WO2013080641A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2013080641A1
WO2013080641A1 PCT/JP2012/074340 JP2012074340W WO2013080641A1 WO 2013080641 A1 WO2013080641 A1 WO 2013080641A1 JP 2012074340 W JP2012074340 W JP 2012074340W WO 2013080641 A1 WO2013080641 A1 WO 2013080641A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis direction
region
length
well region
unit cell
Prior art date
Application number
PCT/JP2012/074340
Other languages
English (en)
French (fr)
Inventor
史郎 日野
三浦 成久
古川 彰彦
友勝 渡辺
大塚 健一
寛 渡邊
勇史 海老池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/355,737 priority Critical patent/US9190468B2/en
Priority to DE112012005039.8T priority patent/DE112012005039B4/de
Priority to JP2013547021A priority patent/JP5769818B2/ja
Publication of WO2013080641A1 publication Critical patent/WO2013080641A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a power semiconductor device using silicon carbide.
  • a structure generally called a planar type has a high channel width density in order to reduce channel resistance.
  • a planar layout is desired.
  • the well region is formed into a quadrangular cell shape in plan view, and the well regions are arranged in a grid pattern so as to be orthogonal to each other.
  • a method of forming a channel in a direction on two straight lines (hereinafter referred to as a grid arrangement) is widely known.
  • the JFET region formed between the well regions is formed in a mesh shape, but at the position corresponding to the intersection of the mesh, a high electric field is applied to the gate insulating film when a reverse bias is applied. As a result, the gate insulating film is easily damaged.
  • the channel width density is determined by the value obtained by dividing the channel width in the unit cell by the cell area (product of the cell pitches in two directions). Therefore, to further increase the channel width density, it is necessary to reduce the cell pitch. However, it is not always easy due to the problem of processing accuracy.
  • the channel formed in the well in the region connecting the cells has a distance from the contact region between the source electrode and the semiconductor layer with respect to the channel formed in the other region. Therefore, there is a concern about increase in conduction loss and switching loss due to increase in parasitic resistance and delay during switching.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device capable of improving the reliability of the device while suppressing an increase in conduction loss and switching loss. .
  • a semiconductor device includes a semiconductor substrate of a first conductivity type or a second conductivity type, a drift layer of a first conductivity type formed on a main surface of the semiconductor substrate, and a surface layer of the drift layer periodically.
  • a plurality of well regions of the second conductivity type formed, a source region of the first conductivity type partially formed in each well region surface layer, and a gate extending from above each of the source regions to the drift layer
  • a gate electrode formed through an insulating film, a first conductivity type JFET region formed between each of the well regions, and a channel region defined in the well region facing each of the gate electrodes.
  • the unit cell is defined, the other unit cell adjacent to the one unit cell in the x-axis direction is shifted by a length larger than 0 in the y-axis direction and smaller than the length of the unit cell in the y-axis direction.
  • Another unit cell adjacent to the unit cell in the y-axis direction is arranged so as to be shifted by a length larger than 0 in the x-axis direction and smaller than the length of the unit cell in the x-axis direction.
  • the semiconductor device according to the present invention can improve the reliability of the device while suppressing an increase in conduction loss and switching loss.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device according to Embodiment 1 of the present invention.
  • the first conductivity type is n-type
  • the second conductivity type is p-type
  • a vertical MOSFET using silicon carbide is described.
  • the conductivity type may be reversed, and the semiconductor device Is not limited to the MOSFET.
  • a drift layer 20 made of n-type silicon carbide is formed on a first main surface (upper surface in the figure) of a semiconductor substrate 10 made of silicon carbide having a 4H polytype and having low resistance.
  • the semiconductor substrate 10 is inclined by 4 ° with respect to the c-axis direction with the plane direction of the first main surface being the (0001) plane.
  • a plurality of p-type well regions 30 containing aluminum (Al) as a first impurity as p-type impurities are separated, that is, spaced apart from each other by a certain width and periodically. Is formed.
  • an n-type source region 40 containing nitrogen (N) as the second impurity as an n-type impurity is formed shallower than the well region 30 inside the surface layer portion of each well region 30 cross section.
  • a well contact region 35 containing aluminum (Al) as a first impurity as a p-type impurity is formed inside the well region 30, preferably inside the source region 40.
  • the well region 30 and the well contact region 35 formed inside thereof are electrically short-circuited.
  • a gate insulating film 50 made of silicon oxide is formed on the surface of the drift layer 20 including the well region 30, the source region 40, and the well contact region 35 except for a part of the surface of the source region 40.
  • a gate electrode 60 is formed on the gate insulating film 50 so as to correspond to a region sandwiched between the pair of source regions 40.
  • a source electrode 70 is formed on the surface of the source region 40 and the well contact region 35 where the gate insulating film 50 is not formed.
  • the source electrode 70 is formed so as to cover the gate electrode 60 via the interlayer insulating film 90.
  • drain electrode 80 is formed on the second main surface opposite to the first main surface of the semiconductor substrate 10, that is, on the back surface side.
  • a region of the well region 30 that faces the gate electrode 60 through the gate insulating film 50 and in which an inversion layer is formed when the semiconductor device is turned on is referred to as a channel region (P in FIG. 1).
  • An n-type region sandwiched between two adjacent well regions 30 is referred to as a JFET region (Q in FIG. 1), and becomes a path through which an ON current flows during an ON operation (ON state).
  • a depletion layer extends from the well region 30 toward the JFET region, and high electric field strength is prevented from being applied to the gate insulating film 50 formed on the JFET region.
  • the width of the JFET region that is, the interval between two adjacent well regions 30
  • the interval between the well region 30 and the inner source region 40 in the surface of the well region 30 is referred to as the channel length.
  • a cycle in which the well region 30 and the source region 40 are formed, that is, a length obtained by adding the width of one well region 30 and the JFET length is called a cell pitch.
  • a region (peripheral region) where no on-current flows in the on state is formed on the outer peripheral side of the element with respect to the region in which the well regions 30 are periodically arranged for the purpose of wiring and withstand voltage termination. Is done. In order to distinguish this, a region where the well regions 30 are periodically arranged is referred to as an active region.
  • Electrons flowing from the source region 40 into the drift layer 20 reach the drain electrode 80 via the drift layer 20 and the semiconductor substrate 10 in accordance with an electric field formed by a positive voltage applied to the drain electrode 80. Therefore, an on-current flows from the drain electrode 80 to the source electrode 70 by applying a positive voltage to the gate electrode 60. This state is called an on state.
  • CVD chemical vapor deposition
  • the drift layer 20 having an n-type impurity concentration of 1 ⁇ 10 15 to 1 ⁇ 10 17 cm ⁇ 3 and a thickness of 5 to 50 ⁇ m is epitaxially grown by the method.
  • an implantation mask is formed on the surface of the drift layer 20 with a photoresist or the like, and Al which is a p-type first impurity is ion-implanted.
  • the depth of Al ion implantation is set to about 0.5 to 3 ⁇ m which does not exceed the thickness of the drift layer 20.
  • the impurity concentration of ion-implanted Al is higher than the n-type impurity concentration of the drift layer 20 in the range of 1 ⁇ 10 17 to 1 ⁇ 10 19 cm ⁇ 3 .
  • an implantation mask is formed on the surface of the drift layer 20 using a photoresist or the like, and N which is an n-type second impurity is ion-implanted.
  • the N ion implantation depth is shallower than the thickness of the well region 30.
  • the impurity concentration of N into which ions are implanted exceeds the p-type impurity concentration of the well region 30 in the range of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the region showing n-type becomes the source region 40.
  • an implantation mask is formed on the surface of the drift layer 20 with a photoresist or the like, and Al, which is a p-type first impurity, is ion-implanted, and the implantation mask is removed.
  • Al which is a p-type first impurity
  • the well contact region 35 is provided in order to obtain good electrical contact between the well region 30 and the source electrode 70, and is preferably set to an impurity concentration higher than the well region 30p type impurity concentration. When implanting impurities, it is desirable to heat the semiconductor substrate 10 to 150 ° C. or higher for the purpose of reducing the resistance of the well contact region 35.
  • annealing is performed at 1300 to 1900 ° C. for 30 seconds to 1 hour in an inert gas atmosphere such as argon (Ar) gas by a heat treatment apparatus.
  • an inert gas atmosphere such as argon (Ar) gas
  • ion-implanted N and Al are activated.
  • the surface of the drift layer 20 including the well region 30, the source region 40, and the well contact region 35 is thermally oxidized to form a gate insulating film 50 having a desired thickness.
  • a polycrystalline silicon film having conductivity is formed on the gate insulating film 50 by a low pressure CVD method, and the gate electrode 60 is formed by patterning the film. Thereafter, the gate insulating film 50 is opened.
  • a source electrode 70 electrically connected to the source region 40 and the well contact region 35 is formed, and a drain electrode 80 is formed on the back surface side of the semiconductor substrate 10, so that the vertical MOSFET shown in FIG. Complete.
  • examples of a material for the source electrode 70 and the drain electrode 80 include an Al alloy.
  • FIG. 2 is a schematic plan view of an active region of a vertical MOSFET, which is a prerequisite technology of the present invention, as viewed from the main surface side.
  • the well region 30 and the source region 40 do not need to be an exact square (square shape) as shown in FIG. 2, and a shape including a curve on a part of the side or a shape lacking a part, Including parallelograms.
  • the well region A (shown as A in FIG. 2) that is one of the well regions 30
  • the well regions B (indicated as B in FIG. 2) adjacent in the horizontal alignment direction are not shifted in the y-axis direction
  • the well regions C (indicated in FIG. 2 as C) adjacent in the vertical alignment direction are also x It is not displaced in the axial direction. That is, the well regions 30 are arranged in a grid arrangement in which the horizontal alignment direction is along the x axis and the vertical alignment direction is along the y axis.
  • the channel width density is a value obtained by dividing the outer peripheral length (S in FIG. 2) of the source region 40 in plan view by the area of the unit cell (R in FIG. 2).
  • FIG. 3 is a schematic plan view of the active region of the vertical MOSFET of the present invention as viewed from the main surface side. For the sake of simplicity, attention is paid to the well region 30 and the source region 40, and illustration of the peripheral configuration is omitted.
  • the well region B adjacent to the well region A in the horizontal alignment direction is arranged so as to be shifted by the length Loy in the y-axis direction, and in the vertical alignment direction with respect to the well region A.
  • Adjacent well regions C are arranged shifted by a length Lox in the x-axis direction.
  • the horizontal alignment direction and the vertical alignment direction are not orthogonal to each other.
  • the unit cell in the present arrangement is an area surrounded by the center line R as shown in FIG.
  • FIG. 4 shows a simplified shape of the unit cell shown in FIG.
  • the area of the unit cell in the present arrangement is two rectangular triangles having sides of a length Lox and a length Loy that are orthogonal from the shape (square shape) of the unit cell in the grid pattern arrangement.
  • Subtracted hexagonal shape upper left and lower right are subtracted in FIG. 4), which is smaller than the area (square shape) of the unit cells arranged in a grid pattern.
  • the channel width in the unit cell in the present arrangement (the outer peripheral length of the source region 40 indicated by S in FIGS. 3 and 4) is the same as that in the unit cell in the grid arrangement (see FIG. 2). Therefore, the channel width density is larger in the case of the present arrangement compared to the case of the grid arrangement because the area of the unit cell is small.
  • the grid layout and this implementation layout are compared with respect to the reliability of the gate insulating film 50 on the JFET region.
  • the intersection of the orthogonal center lines is the point on the JFET region where the distance from the adjacent well region 30 is the longest in each unit cell. Therefore, this point has the highest electric field strength applied to the gate insulating film 50 in the off state.
  • the point Y on the center line shown in FIG. 3 is the point on the JFET region where the distance from the adjacent well region 30 is the longest. Therefore, this point has the highest electric field strength applied to the gate insulating film 50 in the off state, but the distance to the nearest well region 30 is smaller than the point Y in the grid arrangement (more specifically, described later). ).
  • the maximum value of the electric field strength applied to the gate insulating film 50 in the off state is smaller in the present arrangement, and high reliability can be obtained.
  • FIG. 5 is a schematic plan view of the active region of the vertical MOSFET of the present invention as viewed from the main surface side. For the sake of simplicity, attention is paid to the well region 30 and the source region 40, and illustration of the peripheral configuration is omitted.
  • the well region B adjacent to the well region A in the horizontal alignment direction is arranged so as to be shifted by the length Loy in the y-axis direction.
  • the well region C adjacent to the well region A in the vertical alignment direction is arranged so as to be shifted by the length Lox in the x-axis direction.
  • 3 is different from FIG. 3 in that either the length Lox or the length Loy or both are larger than those in FIG. 3, the well region B and the well region C overlap each other, and the shape of each well region Is no longer a square shape. This is realized by forming a well region in which the well region B and the well region C are overlapped and their logical sum regions are connected.
  • the boundary of the unit cell is as shown (R in FIG. 5).
  • FIG. 6 shows a simplified shape of the unit cell shown in FIG.
  • the unit cell can be further reduced. Since the channel width remains the same, the channel width density increases.
  • the point Y on the JFET region where the distance from the adjacent well region 30 is the farthest is smaller than the point Y in the grid arrangement, which is closer to the nearest well region 30 (more Specific details will be described later). Therefore, the maximum value of the electric field strength applied to the gate insulating film 50 in the off state is reduced, and high reliability can be obtained.
  • FIG. 7 is a schematic plan view of the active region of the vertical MOSFET of the present invention as viewed from the main surface side. For the sake of simplicity, attention is paid to the well region 30 and the source region 40, and illustration of the peripheral configuration is omitted.
  • the well region B adjacent to the well region A in the horizontal alignment direction is arranged so as to be shifted by the length Loy in the y-axis direction.
  • the well region C adjacent to the well region A in the vertical alignment direction is arranged so as to be shifted by the length Lox in the x-axis direction.
  • 3 and FIG. 5 is different from FIG. 3 and FIG. 5 in that either the length Lox or the length Loy or both are larger than those in FIG. 3 and FIG.
  • the source region in the well region B and the source region in the well region C overlap each other. This is realized by forming a source region in which the source region in the well region B and the source region in the well region C are overlapped and the logical sum region is connected.
  • the boundary of the unit cell is as shown (R in FIG. 7).
  • FIG. 8 shows a simplified shape of the unit cell shown in FIG.
  • the unit cell since the area of the right triangle to be subtracted is larger than in the case of FIGS. 4 and 6, the unit cell can be further reduced. Therefore, if the channel width is approximately the same, the channel width density is increased.
  • the point Y on the JFET region where the distance from the adjacent well region 30 is the farthest is smaller than the point Y in the grid arrangement, which is closer to the nearest well region 30 (more Specific details will be described later). Therefore, the maximum value of the electric field strength applied to the gate insulating film 50 in the off state is reduced, and high reliability can be obtained.
  • the conduction loss that occurs when the MOSFET is on can be reduced by reducing the resistance between the source and drain, that is, the on-resistance.
  • the channel resistance is one of the resistance components constituting the on-resistance, and reduction is desired.
  • MOSFETs using silicon carbide are widely known to have high channel mobility because the interface characteristics between the oxide film and silicon carbide are not favorable, resulting in high channel resistance. Improvement is desired.
  • the channel width density is a value obtained by dividing the width of all channels existing in the active region by the area of the active region.
  • unit cells having the same shape are periodically arranged. Therefore, the channel width density can be obtained by dividing the channel width in the unit cell by the area of the unit cell.
  • the methods for increasing the channel width density can be broadly divided into two methods: miniaturization and cell arrangement.
  • Miniaturization is a method of reducing the cell pitch by reducing the dimensions such as JFET length and channel length, but the limits are limited in terms of limitations of microfabrication technology and deterioration of device characteristics.
  • FIG. 9 and 10 illustrate the planar arrangement of the well region 30 and the source region 40 in the comb arrangement (FIG. 9) and the grid arrangement (FIG. 10).
  • the cell pitch is 16 ⁇ m
  • the channel length is 1 ⁇ m
  • the JFET length is 4 ⁇ m.
  • the channel width density is obtained as 0.125 ⁇ m ⁇ 1 obtained by dividing 2 by 16 ⁇ m (see FIG. 9).
  • the channel width density can be increased by using the grid arrangement.
  • this depletion layer also extends from the well region 30 toward the JFET region to shield the drain voltage, and the gate insulating film 50 existing in a region sandwiched between the gate electrode 60 of approximately 0 volts and the JFET region. On the other hand, it has a function of reducing the generated electric field strength.
  • the intersection of the center line which is a line formed by a set of points where the distance from any adjacent well region 30 is equal
  • the distance to the well region 30 is longer than the other points in the JFET region.
  • the distance from the intersection of the center lines to the nearest well region 30 is up to ⁇ 2 times larger than the points on the other center lines. Therefore, a high electric field is likely to be applied to the gate insulating film 50 immediately above the intersection of the center lines in the off state.
  • the x-axis direction and the y-axis direction parallel to the channel and orthogonal to each other are defined, the cell pitch in the x-axis direction is defined as the cell pitch Px, and the cell pitch in the y-axis direction is defined as the cell pitch Py.
  • the channel lengths in the x-axis direction and the y-axis direction are channel length Lchx, channel length Lchy, and the JFET lengths in the x-axis direction and y-axis direction are JFET length Ljx and JFET length Ljy, respectively.
  • the channel length Lchx and the channel length Lchy may be referred to as channel length Lch
  • the JFET length Ljx and JFET length Ljy may be referred to as JFET length Lj.
  • This length Lox and the length Loy are called offset lengths.
  • the position corresponding to each length is indicated by an arrow in the plan view shown in FIG.
  • the “well region adjacent in the horizontal arrangement direction” is a well region adjacent in the x-axis direction in FIG. 11, but the x coordinate differs by a length corresponding to the cell pitch in the x-axis direction in FIG.
  • the well region having the shortest linear distance from the well region is indicated.
  • the same definition applies to “well regions adjacent in the vertical alignment direction” and “unit cells adjacent in the horizontal alignment direction”.
  • the distance to the adjacent well region 30 at the point Y is reduced, and the maximum electric field applied to the gate insulating film 50 in the off state is reduced. The value is reduced. As a result, the gate insulating film 50 is hardly broken and a highly reliable MOSFET is realized.
  • FIG. 13 shows the shape of the unit cell and the channel region in the unit cell when the JFET length Lj is 4 ⁇ m, the channel length Lch is 1 ⁇ m, and the length Lox and the length Loy are simultaneously increased from 0 ⁇ m to 2.5 ⁇ m. The change is illustrated.
  • the area of the unit cell is equivalent to Px ⁇ Py ⁇ Lox ⁇ Loy, the area of the unit cell decreases as the offset length is increased (see FIGS. 13A to 13D).
  • the length corresponding to the channel width is 40 ⁇ m
  • the area of the unit cell is 256 ⁇ m 2
  • the length corresponding to the channel width is 40 ⁇ m
  • the unit cell area is 250 ⁇ m 2
  • the length corresponding to the channel width is 40 ⁇ m
  • the unit cell area is 231 ⁇ m 2
  • the area of the unit cell is 200 [mu] m 2.
  • the length Lox and the length Loy are 5 ⁇ m or less, the shape of the channel region in the unit cell does not change, and the channel width in the unit cell is also constant. Therefore, the channel width density increases as the offset amount increases.
  • the length Lox and the length Loy exceed 5 ⁇ m corresponding to the channel length Lch + JFET length Lj, only a distance of the channel length Lch in a part of the outer periphery of the source region 40 as viewed from the outer periphery of the source region 40. Since the n-type region (JFET region) existing in the distant region is filled with the well region 30 of the adjacent cell, the channel width in the unit cell decreases (S in FIG. 13D).
  • FIG. 14 is a diagram illustrating the relationship between the offset amount and the channel width density.
  • the horizontal axis represents the offset length ( ⁇ m) and the vertical axis represents the channel width density ( ⁇ m ⁇ 1 ).
  • the channel length Lch and the JFET length Lj are uniform in the x-axis direction and the y-axis direction, the channel width density increases even when they are different in the x-axis direction and the y-axis direction.
  • the minimum processing dimension for forming the well region 30 and the source region 40 may be the same as that of the grid arrangement. That is, by using this embodiment, it is possible to improve the channel width density and improve the reliability at the same time without requiring improvement in processing accuracy.
  • the MOSFET has been described as an example of the effectiveness of the present invention.
  • the present invention can be applied to any vertical semiconductor device having a channel in which the channel is formed in a direction parallel to the main surface. That is, it is effective also in IGBT.
  • the present invention is particularly effective for a semiconductor element using silicon carbide.
  • the present invention is also effective for other wide band gap semiconductor elements, and has a certain effect even in a semiconductor element using silicon.
  • the length of the first side (side in the x-axis direction) in plan view, which is periodically arranged in the (n-type) drift layer 20 and the surface layer of the drift layer 20 is a (Px ⁇ Ljx in FIG. 11) ),
  • a second conductivity type (p-type) having a rectangular shape in which the length of the second side (side in the y-axis direction) orthogonal to this is b (corresponding to Py-Ljy in FIG.
  • Well region 30 first conductivity type (n-type) source region 40 formed on the surface layer of each well region 30, and each source region 40 to drift layer 20 via gate insulating film 50.
  • the formed gate electrode 60 and the well region 30 facing each gate electrode 60 And a defined channel region.
  • the distance between the well regions 30 in the x-axis direction is A (corresponding to Ljx in FIG. 11), and the distance between the well regions 30 in the y-axis direction is B (corresponding to Lji in FIG. 11).
  • the second well region (corresponding to well region B in FIGS. 3, 5, and 7) adjacent to the first well region (corresponding to well region A in FIGS. 3, 5, and 7) in the x-axis direction is the first A third well region (in FIGS. 3, 5, and 7) of the well region 30 that is shifted from the well region by a width larger than 0 and smaller than b + B in the y-axis direction and adjacent to the first well region in the y-axis direction. (Corresponding to well region C) is shifted from the first well region by a width larger than 0 and smaller than a + A in the x-axis direction.
  • the length Lox and the length Loy are in a predetermined range, the area of the unit cell is reduced, so that the channel width density is increased and the on-resistance can be reduced.
  • the semiconductor device is formed on the first conductive type (n-type) or second conductive type (p-type) semiconductor substrate 10 and the main surface of the semiconductor substrate 10.
  • the orthogonal x-axis and y-axis on the main surface of the semiconductor substrate 10 are defined along the direction in which the channel region is defined, and a two-dimensional shape on the main surface of the semiconductor substrate 10 which is a repeating unit of the well region 30 is defined.
  • a unit cell one unit cell (corresponding to the unit cell surrounding the well region A in FIGS. 3, 5, and 7) and another unit cell adjacent in the x-axis direction (the well region in FIGS. 3, 5, and 7)
  • Other unit cells adjacent to one unit cell in the y-axis direction which are offset by a length greater than 0 in the y-axis direction and smaller than the length of the unit cell in the y-axis direction.
  • Corresponding to the unit cells surrounding the well region C in FIGS. 3, 5 and 7) are arranged shifted by a length larger than 0 and smaller than the length of the unit cells in the x-axis direction in the x-axis direction.
  • the length of the unit cell is, for example, the length in the x-axis direction or the y-axis direction of the region surrounded by the center line R in FIG. 3, and the center line R is a line dividing the JFET length at the center.
  • the length corresponds to the cell pitch Px or the cell pitch Py in FIG.
  • the well regions 30 adjacent to the common well region 30 from the y-axis direction and the x-axis direction are arranged so as to partially overlap in a plan view. As a result, the area of the unit cell can be further reduced.
  • the semiconductor device further includes the first conductivity type (n-type) source region 40 formed in the surface layer of each well region 30, and the common well region 30 has the y-axis.
  • the source regions 40 that are adjacent to each other in the direction and the x-axis direction are arranged so as to partially overlap each other in plan view, so that the area of the unit cell can be further reduced.
  • the shift length in the x-axis direction of the well region 30 adjacent in the y-axis direction is Lox
  • y of the well region 30 adjacent in the x-axis direction is The displacement length in the axial direction is Loy
  • the distance between the well regions 30 in the x-axis direction is Ljx
  • the distance in the y-axis direction is Ljy
  • x is formed between the surface region of each well region 30 and the source region 40.
  • any constituent elements in the present embodiment can be modified or omitted within the scope of the invention.

Abstract

 本発明は、導通損失やスイッチング損失の増大を抑制しつつ、装置の信頼性を向上させることができる半導体装置の提供を目的とする。本発明にかかる半導体装置は、ドリフト層20表層において周期的に複数配置されたウェル領域30の繰り返し単位である半導体基板10の主面上の二次元形状をユニットセルとすると、一のユニットセルとx軸方向に隣接する他のユニットセルがy軸方向にずれて配置され、一のユニットセルとy軸方向に隣接する他のユニットセルがx軸方向にずれて配置される。

Description

半導体装置
 本発明は半導体装置に関し、特に、炭化珪素を用いた電力用半導体装置に関するものである。
 縦型MOSFET、IGBTなど、チャネルを有する縦型半導体装置で、チャネルが主面と平行な方向に形成される、一般にプレーナ型と呼ばれる構造では、チャネル抵抗を低減するために高いチャネル幅密度を有する平面レイアウトが望まれている。
 当該レイアウトを形成する方法として、例えば特許文献1および特許文献2に開示されるような、ウェル領域を平面視で四角形セル形状とし、碁盤目状に当該ウェル領域を配置することで、互いに直交する2直線上の方向にチャネルを形成する(以下、碁盤目配置)というものが広く知られている。
特開平1-211978号公報 特開平5-235362号公報
 特許文献1に示された方法では、ウェル領域の間に形成されるJFET領域が網目状に形成されるが、その網目の交点にあたる位置では、逆バイアス印加時にゲート絶縁膜に高い電界が印加されることとなり、ゲート絶縁膜が損傷しやすいという問題があった。
 一方、チャネル幅密度は、ユニットセル内のチャネル幅を、セル面積(2方向のセルピッチの積)で除した値で決まるため、更なるチャネル幅密度の増大には、セルピッチを縮小する必要があるが、加工精度の問題などから必ずしも容易ではない。
 碁盤目配置で、さらにチャネル幅密度を増大させる方法として、特許文献2で開示されるように、対角線上に配置されたセルを連続的に形成するものがある。
 しかし、当該方法を用いた場合、セル間を接続する領域のウェルに形成されるチャネルは、それ以外の領域に形成されるチャネルに対して、ソース電極と半導体層との接触領域からの距離が長くなるため、寄生抵抗の増大やスイッチング時の遅延により、導通損失やスイッチング損失の増大が懸念される。
 本発明は、上記のような問題を解決するためになされたものであり、導通損失やスイッチング損失の増大を抑制しつつ、装置の信頼性を向上させることができる半導体装置の提供を目的とする。
 本発明にかかる半導体装置は、第1導電型または第2導電型の半導体基板と、前記半導体基板の主面上に形成された第1導電型のドリフト層と、前記ドリフト層表層に周期的に形成された第2導電型の複数のウェル領域と、各前記ウェル領域表層に部分的に形成された第1導電型のソース領域と、各前記ソース領域上から前記ドリフト層上に亘って、ゲート絶縁膜を介して形成されたゲート電極と、各前記ウェル領域の間に形成された、第1導電型のJFET領域と、各前記ゲート電極に対向する前記ウェル領域に規定されたチャネル領域とを備え、前記チャネル領域が規定された方向に沿って、前記半導体基板の主面上の直交するx軸およびy軸を定義し、前記ウェル領域の繰り返し単位である前記半導体基板の主面上の二次元形状をユニットセルと定義した場合、一のユニットセルとx軸方向に隣接する他のユニットセルが、y軸方向に0より大きくy軸方向のユニットセルの長さより小さい長さだけずれて配置され、一のユニットセルとy軸方向に隣接する他のユニットセルが、x軸方向に0より大きくx軸方向のユニットセルの長さより小さい長さだけずれて配置されることを特徴とする。
 本発明にかかる半導体装置によれば、導通損失やスイッチング損失の増大を抑制しつつ、装置の信頼性を向上させることができる。
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
半導体装置の断面構造を模式的に示す図である。 本発明の前提技術となる半導体装置の平面構造を模式的に示す図である。 半導体装置の平面構造を模式的に示す図である。 半導体装置の平面構造を模式的に示す図である。 半導体装置の平面構造を模式的に示す図である。 半導体装置の平面構造を模式的に示す図である。 半導体装置の平面構造を模式的に示す図である。 半導体装置の平面構造を模式的に示す図である。 本発明の前提技術となる半導体装置の平面構造を模式的に示す図である。 本発明の前提技術となる半導体装置の平面構造を模式的に示す図である。 半導体装置の平面構造における、各長さを説明する図である。 点Yおよび距離aのオフセット長依存性を模式的に示す図である。 ユニットセル面積およびセル内のチャネル幅に相当する長さの、オフセット長依存性を模式的に示す図である。 チャネル幅密度のオフセット長依存性を示す図である。
 <実施の形態1>
 <構成>
 図1は、本発明の実施の形態1における、半導体装置の断面模式図である。本実施の形態においては、第1導電型をn型、第2導電型をp型とし、炭化珪素を用いた縦型MOSFETとして説明するが、導電型は逆であってもよいし、半導体装置も当該MOSFETに限られるものではない。
 図1において、4Hのポリタイプを有する、n型で低抵抗の、炭化珪素からなる半導体基板10の第1主面(図における上面)上に、n型の炭化珪素からなるドリフト層20が形成されている。半導体基板10は、第1主面の面方位が(0001)面でc軸方向に対して、4°傾斜されている。
 ドリフト層20表面には、第1不純物であるアルミニウム(Al)をp型不純物として含有する複数のp型のウェル領域30が、離間、すなわち互いにある幅だけ間隔をあけて、かつ、周期的に形成されている。
 また、各ウェル領域30断面の表層部内側には、第2不純物である窒素(N)をn型不純物として含有するn型のソース領域40が、ウェル領域30より浅く形成されている。
 また、ウェル領域30の内側で、望ましくはソース領域40の内側には、第1不純物であるアルミニウム(Al)をp型不純物として含有するウェルコンタクト領域35が形成されている。ウェル領域30とその内側に形成されたウェルコンタクト領域35とは、電気的に短絡している。
 また、ウェル領域30、ソース領域40、ウェルコンタクト領域35を含むドリフト層20表面には、ソース領域40表面の一部を除き、酸化珪素で構成されるゲート絶縁膜50が形成されている。
 さらに、ゲート絶縁膜50上には、一対のソース領域40に挟まれた領域に対応してゲート電極60が形成されている。
 また、ゲート絶縁膜50が形成されていないソース領域40およびウェルコンタクト領域35の表面にはソース電極70が形成されている。ソース電極70は、ゲート電極60を層間絶縁膜90を介して覆うように形成されている。
 また、半導体基板10の第1主面と反対側の第2主面、すなわち、裏面側にはドレイン電極80がそれぞれ形成されている。
 ここで、図1において、ウェル領域30のうちゲート絶縁膜50を介してゲート電極60と対向し、半導体装置のオン動作時に反転層が形成される領域をチャネル領域(図1におけるP)という。また、隣接する2つのウェル領域30に挟まれたn型の領域をJFET領域(図1におけるQ)と呼び、オン動作時(オン状態)にオン電流が流れる経路となる。逆に半導体装置のオフ状態では、ウェル領域30からJFET領域に向かって空乏層が伸び、JFET領域上に形成されるゲート絶縁膜50に対して高い電界強度が印加されるのを防ぐ。
 ここで、JFET領域の幅、すなわち隣接する2つのウェル領域30の間隔をJFET長、ウェル領域30とその内側のソース領域40との、ウェル領域30表層における間隔をチャネル長、と呼ぶ。また、ウェル領域30やソース領域40が形成される周期、すなわち、1つのウェル領域30の幅とJFET長とを足した長さを、セルピッチと呼ぶ。
 本実施の形態において図示はしないが、ウェル領域30が周期的に並ぶ領域に対する素子の外周側には、配線や耐圧終端の目的から、オン状態でオン電流を流さない領域(周辺領域)が形成される。これと区別するために、ウェル領域30が周期的に並ぶ領域を活性領域と呼ぶ。
 <動作>
 次に、本実施の形態における半導体装置の動作を説明する。
 図1に示す縦型MOSFETのゲート電極60に、閾値電圧以上のプラス電圧が印加されると、チャネル領域に反転層が形成され、n型のソース領域40とn型のドリフト層20との間に、キャリアである電子が流れる経路が形成される。
 ソース領域40からドリフト層20へ流れ込む電子は、ドレイン電極80に印加されるプラス電圧により形成される電界に従ってドリフト層20および半導体基板10を経由してドレイン電極80に到達する。したがって、ゲート電極60にプラス電圧を印加することにより、ドレイン電極80からソース電極70にオン電流が流れる。この状態をオン状態と呼ぶ。
 反対に、ゲート電極60に閾値電圧以下の電圧が印加されると、チャネル領域に反転層が形成されないため、ドレイン電極80からソース電極70に電流が流れない。この状態をオフ状態と呼ぶ。このとき、ドレイン電極80に印加されるプラス電圧のために、ドリフト層20とウェル領域30との間のpn接合から空乏層が伸びる。
 <製造方法>
 つづいて、実施の形態1の炭化珪素半導体装置である縦型MOSFETの製造方法について説明する。
 まず、第1主面の面方位が(0001)面であり、4Hのポリタイプを有する、n型で低抵抗の、半導体基板10の表面上に、化学気相堆積(Chemical Vapor Deposition:CVD)法により、1×1015~1×1017cm-3のn型の不純物濃度、5~50μmの厚さのドリフト層20をエピタキシャル成長する。
 次に、ドリフト層20の表面にフォトレジストなどにより注入マスクを形成し、p型の第1不純物であるAlをイオン注入する。このとき、Alのイオン注入の深さはドリフト層20の厚さを超えない0.5~3μm程度とする。また、イオン注入されたAlの不純物濃度は、1×1017~1×1019cm-3の範囲でドリフト層20のn型不純物濃度より多いものとする。
 その後、注入マスクを除去する。本工程によりAlがイオン注入された領域がウェル領域30となる。
 次に、ドリフト層20表面にフォトレジストなどにより注入マスクを形成し、n型の第2不純物であるNをイオン注入する。Nのイオン注入深さはウェル領域30の厚さより浅いものとする。また、イオン注入したNの不純物濃度は、1×1018~1×1021cm-3の範囲でウェル領域30のp型不純物濃度を超えるものとする。ドリフト層20内のNが注入された領域のうちn型を示す領域がソース領域40となる。
 次に、ドリフト層20表面にフォトレジストなどにより注入マスクを形成し、p型の第1不純物であるAlをイオン注入し、注入マスクを除去する。本工程によってドリフト層20内にAlが注入された領域がウェルコンタクト領域35となる。
 ウェルコンタクト領域35は、ウェル領域30およびとソース電極70との良好な電気的接触を得るために設けるもので、ウェル領域30p型不純物濃度より高濃度の不純物濃度に設定することが望ましい。不純物をイオン注入する際には、ウェルコンタクト領域35を低抵抗化する目的で、半導体基板10を150℃以上に加熱してイオン注入することが望ましい。
 次に、熱処理装置によって、アルゴン(Ar)ガスなどの不活性ガス雰囲気中で1300~1900℃、30秒~1時間のアニールを行う。このアニールにより、イオン注入されたN、Alを活性化させる。
 つづいて、ウェル領域30、ソース領域40、ウェルコンタクト領域35を含むドリフト層20の表面を熱酸化して所望の厚みのゲート絶縁膜50を形成する。
 次に、ゲート絶縁膜50の上に、導電性を有する多結晶珪素膜を減圧CVD法により形成し、これをパターニングすることによりゲート電極60を形成する。その後、ゲート絶縁膜50に開口する。
 最後に、ソース領域40およびウェルコンタクト領域35に電気的に接続されるソース電極70を形成し、また、半導体基板10の裏面側にドレイン電極80を形成して、図1に示す縦型MOSFETが完成する。ここで、ソース電極70およびドレイン電極80となる材料としてはAl合金などが挙げられる。
 <平面構造1>
 図2は、本発明の前提技術となる、縦型MOSFETの活性領域を主面側から見た平面模式図である。簡単のために、ウェル領域30およびソース領域40に着目し、周辺の構成については図示を省略する。ここでウェル領域30およびソース領域40は、図2に示されるような正確な正方形(方形状)である必要はなく、辺の一部に曲線を含む形状、または、一部が欠けた形状、平行四辺形等を含むものとする。
 チャネル方向に平行で、互いに直交するx軸方向、y軸方向を図2のように定義したとき、ウェル領域30のうちの1つであるウェル領域A(図2においてAと表示)に対して、横の並び方向で隣接するウェル領域B(図2においてBと表示)は、y軸方向にずれておらず、縦の並び方向で隣接するウェル領域C(図2においてCと表示)もx軸方向にずれていない。すなわち各ウェル領域30は、横の並び方向はx軸に沿い、縦の並び方向はy軸に沿う、碁盤目配置で配置されている。
 このとき、JFET領域において、隣接するどのウェル領域30からの距離も等距離となる点の集合による線を中央線と定義すると、配列の単位構造となるユニットセルは、当該中央線によって囲まれた領域となる(図2におけるR)。
 チャネル幅密度は、ソース領域40の平面視における外周長(図2におけるS)をユニットセル(図2におけるR)の面積で除した値となる。
 図3は、本発明の縦型MOSFETの活性領域を主面側から見た平面模式図である。簡単のために、ウェル領域30およびソース領域40に着目し、周辺の構成については図示を省略する。
 本実施の形態では、ウェル領域Aに対して横の並び方向で隣接するウェル領域Bは、y軸方向に長さLoyだけずれて配置されており、ウェル領域Aに対して縦の並び方向で隣接するウェル領域Cは、x軸方向に長さLoxだけずれて配置されている。また、横の並び方向と縦の並び方向とは、直交しない関係になっている。
 この配置では、ウェル領域Bとウェル領域Cとは離間されているものの、その間隔は碁盤目配置の場合に比べ短くなっている。当該配置を本実施配置と呼ぶ。本実施配置におけるユニットセルは、図3に示すように中央線Rに囲まれた領域となる。
 図2に示す碁盤目配置と、図3に示す本実施配置とを、チャネル幅密度について比較する。
 図4に、図3に示したユニットセルの形状を簡易化したものを示す。図4に示すように、本実施配置でのユニットセルの面積は、碁盤目配置のユニットセルの形状(四角形状)から、直交する長さLoxおよび長さLoyの辺を有する直角三角形を2つ差し引いた六角形状(図4においては、左上および右下が差し引かれている)となり、碁盤目配置のユニットセルの面積(四角形状)に対して小さくなる。
 一方、本実施配置でのユニットセル内のチャネル幅(図3および図4において、Sで表示するソース領域40の外周長)は、碁盤目配置の場合のユニットセルと同じである(図2参照)から、ユニットセルの面積が小さい分、碁盤目配置の場合に比べて本実施配置の場合が、チャネル幅密度は大きくなる。
 次に、碁盤目配置と本実施配置とを、JFET領域上のゲート絶縁膜50の信頼性について比較する。
 碁盤目配置では、直交する中央線の交点(図2における点Y)が、各ユニットセルにおいて、隣接するウェル領域30からの距離が最も遠くなるJFET領域上の点である。よってこの点が、オフ状態においてゲート絶縁膜50にかかる電界強度が最も高くなる。
 一方で、本実施配置では、図3に示す中央線上の点Yが、隣接するウェル領域30からの距離が最も遠くなるJFET領域上の点である。よってこの点が、オフ状態においてゲート絶縁膜50にかかる電界強度が最も高くなるが、碁盤目配置における点Yよりも、最も近いウェル領域30までの距離が小さくなる(より具体的には後述する)。
 隣接するウェル領域30までの距離が遠いJFET領域内の点では、オフ状態においてウェル領域30から空乏層が伸びにくいため、直上のゲート絶縁膜50に対して高い電界強度が印加されやすい。つまり、オフ状態においてゲート絶縁膜50にかかる電界強度の最大値は、本実施配置の方が小さくなり、高い信頼性を得ることができる。
 以上より、本実施の形態に示すセル配置を用いることで、チャネル幅密度の増加と、信頼性の向上を同時に得ることができる。
 <平面構造2>
 図5は、本発明の縦型MOSFETの活性領域を主面側から見た平面模式図である。簡単のために、ウェル領域30およびソース領域40に着目し、周辺の構成については図示を省略する。
 図5に示す構造では、図3に示した場合と同様に、ウェル領域Aに対して横の並び方向で隣接するウェル領域Bは、y軸方向に長さLoyだけずれて配置されており、ウェル領域Aに対して縦の並び方向で隣接するウェル領域Cは、x軸方向に長さLoxだけずれて配置されている。図3と異なる点は、長さLoxまたは長さLoyのいずれか、またはその両方が図3における場合より大きいため、ウェル領域Bとウェル領域Cとが互いに重なっており、それぞれのウェル領域の形状が四角形状ではなくなっている点である。これは、ウェル領域Bとウェル領域Cとが重なり、それらの論理和の領域を繋げたウェル領域とすることで実現される。ユニットセルの境界は図示のとおりとなる(図5におけるR)。
 図6に、図5に示したユニットセルの形状を簡易化したものを示す。図6の場合では、図4の場合に比べ、差し引く直角三角形の面積が大きくなることから、さらにユニットセルを小さくすることができる。チャネル幅はそのままであるから、チャネル幅密度は大きくなる。
 また図5に示すように、隣接するウェル領域30からの距離が最も遠くなるJFET領域上の点Yは、碁盤目配置における点Yよりも、最も近いウェル領域30までの距離が小さくなる(より具体的には後述する)。よって、オフ状態においてゲート絶縁膜50にかかる電界強度の最大値は小さくなり、高い信頼性を得ることができる。
 以上より、本実施の形態に示すセル配置を用いることで、チャネル幅密度の増加と、信頼性の向上を同時に得ることができる。
 <平面構造3>
 図7は、本発明の縦型MOSFETの活性領域を主面側から見た平面模式図である。簡単のために、ウェル領域30およびソース領域40に着目し、周辺の構成については図示を省略する。
 図7に示す構造では、図3に示した場合と同様に、ウェル領域Aに対して横の並び方向で隣接するウェル領域Bは、y軸方向に長さLoyだけずれて配置されており、ウェル領域Aに対して縦の並び方向で隣接するウェル領域Cは、x軸方向に長さLoxだけずれて配置されている。図3および図5と異なる点は、長さLoxまたは長さLoyのいずれか、またはその両方が図3および図5における場合より大きいため、ウェル領域Bとウェル領域Cとが互いに重なっており、さらにウェル領域B内のソース領域とウェル領域C内のソース領域とが互いに重なっている点である。これは、ウェル領域B内のソース領域とウェル領域C内のソース領域とが重なり、それらの論理和の領域を繋がったソース領域とすることで実現される。ユニットセルの境界は図示のとおりとなる(図7におけるR)。
 図8に、図7に示したユニットセルの形状を簡易化したものを示す。図8の場合では、図4および図6の場合に比べ、差し引く直角三角形の面積が大きくなることから、さらにユニットセルを小さくすることができる。よってチャネル幅が同程度であれば、チャネル幅密度は大きくなる。
 また図7に示すように、隣接するウェル領域30からの距離が最も遠くなるJFET領域上の点Yは、碁盤目配置における点Yよりも、最も近いウェル領域30までの距離が小さくなる(より具体的には後述する)。よって、オフ状態においてゲート絶縁膜50にかかる電界強度の最大値は小さくなり、高い信頼性を得ることができる。
 以上より、本実施の形態に示すセル配置を用いることで、チャネル幅密度の増加と、信頼性の向上を同時に得ることができる。
 <詳細説明>
 MOSFETがオン状態のときに生じる導通損失は、ソースおよびドレイン間の抵抗、すなわちオン抵抗を小さくすることで低減される。チャネル抵抗はオン抵抗を構成する抵抗成分の1つであり、低減が望まれる。
 特に炭化珪素を用いたMOSFETでは、酸化膜と炭化珪素の界面特性が好ましくないことから高いチャネル移動度が得られておらず、結果的に高いチャネル抵抗となりやすいことが広く知られており、その改善が望まれる。
 チャネル抵抗を減らす方法の一つとして、チャネル幅密度を増大させることが挙げられる。チャネル幅密度とは、活性領域内に存在する全てのチャネルの幅を、活性領域の面積で除した値である。一般に電力用半導体素子では、同じ形状のユニットセルが周期的に並ぶことから、ユニットセル内のチャネル幅をユニットセルの面積で除すことで、チャネル幅密度が求まる。
 チャネル幅密度を高める方法は、微細化とセル配置の工夫の2つに大別される。
 微細化は、JFET長やチャネル長などの寸法を小さくすることでセルピッチを縮小する方法であるが、微細加工技術の限界やデバイス特性の劣化などの点で限度を制限される。
 以下では、セル配置の工夫によりチャネル幅密度を増加させる方法を詳細に説明する。まず、セル配置の工夫によるチャネル幅密度の向上について、櫛型配置(ウェル領域を短冊状に形成し、1直線方向のみにチャネルを形成する)と碁盤目配置を例に挙げて説明する。
 図9および図10は、櫛型配置(図9)および碁盤目配置(図10)におけるウェル領域30とソース領域40の平面配置を図示したものである。ここでは、どちらの配置においても、セルピッチを16μm、チャネル長を1μm、JFET長を4μmと仮定する。
 櫛型配置の場合、チャネルはセルピッチ16μmの周期内に2本存在するため、チャネル幅密度は、2を16μmで除した0.125μm-1と求まる(図9参照)。
 一方、碁盤目配置の場合、16μm四方の面積を有するユニットセル内に、1辺10μmのチャネルが4本存在するため、40μmを16μmの二乗で除した0.156μm-1がチャネル幅密度である(図10参照)。
 すなわち、同じセルピッチを用いても、碁盤目配置を用いた方がチャネル幅密度を増やすことができることを意味する。
 MOSFETがオフの状態において、ドレイン電極80には数百から数千ボルトの高い電圧が発生する。このとき、接地されたソース電極70と電気的に短絡されているウェル領域30から、ドリフト層20に向かって伸びる空乏層が発生し、ドレイン電極80とソース電極70の間にかかる電圧を遮断する。
 特筆すべきは、この空乏層はウェル領域30からJFET領域に向かっても伸びることでドレイン電圧を遮蔽し、略0ボルトのゲート電極60とJFET領域に挟まれた領域に存在するゲート絶縁膜50に対して、発生する電界強度を低減する働きがあることである。
 JFET長が広い場合、この遮蔽効果は起こりにくくなることから、JFET領域の直上のゲート絶縁膜50には高電界が発生し、ゲート絶縁膜50の破壊が起こりやすくなる。
 これは、絶縁破壊電界が高く、半導体中の電界強度が高くなるように設計される、炭化珪素を含むワイドバンドギャップ半導体素子では、ゲート絶縁膜50にかかる電界強度も高くなり易いため、特に問題となり易い。
 前述の碁盤目配置に着目すると、JFET領域が網目状に形成されることから、隣接するどのウェル領域30からの距離も等距離となる点の集合による線である中央線の、その交点は、JFET領域中の他の点に比べ、ウェル領域30までの距離が長い。具体的には、中央線の交点から最も近いウェル領域30までの距離は、他の中央線上の点に比べて最大で√2倍だけ大きい。このため、中央線の交点の直上のゲート絶縁膜50には、オフ状態で高電界がかかりやすい。
 次に本発明の本実施配置について述べる。
 図11に示すように、チャネルに平行で、互いに直交するx軸方向、y軸方向を定義し、x軸方向のセルピッチをセルピッチPx、y軸方向のセルピッチをセルピッチPyと定義する。
 またx軸方向、y軸方向のチャネル長をそれぞれチャネル長Lchx、チャネル長Lchy、x軸方向、y軸方向のJFET長をそれぞれJFET長Ljx、JFET長Ljyとする。以下、チャネル長Lchxおよびチャネル長Lchyをチャネル長Lch、JFET長LjxおよびJFET長LjyをJFET長Ljと記載することもある。
 ウェル領域30のうちの一つである、あるウェル領域Aから見て、横の並び方向(図11では、+x(>0)側)で隣接するウェル領域Bが、y軸方向に+Loy(>0)だけずれており、縦の並び方向(図11では、+y(>0)側)で隣接するウェル領域Cが、x軸方向に+Lox(>0)だけずれている。この長さLoxおよび長さLoyをオフセット長と呼ぶ。
 図11に示す平面図に、各長さに対応する位置を矢印で示す。なお、「横の並び方向で隣接するウェル領域」とは、図11においてx軸方向に隣接するウェル領域であるが、図11におけるx軸方向のセルピッチに相当する長さだけx座標が異なり、長さLoyだけy座標が異なるウェル領域のうち、当該ウェル領域からの直線距離が最も近いウェル領域を指す。「縦の並び方向で隣接するウェル領域」や「横の並び方向で隣接するユニットセル」などについても、同様の定義である。
 図12は、JFET長Ljが4μmで、長さLoxおよび長さLoyを同時に0μmから1μmずつ大きくした場合に、隣接するウェル領域30からの距離が最も遠い点Yの位置が変わる様子を図示している。なお、Lox=Loy=0μmは、セル配置が碁盤目配置であることを意味する。
 長さLoxおよび長さLoyがおよそ2μmとなるまでオフセット長を大きくすると、徐々に点Yの隣接するウェル領域30までの距離aが短くなることが分かる(図12(a)~(f)参照)。
 具体的には、図12(a)では、Δx=Δy=0μmで、距離aは2.8μm、図12(b)では、Δx=Δy=1μmで、距離aは2.5μm、図12(c)では、Δx=Δy=2μmで、距離aは2.3μm、図12(d)では、Δx=Δy=3μmで、距離aは2.3μm、図12(e)では、Δx=Δy=4μmで、距離aは2.3μm、図12(f)では、Δx=Δy=5μmで、距離aは2.3μmである。
 ここでは簡単のため、長さLoxと長さLoyが等しい場合を示したが、等しくない場合も同様に、Lox>0、Loy>0であるならば横の並び方向と縦の並び方向とは直交せず、ウェル領域Bとウェル領域Cとが接するまでの間、オフセット長を大きくするほど、点Yから隣接するウェル領域30までの距離が小さくなることが容易に想像される。
 すなわち、碁盤目配置に比べ、長さLoxおよび長さLoyを0より大きくすることで、点Yの隣接するウェル領域30までの距離が小さくなり、オフ状態においてゲート絶縁膜50にかかる電界の最大値が低減される。その結果、ゲート絶縁膜50が破壊されにくく、信頼性の高いMOSFETが実現される。
 図13は、JFET長Ljが4μm、チャネル長Lchが1μmで、長さLoxおよび長さLoyを同時に0μmから2.5μmずつ大きくした場合の、ユニットセルの形状と、ユニットセル内のチャネル領域の変化を図示している。
 ユニットセルの面積は、Px×Py-Lox×Loyと同等であるので、オフセット長を大きくするほど、ユニットセルの面積は減少する(図13(a)~(d)参照)。
 具体的には、図13(a)では、Δx=Δy=0μmで、チャネル幅に相当する長さは40μm、ユニットセルの面積は256μm、図13(b)では、Δx=Δy=2.5μmで、チャネル幅に相当する長さは40μm、ユニットセルの面積は250μm、図13(c)では、Δx=Δy=5μmで、チャネル幅に相当する長さは40μm、ユニットセルの面積は231μm、図13(d)では、Δx=Δy=7.5μmで、チャネル幅に相当する長さは30μm、ユニットセルの面積は200μmである。
 長さLoxおよび長さLoyが5μm以下の場合、ユニットセル内のチャネル領域の形状は変わらず、ユニットセル内のチャネル幅も一定であるため、オフセット量が大きいほどチャネル幅密度は増大する。
 一方、長さLoxと長さLoyがチャネル長Lch+JFET長Ljに相当する5μmを超えると、ソース領域40の外周のうち一部の領域で、ソース領域40の外周から見てチャネル長Lchの距離だけ離れた領域に存在していたn型領域(JFET領域)が、隣接するセルのウェル領域30によって埋められてしまうため、ユニットセル内のチャネル幅は減少する(図13(d)におけるS)。
 図14は、オフセット量とチャネル幅密度の関係を図示した図である。横軸はオフセット長(μm)、縦軸はチャネル幅密度(μm-1)である。計算に用いた数値は、Lox=Loy、Px=16μm、Py=16μm、Lch=1μm、Lj=4μmである。
 図14から、オフセット量を増加させるにつれてチャネル幅密度は大きくなり、オフセット量がLox=Loy=Lch+Lj=5μmのときにチャネル幅密度が最大になることが分かる。また、図14から読み取れるように、オフセット長がおおよそ、0<Lox=Loy<3×Lch+Ljの範囲では、Lox=Loy=0、すなわち碁盤目配置に対してチャネル幅密度が増加していることが分かる。
 ここでは簡単のために、LoxとLoyが同じ場合を想定して議論したが、本発明はLoxとLoyが異なっていてもチャネル幅密度増加の効果が得られる。すなわち、少なくとも図14に示すような場合には、0<Lox<3×Lchx+Ljx、0<Loy<3×Lchy+Ljyを共に満たせば、チャネル幅密度は増大する。
 また、チャネル長Lch、JFET長Ljがx軸方向とy軸方向で均一である場合を想定したが、x軸方向とy軸方向で異なる場合でも、チャネル幅密度は増加する。
 すなわち、少なくとも図14に示すような場合には、0<Lox<3×Lchx+Ljx、0<Loy<3×Lchy+Ljyを同時に満たせば、チャネル幅密度の増大効果が得られ、特にLox=Lchx+Ljx、Loy=Lchy+Ljyの場合にチャネル幅密度は最大になる。
 なお、本実施配置を実現するにあたり、ウェル領域30およびソース領域40などを形成するための最小加工寸法などは碁盤目配置のそれと同じで良い。すなわち、本実施配置を用いることで、加工精度の向上を必要とせず、チャネル幅密度の向上と、信頼性の向上を同時に実現できる。
 <変形例>
 本発明の有効性の説明としてMOSFETを例に挙げたが、チャネルを有する縦型半導体装置で、チャネルが主面と平行な方向に形成される素子であれば適用可能である。すなわちIGBTにおいても有効である。
 本発明は、炭化珪素を用いた半導体素子で特に有効であることは上述したとおりだが、他のワイドバンドギャップ半導体素子においても有効であり、シリコンを用いた半導体素子においても一定の効果がある。
 また、結晶構造、主面の面方位、オフ角、各注入条件など、具体的な例を用いて説明したが、本発明の適用範囲はこれに限定されない。
 <効果>
 本発明にかかる実施の形態によれば、半導体装置において、第1導電型(n型)または第2導電型(p型)の半導体基板10と、半導体基板10上に形成された第1導電型(n型)のドリフト層20と、ドリフト層20表層において周期的に複数配置された、平面視上の第1辺(x軸方向の辺)の長さがa(図11における、Px-Ljxに対応)、これと直交する平面視上の第2辺(y軸方向の辺)の長さがb(図11における、Py-Ljyに対応)の方形状の第2導電型(p型)のウェル領域30と、各ウェル領域30表層に形成された第1導電型(n型)のソース領域40と、各ソース領域40上からドリフト層20上に亘って、ゲート絶縁膜50を介して形成されたゲート電極60と、各ゲート電極60に対向するウェル領域30に規定されたチャネル領域とを備える。
 x軸方向の各ウェル領域30間の距離がA(図11におけるLjxに対応)、y軸方向の各ウェル領域30間の距離がB(図11におけるLjyに対応)であり、ウェル領域30の内の、x軸方向に第1ウェル領域(図3、5、7におけるウェル領域Aに対応)に隣接する第2ウェル領域(図3、5、7におけるウェル領域Bに対応)は、第1ウェル領域からy軸方向に0より大きくb+Bより小さい幅だけずれて配置され、ウェル領域30の内の、y軸方向に第1ウェル領域に隣接する第3ウェル領域(図3、5、7におけるウェル領域Cに対応)は、第1ウェル領域からx軸方向に0より大きくa+Aより小さい幅だけずれて配置される。
 このような構成とすることで、導通損失やスイッチング損失の増大を抑制しつつ、装置の信頼性を向上させることができる。
 すなわち最も遠い点Yまでの距離が小さくなることで、逆バイアス印加時にゲート絶縁膜50にかかる電界が緩和され、信頼性が高まる。
 また、長さLoxと長さLoyが所定の範囲であれば、ユニットセルの面積が小さくなることで、チャネル幅密度が大きくなり、オン抵抗を低減することができる。
 また、ソース電極からの電気的距離が遠いチャネルが存在しないため、導通損失やスイッチング損失の増大を抑制することができる。
 また、本発明にかかる実施の形態によれば、半導体装置において、第1導電型(n型)または第2導電型(p型)の半導体基板10と、半導体基板10の主面上に形成された第1導電型(n型)のドリフト層20と、ドリフト層20表層に周期的に形成された第2導電型(p型)の複数のウェル領域30と、各ウェル領域30表層に部分的に形成された第1導電型(n型)のソース領域40と、各ソース領域40上からドリフト層20上に亘って、ゲート絶縁膜50を介して形成されたゲート電極60と、各ウェル領域30の間に形成された、第1導電型のJFET領域と、各ゲート電極60に対向するウェル領域30に規定されたチャネル領域とを備える。
 チャネル領域が規定された方向に沿って、半導体基板10の主面上の直交するx軸およびy軸を定義し、ウェル領域30の繰り返し単位である半導体基板10の主面上の二次元形状をユニットセルと定義した場合、一のユニットセル(図3、5、7におけるウェル領域Aを囲むユニットセルに対応)とx軸方向に隣接する他のユニットセル(図3、5、7におけるウェル領域Bを囲むユニットセルに対応)が、y軸方向に0より大きくy軸方向のユニットセルの長さより小さい長さだけずれて配置され、一のユニットセルとy軸方向に隣接する他のユニットセル(図3、5、7におけるウェル領域Cを囲むユニットセルに対応)が、x軸方向に0より大きくx軸方向のユニットセルの長さより小さい長さだけずれて配置される。
 ここでユニットセルの長さとは、例えば図3の中央線Rで囲まれた領域のx軸方向またはy軸方向の長さであり、中央線RがJFET長を中央で分ける線であることを考慮すると、結局図11のセルピッチPxまたはセルピッチPyに対応する長さであることが分かる。
 このような構成とすることで、導通損失やスイッチング損失の増大を抑制しつつ、装置の信頼性を向上させることができる。
 また、本発明にかかる実施の形態によれば、半導体装置において、共通のウェル領域30にy軸方向およびx軸方向からそれぞれ隣接するウェル領域30同士が、平面視において部分的に重なって配列されることで、さらにユニットセルの面積を小さくすることができる。
 また、本発明にかかる実施の形態によれば、半導体装置において、各ウェル領域30表層に形成された第1導電型(n型)のソース領域40をさらに備え、共通のウェル領域30にy軸方向およびx軸方向からそれぞれ隣接するソース領域40同士が、平面視において部分的に重なって配列されることで、さらにユニットセルの面積を小さくすることができる。
 また、本発明にかかる実施の形態によれば、半導体装置において、y軸方向で隣接するウェル領域30の、x軸方向のずれ長をLoxとし、x軸方向で隣接するウェル領域30の、y軸方向のずれ長をLoyとし、ウェル領域30同士の、x軸方向の距離をLjx、y軸方向の距離をLjyとし、各ウェル領域30表層の、ソース領域40との間に形成されるx軸方向のチャネル長をLchx、y軸方向のチャネル長をLchyとする場合、0<Lox<Lchx+Ljx、かつ、0<Loy<Lchy+Ljyであることで、ユニットセルの面積を小さくし、チャネル幅密度を増加させることができる。
 また、本発明にかかる実施の形態によれば、半導体装置において、Lox=Lchx+Ljx、かつ、Loy=Lchy+Ljyであることで、効果的にユニットセルの面積を小さくし、チャネル幅密度をより増加させることができる。
 本発明の実施の形態では、各構成要素の材質、材料、実施の条件等についても記載しているが、これらは例示であって記載したものに限られるものではない。
 なお本発明は、その発明の範囲内において、本実施の形態における任意の構成要素の変形もしくは省略が可能である。
 本発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。
 10 半導体基板、20 ドリフト層、30 ウェル領域、35 ウェルコンタクト領域、40 ソース領域、50 ゲート絶縁膜、60 ゲート電極、70 ソース電極、80 ドレイン電極、90 層間絶縁膜。

Claims (9)

  1.  第1導電型または第2導電型の半導体基板(10)と、
     前記半導体基板(10)の主面上に形成された第1導電型のドリフト層(20)と、
     前記ドリフト層(20)表層に周期的に形成された第2導電型の複数のウェル領域(30)と、
     各前記ウェル領域(30)表層に部分的に形成された第1導電型のソース領域(40)と、
     各前記ソース領域(40)上から前記ドリフト層(20)上に亘って、ゲート絶縁膜(50)を介して形成されたゲート電極(60)と、
     各前記ウェル領域(30)の間に形成された、第1導電型のJFET領域(Q)と、
     各前記ゲート電極(60)に対向する前記ウェル領域(30)に規定されたチャネル領域とを備え、
     前記チャネル領域が規定された方向に沿って、前記半導体基板(10)の主面上の直交するx軸およびy軸を定義し、
     前記ウェル領域(30)の繰り返し単位である前記半導体基板(10)の主面上の二次元形状をユニットセルと定義した場合、
     一のユニットセルとx軸方向に隣接する他のユニットセルが、y軸方向に0より大きくy軸方向のユニットセルの長さより小さい長さだけずれて配置され、
     一のユニットセルとy軸方向に隣接する他のユニットセルが、x軸方向に0より大きくx軸方向のユニットセルの長さより小さい長さだけずれて配置されることを特徴とする、
    半導体装置。
  2.  各前記ウェル領域(30)が、平面視において互いに離間して配列されたことを特徴とする、
    請求項1に記載の半導体装置。
  3.  共通のウェル領域(30)に前記y軸方向および前記x軸方向からそれぞれ隣接する前記ウェル領域(30)同士が、平面視において部分的に重なって配列されたことを特徴とする、
    請求項1に記載の半導体装置。
  4.  前記ソース領域(40)同士が、平面視において部分的に重なって配列されたことを特徴とする、
    請求項3に記載の半導体装置。
  5.  前記y軸方向で隣接する前記ウェル領域(30)の、前記x軸方向のずれ長をLoxとし、
     前記x軸方向で隣接する前記ウェル領域(30)の、前記y軸方向のずれ長をLoyとし、
     前記ウェル領域(30)同士の、前記x軸方向の距離をLjx、前記y軸方向の距離をLjyとし、
     各前記ウェル領域(30)表層の、前記ソース領域(40)との間に形成される前記x軸方向のチャネル長をLchx、前記y軸方向のチャネル長をLchyとする場合、
     0<Lox<Lchx+Ljx、かつ、0<Loy<Lchy+Ljyであることを特徴とする、
    請求項1~4のいずれかに記載の半導体装置。
  6.  Lox=Lchx+Ljx、かつ、Loy=Lchy+Ljyであることを特徴とする、
    請求項5に記載の半導体装置。
  7.  装置構造が、MOSFETおよびIGBTのいずれかであることを特徴とする、
    請求項1~4のいずれかに記載の半導体装置。
  8.  前記半導体基板(10)および前記ドリフト層(20)が、ワイドバンドギャップ半導体からなることを特徴とする、
    請求項1~4のいずれかに記載の半導体装置。
  9.  前記半導体基板(10)および前記ドリフト層(20)が、炭化珪素からなることを特徴とする、
    請求項1~4のいずれかに記載の半導体装置。
PCT/JP2012/074340 2011-12-01 2012-09-24 半導体装置 WO2013080641A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/355,737 US9190468B2 (en) 2011-12-01 2012-09-24 Semiconductor device
DE112012005039.8T DE112012005039B4 (de) 2011-12-01 2012-09-24 Halbleitervorrichtung
JP2013547021A JP5769818B2 (ja) 2011-12-01 2012-09-24 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-263331 2011-12-01
JP2011263331 2011-12-01

Publications (1)

Publication Number Publication Date
WO2013080641A1 true WO2013080641A1 (ja) 2013-06-06

Family

ID=48535116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074340 WO2013080641A1 (ja) 2011-12-01 2012-09-24 半導体装置

Country Status (4)

Country Link
US (1) US9190468B2 (ja)
JP (1) JP5769818B2 (ja)
DE (1) DE112012005039B4 (ja)
WO (1) WO2013080641A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004966A (ja) * 2014-06-19 2016-01-12 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2016084141A1 (ja) * 2014-11-26 2016-06-02 株式会社日立製作所 半導体スイッチング素子および炭化珪素半導体装置の製造方法
CN107919856A (zh) * 2016-10-06 2018-04-17 三菱电机株式会社 半导体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143020A1 (ja) * 2015-03-09 2016-09-15 株式会社日立製作所 放射線検出器およびそれを用いた放射線検出装置
JP6844228B2 (ja) * 2016-12-02 2021-03-17 富士電機株式会社 半導体装置および半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823735A1 (en) * 1996-08-05 1998-02-11 Sgs-Thomson Microelectronics S.A. MOS-technology power device
WO1999004435A1 (en) * 1997-07-16 1999-01-28 Magepower Semiconductor Corporation Novel cell topology for power transistors with increased packing density
JPH11214529A (ja) * 1997-10-24 1999-08-06 St Microelectronics Srl Mosデバイスの集積化方法及び半導体チイップ
JP2009094314A (ja) * 2007-10-10 2009-04-30 Mitsubishi Electric Corp 縦型mosfet構造の半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211978A (ja) * 1988-02-19 1989-08-25 Fujitsu Ltd 半導体装置
JP3016298B2 (ja) * 1992-02-26 2000-03-06 日本電気株式会社 半導体装置
US8860039B2 (en) * 2010-04-26 2014-10-14 Mitsubishi Electric Corporation Semiconductor device
US8890242B2 (en) * 2012-02-23 2014-11-18 Super Group Semiconductor Co., Ltd. Closed cell trenched power semiconductor structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823735A1 (en) * 1996-08-05 1998-02-11 Sgs-Thomson Microelectronics S.A. MOS-technology power device
WO1999004435A1 (en) * 1997-07-16 1999-01-28 Magepower Semiconductor Corporation Novel cell topology for power transistors with increased packing density
JPH11214529A (ja) * 1997-10-24 1999-08-06 St Microelectronics Srl Mosデバイスの集積化方法及び半導体チイップ
JP2009094314A (ja) * 2007-10-10 2009-04-30 Mitsubishi Electric Corp 縦型mosfet構造の半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004966A (ja) * 2014-06-19 2016-01-12 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2016084141A1 (ja) * 2014-11-26 2016-06-02 株式会社日立製作所 半導体スイッチング素子および炭化珪素半導体装置の製造方法
CN107919856A (zh) * 2016-10-06 2018-04-17 三菱电机株式会社 半导体装置

Also Published As

Publication number Publication date
JPWO2013080641A1 (ja) 2015-04-27
DE112012005039B4 (de) 2021-01-14
DE112012005039T5 (de) 2014-09-04
JP5769818B2 (ja) 2015-08-26
US20140299891A1 (en) 2014-10-09
US9190468B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5198030B2 (ja) 半導体素子
JP5992094B2 (ja) 半導体装置
JP4900662B2 (ja) ショットキーダイオードを内蔵した炭化ケイ素mos電界効果トランジスタおよびその製造方法
US7919824B2 (en) Semiconductor device and method of manufacturing the same
JP5613995B2 (ja) 炭化珪素半導体装置およびその製造方法
US8748982B2 (en) High breakdown voltage semiconductor device
JP5900698B2 (ja) 半導体装置
JP5182359B2 (ja) 炭化珪素半導体装置
JP2005183563A (ja) 半導体装置
JP5769818B2 (ja) 半導体装置
WO2010021146A1 (ja) 半導体装置
WO2017038518A1 (ja) 炭化珪素半導体装置
US20190148497A1 (en) Switching element and method of manufacturing the same
JPWO2018150467A1 (ja) 半導体装置および半導体装置の製造方法
JP5630552B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2010258385A (ja) 炭化珪素半導体装置およびその製造方法
JP4532536B2 (ja) 半導体装置
US10707301B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2006261562A (ja) 半導体装置
US9711636B2 (en) Super-junction semiconductor device
EP2860761A1 (en) Semiconductor device
JP2019012803A (ja) 半導体装置
JP7192504B2 (ja) 半導体装置
JP2013232561A (ja) 半導体装置
JP6150649B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547021

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14355737

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005039

Country of ref document: DE

Ref document number: 1120120050398

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854465

Country of ref document: EP

Kind code of ref document: A1