WO2013057912A1 - 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法 - Google Patents

不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法 Download PDF

Info

Publication number
WO2013057912A1
WO2013057912A1 PCT/JP2012/006578 JP2012006578W WO2013057912A1 WO 2013057912 A1 WO2013057912 A1 WO 2013057912A1 JP 2012006578 W JP2012006578 W JP 2012006578W WO 2013057912 A1 WO2013057912 A1 WO 2013057912A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resistance
value
voltage
voltage value
Prior art date
Application number
PCT/JP2012/006578
Other languages
English (en)
French (fr)
Inventor
村岡 俊作
魏 志強
高木 剛
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/824,811 priority Critical patent/US9111640B2/en
Priority to CN201280003077.3A priority patent/CN103180948B/zh
Priority to JP2013513450A priority patent/JP5291270B1/ja
Publication of WO2013057912A1 publication Critical patent/WO2013057912A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5685Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/564Miscellaneous aspects
    • G11C2211/5648Multilevel memory programming, reading or erasing operations wherein the order or sequence of the operations is relevant

Definitions

  • the present invention relates to a nonvolatile memory element using a state change material whose resistance value changes according to an applied pulse voltage.
  • the materials used for the resistance change layer are roughly divided into two types.
  • One is an oxide of a transition metal (Ni, Nb, Ti, Zr, Hf, Co, Fe, Cu, Cr, etc.) as disclosed in Patent Document 1 and Non-Patent Documents 1 to 3,
  • it is an oxide whose oxygen content is insufficient from the viewpoint of stoichiometric composition (hereinafter referred to as an oxygen-deficient oxide).
  • the other is a perovskite material (Pr (1-x) Ca x MnO 3 (PCMO), LaSrMnO 3 (LSMO), GdBaCo x O y (GBCO), etc.).
  • Patent Document 2 and Patent Document 3 when the latter perovskite material is used as a resistance change layer, not only two values (two states of a low resistance state and a high resistance state) but also a multivalue of three or more values are used.
  • a non-volatile storage element capable of storing the above is disclosed.
  • the present invention provides a nonvolatile memory element that can be in a stable state of each resistance value.
  • a nonvolatile memory element includes a first electrode, a second electrode, and the first electrode and the second electrode, and is interposed between the first electrode and the second electrode. And a resistance change layer made of a metal oxide that reversibly changes based on a voltage value of an electric pulse applied to the resistance change layer, the resistance change layer being connected to the first electrode.
  • the voltage values V1, V2, V3, V4, V5, and V6 when the first electrode is used as a reference have a relationship of V2> V1> V6> 0V> V5> V3> V4, and the resistance R1, R2, R3, and R4, which are the resistance values of the change layer, satisfy the relationship of R3> R2> R4> R1.
  • the resistance value of the variable resistance layer is R2 when the electrical pulse having a voltage value of V2 or more is applied between the first electrode and the second electrode, and the first variable When the electric pulse having a voltage value equal to or lower than V4 is applied between the electrode and the second electrode, R4 is obtained, and the resistance value of the variable resistance layer is R2, and the first electrode and the second electrode When the electric pulse having a voltage value of V5 or more is applied between the second electrodes, it remains R2, and the voltage value between the first electrode and the second electrode is smaller than V5 and smaller than V3.
  • the large electric pulse is applied, the voltage rises above R2, and when the electric pulse having a voltage value of V3 is applied between the first electrode and the second electrode, R3 is obtained.
  • the resistance change layer has a resistance value R3, and When the electric pulse having a voltage value smaller than V3 and larger than V4 is applied between one electrode and the second electrode, the voltage drops between R3 and a voltage between the first electrode and the second electrode. When the electric pulse having a value of V4 is applied, R4 is obtained, and the resistance value of the resistance change layer is R4, and the voltage value between the first electrode and the second electrode is V4 or less. When the electric pulse is applied, the voltage remains R4, and the electric pulse having a voltage value larger than V6 and smaller than V1 is applied between the first electrode and the second electrode.
  • nonvolatile memory element According to the nonvolatile memory element according to the present invention, stable multi-value storage is realized.
  • FIG. 1 is a cross-sectional view showing the configuration of the nonvolatile memory element according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a configuration of a local region formed in the nonvolatile memory element according to the first embodiment.
  • FIG. 3 is a graph showing the relationship between the resistance value of the resistance change layer and the voltage value of the applied voltage pulse in the nonvolatile memory element in which the second high oxygen concentration region is not formed.
  • FIG. 4 is a graph showing the relationship between the resistance value of the resistance change layer and the voltage value of the applied voltage pulse in the nonvolatile memory element according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing the configuration of the nonvolatile memory element according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a configuration of a local region formed in the nonvolatile memory element according to the first embodiment.
  • FIG. 3 is a graph showing the relationship between the resistance value of the resistance change layer and the voltage value of the applied voltage pulse in
  • FIG. 5 is a diagram schematically showing resistance-voltage characteristics of the nonvolatile memory element according to Embodiment 1 and the nonvolatile memory element of the reference example.
  • FIG. 6 is a diagram schematically showing resistance-voltage characteristics of the nonvolatile memory element according to Embodiment 1.
  • FIG. 7A is a diagram conceptually illustrating an internal state of the resistance change layer of the nonvolatile memory element in the case where the resistance value is R1.
  • FIG. 7B is a diagram conceptually showing the internal state of the resistance change layer of the nonvolatile memory element in the case where the resistance value is R2.
  • FIG. 7C is a diagram conceptually illustrating an internal state of the resistance change layer of the nonvolatile memory element in the case where the resistance value is R3.
  • FIG. 7A is a diagram conceptually illustrating an internal state of the resistance change layer of the nonvolatile memory element in the case where the resistance value is R1.
  • FIG. 7B is a diagram conceptually showing the internal state of the resistance change
  • FIG. 7D is a diagram conceptually illustrating an internal state of the resistance change layer of the nonvolatile memory element in the case where the resistance value is R4.
  • FIG. 8 is a state transition diagram of the resistance state of the resistance change layer in the nonvolatile memory element according to Embodiment 1.
  • FIG. 9 is a flowchart of a writing method for causing the nonvolatile memory element to transition from the state in which the resistance value is R1 or R4 to the state in R3.
  • FIG. 10 is a flowchart of a writing method for causing the nonvolatile memory element to transition from the state in which the resistance value is R2 or R3 to the state in R1.
  • FIG. 11 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 2.
  • FIG. 12 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 3.
  • a nonvolatile memory element is interposed between a first electrode, a second electrode, and the first electrode and the second electrode, and between the first electrode and the second electrode.
  • a resistance change layer made of a metal oxide that reversibly changes a resistance value based on a voltage value of an applied electric pulse, and the resistance change layer is connected to the first electrode. 1 metal oxide region and a second metal oxide region connected to the second electrode and having a higher oxygen content than the first metal oxide region.
  • the voltage values V1, V2, V3, V4, V5, and V6 with respect to the first electrode have a relationship of V2> V1> V6> 0V> V5> V3> V4, and the resistance change
  • the layer resistance values R1, R2, R3, and R4 have a relationship of R3> R2> R4> R1.
  • the resistance value of the variable resistance layer is R2
  • the first electrode When the electric pulse having a voltage value of V4 or less is applied between the second electrode and the second electrode, R4 is obtained, and the resistance value of the variable resistance layer is R2, and the first electrode and the second electrode
  • the electric pulse having a voltage value of V5 or more is applied between the two electrodes, it remains R2, and the voltage value between the first electrode and the second electrode is smaller than V5 and larger than V3.
  • the electric pulse becomes R3.
  • the resistance value of the resistance change layer is R3, and the first When the electric pulse having a voltage value smaller than V3 and larger than V4 is applied between the electrode and the second electrode, the voltage value drops between R3 and the voltage value between the first electrode and the second electrode. Is applied when the electric pulse of V4 is applied, the resistance value of the resistance change layer is R4, and the voltage value between the first electrode and the second electrode is V4 or less. When the electric pulse is applied, it remains R4, and when the electric pulse having a voltage value larger than V6 and smaller than V1 is applied between the first electrode and the second electrode. Is lower than R4 and becomes R1 when the electric pulse having a voltage value of V1 is applied between the first electrode and the second electrode, and the resistance value of the variable resistance layer is R1.
  • variable resistance layer of the nonvolatile memory element can take four stable resistance states R1, R2, R3, and R4.
  • a local region that is in contact with the second electrode and is not in contact with the first electrode is formed in the variable resistance layer, and the local region is the first region in the local region.
  • a first high oxygen concentration region located on one electrode side, a second high oxygen concentration region located on the second electrode side in the local region, and the first high oxygen concentration region in the local region And a low oxygen concentration region located between the second high oxygen concentration region and having a lower oxygen content than the first high oxygen concentration region and the second high oxygen concentration region.
  • the local region is formed across the first metal oxide region and the second metal oxide region, and the first high oxygen concentration region is The second metal oxide region may be formed in the first metal oxide region, and the second high oxygen concentration region may be formed in the second metal oxide region.
  • variable resistance layer may be made of a transition metal oxide or an aluminum oxide.
  • the first metal oxide region is formed of an oxide having a composition represented by TaOx
  • the second metal oxide region is TaOy (where x ⁇ y ) May be composed of an oxide having a composition represented by:
  • a plurality of transistors connected in series with each of the plurality of nonvolatile memory elements may be further provided.
  • a plurality of diodes connected in series with each of the plurality of nonvolatile memory elements may be further provided.
  • a nonvolatile memory element writing method is a nonvolatile memory element writing method, the nonvolatile memory element including a first electrode, a second electrode, the first electrode, and the first electrode.
  • a variable layer, wherein the variable resistance layer is connected to the first metal oxide region connected to the first electrode and to the second electrode, and has an oxygen content higher than that of the first metal oxide region.
  • V1, V2, V3, V4, V5, and V6, which are voltage values based on the first electrode of the electrical pulse, are V2 > V1> V6> 0V> V5> V3> V4, and the resistance change Resistance values R1, R2, R3, and R4 have a relationship of R3> R2> R4> R1, the resistance value of the resistance change layer is the first electrode and the second electrode.
  • the electric pulse having a voltage value of V2 or higher is applied between the first electrode and the second electrode, the electric pulse having a voltage value of V4 or higher is applied.
  • the resistance value of the variable resistance layer is R2, and when the electric pulse having a voltage value of V5 or more is applied between the first electrode and the second electrode, R2
  • the electric pulse having a voltage value smaller than V5 and larger than V3 is applied between the first electrode and the second electrode, the voltage rises above R2, and the first electrode and The electric pulse having a voltage value of V3 is applied between the second electrodes.
  • the electrical pulse is R3, and the resistance value of the resistance change layer is R3, and the voltage between the first electrode and the second electrode is smaller than V3 and larger than V4. Is applied to the resistance change layer.
  • the electric pulse having a voltage value of V4 is applied between the first electrode and the second electrode, R4 is applied.
  • the resistance value is R4 and the electric pulse having a voltage value of V4 or less is applied between the first electrode and the second electrode, it remains R4, and the first electrode and When the electric pulse having a voltage value larger than V6 and smaller than V1 is applied between the second electrodes, the voltage value is lower than R4, and the voltage value is V1 between the first electrode and the second electrode. R1 is applied when the electrical pulse is applied.
  • the resistance value of the resistance change layer is R1
  • the electric pulse having a voltage value larger than V1 and smaller than V2 is applied between the first electrode and the second electrode
  • R2 rises above R1
  • the electric pulse having a voltage value of V2 is applied between the first electrode and the second electrode, it becomes R2
  • the resistance value of the resistance change layer is set to the resistance value R1 or the resistance value.
  • the resistance value of the resistance change layer is changed to the resistance value R2 by applying the electric pulse having the voltage value V2 between the first electrode and the second electrode.
  • the resistance value of the resistance change layer is changed to a resistance value R3, and the resistance value of the resistance change layer is changed.
  • the resistance value of the resistance change layer is changed to the resistance value R4 by applying the electric pulse having a voltage value of V4 between the first electrode and the second electrode, A resistance value of the variable resistance layer is changed to a resistance value R1 by applying the electric pulse having a voltage value of V1 between the first electrode and the second electrode.
  • FIG. 1 is a cross-sectional view showing the configuration of the nonvolatile memory element according to Embodiment 1.
  • the nonvolatile memory element 10 includes a substrate 1, a first electrode 2 formed on the substrate 1, and a resistor formed on the first electrode 2.
  • a change layer 3 and a second electrode 4 formed on the resistance change layer 3 are provided.
  • the first electrode 2 and the second electrode 4 are electrically connected to the resistance change layer 3.
  • the substrate 1 is composed of, for example, a silicon substrate.
  • the first electrode 2 and the second electrode 4 are made of a conductive material.
  • Au gold
  • Pt platinum
  • Ir iridium
  • Cu copper
  • TiN titanium nitride
  • TaN tantalum nitride
  • the resistance change layer 3 includes a transition metal oxide, and the first oxide region 3a (first metal oxide region) having a low oxygen content and the second oxide region 3b having a high oxygen content. (Second metal oxide region).
  • the resistance change layer 3 can be formed by a low-temperature process compared to a material such as PCMO by being composed of a transition metal oxide. That is, the resistance change layer 3 can be easily formed using an existing CMOS process.
  • the transition metal oxide is, for example, tantalum oxide.
  • the first oxide region 3a will be described as the first tantalum oxide layer 3a
  • the second oxide region will be referred to as the second tantalum oxide. It is described as a physical layer 3b. That is, the resistance change layer 3 is configured by laminating the first tantalum oxide layer 3a and the second tantalum oxide layer 3b.
  • the oxygen content of the second tantalum oxide layer 3b is higher than the oxygen content of the first tantalum oxide layer 3a.
  • the “oxygen content” is the ratio of oxygen atoms to the total number of atoms.
  • the oxygen content of Ta 2 O 5 is the ratio of oxygen atoms to the total number of atoms (O / (Ta + O)), which is 71.4 atm%. Therefore, the oxygen-deficient tantalum oxide has an oxygen content greater than 0 and less than 71.4 atm%.
  • a local region 5 that is in contact with the second electrode and not in contact with the first electrode is formed in the resistance change layer 3.
  • the local region 5 has high oxygen concentration regions 6 (a first high oxygen concentration region 6a and a second high oxygen concentration region 6b) above and below the low oxygen concentration region 7. Conductive filaments are formed in the high oxygen concentration region 6.
  • Embodiment 1 when the composition of the first tantalum oxide layer 3a is TaO x , x is in the range of 0.8 to 1.9 and the composition of the second tantalum oxide layer 3b. Is TaO y , y is in the range of 2.1 to 2.5.
  • tantalum oxide having a composition in such a range for each of the first tantalum oxide layer 3a and the second tantalum oxide layer 3b the resistance value of the resistance change layer 3 is stably changed at high speed. Can be made.
  • the thickness of the resistance change layer 3 is 1 ⁇ m or less, a change in resistance value is recognized.
  • the thickness of the resistance change layer 3 is 200 nm or less. This is because it is easy to process in the etching process at the time of patterning. Moreover, it is because the voltage value of the voltage pulse required in order to change the resistance value of the resistance change layer 3 can be made low by setting the resistance change layer 3 to such thickness.
  • the thickness of the resistance change layer 3 may be configured to be at least 5 nm or more.
  • the thickness of the second tantalum oxide layer 3b may be set to 8 nm or less from the viewpoint of designing so that the initial resistance value does not become too large.
  • the thickness of the second tantalum oxide layer 3b may be set to 1 nm or more from the viewpoint of expressing a stable resistance change phenomenon.
  • the standard electrode potential of the material constituting the second electrode 4 connected to the second oxide region 3b having a high oxygen content rate may be selected so as to be higher than the standard electrode potential of the metal constituting the resistance change layer 3.
  • the standard electrode potential of the material constituting the first electrode 2 connected to the first oxide region 3a having a low oxygen content is lower than the standard electrode potential of the material constituting the second electrode 4.
  • the material may be selected so as to be.
  • the material constituting the second electrode 4 may be Au (gold), Pt (platinum), Ir (iridium), Cu (copper), etc.
  • the material constituting the first electrode 2 may be TiN (titanium nitride) or TaN (tantalum nitride).
  • a voltage pulse (electrical) having a predetermined polarity, voltage, and time width is provided between the first electrode 2 and the second electrode 4 (between the electrodes). Pulse) is applied.
  • the resistance value of the resistance change layer 3 is changed into four different values with good reproducibility by changing the state of the conductive filament in the resistance change layer 3 by applying a voltage pulse. Can do. Since the state of each resistance value after the change is held for a sufficiently long time, the nonvolatile memory element 10 can perform multi-value storage by associating the state of each resistance value with four values.
  • the voltage value of the voltage pulse applied between the electrodes is described as representing the potential of the second electrode 4 with respect to the potential of the first electrode 2.
  • the first electrode 2 (TaN) having a thickness of, for example, 50 nm is formed on the substrate 1 by sputtering. Thereafter, a tantalum oxide layer is formed on the first electrode 2 by a so-called reactive sputtering method in which a Ta target is sputtered in argon gas and oxygen gas.
  • the oxygen content in the tantalum oxide layer can be easily adjusted by changing the flow ratio of oxygen gas to argon gas.
  • the substrate does not need to be heated in particular, and the temperature of the substrate may be room temperature, for example.
  • the formed tantalum oxide layer is amorphous.
  • the outermost surface of the tantalum oxide layer formed as described above is oxidized to modify its surface.
  • a region (second region) having a higher oxygen content than the region (first region) where the tantalum oxide layer was not oxidized is formed on the surface of the tantalum oxide layer.
  • These first region and second region correspond to the first tantalum oxide layer 3a and the second tantalum oxide layer 3b, respectively.
  • the resistance change layer 3 including the first tantalum oxide layer 3a and the second tantalum oxide layer 3b is formed.
  • the thickness of each layer is, for example, such that the thickness of the resistance change layer 3 is 50 nm, the thickness of the first tantalum oxide layer 3a is 44 nm, and the thickness of the second tantalum oxide layer 3b is 6 nm.
  • the nonvolatile memory element 10 is formed. can get.
  • size and shape of the 1st electrode 2, the 2nd electrode 4, and the resistance change layer 3 can be adjusted with a mask and lithography.
  • the size of the second electrode 4 and the resistance change layer 3 is 0.5 ⁇ m ⁇ 0.5 ⁇ m (area 0.25 ⁇ m 2 )
  • the size of the portion where the first electrode 2 and the resistance change layer 3 are in contact with each other is 0.5 ⁇ m ⁇ 0.5 ⁇ m (area 0.25 ⁇ m 2 ).
  • a predetermined voltage pulse for performing an initial break is applied between the first electrode 2 and the second electrode 4 (between the electrodes) of the nonvolatile memory element 10 having the above-described configuration. At least one conductive filament is formed.
  • the initial break is a process of changing the state of the nonvolatile memory element 10 from a very high resistance state in which resistance does not change immediately after manufacture to a resistance state in which resistance change is possible.
  • the predetermined voltage pulse for performing the initial break is a voltage pulse having an absolute value higher than a voltage required for normal resistance change.
  • the conductive filament means a conductive path that serves as a current path for the cell current.
  • a local region including a conductive filament is formed.
  • FIG. 2 is a diagram showing a configuration of a local region including a conductive filament formed in the nonvolatile memory element 10 of the first embodiment.
  • the local region 5 is formed in the resistance change layer 3 from the second electrode 4 side to the first electrode 2 side.
  • the local region 5 includes a high oxygen concentration region 6 and a low oxygen concentration region 7.
  • the high oxygen concentration region 6 is a region having a higher oxygen content than the low oxygen concentration region 7, and includes a first high oxygen concentration region 6a and a second high oxygen concentration region 6b.
  • the first high oxygen concentration region 6a has a higher oxygen content than the first tantalum oxide layer 3a
  • the second high oxygen concentration region 6b has a second tantalum oxide layer.
  • the oxygen content is lower than that of 3b.
  • the high oxygen concentration region 6 and the low oxygen concentration region 7 are formed in the resistance change layer 3 by the above-described initial break and voltage pulse application for forming a high oxygen concentration region performed after the initial break described later.
  • the local region 5 includes a first high oxygen concentration region 6 a disposed at the lower end portion of the local region 5 and a second high oxygen concentration region disposed at the upper end portion of the local region 5. 6b and a low oxygen concentration region 7 disposed between them.
  • the local region 5 is formed across the first tantalum oxide layer 3a and the second tantalum oxide layer 3b. The local region 5 is in contact with the second electrode 4 but is not in contact with the first electrode 2.
  • the first high oxygen concentration region 6a is formed in the first tantalum oxide layer 3a
  • the second high oxygen concentration region 6b is formed in the second tantalum oxide layer 3b.
  • the region composed of the low oxygen concentration region 7 is formed across the first tantalum oxide layer 3a and the second tantalum oxide layer 3b.
  • the high oxygen concentration region 6 (the first high oxygen concentration region 6a and the second high oxygen concentration region 6b) includes a set of a plurality of conductive paths (conductive filaments). Typically, it is assumed that oxygen in the high oxygen concentration region 6 is moved by a voltage applied to the nonvolatile memory element 10 and a series of oxygen defects forms a conductive path.
  • the local region 5 is formed over the first tantalum oxide layer 3a and the second tantalum oxide layer 3b has been described.
  • the local region 5 is the second tantalum oxide layer.
  • the structure formed only in 3b may be sufficient.
  • the existence of the local region 5 can be confirmed by observing the cross section of the element with a transmission electron microscope (TEM). Further, by the cross-sectional observation of the element by the TEM, the lower end portion and the upper end portion of the local region are respectively constituted by the first high oxygen concentration region 6a and the second high oxygen concentration region 6b, and the region between them is a low oxygen concentration region. It can also be confirmed that it is composed of the density region 7.
  • TEM transmission electron microscope
  • Nonvolatile memory element characteristics Next, the characteristics of the nonvolatile memory element 10 according to Embodiment 1 configured as described above will be described using examples and reference examples.
  • FIG. 3 shows the same configuration as that of the nonvolatile memory element 10 shown in FIG. 1, and the nonvolatile memory in which the second high oxygen concentration region 6b is not formed in the local region 5 as shown in FIG. 4 is a graph showing a relationship between a resistance value of a resistance change layer and a voltage value of an applied voltage pulse in an example of an element (hereinafter referred to as “reference example”).
  • an initial break is performed by applying a predetermined voltage pulse between the first electrode 2 and the second electrode 4 of the nonvolatile memory element manufactured by the above-described manufacturing method.
  • the second high oxygen concentration region 6b is not formed in the local region 5 in the resistance change layer 3 of the reference example.
  • the resistance change layer 3 is lowered in resistance by applying the negative voltage pulse Vlr to the second electrode 4 with respect to the first electrode 2.
  • the resistance change layer 3 is increased in resistance.
  • FIG. 4 shows an example of the nonvolatile memory element 10 having the same configuration as the nonvolatile memory element 10 shown in FIG. 1 and having the local region 5 as shown in FIG. It is a graph which shows the relationship between the resistance value of the resistance change layer in Example) and the voltage of the applied voltage pulse. That is, unlike the reference example, the nonvolatile memory element 10 according to the example has the second high oxygen concentration region 6 b below the low oxygen concentration region 7.
  • a predetermined voltage pulse is applied between the first electrode 2 and the second electrode 4 of the nonvolatile memory element 10 to perform the initial break. Is called.
  • the first polarity voltage pulse and the second polarity voltage pulse different from the first polarity are further applied to the nonvolatile memory element 10 subjected to the initial break.
  • the absolute value of the voltage value of the high oxygen concentration region forming voltage pulse is larger than the absolute value of the voltage value of the voltage pulse used for the normal resistance change operation, and more than the absolute value of the initial break voltage value (initial break voltage). small.
  • the high oxygen concentration region forming voltage pulse is applied to the nonvolatile memory element 10 a plurality of times until a resistance value R4 described later appears.
  • the resistance value of the resistance change layer 3 is substantially constant (same) in the low low resistance state (RL), whereas the embodiment (FIG. 4). ),
  • the resistance value of the resistance change layer 3 can take two values (RL and R4) in the low resistance state.
  • the expression of the resistance value R4 confirmed in the example is caused by the second high oxygen concentration region 6b at the lower end of the local region 5 formed by the high oxygen concentration region forming voltage pulse. Further, in the high resistance state where the resistance value is high, the resistance value of the resistance change layer 3 in both the reference example and the example can take two values (RH and R3).
  • multi-value storage is realized by using the characteristic that takes two different resistance values in each of the low resistance state and the high resistance state. Specifically, in the nonvolatile memory element 10 having the characteristics as shown in FIG. 4, four-value multivalue storage is performed by using the resistance values RL and R4 in the low resistance state and the resistance values RH and R3 in the high resistance state. Is realized.
  • FIG. 5 is a diagram schematically showing resistance-voltage characteristics (RV characteristics) between the nonvolatile memory element 10 according to Embodiment 1 and the nonvolatile memory element according to the reference example.
  • RV characteristics resistance-voltage characteristics
  • the solid line indicates the resistance-voltage characteristic of the nonvolatile memory element 10 according to Embodiment 1
  • the broken line indicates the resistance-voltage characteristic of the nonvolatile memory element according to the reference example.
  • V1, V2, V3, V4, V5, and V6 represent voltage values of voltage pulses applied between the first electrode 2 and the second electrode 4 of the nonvolatile memory element 10.
  • the voltage values V1, V2, and V6 are positive voltages and have a relationship of V2> V1> V6, and the voltage values V3, V4, and V5 are negative voltages and V5> V3> V4.
  • the voltage value is expressed as + ⁇ V1 ⁇ , + ⁇ V2 ⁇ , - ⁇ V3 ⁇ , using the sign and the absolute value of the voltage.
  • - ⁇ V4 ⁇ , - ⁇ V5 ⁇ , + ⁇ V6 ⁇ . That is, V1 +
  • , V2 +
  • , V3
  • , V4
  • , V5
  • , V6 +
  • FIG. 6 is a diagram schematically showing resistance-voltage characteristics (RV characteristics) of the nonvolatile memory element 10 according to the first embodiment.
  • the resistance value of the resistance change layer 3 when a voltage pulse having a voltage value of +
  • the resistance value of the resistance change layer 3 when a voltage pulse having a voltage value of ⁇
  • the resistance value of the resistance change layer 3 is R2
  • the resistance value of the resistance change layer 3 remains R2 and does not change. That is, the state where the resistance value is R2 is a stable state.
  • the resistance value of the resistance change layer 3 is R3
  • the resistance value of the resistance change layer 3 decreases from R3.
  • or less is applied between both electrodes, the resistance value of the resistance change layer 3 becomes R4.
  • the resistance value of the resistance change layer 3 is R4
  • the resistance value of the resistance change layer 3 remains R4 and does not change. That is, the state where the resistance value is R4 is a stable state.
  • the resistance value of the resistance change layer 3 is R1
  • the resistance value of the resistance change layer 3 increases from R1.
  • the resistance value of the resistance change layer 3 becomes R2.
  • the resistance value of the resistance change layer 3 when the resistance value of the resistance change layer 3 is R1, even if a voltage pulse having a voltage value of +
  • the resistance value of the resistance change layer 3 increases from R1.
  • the resistance value becomes R4.
  • the nonvolatile memory element 10 is characterized in that the resistance state of the resistance change layer 3 changes as shown in FIG.
  • 7A to 7D are diagrams conceptually showing the internal state of the resistance change layer 3 when the resistance values of the resistance change layer 3 are R1 to R4.
  • 7A shows the configuration when the resistance value is R1
  • FIG. 7B shows the configuration when the resistance value is R2
  • FIG. 7C shows the configuration when the resistance value is R3
  • FIG. 7D shows the configuration when the resistance value is R4. .
  • the white portions in the first high oxygen concentration region 6a and the second high oxygen concentration region 6b in the local region 5 formed in the resistance change layer 3 are schematically shown as conductive filaments. This is the part shown. That is, this white portion is a portion where oxygen is transferred by an oxidation-reduction reaction as a result of applying a voltage pulse, and as a result, oxygen is reduced.
  • the second electrode 4 is made of Ir.
  • the internal states of the local regions 5 in the resistance change layer 3 are different from each other.
  • the resistance value of the resistance change layer 3 is any one of R1 to R4.
  • the resistance values R1 to R4 have a relationship of R3> R2> R4> R1, as shown in FIG. 5 or FIG. 6, and the resistance values are separated to such a degree that they can be distinguished from each other. It is a value. Therefore, four-value multi-value storage is possible by associating different numerical values with the resistance values R1 to R4.
  • the nonvolatile memory element 10 can store four values.
  • writing is performed once from the state of other resistance values (that is, The transition can be made by one application of a voltage pulse for writing.
  • the nonvolatile memory element 10 in order for the nonvolatile memory element 10 to make a transition to a state where the resistance value of the resistance change layer 3 is R3, it must pass through a state where the resistance value is R2. Similarly, in order for the nonvolatile memory element 10 to make a transition to the state where the resistance value is R1, it must pass through the state where the resistance value is R4.
  • FIG. 8 is a state transition diagram of the resistance state of the resistance change layer 3 of the nonvolatile memory element 10 according to the first embodiment.
  • the nonvolatile memory element 10 can transition to a state in which the resistance value of the resistance change layer 3 is R2 or R4 from a state having another resistance value by a single write. That is, even if the resistance value of the resistance change layer 3 is any of R1, R3, and R4, the nonvolatile memory element 10 is made to resist by applying a voltage pulse with a voltage value of +
  • the nonvolatile memory element 10 has to go through the state where the resistance value of the resistance change layer 3 is R2 in the state where the resistance value of the resistance change layer 3 is R3. It is shown that transition is not possible. That is, the nonvolatile memory element 10 is changed from the state where the resistance value of the resistance change layer 3 is R1 to the state where the resistance value of the resistance change layer 3 is R3 by the writing method as shown in the flowchart of FIG. Transition.
  • are applied between the electrodes in this order, or a voltage pulse having a voltage value of +
  • the nonvolatile memory element 10 is changed to a state where the resistance value of the resistance change layer 3 is R2 (S101).
  • the nonvolatile memory element 10 is changed to a state in which the resistance value of the resistance change layer 3 is R3 (S102).
  • the nonvolatile memory element 10 is changed from the state in which the resistance value of the resistance change layer 3 is R4 to the state in which the resistance value of the resistance change layer 3 is R3.
  • the nonvolatile memory element 10 is changed to a state in which the resistance value of the resistance change layer 3 is R2.
  • the nonvolatile memory element 10 is changed to a state in which the resistance value of the resistance change layer 3 is R3.
  • the nonvolatile memory element 10 must pass through the state where the resistance value of the resistance change layer 3 is R4 when the resistance value of the resistance change layer 3 is R1. It is shown that transition is not possible. That is, the nonvolatile memory element 10 is changed from the state where the resistance value of the resistance change layer 3 is R3 to the state where the resistance value of the resistance change layer 3 is R1 by the writing method as shown in the flowchart of FIG. Transition.
  • the nonvolatile memory element 10 is changed to a state where the resistance value of the resistance change layer 3 is R1 (S202).
  • the nonvolatile memory element 10 is changed from the state where the resistance value of the resistance change layer 3 is R2 to the state where the resistance value of the resistance change layer 3 is R1.
  • the nonvolatile memory element 10 is changed to a state in which the resistance value of the resistance change layer 3 is R4.
  • the nonvolatile memory element 10 is changed to a state in which the resistance value of the resistance change layer 3 is R1.
  • the nonvolatile memory element 10 can be changed to a state in which the resistance value of the resistance change layer 3 is any one of R1 to R4, and quaternary multi-value storage is realized.
  • Embodiment 2 In Embodiment 2, the structure and operation of a one-transistor / one-nonvolatile memory unit type (1T1R type) nonvolatile memory device that is configured using the nonvolatile memory element described in Embodiment Mode 1 will be described.
  • FIG. 11 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 2.
  • the 1T1R type nonvolatile memory device 100 includes a memory main body 101 on a semiconductor substrate.
  • the memory main body 101 includes a memory array 102 and a voltage application unit 103.
  • the voltage application unit 103 detects the amount of current flowing through the selected bit line by detecting the amount of current flowing through the row selection circuit / driver 104R, the column selection circuit 104C, the write circuit 105 for writing information, and the selected bit line.
  • a sense amplifier 106 that determines which data is stored, and a data input / output circuit 107 that performs input / output processing of input / output data via a terminal DQ are provided.
  • the nonvolatile memory device 100 includes a cell plate power supply (VCP power supply) 108, an address input circuit 109 that receives an address signal input from the outside, and an operation of the memory main body 101 based on a control signal input from the outside. And a control circuit 110 for controlling.
  • VCP power supply cell plate power supply
  • an address input circuit 109 that receives an address signal input from the outside
  • an operation of the memory main body 101 based on a control signal input from the outside.
  • a control circuit 110 for controlling.
  • the voltage application unit 103 may be configured by a combination of known circuits other than those described above.
  • the voltage application unit 103 may include a cell plate power supply 108, an address input circuit 109, and a control circuit 110.
  • the voltage application unit 103 selects one of four or more voltage pulses including at least V1 to V4 in the writing step and applies it to the nonvolatile memory element, and in the reading step, each nonvolatile memory Any unit that determines which of the resistance values of the memory element is R1 to R4 may be used.
  • the memory array 102 is formed on a semiconductor substrate and is arranged so as to cross each other.
  • a plurality of transistors T11, T12, T13, T21, T22, T23, T31, T32, T33,... Provided corresponding to the intersections of WL0, WL1, WL2,... And bit lines BL0, BL1, BL2,.
  • transistors T11, T12,...” And a plurality of resistance change elements M111, M112, M113, M121, M122, M123, M131, M132 provided in a one-to-one relationship with the transistors T11, T12,. , M133 (hereinafter referred to as “memory cells M111, M112,...”).
  • the memory cells M111, M112,... Correspond to the nonvolatile memory element 10 of the first embodiment.
  • the memory array 102 includes a plurality of plate lines PL0, PL1, PL2,... Arranged in parallel to the word lines WL0, WL1, WL2,.
  • the drains of the transistors T11, T12, T13, ... are connected to the bit line BL0, the drains of the transistors T21, T22, T23, ... are connected to the bit line BL1, and the drains of the transistors T31, T32, T33, ... are connected to the bit line BL2, respectively.
  • the gates of the transistors T11, T21, T31,... are on the word line WL0, the gates of the transistors T12, T22, T32,... Are on the word line WL1, and the gates of the transistors T13, T23, T33,. Each is connected.
  • the sources of the transistors T11, T12,... are connected to one ends of the memory cells M111, M112,... (One of the first electrode 2 and the second electrode 4 of the nonvolatile memory element 10), respectively.
  • the other end of the memory cells M111, M121, M131,... (The other of the first electrode 2 and the second electrode 4 of the nonvolatile memory element 10) is connected to the plate line PL0 by the memory cells M112, M122, M132,. The other end is connected to the plate line PL1, and the other end of the memory cells M113, M123, M133,... Is connected to the plate line PL2.
  • the address input circuit 109 receives an address signal from an external circuit (not shown), outputs a row address signal to the row selection circuit / driver 104R based on the address signal, and outputs a column address signal to the column selection circuit 104C.
  • the address signal is a signal indicating an address of a specific memory cell selected from among the plurality of memory cells M111, M112,.
  • the row address signal is a signal indicating a row address among the addresses indicated by the address signal
  • the column address signal is a signal indicating a column address among the addresses indicated by the address signal.
  • the control circuit 110 In the information writing step, the control circuit 110 outputs a write signal instructing application of a write voltage to the write circuit 105 according to the input data Din input to the data input / output circuit 107. On the other hand, in the information reading step, the control circuit 110 outputs a read signal instructing application of the read voltage to the column selection circuit 104C.
  • the row selection circuit / driver 104R receives the row address signal output from the address input circuit 109, selects one of the plurality of word lines WL0, WL1, WL2,... According to the row address signal, A predetermined voltage is applied to the selected word line.
  • the column selection circuit 104C receives the column address signal output from the address input circuit 109, selects one of the plurality of bit lines BL0, BL1, BL2,... According to the column address signal, A write voltage or a read voltage is applied to the selected bit line.
  • the write circuit 105 When the write circuit 105 receives the write signal output from the control circuit 110, the write circuit 105 outputs a signal instructing the column selection circuit 104C to apply a write voltage to the selected bit line.
  • is written
  • A signal for instructing application of a write voltage is output.
  • are output in this order.
  • are output in this order.
  • the sense amplifier 106 detects the amount of current flowing through the selected bit line to be read and discriminates stored data.
  • the resistance states of the memory cells M111, M112,... are four states corresponding to the resistance values R1 to R4, and these four states are associated with four-value data. ing.
  • the sense amplifier 106 determines which of the four states the resistance state of the resistance change layer of the selected memory cell is, and stores which data among the four values according to the resistance state. It is determined whether it is done.
  • the output data DO obtained as a result is output to an external circuit via the data input / output circuit 107.
  • the nonvolatile memory device 100 realizes four-value multi-value storage.
  • the third embodiment is a cross-point type nonvolatile memory device configured using the nonvolatile memory element described in the first embodiment. The configuration and operation of this nonvolatile memory device will be described below.
  • FIG. 12 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 3.
  • the nonvolatile memory device 200 includes a memory body 201 on a semiconductor substrate.
  • the memory main unit 201 includes a memory array 202 and a voltage application unit 203.
  • the voltage application unit 203 detects the amount of current flowing through the selected bit line by detecting the amount of current flowing through the selected bit line, the row selection circuit / driver 204R, the column selection circuit / driver 204C, the write circuit 205 for writing information.
  • a sense amplifier 206 that determines which data is stored, and a data input / output circuit 207 that performs input / output processing of input / output data via a terminal DQ are provided.
  • the nonvolatile memory device 200 further includes an address input circuit 208 that receives an address signal input from the outside, and a control circuit 209 that controls the operation of the memory body 201 based on the control signal input from the outside. I have.
  • the voltage applying unit 203 selects one of four or more voltage pulses including at least V1 to V4 in the writing step and applies it to the nonvolatile memory element, and in the reading step, each nonvolatile memory Any other configuration may be used as long as it is a unit that determines which of the resistance values of the memory element is R1 to R4.
  • the memory array 202 includes a plurality of word lines WL0, WL1, WL2,... Formed in parallel with each other on a semiconductor substrate, and above the word lines WL0, WL1, WL2,.
  • a plurality of memory cells M211, M212, M213, M221, M222, M223 provided in a matrix corresponding to the intersections of these word lines WL0, WL1, WL2,... And bit lines BL0, BL1, BL2,. , M231, M232, M233,... (Hereinafter referred to as “memory cells M211, M212,...”).
  • the memory cells M211, M212,... are configured by an element corresponding to the nonvolatile memory element 10 of the first embodiment, an MIM (Metal-Insulator-Metal) diode, an MSM (Metal-Semiconductor-Metal) diode, or the like.
  • the current suppressing element is connected in series.
  • the address input circuit 208 receives an address signal from an external circuit (not shown), outputs a row address signal to the row selection circuit / driver 204R based on the address signal, and outputs a column address signal to the column selection circuit / driver 204C. Output to.
  • the address signal is a signal indicating the address of a specific memory cell selected from among the plurality of memory cells M211, M212,.
  • the row address signal is a signal indicating a row address among the addresses indicated by the address signal, and the column address signal is also a signal indicating a column address.
  • the control circuit 209 In the information writing step, the control circuit 209 outputs a write signal instructing application of a write voltage to the write circuit 205 in accordance with the input data Din input to the data input / output circuit 207. On the other hand, in the information read step, the control circuit 209 outputs a read signal instructing a read operation to the column selection circuit / driver 204C.
  • the row selection circuit / driver 204R receives the row address signal output from the address input circuit 208, selects one of the plurality of word lines WL0, WL1, WL2,... According to the row address signal. A predetermined voltage is applied to the selected word line.
  • the column selection circuit / driver 204C receives the column address signal output from the address input circuit 208, and selects any one of the plurality of bit lines BL0, BL1, BL2,... According to the column address signal. Then, a write voltage or a read voltage is applied to the selected bit line.
  • the write circuit 205 When the write circuit 205 receives the write signal output from the control circuit 209, the write circuit 205 outputs a signal instructing application of a voltage to the selected word line to the row selection circuit / driver 204R and column selection. A signal instructing application of a write voltage to the selected bit line is output to the circuit / driver 204C.
  • the writing circuit 205 when writing a value corresponding to the resistance value R2, the writing circuit 205 outputs a signal instructing application of a writing voltage of voltage +
  • the sense amplifier 206 detects the amount of current flowing through the selected bit line to be read and discriminates stored data.
  • the resistance states of the memory cells M211, M212,... are four states corresponding to the resistance values R1 to R4, and these four states are associated with four-value data. ing.
  • the sense amplifier 206 determines which of the four states the resistance state of the resistance change layer of the selected memory cell is, and stores which data among the four values according to the resistance state. It is determined whether it is done.
  • the output data DO obtained as a result is output to an external circuit via the data input / output circuit 207.
  • the nonvolatile memory device 200 realizes four-value multi-value storage.
  • a non-volatile memory device having a multilayer structure can be realized by stacking the memory arrays in the non-volatile memory device according to Embodiment 3 shown in FIG. 12 three-dimensionally. According to the multilayer memory array configured as described above, an ultra-large capacity nonvolatile memory device is realized.
  • the resistance change layer has a laminated structure of tantalum oxide, but the metal constituting the resistance change layer 3 may be a metal other than tantalum.
  • a metal constituting the resistance change layer 3 a transition metal or aluminum (Al) can be used.
  • the transition metal tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr), niobium (Nb), tungsten (W), nickel (Ni), or the like can be used. Since transition metals can take a plurality of oxidation states, different resistance states can be realized by oxidation-reduction reactions.
  • the composition of the first oxide region 3a in the case of a HfO x is 0.9 to 1.6
  • the composition of the second oxide region 3b when y is larger than the value of x, the resistance value of the resistance change layer 3 can be stably changed at high speed.
  • the thickness of the second oxide region 3b may be 3 to 4 nm.
  • the composition of the first oxide region 3a is ZrO x
  • x is 0.9 or more and 1.4 or less
  • the composition of the second oxide region 3b is When ZrO y is used and y is larger than the value of x, the resistance value of the resistance change layer 3 can be stably changed at high speed.
  • the film thickness of the second oxide region 3b may be 1 to 5 nm.
  • a different metal may be used for the first metal constituting the first oxide region 3a and the second metal constituting the second oxide region 3b.
  • the second oxide region 3b may have a lower degree of oxygen deficiency than the first oxide region 3a, that is, may have a higher resistance.
  • the standard electrode potential of the second metal may be lower than the standard electrode potential of the first metal.
  • the standard electrode potential represents a characteristic that the higher the value is, the more difficult it is to oxidize. As a result, an oxidation-reduction reaction is likely to occur in the second oxide region 3b having a relatively low standard electrode potential. Note that the resistance change phenomenon is caused by a change in the filament (conducting path) caused by an oxidation-reduction reaction in a minute local region formed in the second oxide region 3b having a high resistance. The degree of deficiency) will change.
  • metal oxide having a lower standard electrode potential than the first oxide region 3a for the second oxide region 3b a metal oxide having a lower standard electrode potential than the first oxide region 3a for the second oxide region 3b. It becomes easy.
  • aluminum oxide (Al 2 O 3 ) can be used for the second oxide region 3b to be a high resistance layer.
  • oxygen-deficient tantalum oxide (TaO x ) may be used for the first oxide region 3a
  • aluminum oxide (Al 2 O 3 ) may be used for the second oxide region 3b.
  • the dielectric constant of the second oxide region 3b may be larger than the dielectric constant of the first oxide region 3a.
  • the band gap of the second oxide region 3b may be smaller than the band gap of the first oxide region 3a.
  • the initial break voltage can be lowered by using TiO 2 as the second oxide region 3b.
  • the dielectric breakdown electric field strength of the second oxide region 3b is that of the first oxide region 3a.
  • the initial break voltage can be reduced.
  • FIG. 1 of 633-636 there is a correlation between the breakdown electric field strength (Breakdown Strength) of the oxide layer and the dielectric constant that the dielectric breakdown electric field strength decreases as the dielectric constant increases. Because is seen.
  • FIG. 2 of 633-636 there is a correlation between the breakdown electric field of the oxide layer and the band gap that the breakdown electric field strength increases as the band gap increases. is there.
  • the first oxide region 3a is oxygenated relative to the conductive filament in the local region 5. Therefore, various transition metal oxides can be used.
  • the resistance change layer 3 does not have to be formed of a laminated structure of metal oxides at the time of film formation, and may be formed of a single layer of metal oxide (first oxide region 3a).
  • first oxide region 3a the resistance change layer 3 is configured by a single metal oxide layer as described above, after the nonvolatile memory element 10 is manufactured, the first electrode 2 and the second electrode 4 of the nonvolatile memory element 10 are The high resistance layer (second oxide region 3b) is formed by applying a predetermined voltage pulse for forming the high resistance layer at least once in the direction in which the nonvolatile memory element 10 increases in resistance. Thereafter, the same processing as that described in the first embodiment is performed to realize quaternary multi-value storage.
  • the nonvolatile memory element of the present invention is useful as a nonvolatile memory element used in various electronic devices such as a personal computer or a mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)

Abstract

 不揮発性記憶素子において、電気的パルスの電圧値が、V2>V1>0V>V3>V4の関係を有し、抵抗変化層の抵抗値が、R3>R2>R4>R1の関係を有している場合に、電極間に電圧値がV2以上の電気的パルスが印加された場合には、抵抗変化層がR2となり、電極間に電圧値がV4以下の電気的パルスが印加された場合には、抵抗変化層がR4となり、抵抗変化層の抵抗値がR2の場合に電極間に電圧値がV3の電気的パルスが印加された場合には、抵抗変化層がR3となり、抵抗変化層の抵抗値がR4の場合に電極間に電圧値がV1の電気的パルスが印加された場合には、抵抗変化層がR1となる。

Description

不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法
 本発明は、印加されるパルス電圧に応じてその抵抗値が変化する状態変化材料を用いた不揮発性記憶素子に関する。
 近年、デジタル技術の進展に伴って、携帯情報機器や情報家電等の電子機器がより一層高機能化している。これらの電子機器の高機能化に伴い、使用される半導体素子の微細化及び高速化が急速に進んでいる。その中でも、フラッシュメモリに代表されるような大容量の不揮発性記憶装置の用途が急速に拡大している。さらに、このフラッシュメモリに置き換わる次世代の不揮発性記憶装置として、電気的信号によって抵抗値が可逆的に変化する抵抗変化層を有する抵抗変化型の不揮発性記憶素子を備えた不揮発性記憶装置の研究開発が進んでいる。
 抵抗変化層として用いられる材料は、大きく2種類に分けられる。一つは、特許文献1及び非特許文献1乃至3に開示されているような、遷移金属(Ni、Nb、Ti、Zr、Hf、Co、Fe、Cu、Cr等)の酸化物であり、特に、酸素の含有率が化学量論的組成の観点から不足している酸化物(以下、酸素不足型の酸化物と呼ぶ)である。もう一つは、ペロブスカイト材料(Pr(1-x)CaMnO(PCMO)、LaSrMnO(LSMO)、GdBaCo(GBCO)等)である。
 また、特許文献2及び特許文献3には、後者のペロブスカイト材料を抵抗変化層として用いる場合において、2値(低抵抗状態と高抵抗状態の2つの状態)のみではなく、3値以上の多値を記憶することができる不揮発性記憶素子が開示されている。
特開2006-140464号公報 米国特許第6473332号明細書 特開2004-185756号公報
I.G.Baek et al., Tech. Digest IEDM 2004,587頁 Japanese Journal of Applied Physics Vol45, 2006, L310頁 A.Chen et al., Tech. Digest IEDM 2005,746頁 J.McPherson et al.,IEDM 2002,633頁-636頁
 上記のような多値を記憶する不揮発性記憶素子では、多値のそれぞれを構成する各抵抗値の状態が安定であることが望まれる。
 そこで、本発明は、安定して各抵抗値の状態となることができる不揮発性記憶素子を提供する。
 本発明の一の態様に係る不揮発性記憶素子は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電気的パルスの電圧値に基づいて可逆的に抵抗値が変化する、金属酸化物で構成された抵抗変化層とを備え、前記抵抗変化層は、前記第1電極に接続された第1の金属酸化物領域と、前記第2電極に接続され、前記第1の金属酸化物領域よりも酸素含有率が高い第2の金属酸化物領域とを有しており、前記電気的パルスの前記第1電極を基準としたときの電圧値であるV1、V2、V3、V4、V5、及びV6が、V2>V1>V6>0V>V5>V3>V4の関係を有し、前記抵抗変化層の抵抗値であるR1、R2、R3、及びR4が、R3>R2>R4>R1の関係を有している場合に、前記抵抗変化層の抵抗値は、前記第1電極及び前記第2電極間に電圧値がV2以上の前記電気的パルスが印加された場合には、R2となり、前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4となり、前記抵抗変化層の抵抗値がR2の場合であって、前記第1電極及び前記第2電極間に電圧値がV5以上の前記電気的パルスが印加された場合には、R2のままであり、前記第1電極及び前記第2電極間に電圧値がV5よりも小さくV3よりも大きい前記電気的パルスが印加された場合には、R2よりも上昇し、前記第1電極及び前記第2電極間に電圧値がV3の前記電気的パルスが印加された場合には、R3となり、前記抵抗変化層の抵抗値がR3の場合であって、前記第1電極及び前記第2電極間に電圧値がV3よりも小さくV4よりも大きい前記電気的パルスが印加された場合には、R3よりも低下し、前記第1電極及び前記第2電極間に電圧値がV4の前記電気的パルスが印加された場合には、R4となり、前記抵抗変化層の抵抗値がR4の場合であって、前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4のままであり、前記第1電極及び前記第2電極間に電圧値がV6よりも大きくV1よりも小さい前記電気的パルスが印加された場合には、R4よりも低下し、前記第1電極及び前記第2電極間に電圧値がV1の前記電気的パルスが印加された場合には、R1となり、前記抵抗変化層の抵抗値がR1の場合であって、前記第1電極及び前記第2電極間に電圧値がV1よりも大きくV2よりも小さい前記電気的パルスが印加された場合には、R1よりも上昇し、前記第1電極及び前記第2電極間に電圧値がV2の前記電気的パルスが印加された場合にはR2となることを特徴とする。
 本発明に係る不揮発性記憶素子によれば、安定した多値記憶が実現される。
図1は、実施の形態1に係る不揮発性記憶素子の構成を示す断面図である。 図2は、実施の形態1に係る不揮発性記憶素子において形成される局所領域の構成を示す図である。 図3は、第2の高酸素濃度領域が形成されていない不揮発性記憶素子における抵抗変化層の抵抗値と印加される電圧パルスの電圧値との関係を示すグラフである。 図4は、実施の形態1に係る不揮発性記憶素子における抵抗変化層の抵抗値と印加される電圧パルスの電圧値との関係を示すグラフである。 図5は、実施の形態1に係る不揮発性記憶素子と参考例の不揮発性記憶素子との抵抗-電圧特性を模式的に示す図である。 図6は、実施の形態1に係る不揮発性記憶素子の抵抗-電圧特性を模式的に示す図である。 図7Aは、抵抗値がR1の場合の不揮発性記憶素子の抵抗変化層の内部状態を概念的に示す図である。 図7Bは、抵抗値がR2の場合の不揮発性記憶素子の抵抗変化層の内部状態を概念的に示す図である。 図7Cは、抵抗値がR3の場合の不揮発性記憶素子の抵抗変化層の内部状態を概念的に示す図である。 図7Dは、抵抗値がR4の場合の不揮発性記憶素子の抵抗変化層の内部状態を概念的に示す図である。 図8は、実施の形態1に係る不揮発性記憶素子における抵抗変化層の抵抗状態の状態遷移図である。 図9は、不揮発性記憶素子を抵抗値がR1又はR4の状態からR3の状態に遷移させる書き込み方法のフローチャートである。 図10は、不揮発性記憶素子を抵抗値がR2又はR3の状態からR1の状態に遷移させる書き込み方法のフローチャートである。 図11は、実施の形態2に係る不揮発性記憶装置の構成の一例を示すブロック図である。 図12は、実施の形態3に係る不揮発性記憶装置の構成の一例を示すブロック図である。
 本発明の一態様に係る不揮発性記憶素子は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電気的パルスの電圧値に基づいて可逆的に抵抗値が変化する、金属酸化物で構成された抵抗変化層とを備え、前記抵抗変化層は、前記第1電極に接続された第1の金属酸化物領域と、前記第2電極に接続され、前記第1の金属酸化物領域よりも酸素含有率が高い第2の金属酸化物領域とを有しており、前記電気的パルスの前記第1電極を基準としたときの電圧値であるV1、V2、V3、V4、V5、及びV6が、V2>V1>V6>0V>V5>V3>V4の関係を有し、前記抵抗変化層の抵抗値であるR1、R2、R3、及びR4が、R3>R2>R4>R1の関係を有している場合に、前記抵抗変化層の抵抗値は、前記第1電極及び前記第2電極間に電圧値がV2以上の前記電気的パルスが印加された場合には、R2となり、前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4となり、前記抵抗変化層の抵抗値がR2の場合であって、前記第1電極及び前記第2電極間に電圧値がV5以上の前記電気的パルスが印加された場合には、R2のままであり、前記第1電極及び前記第2電極間に電圧値がV5よりも小さくV3よりも大きい前記電気的パルスが印加された場合には、R2よりも上昇し、前記第1電極及び前記第2電極間に電圧値がV3の前記電気的パルスが印加された場合には、R3となり、前記抵抗変化層の抵抗値がR3の場合であって、前記第1電極及び前記第2電極間に電圧値がV3よりも小さくV4よりも大きい前記電気的パルスが印加された場合には、R3よりも低下し、前記第1電極及び前記第2電極間に電圧値がV4の前記電気的パルスが印加された場合には、R4となり、前記抵抗変化層の抵抗値がR4の場合であって、前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4のままであり、前記第1電極及び前記第2電極間に電圧値がV6よりも大きくV1よりも小さい前記電気的パルスが印加された場合には、R4よりも低下し、前記第1電極及び前記第2電極間に電圧値がV1の前記電気的パルスが印加された場合には、R1となり、前記抵抗変化層の抵抗値がR1の場合であって、前記第1電極及び前記第2電極間に電圧値がV1よりも大きくV2よりも小さい前記電気的パルスが印加された場合には、R1よりも上昇し、前記第1電極及び前記第2電極間に電圧値がV2の前記電気的パルスが印加された場合にはR2となることを特徴とする。
 このように、不揮発性記憶素子の抵抗変化層は、R1、R2、R3、及びR4の4つの安定した抵抗状態をとることができる。
 また、本発明の一態様において、前記抵抗変化層内には、前記第2電極に接し、かつ前記第1電極に接しない局所領域が形成され、前記局所領域は、前記局所領域内の前記第1電極側に位置する第1の高酸素濃度領域と、前記局所領域内の前記第2電極側に位置する第2の高酸素濃度領域と、前記局所領域内の前記第1の高酸素濃度領域及び前記第2の高酸素濃度領域の間に位置し、前記第1の高酸素濃度領域及び前記第2の高酸素濃度領域よりも酸素含有率の低い低酸素濃度領域とを含んでもよい。
 また、本発明の一態様において、前記局所領域は、前記第1の金属酸化物領域及び前記第2の金属酸化物領域にまたがって形成されており、前記第1の高酸素濃度領域は、前記第1の金属酸化物領域内に形成され、前記第2の高酸素濃度領域は、前記第2の金属酸化物領域内に形成されてもよい。
 また、本発明の一態様において、前記抵抗変化層は、遷移金属酸化物又はアルミニウム酸化物で構成されてもよい。
 また、本発明の一態様において、前記第1の金属酸化物領域は、TaOxで表される組成を有する酸化物で構成され、前記第2の金属酸化物領域は、TaOy(但し、x<y)で表される組成を有する酸化物で構成されてもよい。
 本発明の一態様に係る不揮発性記憶装置は、ことを特徴とする。
 また、本発明の一態様において、さらに、複数の前記不揮発性記憶素子のそれぞれと直列接続された複数のトランジスタを備えてもよい。
 また、本発明の一態様において、さらに、複数の前記不揮発性記憶素子のそれぞれと直列接続された複数のダイオードを備えてもよい。
 本発明の一態様に係る不揮発性記憶素子の書き込み方法は、不揮発性記憶素子の書き込み方法であって、前記不揮発性記憶素子は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電気的パルスの電圧値に基づいて可逆的に抵抗値が変化する、金属酸化物で構成された抵抗変化層とを備え、前記抵抗変化層は、前記第1電極に接続された第1の金属酸化物領域と、前記第2電極に接続され、前記第1の金属酸化物領域よりも酸素含有率が高い第2の金属酸化物領域とを有しており、前記電気的パルスの前記第1電極を基準としたときの電圧値であるV1、V2、V3、V4、V5、及びV6が、V2>V1>V6>0V>V5>V3>V4の関係を有し、前記抵抗変化層の抵抗値であるR1、R2、R3、及びR4が、R3>R2>R4>R1の関係を有している場合に、前記抵抗変化層の抵抗値は、前記第1電極及び前記第2電極間に電圧値がV2以上の前記電気的パルスが印加された場合には、R2となり、前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4となり、前記抵抗変化層の抵抗値がR2の場合であって、前記第1電極及び前記第2電極間に電圧値がV5以上の前記電気的パルスが印加された場合には、R2のままであり、前記第1電極及び前記第2電極間に電圧値がV5よりも小さくV3よりも大きい前記電気的パルスが印加された場合には、R2よりも上昇し、前記第1電極及び前記第2電極間に電圧値がV3の前記電気的パルスが印加された場合には、R3となり、前記抵抗変化層の抵抗値がR3の場合であって、前記第1電極及び前記第2電極間に電圧値がV3よりも小さくV4よりも大きい前記電気的パルスが印加された場合には、R3よりも低下し、前記第1電極及び前記第2電極間に電圧値がV4の前記電気的パルスが印加された場合には、R4となり、前記抵抗変化層の抵抗値がR4の場合であって、前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4のままであり、前記第1電極及び前記第2電極間に電圧値がV6よりも大きくV1よりも小さい前記電気的パルスが印加された場合には、R4よりも低下し、前記第1電極及び前記第2電極間に電圧値がV1の前記電気的パルスが印加された場合には、R1となり、前記抵抗変化層の抵抗値がR1の場合であって、前記第1電極及び前記第2電極間に電圧値がV1よりも大きくV2よりも小さい前記電気的パルスが印加された場合には、R1よりも上昇し、前記第1電極及び前記第2電極間に電圧値がV2の前記電気的パルスが印加された場合にはR2となり、前記抵抗変化層の抵抗値を抵抗値R1又は抵抗値R4から抵抗値R3へ変化させるときは、前記第1電極及び前記第2電極間に電圧値がV2の前記電気的パルスを印加することによって前記抵抗変化層の抵抗値を抵抗値R2に変化させた後、前記第1電極及び前記第2電極間に電圧値がV3の前記電気的パルスを印加することにより前記抵抗変化層の抵抗値を抵抗値R3へ変化させ、前記抵抗変化層の抵抗値を抵抗値R2又は抵抗値R3から抵抗値R1へ変化させるときは、前記第1電極及び前記第2電極間に電圧値がV4の前記電気的パルスを印加することによって前記抵抗変化層の抵抗値を抵抗値R4に変化させた後、前記第1電極及び前記第2電極間に電圧値がV1の前記電気的パルスを印加することにより前記抵抗変化層の抵抗値を抵抗値R1へ変化させることを特徴とする。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 [不揮発性記憶素子の構成]
 図1は、実施の形態1に係る不揮発性記憶素子の構成を示す断面図である。
 図1に示されるように、実施の形態1に係る不揮発性記憶素子10は、基板1と、基板1の上に形成された第1電極2と、第1電極2の上に形成された抵抗変化層3と、抵抗変化層3の上に形成された第2電極4とを備える。第1電極2及び第2電極4は、抵抗変化層3と電気的に接続されている。
 基板1は、例えばシリコン基板により構成される。また、第1電極2及び第2電極4は、導電材料を用いて構成され、例えば、Au(金)、Pt(白金)、Ir(イリジウム)、Cu(銅)、TiN(窒化チタン)及びTaN(窒化タンタル)のうちの1つ又は複数の材料を用いて構成される。
 抵抗変化層3は、遷移金属酸化物を含んでおり、酸素含有率が低い第1の酸化物領域3a(第1の金属酸化物領域)と、酸素含有率が高い第2の酸化物領域3b(第2の金属酸化物領域)とを有している。このように、抵抗変化層3は、遷移金属酸化物から構成されることにより、PCMO等の材料に比べて、低温プロセスで形成されることが可能である。すなわち、抵抗変化層3は、既存のCMOSプロセスを用いて容易に形成可能である。
 遷移金属酸化物は、例えば、タンタル酸化物である。以下では、抵抗変化層3がタンタル酸化物から構成される例について説明し、第1の酸化物領域3aを第1タンタル酸化物層3aと記述し、第2の酸化物領域を第2タンタル酸化物層3bと記述する。すなわち、抵抗変化層3は、第1タンタル酸化物層3aと第2タンタル酸化物層3bとが積層されて構成されている。ここで、第2タンタル酸化物層3bの酸素含有率は、第1タンタル酸化物層3aの酸素含有率よりも高くなっている。
 なお、「酸素含有率」とは、総原子数に占める酸素原子の比率である。例えば、Taの酸素含有率は、総原子数に占める酸素原子の比率(O/(Ta+O))であり、71.4atm%となる。したがって、酸素不足型のタンタル酸化物は、酸素含有率は0より大きく、71.4atm%より小さいことになる。
 さらに図2に示されるように、抵抗変化層3内には、第2電極に接し、且つ第1電極側に接しない局所領域5が形成される。そして、局所領域5は、低酸素濃度領域7の上下に高酸素濃度領域6(第1の高酸素濃度領域6a、及び第2の高酸素濃度領域6b)を有する。高酸素濃度領域6内には、導電性フィラメントが形成されている。
 また、実施の形態1では、第1タンタル酸化物層3aの組成をTaOとした場合にxは、0.8以上1.9以下の範囲とし、且つ、第2タンタル酸化物層3bの組成をTaOとした場合にyは、2.1以上2.5以下の範囲としている。第1タンタル酸化物層3a、及び第2タンタル酸化物層3bのそれぞれに、このような範囲の組成を有するタンタル酸化物を用いることで、抵抗変化層3の抵抗値を安定して高速に変化させることができる。
 抵抗変化層3の厚みは、1μm以下であれば抵抗値の変化が認められる。ただし、プロセス上の観点から、実施の形態1では、抵抗変化層3の厚みは、200nm以下である。なぜなら、パターニングの際のエッチングプロセスにおいて加工し易いからである。また、抵抗変化層3をこのような厚みとすることで、抵抗変化層3の抵抗値を変化させるために必要となる電圧パルスの電圧値を低くすることができるからである。また、電圧パルス印加時のブレークダウン(絶縁破壊)をより確実に回避するという観点から、抵抗変化層3の厚みは少なくとも5nm以上に構成されてもよい。
 また、第2タンタル酸化物層3bの厚みは、初期抵抗値が大きくなりすぎないように設計するという観点から、8nm以下に構成されてもよい。他方、第2タンタル酸化物層3bの厚みは、安定した抵抗変化現象を発現させるという観点から、1nm以上に構成されてもよい。
 また、第2電極4の近傍で酸化還元反応(抵抗変化)を起こしやすくする観点から、酸素含有率が高い第2の酸化物領域3bに接続する第2電極4を構成する材料の標準電極電位が、抵抗変化層3を構成する金属の標準電極電位より高くなるように上記材料及び上記金属が選定されてもよい。また、同様の観点から、酸素含有率が低い第1の酸化物領域3aに接続する第1電極2を構成する材料の標準電極電位が、第2電極4を構成する材料の標準電極電位より低くなるように上記材料が選定されてもよい。例えば、抵抗変化層3を構成する金属がタンタルの場合、第2電極4を構成する材料はAu(金)、Pt(白金)、Ir(イリジウム)、Cu(銅)等であってもよく、第1電極2を構成する材料はTiN(窒化チタン)やTaN(窒化タンタル)であってもよい。
 上述のように構成される不揮発性記憶素子10を動作させる場合、第1電極2と第2電極4との間(電極間)に、所定の極性、電圧及び時間幅を有する電圧パルス(電気的パルス)が印加される。不揮発性記憶素子10では、後述するように電圧パルス印加による抵抗変化層3内の導電性フィラメントの状態変化により、抵抗変化層3の抵抗値を4つの異なる値の状態に再現性よく変化させることができる。変化後の各抵抗値の状態は、十分長い時間保持されるため、不揮発性記憶素子10は、上記各抵抗値の状態を4つの値に対応させることにより多値記憶が可能である。
 なお、以下の実施の形態では、電極間に印加される電圧パルスの電圧値は、第1電極2の電位を基準にした第2電極4の電位を表すものとして説明される。
 [不揮発性記憶素子の製造方法]
 次に、実施の形態1に係る不揮発性記憶素子10の製造方法の一例について説明する。なお、不揮発性記憶素子10の構造、材料、製造手法、製造条件等は、以下で説明するものに限定されない。
 まず、基板1上に、スパッタリング法により、厚さが例えば50nmの第1電極2(TaN)を形成する。その後、Taターゲットをアルゴンガス及び酸素ガス中でスパッタリングするいわゆる反応性スパッタリング法によって、第1電極2の上にタンタル酸化物層を形成する。ここで、タンタル酸化物層における酸素含有率は、アルゴンガスに対する酸素ガスの流量比を変えることにより容易に調整することができる。なお、ここでは基板を特に加熱しなくともよく、基板の温度は、例えば室温でよい。形成されたタンタル酸化物層は、アモルファスである。
 次に、上記のようにして形成されたタンタル酸化物層の最表面を酸化することによりその表面を改質する。これにより、タンタル酸化物層の表面に、当該タンタル酸化物層の酸化されなかった領域(第1領域)よりも酸素含有率の高い領域(第2領域)が形成される。これらの第1領域及び第2領域が、それぞれ上述の第1タンタル酸化物層3a及び第2タンタル酸化物層3bに相当する。このようにして、第1タンタル酸化物層3a及び第2タンタル酸化物層3bから構成される抵抗変化層3が形成される。
 なお、第1タンタル酸化物層3aの組成をTaOとし、第2タンタル酸化物層3bの組成をTaOとした場合に、第1タンタル酸化物層3a、及び第2タンタル酸化物層3bは、例えば、x=1.57、y=2.47となるように形成される。また、各層の膜厚は、例えば、抵抗変化層3の厚みが50nm、第1タンタル酸化物層3aの厚みが44nm、第2タンタル酸化物層3bの厚みが6nmとなるように形成される。
 次に、上記のようにして形成された抵抗変化層3の上に、スパッタリング法により、厚さが、例えば、50nmの第2電極4(Ir)を形成することによって、不揮発性記憶素子10が得られる。
 なお、第1電極2及び第2電極4並びに抵抗変化層3の大きさ及び形状は、マスク及びリソグラフィによって調整することができる。例えば、第2電極4及び抵抗変化層3の大きさは、0.5μm×0.5μm(面積0.25μm)であり、第1電極2と抵抗変化層3とが接する部分の大きさは、0.5μm×0.5μm(面積0.25μm)である。
 [導電性フィラメントの形成]
 上述の構成の不揮発性記憶素子10の第1電極2と第2電極4との間(電極間)に、初期ブレイクを行うための所定の電圧パルスが印加されることにより、抵抗変化層3内には、少なくとも1つの導電性フィラメントが形成される。初期ブレイクとは、不揮発性記憶素子10の状態を、製造直後の抵抗変化しない非常に高抵抗な状態から抵抗変化が可能な抵抗状態に遷移させる処理である。初期ブレイクを行うための所定の電圧パルスとは、通常の抵抗変化に必要な電圧より高い絶対値を有する電圧パルスである。また、導電性フィラメントとは、セル電流の電流経路の役割を果たす導電路を意味する。
 初期ブレイクを行った不揮発性記憶素子10には、導電性フィラメントを含む局所領域が形成される。
 図2は、実施の形態1の不揮発性記憶素子10において形成される導電性フィラメントを含む局所領域の構成を示す図である。
 図2に示されるように、局所領域5は、抵抗変化層3内において、第2電極4側から第1電極2側にかけて形成されている。図2において、局所領域5は、高酸素濃度領域6と低酸素濃度領域7とを含んでいる。
 高酸素濃度領域6は、低酸素濃度領域7に比べて酸素含有率が高い領域であり、第1の高酸素濃度領域6aと、及び第2の高酸素濃度領域6bとから構成される。また、実施の形態1では、第1の高酸素濃度領域6aは、第1タンタル酸化物層3aに比べて酸素含有率が高く、第2の高酸素濃度領域6bは、第2タンタル酸化物層3bに比べて酸素含有率が低くなるように構成されている。なお、高酸素濃度領域6及び低酸素濃度領域7は、上述した初期ブレイクと、後述する、初期ブレイク後に行われる高酸素濃度領域形成のための電圧パルス印加とによって抵抗変化層3内に形成される。
 図2に示される例では、局所領域5は、局所領域5の下端部分に配置された第1の高酸素濃度領域6aと、局所領域5の上端部分に配置された第2の高酸素濃度領域6bと、それらの間に配置された低酸素濃度領域7とから構成されている。局所領域5は、第1タンタル酸化物層3a及び第2タンタル酸化物層3bにまたがって形成されている。局所領域5は、第2電極4と接しているが、第1電極2とは接していない。
 第1の高酸素濃度領域6aは、第1タンタル酸化物層3a内に、第2の高酸素濃度領域6bは、第2タンタル酸化物層3b内にそれぞれ形成されている。また、低酸素濃度領域7で構成される領域は、第1タンタル酸化物層3a及び第2タンタル酸化物層3bにまたがって形成されている。
 高酸素濃度領域6(第1の高酸素濃度領域6a、及び第2の高酸素濃度領域6b)は、複数の導電パス(導電性フィラメント)の集合を含む。典型的には、不揮発性記憶素子10に印加された電圧によって高酸素濃度領域6中の酸素が移動し、酸素欠陥の連なりが導電パスを構成すると推察される。
 なお、上記の説明では、局所領域5が第1タンタル酸化物層3a及び第2タンタル酸化物層3bにまたがって形成された構成について説明しているが、局所領域5が第2タンタル酸化物層3b内のみに形成された構成であってもよい。
 上記の局所領域5は、透過型電子顕微鏡(TEM: Transmission Electron Microscope)による素子の断面観察によってその存在を確認することができる。また、上記TEMによる素子の断面観察によって、局所領域の下端部分及び上端部分がそれぞれ第1の高酸素濃度領域6a及び第2の高酸素濃度領域6bで構成され、それらの間の領域は低酸素濃度領域7で構成されていることも確認できる。
 [不揮発性記憶素子の特性]
 次に、上述のように構成された実施の形態1に係る不揮発性記憶素子10の特性について、実施例及び参考例を用いて説明する。
 図3は、図1に示した不揮発性記憶素子10と同様の構成であって、図2に示したような局所領域5において、第2の高酸素濃度領域6bが形成されていない不揮発性記憶素子の例(以下、「参考例」と呼ぶ)における抵抗変化層の抵抗値と印加される電圧パルスの電圧値との関係を示すグラフである。
 参考例においては、上述の製造方法により製造された不揮発性記憶素子の第1電極2及び第2電極4間に所定の電圧パルスを印加して初期ブレイクが行われる。
 この結果、参考例の抵抗変化層3内の局所領域5には、図2に示される局所領域5とは異なり、局所領域5内に第2の高酸素濃度領域6bが形成されない。
 その後、上記のように初期ブレイクを行った不揮発性記憶素子において、第1電極2を基準として、第2電極4に負の電圧パルスVlrが印加されることにより抵抗変化層3が低抵抗化され、正の電圧パルスVhrを印加されることにより抵抗変化層3を高抵抗化される。
 他方、図4は、図1に示した不揮発性記憶素子10と同様の構成であって、図2に示されるような局所領域5が形成されている不揮発性記憶素子10の例(以下、「実施例」と呼ぶ)における抵抗変化層の抵抗値と印加される電圧パルスの電圧との関係を示すグラフである。すなわち、参考例とは異なり、実施例に係る不揮発性記憶素子10は、低酸素濃度領域7の下方に第2の高酸素濃度領域6bを有する。
 実施例においては、上述の製造方法により不揮発性記憶素子10を製造した後、その不揮発性記憶素子10の第1電極2及び第2電極4間に所定の電圧パルスを印加して初期ブレイクが行われる。
 その後、実施例においては、参考例とは異なり、初期ブレイクを行った不揮発性記憶素子10に、さらに、第1の極性の電圧パルスと、第1の極性とは異なる第2の極性の電圧パルスとで構成される高酸素濃度領域形成電圧パルスが複数回印加される。これにより、抵抗変化層3内の低酸素濃度領域7の下方に第2の高酸素濃度領域6bを有する局所領域5が形成される。
 なお、高酸素濃度領域形成電圧パルスの電圧値の絶対値は、通常の抵抗変化動作に用いられる電圧パルスの電圧値の絶対値より大きく、初期ブレイクの電圧値(初期ブレイク電圧)の絶対値より小さい。また、高酸素濃度領域形成電圧パルスは、後述する抵抗値R4が発現するまで複数回不揮発性記憶素子10に印加される。
 図3と図4と対比すると、参考例(図3)では、抵抗変化層3の抵抗値は、低い低抵抗状態(RL)においてほぼ一定(同じ)であるのに対し、実施例(図4)では、抵抗変化層3の抵抗値は、低抵抗状態において2つの値(RL及びR4)をとることができる。
 実施例にて確認される抵抗値R4の発現は、高酸素濃度領域形成電圧パルスにより形成される局所領域5の下端の第2の高酸素濃度領域6bに起因する。また、抵抗値が高い高抵抗状態においては、参考例及び実施例の両方の抵抗変化層3の抵抗値は、2つの値(RH及びR3)をとることができる。
 実施の形態1では、このように低抵抗状態及び高抵抗状態のそれぞれにおいて2つの異なる抵抗値をとる特性を利用して、多値記憶が実現される。具体的には、図4に示すような特性を有する不揮発性記憶素子10では、低抵抗状態における抵抗値RL及びR4と、高抵抗状態における抵抗値RH及びR3とにより、4値の多値記憶が実現される。
 図5は、実施の形態1に係る不揮発性記憶素子10と参考例に係る不揮発性記憶素子との抵抗-電圧特性(R-V特性)を模式的に示す図である。
 図5において、実線は、実施の形態1に係る不揮発性記憶素子10の抵抗-電圧特性を、破線は、参考例に係る不揮発性記憶素子の抵抗-電圧特性をそれぞれ示している。実線と破線とを比較すると、上述のように、不揮発性記憶素子10では、低抵抗状態における抵抗値がR1(RL)及びR4の2値をとる点において異なる。
 なお、図5において、V1、V2、V3、V4、V5、及びV6は、不揮発性記憶素子10の第1電極2及び第2電極4間に印加される電圧パルスの電圧値を表している。ここで、電圧値V1、V2及びV6は、正の電圧であってV2>V1>V6の関係を有し、電圧値V3、V4、及びV5は、負の電圧であってV5>V3>V4の関係を有している。すなわち、V1、V2、V3、V4、V5、及びV6は、V2>V1>V6>0V>V5>V3>V4の関係を有している。
 なお、図5及びこれ以降の記載では、正負の区別を明確にするために、電圧値は、符号と電圧の絶対値を用いて、+│V1│,+│V2│,-│V3│,-│V4│,-│V5│,+│V6│と表す。すなわち、V1=+│V1│,V2=+│V2│,V3=-│V3│,V4=-│V4│,V5=-│V5│,V6=+│V6│である。
 以下、不揮発性記憶素子10の抵抗-電圧特性について詳細に説明する。
 図6は、実施の形態1に係る不揮発性記憶素子10の抵抗-電圧特性(R-V特性)を模式的に示す図である。
 抵抗変化層3がどのような抵抗値の状態であっても、両電極間に電圧値が+│V2│以上の電圧パルスが印加されると、抵抗変化層3の抵抗値は、R2となる。また、抵抗変化層3がどのような抵抗値の状態であっても、両電極間に電圧値が-│V4│以上の電圧パルスが印加されると、抵抗変化層3の抵抗値は、R4となる。
 次に、抵抗変化層3の抵抗値がR2の場合について説明する。この場合、両電極間に電圧値が-│V5│以上の電圧パルスが印加されても、抵抗変化層3の抵抗値は、R2のままで変化しない。つまり、抵抗値がR2の状態は、安定した状態である。
 しかしながら、両電極間に電圧値が-│V5│よりも小さい電圧パルスが印加されると、抵抗変化層3の抵抗値は、R2から上昇する。そして、両電極間に電圧値が-│V3│の電圧パルスが印加されると、抵抗変化層3の抵抗値は、R3となる。
 次に、抵抗変化層3の抵抗値がR3の場合について説明する。この場合、両電極間に電圧値が-│V3│よりも小さい電圧パルスが印加されると、抵抗変化層3の抵抗値は、R3から低下する。そして、両電極間に電圧値が-│V4│以下の電圧パルスが印加されると、抵抗変化層3の抵抗値は、R4となる。
 また、図6の破線で示されるように、抵抗変化層3の抵抗値がR3の場合、両電極間に電圧値が-│V3│以上の電圧パルスが印加されても、所定の正の電圧値(|V3|付近の値)までは、抵抗変化層3の抵抗値は、R3のままで変化しない。つまり、抵抗値がR3の状態は、安定した状態である。
 両電極間に電圧値が上記所定の正の電圧値よりも大きい電圧パルスが印加されると、抵抗変化層3の抵抗値は、R3から低下する。そして、両電極間に電圧値が+│V2│以上の電圧パルスが印加されると、抵抗値はR2となる。
 次に、抵抗変化層3の抵抗値がR4の場合について説明する。この場合、両電極間に電圧値が+│V6│以下の電圧パルスが印加されても、抵抗変化層3の抵抗値は、R4のままで変化しない。つまり、抵抗値がR4の状態は、安定した状態である。
 しかしながら、両電極間に電圧値が+│V6│よりも大きい電圧パルスが印加されると、抵抗変化層3の抵抗値は、R4から低下する。そして、両電極間に電圧値が+│V1│の電圧パルスが印加されると、抵抗変化層3の抵抗値は、R1となる。
 次に、抵抗変化層3の抵抗値がR1の場合について説明する。この場合、両電極間に電圧値が+│V1│よりも大きい電圧パルスが印加されると、抵抗変化層3の抵抗値は、R1から上昇する。そして、両電極間に電圧値が+│V2│以上の電圧パルスが印加されると、抵抗変化層3の抵抗値は、R2となる。
 また、図5の破線で示されるように、抵抗変化層3の抵抗値がR1の場合、両電極間に電圧値が+│V1│以下の電圧パルスが印加されても、所定の負の電圧値(-|V1|付近の値)までは、抵抗変化層3の抵抗値は、R1のままで変化しない。つまり、抵抗値がR1の状態は、安定した状態である。
 両電極間に電圧値が上記所定の負の電圧値よりも小さい電圧パルスが印加されると、抵抗変化層3の抵抗値は、R1から上昇する。そして、両電極間に電圧値が-│V4│以下の電圧パルスが印加されると、抵抗値はR4となる。
 以上、不揮発性記憶素子10は、抵抗変化層3の抵抗状態が図6に示すような変化をすることが特徴である。
 続いて、不揮発性記憶素子10の抵抗変化層3の内部状態について説明する。
 図7A乃至図7Dは、抵抗変化層3の抵抗値がR1乃至R4の場合における抵抗変化層3の内部状態を概念的に示す図である。図7Aは、抵抗値がR1の場合、図7Bは、抵抗値がR2の場合、図7Cは、抵抗値がR3の場合、図7Dは、抵抗値がR4の場合における構成をそれぞれ示している。
 図7A乃至図7Dにおいて、抵抗変化層3に形成された局所領域5中の第1の高酸素濃度領域6a及び第2の高酸素濃度領域6bにおける白抜き部分は、導電性フィラメントを模式的に示した部分である。すなわち、この白抜き部分は、電圧パルスが印加された結果、酸化還元反応による酸素の授受が行われ、その結果酸素が少なくなった部分である。なお、図7A乃至図7Dに示されるように、第2電極4は、Irで構成されている。
 図7A乃至図7Dに示されるように、抵抗変化層3内の局所領域5の内部状態は、それぞれ異なっている。これらの内部状態に応じて、抵抗変化層3の抵抗値は、R1乃至R4の何れかの値となる。
 なお、抵抗値R1乃至R4は、図5又は図6に示すように、R3>R2>R4>R1の関係を有しており、各抵抗値は、互いに区別することが可能な程度に離れた値となっている。したがって、抵抗値R1乃至R4のそれぞれに異なる数値を対応させることにより、4値の多値記憶が可能になる。
 [不揮発性記憶素子の書き込み方法]
 上述のように、実施の形態1に係る不揮発性記憶素子10は、4値を記憶することができる。ここで、不揮発性記憶素子10は、上述の抵抗-電圧特性に基づき、抵抗変化層3の抵抗値がR2又はR4である状態には、他の抵抗値である状態から一度の書き込み(すなわち、書き込み用の電圧パルスの一回の印加)で遷移することができる。
 しかしながら、不揮発性記憶素子10が、抵抗変化層3の抵抗値がR3である状態に遷移するためには、抵抗値がR2である状態を経由しなければならない。同様に、不揮発性記憶素子10が、抵抗値がR1である状態に遷移するためには、抵抗値がR4である状態を経由しなければならない。
 図8は、実施の形態1に係る不揮発性記憶素子10の抵抗変化層3の抵抗状態の状態遷移図である。
 図8及び上述のように、不揮発性記憶素子10は、抵抗変化層3の抵抗値がR2又はR4である状態には、他の抵抗値にある状態から一度の書き込みで推移できる。すなわち、抵抗変化層3の抵抗値がR1、R3及びR4の何れの状態であっても、電極間に電圧値が+│V2│の電圧パルスを印加することにより、不揮発性記憶素子10を抵抗値がR2の状態に推移させることができる。また、抵抗変化層3の抵抗値がR1、R2及びR3の何れの状態であっても、電極間に電圧値-│V4│の電圧パルスを印加することにより不揮発性記憶素子10を抵抗値がR4の状態に遷移させることができる。
 また、図8には、上述のように、不揮発性記憶素子10は、抵抗変化層3の抵抗値がR3である状態には、抵抗変化層3の抵抗値がR2である状態を経由しなければ遷移できないことが示されている。すなわち、不揮発性記憶素子10は、抵抗変化層3の抵抗値がR1である状態からは、図9のフローチャートに示されるような書き込み方法により、抵抗変化層3の抵抗値がR3である状態に遷移する。
 まず、電極間に電圧値が-│V4│の電圧パルス及び電圧値が+│V2│の電圧パルスをこの順に印加することにより、又は電極間に電圧値+│V2│の電圧パルスを印加することにより、不揮発性記憶素子10を抵抗変化層3の抵抗値がR2の状態に遷移させる(S101)。
 その後、電極間に電圧値が-│V3│の電圧パルスを印加することにより、不揮発性記憶素子10を抵抗変化層3の抵抗値がR3の状態に遷移させる(S102)。
 なお、不揮発性記憶素子10を抵抗変化層3の抵抗値がR4である状態から抵抗変化層3の抵抗値がR3である状態に遷移させる場合も同様である。まず、電極間に電圧値が+│V2│の電圧パルスを印加することにより、不揮発性記憶素子10を抵抗変化層3の抵抗値がR2の状態に遷移させる。その後、電極間に電圧値が-│V3│の電圧パルスを印加することにより、不揮発性記憶素子10を抵抗変化層3の抵抗値がR3の状態に遷移させる。
 さらに、図8には、上述のように、不揮発性記憶素子10は、抵抗変化層3の抵抗値がR1である状態には、抵抗変化層3の抵抗値がR4である状態を経由しなければ遷移できないことが示されている。すなわち、不揮発性記憶素子10は、抵抗変化層3の抵抗値がR3である状態からは、図10のフローチャートに示されるような書き込み方法により、抵抗変化層3の抵抗値がR1である状態に遷移する。
 まず、電極間に電圧値が+│V2│の電圧パルス及び電圧値が-│V4│の電圧パルスをこの順に印加することにより、又は電極間に電圧値が-│V4│の電圧パルスを印加することにより、不揮発性記憶素子10を抵抗変化層3の抵抗値がR4の状態に遷移させる(S201)。
 その後、電極間に電圧値が+│V1│の電圧パルスを印加することにより、不揮発性記憶素子10を抵抗変化層3の抵抗値がR1の状態に遷移させる(S202)。
 なお、不揮発性記憶素子10を抵抗変化層3の抵抗値がR2である状態から抵抗変化層3の抵抗値がR1である状態に遷移させる場合も同様である。まず、電極間に電圧値が-│V4│の電圧パルスを印加することにより、不揮発性記憶素子10を抵抗変化層3の抵抗値がR4の状態に遷移させる。その後、電極間に電圧値が+│V1│の電圧パルスを印加することにより、不揮発性記憶素子10を抵抗変化層3の抵抗値がR1の状態に遷移させる。
 以上説明したような書き込み方法により、不揮発性記憶素子10を抵抗変化層3の抵抗値がR1乃至R4の何れかである状態に遷移させることができ、4値の多値記憶が実現される。
 (実施の形態2)
 実施の形態2では、実施の形態1において説明した不揮発性記憶素子を用いて構成される、1トランジスタ・1不揮発性記憶部型(1T1R型)の不揮発性記憶装置の構成及び動作について説明する。
 [不揮発性記憶装置の構成及び動作]
 図11は、実施の形態2に係る不揮発性記憶装置の構成の一例を示すブロック図である。
 図11に示されるように、1T1R型の不揮発性記憶装置100は、半導体基板上にメモリ本体部101を備えている。
 メモリ本体部101は、メモリアレイ102と、電圧印加ユニット103とを備える。
 電圧印加ユニット103は、行選択回路・ドライバ104Rと、列選択回路104Cと、情報の書き込みを行うための書込み回路105と、選択ビット線に流れる電流量を検出し、4値のデータのうちの何れのデータが記憶されているかの判定を行うセンスアンプ106と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路107とを具備している。
 また、不揮発性記憶装置100は、セルプレート電源(VCP電源)108と、外部から入力されるアドレス信号を受け取るアドレス入力回路109と、外部から入力されるコントロール信号に基づいてメモリ本体部101の動作を制御する制御回路110とをさらに備えている。
 なお、電圧印加ユニット103は、上記以外の公知の回路の組み合わせにより構成されてもよい。また、電圧印加ユニット103は、セルプレート電源108と、アドレス入力回路109と、制御回路110とを含んでいてもよい。要するに、電圧印加ユニット103は、書き込みステップにおいて、少なくともV1乃至V4を含む4値以上の電圧パルスの中から1つを選択して不揮発性記憶素子に印加し、かつ、読み出しステップにおいて、各不揮発性記憶素子の抵抗値がR1乃至R4の何れであるか判定するユニットであればよい。
 メモリアレイ102は、半導体基板の上に形成され、互いに交差するように配列された複数のワード線WL0、WL1、WL2、…及び複数のビット線BL0、BL1、BL2、…と、これらのワード線WL0、WL1、WL2、…及びビット線BL0、BL1、BL2、…の各交点に対応してそれぞれ設けられた複数のトランジスタT11、T12、T13、T21、T22、T23、T31、T32、T33、…(以下、「トランジスタT11、T12、…」と表す)と、トランジスタT11、T12、…と1対1に設けられた複数の抵抗変化素子M111、M112、M113、M121、M122、M123、M131、M132、M133(以下、「メモリセルM111、M112、…」と表す)とを備えている。ここで、メモリセルM111、M112、…は、実施の形態1の不揮発性記憶素子10に相当する。
 また、メモリアレイ102は、ワード線WL0、WL1、WL2、…に平行して配列されている複数のプレート線PL0、PL1、PL2、…を備えている。
 トランジスタT11、T12、T13、…のドレインはビット線BL0に、トランジスタT21、T22、T23、…のドレインはビット線BL1に、トランジスタT31、T32、T33、…のドレインはビット線BL2に、それぞれ接続されている。
 また、トランジスタT11、T21、T31、…のゲートはワード線WL0に、トランジスタT12、T22、T32、…のゲートはワード線WL1に、トランジスタT13、T23、T33、…のゲートはワード線WL2に、それぞれ接続されている。
 さらに、トランジスタT11、T12、…のソースはそれぞれ、メモリセルM111、M112、…の一端(不揮発性記憶素子10の第1電極2及び第2電極4の一方)と接続されている。
 また、メモリセルM111、M121、M131、…の他端(不揮発性記憶素子10の第1電極2及び第2電極4の他方)は、プレート線PL0に、メモリセルM112、M122、M132、…の他端は、プレート線PL1に、メモリセルM113、M123、M133、…の他端は、プレート線PL2に、それぞれ接続されている。
 アドレス入力回路109は、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路・ドライバ104Rへ出力するとともに、列アドレス信号を列選択回路104Cへ出力する。ここで、アドレス信号は、複数のメモリセルM111、M112、…のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号は、アドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は、アドレス信号に示されたアドレスのうちの列のアドレスを示す信号である。
 制御回路110は、情報の書き込みステップにおいては、データ入出力回路107に入力された入力データDinに応じて、書き込み用電圧の印加を指示する書き込み信号を書込み回路105へ出力する。他方、情報の読み出しステップにおいては、制御回路110は、読み出し用電圧の印加を指示する読み出し信号を列選択回路104Cへ出力する。
 行選択回路・ドライバ104Rは、アドレス入力回路109から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0、WL1、WL2、…のうちの何れかを選択し、選択したワード線に対して、所定の電圧を印加する。
 また、列選択回路104Cは、アドレス入力回路109から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0、BL1、BL2、…のうちの何れかを選択し、選択したビット線に対して、書き込み用電圧又は読み出し用電圧を印加する。
 書込み回路105は、制御回路110から出力された書き込み信号を受け取った場合、列選択回路104Cに対して、選択されたビット線への書き込み用電圧の印加を指示する信号を出力する。ここで、抵抗値R2に対応する値を書き込む場合は、電圧+│V2│の書き込み用電圧の印加を指示する信号を、抵抗値R4に対応する値を書き込む場合は、電圧-│V4│の書き込み用電圧の印加を指示する信号をそれぞれ出力する。また、抵抗値R3に対応する値を書き込む場合は、電圧+│V2│の書き込み用電圧の印加を指示する信号及び電圧-│V3│の書き込み用電圧の印加を指示する信号をこの順に出力する。さらに、抵抗値R1に対応する値を書き込む場合は、電圧-│V4│の書き込み用電圧の印加を指示する信号及び電圧+│V1│の書き込み用電圧の印加を指示する信号をこの順に出力する。
 センスアンプ106は、情報の読み出しステップにおいて、読み出し対象となる選択ビット線に流れる電流量を検出し、記憶されているデータを判別する。実施の形態2では、各メモリセルM111、M112、…の抵抗状態は、抵抗値R1乃至R4のそれぞれに対応する4つの状態であり、これらの4つの状態と4値のデータとが対応づけられている。センスアンプ106は、選択されたメモリセルの抵抗変化層の抵抗状態が4つの状態のうちの何れの状態にあるのかを判別し、抵抗状態に応じて4値のデータのうち何れのデータが記憶されているのかを判定する。その結果得られた出力データDOは、データ入出力回路107を介して、外部回路へ出力される。
 上記のように動作することにより、不揮発性記憶装置100は、4値の多値記憶を実現する。
 (実施の形態3)
 実施の形態3では、実施の形態1において説明した不揮発性記憶素子を用いて構成される、クロスポイント型の不揮発性記憶装置である。以下、この不揮発性記憶装置の構成及び動作について説明する。
 [不揮発性記憶装置の構成及び動作]
 図12は、実施の形態3に係る不揮発性記憶装置の構成の一例を示すブロック図である。
 図12に示されるように、不揮発性記憶装置200は、半導体基板上にメモリ本体部201を備えている。
 メモリ本体部201は、メモリアレイ202と、電圧印加ユニット203を備える。
 電圧印加ユニット203は、行選択回路・ドライバ204Rと、列選択回路・ドライバ204Cと、情報の書き込みを行うための書込み回路205と、選択ビット線に流れる電流量を検出し、4値のデータのうちの何れのデータが記憶されているかの判別を行うセンスアンプ206と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路207とを具備している。
 また、不揮発性記憶装置200は、外部から入力されるアドレス信号を受け取るアドレス入力回路208と、外部から入力されるコントロール信号に基づいて、メモリ本体部201の動作を制御する制御回路209とをさらに備えている。
 なお、電圧印加ユニット203は、書き込みステップにおいて、少なくともV1乃至V4を含む4値以上の電圧パルスの中から1つを選択して不揮発性記憶素子に印加し、かつ、読み出しステップにおいて、各不揮発性記憶素子の抵抗値がR1乃至R4の何れであるか判定するユニットであれば、他のどのような構成であってもよい。
 メモリアレイ202は、図12に示されるように、半導体基板上に互い平行に形成された複数のワード線WL0、WL1、WL2、…と、これらのワード線WL0、WL1、WL2、…の上方の半導体基板の主面に平行な面内において互いに平行に形成され、なおかつ複数のワード線WL0、WL1、WL2、…に立体交差するように形成された複数のビット線BL0、BL1、BL2、…とを備えている。
 また、これらのワード線WL0、WL1、WL2、…及びビット線BL0、BL1、BL2、…の交点に対応してマトリクス状に設けられた複数のメモリセルM211、M212、M213、M221、M222、M223、M231、M232、M233、…(以下、「メモリセルM211、M212、…」と表す)が設けられている。ここで、メモリセルM211、M212、…は、実施の形態1の不揮発性記憶素子10に相当する素子と、MIM(Metal-Insulator-Metal)ダイオード又はMSM(Metal-Semiconductor-Metal)ダイオード等で構成される電流抑制素子とが直列接続されて構成されている。
 アドレス入力回路208は、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路・ドライバ204Rへ出力するとともに、列アドレス信号を列選択回路・ドライバ204Cへ出力する。ここで、アドレス信号は、複数のメモリセルM211、M212、…のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号はアドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は同じく列のアドレスを示す信号である。
 制御回路209は、情報の書き込みステップにおいて、データ入出力回路207に入力された入力データDinに応じて、書き込み用電圧の印加を指示する書き込み信号を書込み回路205へ出力する。他方、情報の読み出しステップにおいては、制御回路209は、読み出し動作を指示する読み出し信号を列選択回路・ドライバ204Cへ出力する。
 行選択回路・ドライバ204Rは、アドレス入力回路208から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0、WL1、WL2、…のうちの何れかを選択し、選択したワード線に対して、所定の電圧を印加する。
 また、列選択回路・ドライバ204Cは、アドレス入力回路208から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0、BL1、BL2、…のうちの何れかを選択し、選択したビット線に対して、書き込み用電圧又は読み出し用電圧を印加する。
 書込み回路205は、制御回路209から出力された書き込み信号を受け取った場合、行選択回路・ドライバ204Rに対して、選択されたワード線への電圧の印加を指示する信号を出力するとともに、列選択回路・ドライバ204Cに対して、選択されたビット線への書き込み用電圧の印加を指示する信号を出力する。ここで、書込み回路205は、抵抗値R2に対応する値を書き込む場合は、電圧+│V2│の書き込み用電圧の印加を指示する信号を、抵抗値R4に対応する値を書き込む場合は、電圧-│V4│の書き込み用電圧の印加を指示する信号をそれぞれ出力する。また、抵抗値R3に対応する値を書き込む場合は、電圧+│V2│の書き込み用電圧の印加を指示する信号及び電圧-│V3│の書き込み用電圧の印加を指示する信号をこの順に出力する。さらに、抵抗値R1に対応する値を書き込む場合は、電圧-│V4│の書き込み用電圧の印加を指示する信号及び電圧+│V1│の書き込み用電圧の印加を指示する信号をこの順に出力する。
 センスアンプ206は、情報の読み出しステップにおいて、読み出し対象となる選択ビット線に流れる電流量を検出し、記憶されているデータを判別する。実施の形態3では、各メモリセルM211、M212、…の抵抗状態は、抵抗値R1乃至R4のそれぞれに対応する4つの状態であり、これらの4つの状態と4値のデータとが対応づけられている。センスアンプ206は、選択されたメモリセルの抵抗変化層の抵抗状態が4つの状態のうちの何れの状態にあるのかを判別し、抵抗状態に応じて4値のデータのうち何れのデータが記憶されているのかを判定する。その結果得られた出力データDOは、データ入出力回路207を介して、外部回路へ出力される。
 上記のように動作することにより、不揮発性記憶装置200は、4値の多値記憶を実現する。
 なお、図12に示される実施の形態3に係る不揮発性記憶装置におけるメモリアレイを、3次元に積み重ねることによって、多層化構造の不揮発性記憶装置を実現することも可能である。このように構成された多層化メモリアレイによれば、超大容量不揮発性記憶装置が実現される。
 (その他の実施の形態)
 上記の各実施の形態において、抵抗変化層はタンタル酸化物の積層構造で構成されていたが、抵抗変化層3を構成する金属は、タンタル以外の金属を用いてもよい。抵抗変化層3を構成する金属としては、遷移金属、又はアルミニウム(Al)を用いることができる。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)、ニッケル(Ni)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。
 例えば、ハフニウム酸化物を用いる場合、第1の酸化物領域3aの組成をHfOとした場合にxが0.9以上1.6以下であり、かつ、第2の酸化物領域3bの組成をHfOとした場合にyがxの値よりも大である場合に、抵抗変化層3の抵抗値を安定して高速に変化させることができる。この場合、第2の酸化物領域3bの膜厚は、3~4nmとしてもよい。
 また、ジルコニウム酸化物を用いる場合、第1の酸化物領域3aの組成をZrOとした場合にxが0.9以上1.4以下であり、かつ、第2の酸化物領域3bの組成をZrOとした場合にyがxの値よりも大である場合に、抵抗変化層3の抵抗値を安定して高速に変化させることができる。この場合、第2の酸化物領域3bの膜厚は、1~5nmとしてもよい。
 上記の各実施形態において、第1の酸化物領域3aを構成する第1の金属と、第2の酸化物領域3bを構成する第2の金属とは、異なる金属を用いてもよい。この場合、第2の酸化物領域3bは、第1の酸化物領域3aよりも酸素不足度が小さい、つまり抵抗が高くてもよい。このような構成とすることにより、抵抗変化時に第1電極2と第2電極4との間に印加された電圧は、第2の酸化物領域3bに、より多くの電圧が分配され、第2の酸化物領域3b中で発生する酸化還元反応をより起こしやすくすることができる。
 また、第1の抵抗変化層となる第1の酸化物領域3aを構成する第1の金属と、第2の抵抗変化層となる第2の酸化物領域3bを構成する第2の金属とを、互いに異なる材料を用いる場合、第2の金属の標準電極電位は、第1の金属の標準電極電位より低くてもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。これにより、標準電極電位が相対的に低い第2の酸化物領域3bにおいて、酸化還元反応が起こりやすくなる。なお、抵抗変化現象は、抵抗が高い第2の酸化物領域3b中に形成された微小な局所領域中で酸化還元反応が起こってフィラメント(導電パス)が変化することにより、その抵抗値(酸素不足度)が変化すると考えられる。
 例えば、第1の酸化物領域3aに酸素不足型のタンタル酸化物(TaO)を用い、第2の酸化物領域3bにチタン酸化物(TiO)を用いることにより、安定した抵抗変化動作が得られる。チタン(標準電極電位=-1.63eV)はタンタル(標準電極電位=-0.6eV)より標準電極電位が低い材料である。このように、第2の酸化物領域3bに第1の酸化物領域3aより標準電極電位が低い金属の酸化物を用いることにより、第2の酸化物領域3b中でより酸化還元反応が発生しやすくなる。その他の組み合わせとして、高抵抗層となる第2の酸化物領域3bにアルミニウム酸化物(Al)を用いることができる。例えば、第1の酸化物領域3aに酸素不足型のタンタル酸化物(TaO)を用い、第2の酸化物領域3bにアルミニウム酸化物(Al)を用いてもよい。
 また、第2の酸化物領域3bの誘電率は、第1の酸化物領域3aの誘電率より大きくてもよい。あるいは、第2の酸化物領域3bのバンドギャップは、第1の酸化物領域3aのバンドギャップより小さくてもよい。例えば、TiO(比誘電率=95)は、Ta(比誘電率=26)より比誘電率が大きい材料である。さらに、TiO(バンドギャップ=3.1eV)は、Ta(バンドギャップ=4.4eV)よりバンドギャップが小さい材料である。一般的に、比誘電率が大きい材料の方が、比誘電率が小さい材料よりブレイクダウンしやすく、また、バンドギャップが小さい材料の方が、バンドギャップが大きい材料よりブレイクダウンしやすい。このため、第2の酸化物領域3bとしてTiOを用いることで初期ブレイク電圧を低くすることができる。
 上記の条件のいずれか一方又は両方を満足する遷移金属酸化物を第2の酸化物領域3bに用いることにより、第2の酸化物領域3bの絶縁破壊電界強度が第1の酸化物領域3aの絶縁破壊電界強度に比べて小さくなり、初期ブレイク電圧が低減できる。これは、非特許文献4、J.McPherson et al.,IEDM 2002,p.633-636の図1に示されているように、酸化物層の絶縁破壊電界強度(Breakdown Strength)と誘電率との間には、誘電率が大きいほど絶縁破壊電界強度が小さくなるという相関関係が見られるためである。また、J.McPherson et al.,IEDM 2002,p.633-636の図2に示されているように、酸化物層の絶縁破壊電界とバンドギャップとの間には、バンドギャップが大きいほど絶縁破壊電界強度が大きくなるという相関関係が見られるためである。
 なお、上記の各実施形態において、第2の酸化物領域3bをタンタル酸化物層とした場合であっても、第1の酸化物領域3aは、局所領域5中の導電性フィラメントに対して酸素の授受を行なう補助的な層であるため、種々の遷移金属酸化物を用いることができる。
 また、抵抗変化層3は、成膜時には金属酸化物の積層構造で構成されていなくてもよく、単層の金属酸化物(第1の酸化物領域3a)によって構成されていてもよい。このように単層の金属酸化物層で抵抗変化層3を構成した場合は、不揮発性記憶素子10を製造した後、その不揮発性記憶素子10の第1電極2及び第2電極4間に、不揮発性記憶素子10が高抵抗化する方向に、少なくとも1回の高抵抗層形成のための所定の電圧パルスを印加して高抵抗層(第2の酸化物領域3b)の形成を行う。その後、実施の形態1で説明したものと同様の処理を行うことにより、4値の多値記憶が実現される。
 なお、上記の各実施の形態を適宜組み合わせることによって新たな実施の形態を実現することも可能である。すなわち、本発明は、これらの実施の形態又はその変形例に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態又はその変形例に施したもの、あるいは異なる実施の形態又はその変形例における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 本発明の不揮発性記憶素子は、パーソナルコンピュータ又は携帯型電話機などの種々の電子機器に用いられる不揮発性記憶素子として有用である。
 1  基板
 2  第1電極
 3  抵抗変化層
 3a  第1の酸化物領域(第1タンタル酸化物層)
 3b  第2の酸化物領域(第2タンタル酸化物層)
 4  第2電極
 5  局所領域
 6  高酸素濃度領域
 6a  第1の高酸素濃度領域
 6b  第2の高酸素濃度領域
 7  低酸素濃度領域
 10  不揮発性記憶素子
 100  不揮発性記憶装置
 101  メモリ本体部
 102  メモリアレイ
 103  電圧印加ユニット
 104R  行選択回路・ドライバ
 104C  列選択回路
 105  書込み回路
 106  センスアンプ
 107  データ入出力回路
 108  セルプレート電源
 109  アドレス入力回路
 110  制御回路
 200  不揮発性記憶装置
 201  メモリ本体部
 202  メモリアレイ
 203  電圧印加ユニット
 204R  行選択回路・ドライバ
 204C  列選択回路・ドライバ
 205  書込み回路
 206  センスアンプ
 207  データ入出力回路
 208  アドレス入力回路
 209  制御回路
 BL0~BL2 ビット線
 M111~M233 メモリセル
 PL0~PL2 プレート線
 T11~T33 トランジスタ
 WL0~WL2 ワード線

Claims (9)

  1.  第1電極と、
     第2電極と、
     前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電気的パルスの電圧値に基づいて可逆的に抵抗値が変化する、金属酸化物で構成された抵抗変化層とを備え、
     前記抵抗変化層は、前記第1電極に接続された第1の金属酸化物領域と、前記第2電極に接続され、前記第1の金属酸化物領域よりも酸素含有率が高い第2の金属酸化物領域とを有しており、
     前記電気的パルスの前記第1電極を基準としたときの電圧値であるV1、V2、V3、V4、V5、及びV6が、V2>V1>V6>0V>V5>V3>V4の関係を有し、前記抵抗変化層の抵抗値であるR1、R2、R3、及びR4が、R3>R2>R4>R1の関係を有している場合に、
     前記抵抗変化層の抵抗値は、
     前記第1電極及び前記第2電極間に電圧値がV2以上の前記電気的パルスが印加された場合には、R2となり、
     前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4となり、
     前記抵抗変化層の抵抗値がR2の場合であって、
      前記第1電極及び前記第2電極間に電圧値がV5以上の前記電気的パルスが印加された場合には、R2のままであり、
      前記第1電極及び前記第2電極間に電圧値がV5よりも小さくV3よりも大きい前記電気的パルスが印加された場合には、R2よりも上昇し、
      前記第1電極及び前記第2電極間に電圧値がV3の前記電気的パルスが印加された場合には、R3となり、
     前記抵抗変化層の抵抗値がR3の場合であって、
      前記第1電極及び前記第2電極間に電圧値がV3よりも小さくV4よりも大きい前記電気的パルスが印加された場合には、R3よりも低下し、
      前記第1電極及び前記第2電極間に電圧値がV4の前記電気的パルスが印加された場合には、R4となり、
     前記抵抗変化層の抵抗値がR4の場合であって、
      前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4のままであり、
      前記第1電極及び前記第2電極間に電圧値がV6よりも大きくV1よりも小さい前記電気的パルスが印加された場合には、R4よりも低下し、
      前記第1電極及び前記第2電極間に電圧値がV1の前記電気的パルスが印加された場合には、R1となり、
     前記抵抗変化層の抵抗値がR1の場合であって、
      前記第1電極及び前記第2電極間に電圧値がV1よりも大きくV2よりも小さい前記電気的パルスが印加された場合には、R1よりも上昇し、
      前記第1電極及び前記第2電極間に電圧値がV2の前記電気的パルスが印加された場合にはR2となる、
     不揮発性記憶素子。
  2.  前記抵抗変化層内には、前記第2電極に接し、かつ前記第1電極に接しない局所領域が形成され、
     前記局所領域は、
     前記局所領域内の前記第1電極側に位置する第1の高酸素濃度領域と、
     前記局所領域内の前記第2電極側に位置する第2の高酸素濃度領域と、
     前記局所領域内の前記第1の高酸素濃度領域及び前記第2の高酸素濃度領域の間に位置し、前記第1の高酸素濃度領域及び前記第2の高酸素濃度領域よりも酸素含有率の低い低酸素濃度領域とを含む、
     請求項1に記載の不揮発性記憶素子。
  3.  前記局所領域は、前記第1の金属酸化物領域及び前記第2の金属酸化物領域にまたがって形成されており、
     前記第1の高酸素濃度領域は、前記第1の金属酸化物領域内に形成され、
     前記第2の高酸素濃度領域は、前記第2の金属酸化物領域内に形成されている、
     請求項2に記載の不揮発性記憶素子。
  4.  前記抵抗変化層は、遷移金属酸化物又はアルミニウム酸化物で構成される、
     請求項1~3のいずれか1項に記載の不揮発性記憶素子。
  5.  前記第1の金属酸化物領域は、TaOで表される組成を有する酸化物で構成され、
     前記第2の金属酸化物領域は、TaO(但し、x<y)で表される組成を有する酸化物で構成される、
     請求項1~4のいずれか1項に記載の不揮発性記憶素子。
  6.  請求項1~5のいずれか1項に記載の不揮発性記憶素子を複数備える不揮発性記憶装置であって、
     半導体基板上に形成され、互いに交差するように配列された複数のワード線及び複数のビット線と、
     前記複数のワード線及び複数のビット線の交点のそれぞれに対応して、前記不揮発性記憶素子が複数設けられたメモリアレイとを備える、
     不揮発性記憶装置。
  7.  さらに、複数の前記不揮発性記憶素子のそれぞれと直列接続された複数のトランジスタを備える、
     請求項6に記載の不揮発性記憶装置。
  8.  さらに、複数の前記不揮発性記憶素子のそれぞれと直列接続された複数のダイオードを備える、
     請求項6に記載の不揮発性記憶装置。
  9.  不揮発性記憶素子の書き込み方法であって、
     前記不揮発性記憶素子は、
     第1電極と、
     第2電極と、
     前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電気的パルスの電圧値に基づいて可逆的に抵抗値が変化する、金属酸化物で構成された抵抗変化層とを備え、
     前記抵抗変化層は、前記第1電極に接続された第1の金属酸化物領域と、前記第2電極に接続され、前記第1の金属酸化物領域よりも酸素含有率が高い第2の金属酸化物領域とを有しており、
     前記電気的パルスの前記第1電極を基準としたときの電圧値であるV1、V2、V3、V4、V5、及びV6が、V2>V1>V6>0V>V5>V3>V4の関係を有し、前記抵抗変化層の抵抗値であるR1、R2、R3、及びR4が、R3>R2>R4>R1の関係を有している場合に、
     前記抵抗変化層の抵抗値は、
     前記第1電極及び前記第2電極間に電圧値がV2以上の前記電気的パルスが印加された場合には、R2となり、
     前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4となり、
     前記抵抗変化層の抵抗値がR2の場合であって、
      前記第1電極及び前記第2電極間に電圧値がV5以上の前記電気的パルスが印加された場合には、R2のままであり、
      前記第1電極及び前記第2電極間に電圧値がV5よりも小さくV3よりも大きい前記電気的パルスが印加された場合には、R2よりも上昇し、
      前記第1電極及び前記第2電極間に電圧値がV3の前記電気的パルスが印加された場合には、R3となり、
     前記抵抗変化層の抵抗値がR3の場合であって、
      前記第1電極及び前記第2電極間に電圧値がV3よりも小さくV4よりも大きい前記電気的パルスが印加された場合には、R3よりも低下し、
      前記第1電極及び前記第2電極間に電圧値がV4の前記電気的パルスが印加された場合には、R4となり、
     前記抵抗変化層の抵抗値がR4の場合であって、
      前記第1電極及び前記第2電極間に電圧値がV4以下の前記電気的パルスが印加された場合には、R4のままであり、
      前記第1電極及び前記第2電極間に電圧値がV6よりも大きくV1よりも小さい前記電気的パルスが印加された場合には、R4よりも低下し、
      前記第1電極及び前記第2電極間に電圧値がV1の前記電気的パルスが印加された場合には、R1となり、
     前記抵抗変化層の抵抗値がR1の場合であって、
      前記第1電極及び前記第2電極間に電圧値がV1よりも大きくV2よりも小さい前記電気的パルスが印加された場合には、R1よりも上昇し、
      前記第1電極及び前記第2電極間に電圧値がV2の前記電気的パルスが印加された場合にはR2となり、
     前記抵抗変化層の抵抗値を抵抗値R1又は抵抗値R4から抵抗値R3へ変化させるときは、前記第1電極及び前記第2電極間に電圧値がV2の前記電気的パルスを印加することによって前記抵抗変化層の抵抗値を抵抗値R2に変化させた後、前記第1電極及び前記第2電極間に電圧値がV3の前記電気的パルスを印加することにより前記抵抗変化層の抵抗値を抵抗値R3へ変化させ、
     前記抵抗変化層の抵抗値を抵抗値R2又は抵抗値R3から抵抗値R1へ変化させるときは、前記第1電極及び前記第2電極間に電圧値がV4の前記電気的パルスを印加することによって前記抵抗変化層の抵抗値を抵抗値R4に変化させた後、前記第1電極及び前記第2電極間に電圧値がV1の前記電気的パルスを印加することにより前記抵抗変化層の抵抗値を抵抗値R1へ変化させる、
     不揮発性記憶素子の書き込み方法。
PCT/JP2012/006578 2011-10-18 2012-10-15 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法 WO2013057912A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/824,811 US9111640B2 (en) 2011-10-18 2012-10-15 Nonvolatile memory element, nonvolatile memory device, and writing method for use in nonvolatile memory element
CN201280003077.3A CN103180948B (zh) 2011-10-18 2012-10-15 非易失性存储元件、非易失性存储装置及非易失性存储元件的写入方法
JP2013513450A JP5291270B1 (ja) 2011-10-18 2012-10-15 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-228566 2011-10-18
JP2011228566 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013057912A1 true WO2013057912A1 (ja) 2013-04-25

Family

ID=48140580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006578 WO2013057912A1 (ja) 2011-10-18 2012-10-15 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法

Country Status (4)

Country Link
US (1) US9111640B2 (ja)
JP (1) JP5291270B1 (ja)
CN (1) CN103180948B (ja)
WO (1) WO2013057912A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061559A1 (ja) * 2011-10-24 2013-05-02 パナソニック株式会社 不揮発性記憶素子および不揮発性記憶装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041041A1 (ja) * 2007-09-28 2009-04-02 Panasonic Corporation 不揮発性記憶素子及び不揮発性半導体記憶装置、並びにそれらの読み出し方法及び書き込み方法
JP2009135409A (ja) * 2007-11-29 2009-06-18 Samsung Electronics Co Ltd 相変化メモリ素子の動作方法
WO2009147790A1 (ja) * 2008-06-03 2009-12-10 パナソニック株式会社 不揮発性記憶素子、不揮発性記憶装置、および不揮発性半導体装置
WO2010029634A1 (ja) * 2008-09-11 2010-03-18 株式会社 東芝 抵抗変化素子及び情報記録再生装置
WO2011111361A1 (ja) * 2010-03-08 2011-09-15 パナソニック株式会社 不揮発性記憶素子およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473332B1 (en) 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
JP4205938B2 (ja) 2002-12-05 2009-01-07 シャープ株式会社 不揮発性メモリ装置
KR100593750B1 (ko) 2004-11-10 2006-06-28 삼성전자주식회사 이성분계 금속 산화막을 데이터 저장 물질막으로 채택하는교차점 비휘발성 기억소자 및 그 제조방법
JP4485605B2 (ja) * 2008-09-30 2010-06-23 パナソニック株式会社 抵抗変化素子の駆動方法、初期処理方法、及び不揮発性記憶装置
CN102077296B (zh) * 2009-06-08 2014-04-02 松下电器产业株式会社 电阻变化型非易失性存储元件的成形方法及电阻变化型非易失性存储装置
JP2011198909A (ja) 2010-03-18 2011-10-06 Panasonic Corp 抵抗変化型不揮発性記憶素子
US9082515B2 (en) * 2011-05-24 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Variable resistance nonvolatile memory device and driving method of variable resistance nonvolatile memory device
WO2013061559A1 (ja) * 2011-10-24 2013-05-02 パナソニック株式会社 不揮発性記憶素子および不揮発性記憶装置
JP5395314B2 (ja) * 2011-12-02 2014-01-22 パナソニック株式会社 不揮発性記憶素子および不揮発性記憶装置
US8581224B2 (en) * 2012-01-20 2013-11-12 Micron Technology, Inc. Memory cells
KR101999342B1 (ko) * 2012-09-28 2019-07-12 삼성전자주식회사 저항 변화 소자 및 이를 포함하는 메모리 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041041A1 (ja) * 2007-09-28 2009-04-02 Panasonic Corporation 不揮発性記憶素子及び不揮発性半導体記憶装置、並びにそれらの読み出し方法及び書き込み方法
JP2009135409A (ja) * 2007-11-29 2009-06-18 Samsung Electronics Co Ltd 相変化メモリ素子の動作方法
WO2009147790A1 (ja) * 2008-06-03 2009-12-10 パナソニック株式会社 不揮発性記憶素子、不揮発性記憶装置、および不揮発性半導体装置
WO2010029634A1 (ja) * 2008-09-11 2010-03-18 株式会社 東芝 抵抗変化素子及び情報記録再生装置
WO2011111361A1 (ja) * 2010-03-08 2011-09-15 パナソニック株式会社 不揮発性記憶素子およびその製造方法

Also Published As

Publication number Publication date
JP5291270B1 (ja) 2013-09-18
US9111640B2 (en) 2015-08-18
US20140063909A1 (en) 2014-03-06
CN103180948B (zh) 2016-02-17
CN103180948A (zh) 2013-06-26
JPWO2013057912A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP4607257B2 (ja) 不揮発性記憶素子及び不揮発性記憶装置
JP5352032B2 (ja) 不揮発性記憶素子および不揮発性記憶装置
JP5313413B2 (ja) 抵抗変化素子の駆動方法、及び不揮発性記憶装置
JP5207894B2 (ja) 不揮発性記憶素子の製造方法
JP4252110B2 (ja) 不揮発性記憶装置、不揮発性記憶素子および不揮発性記憶素子アレイ
JP4253038B2 (ja) 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
JP5830655B2 (ja) 不揮発性記憶素子の駆動方法
JP5351363B1 (ja) 不揮発性記憶素子および不揮発性記憶装置
JP5395314B2 (ja) 不揮発性記憶素子および不揮発性記憶装置
JP5571833B2 (ja) 不揮発性記憶素子及び不揮発性記憶素子の製造方法
JP7080178B2 (ja) 不揮発性記憶装置、及び駆動方法
JP2011044443A (ja) 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
JP5291270B1 (ja) 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法
JP5312709B1 (ja) 抵抗変化素子の駆動方法及び不揮発性記憶装置
JP2011198909A (ja) 抵抗変化型不揮発性記憶素子
WO2012102025A1 (ja) 不揮発性記憶装置
WO2020136974A1 (ja) 抵抗変化型不揮発性記憶素子およびそれを用いた抵抗変化型不揮発性記憶装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003077.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13824811

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013513450

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842228

Country of ref document: EP

Kind code of ref document: A1