで低減されることにより、耐圧痕性が向上するとともに、残留オーステナイト量が6体積%以上とされることにより、転動疲労寿命、特に異物混入環境での転動疲労寿命が適切なレベルに維持されている。その結果、外輪11、内輪12および玉13は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品となっている。
 なお、上記外輪11、内輪12および玉13においては、接触面である外輪転走面11A、内輪転走面12Aおよび玉転動面13Aの硬度は60.0HRC以上であることが好ましい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 また、上記外輪11、内輪12および玉13においては、外輪転走面11A、内輪転走面12Aおよび玉転動面13Aの硬度は64.0HRC以下であることが好ましい。これにより、外輪転走面11A、内輪転走面12Aおよび玉転動面13Aにおける残留オーステナイト量を12体積%以下の範囲に調整することが容易となる。
 図3~図5を参照して、実施の形態1の変形例における転がり軸受であるスラストニードルころ軸受2は、上記深溝玉軸受1と基本的には同様の構成を有し、同様の効果を奏する。しかし、スラストニードルころ軸受2は、軌道部材および転動体の構成において、深溝玉軸受1とは異なっている。すなわち、スラストニードルころ軸受2は、円盤状の形状を有し、互いに一方の主面が対向するように配置された軌道部材としての一対の軌道輪21と、転動体としての複数のニードルころ23と、円環状の保持器24とを備えている。複数のニードルころ23は、ニードルころ23の外周面であるころ転動接触面23Aにおいて、一対の軌道輪21の互いに対向する一方の主面に形成された軌道輪転走面21Aに接触し、かつ保持器24により周方向に所定のピッチで配置されることにより円環状の軌道上に転動自在に保持されている。以上の構成により、スラストニードルころ軸受2の一対の軌道輪21は、互いに相対的に回転可能となっている。
 そして、スラストニードルころ軸受2の軌道輪21は、深溝玉軸受の外輪11および内輪12に、スラストニードルころ軸受2のニードルころ23は深溝玉軸受の玉13にそれぞれ相当し、同様の素材からなるとともに、同様の窒素濃度および残留オーステナイト量の窒素富化層21B,23B、内部21C,23C、軌道輪転走面21Aおよび転動接触面23Aを有している。これにより、軌道輪21およびニードルころ23は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品となっている。
 次に、本実施の形態における軸受部品および転がり軸受の製造方法について説明する。図6を参照して、まず、工程(S10)として鋼材準備工程が実施される。この工程(S10)では、JIS規格SUJ2、ASTM規格52100、DIN規格100Cr6、GB規格GCr5もしくはGCr15、およびΓOCT規格ЩX15などのJIS規格SUJ2相当鋼からなる鋼材が準備される。具体的には、たとえば上記成分組成を有する棒鋼や鋼線などが準備される。
 次に、工程(S20)として成形工程が実施される。この工程(S20)では、たとえば工程(S10)において準備された棒鋼や鋼線などに対して鍛造、旋削などの加工が実施されることにより、図1~図5に示される外輪11、内輪12、玉13、軌道輪21、ニードルころ23などの形状に成形された成形部材が作製される。
 次に、工程(S30)として浸炭窒化工程が実施される。この工程(S30)では、工程(S20)において作製された成形部材が浸炭窒化処理される。この浸炭窒化処理は、たとえば以下のように実施することができる。まず、上記成形部材が780℃以上820℃以下程度の温度域で、30分間以上90分間以下の時間予熱される。次に、予熱された成形部材が、エンリッチガスとしてのプロパンガスやブタンガスが添加されることによりカーボンポテンシャルが調整されたRXガスなどの吸熱型ガスに、さらにアンモニアガスが導入された雰囲気中において加熱されて浸炭窒化処理される。浸炭窒化処理の温度は、たとえば820℃以上880℃以下とすることができる。また、浸炭窒化処理の時間は、成形部材に形成すべき窒素富化層の窒素濃度に合わせて設定することができ、たとえば3時間以上9時間以下とすることができる。これにより、成形部材の脱炭を抑制しつつ窒素富化層を形成することができる。
 次に、工程(S40)として焼入工程が実施される。この工程(S40)では、工程(S30)において浸炭窒化処理されることにより窒素富化層が形成された成形部材が、所定の焼入温度から急冷されることにより焼入処理される。この焼入温度は、860℃以下とされることにより、後続の焼戻工程における炭素の固溶量と析出量とのバランス、および残留オーステナイト量の調整が容易となる。また、焼入温度が820℃以上とされることにより、後続の焼戻工程における炭素の固溶量と析出量とのバランス、および残留オーステナイト量の調整が容易となる。焼入処理は、たとえば所定の温度に保持された冷却材としての焼入油中に成形部材を浸漬することにより実施することができる。
 次に、工程(S50)として焼戻工程が実施される。この工程(S50)では、工程(S40)において焼入処理された成形部材が焼戻処理される。具体的には、たとえば210℃以上300℃以下の温度域に加熱された雰囲気中において成形部材が0.5時間以上3時間以下の時間保持されることにより、焼戻処理が実施される。
 次に、工程(S60)として仕上げ加工工程が実施される。この工程(S60)では、工程(S50)において焼戻処理された成形部材を加工することにより他の部品と接触する面である接触面が、すなわち深溝玉軸受1の外輪転走面11A、内輪転走面12Aおよび玉転動面13A、ならびにスラストニードルころ軸受2の軌道輪転走面21Aおよび転動接触面23Aが形成される。仕上げ加工としては、たとえば研削加工を実施することができる。以上の工程により、本実施の形態における軸受部品である外輪11、内輪12、玉13、軌道輪21、ニードルころ23などが完成する。
 さらに、工程(S70)として組立工程が実施される。この工程(S70)では、工程(S10)~(S60)において作製された外輪11、内輪12、玉13、軌道輪21、ニードルころ23と、別途準備された保持器14,24などとが組合わされて、上記実施の形態における深溝玉軸受1やスラストニードルころ軸受2が組立てられる。これにより、本実施の形態における転がり軸受の製造方法が完了する。
 ここで、上記工程(S30)では、後続の工程(S60)における仕上げ加工によって接触面である深溝玉軸受1の外輪転走面11A、内輪転走面12Aおよび玉転動面13A、ならびにスラストニードルころ軸受2の軌道輪転走面21Aおよび転動接触面23Aの窒素濃度が0.25質量%以上となるように成形部材が浸炭窒化処理される。つまり、工程(S60)での取り代などを考慮して、接触面完成後における表面の窒素濃度を0.25質量%以上とすることが可能なように窒素量を調整した窒素富化層11B,12B,13B,21B,23Bが形成される。
 さらに、上記工程(S50)では、後続の工程(S60)における仕上げ加工によって接触面である深溝玉軸受1の外輪転走面11A、内輪転走面12Aおよび玉転動面13A、ならびにスラストニードルころ軸受2の軌道輪転走面21Aおよび転動接触面23Aの残留オーステナイト量が6体積%以上12体積%以下となるように成形部材が焼戻処理される。つまり、工程(S60)での取り代などを考慮して、接触面完成後における表面の残留オーステナイト量を6体積%以上12体積%以下とすることが可能なように、焼戻処理によって残留オーステナイト量が調整される。これにより、上記本実施の形態における軸受部品を製造することができる。
 また、工程(S50)では、成形部材が240℃以上300℃以下の温度域にて焼戻処理されることが好ましい。これにより、焼入処理によって素地に固溶した炭素が適切な割合で炭化物として析出する。その結果、固溶強化と析出強化との適切なバランスが達成され、軸受部品である外輪11、内輪12、玉13、軌道輪21、ニードルころ23の耐圧痕性が向上する。
 (実施の形態2)
 次に、上記実施の形態1における転がり軸受の用途の一例について説明する。図7を参照して、マニュアルトランスミッション100は、常時噛合い式のマニュアルトランスミッションであって、入力シャフト111と、出力シャフト112と、カウンターシャフト113と、ギア(歯車)114a~114kと、ハウジング115とを備えている。
 入力シャフト111は、深溝玉軸受1によりハウジング115に対して回転可能に支持されている。この入力シャフト111の外周にはギア114aが形成され、内周にはギア114bが形成されている。
 一方、出力シャフト112は、一方側(図中右側)において深溝玉軸受1によりハウジング115に回転可能に支持されているとともに、他方側(図中左側)において転がり軸受120Aにより入力シャフト111に回転可能に支持されている。この出力シャフト112には、ギア114c~114gが取り付けられている。
 ギア114cおよびギア114dはそれぞれ同一部材の外周と内周に形成されている。ギア114cおよびギア114dが形成される部材は、転がり軸受120Bにより出力シャフト112に対して回転可能に支持されている。ギア114eは、出力シャフト112と一体に回転するように、かつ出力シャフト112の軸方向にスライド可能なように、出力シャフト112に取り付けられている。
 また、ギア114fおよびギア114gの各々は同一部材の外周に形成されている。ギア114fおよびギア114gが形成されている部材は、出力シャフト112と一体に回転するように、かつ出力シャフト112の軸方向にスライド可能なように、出力シャフト112に取り付けられている。ギア114fおよびギア114gが形成されている部材が図中左側にスライドした場合には、ギア114fはギア114bと噛合い可能であり、図中右側にスライドした場合にはギア114gとギア114dとが噛合い可能である。
 カウンターシャフト113には、ギア114h~114kが形成されている。カウンターシャフト113とハウジング115との間には、2つのスラストニードルころ軸受2が配置され、これによってカウンターシャフト113の軸方向の荷重(スラスト荷重)が支持されている。ギア114hは、ギア114aと常時噛合っており、かつギア114iはギア114cと常時噛合っている。また、ギア114jは、ギア114eが図中左側にスライドした場合に、ギア114eと噛合い可能である。さらに、ギア114kは、ギア114eが図中右側にスライドした場合に、ギア114eと噛合い可能である。
 次に、マニュアルトランスミッション100の変速動作について説明する。マニュアルトランスミッション100においては、入力シャフト111に形成されたギア114aと、カウンターシャフト113に形成されたギア114hとの噛み合わせによって、入力シャフト111の回転がカウンターシャフト113へ伝達される。そして、カウンターシャフト113に形成されたギア114i~114kと出力シャフト112に取り付けられたギア114c、114eとの噛み合わせ等によって、カウンターシャフト113の回転が出力シャフト112へ伝達される。これにより、入力シャフト111の回転が出力シャフト112へ伝達される。
 入力シャフト111の回転が出力シャフト112へ伝達される際には、入力シャフト111およびカウンターシャフト113の間で噛合うギアと、カウンターシャフト113および出力シャフト112の間で噛合うギアとを変えることによって、入力シャフト111の回転速度に対して出力シャフト112の回転速度を段階的に変化させることができる。また、カウンターシャフト113を介さずに入力シャフト111のギア114bと出力シャフト112のギア114fとを直接噛合わせることによって、入力シャフト111の回転を出力シャフト112へ直接伝達することもできる。
 以下に、マニュアルトランスミッション100の変速動作をより具体的に説明する。ギア114fがギア114bと噛合わず、ギア114gがギア114dと噛合わず、かつギア114eがギア114jと噛合う場合には、入力シャフト111の駆動力は、ギア114a、ギア114h、ギア114jおよびギア114eを介して出力シャフト112に伝達される。これが、たとえば第1速とされる。
 ギア114gがギア114dと噛合い、ギア114eがギア114jと噛合わない場合には、入力シャフト111の駆動力は、ギア114a、ギア114h、ギア114i、ギア114c、ギア114dおよびギア114gを介して出力シャフト112に伝達される。これが、たとえば第2速とされる。
 ギア114fがギア114bと噛合い、ギア114eがギア114jと噛合わない場合には、入力シャフト111はギア114bおよびギア114fとの噛合いにより出力シャフト112に直結され、入力シャフト111の駆動力は直接出力シャフト112に伝達される。これが、たとえば第3速とされる。
 上述のように、マニュアルトランスミッション100は、回転部材としての入力シャフト111および出力シャフト112をこれに隣接して配置されるハウジング115に対して回転可能に支持するために、深溝玉軸受1を備えている。また、マニュアルトランスミッション100は、回転部材であるカウンターシャフト113をこれに隣接して配置されるハウジング115に対して回転可能に支持するために、スラストニードルころ軸受2を備えている。このように、上記実施の形態1における深溝玉軸受1およびスラストニードルころ軸受2は、マニュアルトランスミッション100内において使用することができる。そして、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な深溝玉軸受1およびスラストニードルころ軸受2は、転動体と軌道部材との間に高い面圧が付与されるマニュアルトランスミッション100内での使用に好適である。
 (実施の形態3)
 次に、上記実施の形態1における転がり軸受の用途の他の一例について説明する。図8および図9を参照して、デファレンシャル200は、デフケース201と、ピニオンギア202aおよび202bと、サンギア203と、ピニオンキャリア204と、アーマチュア205と、パイロットクラッチ206と、電磁石207と、ロータークラッチ(デフケース)208と、カム209を備えている。
 デフケース201の内周に設けられた内歯201aと4つのピニオンギア202aの各々とが互いに噛みあっており、4つのピニオンギア202aの各々と4つのピニオンギア202bの各々とが互いに噛み合っており、4つのピニオンギア202bの各々とサンギア203とが互いに噛み合っている。サンギア203は第1の駆動軸としての左駆動軸220の端部に接続されており、これによりサンギア203と左駆動軸220とは一体となって自転することができる。また、ピニオンギア202aの回転軸202cの各々と、ピニオンギア202bの回転軸202dとの各々が、ともにピニオンキャリア204によって自転可能に保持されている。ピニオンキャリア204は第2の駆動軸としての右駆動軸221の端部に接続されており、これによりピニオンキャリア204と右駆動軸221とは一体となって自転することができる。
 また、電磁石207、パイロットクラッチ206、ロータークラッチ(デフケース)208、アーマチュア205、およびカム209によって電磁クラッチが構成されている。
 デフケース201の外歯201bは図示しないリングギアの歯車と噛み合っており、デフケース201はリングギアからの動力を受けて自転する。左駆動軸220および右駆動軸221の間に差動がない場合には、ピニオンギア202aおよび202bは自転せず、デフケース201、ピニオンキャリア204、およびサンギア203の3つの部材が一体となって回転する。つまり、リングギアから左駆動軸220へは、矢印Bで示されるように動力が伝達され、リングギアから右駆動軸221へは、矢印Aで示されるように動力が伝達される。
 一方、左駆動軸220および右駆動軸221のうちいずれか一方、たとえば左駆動軸220に抵抗が加わる場合には、左駆動軸220と接続したサンギア203に抵抗が加わり、ピニオンギア202aおよび202bの各々が自転する。そして、ピニオンギア202aおよび202bの回転によってピニオンキャリア204の自転が速められ、左駆動軸220と右駆動軸221との間に差動が発生する。
 また、電磁クラッチは、左駆動軸220と右駆動軸221との間に一定以上の差動が生じると通電し、電磁石207によって磁界が発生される。パイロットクラッチ206およびアーマチュア205は、磁気誘導作用により電磁石207に引き付けられて摩擦トルクを発生する。摩擦トルクはカム209によりスラスト方向に変換される。そして、スラスト方向に変換された摩擦トルクにより、ピニオンキャリア204を介してメーンクラッチがデフケース208に押し付けられ、これにより差動制限トルクが発生する。スラストニードルころ軸受2はカム209で生じたスラスト方向の反力を受け、この反力をデフケース208に伝達する。その結果、摩擦トルクに比例したカム209による倍のスラスト力が発生される。このように、電磁石207は、パイロットクラッチ206のみを制御し、そのトルクを倍力機構により増幅することができ、また任意に摩擦トルクをコントロールすることができる。
 ここで、カム209とデフケース208との間には、実施の形態1におけるスラストニードルころ軸受2が配置されている。また、デフケース208とデフケース208の外周側に配置される部材との間には、実施の形態1における深溝玉軸受1が配置されている。このように、上記実施の形態1における深溝玉軸受1およびスラストニードルころ軸受2は、デファレンシャル200内において使用することができる。そして、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な深溝玉軸受1およびスラストニードルころ軸受2は、転動体と軌道部材との間に高い面圧が付与されるデファレンシャル200内での使用に好適である。
 (実施の形態4)
 次に、実施の形態4について説明する。図10および図11を参照して、実施の形態4における転がり軸受である深溝玉軸受301は、軸受部品である第1軌道部材としての外輪311と、軸受部品である第2軌道部材としての内輪312と、軸受部品である複数の転動体としての玉313と、保持器314と、シール部材317とを備えている。外輪311には、円環状の第1転走面しての外輪転走面311Aが形成されている。内輪312には、外輪転走面311Aに対向する円環状の第2転走面としての内輪転走面312Aが形成されている。また、複数の玉313には、転動体転走面(転動接触面)としての玉転動面313A(玉313の表面)が形成されている。外輪転走面311A、内輪転走面312Aおよび玉転動面313Aは、これらの軸受部品の軸受接触面である。そして、当該玉313は、外輪転走面311Aおよび内輪転走面312Aの各々に玉転動面313Aにおいて接触し、円環状の保持器314により周方向に所定のピッチで配置されることにより円環状の軌道上に転動自在に保持されている。シール部材317は、外輪311と内輪312とに挟まれた空間である軸受空間を閉じるように配置され、軸受空間への異物の侵入を抑制している。以上の構成により、深溝玉軸受301の外輪311および内輪312は、互いに相対的に回転可能となっている。
 図11を参照して、軸受部品である外輪311、内輪312および玉313は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部不純物からなる焼入硬化された鋼からなっている。そして、軸受接触面としての外輪転走面311A、内輪転走面312Aおよび玉転動面313Aを含む領域には、内部311C,312C,313Cに比べて窒素濃度が高い窒素富化層311B,312B,313Bが、それぞれ形成されている。窒素富化層311B,312B,313Bの表面である軸受接触面としての外輪転走面311A、内輪転走面312Aおよび玉転動面313Aにおける窒素濃度は0.25質量%以上となっている。さらに、外輪転走面311A、内輪転走面312Aおよび玉転動面313Aにおける残留オーステナイト量は、6体積%以上12体積%以下となっている。
 本実施の形態における軸受部品である外輪311、内輪312および玉313は、上記JIS規格SUJ2相当鋼の成分組成を有する鋼からなることにより、その素材が世界各国にて入手容易となっている。そして、当該成分組成の鋼の使用を前提として、外輪転走面311A、内輪転走面312Aおよび玉転動面313Aにおける窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されていることにより、転動疲労寿命が長寿命化されている。そして、残留オーステナイト量が12体積%以下にまで低減されることにより、耐圧痕性が向上するとともに、残留オーステナイト量が6体積%以上とされることにより、転動疲労寿命、特に異物混入環境での転動疲労寿命が適切なレベルに維持されている。その結果、外輪311、内輪312および玉313は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な高強度軸受部品となっている。
 また、図11を参照して、シール部材317は、金属からなり、環状の形状を有する芯金316と、芯金316を取り囲むように配置された樹脂もしくはゴムからなる弾性部材である弾性部315とを含んでいる。このような構造により、シール部材317は、芯金316によって所望の剛性を維持しつつ、外輪311および内輪312に接触する弾性部315において弾性変形可能となっている。シール部材317は、外輪311の内周面に形成されたシール取付け溝311Eに外周部が嵌め込まれて固定される。そして、シール部材317の内周側端部であるシールリップ部317Aが、内輪312の外周面に接触している。
 このシールリップ部317Aは、摩耗し易いゴムなどの高摩耗材からなっている。そのため、図11を参照して、外輪311に対して内輪312を相対的に回転させると、回転開始後すぐにシールリップ部317Aが摩耗して、図12に示すように内輪312とシールリップ部317Aとが接触しない状態となる。その結果、シールリップ部317Aと内輪312の外周面とは微小隙間を挟んで対向する状態となる。これにより、回転トルクの上昇を抑制しつつ、軸受内部への異物の侵入が低減される。その結果、深溝玉軸受301の回転トルクの上昇が抑制されつつ、転動疲労寿命、特に異物混入環境における転動疲労寿命が長寿命化する。なお、上記ではシールリップ部317Aと内輪312の外周面とが非接触になる場合について説明したが、内輪312とシールリップ部317Aとの接触圧が実質的に零である状態と見なせる程度の軽接触となる程度に低下するものであってもよい。
 以上のように、本実施の形態における深溝玉軸受301は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な高強度軸受部品である外輪311、内輪312および玉313を備えるとともに、回転トルクの上昇を抑制しつつ、軸受内部への異物の侵入を低減するシール部材317を備えている。その結果、本実施の形態における深溝玉軸受301は、耐圧痕性と転動疲労寿命とを高いレベルで両立した転がり軸受となっている。
 なお、上記実施の形態においては、外輪311、内輪312および玉313のすべてが上記高強度軸受部品からなっている場合について説明したが、外輪311、内輪312および玉313のうち、少なくともいずれか1つが上記高強度軸受部品であることにより、耐圧痕性と転動疲労寿命とを高いレベルで両立することができる。
 また、耐圧痕性は、特に軌道輪において問題となるため、外輪311および内輪312のいずれか一方、好ましくは両方が上記高強度軸受部品であることが好ましい。さらに、転動体はころであってもよいが、回転トルク低減の観点からは、上記実施の形態のように、ころが採用されている箇所に対して、ころに代えて玉が採用されることが好ましい。転動体が玉である玉軸受が採用されることにより、ころ軸受に比べて軸受の静定格荷重が著しく低下するため、特に軌道輪の耐圧痕性が問題となるが、軌道輪(外輪311、内輪312)が上記高強度軸受部品であることにより、耐圧痕性を十分なレベルに維持しつつ回転トルクを低減することができる。
 なお、上記外輪311、内輪312および玉313においては、軸受接触面である外輪転走面311A、内輪転走面312Aおよび玉転動面313Aの硬度は60.0HRC以上であることが好ましい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 また、上記外輪311、内輪312および玉313においては、外輪転走面311A、内輪転走面312Aおよび玉転動面313Aの硬度は64.0HRC以下であることが好ましい。これにより、外輪転走面311A、内輪転走面312Aおよび玉転動面313Aにおける残留オーステナイト量を12体積%以下の範囲に調整することが容易となる。
 上記本実施の形態における深溝玉軸受301および深溝玉軸受301を構成する外輪311、内輪312および玉313は、上記実施の形態1における転がり軸受および軸受部品と同様の製造方法により製造することができる。
 また、本実施の形態における深溝玉軸受301は、上記実施の形態1における深溝玉軸受1と同様に、上記実施の形態2および3において説明したマニュアルトランスミッション100やデファレンシャル200内において使用することができる。
 (実施の形態5)
 次に、実施の形態5について説明する。図13を参照して、本実施の形態における転がり軸受である深溝玉軸受401は、軸受部品である第1軌道部材としての外輪411と、軸受部品である第2軌道部材としての内輪412と、軸受部品である複数の転動体としてのボール413と、保持器415とを備えている。
 外輪411には、円環状の第1転走面しての外輪転走面411Aが形成されている。内輪412には、外輪転走面411Aに対向する円環状の第2転走面としての内輪転走面412Aが形成されている。また、複数のボール413には、転動体転走面としてのボール転動面413A(ボール413の表面)が形成されている。外輪転走面411A、内輪転走面412Aおよびボール転動面413Aは、これらの軸受部品の接触面である。そして、当該ボール413は、外輪転走面411Aおよび内輪転走面412Aの各々にボール転動面413Aにおいて接触し、円環状の保持器415により周方向に所定のピッチで配置されることにより円環状の軌道上に転動自在に保持されている。以上の構成により、深溝玉軸受401の外輪411および内輪412は、互いに相対的に回転可能となっている。
 軸受部品である外輪411、内輪412およびボール413は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部鉄および不純物からなる焼入硬化された鋼からなっている。そして、接触面としての外輪転走面411A、内輪転走面412Aおよびボール転動面413Aを含む領域には、内部411C,412C,413Cに比べて窒素濃度が高い窒素富化層411B,412B,413Bが、それぞれ形成されている。窒素富化層411B,412B,413Bの表面である接触面としての外輪転走面411A、内輪転走面412Aおよびボール転動面413Aにおける窒素濃度は0.25質量%以上となっている。さらに、外輪転走面411A、内輪転走面412Aおよびボール転動面413Aにおける残留オーステナイト量は、6体積%以上12体積%以下となっている。
 保持器415は、たとえば冷間圧延鋼(JIS規格のSPCC系等)の帯鋼をプレス加工して作成されている。
 本実施の形態における軸受部品である外輪411、内輪412およびボール413は、上記JIS規格SUJ2相当鋼の成分組成を有する鋼からなることにより、その素材が世界各国にて入手容易となっている。そして、当該成分組成の鋼の使用を前提として、外輪転走面411A、内輪転走面412Aおよびボール転動面413Aにおける窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されていることにより、転動疲労寿命が長寿命化されている。そして、残留オーステナイト量が12体積%以下にまで低減されることにより、耐圧痕性が向上するとともに、残留オーステナイト量が6体積%以上とされることにより、転動疲労寿命、特に異物混入環境での転動疲労寿命が適切なレベルに維持されている。その結果、外輪411、内輪412およびボール413は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品となっている。
 一方、図13のW-W断面を示す図14を参照して、保持器415は、円周方向に沿って所定間隔で配設された半球状膨出部426を有する2枚の環状保持板427A,427Bが組み合わされてなる。すなわち、各環状保持板427A,427Bは、円周方向に沿って配設される半球状膨出部426と、隣合う半球状膨出部426間の平坦部428とからなる。組み合わされた状態で、平坦部428、428が重ね合わされ、この平坦部428、428がリベット等の固着具429によって連結される。その結果、各半球状膨出部426が対向して、リング状のボール嵌合部(ポケット)430が形成される。
 この軸受に好適な潤滑方法としては、油潤滑が挙げられる。潤滑油として、スピンドル油、マシン油、タ-ビン油などの鉱油のほか、ATFやデファレンシャル用油を用いることができる。また、150℃以上の高温又は-30℃以下の低温になる使用条件では,ジエステル油,シリコン油,フロロカ-ボン油などの合成油を潤滑油として用いることができる。
 この保持器415においては、図15等に示すように、ポケット430のボール対向面にボール接触部431とボール非接触部432とが設けられている。すなわち、反ボール対向面に反ボール側へ突出する矩形状の凸部433(図16参照)を形成することによって、ボール対向面にボール接触部431よりも反ボール側へ凹む矩形状の凹部434が、ポケット430のボール対向面におけるポケット軸方向中央部にポケット周方向に延びるように設けられる。この凹部434が、ボール非接触部432を構成している。
 図14に示すように、凹部434にて構成されるボール非接触部432のポケット周方向長さ(図15に示すポケット周方向αにおける長さ)をAとし、ボール413の直径をBとし、ボール413とポケット430のボール対向面との間に形成される隙間の大きさをCとしたときに、A/(B+C)の値は0.70~0.90に設定される。
 また、図17に示すように、ボール非接触部432のポケット軸方向長さ(図15に示すポケット軸方向β(軸受の径方向)における長さ)をDとし、ポケット430の軸方向全長さをEとしたとき、D/Eの値は0.25~0.40に設定されることが好ましい。さらに、ボール非接触部432を構成する凹部434の深さをFとし、環状保持板427A(427B)の半球状膨出部426の肉厚をGとしたとき、F/Gの値は0.30~0.40に設定されることが好ましい。
 図18に示すように、ポケット430の軸方向全長さをEとし、ボール中心Oに対するボール非接触部432の中央の軸方向ずれ量をHとしたき、H/(E/2)の値は0~0.2に設定されることが好ましい。また、ボール非接触部432を構成する凹部434のポケット軸方向開口縁435は、アール形状(曲面状)とされている。より具体的には、ポケット軸方向開口縁435のアール(R)を、たとえば0.05~0.30mmとすることができる。
 このように構成することによって、凹部434を低トルク効果を得るための低トルク溝と呼ぶことができる。この低トルク溝は、溝幅(ポケット軸方向長さ:D)、溝深さ(凹部434の深さ:F)、および溝長さ(ポケット周方向長さ:A)の3要素を含んでいる。
 ここで、ボール413とポケット案内面間に作用するせん断抵抗は、図19に示す潤滑油粘度、滑り速度、すべり面積、すきまの4つの要素で決定される。この場合のニュートンの粘性法則によるせん断抵抗Fは、次の数式で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Fはせん断抵抗、ηは潤滑油の粘度、uはすべり速度、Sはすべり面積、dは隙間である。ηおよびuは軸受の運転条件によって決まる。このため、その値を変更することはできない。すべり面積Sを小さくすれば、せん断抵抗が小さくなる。そのため、「低トルク溝」を形成することで、保持器415のボール413に対するすべり面積が小さくなるので、せん断抵抗が小さくなる。また、すきまdに関しては、その値を大きくすれば、せん断抵抗が小さくなることが分かる。通常のせん断抵抗が発生するdのオーダーを確認すると、表面粗さ分程度のオーダーである為、マクロ的寸法で溝深さ(すきまd)を設定すればすきまは十分大きく、せん断抵抗を「0」とすること(「0」とみなすことができる程度に十分に小さくすること)が可能である。
 したがって、「低トルク溝」におけるせん断抵抗を「0」となるように、上述のような溝部寸法を採用することが好ましい。
 本実施の形態のように、ポケット軸方向中央部に、ポケット周方向に延びる凹部434を設けた場合、この凹部434のポケット周方向長さを長くすればすべり面積が小さくなり、せん断抵抗の低減に繋がる。しかしながら、このポケット周方向長さを長くし過ぎると、ボール413とポケット430との接触が案内面(ボール接触部431)ではなく、案内面(ボール接触部431)と凹部434との境目となる。このように、境目で接触すると、油膜形成が著しく低下し、表面損傷の懸念がある。そこで、凹部434のポケット周方向長さはポケット430内でのボール413の動きを含めても、ボール413をポケット案内面で保持できる範囲内で出来るだけ大きな寸法とすることが好ましい。具体的には、A/(B+C)の値は0.70~0.90に設定することが好ましい。これによって、軸受としての機能を満足しつつ、最大限の低トルク化の効果が得られる。
 以上のように、本実施の形態における深溝玉軸受401は、上記外輪411、内輪412、ボール413および保持器415を備えることにより、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立し、かつ低トルク化を達成することができる。
 凹部434のポケット軸方向の長さを大きくすればすべり面積が小さくなり、せん断抵抗の低減に繋がる。ここで、保持器415は、プレス加工で成形される場合がある。このような場合、凹部434のポケット軸方向の長さを大きくし過ぎると製造上の困難性が生じる懸念がある。そこで、プレス加工しても、ポケット形状崩れが発生しない範囲内で、できるだけ凹部434のポケット軸方向の長さを大きな寸法とすることが好ましい。具体的には、D/Eの値は0.25~0.40に設定することが好ましい。
 凹部434の深さを、表面粗さの水準より大きな隙間をボールとの間に形成可能な程度に設定すれば、せん断抵抗を「0」にすること(「0」とみなせる程度に小さくすること)が可能である。しかし、保持器415のプレス加工精度を考慮すると、凹部434の深さは余りにも小さ過ぎると十分な寸法精度を確保することが難しくなる。一方、凹部434の深さが大き過ぎると、プレス加工でのポケット形状崩れが懸念される。
 このような観点から、ボール非接触部432を構成する凹部434の深さをFとし、環状保持板427A(427B)の半球状膨出部426,426の肉厚をGとしたとき、F/Gの値を0.30~0.40に設定することが好ましい。
 凹部434のポケット軸方向中心位置が、ボール413の中心Oに対してポケット軸方向にずれれば、バランスが悪くなりプレス加工時の形状崩れの原因となる。このため、ポケット430の軸方向全長さをEとし、ボール中心Oに対するボール非接触部432の中央の軸方向ずれ量をHとしたとき、H/(E/2)の値は0~0.2に設定されることが好ましい。
 また、凹部434とポケット案内面(ボール接触部431)との境目にボール413が接触してしまうと、油膜形成能力が著しく低下する。そこで、凹部434は境目でボール413が接触しないような寸法関係とするのが好ましい。しかしながら、設計上で接触しないように設定しても製造上のばらつき等により、このような接触が発生する可能性がある。そのため、仮に接触が発生しても直ちに損傷が生じないように、境目の形状はエッジ状(平面状)の形状ではなく、アール形状(曲面形状)とすることが好ましい。
 上記ボール非接触部432は、保持器415の全ポケット430に設けてられてもよいし、任意のポケット430のみに設けられてもよい。全ポケット430にボール非接触部432を設けることによって、この保持器415を用いた軸受では、より確実に低トルク化を図ることができる。
 このように、上記保持器415を用いた軸受(玉軸受)では、軸受としての機能を満足しつつ、最大限の低トルク効果を発揮でき、噴霧や跳ね掛け等の潤滑油量が少ない状態で使用される場合に、特にトルク低減効果を得ることができ、省燃費化に寄与することができる。
 D/Eの値を0.25~0.40に設定したり、F/Gの値を0.30~0.40に設定したりすることによって、製造性に優れ、しかも低トルク効果を有効に発揮できる。凹部のポケット軸方向開口縁をアール形状とすれば、ボールがこの開口縁に接触しても、損傷しにくいものとなる。H/(E/2)の値を0~0.2に設定することによって、バランスに優れ、プレス加工時の形状崩れ等を有効に防止でき、高品質の軸受を提供できる。
 全ポケット430にボール非接触部432を設けることによって、この保持器415を用いた軸受では、より確実に低トルク化を図ることができる。上記のような条件を満たす保持器415は、全体形状が比較的単純であり、プレス加工等にて成型することができ、低コスト化を図ることができる。すなわち、この種の保持器の製造において従来から採用されるプレス加工に対して、その一部のプロセスのみを変更することで製造が可能であって、製造コストの低コスト化を図ることができる。また、従来より、保持器の最弱部であったすみR部(環状保持板の半球状膨出部と平坦部との間のコーナ部)の形状を従来形状に対して変更する必要がなく、強度低下を回避することができる。
 このように、軸受サイズ、内部諸元の変更なく、トルク低減効果が得られる玉軸受(深溝玉軸受)を安価でかつ強度低下無しで提供することができる。このため、この保持器415を用いた軸受を自動車に使用すれば、燃費が向上し、環境負荷の小さい自動車を提供することが可能となる。すなわち、本実施の形態における深溝玉軸受401は、2輪車を含む自動車の動力伝達軸の支持用に、好適である。
 なお、上記実施の形態においては、保持器415が金属製であって、プレス加工により成形される場合について説明したが、本発明の転がり軸受を構成する保持器はこれに限られるものではない。具体的には、保持器415は、合成樹脂の成形品であってもよい。この場合、保持器415を構成する素材としては、たとえばポリフェニレンサルファイド樹脂(以下、PPS樹脂と称する)、ポリアミド46(PA46)、ポリアミド66(PA66)などを採用することができる。
 このような樹脂製保持器は、たとえば射出成型にて成型することができる。なお、樹脂製保持器であっても削り加工にて成型してもよい。このような樹脂製保持器であっても、図13に示すような金属製保持器と同様の作用効果を奏する。また、保持器415に設けられるポケットの数は任意に設定することができる。さらに、ボール413の素材としては、上述のようなSUJ2相当鋼のほか、セラミックス(窒化珪素Si、アルミナAl)を採用してもよい。
 上記外輪411、内輪412およびボール413においては、接触面である外輪転走面411A、内輪転走面412Aおよびボール転動面413Aの硬度は60.0HRC以上であることが好ましい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 また、上記外輪411、内輪412およびボール413においては、外輪転走面411A、内輪転走面412Aおよびボール転動面413Aの硬度は64.0HRC以下であることが好ましい。これにより、外輪転走面411A、内輪転走面412Aおよびボール転動面413Aにおける残留オーステナイト量を12体積%以下の範囲に調整することが容易となる。
 上記本実施の形態における深溝玉軸受401および深溝玉軸受401を構成する外輪411、内輪412およびボール413は、上記実施の形態1における転がり軸受および軸受部品と同様の製造方法により製造することができる。
 また、本実施の形態における深溝玉軸受401は、上記実施の形態1における深溝玉軸受1と同様に、上記実施の形態2および3において説明したマニュアルトランスミッション100やデファレンシャル200内において使用することができる。
 (実施の形態6)
 次に、実施の形態6について説明する。図20を参照して、実施の形態6における転がり軸受である深溝玉軸受501は、軸受部品である第1軌道部材としての外輪511と、軸受部品である第2軌道部材としての内輪512と、軸受部品である複数の転動体としてのボール513と、保持器514と、外輪511と内輪512とに挟まれた軸受空間を閉じるように外輪511と内輪512との間に配置された環状のシール部材517とを備えている。
 外輪511には、円環状の第1転走面しての外輪転走面511Aが形成されている。内輪512には、外輪転走面511Aに対向する円環状の第2転走面としての内輪転走面512Aが形成されている。また、複数のボール513には、転動体転走面としてのボール転動面513A(ボール513の表面)が形成されている。外輪転走面511A、内輪転走面512Aおよびボール転動面513Aは、これらの軸受部品の接触面である。そして、当該ボール513は、外輪転走面511Aおよび内輪転走面512Aの各々にボール転動面513Aにおいて接触し、円環状の保持器514により周方向に所定のピッチで配置されることにより円環状の軌道上に転動自在に保持されている。以上の構成により、深溝玉軸受501の外輪511および内輪512は、互いに相対的に回転可能となっている。また、外輪511の内周面(内径面)の軸方向両端部には、装着溝520が形成されている。一方、内輪512の外周面(外径面)の軸方向両端部には、凹溝521が形成されている。そして、この装着溝520にシール部材517の径方向外端部がはめ込まれている。これにより、シール部材517の径方向内端部に形成されたリップ部522が、凹溝521の底面に接触している。
 軸受部品である外輪511、内輪512およびボール513は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部鉄および不純物からなる焼入硬化された鋼からなっている。そして、接触面としての外輪転走面511A、内輪転走面512Aおよびボール転動面513Aを含む領域には、内部511C,512C,513Cに比べて窒素濃度が高い窒素富化層511B,512B,513Bが、それぞれ形成されている。窒素富化層511B,512B,513Bの表面である接触面としての外輪転走面511A、内輪転走面512Aおよびボール転動面513Aにおける窒素濃度は0.25質量%以上となっている。さらに、外輪転走面511A、内輪転走面512Aおよびボール転動面513Aにおける残留オーステナイト量は、6体積%以上12体積%以下となっている。
 保持器514は、たとえば冷間圧延鋼(JIS規格のSPCC系等)の帯鋼をプレス加工して作成されている。また、シール部材517は、芯金518と、この芯金518を被覆する合成樹脂やゴム材等からなる被覆部519とを備える。
 本実施の形態における軸受部品である外輪511、内輪512およびボール513は、上記JIS規格SUJ2相当鋼の成分組成を有する鋼からなることにより、その素材が世界各国にて入手容易となっている。そして、当該成分組成の鋼の使用を前提として、外輪転走面511A、内輪転走面512Aおよびボール転動面513Aにおける窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されていることにより、転動疲労寿命が長寿命化されている。そして、残留オーステナイト量が12体積%以下にまで低減されることにより、耐圧痕性が向上するとともに、残留オーステナイト量が6体積%以上とされることにより、転動疲労寿命、特に異物混入環境での転動疲労寿命が適切なレベルに維持されている。その結果、外輪511、内輪512およびボール513は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品となっている。
 また、保持器514は、図21および図22に示すように、円周方向に沿って所定間隔で配置された半球状膨出部526を有する2枚の環状保持板527A,527Bが組み合わされて形成されている。すなわち、各環状保持板527A,527Bは、円周方向に沿って所定の間隔で配置される半球状膨出部526と、隣合う半球状膨出部526の間のそれぞれに形成された平坦部528とを含んでいる。この2枚の環状保持板527A,527Bが組み合わされるように平坦部528,528が重ね合わされ、この平坦部528、528がリベット等の固着具529によって連結されている。その結果、各半球状膨出部526が対向して、リング状のボール嵌合部(ポケット)530が形成されている。
 そして、この保持器514においては、ポケット530のボール対向面にボール非接触部531が設けられている。このポケット530におけるボール513との接触面積は、ボール非接触部531を設けない場合のボール513との接触面積よりも15%~30%低減されている。
 反ボール対向面に反ボール側へ突出する矩形状の凸部532を形成することによって、ボール対向面に反ボール側へ凹む矩形状の凹部533が設けられている。この凹部533がボール非接触部531である。凸部532としては、図23~図28に示すように、種々のものを採用することができる。
 すなわち、図23に示す形状Aは、円周方向長さLがLAとされ、その幅寸法WがWAとされている。また、図24に示す形状Bは、円周方向長さLがLAよりも短いLBとされ、その幅寸法WがWAと同一のWBとされている。図25に示す形状Cは、円周方向長さLがLBと同一のLCとされ、その幅寸法WがWAよりも大きいWCとされている。図26に示す形状Dは、円周方向長さLがLAと同一のLDとされ、その幅寸法WがWAと同一のWDとされている。
 図27に示す形状Eは、円周方向長さLがLBと同一のLEとされ、その幅寸法WがWAと同一のWEとされている。図28に示す形状Fは、円周方向長さLがLBと同一のLFとされ、その幅寸法WがWAと同一のWFとされている。
 図23に示す形状Aと、図24に示す形状Bと、図28に示す形状Fとは、凸部532の中央線Oがボール513のピッチ円PCDに一致しているものであって、凸部532がピッチ円PCD上に配設されている。図25に示す形状Cと、図26に示す形状Dと、図27に示す形状Eとは、凸部532の中央線Oが、ボール513のピッチ円PCDよりも軸受外径側へずれている。この場合、図25に示す形状Cでは、そのずれは僅かであるが、図26に示す形状Dと、図27に示す形状Eでは、そのずれは大きく、一方の長辺がボール513のピッチ円PCDに一致している。
 すなわち、凸部532としては図23~図28の示すような種々形状を有するものを採用することができる。そして、これによって形成される凹部533により構成されるボール非接触部531は、ポケット530において、ボール非接触部531を設けない場合に比べて、保持器514とボール513との接触面積を15%~30%低減させる。
 凸部532としては、径方向寸法に対して周方向寸法が長い矩形(長方形)であっても、逆に周方向に対して径方向寸法が長い矩形(長方形)であっても、回転方向寸法と径方向寸法とが同一の正方形であってもよい。また、長方形とせずに、長円または楕円形状であってもよい。このような楕円形状である場合でも、径方向寸法に対して周方向寸法が長いものであっても、逆に周方向寸法に対して径方向寸法が長いものであってもよい。さらに、円形であってもよい。
 本実施の形態における保持器514においては、ボール対向面にボール非接触部531を設けたことによって、ポケット内部を潤滑剤が通過する際の抵抗を低減することができる。また、ボール非接触部531を設けたことによって、ボール513とポケット530との間に形成される油膜量を少なくすることができる。
 ここで、ボール非接触部が小さすぎると、せん断する油膜量の減少量が少なく、トルク低減を充分に達成できない。一方、ボール非接触部531が大きすぎると、ボール513とポケット530との間に形成される油膜量が小さくなり過ぎて、ボール513の滑らかな転動を損なう。このため、本実施の形態のように、ボール非接触部531の範囲を設定することによって、ポケット内部を潤滑剤が通過する際の抵抗と、せん断する油膜量の減少との両立が可能となる。このため、本実施の形態における保持器514を採用することにより、深溝玉軸受501の回転トルク低減を図ることができる。
 以上のように、本実施の形態における深溝玉軸受501によれば、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立し、かつ低トルク化を達成することができる。
 ボール非接触部531は、ボール対向面に反ボール側へ凹む凹部533を設けることによって、確実に形成することができる。
 ボール非接触部531を、ボール513のピッチ円よりも外径側に配置すれば、周速の高い位置でのせん断抵抗を低減することができ、より安定してトルクの低減を図ることができる。
 なお、上記外輪511、内輪512およびボール513においては、接触面である外輪転走面511A、内輪転走面512Aおよびボール転動面513Aの硬度は60.0HRC以上であることが好ましい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 また、上記外輪511、内輪512およびボール513においては、外輪転走面511A、内輪転走面512Aおよびボール転動面513Aの硬度は64.0HRC以下であることが好ましい。これにより、外輪転走面511A、内輪転走面512Aおよびボール転動面513Aにおける残留オーステナイト量を12体積%以下の範囲に調整することが容易となる。
 図29に示す深溝玉軸受501は、シール部材517を有さないタイプである。すなわち、図29に示す深溝玉軸受は、シール部材517、シール部材517が装着される装着溝520、およびシール部材517のリップ部522が接触する凹溝521を有さない点を省いて、図20に示す深溝玉軸受501と同様の構造を有している。
 このため、図29に示す深溝玉軸受501は、図20に示す深溝玉軸受501と同様の作用効果を奏する。
 (実施の形態7)
 次に、実施の形態7について説明する。図30および図20を参照して、実施の形態7における深溝玉軸受501は、実施の形態6の場合と基本的には同様の構造を有し、同様の効果を奏する。しかし、実施の形態7の深溝玉軸受501は、保持器514のボール非接触部531の構造において実施の形態6の場合とは異なっている。
 図30を参照して、実施の形態7における深溝玉軸受501の保持器514では、半球状膨出部526にスリット535が形成されている。そして、このスリット535が、ボール非接触部531として機能する。スリット535は、図31に示すように矩形状であって、その中心線O1がボール513のピッチ円PCDに一致する。
 スリット535は、径方向寸法に対して周方向寸法が長い矩形(長方形)であっても、逆に周方向寸法に対して径方向寸法が長い矩形(長方形)であっても、回転方向寸法と径方向寸法とが同一の正方形であってもよい。また、長方形とせずに、長円または楕円形状であってもよい。このような楕円形状である場合でも、径方向寸法に対して周方向寸法が長いものであっても、逆に周方向寸法に対して径方向寸法が長いものであってもよい。さらに、円形であってもよい。
 スリット535の配置位置としては、図31に示すように、ボール513のピッチ円PCD上に配設されものであっても、ピッチ円PCDよりも外径側へ配設されるものであってもよい。この場合のずれ量も、任意に設定できる。すなわち、スリット535によって構成されるボール非接触部531が、ポケット530において、ボール非接触部531を設けない場合のボール513との接触面積よりも当該接触面積を15%~30%低減させるものであればよい。なお、図30に示す軸受の他の構成は図20に示す軸受と同様であるので、これらの説明を省略する。
 図30および図31に示すように、ボール非接触部531がスリット535によって構成される場合であっても、ポケット内部を潤滑剤が通過する際の抵抗を低減することができる。また、ボール513とポケット530との間に形成される油膜量を少なくすることができる。このように、図30および図31に示す保持器は、図20に示す保持器と同様の作用効果を奏する。また、スリット535を設けた保持器514は、凸部532を設けた保持器514とは異なり、保持器514の軸受軸方向の寸法が大きくならず、コンパクト化を図ることができる。すなわち、ボール非接触部531を有さない従来の保持器と同じ寸法を維持しつつ、トルクを低減させることができる。
 図32に示す深溝玉軸受501は、シール部材517を有さないタイプである。すなわち、図32に示す深溝玉軸受は、シール部材517、シール部材517が装着される装着溝520、およびシール部材517のリップ部522が接触する凹溝521を有さない点を省いて、図30に示す深溝玉軸受501と同様である。
 このため、図32に示す深溝玉軸受501であっても、図30に示す深溝玉軸受501と同様の作用効果を奏する。
 なお、上記実施の形態においては、保持器514がプレス加工されて形成された金属製保持器である場合について説明したが、本発明の転がり軸受が備える保持器はこれに限られない。すなわち、保持器514は、鋳造による成型された金属からなるものであってもよい。また、削り加工や放電加工(ワイヤーカットを含む)によって成形されたものであってもよい。ここで、放電加工とは、電極と被加工物との間に短い周期で繰り返されるアーク放電によって、被加工物表面の一部を除去する機械加工の方法である。ワイヤーカットとは、放電加工の一種で、ワイヤ線に張力を与え、放電を利用して金属材料を加工する方法である。
 また、保持器514は金属製に限られず、合成樹脂の成形品であってもよい。樹脂製保持器の樹脂材料としては、この種の保持器に従来から使用されるもの、たとえば、ポリフェニレンサルファイド樹脂(以下、PPS樹脂と称する)やポリアミド46(PA46)などを用いることができる。たとえば自動車のオルタネータ用の軸受など、高温(たとえば200℃程度以上)での長期耐熱性が要求される場合、保持器514を構成する材料としてポリイミド樹脂(以下、PI樹脂と称する)、ポリアミドイミド樹脂(以下、PAI樹脂と称する)、あるいはポリエーテルエーテルケトン樹脂(以下、PEEK樹脂と称する)等の材料が用いることができる。
 上記樹脂製保持器は、たとえば射出成型にて成型することができる。また、削り加工にて成型してもよい。樹脂製保持器であっても、ボール非接触部531を設け、ポケット530におけるボール513との接触面積を、ボール非接触部531を設けない場合のボール513との接触面積よりも15%~30%低減させる。
 樹脂製保持器において、ボール非接触部531を設ける場合、図20に示すように、反ボール対向面に反ボール側へ突出する矩形状の凸部532を形成することによって、ボール対向面に反ボール側へ凹む矩形状の凹部533を設け、この凹部533をもってボール非接触部531とするものであってよい。また、スリット535を設けて、このスリット535をもってボール非接触部531とするものであってよい。
 このため、樹脂製保持器であっても、図20に示すような金属製保持器と同様の作用効果を奏する。
 以上、保持器の構成について例示的に説明したが、本発明の転がり軸受を構成する保持器は上記実施形態に限定されることなく種々の変形が可能である。たとえば、ボール非接触部531は、上記実施形態では、回転方向に沿って配置されていたが、回転方向に対して傾斜するものであってもよい。また、形成されるボール非接触部531は、半球状膨出部526に対して1個に限るものではなく、各半球状膨出部526に2個以上のボール非接触部531を設けてもよい。この場合、周方向に沿って複数個配置するものであっても、径方向に沿って複数個配置するものであってもよい。
 また、ボール非接触部531の形成のためには、長方形状あるいは正方形状の凸部532を設けてもよいし、長方形状あるいは正方形状のスリット535を設けてもよい。また、各コーナ部をアール形状としても、アール形状としないものであってもよい。また、長方形状あるいは正方形状の凸部532を設ける場合、凸部532の突出量(凹部533の深さ)は、環状保持板527A,527Bの40%以下とするのが好ましい。40%を越えると、凸部532の突出量が大きくなりすぎて、シール部材の装着が困難となったり、大型化したりするおそれがある。
 上記実施の形態6および7における深溝玉軸受501および深溝玉軸受501を構成する外輪511、内輪512およびボール513は、上記実施の形態1における転がり軸受および軸受部品と同様の製造方法により製造することができる。
 また、実施の形態6および7における深溝玉軸受501は、上記実施の形態1における深溝玉軸受1と同様に、上記実施の形態2および3において説明したマニュアルトランスミッション100やデファレンシャル200内において使用することができる。
 (実施の形態8)
 次に、実施の形態8について説明する。図33を参照して、実施の形態8における転がり軸受である深溝玉軸受601は、軸受部品である第1軌道部材としての外輪611と、軸受部品である第2軌道部材としての内輪612と、軸受部品である複数の転動体としてのボール613と、保持器615とを備えている。
 外輪611には、円環状の第1転走面としての外輪転走面611Aが形成されている。内輪612には、外輪転走面611Aに対向する円環状の第2転走面としての内輪転走面612Aが形成されている。また、複数のボール613には、転動体転走面としてのボール転動面613A(ボール613の表面)が形成されている。外輪転走面611A、内輪転走面612Aおよびボール転動面613Aは、これらの軸受部品の接触面である。そして、当該ボール613は、外輪転走面611Aおよび内輪転走面612Aの各々にボール転動面613Aにおいて接触し、円環状の保持器615により周方向に所定のピッチで配置されることにより円環状の軌道上に転動自在に保持されている。以上の構成により、深溝玉軸受601の外輪611および内輪612は、互いに相対的に回転可能となっている。
 軸受部品である外輪611、内輪612およびボール613は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部鉄および不純物からなる焼入硬化された鋼からなっている。そして、接触面としての外輪転走面611A、内輪転走面612Aおよびボール転動面613Aを含む領域には、内部611C,612C,613Cに比べて窒素濃度が高い窒素富化層611B,612B,613Bが、それぞれ形成されている。窒素富化層611B,612B,613Bの表面である接触面としての外輪転走面611A、内輪転走面612Aおよびボール転動面613Aにおける窒素濃度は0.25質量%以上となっている。さらに、外輪転走面611A、内輪転走面612Aおよびボール転動面613Aにおける残留オーステナイト量は、6体積%以上12体積%以下となっている。
 保持器615は、金属からなっていてもよいし、樹脂からなっていてもよいが、本実施の形態では、ポリアミド樹脂(PA46、PA66、PA9Tなど)、ポリエーテルエーテルケトン樹脂(PEEK)またはポリフェニレンサルファイド樹脂(PPS)からなっている。
 本実施の形態における軸受部品である外輪611、内輪612およびボール613は、上記JIS規格SUJ2相当鋼の成分組成を有する鋼からなることにより、その素材が世界各国にて入手容易となっている。そして、当該成分組成の鋼の使用を前提として、外輪転走面611A、内輪転走面612Aおよびボール転動面613Aにおける窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されていることにより、転動疲労寿命が長寿命化されている。そして、残留オーステナイト量が12体積%以下にまで低減されることにより、耐圧痕性が向上するとともに、残留オーステナイト量が6体積%以上とされることにより、転動疲労寿命、特に異物混入環境での転動疲労寿命が適切なレベルに維持されている。その結果、外輪611、内輪612およびボール613は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品となっている。
 一方、図33~図35を参照して、保持器615は、軸方向に向き合う2つの環状体620の対向面621にボール613を収容する半球状のポケット622を周方向の複数箇所に形成し、対向面621を衝合させて2つの環状体620を結合させて形成されている。環状体620には、隣接するポケット622の間に、凹状の除肉部627が形成されている。これにより、保持器615は、軽量化されている。保持器615は、軸方向に対称な形状を有している。また、保持器615の端面は、平面状の形状を有している(図33参照)。
 そして、図33を参照して、環状体620の軸方向端部の内径側および外径側に、径方向に延びる鍔部628が設けられている。一方、内輪612の、鍔部628に対応する部位には溝部630が形成されている。また、外輪611の、鍔部628に対応する部位には溝部631が形成されている。この鍔部628および溝部630,631により、ラビリンス640が形成されている。
 鍔部628は、軸方向に直交する方向に延びるように形成されている。一方、内輪612側の溝部630は、内輪612の外径軸方向端部に段差を形成するように凹ませて設けられている。外輪611側の溝部631は、外輪611の内径軸方向端部に段差を形成するように凹ませて設けられている。なお、保持器615の鍔部628と溝部630,631とは、常時接触する位置関係になっていない。つまり、鍔部628と溝部630,631とは、特定条件でのみ接触するか、あるいは完全な非接触となっている。
 このように、保持器615の鍔部628と外輪611および内輪612の溝部630,631とで構成されたラビリンス640により、潤滑油が軸受内部に過剰に流入することが抑制される。また、保持器615は、環状体620の軸方向端部に鍔部628を設けた軸方向対称形状である。そのため、高速回転下において遠心力が負荷された際に、保持器615を構成する2つの環状体620同士が互いにその変形を抑制するため、保持器615の変形を抑制することができる。その結果、ボール613がポケット622から脱落することや、保持器615が外輪611および内輪612などの他部品と干渉することを回避することができる。さらに、環状体620に一体的に設けられた鍔部628と、外輪611および内輪612に一体的に形成された溝部630,631とでラビリンス640を形成しているので、ラビリンス640の形成が、保持器615、外輪611および内輪612の形状変更のみによって達成される。そのため、部品点数および組立工数の増加を回避しつつ、効果的なラビリンス640を形成することができる。
 以上のように、本実施の形態における深溝玉軸受601は、上記外輪611、内輪612、ボール613および保持器615を備えることにより、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立し、かつ低トルク化を達成することができる。
 ここで、本実施の形態では、図33に示すように、鍔部628の軸方向の厚みtは、0.15mm以上であってボール613の直径Dの20%以下とされている。このように、鍔部628の軸方向の厚みtを設定することにより、鍔部628の強度を確保できるとともに鍔部628の成形が容易となり、軸受の軸方向寸法が限度を超えて大きくなることもない。なお、鍔部628の軸方向の厚みtが0.15mmよりも小さいと、鍔部628の強度不足や成形不良が発生し易くなる。また、鍔部628の軸方向の厚みtがボール613の直径Dの20%よりも大きいと、保持器615の鍔部628が軸受端面から突出することを回避するために外輪611および内輪612の溝部630,631の軸方向寸法(溝幅)を大きくせざるを得ない。その結果、外輪611および内輪612の軸方向寸法が大きくなって、軸受全体が大型化する。つまり、深溝玉軸受601のコンパクト化が阻害される結果となる。
 また、本実施の形態における保持器615は、2つの環状体620が以下のように結合されて構成されている。図34~図38を参照して、2つの環状体620のそれぞれには、ポケット622の一方の周方向端部の外径側が軸方向に延出されて外径側凸部623が形成されるとともに、内径側を凹まされて内径側凹部624が形成されている。さらに、ポケット622の他方の周方向端部の内径側が軸方向に延出されて内径側凸部625が形成されるとともに外径側が凹まされて外径側凹部626が形成されている。このように、2つの環状体620のそれぞれにおいて、ポケット622の一方の周方向端部に外径側凸部623および内径側凹部624を形成するとともに、他方の周方向端部に内径側凸部625および外径側凹部626を形成した構造を採用することにより、2つの環状体620を、互いに同一の形状を有するものとすることができる。その結果、たとえば1つの金型で製作した一対の環状体620を用いて保持器615を構成することが可能となり、コストの低減を図ることができる。
 そして、上記構造を有する2つの環状体620を準備し、一方の環状体620の外径側凸部623を他方の環状体620の外径側凹部626に挿入するとともに、一方の環状体620の内径側凸部625を他方の環状体620の内径側凹部624に挿入することにより、外径側凸部623と内径側凸部625とを軸方向に係合させる。また、外径側凸部623と内径側凸部625との係合面623a,625aは、外径側凸部623および内径側凸部625の基端側よりも先端側が厚肉となるように軸方向に対して傾斜して形成される(図37および図38参照)。
 図39~図41に示すように、2つの環状体620のそれぞれの対向面621を衝合させ、外径側凸部623と内径側凸部625を所定の締め代で軸方向において係合させることにより、外径側凸部623と内径側凸部625との係合面623a,625aに沿って摩擦力が発生する。また、外径側凸部623と内径側凸部625との係合面623a,625aが、外径側凸部623および内径側凸部625の基端側よりも先端側が厚肉となるように軸方向に対して傾斜していることにより、外径側凸部623と内径側凸部625との係合面623a,625aの法線方向に発生した反力の軸方向成分が現出する。
 この外径側凸部623と内径側凸部625との係合面623a,625aに沿って発生する摩擦力と、その係合面623a,625aの法線方向に発生する反力の軸方向成分との相乗作用により、高回転により大きな遠心力が負荷された場合であっても、2つの環状体620が軸方向に分離することを確実に防止することができる。
 このように、本実施の形態における保持器615においては、環状体620のポケット622の周方向両端部に、外径側凸部623および内径側凹部624と内径側凸部625および外径側凹部626とからなる結合部が設けられる。これにより、高回転により大きな遠心力が負荷された場合、一方の環状体620と他方の環状体620とが相互に軸方向外側に離れてポケット622が開こうとしても、前述の結合部によりボール613をポケット622内に収容した状態を維持することが容易となる(図39参照)。
 さらに、本実施の形態における結合構造では、外径側凸部623と内径側凸部625との係合面623a,625aの傾斜角度θ(図37および図38参照)を5°以上とすることが好ましい。このように傾斜角度θを設定することにより、高回転により大きな遠心力が負荷された場合の係合面623a,625aの変形を抑制することが容易となる。また、係合面623a,625aに反力の軸方向成分を確実に作用させることが可能となり、2つの環状体620の結合力を確保することが容易となる。なお、係合面623a,625aの傾斜角度θが5°よりも小さいと、高回転により大きな遠心力が負荷された場合、係合面623a,625aの変形を抑制することが困難となり、係合面623a,625aに反力の軸方向成分を確実に作用させることが難しくなるおそれがある。
 また、本実施の形態においては、図40および図41に示すように、内径側凸部625は、外径側凸部623よりも厚肉とされている(tIN>tOUT)。このように内径側凸部625を外径側凸部623よりも厚肉にすることにより、高回転により大きな遠心力が負荷された際、外径側凸部623よりも厚肉にした内径側凸部625の質量が外径側凸部623よりも大きいことから、内径側凸部625が外径側凸部623よりも大きく変形する。ここで、外径側凸部623と内径側凸部625との係合面623a,625aは、外径側凸部623および内径側凸部625の基端側よりも先端側が厚肉となるように軸方向に対して傾斜していることから、内径側凸部625の変形は、外径側凸部623と内径側凸部625との係合面623a,625aでの結合力を高めるように作用する。
 以上で説明した2つ(一対)の環状体620は、保持器615の軽量化の観点から合成樹脂製とすることが好ましい。ここで、コストおよび耐油性の観点からは、PPS(ポリフェニレンサルファイド)、PA66(ポリアミド66)あるいはPA46(ポリアミド46)からなる群から選択されるいずれか1つの合成樹脂を環状体620の材料として選択することが有効である。たとえば、使用される潤滑油の中に樹脂攻撃性の成分(たとえばリン、硫黄)が多く含まれている場合には、耐油性はPPS、PA46、PA66の順に優れることから、PPSを使用することが好ましい。一方、樹脂材料のコストの観点からは、PA66、PA46、PPSの順に有利である。したがって、使用される潤滑油の樹脂攻撃性とコストとを考慮した上で、環状体620を構成する材料を選定することが望ましい。なお、その他の樹脂材料としては、PA9T(ポリアミド9T)、PEEK(ポリエーテルエーテルケトン)、フェノール樹脂などが採用可能である。このような樹脂製保持器は、たとえば射出成型にて成型することができる。なお、樹脂製保持器であっても削り加工にて成型してもよい。
 なお、上記実施の形態では、鍔部628が軸方向に対して直交する方向に延びるように形成される場合について説明したが、本発明はこれに限定されるものではなく、鍔部628を軸方向と直交する方向に対して傾斜する方向に延びるように形成してもよい。具体的には、図42に示すように、軸方向内側へ屈曲するように鍔部628Aを形成してもよいし、図43に示すように、軸方向外側へ屈曲するように鍔部628Bを形成してもよい。このような鍔部628A,628Bも、外輪611および内輪612との組み合わせにより、ラビリンス640を形成することができる。
 また、上記実施の形態では、保持器615の軸方向端部の内径側および外径側の両方に鍔部628を設けた場合について説明したが、本発明はこれに限定されるものではなく、保持器615の軸方向端部の内径側および外径側のうちいずれか一方のみに鍔部628を設ける構造を採用してもよい。保持器615の鍔部628は、軸受内部への潤滑油の直線的な流入を阻害するように位置するように形成されていることが好ましい。
 さらに、上記実施の形態においては、保持器615が環状体620の軸方向端部に鍔部628を設けた軸方向対称形状である場合について説明したが、本発明の転がり軸受はこれに限られない。具体的には、たとえば潤滑油の流入方向が一定であり、かつ遠心力の影響が少ない条件で軸受が使用される場合、軸方向の一方にのみ鍔部628が形成された軸方向非対称形状を採用してもよい。
 さらに、図44を参照して、環状体620のポケット622には、環状体620の径方向に延在するポケット溝部622Aが形成されていてもよい。これにより、保持器615とボール613との接触面積を低減し、低トルク化を達成することができる。
 また、ポケット溝部622Aは、図44に示すように、環状体620の内径側と外径側とを繋ぐように貫通して形成されていてもよい。これにより、保持器615とボール613との間の潤滑油が遠心力によって排出され、一層の低トルク化を達成することができる。図44に示す例では、ポケット溝部622Aは、ポケット622内において最も軸方向外側となる領域を含まないように、当該領域を挟んで一対形成されている。これにより、保持器615とボール613との間の潤滑油が遠心力によって排出され、一層の低トルク化を達成することができる。
 さらに、図44に示すように、環状体620の隣り合うポケット622の間の対向面621には、環状体620の径方向に延在し、環状体620の内径側と外径側とを繋ぐように貫通するポケット間溝部621Aが形成されていてもよい。これにより、保持器615とボール613との間の潤滑油が遠心力によって排出され、一層の低トルク化を達成することができる。
 上記外輪611、内輪612およびボール613においては、接触面である外輪転走面611A、内輪転走面612Aおよびボール転動面613Aの硬度は60.0HRC以上であることが好ましい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 また、上記外輪611、内輪612およびボール613においては、外輪転走面611A、内輪転走面612Aおよびボール転動面613Aの硬度は64.0HRC以下であることが好ましい。これにより、外輪転走面611A、内輪転走面612Aおよびボール転動面613Aにおける残留オーステナイト量を12体積%以下の範囲に調整することが容易となる。
 上記本実施の形態における深溝玉軸受601は、たとえば発動機または電動機を動力源とする車両の電動機または減速機において用いることができる。
 上記本実施の形態8における深溝玉軸受601および深溝玉軸受601を構成する外輪611、内輪612およびボール613は、上記実施の形態1における転がり軸受および軸受部品と同様の製造方法により製造することができる。
 また、本実施の形態における深溝玉軸受601は、上記実施の形態1における深溝玉軸受1と同様に、上記実施の形態2および3において説明したマニュアルトランスミッション100やデファレンシャル200内において使用することもできる。
 (実施の形態9)
 次に、実施の形態9について説明する。図45を参照して、本実施の形態における深溝玉軸受701は、軸受部品である第1軌道部材としての外輪711と、軸受部品である第2軌道部材としての内輪712と、軸受部品である複数の転動体としてのボール714と、保持器740とを備えている。
 外輪軌道溝711Aの両側に形成された一対の肩713a、713bのうち、外輪軌道溝711Aの一方側に位置する肩713aの高さは他方側に位置する肩713bの高さよりも高くなっている。一方、内輪軌道溝712Aの両側に形成された一対の肩723a、723bのうち、内輪軌道溝712Aの他方側に位置する肩723bの高さは一方側に位置する肩723aの高さより高くなっている。
 ここで、本実施の形態では、高さの低い肩713bおよび723aの肩の高さは、標準型深溝玉軸受の肩と同じ高さとしているが、標準型深溝玉軸受の肩の高さより低くしてもよい。
 なお、説明の都合上、高さの高い肩713a、723bをスラスト負荷側の肩713a、723bといい、高さの低い肩713b、723aをスラスト非負荷側の肩713b、723aという。
 スラスト負荷側の肩713a、723bの肩高さをHとし、ボール714の球径をdとすると、ボールの球径に対する肩高さHの比率H/dは、H/d=0.25~0.50の範囲とされている。これにより、スラスト荷重が負荷された場合におけるボール714の乗り上げが効果的に抑制される。
 一例として、内輪の外径寸法がφ53.1mm、外輪の内径寸法がφ68.1mmの標準の深溝玉軸受6208Cを比較品とし、その標準の深溝玉軸受を基にして、内輪のスラスト負荷側の肩の外径寸法をφ53.1mmからφ56.6mmに変更し、かつ、外輪のスラスト負荷側の肩の内径寸法をφ68.1mmからφ65.5mmに変更した深溝玉軸受について、許容できるスラスト荷重を測定した。その結果、この深溝玉軸受は、比較品の深溝玉軸受に比較して、スラスト荷重の許容値は305%高い数値を示した。また、スラスト荷重(アキシャル荷重)が負荷されない側の内輪の肩の外径寸法を標準のφ53.1mmからφ51.9mmに変更し、アキシャル荷重が負荷されない側の外輪の肩の内径寸法を標準のφ68.1mmからφ70.4mmに変更した場合でも、基本静定挌荷重C0を軸受に負荷した場合でも、肩乗り上げの発生はなかった。
 ここで、深溝玉軸受701の組込み方向に誤りがあると、スラスト荷重を受けることができずに高さの低い肩713b、723aにボール714が乗り上がるおそれが生じる。そこで、図45を参照して、外輪711や内輪712、第1分割保持器741、第2分割保持器742の少なくとも一つの幅面側にスラスト荷重の受け側を示す識別表示部755を設けると、誤った組込みを防止することができるとともに、組立性の向上を図ることができる。識別表示部は色表示でもよく、あるいは、刻印によるものであってもよい。
 保持器740は、第1分割保持器741と、その第1分割保持器741の内側に嵌合された第2分割保持器742とからなる。
 図45~図48に示すように、第1分割保持器741の環状体743の軸方向一方側面に、互いに対向する一対のポケット爪744が、複数組周方向に並ぶように等間隔に形成されている。対向する一対のポケット爪744間のそれぞれには、環状体743を刳り抜く2分の1円を超える大きさのポケット745が設けられている。第1分割保持器741は、合成樹脂の成形品からなっている。環状体743の内径は、ボール714のピッチ円径(PCD)に略等しく、外径は外輪711の高さが高い肩713aの内径と高さの低い肩713bの内径の範囲内とされている。その結果、第1分割保持器741は、外輪711の高さの低い肩713b側から軸受内に挿入可能となっている。
 一方、第2分割保持器742の環状体748の軸方向他方側面に、互いに対向する一対のポケット爪749が周方向に複数組並ぶように等間隔に形成されている。対向する一対のポケット爪749間のそれぞれには、上記環状体748を刳り抜く2分の1円を超える大きさのポケット750が設けられている。第2分割保持器742は、合成樹脂の成形品からなっている。上記環状体748の外径は、ボール714のピッチ円径(PCD)に略等しく、内径は内輪712の高さの高い肩723bの外径と高さの低い肩723aの外径の範囲内とされている。その結果、第2分割保持器742は、高さの低い肩723a側から軸受内に挿入可能となっており、かつ、第1分割保持器741の内側に嵌合可能となっている。
 第1分割保持器741と第2分割保持器742の相互間には、内外に嵌り合う嵌合状態において第1分割保持器741と第2分割保持器742を軸方向に非分離とする連結部Xが設けられている。連結部Xは、第1分割保持器741の隣接するポケット745のポケット爪744間に内向きに設けられた係合爪746と、環状体743の内径面に上記係合爪746と同一軸線上に形成された溝状の係合凹部747と、第2分割保持器742の隣接するポケット750のポケット爪749間に外向きに設けられた係合爪751と、環状体748の外径面に上記係合爪751と同一軸線上に形成された係合凹部752とを含んでいる。そして、第1分割保持器741と第2分割保持器742とは、第1分割保持器741の係合爪746と第2分割保持器742の係合凹部752の係合、および第2分割保持器742の係合爪751と第1分割保持器741の係合凹部747の係合によって、軸方向に非分離とされている。
 ここで、第1分割保持器741および第2分割保持器742は、深溝玉軸受を潤滑する潤滑油に曝されるため、耐油性に優れた合成樹脂を用いるようにする。そのような合成樹脂として、ポリアミド46(PA46)、ポリアミド66(PA66)、ポリフェニレンスルファイド(PPS)を挙げることができる。これらの樹脂は、潤滑油の種類に応じて適切なものを選択して使用すればよい。
 本実施の形態における深溝玉軸受701は上記の構造を有している。そして、深溝玉軸受701の組立てに際しては、外輪711の内側に内輪712を挿入し、内輪軌道溝712Aと外輪軌道溝711A間に所要数のボール714を組込む。
 このとき、内輪712を外輪711に対して径方向にオフセットして、内輪712の外径面の一部を外輪711の内径面の一部に当接して、その当接部位から周方向に180度ずれた位置に三日月形の空間を形成し、その空間の一方側から内部にボール714を組込むようにする。
 ボール714の組込みに際して、外輪711のスラスト負荷側の肩713aや内輪712のスラスト負荷側の肩723bの肩高さHが必要以上に高い場合には、ボール714の組込みを阻害することになる。本実施の形態では、ボール714の球径dに対する肩高さHの比率H/dが、0.50を超えることのない高さとされている。そのため、外輪711と内輪712との間にボール714を容易に組込むことができる。
 ボール714の組込み後、内輪712の中心を外輪711の中心に一致させてボール714を周方向に等間隔に配置し、外輪711のスラスト非負荷側の肩713bの一方側から外輪711と内輪712との間に第1分割保持器741を、その第1分割保持器741に形成されたポケット745内にボール714が嵌り込むように挿入する。
 また、内輪712のスラスト非負荷側の肩723aの一方側から外輪711と内輪712との間に第2分割保持器742を、その第2分割保持器742に形成されたポケット750内にボール714が嵌り込むように挿入し、第1分割保持器741の内側に第2分割保持器742を嵌合する。
 上記のように、第1分割保持器741の内側に第2分割保持器742を嵌合させることにより、図45および図51に示すように、各分割保持器741、742に形成された係合爪746、51が相手方の分割保持器に設けられた係合凹部747、752に係合することになり、深溝玉軸受701の組立てが完了する。
 このように、外輪軌道溝711Aと内輪軌道溝712Aとの間にボール714を組込んだ後、外輪711と内輪712との間の両側から内部に第1分割保持器741と第2分割保持器742とを挿入して、第1分割保持器741内に第2分割保持器742を嵌合する簡単な作業によって深溝玉軸受701を組立てることができる。
 なお、図45では、高さの低いスラスト非負荷側の肩713bおよび723aの高さを標準型深溝玉軸受の肩と同じ高さとしたが、標準型深溝玉軸受の肩の高さより低くしてもよい。
 スラスト非負荷側の肩713bおよび723aの高さを標準型深溝玉軸受の肩の高さより低くすると、低くした分、第1分割保持器741および第2分割保持器742の径方向の厚みを厚くすることができるため、保持器740の強度を高めることができる。
 ここで、スラスト非負荷側の肩713bおよび723aの高さが必要以上に低くなると、ボール714の乗り上げが発生するおそれがあるため、外輪711の肩713bの肩高さHについては、ボール714の球径dに対する肩高さHの比率H/dを0.09~0.50の範囲とし、一方、内輪712の肩723aの肩高さHについては、ボール714の球径に対する肩高さHの比率H/dを0.18~0.50の範囲とするのが好ましい。
 また、図52および図53に示すように、第1分割保持器741のポケット745の内周面には、ボールに対して非接触である盗み部745Aが形成されていてもよい。これにより、ポケット745内における潤滑油の通油性が向上し、第1分割保持器741と第2分割保持器742との結合部に異物が溜まることを抑制することができる。また、盗み部745Aは、図53に示すように、ポケット745の底の中央から等距離となる領域を含むように、各ポケット745について一対設置されてもよい。また、分割保持器の厚み方向に垂直な面(図53に示す断面)における上記盗み部745Aの形状は曲面状(たとえば球面状あるいはU字形状)であってもよい。図53では、上記盗み部745Aの形状は球面状となっている。また、分割保持器の厚み方向に垂直な面において、一対の盗み部750Aの底部とポケット底中央とは同一直線γ上にあってもよい。これにより、潤滑油の通油性をより確実に向上させることができる。なお、第2分割保持器742のポケット750についても、同様に盗み部が形成されていてもよい。
 本実施の形態における深溝玉軸受701では、第1分割保持器741のポケット745および第2分割保持器742のポケット750の開口端にボール714を抱き込む互いに対向する一対のポケット爪744、749を設け、上記第1分割保持器741に形成された互いに対向する一対のポケット爪744と第2分割保持器742に設けられた、互いに対向する一対のポケット爪749を相反する方向に向く組み合わせとし、その組み合わせ状態において、係合爪746、51を係合凹部747、752に係合して、第1分割保持器741と第2分割保持器742とを軸方向に非分離しているため、大きなモーメント荷重が負荷されてボール714に遅れや進みが生じても、保持器740の脱落が抑制される。
 ここで、図48および図49に示すように、係合爪746、51と係合凹部747、752と間に形成される周方向すきま60のすきま量δをボール714とポケット745、750間に形成される周方向のポケットすきま61のすきま量δより大きくしておくことにより、大きなモーメント荷重が負荷されてボール714に遅れ進みが生じ、第1分割保持器741と第2分割保持器742とが相対的に回転しても、係合爪746、51が係合凹部747、752の周方向で対向する側面に当接することはなく、係合爪746、51の損傷防止に効果を挙げることができる。
 また、図50および図51に示すように、係合爪746、51と係合凹部747、752との間に形成される軸方向すきま62のすきま量δをボール714とポケット745、750との間に形成される軸方向のポケットすきま63のすきま量δより大きくしておくことにより、第1分割保持器741と第2分割保持器742とを引き離す方向の軸方向力が作用した際に、互いに対向する一対のポケット爪744、749の内面がボール714の外周面に当接して、係合爪746、51が係合凹部747、752の軸方向端面に当接することが回避され、係合爪746、51の損傷防止に効果を挙げることができる。
 また、軸受部品である外輪711、内輪712およびボール714は、0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部鉄および不純物からなる焼入硬化された鋼からなっている。そして、接触面としての外輪軌道溝711Aの表面、内輪軌道溝712Aの表面およびボール転動面714Aを含む領域には、内部711C,712C,713Cに比べて窒素濃度が高い窒素富化層711B,712B,713Bが、それぞれ形成されている。窒素富化層711B,712B,713Bの表面である接触面としての外輪軌道溝711Aの表面、内輪軌道溝712Aの表面およびボール転動面714Aにおける窒素濃度は0.25質量%以上となっている。さらに、外輪軌道溝711Aの表面、内輪軌道溝712Aの表面およびボール転動面714Aにおける残留オーステナイト量は、6体積%以上12体積%以下となっている。
 本実施の形態における軸受部品である外輪711、内輪712およびボール714は、上記JIS規格SUJ2相当鋼の成分組成を有する鋼からなることにより、その素材が世界各国にて入手容易となっている。そして、当該成分組成の鋼の使用を前提として、外輪軌道溝711Aの表面、内輪軌道溝712Aの表面およびボール転動面714Aにおける窒素濃度が0.25質量%以上にまで高められ、かつ焼入硬化されていることにより、転動疲労寿命が長寿命化されている。そして、残留オーステナイト量が12体積%以下にまで低減されることにより、耐圧痕性が向上するとともに、残留オーステナイト量が6体積%以上とされることにより、転動疲労寿命、特に異物混入環境での転動疲労寿命が適切なレベルに維持されている。その結果、外輪711、内輪712およびボール714は、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立することが可能な軸受部品となっている。
 以上のように、本実施の形態における深溝玉軸受701は、上記外輪711、内輪712、ボール714および保持器740を備えることにより、材料の入手の容易性を確保しつつ、耐圧痕性と転動疲労寿命とを高いレベルで両立し、かつスラスト荷重に対応することができる。
 上記外輪711、内輪712およびボール714においては、接触面である外輪軌道溝711Aの表面、内輪軌道溝712Aの表面およびボール転動面714Aの硬度は60.0HRC以上であることが好ましい。これにより、転動疲労寿命および耐圧痕性を一層向上させることができる。
 また、上記外輪711、内輪712およびボール714においては、外輪軌道溝711Aの表面、内輪軌道溝712Aの表面およびボール転動面714Aの硬度は64.0HRC以下であることが好ましい。これにより、外輪軌道溝711Aの表面、内輪軌道溝712Aの表面およびボール転動面714Aにおける残留オーステナイト量を12体積%以下の範囲に調整することが容易となる。
 また、内輪712のボール714に対する溝曲率は1.02以上1.06以下であってもよい。また、外輪711のボール714に対する溝曲率は1.02以上1.08以下であってもよい。このようにすることにより、軌道部材とボールとの間のすべり成分を抑制しつつ、ボール714の肩への乗り上げを抑制することができる。
 上記本実施の形態9における深溝玉軸受701および深溝玉軸受701を構成する外輪711、内輪712および玉713は、上記実施の形態1における転がり軸受および軸受部品と同様の製造方法により製造することができる。
 また、本実施の形態における深溝玉軸受701は、上記実施の形態1における深溝玉軸受1と同様に、上記実施の形態2および3において説明したマニュアルトランスミッション100やデファレンシャル200内において使用することができる。このとき、深溝玉軸受701のスラスト荷重の受け側の肩が適切に位置するように深溝玉軸受701がマニュアルトランスミッション100内やデファレンシャル200内に組み込まれることにより、ボール714の乗り上げによる損傷の発生を抑制することができる。
 (実施例1)
 軸受部品の特性に及ぼす熱処理条件等の影響を調査する実験を行なった。まず、JIS規格SUJ2からなる平板を準備し、800℃で1時間予熱した後、RXガスにアンモニアガスを添加した雰囲気中において850℃に加熱し、4時間保持することにより浸炭窒化処理した。その後、浸炭窒化処理における加熱温度である850℃から、そのまま上記平板を焼入油中に浸漬することにより焼入硬化させた。さらに、当該平板に対して種々の温度で焼戻処理を施した。得られた平板に対して直径19.05mmのSUJ2製標準転がり軸受用鋼球を荷重3.18kN(最大接触面圧4.4GPa)で押し付け、10秒間保持した後、除荷した。そして、この鋼球の押し付けによって平板に形成された圧痕の深さを測定することにより、耐圧痕性を調査した。また、同じ試験片について、ロックウェル硬度計にて表面硬度を測定した。耐圧痕性の調査結果を図54に、硬度の測定結果を図55に示す。
 図54および図55を参照して、焼戻温度が高くなるにつれて表面硬度が低下する一方で、圧痕深さは極小値を有している。具体的には、焼戻温度を240℃以上300℃以下とすることにより、圧痕深さが0.2μm以下となっている。このことから、耐圧痕性を向上させる観点からは、焼戻温度は240℃以上300℃以下とすることが好ましいといえる。
 ここで、上記焼戻温度の最適値は、以下のようにして決定されているものと考えられる。焼入処理を行なうと、鋼の素地には炭素が固溶した状態となる。一方、焼戻処理を行なうと、素地中に固溶した炭素の一部が炭化物(たとえばFeC)として析出する。このとき、焼戻処理の温度が高くなるほど鋼の降伏強度に対する固溶強化の寄与が低下するとともに、析出強化の寄与が大きくなる。そして、240℃以上300℃以下の温度域で焼戻処理を実施することにより、これらの強化機構のバランスが最適となり、降伏強度が極大値をとるため、耐圧痕性が特に高くなる。
 また、上記圧痕深さの測定の場合と同様に圧痕を押し付けることによる鋼の変形に基づいて測定される表面硬度が単調減少するにもかかわらず、耐圧痕性が極大値をとる理由は以下の通りであると考えられる。
 図56は、上記平板に対する熱処理において浸炭窒化処理のみを省略した処理を施した引張試験片(JIS Z2201 4号試験片)の各焼戻温度における真応力と真ひずみとの関係を示す図である。図56は、n乗硬化弾塑性体でモデル化した真応力-真ひずみ線図である。σ降伏応力を境目に次式の通り特性が異なる。
Figure JPOXMLDOC01-appb-M000002
 ここで、σは真応力、Eはヤング率、εは真ひずみ、Kは塑性係数、nは加工硬化指数、σは降伏応力である。ただし、ヤング率Eは共振法で実測し、加工効果指数nおよび組成係数Kは、引張試験により実測した。そして、これらを上記2式に代入し、交点をσとした。
 ここで、圧痕深さの測定における真ひずみの水準は、図56における領域αに相当するのに対し、硬度測定における真ひずみの水準は、図56における領域β以上に相当する。そして、図57を参照して、圧痕深さの測定領域に対応する領域αにおける降伏点を確認すると、焼戻温度が240℃~300℃の範囲において降伏点が高くなっており、これよりも低温の場合、降伏点が低下している。一方、図56を参照して、表面硬度の測定領域に対応する領域βでは、同じひずみ量を与えようとすると、焼戻温度が低くなるにつれて、より大きな応力が必要となることが分かる。このような現象に起因して、焼戻温度が180℃~220℃の場合に比べて硬度が低下するにもかかわらず、焼戻温度を240℃~300℃とすることにより、耐圧痕性が向上するものと考えられる。
 また、焼戻温度のほか、表面窒素濃度および焼入温度を変化させた条件で熱処理した試験片について、表面の残留オーステナイト量、圧痕深さ、寿命、リング圧砕強度、経年変化率を調査した。
 ここで、圧痕深さは、上記の場合と同様に測定した。圧痕深さが0.2μm未満の場合をB、0.2~0.4μmの場合をC、0.4μm以上の場合をDと評価した。寿命は、圧痕深さの測定の場合と同様の条件にて軌道面に圧痕を形成した後、清浄油潤滑のもとで油膜パラメータが0.5となる条件で、軸受がトランスミッションに使用される場合の荷重条件を模擬して実施した。そして、焼入温度850℃、焼戻温度240℃、表面窒素量0.4質量%の試験片の寿命を基準(B)として、基準寿命よりも長い場合をA、短い場合をC、著しく短い場合をDと評価した。リング圧砕強度は、外径60mm、内径54mm、幅15のリングを作製し、これを径方向に平板にて圧縮し亀裂が発生した荷重を調査することにより評価した。亀裂発生時の荷重が5000kgf以上の場合をA、3500~5000kgfの場合をB、3500kgf未満の場合をDと評価した。また、経年変化率は、試験片を230℃で2時間保持し、当該熱処理前からの外径寸法変化量を測定することにより評価した。変化量が10.0×10以下の場合をA、10.0×10~30.0×10の場合をB、30.0×10~90.0×10の場合をC、90.0×10以上の場合をDと評価した。試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1を参照して、表面窒素濃度が0.25~0.5質量%、焼入温度が820~860℃、焼戻温度が240~300℃の条件をすべて満たす試験片において、上記全ての項目において優れた評価が得られている。
 (実施例2)
 上記実施の形態5におけるポケット430にボール非接触部432を有する保持器を用いた軸受(深溝玉軸受;発明品)と、ポケット430にボール非接触部を有さない従来の保持器を用いた軸受(深溝玉軸受;従来品)とについて、トルク測定を行った。軸受としては、内径φ35mm、外径φ72mm、幅17mmの寸法を有するもの(NTN社製:軸受番号6207)を採用した。ラジアル荷重を500Nとし、回転速度を1000r/min、2000r/minとし、潤滑油種をATFとし、潤滑油温度を30℃とし、動粘度を29.6mm/s(40℃)、7.07mm/s(100℃)とし、密度を0.87g/cmとした。油面高さレベルは、最下位ボール中心とした。また、発明品における保持器寸法については、A/(B+C)の値を0.77とし、D/Eの値を0.33とし、F/Gの値を0.33とし、Rの値を0.2mmとした。
 上記トルク測定条件を第1条件とし、このトルク測定条件によるトルク測定結果(従来品に対するボール非接触部を有する保持器を用いた軸受のトルク低減率)を次の表2に示す。また、油面高さレベルを最下位ボールが油中に浸漬する高さとし、他の条件を上記第1条件と同じとしたものを第2条件とし、このトルク測定条件によるトルク測定結果(従来品に対するボール非接触部を有する保持器を用いた軸受のトルク低減率)を次の表3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 第2条件では、潤滑油による攪拌抵抗の割合が軸受トルクの大半を占めることになり、ボール非接触部を有する保持器によるトルク低減効果が検出されなかった。すなわち、潤滑油が多い状態では、本発明の転がり軸受を構成する保持器を採用した場合でも、ボール非接触部によるトルク低減効果は小さいものと考えられる。一方、本発明の転がり軸受を構成する保持器は、第1条件のような潤滑油が「噴霧または跳ね掛け」など潤滑油量が少ない状態で使用された場合、顕著な低トルク効果を奏する。このため、実機使用を考えると、デファレンシャル支持用やトランスミッション支持用など自動車の動力伝達軸を支持する軸受の潤滑環境は、省燃費化のため、潤滑油量が削減される傾向にあることから、本発明の転がり軸受は、これら支持用軸受に好適である。これ以外にも、2輪車のクランク、カム、トランスミッションでは潤滑油量が第1条件のように少ない為、これらに含まれる軸を支持する軸受に、本発明の転がり軸受は好適である。
 (実施例3)
  (実施例A)
 図23~図28に示す形状A、B、C、D、E、Fの保持器(金属製保持器:プレス加工品)を製作して、これらを用いて図20に示す玉軸受を組立て、発生するトルクを測定した。その結果を次の表4に示す。表4において標準品とは、ボール非接触部531が形成されていない従来品である。
Figure JPOXMLDOC01-appb-T000006
 表4において、形状Dは、形状Aにおいて、凸部532をPCDから外径側へ0.8mmシフトするように形成したものである。形状Eは、形状Bにおいて、凸部532をPCDから外径側へ0.8mmシフトするように形成したものである。表4において、鋼球-保持器接触面積の欄は、標準品の面積を100%とした場合の割合(%)にて表示している。また、軸受としては、外輪511の外径寸法が72.0mmであり、外輪511の内径寸法が60.2mmであり、内輪512の外径寸法が47.0mmであり、内輪512の内径寸法が35.0mmであり、ボール(鋼球)513の外径寸法が11.1mmのものを用いた。
 実験条件は以下の通りである。軸受に対して500Nのラジアル荷重を付与した状態で、4000r/minの回転速度を与えた。30℃の潤滑油(トヨタ純正ATF T-4)に軸受の一部を浸漬させた。より具体的には、軸受軸心線を水平に保って、この鉛直方向最下位のボールのみが完全に浸漬するようにした。
 図58に、ボール513と保持器514との接触面積を変更させた場合と、凸部532をPCDから外径側へシフトさせた場合のトルクの変化を示すグラフを示す。表4および図58から明らかなように、接触面積を15%程度低減することにより、トルクを約50%低減することができた。また、接触面積を30%低減させるとともに、凸部532をPCDから外径側へ0.8mmシフトさせることにより、トルクを約60%低減することができた。
  (実施例B)
 図31に示すように、スリット535を有する保持器(金属製保持器:プレス加工品)を製作して、これを用いて図30に示す玉軸受を組立て、発生するトルクを測定した。保持器514にスリット535を形成することにより、保持器514とボール513との接触面積を標準品(スリット535を有さない保持器)よりも30%低減した。上記実施例1の場合と同様に、軸受に対して500Nのラジアル荷重を付与した状態で、4000r/minの回転速度を与えた。上記実施例Aの場合と同様に、軸受は、30℃の潤滑油(トヨタ純正ATF T-4)に一部を浸漬させた。これにより、約40%のトルク低減が得られた。すなわち、標準品のトルクが0.152Nmであるのに対し、スリット535を有する保持器を採用した場合、トルクは0.093Nmとなった。また、軸受としては、外輪511の外径寸法が72.0mmであり、外輪511の内径寸法が60.2mmであり、内輪512の外径寸法が47.0mmであり、内輪512の内径寸法が35.0mmであり、ボール(鋼球)513の外径寸法が11.1mmのものを用いた。なお、後述する実施例C、Dにおいても、同一サイズのものを用いた。
  (比較例C)
 凸部532やスリット535に代えて、半球状膨出部526の軸受内径及び軸受外径側をカットした金属製保持器を製作して、これを用いて図30に示す玉軸受を組立て、発生するトルクを測定した。保持器514とボール513との接触面積を標準品(スリット535を有さない保持器)よりも25%低減させた。測定条件は上記実施例と同様とした。この場合、約11%のトルク低減が得られた。すなわち、標準品が0.152Nmであったのに対し、軸受内径及び軸受外径側をカットした保持器では0.135Nmとなった。
  (実施例D)
 また、半球状膨出部526の軸受外径側をカットした樹脂製保持器を製作して、これを用いて図30に示す玉軸受を組立て、発生するトルクを測定した。保持器の素材は、樹脂材料(PA66)とした。保持器514とボール513との接触面積を標準品よりも30%低減した。測定条件は上記実施例と同様とした。この場合、約18%のトルク低減が得られた。すなわち、標準品が0.152Nmであったのに対し、軸受外径側をカットした保持器では0.124Nmとなった。
 (実施例4)
 本発明によるトルク低減効果について確認する実験を行った。実験の手順は以下の通りである。
 まず、保持器を通常の樹脂保持器とし、内輪、外輪およびボールを通常のずぶ焼入処理(素材はJIS規格SUJ2)、軌道面溝曲率を内輪について1.02、外輪について1.04とした深溝玉軸受を作製した(サンプルA)。また、サンプルAに対して保持器の構造を上記実施の形態において図33~図41に基づいて説明したものに変更した深溝玉軸受も作製した(サンプルB)。さらに、サンプルBに対して内輪、外輪およびボールの熱処理を変更し、上記実施の形態にて説明した高強度軸受部品とし、かつ軌道面溝曲率を内輪について1.048、外輪について1.12に変更した深溝玉軸受も作製した(サンプルC)。
 そして、上記サンプルA~Cを、ラジアル荷重3kN、回転数6000min-1、潤滑油ATF(Automatic Transmission Fluid)、潤滑は油面高さを最下転動体PCD(Pitch Circle Diameter)位置の油浴潤滑とした条件で運転し、回転トルクを測定した。実験結果を図59に示す。
 図59を参照して、本発明の保持器を採用したサンプルBは、サンプルAに対して80%近いトルク低減が達成されている。そして、本発明の実施例であるサンプルCは、そのサンプルBに対してさらに30%程度のトルク低減を実現している。このことから、本発明の転がり軸受において軌道面溝曲率を適切な大きさに調整することにより、より具体的には、軌道面溝曲率を大きくするにより、トルク低減を達成できることが確認される。
 サンプルCでは、内輪および外輪が高強度軸受部品であることにより、耐圧痕性が向上している。これを利用し、サンプルCでは、軌道面溝曲率を大きくすることで、トルク低減が達成されている。これは、軸受トルクが増加する要因の一つとして軌道面とボールとの間のすべり成分(差動すべり、スピンすべり等)が挙げられるところ、溝曲率を大きくすることにより、すべり成分を低減できるためである。なお、本願において「溝曲率」とは、軌道輪の周方向に垂直な断面における転走面の曲率半径の、ボールの半径に対する比を意味する。
 なお、上記実施の形態および実施例においては、本発明の軸受部品を含む転がり軸受の一例として深溝玉軸受等について説明したが、本発明の軸受部品および転がり軸受はこれに限られず、種々の形式の転がり軸受および当該転がり軸受を構成する軸受部品に適用可能である。また、本発明の転がり軸受の用途として、トランスミッションおよびデファレンシャル等を例示したが、本発明の転がり軸受の用途はこれに限られず、種々の機械に適用可能であり、高い荷重が負荷されることにより耐圧痕性が求められる用途に特に好適である。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の軸受部品、転がり軸受およびこれらの製造方法は、耐圧痕性と転動疲労寿命とを高いレベルで両立することが求められる軸受部品、転がり軸受およびこれらの製造方法に、特に有利に適用され得る。
 1 深溝玉軸受、2 スラストニードルころ軸受、11 外輪、11A 外輪転走面、11B,12B,13B,21B,23B 窒素富化層、11C,12C,13C,21C,23C 内部、12 内輪、12A 内輪転走面、13 玉、13A 玉転動面、14,24 保持器、21 軌道輪、21A 軌道輪転走面、23 ニードルころ、23A ころ転動接触面、100 マニュアルトランスミッション、111 入力シャフト、112 出力シャフト、113 カウンターシャフト、114a~k ギア、115 ハウジング、120A,120B 転がり軸受、200 デファレンシャル、201 デフケース、201a 内歯、201b 外歯、202a~b ピニオンギア、202c~d 回転軸、203 サンギア、204 ピニオンキャリア、205 アーマチュア、206 パイロットクラッチ、207 電磁石、208 デフケース、209 カム、220 左駆動軸、221 右駆動軸、301 深溝玉軸受、311 外輪、311A 外輪転走面、311B,312B,313B 窒素富化層、311C,312C,313C 内部、312 内輪、312A 内輪転走面、313 玉、313A 玉転動面、314 保持器、315 弾性部、316 芯金、317 シール部材、317A シールリップ部、401 深溝玉軸受、411 外輪、411A 外輪転走面、411B,412B,413B 窒素富化層、411C,412C,413C 内部、412 内輪、412A 内輪転走面、413 ボール、413A ボール転動面、415 保持器、426 半球状膨出部、427A,427B 環状保持板、428 平坦部、429 固着具、430 ポケット、431 ボール接触部、432 非接触部、433 凸部、434 凹部、435 ポケット軸方向開口縁、501 深溝玉軸受、511 外輪、511A 外輪転走面、511B,512B,513B 窒素富化層、511C,512C,513C 内部、512 内輪、512A 内輪転走面、513 ボール、513A ボール転動面、514 保持器、517 シール部材、518 芯金、519 被覆部、520 装着溝、521 凹溝、522 リップ部、526 半球状膨出部、527A,527B 環状保持板、528 平坦部、529 固着具、530 ポケット、531 非接触部、532 凸部、533 凹部、535 スリット、601 深溝玉軸受、611 外輪、611A 外輪転走面、611B,612B,613B 窒素富化層、611C,612C,613C 内部、612 内輪、612A 内輪転走面、613 ボール、613A ボール転動面、615 保持器、620 環状体、621 対向面、621A ポケット間溝部、622 ポケット、622A ポケット溝部、623 外径側凸部、623a 係合面、624 内径側凹部、625 内径側凸部、626 外径側凹部、627 除肉部、628,628A,628B 鍔部、630,631 溝部、640 ラビリンス、701 深溝玉軸受、711 外輪、711A 外輪軌道溝、711B,712B,713B 窒素富化層、711C,712C,713C 内部、712 内輪、712A 内輪軌道溝、713a,713b,723a,723b 肩、714 ボール、714A ボール転動面、740 保持器、741 第1分割保持器、742 第2分割保持器、743,748 環状体、744,749 ポケット爪、745,750 ポケット、746,751 係合爪、747,752 係合凹部、745A,750A 盗み部、755 識別表示部。

Claims (33)

  1.  0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部不純物からなる焼入硬化された鋼からなり、
     他の部品と接触する面である接触面(11A,12A,13A)における窒素濃度が0.25質量%以上であり、
     前記接触面(11A,12A,13A)における残留オーステナイト量が6体積%以上12体積%以下である、軸受部品(11,12,13)。
  2.  前記接触面(11A,12A,13A)の硬度は60.0HRC以上である、請求項1に記載の軸受部品(11,12,13)。
  3.  前記接触面(11A,12A,13A)の硬度は64.0HRC以下である、請求項1に記載の軸受部品(11,12,13)。
  4.  軌道部材と(11,12)、
     前記軌道部材(11,12)に接触して配置される複数の転動体(13)とを備え、
     前記軌道部材(11,12)および前記転動体(13)の少なくともいずれか一方は、請求項1に記載の軸受部品(11,12,13)である、転がり軸受(1)。
  5.  前記軌道部材は、第1転走面(311A)を有する第1軌道輪(311)と、第2転走面(312A)を有し、前記第1転走面(311A)に前記第2転走面(312A)が対向するように配置された第2軌道輪(312)とを含み、
     前記第1軌道輪(311)と前記第2軌道輪(312)とに挟まれた空間である軸受空間を閉じるように配置されたシール部材(317)をさらに備え、
     前記シール部材(317)は、一方の端部が前記第1軌道輪(311)および前記第2軌道輪(312)の一方に固定され、他方の端部であるシールリップ部(317A)が前記第1軌道輪(311)および前記第2軌道輪(312)の他方に接触し、
     前記第1軌道輪(311)に対して前記第2軌道輪(312)を周方向に相対的に回転させることにより前記シールリップ部(317A)が摩耗して前記第1軌道輪(311)および前記第2軌道輪(312)の他方と前記シールリップ部(317A)とが接触しない状態、または前記第1軌道輪(311)および前記第2軌道輪(312)の他方と前記シールリップ部(317A)との接触圧が実質的に零と見なせる程度の軽接触である状態となるように、前記シールリップ部(317A)が高摩耗材からなっている、請求項4に記載の転がり軸受(301)。
  6.  少なくとも前記軌道部材(11,12)が請求項1に記載の軸受部品である、請求項4に記載の転がり軸受(1)。
  7.  前記転動体(13)は玉である、請求項4に記載の転がり軸受(1)。
  8.  前記複数の転動体(413)を円環状の軌道上に所定のピッチで保持する保持器(415)をさらに備え、
     前記保持器(415)は、
     円周方向に沿って所定間隔で配設された半球状膨出部(426)を有する2枚の環状保持板(427A,427B)が組み合わされてなり、
     対向する前記半球状膨出部(426)にて前記転動体(413)を保持するポケット(430)を形成しており、
     前記ポケット(430)において前記転動体(413)に対向する面であるボール対向面に、前記ポケット(430)の周方向に延びる凹部からなるボール非接触部(432)が設けられ、
     前記ボール非接触部(432)の前記ポケット(430)の周方向における長さをA、前記転動体(413)の直径をB、前記転動体(413)と前記ボール対向面との間に形成される隙間をCとしたとき、A/(B+C)の値が0.70~0.90に設定される、請求項7に記載の転がり軸受(401)。
  9.  前記ボール非接触部(432)のポケット軸方向の長さをD、前記ポケット(430)のポケット軸方向の全長さをEとしたとき、D/Eの値が0.25~0.40に設定される、請求項8に記載の転がり軸受(401)。
  10.  前記ボール非接触部(432)を構成する前記凹部の深さをF、前記環状保持板(427A,427B)の前記半球状膨出部(426)の肉厚をGとしたとき、F/Gの値が0.30~0.40に設定される、請求項8に記載の転がり軸受(401)。
  11.  前記ポケット(430)のポケット軸方向の全長さをE、前記転動体(413)の中心に対する前記ボール非接触部(432)の中央の、ポケット軸方向におけるずれ量をHとしたとき、H/(E/2)の値が0~0.2に設定される、請求項8に記載の転がり軸受(401)。
  12.  前記ボール非接触部(432)を構成する前記凹部のポケット軸方向における開口縁(435)が曲面で構成される、請求項8に記載の転がり軸受(401)。
  13.  前記複数の転動体(513)を円環状の軌道上に所定のピッチで保持する保持器(514)をさらに備え、
     前記保持器(514)は、
     円周方向に沿って所定間隔で配設された半球状膨出部(526)を有する2枚の環状保持板(527A,527B)が組み合わされてなり、
     対向する前記半球状膨出部(526)にて前記転動体(513)を保持するポケット(530)を形成しており、
     前記ポケット(530)において前記転動体(513)に対向する面であるボール対向面にボール非接触部(531)が設けられ、
     前記ポケット(530)における前記転動体(513)との接触面積が、前記ボール非接触部(531)を設けないときの前記転動体(513)との接触面積よりも15%~30%低減されている、請求項7に記載の転がり軸受(501)。
  14.  前記軌道部材は、内輪(512)と、前記内輪(512)の外周側を取り囲むように配置される外輪(511)とを含み、
     前記内輪(512)の前記転動体(513)に対する溝曲率は1.02以上1.06以下である、請求項7に記載の転がり軸受(501)。
  15.  前記軌道部材は、内輪(512)と、前記内輪(512)の外周側を取り囲むように配置される外輪(511)とを含み、
     前記外輪(511)の前記転動体(513)に対する溝曲率は1.02以上1.08以下である、請求項7に記載の転がり軸受(501)。
  16.  前記複数の転動体(613)を円環状の軌道上に所定のピッチで保持する保持器(615)をさらに備え、
     前記保持器(615)は、
     軸方向に向き合う2つの環状体(620)の対向面(621)に前記転動体(613)を収容する半球状のポケット(622)を周方向の複数箇所に形成し、前記対向面(621)を衝合させて前記2つの環状体(620)を結合させて形成され、
     前記環状体(620)の軸方向端部の内径側および外径側の少なくともいずれか一方に、径方向に延びる鍔部(628,628A,628B)が設けられ、
     前記軌道部材(611,612)の前記鍔部(628,628A,628B)に対応する部位には溝部(630,631)が形成され、
     前記鍔部(628,628A,628B)および前記溝部(630,631)によりラビリンス(640)が形成されている、請求項7に記載の転がり軸受(601)。
  17.  前記2つの環状体(620)は、互いに同一の形状を有している、請求項16に記載の転がり軸受(601)。
  18.  前記環状体(620)の前記ポケット(622)には、前記環状体(620)の径方向に延在するポケット溝部(622A)が形成されている、請求項16に記載の転がり軸受(601)。
  19.  前記環状体(620)の隣り合う前記ポケット(622)の間の前記対向面(621)には、前記環状体(620)の径方向に延在し、前記環状体(620)の内径側と外径側とを繋ぐように貫通するポケット間溝部(621A)が形成されている、請求項16に記載の転がり軸受(601)。
  20.  前記鍔部(628,628A,628B)の軸方向の厚みは、0.15mm以上であり、前記転動体(613)の直径の20%以下である、請求項16に記載の転がり軸受(601)。
  21.  前記保持器(615)の端面は平面状の形状を有している、請求項16に記載の転がり軸受(601)。
  22.  前記保持器(615)は、ポリアミド樹脂、ポリエーテルエーテルケトン樹脂またはポリフェニレンサルファイド樹脂からなっている、請求項16に記載の転がり軸受(601)。
  23.  前記複数の転動体(714)を円環状の軌道上に所定のピッチで保持する保持器(740)をさらに備え、
     前記軌道部材は、外周側に内輪軌道溝(712A)が形成された内輪(712)と、前記内輪(712)を取り囲むように配置され、内周側に外輪軌道溝(711A)が形成された外輪(711)とを含み、
     前記外輪軌道溝(711A)および前記内輪軌道溝(712A)のそれぞれの両側に位置する合計4つの肩のうち、前記外輪軌道溝(711A)の一方側の肩(713a)および前記内輪軌道溝(712A)の他方側の肩(723b)の高さは、それぞれ前記外輪軌道溝(711A)の他方側の肩(713b)および前記内輪軌道溝(712A)の一方側の肩(723a)の高さより高くなっている、請求項7に記載の転がり軸受(701)。
  24.  前記保持器(740)は、合成樹脂からなる円筒形の第1分割保持器(741)と、前記第1分割保持器(741)の内側に嵌合された合成樹脂製の円筒形の第2分割保持器(742)とを含み、前記第1分割保持器(741)および前記第2分割保持器(742)のそれぞれが、環状体(743,748)を有し、前記環状体(743,748)の軸方向一方側面には互いに対向する一対のポケット爪(744,749)が複数組並ぶように等間隔に形成され、前記一対のポケット爪(744,749)間に前記環状体(743,748)を刳り抜く2分の1円を超える大きさのボール保持用ポケット(745,750)が設けられた冠形とされ、
     前記第1分割保持器(741)は前記外輪(711)の肩高さの低い肩(713b)側から軸受内に挿入され、前記第2分割保持器(742)は内輪(712)の肩高さの低い方(723a)側から軸受内に挿入されて、前記ポケット(745,750)の開口端が互いに反対方向に向く組み合わせとされ、前記第1分割保持器(741)と前記第2分割保持器(742)との相互間に、その両保持器の嵌合により係合して両保持器を軸方向に非分離とする連結部(746,747,751,752)が設けられる、請求項23に記載の転がり軸受(701)。
  25.  前記第1分割保持器(741)と前記第2分割保持器(742)とは、異なる色相を有している、請求項24に記載の転がり軸受(701)。
  26.  前記ポケット(745,750)の内周面には、前記転動体(714)に対して非接触である盗み部(745A,750A)が形成されている、請求項24に記載の転がり軸受(701)。
  27.  前記転動体(13)を最大接触面圧が4.4GPaとなるように前記軌道部材(11,12)に押し付けた場合、前記軌道部材(11,12)に形成される圧痕の深さは0.5μm以下となる、請求項4に記載の転がり軸受(1)。
  28.  デファレンシャル(200)またはトランスミッション(100)内において回転する回転部材を、前記回転部材に隣接して配置される他の部材に対して回転自在に支持する、請求項4に記載の転がり軸受(1)。
  29.  0.90質量%以上1.05質量%以下の炭素と、0.15質量%以上0.35質量%以下の珪素と、0.01質量%以上0.50質量%以下のマンガンと、1.30質量%以上1.65質量%以下のクロムとを含有し、残部不純物からなる鋼を成形することにより成形部材を作製する工程と、
     前記成形部材を浸炭窒化処理する工程と、
     浸炭窒化処理された前記成形部材を焼入硬化処理する工程と、
     焼入硬化処理された前記成形部材を焼戻処理する工程と、
     焼戻処理された前記成形部材を加工することにより他の部品と接触する面である接触面(11A,12A,13A)を形成する工程とを備え、
     前記成形部材を浸炭窒化処理する工程では、前記接触面(11A,12A,13A)を形成する工程において前記接触面(11A,12A,13A)の窒素濃度が0.25質量%以上となるように前記成形部材が浸炭窒化処理され、
     前記成形部材を焼戻処理する工程では、前記接触面(11A,12A,13A)を形成する工程において前記接触面(11A,12A,13A)の残留オーステナイト量が6体積%以上12体積%以下となるように前記成形部材が焼戻処理される、軸受部品(11,12,13)の製造方法。
  30.  前記成形部材を焼戻処理する工程では、前記成形部材が240℃以上300℃以下の温度域にて焼戻処理される、請求項29に記載の軸受部品(11,12,13)の製造方法。
  31.  前記成形部材を焼入処理する工程では、前記成形部材が860℃以下の温度域から急冷されることにより焼入処理される、請求項29に記載の軸受部品(11,12,13)の製造方法。
  32.  前記成形部材を焼入処理する工程では、前記成形部材が820℃以上の温度域から急冷されることにより焼入処理される、請求項29に記載の軸受部品(11,12,13)の製造方法。
  33.  転がり軸受(1)の製造方法であって、
     軌道部材(11,12)を準備する工程と、
     複数の転動体(13)を準備する工程と、
     複数の前記転動体(13)を前記軌道部材(11,12)に接触するように組み合わせることにより、前記転がり軸受(1)を組み立てる工程とを備え、
     前記軌道部材(11,12)を準備する工程および複数の前記転動体(13)を準備する工程との少なくともいずれか一方は、請求項29に記載の軸受部品(11,12,13)の製造方法を用いて実施される、転がり軸受(1)の製造方法。
PCT/JP2012/081788 2011-12-08 2012-12-07 軸受部品、転がり軸受およびこれらの製造方法 WO2013085033A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12855776.6A EP2789704A4 (en) 2011-12-08 2012-12-07 BEARING PARTS, ROLLING BEARINGS AND METHOD FOR THEIR PRODUCTION
CN201280069232.1A CN104105801B (zh) 2011-12-08 2012-12-07 轴承部件、滚动轴承和制造它们的方法
US14/363,750 US9206490B2 (en) 2011-12-08 2012-12-07 Bearing part, rolling bearing, and methods of manufacturing them

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011269037A JP5996864B2 (ja) 2011-12-08 2011-12-08 軸受部品、転がり軸受およびこれらの製造方法
JP2011-269102 2011-12-08
JP2011-269037 2011-12-08
JP2011269102A JP6005355B2 (ja) 2011-12-08 2011-12-08 転がり軸受
JP2012-164738 2012-07-25
JP2012164738A JP6153705B2 (ja) 2012-07-25 2012-07-25 転がり軸受
JP2012-164856 2012-07-25
JP2012164856A JP6101014B2 (ja) 2012-07-25 2012-07-25 転がり軸受
JP2012178416A JP6162378B2 (ja) 2012-08-10 2012-08-10 デファレンシャル用またはトランスミッション用深溝玉軸受
JP2012-178416 2012-08-10
JP2012-262749 2012-11-30
JP2012262749A JP2014109299A (ja) 2012-11-30 2012-11-30 転がり軸受

Publications (1)

Publication Number Publication Date
WO2013085033A1 true WO2013085033A1 (ja) 2013-06-13

Family

ID=48574386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081788 WO2013085033A1 (ja) 2011-12-08 2012-12-07 軸受部品、転がり軸受およびこれらの製造方法

Country Status (4)

Country Link
US (1) US9206490B2 (ja)
EP (1) EP2789704A4 (ja)
CN (3) CN108239697A (ja)
WO (1) WO2013085033A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555982A (zh) * 2013-09-05 2016-05-04 Ntn株式会社 滚动部件
CN108006086A (zh) * 2017-12-31 2018-05-08 无锡华洋滚动轴承有限公司 自定位等分压装装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084365B2 (ja) * 2012-03-26 2017-02-22 Ntn株式会社 保持器および玉軸受
ITTO20130464A1 (it) * 2013-06-05 2014-12-06 C M S P S P A Gabbia per cuscinetti a sfere.
EP3006755B1 (en) * 2013-06-06 2019-04-17 NTN Corporation Bearing component and rolling bearing
CN105283565B (zh) 2013-06-06 2018-04-03 Ntn株式会社 轴承部件及滚动轴承
WO2014196428A1 (ja) 2013-06-06 2014-12-11 Ntn株式会社 軸受部品および転がり軸受
CN105264247B (zh) 2013-06-06 2018-04-17 Ntn株式会社 轴承部件及滚动轴承
US10030697B2 (en) * 2015-05-07 2018-07-24 Schaeffler Technologies AG & Co. KG Axial bearing bridge for ball ramp
NL1041998B1 (en) * 2016-07-27 2018-02-01 Bosch Gmbh Robert Flexible steel ring made from maraging steel and provided with a nitrided surface layer
CN106840857B (zh) * 2017-04-10 2019-10-18 明光鑫烨制衣有限公司 一种纽扣测试装置
DE102018210091A1 (de) * 2018-06-21 2019-12-24 Aktiebolaget Skf Wälzlageranordnung
CN112126767A (zh) * 2020-09-04 2020-12-25 湖北钱潮精密件有限公司 一种GCr15钢球的淬回火工艺
CN117145870A (zh) * 2023-10-31 2023-12-01 万向钱潮股份公司 一种高性能滚子及制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190072A (ja) 1993-12-27 1995-07-28 Ntn Corp 転がり軸受の熱処理方法
JP2000161363A (ja) 1998-11-27 2000-06-13 Ntn Corp 円錐ころ軸受および車両用歯車軸支持装置
JP2003226918A (ja) 2001-11-29 2003-08-15 Ntn Corp 軸受部品、その熱処理方法および転がり軸受
JP2004225743A (ja) * 2003-01-20 2004-08-12 Nsk Ltd 転がり支持装置
JP2009180327A (ja) * 2008-01-31 2009-08-13 Ntn Corp スラストころ軸受

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3035818B2 (ja) 1997-10-21 2000-04-24 日本精工株式会社 玉軸受
JP2000145795A (ja) 1998-11-06 2000-05-26 Ntn Corp 深みぞ玉軸受
JP2007170680A (ja) 1999-07-19 2007-07-05 Nsk Ltd 玉軸受
WO2001018273A1 (fr) * 1999-09-03 2001-03-15 Nsk Ltd. Roulement a rouleaux
JP4423754B2 (ja) * 2000-06-22 2010-03-03 日本精工株式会社 転動軸の製造方法
JP2002089569A (ja) 2000-09-14 2002-03-27 Nsk Ltd ラジアル玉軸受およびその使用方法
JP2003021148A (ja) 2001-07-05 2003-01-24 Nsk Ltd 玉軸受
CN100535194C (zh) * 2001-11-29 2009-09-02 Ntn株式会社 轴承部件以及滚动轴承
US7438477B2 (en) * 2001-11-29 2008-10-21 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing
JP2003287040A (ja) 2002-03-28 2003-10-10 Nsk Ltd 密封シール付転がり軸受
JP2003301846A (ja) 2002-04-05 2003-10-24 Nsk Ltd 玉軸受
JP4718781B2 (ja) * 2003-02-28 2011-07-06 Ntn株式会社 トランスミッションの構成部品および円錐ころ軸受
JP2004360732A (ja) 2003-06-02 2004-12-24 Koyo Seiko Co Ltd 電動パワーステアリング装置
EP1707831B1 (en) * 2004-01-09 2012-02-01 NTN Corporation Thrust needle roller bearing, support structure receiving thrust load of compressor for car air-conditioner, support structure receiving thrust load of automatic transmission, support structure for nonstep variable speed gear, and support structure receiving thrust load of manual transmission
JP2006009887A (ja) 2004-06-24 2006-01-12 Nsk Ltd 玉軸受とトランスミッション用玉軸受
JP2006044349A (ja) 2004-08-02 2006-02-16 Nsk Ltd 電動パワーステアリング装置
US7435308B2 (en) * 2005-05-27 2008-10-14 Nsk Ltd. Rolling bearing
US8088230B2 (en) * 2006-05-19 2012-01-03 Nsk Ltd. Rolling apparatus
JP5194532B2 (ja) 2007-04-16 2013-05-08 日本精工株式会社 転がり軸受
JP2008106869A (ja) 2006-10-26 2008-05-08 Nsk Ltd 玉軸受
JP5147100B2 (ja) * 2006-11-14 2013-02-20 Ntn株式会社 車輪用軸受装置
CN102586697B (zh) * 2007-11-27 2015-08-12 Ntn株式会社 机械零部件及滚动轴承
JP2009150415A (ja) 2007-12-18 2009-07-09 Ntn Corp スラストころ軸受
JP2009150508A (ja) 2007-12-21 2009-07-09 Ntn Corp スラストころ軸受
JP2009150507A (ja) 2007-12-21 2009-07-09 Ntn Corp スラストころ軸受
JP2009192071A (ja) * 2008-02-18 2009-08-27 Nsk Ltd 転がり軸受
JP2010138933A (ja) 2008-12-09 2010-06-24 Ntn Corp 玉軸受及びこれを用いたオルタネータ用軸受
JP5529526B2 (ja) 2009-09-29 2014-06-25 Ntn株式会社 転がり軸受
JP2011220357A (ja) * 2010-04-02 2011-11-04 Nsk Ltd 遊星歯車装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190072A (ja) 1993-12-27 1995-07-28 Ntn Corp 転がり軸受の熱処理方法
JP2000161363A (ja) 1998-11-27 2000-06-13 Ntn Corp 円錐ころ軸受および車両用歯車軸支持装置
JP2003226918A (ja) 2001-11-29 2003-08-15 Ntn Corp 軸受部品、その熱処理方法および転がり軸受
JP2004225743A (ja) * 2003-01-20 2004-08-12 Nsk Ltd 転がり支持装置
JP2009180327A (ja) * 2008-01-31 2009-08-13 Ntn Corp スラストころ軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789704A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555982A (zh) * 2013-09-05 2016-05-04 Ntn株式会社 滚动部件
US10208798B2 (en) 2013-09-05 2019-02-19 Ntn Corporation Rolling device
CN108006086A (zh) * 2017-12-31 2018-05-08 无锡华洋滚动轴承有限公司 自定位等分压装装置
CN108006086B (zh) * 2017-12-31 2023-09-15 无锡华洋滚动轴承有限公司 自定位等分压装装置

Also Published As

Publication number Publication date
CN105331795A (zh) 2016-02-17
US9206490B2 (en) 2015-12-08
EP2789704A1 (en) 2014-10-15
US20140348454A1 (en) 2014-11-27
CN104105801B (zh) 2018-11-02
EP2789704A4 (en) 2016-05-11
CN108239697A (zh) 2018-07-03
CN104105801A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2013085033A1 (ja) 軸受部品、転がり軸受およびこれらの製造方法
US8152383B2 (en) Tapered roller bearing
JP6389031B2 (ja) 円錐ころ軸受
EP2789705B1 (en) Machine part, rolling bearing, conical roller bearing and method for manufacturing machine part
US20210025446A1 (en) Tapered roller bearing
JP2008121706A (ja) 円すいころ軸受
WO2012066913A1 (ja) 転がり軸受および転がり軸受の製造方法
JP2013096448A (ja) 風力発電設備用転がり軸受
JP2012107675A (ja) 転がり軸受および転がり軸受の製造方法
CN108368869B (zh) 轴承用轴和轴承
JP2007010114A (ja) トランスミッション用転がり軸受
EP2843249B1 (en) Use of a rolling bearing
JP5168898B2 (ja) 転動軸
JP5612912B2 (ja) 深みぞ玉軸受
JP2011094785A (ja) 転がり軸受
JP2008151236A (ja) 転がり軸受
JP2006071022A (ja) 転がり軸受
JP6101014B2 (ja) 転がり軸受
JP6153705B2 (ja) 転がり軸受
JP2007120548A (ja) 円すいころ軸受
JP6162378B2 (ja) デファレンシャル用またはトランスミッション用深溝玉軸受
JP2017161082A (ja) デファレンシャル用またはトランスミッション用深溝玉軸受
JP2015178904A (ja) 転がり軸受および転がり軸受の製造方法
JP2012107676A (ja) 転がり軸受および転がり軸受の製造方法
JP2008308706A (ja) 円錐ころ軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363750

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012855776

Country of ref document: EP