WO2012102025A1 - 不揮発性記憶装置 - Google Patents

不揮発性記憶装置 Download PDF

Info

Publication number
WO2012102025A1
WO2012102025A1 PCT/JP2012/000433 JP2012000433W WO2012102025A1 WO 2012102025 A1 WO2012102025 A1 WO 2012102025A1 JP 2012000433 W JP2012000433 W JP 2012000433W WO 2012102025 A1 WO2012102025 A1 WO 2012102025A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
nonvolatile memory
resistance value
electrode
variable load
Prior art date
Application number
PCT/JP2012/000433
Other languages
English (en)
French (fr)
Inventor
高木 剛
幸治 片山
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012102025A1 publication Critical patent/WO2012102025A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5685Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0026Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/76Array using an access device for each cell which being not a transistor and not a diode

Definitions

  • the present invention relates to a nonvolatile memory device including a nonvolatile memory element whose resistance value reversibly changes based on an electrical signal, and a method for driving the nonvolatile memory device.
  • the variable resistance nonvolatile memory element has a very simple structure in which a variable resistance layer is sandwiched between electrodes.
  • the resistance change layer reversibly transitions between a plurality of resistance states having different resistance values when a predetermined electrical pulse is applied between the electrodes.
  • Such a plurality of resistance states are used for storing numerical values. Due to the simplicity of structure and operation, a nonvolatile memory device including such a resistance change type nonvolatile memory element is expected to be capable of a high degree of miniaturization, high speed, and low power consumption. ing.
  • Materials used for the resistance change layer are roughly classified into two types.
  • One is an oxide of a transition metal (Ni, Nb, Ti, Zr, Hf, Co, Fe, Cu, Cr, etc.) as disclosed in Patent Document 1 and Non-Patent Documents 1 to 3,
  • it is an oxide whose oxygen content is insufficient from the viewpoint of stoichiometric composition (hereinafter referred to as an oxygen-deficient oxide).
  • the other is perovskite materials (Pr (1-x) Ca x MnO 3 (PCMO), LaSrMnO 3 (LSMO), GdBaCo x O y (GBCO).
  • PCMO Perovskite materials
  • LSMO LaSrMnO 3
  • GBCO GdBaCo x O y
  • FIG. 17 is a diagram showing an example of a resistance change caused by an electric pulse of an element using PCMO disclosed in Patent Document 2. From FIG. 17, the resistance value can be increased or decreased by applying an electrical pulse having a predetermined polarity, voltage, and pulse width a predetermined number of times to an element having an initial resistance value of about 500 ⁇ . It turns out that it is possible. The resistance value can take a substantially continuous value. Therefore, it is said that a multi-value storage element can be realized by selectively using three or more states having different resistance values and corresponding three or more different values to the respective resistance values. .
  • FIG. 18 is a diagram illustrating a relationship between a resistance value of a nonvolatile memory element using PCMO or the like, a voltage to be applied, and a resistance value disclosed in Patent Document 3.
  • each applied electrical pulse is once.
  • FIG. 18 also shows that the resistance value of the element changes almost continuously according to the voltage value of the applied electrical pulse.
  • a multi-value storage element can be realized.
  • Patent Document 4 discloses that the resistance characteristic of the variable resistance element is changed to at least three different resistance characteristics by changing the load resistance characteristic and / or the generated voltage condition of the load circuit.
  • a non-volatile memory device that can store at least ternary information by changing to one resistance characteristic selected from the inside is disclosed.
  • the conventional memory element has a problem that it is difficult to stably operate as a nonvolatile memory element that stores multi-value information.
  • the present invention has been made in view of such circumstances, and a main object of the present invention is to provide a nonvolatile memory device and a driving method of the nonvolatile memory device capable of realizing stable multi-value storage.
  • a nonvolatile memory device is provided between a first electrode, a second electrode, the first electrode, and the second electrode, and When a voltage pulse having a first polarity is applied between the first electrode and the second electrode, the resistance state changes from a high resistance state to a low resistance state having a resistance value lower than that of the high resistance state. When a voltage pulse having a second polarity different from the first polarity is applied between the electrode and the second electrode, the resistance state changes from a low resistance state to a high resistance state having a higher resistance value than the low resistance state.
  • a control circuit to be set.
  • multi-value storage can be realized with stable operation.
  • FIG. 1 is a block diagram showing a schematic configuration of a nonvolatile memory device according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration example of the nonvolatile memory device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing a configuration of the nonvolatile memory element included in the nonvolatile memory device according to Embodiment 1 of the present invention.
  • FIG. 4 is a circuit diagram showing a configuration of an experimental variable load resistance circuit.
  • FIG. 5A is a graph showing a change in resistance value of the variable resistance layer in the high resistance process.
  • FIG. 5B is a graph showing a change in the resistance value of the resistance change layer in the high resistance process.
  • FIG. 5A is a graph showing a change in resistance value of the variable resistance layer in the high resistance process.
  • FIG. 5B is a graph showing a change in the resistance value of the resistance change layer in the high resistance process.
  • FIG. 5C is a graph showing a change in the resistance value of the variable resistance layer in the high resistance process.
  • FIG. 5D is a graph showing a change in resistance value of the variable resistance layer in the high resistance process.
  • FIG. 6 is a graph showing the relationship between the resistance value of the resistance change layer and the load resistance value in the high resistance process.
  • FIG. 7 is a circuit diagram showing a modification of the nonvolatile memory device according to Embodiment 1 of the present invention.
  • FIG. 8 is a circuit diagram showing a configuration example of the nonvolatile memory device according to Embodiment 2 of the present invention.
  • FIG. 9 is a circuit diagram showing a modification of the nonvolatile memory device according to Embodiment 2 of the present invention.
  • FIG. 10 is a circuit diagram showing another modification of the nonvolatile memory device according to Embodiment 2 of the present invention.
  • FIG. 11 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 3 of the present invention.
  • FIG. 12 is a block diagram showing a schematic configuration of an example of the nonvolatile memory device according to Embodiment 3 of the present invention.
  • FIG. 13 is a block diagram showing a schematic configuration of another example of the nonvolatile memory device according to Embodiment 3 of the present invention.
  • FIG. 14 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 4 of the present invention.
  • FIG. 15 is a block diagram showing a schematic configuration of an example of the nonvolatile memory device according to Embodiment 4 of the present invention.
  • FIG. 16 is a block diagram showing a schematic configuration of another example of the nonvolatile memory device according to Embodiment 4 of the present invention.
  • FIG. 17 is a diagram illustrating an example of a resistance change caused by an electric pulse of an element using PCMO disclosed in Patent Document 2.
  • FIG. 18 is a diagram illustrating a relationship between a resistance value of a nonvolatile memory element using PCMO or the like and a voltage to be applied, which are disclosed in Patent Document 3.
  • a nonvolatile memory device is disposed between a first electrode, a second electrode, and the first electrode and the second electrode, and between the first electrode and the second electrode.
  • the resistance state changes from a high resistance state to a low resistance state having a resistance value lower than that of the high resistance state, and the resistance is changed between the first electrode and the second electrode.
  • a resistance change layer in which a resistance state changes from a low resistance state to a high resistance state having a resistance value higher than that of the low resistance state when a voltage pulse having a second polarity different from the first polarity is applied.
  • a nonvolatile memory element a variable load resistor that is electrically connected to the nonvolatile memory element; and a write voltage pulse that applies a voltage pulse of the second polarity to the nonvolatile memory element.
  • the field applied to the electrical circuit And a control circuit for setting the resistance value of the variable load resistance to any one of a plurality of load resistance values respectively corresponding to high resistance states in which the resistance change layers have different resistance values; Is provided.
  • the electric circuit is configured by connecting the nonvolatile memory element and the variable load resistor in series, and the control circuit shifts the resistance change layer to a high resistance state having a larger resistance value.
  • the resistance value of the variable load resistor may be set to a smaller load resistance value.
  • Such a configuration is suitable when the nonvolatile memory element and the variable load resistor are connected in series.
  • the nonvolatile memory device further includes a fixed load resistor having a fixed resistance value
  • the electric circuit includes a circuit in which the nonvolatile memory element and the variable load resistor are connected in parallel;
  • the control circuit is configured by connecting a fixed load resistor in series, and the control circuit increases the resistance value of the variable load resistor in order to change the resistance change layer to a high resistance state having a higher resistance value.
  • the load resistance value may be set.
  • Such a configuration is suitable when the nonvolatile memory element and the variable load resistor are connected in parallel.
  • the control circuit sets the variable load resistance to the first when a voltage pulse of the second polarity is applied to the resistance change layer in the low resistance state and the variable load resistance.
  • the resistance change layer By changing the resistance change layer to the first high resistance state and setting the variable load resistance to a second load resistance value smaller than the first load resistance value.
  • the resistance change layer may be changed to a second high resistance state having a resistance value larger than that of the first high resistance state.
  • the variable load resistance can be switched between at least a first load resistance value and a second load resistance value smaller than the first load resistance value.
  • the resistance change is caused by the voltage pulse of the second polarity applied to the resistance change layer and the variable load resistance.
  • the resistance change layer When the layer is in the first high resistance state, the resistance change layer is in the low resistance state, and the variable load resistance is the second load resistance value, the resistance change layer and the variable load resistance are The resistance change layer may be in a second high resistance state having a resistance value larger than that of the first high resistance state by the applied voltage pulse of the second polarity.
  • the nonvolatile memory device further applies the write voltage pulse to the electric circuit with the same amplitude when the resistance value of the variable load resistor is set to any of the plurality of load resistance values.
  • a writing circuit may be provided.
  • the effective voltage applied to the nonvolatile memory element can be changed without changing the amplitude of the write voltage pulse applied to both ends of the electric circuit.
  • precharge time such as parasitic capacitance components such as wiring is required, and it takes time to switch the effective voltage.
  • the amplitude of the write voltage pulse is changed. Since it is not changed, the effective voltage can be switched at high speed.
  • the nonvolatile memory device may set only one low resistance state of the resistance change layer when the voltage pulse having the first polarity is applied to the resistance change layer and the variable load resistor. Preferably, it is configured.
  • variable resistance layer is a stack of a first transition metal oxide composed of a first transition metal and a second transition metal oxide composed of a second transition metal. It is preferable that the oxygen transition of the first transition metal oxide is larger than the oxygen transition of the second transition metal oxide.
  • the resistance value of the second transition metal oxide is larger than the resistance value of the first transition metal oxide.
  • the first transition metal and the second transition metal may be the same metal.
  • the first transition metal oxide and the second transition metal oxide may both be made of tantalum oxide.
  • the first transition metal and the second transition metal are different metals, and the standard electrode potential of the second transition metal is the standard electrode potential of the first transition metal. According to such a lower configuration, a stable resistance change phenomenon can be obtained in the nonvolatile memory element.
  • a nonvolatile memory device includes a plurality of first wirings and a plurality of second wirings formed on a semiconductor substrate and arranged in a direction intersecting each other, the plurality of first wirings, and the plurality of the plurality of first wirings.
  • a plurality of memory cells respectively provided corresponding to the intersections of the second wirings, and a memory cell array electrically connected to one selected memory cell selected from the plurality of memory cells
  • a control circuit for setting a resistance value of the variable load resistance circuit to any one of a plurality of load resistance values, and the plurality of memory cells.
  • Each of the non-volatile memory elements is configured by connecting a selection element and a non-volatile memory element in series, and each of the non-volatile memory elements includes a first electrode, a second electrode, and the first power source.
  • the voltage pulse having the first polarity is applied between the first electrode and the second electrode, the resistance state is changed from the high resistance state to the high resistance state.
  • the resistance value is changed to a low resistance state and a voltage pulse having a second polarity different from the first polarity is applied between the first electrode and the second electrode, the resistance state is changed from the low resistance state.
  • the resistance value of the variable load resistance circuit is selected from among a plurality of load resistance values respectively corresponding to high resistance states in which the resistance value of the resistance change layer is different from each other.
  • the electric circuit is configured by connecting the selected memory cell and the variable load resistor circuit in series, and the control circuit increases the resistance value of the resistance change layer included in the selected memory cell.
  • the resistance value of the variable load resistance circuit may be set to a smaller load resistance value.
  • the nonvolatile memory device further includes a fixed load resistor having a fixed resistance value
  • the electric circuit is a circuit in which the selected memory cell and the variable load resistor circuit are electrically connected in parallel. And the fixed load resistance are connected in series, and the control circuit changes the resistance change layer included in the selected memory cell to a high resistance state having a larger resistance value.
  • the resistance value of the variable load resistor may be set to a larger load resistance value.
  • each of the selection elements may be a transistor.
  • each of the selection elements may be a bidirectional diode.
  • a driving method of a nonvolatile memory device is (CL.18) a driving method of a nonvolatile memory device, wherein the nonvolatile memory device includes a first electrode, a second electrode, When the voltage pulse having the first polarity is applied between the first electrode and the second electrode, the resistance state is changed from the high resistance state to the high resistance state. The resistance state is low when a voltage pulse having a second polarity different from the first polarity is applied between the first electrode and the second electrode, and the resistance state is lower than the state.
  • the electric circuit is configured by connecting the nonvolatile memory element and the variable load resistor in series.
  • the resistance change layer is connected to the variable load resistor. As the set load resistance value is smaller, the state may be changed to a high resistance state having a larger resistance value.
  • the nonvolatile memory device further includes a fixed load resistor having a fixed resistance value
  • the electric circuit includes the nonvolatile memory element and the variable load resistor connected in parallel.
  • the resistance change layer has a larger resistance value as the load resistance value set in the variable load resistance is larger. It may change to a high resistance state with
  • FIG. 1 is a block diagram showing a schematic configuration of a nonvolatile memory device according to Embodiment 1 of the present invention.
  • the nonvolatile memory device 100 according to the first embodiment includes a variable resistance nonvolatile memory element 101, a variable load resistor 102, and the nonvolatile memory element 101 and the variable load resistor 102.
  • a power supply 103 for applying a voltage pulse is provided.
  • the nonvolatile memory element 101 and the variable load resistor 102 are connected in series to form a two-terminal electric circuit 108.
  • the power supply 103 applies a voltage pulse (hereinafter also referred to as a write voltage pulse) to both ends of the electric circuit 108 to generate a voltage pulse obtained by dividing the write voltage pulse with respect to the nonvolatile memory element 101 and the variable load resistor 102. Apply each.
  • FIG. 2 is a circuit diagram showing a configuration example of the nonvolatile memory device 100 according to the first embodiment.
  • the variable load resistor 102 includes resistors 102A 1 , 102A 2 , 102A 3 and switching elements 102B 1 , 102B 2 , 102B 3, and one of the resistors 102A 1 , 102A 2 , 102A 3
  • three circuits, each of which is connected in series with a corresponding one of the switching elements 102B 1 , 102B 2 , 102B 3 are connected in parallel.
  • the resistance value of the variable load resistor 102 changes depending on the on / off state of the switching elements 102B 1 , 102B 2 , 102B 3 .
  • the resistance value of the variable load resistor 102 changes depending on the on / off state of the switching elements 102B 1 , 102B 2 , 102B 3 .
  • three types of resistance values of the variable load resistor 102 can be set.
  • the voltage pulse output from the power source 103 is applied to the nonvolatile memory element 101 and the variable load resistor 102.
  • the voltage applied to the nonvolatile memory element 101 is determined by a voltage division determined by a resistance ratio between the resistance value of the variable load resistor 102 and the resistance value of the nonvolatile memory element 101, and the resistance value of the variable load resistor 102. Will change in response to.
  • FIG. 3 is a cross-sectional view showing the configuration of the nonvolatile memory element 101 included in the nonvolatile memory device 100 according to Embodiment 1 of the present invention.
  • the nonvolatile memory element 101 includes a first electrode 112 formed on the substrate 120, a resistance change layer 113 formed on the first electrode 112, and the resistance change layer 113. And a second electrode 111 formed on the substrate.
  • the first electrode 112 and the second electrode 111 are electrically connected to the resistance change layer 113.
  • the voltage pulse output from the power source 103 is applied to the resistance change layer 113 via the first electrode 112 and the second electrode 111.
  • the substrate 120 is made of, for example, a silicon substrate.
  • the first electrode 112 and the second electrode 111 are, for example, one of Au (gold), Pt (platinum), Ir (iridium), Cu (copper), TiN (titanium nitride), and TaN (tantalum nitride). Consists of one or more materials.
  • the resistance change layer 113 includes an oxygen-deficient transition metal oxide.
  • An oxygen-deficient transition metal oxide is an oxide having a lower oxygen content (atomic ratio: ratio of the number of oxygen atoms to the total number of atoms) than a stoichiometric oxide. In other words, it can be said that the oxygen deficiency is larger than that of the stoichiometric oxide.
  • the degree of oxygen deficiency refers to the proportion of oxygen that is deficient with respect to the amount of oxygen constituting the oxide of the stoichiometric composition in each transition metal.
  • the transition metal is Ta (tantalum)
  • the stoichiometric oxide composition is Ta 2 O 5 and the ratio of oxygen to the total number of atoms (O / (Ta + O)) is 71.4. %. Therefore, in the oxygen-deficient Ta oxide, the oxygen content is larger than 0 and smaller than 71.4%.
  • the resistance change layer 113 is formed by laminating a first tantalum oxide layer 113a and a second tantalum oxide layer 113b.
  • the oxygen content of the second tantalum oxide layer 113b is higher than the oxygen content of the first tantalum oxide layer 113a.
  • x is 0.8 or more and 1.9 or less
  • y is x It is confirmed that the resistance value of the resistance change layer 113 is stably changed at high speed when the value is larger than the value of. Therefore, x and y are preferably within the above range.
  • the thickness of the resistance change layer 113 is 1 ⁇ m or less, a change in the resistance value is recognized, but it is preferably 200 nm or less. This is because, when the patterning process is used, it is easy to process, and the voltage value of the voltage pulse necessary for changing the resistance value of the resistance change layer 113 can be lowered. On the other hand, from the viewpoint of more surely avoiding breakdown (dielectric breakdown) during voltage pulse application, the thickness of the resistance change layer 113 is preferably at least 5 nm.
  • the thickness of the second tantalum oxide layer 113b is preferably about 1 nm or more and about 8 nm or less because if the thickness is too large, the initial resistance value becomes high, and if the thickness is too small, a stable resistance change cannot be obtained.
  • the metal constituting the resistance change layer 113 may be a transition metal other than tantalum.
  • the transition metal tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr), niobium (Nb), tungsten (W), or the like can be used. Since transition metals can take a plurality of oxidation states, different resistance states can be realized by oxidation-reduction reactions.
  • the composition of the first hafnium oxide layer 113a is HfO x
  • x is 0.9 or more and 1.6 or less
  • the composition of the second hafnium oxide layer 113b is It has been confirmed that the resistance value of the resistance change layer 113 is stably changed at high speed when y is larger than the value x when HfO y is used.
  • the thickness of the second hafnium oxide layer 113b is preferably 3 to 4 nm.
  • the composition of the first zirconium oxide layer 113a is ZrO x
  • x is 0.9 or more and 1.4 or less
  • the composition of the second zirconium oxide layer 113b is It has been confirmed that the resistance value of the resistance change layer 113 is stably changed at high speed when y is larger than the value of x when ZrO y is used.
  • the thickness of the second zirconium oxide layer 113b is preferably 1 to 5 nm.
  • the first transition metal constituting the first transition metal oxide layer 113a and the second transition metal constituting the second transition metal oxide layer 113b may be used for the first transition metal constituting the first transition metal oxide layer 113a and the second transition metal constituting the second transition metal oxide layer 113b.
  • the second transition metal oxide layer 113b has a lower oxygen deficiency, that is, higher resistance than the first transition metal oxide layer 113a.
  • the standard electrode potential of the second transition metal is preferably smaller than the standard electrode potential of the first transition metal. This is because the resistance change phenomenon is considered to occur due to an oxidation-reduction reaction occurring in a microfilament formed in the second transition metal oxide layer 113b having a high resistance, resulting in a change in resistance value.
  • stable resistance change operation can be obtained by using oxygen-deficient tantalum oxide for the first transition metal oxide layer 113a and TiO 2 for the second transition metal oxide layer 113b.
  • the standard electrode potential represents a characteristic that the greater the value, the less likely it is to oxidize.
  • the second electrode 111 is made of a material having a higher standard electrode potential than the first metal 112 and the transition metal constituting the second transition metal oxide layer 113b, such as platinum (Pt) and iridium (Ir). Constitute. With such a configuration, a redox reaction is selectively generated in the second transition metal oxide layer 113b in the vicinity of the interface between the second electrode 111 and the second transition metal oxide layer 113b, and stable. Resistance change phenomenon is obtained.
  • the first electrode 112 is formed on the substrate 120 by depositing tantalum nitride (TaN) having a thickness of 50 nm by sputtering. Thereafter, a tantalum oxide layer is formed on the first electrode 112 by a so-called reactive sputtering method in which a Ta target is sputtered in argon gas and oxygen gas.
  • the oxygen content in the tantalum oxide layer can be easily adjusted by changing the flow ratio of oxygen gas to argon gas.
  • the substrate temperature can be set to room temperature without any particular heating.
  • the outermost surface of the tantalum oxide layer formed as described above is oxidized to modify its surface.
  • a region (second region) having a higher oxygen content than the region (first region) not oxidized in the tantalum oxide layer is formed on the surface of the tantalum oxide layer.
  • the first region and the second region correspond to the first tantalum oxide layer 113a and the second tantalum oxide layer 113b, respectively, and the first tantalum oxide layer 113a and the second tantalum oxide formed in this way.
  • the resistance change layer 113 is configured by the layer 113b.
  • the second electrode 111 is formed by depositing iridium (Ir) having a thickness of 50 nm on the variable resistance layer 113 formed as described above by a sputtering method.
  • Ir iridium
  • the size and shape of the first electrode 112, the second electrode 111, and the resistance change layer 113 can be adjusted by a mask and lithography.
  • the size of the second electrode 111 and the resistance change layer 113 is 0.5 ⁇ m ⁇ 0.5 ⁇ m (area 0.25 ⁇ m 2 ), and the first electrode 112 and the resistance change layer 113 are in contact with each other.
  • the size was also 0.5 ⁇ m ⁇ 0.5 ⁇ m (area 0.25 ⁇ m 2 ).
  • the value of x is in the range of 0.8 to 1.9 (0.8 ⁇ x ⁇ 1.9), and the value of y is larger than the value of x (x ⁇ y).
  • a stable resistance change can be realized similarly to the resistance change characteristic in the present embodiment.
  • a voltage pulse having the first polarity is applied to the nonvolatile memory element 101 and the variable load resistor 102 using the power supply 103.
  • the voltage pulse of the first polarity is a voltage pulse that decreases the resistance value of the resistance change layer 113 when applied to the nonvolatile memory element 101, and more specifically, is shown in FIG.
  • the voltage pulse has a polarity with which the second electrode 111 becomes a negative voltage with respect to the first electrode 112 of the nonvolatile memory element 101.
  • a negative voltage pulse is referred to as a negative voltage pulse.
  • the resistance value of the resistance change layer 113 decreases, and the resistance change layer 113 changes from a high resistance state to a low resistance state having a resistance value lower than that of the high resistance state.
  • this is referred to as a low resistance process.
  • a voltage pulse having a second polarity different from the first polarity is applied to the nonvolatile memory element 101 and the variable load resistor 102 using the power supply 103.
  • the voltage pulse of the second polarity is a voltage pulse that increases the resistance value of the resistance change layer 113 when applied to the nonvolatile memory element 101, and more specifically is shown in FIG.
  • This is a voltage pulse with a polarity at which the second electrode 111 becomes a positive voltage with reference to the first electrode 112 of the nonvolatile memory element 101.
  • a positive voltage pulse is referred to as a positive voltage pulse.
  • the resistance value of the resistance change layer 113 increases, and the resistance change layer 113 changes from a low resistance state to a high resistance state having a higher resistance value than the low resistance state.
  • this is referred to as a high resistance process.
  • the non-volatile memory element 101 operates by repeating these low resistance process and high resistance process.
  • the nonvolatile memory device 100 switches (on / off) the switching elements 102B 1 , 102B 2 , and 102B 3 by a control circuit not shown in FIG.
  • the resistance value of the variable load resistor 102 is changed depending on whether it is turned on.
  • a voltage value (divided voltage) determined by a ratio between the resistance value connected to the switching element that is turned on and the resistance value of the nonvolatile memory element 101 is applied to the resistance change layer 113.
  • the nonvolatile memory element 101 has a different on / off state corresponding to the on / off state of the switching elements 102B 1 , 102B 2 , 102B 3 corresponding to the load resistance value set by the control circuit.
  • a voltage having a voltage value is applied.
  • the high resistance state of the resistance change layer 113 can be set to a plurality of resistance values.
  • the switching element is turned on / off in FIG. 2 by any one of the three switching elements 102B 1 , 102B 2 , 102B 3 of the variable load resistor 102. May be turned on, or two or all three may be turned on.
  • the resistance value of the variable load resistor 102 can be set in multiple stages.
  • the high resistance state of the resistance change layer 113 of the nonvolatile memory element 101 can be set in multiple stages.
  • the non-volatile memory device 100 realizes multilevel storage of three or more values by associating information with each resistance value of the resistance change layer 113 in the high resistance state. That is, for example, when the resistance change layer 113 is in the low resistance state, it is “0”, when it is at the resistance value in the first high resistance state, it is “1”, and when it is at the resistance value in the second high resistance state Multi-value storage is realized by associating “2” with “3” and the case where the resistance value in the third high resistance state is associated with “3”.
  • the resistance change layer 113 is in a low resistance state or a high resistance state, and in the case of a high resistance state, the resistance value of a plurality of resistance values in a high resistance state is for reading a predetermined value
  • This voltage pulse is applied to the nonvolatile memory element 101 and the variable load resistor 102, and at this time, it is determined according to the current value of the current (read current) flowing through the resistance change layer 113.
  • the resistance change layer 113 When the resistance change layer 113 is in the low resistance state, even if a negative voltage pulse is applied to the nonvolatile memory element 101 and the variable load resistor 102, the resistance change layer 113 remains in the low resistance state. Similarly, when the resistance change layer 113 is in a high resistance state, even if a positive voltage pulse is applied to the nonvolatile memory element 101 and the variable load resistor 102, the resistance change layer 113 remains in a high resistance state. It does not change.
  • the low resistance state of the resistance change layer 113 is set to a plurality of resistance values by changing the value of the variable load resistor 102 in the same manner as in the high resistance process described above. Is also possible. However, if the low resistance state is set to a plurality of resistance values in this way, the operation may become unstable.
  • the high resistance state is set to a plurality of resistance values in the high resistance process, and the low resistance state is set to one resistance value in the low resistance process. It is preferable to set to.
  • variable load resistance circuit 104 shown in FIG. 4 was prepared as a circuit corresponding to the variable load resistance 102 in the first embodiment.
  • the variable load resistor circuit 104 is configured by connecting resistors R1 and R2 and switching elements S1 and S2 connected in series with the resistors R1 and R2 in parallel, respectively.
  • the resistance value of the resistor R1 is fixed to 1.1 k ⁇ .
  • the resistor R2 four types of resistance values of 50 ⁇ , 533 ⁇ , 1.1 k ⁇ , and 1.5 k ⁇ are used. These four types of resistance values represent examples of load resistance values set in the variable load resistance 102 by the control circuit.
  • the switching element S1 is turned on and the switching element S2 is turned off. At this time, a voltage pulse for LR conversion of ⁇ 1.5 V is applied to the resistor R1 and the nonvolatile memory element 101 from a power supply circuit (not shown).
  • the switching element S2 is turned on and the switching element S1 is turned off.
  • a + 2.0V HR voltage pulse is applied to the resistor R2 and the nonvolatile memory element 101 from a power supply circuit (not shown).
  • a voltage pulse for HR having an amplitude of +2.0 V may be applied to the resistor R2 and the nonvolatile memory element 101 regardless of the resistance value used for the resistor R2.
  • FIG. 5 and FIG. 6 show the results of performing the high resistance process using the variable load resistance circuit 104 and the nonvolatile memory element 101 configured as described above.
  • 5A to 5D are graphs showing changes in the resistance value of the resistance change layer 113 when the resistance value of the resistor R2 is 50 ⁇ , 533 ⁇ , 1.1 k ⁇ , and 1.5 k ⁇ , respectively.
  • the vertical axis indicates the resistance value of the resistance change layer 113 when the resistance is increased
  • the horizontal axis indicates the number of times that the voltage pulse for increasing the resistance is applied.
  • FIG. 6 is a graph created based on FIGS. 5A to 5D.
  • the resistance increasing process was performed when the resistance value of the resistor R2 was 50 ⁇ , 533 ⁇ , 1.1 k ⁇ , and 1.5 k ⁇ .
  • the maximum and minimum resistance values of the resistance change layer 113 are plotted.
  • the resistance value of the resistance change layer 113 increases as the resistance value of the resistor R2 decreases, and the resistance value of the resistance change layer 113 decreases as the resistance value of the resistor R2 increases. ing.
  • the resistance change layer of the nonvolatile memory element 101 is a resistance belonging to a high resistance state that can be reached by application of a voltage pulse for HR.
  • the resistance value is larger.
  • the resistance change layer is set to any one of a plurality of high resistance states having different resistance values.
  • a positive voltage having a larger amplitude is applied to the second electrode 111 with the first electrode 112 as a reference, a larger amount of oxygen ions gathers in the second tantalum oxide layer 113b and the resistance value is increased. This is considered to be larger.
  • variable load resistance circuit 104 shown in FIG. 4 corresponds to the variable load resistance 102 in the first embodiment. Therefore, the plurality of resistance values of the resistor R2 set in the variable load resistance circuit 104 of the present experimental example is an example of the plurality of load resistance values set in the variable load resistor 102 shown in FIGS. Represents. As a result, the following can be said.
  • the write voltage applied to both ends of the electric circuit 108 is not changed, that is, the amplitude of the voltage pulse applied to both ends of the electric circuit 108 is made constant, and the resistance value set in the variable load resistor 102 is By changing, the effective voltage applied to the nonvolatile memory element 101 can be changed.
  • precharge time such as parasitic capacitance components such as wiring is required, and it takes time to switch the effective voltage applied to the nonvolatile memory element 101. Then, since the voltage of the write voltage pulse is not changed, the effective voltage applied to the nonvolatile memory element 101 can be switched at high speed.
  • tantalum oxide is used, but other transition metal oxides that cause resistance change by the above-described oxidation-reduction reaction can similarly take a plurality of high resistance states.
  • a stacked structure of tantalum oxides having different oxygen contents was used.
  • the transition metal oxide layer 113b may be formed on the side to which a positive pulse is applied.
  • FIG. 7 is a circuit diagram showing a modification of the nonvolatile memory device according to Embodiment 1 of the present invention.
  • the variable load resistor 102 is composed of a MOS transistor.
  • the value of the variable load resistor 102 is controlled by controlling the value of the gate voltage Vg of the MOS transistor constituting the variable load resistor 102.
  • the resistance value of the variable load resistor 102 is three types.
  • the resistance value of the variable load resistor 102 is set by setting the gate voltage Vg to one type, thereby setting the low resistance state of the variable resistance layer.
  • the nonvolatile memory device includes a nonvolatile memory element and a variable load resistor connected in parallel, further includes a fixed load resistor, and the nonvolatile memory element and the variable load resistor are parallel.
  • a write voltage pulse is applied to a two-terminal electric circuit in which a fixed load resistor is connected in series to a circuit connected to the circuit will be described.
  • FIG. 8 is a circuit diagram showing a configuration example of the nonvolatile memory device according to Embodiment 2 of the present invention.
  • the nonvolatile memory device 200 includes a variable resistance nonvolatile memory element 201, a variable load resistor 202, a fixed load resistor 204, and these nonvolatile memory elements 201, variable.
  • a power source 203 for applying a voltage pulse to the load resistor 202 and the fixed load resistor 204 is provided.
  • the nonvolatile memory element 201 and the variable load resistor 202 are connected in parallel, and a circuit in which the nonvolatile memory element 201 and the variable load resistor 202 are connected in parallel and a fixed load resistor 204 are connected in series.
  • a two-terminal electric circuit 208 is formed.
  • variable load resistor 202 is switched to three resistors 202A 1 , 202A 2 , 202A 3 and these resistors 202A 1 , 202A 2 , 202A 3.
  • a series connection by the elements 202B 1 , 202B 2 , 202B 3 is configured to be connected in parallel to each other.
  • the value of the variable load resistor 202 changes by turning on / off the switching elements 202B 1 , 202B 2 , 202B 3 .
  • three types of values of the variable load resistor 202 can be set by turning on any one of the three switching elements 202B 1 , 202B 2 , 202B 3 .
  • the write voltage pulse output from the power source 203 is applied to an electric circuit 208 including a nonvolatile memory element 201, a variable load resistor 202, and a fixed load resistor 204.
  • the variable load resistor 202 serves as a detour path for current from the nonvolatile memory element 201. Therefore, the amplitude of the voltage pulse applied to the nonvolatile memory element 201 varies depending on the resistance value of the variable load resistor 202.
  • the configuration of the nonvolatile memory element 201 is the same as that of the nonvolatile memory element 101 in Embodiment 1, and thus the description thereof is omitted.
  • the switching elements 202B 1 , 202B 2 , and the switching elements 202B 1 , 202B 2 It performs the on / off 202B 3, thereby varying the value of the variable load resistor 202. Therefore, in the high resistance process, a plurality of voltage pulses having different values are applied to the resistance change layer of the nonvolatile memory element 201 in accordance with the value of the variable load resistor 202. As a result, the high resistance state of the variable resistance layer can be set to a plurality of resistance values, and multi-value storage can be realized by associating each resistance value with each information.
  • variable load resistor 202 when the resistance value of the variable load resistor 202 is small, the bypass current to the variable load resistor 202 increases. The current flowing to the nonvolatile memory element 201 becomes small. As a result, the voltage drop at the nonvolatile memory element 201 is reduced, and the voltage drop at the fixed load resistor 204 connected in series to the nonvolatile memory element 201 is increased. Thereby, the effective voltage applied to the nonvolatile memory element 201 is reduced. As a result, the resistance change layer of the nonvolatile memory element 201 changes to a high resistance state having a relatively low resistance value among the plurality of high resistance states.
  • the resistance change layer of the nonvolatile memory element 201 changes to a high resistance state having a relatively high resistance value among a plurality of high resistance states. Therefore, as the resistance value of the variable load resistor 202 is larger, the resistance change layer of the nonvolatile memory element 201 has a higher resistance value belonging to the high resistance state.
  • FIG. 9 is a circuit diagram showing a modification of the nonvolatile memory device according to Embodiment 2 of the present invention.
  • the variable load resistor 202 is formed of a MOS transistor.
  • the selection transistor 205 is connected in series with the nonvolatile memory element 201.
  • the selection transistor 205 corresponds to a selection transistor provided corresponding to each nonvolatile memory element 201 when a plurality of nonvolatile memory elements 201 are arranged to form a memory cell array.
  • the resistance value of the variable load resistor 202 is controlled by controlling the value of the gate voltage Vg of the MOS transistor constituting the variable load resistor 202.
  • the high resistance state of the variable load resistor 202 is changed to a plurality of resistances by setting a plurality of types of gate voltages Vg to be applied in the high resistance process. Set to value. By associating each of these resistance values with each piece of information, multivalue storage can be realized.
  • FIG. 10 is a circuit diagram showing another modification of the nonvolatile memory device according to Embodiment 2 of the present invention.
  • the fixed load resistor 204 in the modification shown in FIG. 9 is configured by a load transistor.
  • multivalue storage can be realized by operating in the same manner as in the modification shown in FIG. 9 while appropriately controlling the load transistor as the fixed load resistor 204.
  • a non-volatile memory device that realizes multi-value memory using a plurality of high resistance states in which resistance values of the non-volatile memory elements are different from each other.
  • a plurality of 1T1R type memory cells each including one transistor and one nonvolatile memory element are arranged in the memory cell array. The configuration and operation of this nonvolatile memory device will be described below.
  • FIG. 11 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 3 of the present invention.
  • a 1T1R type nonvolatile memory device 300 includes a memory main body 301 on a substrate.
  • the memory main body 301 includes a memory cell array 302, a row selection circuit / driver 303, and a column.
  • 306 and a data input / output circuit 307 that performs input / output processing of input / output data via a terminal DQ.
  • the memory cell array 302 will be described by taking an example of 3 rows ⁇ 3 columns, but other configurations of the memory cell array, such as 4 rows ⁇ 4 columns, 16 There may be a case of rows ⁇ 16 columns, M rows ⁇ N columns (M and N are natural numbers, respectively), and the like.
  • the nonvolatile memory device 300 includes a cell plate power supply (VCP power supply) 308, an address input circuit 309 that receives an address signal input from the outside, and a control signal input from the outside.
  • a control circuit 310 for controlling the operation and a variable load resistance circuit 311 connected to the column selection circuit 304 are further provided.
  • the cell plate power supply (VCP power supply) 308 may be a fixed voltage power supply or a variable voltage power supply.
  • the memory cell array 302 includes a plurality of word lines WL0, WL1, WL2,... And a plurality of bit lines BL0, BL1, BL2,.
  • a plurality of memory cells M111, M112, M113, M121, M122, M123, M131, M132, M133 (corresponding to the intersections of the lines WL0, WL1, WL2,... And the bit lines BL0, BL1, BL2,.
  • “represented as“ memory cells M111, M112,... ”” Are provided.
  • Each of the memory cells M111, M112,... Is a plurality of transistors T11, T12, T13, T21, T22, T23, T31, T32, T33,... (Hereinafter referred to as “transistors T11, T12,...”).
  • transistors T11, T12,...” One and a plurality of nonvolatile memory elements R11, R12, R13, R21, R22, R23, R31, R32, R33,... (Hereinafter referred to as “nonvolatile memory elements”).
  • R11, R12,...) Are connected in series.
  • the transistors T11, T12,... are examples of selection elements, and the nonvolatile memory elements R11, R12,... Correspond to the nonvolatile memory element 101 of the first embodiment.
  • the plurality of word lines WL0, WL1, WL2,... And the plurality of bit lines BL0, BL1, BL2,... are examples of the first wiring and the second wiring.
  • the memory cell array 302 includes a plurality of plate lines PL0, PL1, PL2,... Arranged in parallel to the word lines WL0, WL1, WL2,.
  • the drains of the transistors T11, T12, T13,... are connected to the bit line BL0, the drains of the transistors T21, T22, T23, ... are connected to the bit line BL1, and the drains of the transistors T31, T32, T33,. Has been.
  • the gates of the transistors T11, T21, T31,... are on the word line WL0
  • the gates of the transistors T12, T22, T32, ... are on the word line WL1
  • the gates of the transistors T13, T23, T33,. Each is connected.
  • the sources of the transistors T11, T12,... are connected to the memory cells M111, M112,.
  • nonvolatile memory elements R11, R12, R13,... are on the plate line PL0
  • the nonvolatile memory elements R21, R22, R23,... are on the plate line PL1
  • the address input circuit 309 receives an address signal from an external circuit (not shown), outputs a row address signal to the row selection circuit / driver 303 based on the address signal, and outputs a column address signal to the column selection circuit 304.
  • the address signal is a signal indicating the address of a specific memory cell selected from among the plurality of memory cells M111, M112,.
  • the row address signal is a signal indicating a row address among the addresses indicated by the address signal
  • the column address signal is a signal indicating a column address among the addresses indicated by the address signal.
  • the control circuit 310 In the information writing process (low resistance process and high resistance process), the control circuit 310 outputs a write signal for instructing application of a write voltage according to the input data Din input to the data input / output circuit 307. Output to the writing circuit 305. On the other hand, in the information reading process, the control circuit 310 outputs a read signal instructing application of a read voltage to the column selection circuit 304.
  • the row selection circuit / driver 303 receives the row address signal output from the address input circuit 309, selects one of the plurality of word lines WL0, WL1, WL2,... According to the row address signal, A predetermined voltage is applied to the selected word line.
  • the column selection circuit 304 receives the column address signal output from the address input circuit 309, selects one of the plurality of bit lines BL0, BL1, BL2,... According to the column address signal, A write voltage or a read voltage is applied to the selected bit line.
  • the write circuit 305 When the write circuit 305 receives the write signal output from the control circuit 310, the write circuit 305 outputs a signal instructing the column selection circuit 304 to apply the write voltage to the selected bit line.
  • a write voltage for reducing the resistance is applied to the selected memory cell without passing through the variable load resistance circuit 311.
  • a write voltage for increasing the resistance is applied to the selected memory cell via the variable load resistance circuit 311.
  • the variable load resistance circuit 311 is electrically connected to a memory cell selected by the row selection circuit / driver 303 and the column selection circuit 304 among the memory cells M111, M112,.
  • the variable load resistance circuit 311 corresponds to the variable load resistance 102 in the first embodiment or the variable load resistance 202 in the second embodiment, and the resistance value as the high resistance state is a predetermined plurality of values in the high resistance process. Is set to take.
  • the variable load resistance circuit 311 receives a signal indicating which load resistance value is to be set according to which high resistance state the resistance is increased from the control circuit 310 during high resistance writing. As a result, the high resistance state of the variable resistance layer included in the selected memory cell can be set to a plurality of resistance values.
  • the sense amplifier 306 detects the amount of current flowing through the selected bit line to be read and discriminates stored data.
  • the high resistance state of each of the memory cells M111, M112,... Is set to a plurality of resistance values, and the respective resistance values are associated with the respective data. For this reason, the sense amplifier 306 determines whether the resistance change layer of the selected memory cell is in a low resistance state or a high resistance state. It is determined whether or not the data is stored in three or more values according to the resistance value.
  • the output data DO obtained as a result is output to an external circuit via the data input / output circuit 307.
  • the nonvolatile memory device 300 realizes multi-value storage of three or more values.
  • FIG. 12 is a block diagram showing a schematic configuration in which the variable load resistance circuit 311 is specifically applied to the nonvolatile memory device according to Embodiment 3 of the present invention.
  • the variable load resistor 102 (see FIG. 2) in the first embodiment is configured by three resistors and switching elements.
  • a load resistance circuit 311 is provided. In the case of this configuration, these switching elements are turned on / off in the high resistance process, and thereby the resistance value of the variable load resistance circuit 311 is changed.
  • the variable load resistance circuit 311 constitutes an electric circuit by being connected in series with a memory cell selected by a row selection circuit / driver 303 and a column selection circuit 304 from among a plurality of memory cells included in the memory cell array 302. .
  • the write circuit 305 applies a write voltage pulse for increasing resistance to the electric circuit together with the VCP power supply 308.
  • the resistance value of the resistance change layer of the selected memory cell is changed to a resistance value corresponding to the load resistance value currently set in the variable load resistance circuit 311 among a plurality of different resistance values belonging to the high resistance state.
  • Multi-value storage is realized by setting.
  • FIG. 13 is a block diagram showing another schematic configuration of the nonvolatile memory device according to Embodiment 3 of the present invention.
  • the VCP power supply 308 and the column selection circuit 304 and the write circuit 305 the same as the variable load resistor 202 and the fixed load resistor 204 (see FIG. 9) in the modification of the second embodiment.
  • a variable load resistor circuit 311 and a fixed load resistor 312 configured by MOS transistors are provided.
  • the gate voltage Vg of the variable load resistance circuit 311 is set to a predetermined value in accordance with the value of data to be written, thereby changing the resistance value of the variable load resistance circuit 311.
  • the variable load resistance circuit 311 is connected in parallel to a memory cell selected by the row selection circuit / driver 303 and the column selection circuit 304 from among a plurality of memory cells included in the memory cell array 302, and is further connected in series with the fixed load resistance 312.
  • An electric circuit is configured by being connected to.
  • the write circuit 305 applies a write voltage pulse for increasing resistance to the electric circuit together with the VCP power supply 308.
  • a circuit in which the writing circuit 305 and the VCP power supply 308 are combined is an example of the writing circuit of the present invention.
  • the resistance value of the resistance change layer of the selected memory cell is set to a resistance value corresponding to the load resistance value currently set in the variable load resistance circuit 311 among a plurality of different resistance values belonging to the high resistance state. Multivalue storage is realized.
  • the fourth embodiment is a non-volatile memory device that realizes multi-value storage using a plurality of high resistance states having different resistance values of the non-volatile memory elements, similarly to the non-volatile memory device described in the first or second embodiment.
  • FIG. 14 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 4 of the present invention.
  • the nonvolatile memory device 400 according to the fourth embodiment includes a memory main body 401 on a semiconductor substrate.
  • the memory main body 401 includes a memory cell array 402, a row selection circuit / The driver 403, the column selection circuit / driver 404, the write circuit 405 for writing information, and the amount of current flowing through the selected bit line are detected, and any of the data of three or more values is stored.
  • a data input / output circuit 407 for performing input / output processing of input / output data via a terminal DQ.
  • FIG. 14 illustrates an example in which the memory cell array 302 has 3 rows ⁇ 3 columns.
  • other memory cell array configurations for example, 4 rows ⁇ 3 columns.
  • the nonvolatile memory device 400 includes an address input circuit 408 that receives an address signal input from the outside, a control circuit 409 that controls the operation of the memory body 401 based on a control signal input from the outside, And a variable load resistance circuit 410 connected to the selection circuit / driver 404.
  • the memory cell array 402 includes a plurality of word lines WL0, WL1, WL2,... Formed in parallel with each other on a semiconductor substrate, and the word lines WL0, WL1, WL2,.
  • a plurality of memory cells M211, M212, M213, M221, M222, M223 provided in a matrix corresponding to the intersections of these word lines WL0, WL1, WL2,... And bit lines BL0, BL1, BL2,. , M231, M232, M123,... (Hereinafter referred to as “memory cells M211, M212,...”) are provided.
  • the memory cells M211, M212,... include a nonvolatile memory element corresponding to the nonvolatile memory element 101 of the first embodiment, a MIM (Metal-Insulator-Metal) diode, or an MSM (Metal-Semiconductor-Metal) diode.
  • a bidirectional current control element constituted by, for example.
  • the bidirectional current control element has a non-linear current-voltage characteristic (diode characteristic) of the current control element. Only when a write voltage pulse is applied between them, it functions as a selection element for passing a current through the memory cell.
  • the address input circuit 408 receives an address signal from an external circuit (not shown), outputs a row address signal to the row selection circuit / driver 403 based on the address signal, and outputs a column address signal to the column selection circuit / driver 404. Output to.
  • the address signal is a signal indicating the address of a specific memory cell selected from among the plurality of memory cells M211, M212,.
  • the row address signal is a signal indicating a row address among the addresses indicated by the address signal, and the column address signal is also a signal indicating a column address.
  • the control circuit 409 writes a write signal instructing application of a write voltage according to the input data Din input to the data input / output circuit 407 in the information writing process (low resistance process and high resistance process). Output to the circuit 405. On the other hand, in the information reading process, the control circuit 409 outputs a read signal instructing a read operation to the column selection circuit / driver 404.
  • the row selection circuit / driver 403 receives the row address signal output from the address input circuit 408, and selects any of the plurality of word lines WL0, WL1, WL2,. A predetermined voltage is applied to the selected word line.
  • the column selection circuit / driver 404 receives the column address signal output from the address input circuit 408, and selects one of the plurality of bit lines BL0, BL1, BL2,... According to the column address signal. Then, a write voltage or a read voltage is applied to the selected bit line.
  • the write circuit 405 When the write circuit 405 receives the write signal output from the control circuit 409, the write circuit 405 outputs a signal for instructing the row selection circuit / driver 403 to apply a voltage to the selected word line, and the column selection circuit / A signal for instructing the driver 404 to apply a write voltage to the selected bit line is output.
  • a write voltage for reducing the resistance is applied to the selected memory cell without passing through the variable load resistance circuit 410.
  • a write voltage for increasing the resistance is applied to the selected memory cell via the variable load resistance circuit 410.
  • the variable load resistance circuit 410 is electrically connected to a memory cell selected by the row selection circuit / driver 403 and the column selection circuit / driver 404 among the memory cells M211, M212,.
  • the variable load resistor circuit 410 corresponds to the variable load resistor 102 in the first embodiment or the variable load resistor 202 in the second embodiment, and the resistance value as the high resistance state is a predetermined plurality of values in the high resistance process. Is set to take. As a result, the high resistance state of the variable resistance layer included in the selected memory cell can be set to a plurality of resistance values.
  • the sense amplifier 406 detects the amount of current flowing through the selected bit line to be read and discriminates stored data.
  • a plurality of resistance values are set for the high resistance state of each of the memory cells M211, M212,..., And each of these resistance values is associated with each data. Therefore, the sense amplifier 406 determines whether the resistance change layer of the selected memory cell is in a low resistance state or a high resistance state. It is determined whether or not the data is stored in three or more values according to the resistance value.
  • the output data DO obtained as a result is output to an external circuit via the data input / output circuit 407.
  • the nonvolatile memory device 400 realizes multi-value storage of three or more values.
  • non-volatile memory device having a multilayer structure by stacking the memory cell arrays in the non-volatile memory device according to the fourth embodiment shown in FIG. 14 in multiple layers.
  • multi-layered memory cell array configured as described above, it is possible to realize an ultra-large capacity nonvolatile memory device.
  • variable load resistance circuit 410 can be configured in the same manner as in the case of the third embodiment shown in FIGS.
  • FIG. 15 is a block diagram showing a schematic configuration in which the variable load resistance circuit 410 is specifically applied to the nonvolatile memory device 400.
  • the variable load resistance circuit 410 is provided between the column selection circuit / driver 404 and the write circuit 405.
  • three resistors and switching elements are formed as in the variable load resistor 102 (see FIG. 2) in the first embodiment.
  • a variable load resistance circuit 410 is provided. In the case of this configuration, these switching elements are turned on / off in the high resistance process, and thereby the resistance value of the variable load resistance circuit 410 is changed.
  • the variable load resistance circuit 410 is connected in series to a memory cell selected by a row selection circuit / driver 403 and a column selection circuit / driver 404 from among a plurality of memory cells included in the memory cell array 402, thereby making an electric circuit. Constitute.
  • the write circuit 405 applies a write voltage pulse for increasing resistance to the electric circuit.
  • the resistance value of the resistance change layer of the selected memory cell is changed to a resistance value corresponding to the load resistance value currently set in the variable load resistance circuit 410 among a plurality of different resistance values belonging to the high resistance state.
  • Multi-value storage is realized by setting.
  • FIG. 16 is a block diagram showing another schematic configuration of the nonvolatile memory device 400.
  • the variable load resistor 202 and the fixed load resistor 204 in the modification of the second embodiment.
  • a variable load resistor circuit 410 and a fixed load resistor 412 configured by MOS transistors are provided.
  • the gate voltage Vg of the variable load resistance circuit 410 is set to a predetermined value in accordance with the value of data to be written, thereby changing the resistance value of the variable load resistance circuit 410.
  • variable load resistance circuit 410 is connected in parallel to the memory cell selected by the row selection circuit / driver 403 and the column selection circuit / driver 404 from among the plurality of memory cells included in the memory cell array 402, and further, the fixed load resistance 412 Are connected in series to form an electric circuit.
  • the write circuit 405 applies a write voltage pulse for increasing resistance to the electric circuit.
  • the resistance value of the resistance change layer of the selected memory cell is changed to a resistance value corresponding to the load resistance value currently set in the variable load resistance circuit 410 among a plurality of different resistance values belonging to the high resistance state.
  • Multi-value storage is realized by setting.
  • the nonvolatile memory device and the nonvolatile memory device driving method of the present invention are useful as a nonvolatile memory device used in various electronic devices such as a personal computer or a portable telephone, and a driving method thereof.
  • Non-volatile memory device 101 non-volatile memory device 102 the variable load resistor 102A 1, 102A 2, 102A 3 resistor 102B 1, 102B 2, 102B 3 switching element 103 power supply 104 variable load resistor circuit 108 electric circuit 111 and the second electrode 112 first Electrode 113 Variable resistance layer 113a First transition metal oxide layer (first tantalum oxide layer, first hafnium oxide layer, first zirconium oxide layer) 113b Second transition metal oxide layer (second tantalum oxide layer, second hafnium oxide layer, second zirconium oxide layer) 120 substrate 200 non-volatile memory device 201 non-volatile memory device 202 the variable load resistor 202A 1, 202A 2, 202A 3 resistor 202B 1, 202B 2, 202B 3 switching element 203 power supply 204 stationary load resistor 205 select transistor 208 electric circuit 300 nonvolatile Storage device 301 Memory main body 302 Memory cell array 303 Row selection circuit / driver 304 Column selection circuit 305 Write circuit 306

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

 不揮発性記憶装置(100)は、第1電極と、第2電極と、第1電極と第2電極との間に配設され、第1電極及び第2電極間に第1の極性の電圧パルスが印加された場合に高抵抗状態から低抵抗状態へ変化し、第1の極性とは異なる第2の極性の電圧パルスが印加された場合に低抵抗状態から高抵抗状態へ変化する抵抗変化層とを有する不揮発性記憶素子(101)と、不揮発性記憶素子(101)と電気的に直列接続されることによって電気回路(108)を構成する可変負荷抵抗(102)と、不揮発性記憶素子(101)に前記第2の極性の電圧パルスを与える書き込み電圧パルスが電気回路(108)に印加される場合に、可変負荷抵抗(102)の抵抗値を、前記抵抗変化層の抵抗値が互いに異なる高抵抗状態にそれぞれ対応する複数の負荷抵抗値のうちの何れか1つに設定する制御回路とを備える。

Description

[規則37.2に基づきISAが決定した発明の名称] 不揮発性記憶装置
 本発明は、電気的信号に基づいて可逆的に抵抗値が変化する不揮発性記憶素子を備える不揮発性記憶装置、及び不揮発性記憶装置の駆動方法に関する。
 近年、デジタル技術の進展に伴って、携帯情報機器や情報家電等の電子機器がより一層高機能化している。これらの電子機器の高機能化に伴い、使用される半導体素子の微細化及び高速化が急速に進んでいる。その中でも、フラッシュメモリに代表されるような大容量の不揮発性記憶装置の用途が急速に拡大している。さらに、このフラッシュメモリに置き換わる次世代の不揮発性記憶装置として、電気的信号によって抵抗値が可逆的に変化する性質を有する抵抗変化型の不揮発性記憶素子を備えた不揮発性記憶装置の研究開発が進んでいる。
 抵抗変化型の不揮発性記憶素子は、抵抗変化層を電極で挟持するという極めて単純な構造を有している。抵抗変化層は、電極間に所定の電気的パルスが与えられると、異なる抵抗値を持つ複数の抵抗状態の間を可逆的に遷移する。このような複数の抵抗状態が、数値の記憶に用いられる。構造上及び動作上の単純さから、このような抵抗変化型の不揮発性記憶素子を備えた不揮発性記憶装置は、高度の微細化、高速化、及び低消費電力化が可能であると期待されている。
 抵抗変化層として用いられる材料は、大きく2種類に分類される。一つは、特許文献1及び非特許文献1~3に開示されているような、遷移金属(Ni、Nb、Ti、Zr、Hf、Co、Fe、Cu、Cr等)の酸化物であり、特に、酸素の含有率が化学量論的組成の観点から不足している酸化物(以下、酸素不足型の酸化物と呼ぶ)である。もう一つはペロブスカイト材料(Pr(1-x)CaMnO(PCMO)、LaSrMnO(LSMO)、GdBaCo(GBCO)である。後者については、2値(低抵抗と高抵抗の2つの状態)を記憶可能な素子だけではなく、3値以上の多値を記憶可能な素子として用いる技術が、特許文献2及び3、並びに非特許文献4等に記載されている。
 図17は、特許文献2に開示されている、PCMOを用いた素子の、電気的パルスによる抵抗変化の一例を示す図である。図17から、初期状態にある抵抗値が500Ω程度の素子に対し、所定の極性、電圧、及びパルス幅を有する電気的パルスを所定の回数印加することにより、抵抗値を上昇もしくは低下させることが可能であることが分かる。抵抗値はほぼ連続的な値を取ることができる。そこで、互いに異なる抵抗値を有する3個以上の状態を選択的に利用し、互いに異なる3個以上の数値をそれぞれの抵抗値に対応させることにより、多値の記憶素子が実現できるとされている。
 図18は、特許文献3に開示されている、PCMO等を用いた不揮発性記憶素子の抵抗値と、印加する電圧と抵抗値との関係を示す図である。なお、図18では、印加されている電気的パルスはそれぞれ1回である。図18でも、素子の抵抗値が、印加された電気的パルスの電圧値に応じてほぼ連続的に変化しているのが分かる。この場合も、特許文献2の場合と同様に、多値の記憶素子が実現可能であるとされている。
 さらに、多値の記憶素子の例として、特許文献4には、負荷回路の負荷抵抗特性及び/又は発生電圧条件を変更することにより、抵抗変化素子の抵抗特性を、少なくとも3つの異なる抵抗特性の中から選択される一の抵抗特性に遷移させて、少なくとも3値の情報を記憶することができる不揮発性記憶装置が開示されている。
特開2006-140464号公報 米国特許第6473332号明細書 特開2004-185756号公報 特開2008-198275号公報
I.G.Baek et al.,Tech. Digest IEDM 2004,587頁 Japanese Journal of Applied Physics Vol45,2006,L310頁 A.Chen et al.,Tech.Digest IEDM 2005,746頁 X.Chen et al.,New Journal of Physics Vol.8,2006,229頁
 3つ以上の抵抗状態を利用する多値の記憶素子では、素子がどの抵抗状態にあるかが、素子の抵抗値を読み出すことにより判別される。したがって、誤動作を防止するためには、各抵抗状態における抵抗値が、互いにある程度の抵抗値の差を持つことが必要である。しかしながら、特許文献2や3に開示されている素子では、印加される電気的パルスの電圧やパルス幅、回数によって、抵抗値が連続的に変化する。このため、同一の電気的パルスを印加しても、素子自体の不均一性や電気的パルスの電圧、パルス幅、回数などを反映して、実現される抵抗値がばらついてしまい、抵抗値が安定しない。また、記憶素子の抵抗値は必ずしも安定性が十分に高いとは言えない。
 このため、それぞれの抵抗状態間での抵抗値の差が小さい場合は、ある状態を表すためにセットされた抵抗値が、温度等の変化により別の状態とみなされる程度に変化することがある。このように、従来の記憶素子では、多値の情報を記憶する不揮発性記憶素子として安定に動作させることが難しいという課題がある。
 また、特許文献4に開示されている記憶装置の場合も、特許文献4の図9に示されるように、異なる遷移条件に基づいて抵抗特性が遷移された後の各抵抗状態間での抵抗値の差は高々2倍程度であり、安定した多値記憶を実現できるとは言い難い。
 本発明は斯かる事情に鑑みてなされたものであり、その主たる目的は、安定した多値記憶を実現することができる不揮発性記憶装置及び不揮発性記憶装置の駆動方法を提供することにある。
 上述した課題を解決するために、本発明の一の態様の不揮発性記憶装置は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に配設され、前記第1電極及び前記第2電極間に第1の極性の電圧パルスが印加された場合に抵抗状態が高抵抗状態から当該高抵抗状態よりも抵抗値が低い低抵抗状態へ変化し、前記第1電極及び前記第2電極間に前記第1の極性とは異なる第2の極性の電圧パルスが印加された場合に抵抗状態が低抵抗状態から当該低抵抗状態よりも抵抗値が高い高抵抗状態へ変化する抵抗変化層と、を有する不揮発性記憶素子と、前記不揮発性記憶素子と電気的に接続されることによって電気回路を構成する可変負荷抵抗と、前記不揮発性記憶素子に前記第2の極性の電圧パルスを与える書き込み電圧パルスが前記電気回路に印加される場合に、前記可変負荷抵抗の抵抗値を、前記抵抗変化層の抵抗値が互いに異なる高抵抗状態にそれぞれ対応する複数の負荷抵抗値のうちの何れか1つの負荷抵抗値に設定する制御回路と、を備える。
 本発明に係る不揮発性記憶装置及び不揮発性記憶装置の駆動方法によれば、多値記憶を安定した動作で実現することができる。
図1は、本発明の実施の形態1に係る不揮発性記憶装置の概略の構成を示すブロック図である。 図2は、本発明の実施の形態1に係る不揮発性記憶装置の一構成例を示す回路図である。 図3は、本発明の実施の形態1に係る不揮発性記憶装置が備える不揮発性記憶素子の構成を示す断面図である。 図4は、実験用の可変負荷抵抗回路の構成を示す回路図である。 図5Aは、高抵抗化工程における抵抗変化層の抵抗値の変化を示すグラフである。 図5Bは、高抵抗化工程における抵抗変化層の抵抗値の変化を示すグラフである。 図5Cは、高抵抗化工程における抵抗変化層の抵抗値の変化を示すグラフである。 図5Dは、高抵抗化工程における抵抗変化層の抵抗値の変化を示すグラフである。 図6は、高抵抗化工程における抵抗変化層の抵抗値と負荷抵抗値との関係を示すグラフである。 図7は、本発明の実施の形態1に係る不揮発性記憶装置の変形例を示す回路図である。 図8は、本発明の実施の形態2に係る不揮発性記憶装置の一構成例を示す回路図である。 図9は、本発明の実施の形態2に係る不揮発性記憶装置の変形例を示す回路図である。 図10は、本発明の実施の形態2に係る不揮発性記憶装置の他の変形例を示す回路図である。 図11は、本発明の実施の形態3に係る不揮発性記憶装置の構成の一例を示すブロック図である。 図12は、本発明の実施の形態3に係る不揮発性記憶装置の実施例の概略構成を示すブロック図である。 図13は、本発明の実施の形態3に係る不揮発性記憶装置の他の実施例の概略構成を示すブロック図である。 図14は、本発明の実施の形態4に係る不揮発性記憶装置の構成の一例を示すブロック図である。 図15は、本発明の実施の形態4に係る不揮発性記憶装置の実施例の概略構成を示すブロック図である。 図16は、本発明の実施の形態4に係る不揮発性記憶装置の他の実施例の概略構成を示すブロック図である。 図17は、特許文献2に開示されている、PCMOを用いた素子の電気的パルスによる抵抗変化の一例を示す図である。 図18は、特許文献3に開示されている、PCMO等を用いた不揮発性記憶素子の抵抗値と、印加する電圧との関係を示す図である。
 本発明の一つの態様における不揮発性記憶装置は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に配設され、前記第1電極及び前記第2電極間に第1の極性の電圧パルスが印加された場合に抵抗状態が高抵抗状態から当該高抵抗状態よりも抵抗値が低い低抵抗状態へ変化し、前記第1電極及び前記第2電極間に前記第1の極性とは異なる第2の極性の電圧パルスが印加された場合に抵抗状態が低抵抗状態から当該低抵抗状態よりも抵抗値が高い高抵抗状態へ変化する抵抗変化層と、を有する不揮発性記憶素子と、前記不揮発性記憶素子と電気的に接続されることによって電気回路を構成する可変負荷抵抗と、前記不揮発性記憶素子に前記第2の極性の電圧パルスを与える書き込み電圧パルスが前記電気回路に印加される場合に、前記可変負荷抵抗の抵抗値を、前記抵抗変化層の抵抗値が互いに異なる高抵抗状態にそれぞれ対応する複数の負荷抵抗値のうちの何れか1つの負荷抵抗値に設定する制御回路と、を備える。
 このような構成によれば、設定された抵抗変化層の複数の抵抗値の高抵抗状態を利用することによって、安定した多値記憶を行う不揮発性記憶装置を実現することができる。
 ここで、前記電気回路は、前記不揮発性記憶素子と前記可変負荷抵抗とが直列に接続されることによって構成され、前記制御回路は、前記抵抗変化層をより大きい抵抗値を持つ高抵抗状態へ変化させるために、前記可変負荷抵抗の抵抗値をより小さい負荷抵抗値に設定してもよい。
 このような構成は、前記不揮発性記憶素子と前記可変負荷抵抗とが直列に接続される場合に適している。
 また、前記不揮発性記憶装置は、さらに、固定された抵抗値を持つ固定負荷抵抗を備え、前記電気回路は、前記不揮発性記憶素子と前記可変負荷抵抗とが並列に接続された回路と、前記固定負荷抵抗とが直列に接続されることによって構成され、前記制御回路は、前記抵抗変化層をより大きい抵抗値を持つ高抵抗状態へ変化させるために、前記可変負荷抵抗の抵抗値をより大きい負荷抵抗値に設定してもよい。
 このような構成は、前記不揮発性記憶素子と前記可変負荷抵抗とが並列に接続される場合に適している。
 また、前記不揮発性記憶装置において、前記制御回路は、低抵抗状態の前記抵抗変化層及び前記可変負荷抵抗に前記第2の極性の電圧パルスが印加される場合に、前記可変負荷抵抗を第1の負荷抵抗値に設定することによって、前記抵抗変化層を第1の高抵抗状態に変化させ、前記可変負荷抵抗を前記第1の負荷抵抗値より小さい第2の負荷抵抗値に設定することによって、前記抵抗変化層を前記第1の高抵抗状態よりも抵抗値の大きい第2の高抵抗状態に変化させてもよい。
 また、前記不揮発性記憶装置において、前記可変負荷抵抗は、少なくとも第1の負荷抵抗値と前記第1の負荷抵抗値より小さい第2の負荷抵抗値とに切り替え可能であり、前記抵抗変化層が低抵抗状態であり、かつ前記可変負荷抵抗が前記第1の負荷抵抗値である場合に、前記抵抗変化層及び前記可変負荷抵抗に印加された前記第2の極性の電圧パルスによって、前記抵抗変化層が第1の高抵抗状態となり、前記抵抗変化層が前記低抵抗状態であり、かつ前記可変負荷抵抗が前記第2の負荷抵抗値である場合に、前記抵抗変化層及び前記可変負荷抵抗に印加された前記第2の極性の電圧パルスによって、前記抵抗変化層が前記第1の高抵抗状態よりも抵抗値の大きい第2の高抵抗状態となってもよい。
 また、前記不揮発性記憶装置は、さらに、前記可変負荷抵抗の抵抗値が前記複数の負荷抵抗値の何れに設定されている場合も、前記書き込み電圧パルスを前記電気回路に同一振幅にて印加する書き込み回路を備えてもよい。
 このような構成によれば、前記電気回路の両端に印加される書き込み電圧パルスの振幅を変えることなく、不揮発性記憶素子に印加される実効電圧を変えることができる。随時、書き込み電圧パルスの振幅を変化させる場合には、配線等の寄生容量成分などのプリチャージ時間が必要となり、前記実効電圧の切り替えに時間を要するが、本構成では、書き込み電圧パルスの振幅を変化させないので前記実効電圧を高速に切り替えることができる。
 また、前記不揮発性記憶装置は、前記抵抗変化層及び前記可変負荷抵抗に前記第1の極性の電圧パルスを印加する場合に、前記抵抗変化層の低抵抗状態が1つのみ設定可能なように構成されることが好ましい。
 可変負荷抵抗の異なる負荷抵抗値に対応して、抵抗値が異なる複数の低抵抗状態を設定しようとした場合、最も低い抵抗値(最も抵抗値が低い低抵抗状態)が一度設定されると、抵抗変化層に大きな導電性フィラメントが形成されるため、それ以外の抵抗状態(より抵抗値が高い低抵抗状態)を設定しようとしても、上記の最も低い抵抗値まで抵抗値が落ちてしまう現象のために、動作が安定しない懸念がある。
 したがって、低抵抗状態を1つのみ設定可能に構成することで、動作が安定しない懸念を回避して、安定した多値記憶を行う不揮発性記憶装置を実現することができる。
 また、前記不揮発性記憶装置において、前記抵抗変化層は第1の遷移金属で構成される第1の遷移金属酸化物と第2の遷移金属で構成される第2の遷移金属酸化物との積層構造で構成され、当該第1の遷移金属酸化物の酸素不足度が、当該第2の遷移金属酸化物の酸素不足度より大きいほうが好ましい。
 また、前記不揮発性記憶装置において、前記第2の遷移金属酸化物の抵抗値は、前記第1の遷移金属酸化物の抵抗値より大きいほうが好ましい。
 また、前記不揮発性記憶装置において、前記第1の遷移金属と前記第2の遷移金属は同じ金属であってもよい。
 また、前記不揮発性記憶装置において、前記第1の遷移金属酸化物及び前記第2の遷移金属酸化物は、何れもタンタル酸化物で構成されていてもよい。
 また、前記不揮発性記憶装置において、前記第1の遷移金属と前記第2の遷移金属は異なる金属であり、前記第2の遷移金属の標準電極電位は、前記第1の遷移金属の標準電極電位より低い、このような構成によれば、前記不揮発性記憶素子において安定した抵抗変化現象が得られる。
 本発明の一つの態様における不揮発性記憶装置は、半導体基板上に形成され、互いに交差する方向に配列された複数の第1配線および複数の第2配線と、前記複数の第1配線および前記複数の第2配線の交点に対応してそれぞれ設けられた複数のメモリセルと、を有するメモリセルアレイと、前記複数のメモリセルの中から選択される1つの選択メモリセルと電気的に接続されることによって電気回路を構成する可変負荷抵抗回路と、前記可変負荷抵抗回路の抵抗値を複数の負荷抵抗値のうち何れか1つの負荷抵抗値に設定する制御回路と、を備え、前記複数のメモリセルのそれぞれは、選択素子と不揮発性記憶素子とが直列に接続されることによって構成され、前記不揮発性記憶素子のそれぞれは、第1電極と、第2電極と、前記第1電極と前記第2電極との間に配設され、前記第1電極及び前記第2電極間に第1の極性の電圧パルスが印加された場合に抵抗状態が高抵抗状態から当該高抵抗状態よりも抵抗値が低い低抵抗状態へ変化し、前記第1電極及び前記第2電極間に前記第1の極性とは異なる第2の極性の電圧パルスが印加された場合に抵抗状態が低抵抗状態から当該低抵抗状態よりも抵抗値が高い高抵抗状態へ変化する抵抗変化層とを有し、前記制御回路は、前記選択メモリセルに含まれる前記不揮発性記憶素子に前記第2の極性の電圧パルスを与える書き込み電圧パルスが前記電気回路に印加される場合に、前記可変負荷抵抗回路の抵抗値を、前記抵抗変化層の抵抗値が互いに異なる高抵抗状態にそれぞれ対応する複数の負荷抵抗値のうち何れか1つの負荷抵抗値に設定する。
 また、前記電気回路は、前記選択メモリセルと前記可変負荷抵抗回路とが直列に接続されることによって構成され、前記制御回路は、前記選択メモリセルに含まれる前記抵抗変化層をより大きい抵抗値を持つ高抵抗状態へ変化させるために、前記可変負荷抵抗回路の抵抗値をより小さい負荷抵抗値に設定してもよい。
 また、前記不揮発性記憶装置は、さらに、固定された抵抗値を持つ固定負荷抵抗を備え、前記電気回路は、前記選択メモリセルと前記可変負荷抵抗回路とが電気的に並列に接続された回路と、前記固定負荷抵抗とが直列に接続されることによって構成され、前記制御回路は、前記選択メモリセルに含まれる前記抵抗変化層をより大きい抵抗値を持つ高抵抗状態へ変化させるために、前記可変負荷抵抗の抵抗値をより大きい負荷抵抗値に設定してもよい。
 また、前記不揮発性記憶装置において、前記選択素子のそれぞれはトランジスタであってもよい。
 また、前記不揮発性記憶装置において、前記選択素子のそれぞれは双方向ダイオードであってもよい。
 このような構成よれば、設定された抵抗変化層の複数の抵抗値の高抵抗状態を利用することによって、安定した多値記憶を行う不揮発性記憶装置を実現することができる。
 本発明の一つの態様における不揮発性記憶装置の駆動方法は、(CL.18)不揮発性記憶装置の駆動方法であって、前記不揮発性記憶装置は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に配設され、前記第1電極及び前記第2電極間に第1の極性の電圧パルスが印加された場合に抵抗状態が高抵抗状態から当該高抵抗状態よりも抵抗値が低い低抵抗状態へ変化し、前記第1電極及び前記第2電極間に前記第1の極性とは異なる第2の極性の電圧パルスが印加された場合に抵抗状態が低抵抗状態から当該低抵抗状態よりも抵抗値が高い高抵抗状態へ変化する抵抗変化層と、を有する不揮発性記憶素子と、前記不揮発性記憶素子と電気的に接続されることによって電気回路を構成する可変負荷抵抗と、を備え、前記駆動方法は、前記可変負荷抵抗の抵抗値を、前記抵抗変化層の抵抗値が互いに異なる高抵抗状態にそれぞれ対応する複数の負荷抵抗値のうちの何れか1つの負荷抵抗値に設定する設定ステップと、前記可変負荷抵抗の抵抗値が前記1つの負荷抵抗値に設定されている状態で、前記不揮発性記憶素子に前記第2の極性の電圧パルスを与える書き込み電圧パルスを、前記電気回路に印加する書き込みステップと、を含む。
 また、前記駆動方法において、前記電気回路は、前記不揮発性記憶素子と前記可変負荷抵抗とが直列に接続されることによって構成され、前記書き込みステップにおいて、前記抵抗変化層は、前記可変負荷抵抗に設定されている負荷抵抗値が小さいほど、大きい抵抗値を持つ高抵抗状態へ変化してもよい。
 また、前記駆動方法において、前記不揮発性記憶装置は、さらに、固定された抵抗値を持つ固定負荷抵抗を備え、前記電気回路は、前記不揮発性記憶素子と前記可変負荷抵抗とが並列に接続された回路と、前記固定負荷抵抗とが直列に接続されることによって構成され、前記書き込みステップにおいて、前記抵抗変化層は、前記可変負荷抵抗に設定されている負荷抵抗値が大きいほど、大きい抵抗値を持つ高抵抗状態へ変化してもよい。
 このような構成よれば、設定された抵抗変化層の複数の抵抗値の高抵抗状態を利用することによって、安定した多値記憶を行う不揮発性記憶装置の駆動方法を実現することができる。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、全ての図を通じて実質的に同一または相当する要素には同一の符号を付しその説明は省略する場合がある。また、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するために必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (実施の形態1)
 [不揮発性記憶装置の構成]
 図1は、本発明の実施の形態1に係る不揮発性記憶装置の概略の構成を示すブロック図である。図1に示すように、本実施の形態1の不揮発性記憶装置100は、抵抗変化型の不揮発性記憶素子101と、可変負荷抵抗102と、これらの不揮発性記憶素子101及び可変負荷抵抗102に対して電圧パルスを印加するための電源103とを備えている。
 ここで、不揮発性記憶素子101と可変負荷抵抗102とが直列に接続されることによって2端子の電気回路108が構成されている。電源103は、電気回路108の両端に電圧パルス(以下、書き込み電圧パルスともいう)を印加することによって、不揮発性記憶素子101及び可変負荷抵抗102に対して書き込み電圧パルスを分圧した電圧パルスをそれぞれ印加する。
 図2は、本実施の形態1に係る不揮発性記憶装置100の一構成例を示す回路図である。図2に示す例では、可変負荷抵抗102が、抵抗102A,102A,102Aと、スイッチング素子102B,102B,102Bとを含み、抵抗102A,102A,102Aの1つと、スイッチング素子102B,102B,102Bの対応する1つとが直列に接続されてなる3つの回路が並列に接続されて構成されている。そのため、可変負荷抵抗102の抵抗値は、スイッチング素子102B,102B,102Bのそれぞれのオン/オフにより変化することになる。本実施の形態1の場合、3つのスイッチング素子102B,102B,102Bの何れか一つをオンとすることにより、可変負荷抵抗102の抵抗値を3種類設定することができる。
 電源103から出力された電圧パルスは、不揮発性記憶素子101及び可変負荷抵抗102に印加される。このとき、不揮発性記憶素子101に印加される電圧は、可変負荷抵抗102の抵抗値と不揮発性記憶素子101の抵抗値との抵抗比により定まる分圧によって決定され、可変負荷抵抗102の抵抗値に対応して変化することになる。
 図3は、本発明の実施の形態1に係る不揮発性記憶装置100が備える不揮発性記憶素子101の構成を示す断面図である。図3に示すように、不揮発性記憶素子101は、基板120の上に形成された第1電極112と、第1電極112の上に形成された抵抗変化層113と、抵抗変化層113の上に形成された第2電極111とを備えている。ここで、第1電極112及び第2電極111は、抵抗変化層113と電気的に接続されている。このような構成により、電源103から出力された電圧パルスは、第1電極112及び第2電極111を介して抵抗変化層113に印加される。
 基板120は、例えばシリコン基板により構成される。また、第1電極112及び第2電極111は、例えば、Au(金)、Pt(白金)、Ir(イリジウム)、Cu(銅)、TiN(窒化チタン)及びTaN(窒化タンタル)のうちの1つまたは複数の材料を用いて構成される。
 抵抗変化層113は、酸素不足型の遷移金属酸化物を含んで構成されている。酸素不足型の遷移金属酸化物とは、化学量論的な酸化物と比較して酸素含有率(原子比:総原子数に占める酸素原子数の割合)が少ない酸化物をいう。言い換えれば、化学量論的な酸化物と比較して酸素不足度が大きい酸化物ということもできる。酸素不足度とは、それぞれの遷移金属において、その化学量論的組成の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。例えば、遷移金属がTa(タンタル)の場合、化学量論的な酸化物の組成はTaであって、総原子数に占める酸素の比率(O/(Ta+O))は、71.4%となる。したがって、酸素不足型のTa酸化物において、酸素含有率は0より大きく、71.4%より小さいことになる。
 この抵抗変化層113は、第1タンタル酸化物層113aと第2タンタル酸化物層113bとが積層されて構成されている。ここで、第2タンタル酸化物層113bの酸素含有率は、第1タンタル酸化物層113aの酸素含有率よりも高くなっている。
 第1タンタル酸化物層113aの組成をTaOとした場合にxが0.8以上1.9以下であり、且つ、第2タンタル酸化物層113bの組成をTaOとした場合にyがxの値よりも大である場合に、抵抗変化層113の抵抗値を安定して高速に変化させることが確認できている。したがって、x及びyは上記の範囲内にあることが好ましい。
 抵抗変化層113の厚みは、1μm以下であれば抵抗値の変化が認められるが、200nm以下であることが好ましい。パターニングプロセスを使用する場合に、加工し易く、しかも抵抗変化層113の抵抗値を変化させるために必要となる電圧パルスの電圧値を低くすることができるからである。他方、電圧パルス印加時のブレークダウン(絶縁破壊)をより確実に回避するという観点からは、抵抗変化層113の厚みは少なくとも5nm以上であることが好ましい。
 また、第2タンタル酸化物層113bの厚みについては、大きすぎると初期抵抗値が高くなり、また小さすぎると安定した抵抗変化が得られないため、1nm以上8nm以下程度が好ましい。
 また、抵抗変化層113を構成する金属は、タンタル以外の遷移金属を用いてもよい。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。
 例えば、ハフニウム酸化物を用いる場合、第1ハフニウム酸化物層113aの組成をHfOとした場合にxが0.9以上1.6以下であり、且つ、第2ハフニウム酸化物層113bの組成をHfOとした場合にyがxの値よりも大である場合に、抵抗変化層113の抵抗値を安定して高速に変化させることが確認できている。この場合、第2ハフニウム酸化物層113bの膜厚は、3~4nmが好ましい。
 また、ジルコニウム酸化物を用いる場合、第1ジルコニウム酸化物層113aの組成をZrOとした場合にxが0.9以上1.4以下であり、且つ、第2ジルコニウム酸化物層113bの組成をZrOとした場合にyがxの値よりも大である場合に、抵抗変化層113の抵抗値を安定して高速に変化させることが確認できている。この場合、第2ジルコニウム酸化物層113bの膜厚は、1~5nmが好ましい。
 さらに、第1の遷移金属酸化物層113aを構成する第1の遷移金属と、第2の遷移金属酸化物層113bを構成する第2の遷移金属とは、異なる材料を用いてもよい。この場合、第2の遷移金属酸化物層113bは、第1の遷移金属酸化物層113aよりも酸素不足度が小さい、つまり抵抗が高い方が好ましい。このような構成とすることにより、抵抗変化時に第1電極112及び第2電極111間に印加された電圧は、第2の遷移金属酸化物層113bにより多くの電圧が分配され、第2の遷移金属酸化物層113b中で発生する酸化還元反応をより起こしやすくすることができる。
 また、第1の遷移金属と第2の遷移金属とが互いに異なる材料を用いる場合、第2の遷移金属の標準電極電位は、第1の遷移金属の標準電極電位より小さい方が好ましい。抵抗変化現象は、抵抗が高い第2の遷移金属酸化物層113b中に形成された微小なフィラメント中で酸化還元反応が起こってその抵抗値が変化し、発生すると考えられるからである。
 例えば、第1の遷移金属酸化物層113aに、酸素不足型のタンタル酸化物を用い、第2の遷移金属酸化物層113bにTiOを用いることにより、安定した抵抗変化動作が得られる。チタン(標準電極電位=-1.63eV)はタンタル(標準電極電位=-0.6eV)より標準電極電位が低い材料である。標準電極電位は、その値が大きいほど酸化しにくい特性を表す。第2の遷移金属酸化物層113bに第1の遷移金属酸化物層113aより標準電極電位が小さい金属の酸化物を配置することにより、第2の遷移金属酸化物層113b中でより酸化還元反応が発生しやすくなる。
 また、第2電極111は、例えば、白金(Pt)、イリジウム(Ir)など、第2の遷移金属酸化物層113bを構成する遷移金属及び第1電極112と比べ標準電極電位がより高い材料で構成する。このような構成とすることにより、第2電極111と第2の遷移金属酸化物層113bの界面近傍の第2の遷移金属酸化物層113b中において、選択的に酸化還元反応が発生し、安定した抵抗変化現象が得られる。
 [不揮発性記憶素子の製造方法]
 次に、不揮発性記憶素子101の製造方法について説明する。
 まず、基板120上に、スパッタリング法により、厚さ50nmの窒化タンタル(TaN)を堆積することで、第1電極112を形成する。その後、Taターゲットをアルゴンガス及び酸素ガス中でスパッタリングする所謂反応性スパッタリング法によって、第1電極112の上にタンタル酸化物層を形成する。ここで、タンタル酸化物層における酸素含有率は、アルゴンガスに対する酸素ガスの流量比を変えることにより容易に調整することができる。なお、基板温度は特に加熱することなく室温とすることができる。
 次に、上記のようにして形成されたタンタル酸化物層の最表面を酸化することによりその表面を改質する。これにより、タンタル酸化物層の表面に、当該タンタル酸化物層において酸化されなかった領域(第1領域)よりも酸素含有率の高い領域(第2領域)が形成される。これらの第1領域及び第2領域が第1タンタル酸化物層113a及び第2タンタル酸化物層113bにそれぞれ相当し、このようにして形成された第1タンタル酸化物層113a及び第2タンタル酸化物層113bによって抵抗変化層113が構成されることになる。
 次に、上記のようにして形成された抵抗変化層113の上に、スパッタリング法により、厚さ50nmのイリジウム(Ir)を堆積することで、第2電極111を形成する。以上により、不揮発性記憶素子101が得られる。
 なお、第1電極112及び第2電極111並びに抵抗変化層113の大きさ及び形状は、マスク及びリソグラフィによって調整することができる。本実施の形態1では、第2電極111及び抵抗変化層113の大きさを0.5μm×0.5μm(面積0.25μm)とし、第1電極112と抵抗変化層113とが接する部分の大きさも0.5μm×0.5μm(面積0.25μm)とした。
 また、本実施の形態1では、第1タンタル酸化物層113aの組成をTaO(x=1.57)とし、第2タンタル酸化物層113bの組成をTaO(y=2.47)としている。さらに、抵抗変化層113の厚みを50nmとし、第1タンタル酸化物層113aの厚みを44nm、第2タンタル酸化物層113bの厚みを6nmとしている。
 なお、このように、本実施の形態1においてはx=1.57、y=2.47であるが、x及びyの値はこれに限られるわけではない。上述したとおり、xの値が0.8以上1.9以下の範囲内(0.8≦x≦1.9)であり、yの値がxの値よりも大(x<y)であれば、本実施の形態での抵抗変化特性と同様に、安定した抵抗変化を実現できる。
 [不揮発性記憶装置の駆動方法]
 次に、上述したように構成された不揮発性記憶装置100の駆動方法について説明する。
 図1および図2に示される不揮発性記憶装置100において、電源103を用いて、第1の極性の電圧パルスが不揮発性記憶素子101及び可変負荷抵抗102に印加される。ここで、第1の極性の電圧パルスとは、不揮発性記憶素子101に印加された場合に抵抗変化層113の抵抗値が減少する電圧パルスであり、より具体的には、図3に示される不揮発性記憶素子101の第1電極112を基準として第2電極111が負電圧となる極性の電圧パルスである。以下では、このような極性の電圧パルスを負極性の電圧パルスという。負極性の電圧パルスの印加により、抵抗変化層113の抵抗値が減少し、抵抗変化層113が高抵抗状態から当該高抵抗状態よりも抵抗値が低い低抵抗状態へ変化する。以下では、これを低抵抗化工程という。
 他方、不揮発性記憶装置100において、電源103を用いて、前記第1の極性とは異なる第2の極性の電圧パルスが不揮発性記憶素子101及び可変負荷抵抗102に印加される。ここで、第2の極性の電圧パルスとは、不揮発性記憶素子101に印加された場合に抵抗変化層113の抵抗値が増加する電圧パルスであり、より具体的には、図3に示される不揮発性記憶素子101の第1電極112を基準として第2電極111が正電圧となる極性の電圧パルスである。以下では、このような極性の電圧パルスを正極性の電圧パルスという。正極性の電圧パルスの印加により、抵抗変化層113の抵抗値が増加し、抵抗変化層113が低抵抗状態から当該低抵抗状態よりも抵抗値が高い高抵抗状態へ変化する。以下では、これを高抵抗化工程という。
 これらの低抵抗化工程及び高抵抗化工程を繰り返すことにより、不揮発性記憶素子101が動作することになる。
 まず、抵抗変化層113の高抵抗状態を複数の抵抗値に設定する方法を説明する。
 高抵抗化工程において、不揮発性記憶装置100は、図1には示していない制御回路によって、スイッチング素子102B,102B,102Bの切り換え(オン/オフ)が行われ、いずれのスイッチング素子をオンするかによって、可変負荷抵抗102の抵抗値を変化させる。抵抗変化層113には、オンとなったスイッチング素子に接続されている抵抗の値と不揮発性記憶素子101の抵抗値との比によって定まる電圧値(分圧)が印加される。
 これにより、スイッチング素子102B,102B,102Bのオン/オフ、つまり前記制御回路によって設定された負荷抵抗値に対応して、不揮発性記憶素子101には、上記オン/オフに対応した異なる電圧値の電圧が印加される。以上により、抵抗変化層113の高抵抗状態を複数の抵抗値に設定することが可能になる。
 なお、この高抵抗状態の複数の抵抗値の設定において、スイッチング素子のオン/オフは、図2においては、可変負荷抵抗102の3つのスイッチング素子102B,102B,102Bのいずれか1つをオンにしてもよいし、2つあるいは3つ全てをオンにしてもかまわない。このように、オン/オフのパターンの数を多くすることで、可変負荷抵抗102の抵抗値を多段階に設定することが可能となる。これにより、不揮発性記憶素子101の抵抗変化層113の高抵抗状態を多段に設定することができる。
 不揮発性記憶装置100では、抵抗変化層113の高抵抗状態の各抵抗値に対してそれぞれ情報を対応させることにより、3値以上の多値記憶を実現する。すなわち、例えば抵抗変化層113が低抵抗状態にある場合を「0」に、第1の高抵抗状態の抵抗値にある場合を「1」に、第2の高抵抗状態の抵抗値にある場合を「2」に、さらに第3の高抵抗状態の抵抗値にある場合を「3」にそれぞれ対応させる等により、多値記憶を実現する。
 抵抗変化層113が低抵抗状態及び高抵抗状態の何れの状態にあるのか、さらに高抵抗状態の場合は複数の高抵抗状態の抵抗値の何れの抵抗値にあるのかは、所定値の読み出し用の電圧パルスを不揮発性記憶素子101及び可変負荷抵抗102に印加し、このときに抵抗変化層113を流れる電流(読み出し電流)の電流値に応じて判定される。
 抵抗変化層113が低抵抗状態にある場合に、負極性の電圧パルスが不揮発性記憶素子101及び可変負荷抵抗102に印加されたとしても、抵抗変化層113は低抵抗状態のまま変化しない。同様にして、抵抗変化層113が高抵抗状態にある場合に、正極性の電圧パルスが不揮発性記憶素子101及び可変負荷抵抗102に印加されたとしても、抵抗変化層113は高抵抗状態のまま変化しない。
 なお、低抵抗化工程においても、上述した高抵抗化工程の場合と同様にして可変負荷抵抗102の値を変化させることにより、抵抗変化層113の低抵抗状態を複数の抵抗値に設定することも可能である。しかしながら、このように低抵抗状態を複数の抵抗値に設定することにすると、動作が不安定になる可能性がある。
 これは、低抵抗状態の複数の抵抗値のうち最も低い抵抗値(最も抵抗値が低い低抵抗状態)が一度設定されると、抵抗変化層113に大きな導電性フィラメントが形成されるため、それ以外の抵抗状態(より抵抗値が高い低抵抗状態)を設定しようとしても、上記の最も低い抵抗値まで抵抗値が落ちてしまうという現象が生じると考えられるからである。
 したがって、安定した書き換え動作及び良好なリテンション特性を実現するためには、高抵抗化工程においては高抵抗状態を複数の抵抗値に設定し、低抵抗化工程においては低抵抗状態を一つの抵抗値に設定することが好ましい。
 [不揮発性記憶装置の抵抗特性]
 本実施の形態1の不揮発性記憶装置100の抵抗特性を確認するために、以下の実験を行った。
 まず、本実施の形態1における可変負荷抵抗102に相当する回路として、図4に示す可変負荷抵抗回路104を用意した。図4に示すとおり、この可変負荷抵抗回路104は、抵抗R1及びR2と、それらの抵抗R1及びR2とそれぞれ直列に接続されたスイッチング素子S1及びS2とが並列に接続されて構成されている。
 ここで、抵抗R1の抵抗値は1.1kΩに固定されている。他方、抵抗R2については、50Ω、533Ω、1.1kΩ及び1.5kΩの4種類の抵抗値が用いられる。これらの4種類の抵抗値が、制御回路によって可変負荷抵抗102に設定される負荷抵抗値の一例を表している。
 抵抗変化層113を低抵抗化(LR化)する低抵抗化工程においては、スイッチング素子S1をオンとし、スイッチング素子S2をオフとする。このとき、図示しない電源回路から抵抗R1及び不揮発性記憶素子101に、-1.5VのLR化用の電圧パルスが印加される。
 他方、抵抗変化層113を高抵抗化(HR化)する高抵抗化工程においては、スイッチング素子S2をオンとし、スイッチング素子S1をオフとする。このとき、図示しない電源回路から抵抗R2及び不揮発性記憶素子101に、+2.0VのHR化用の電圧パルスが印加される。なお、高抵抗化工程では、抵抗R2に用いられる抵抗値によらず、抵抗R2及び不揮発性記憶素子101には、振幅が+2.0VであるHR化用の電圧パルスが印加されてもよい。
 以上のように構成された可変負荷抵抗回路104及び不揮発性記憶素子101を用いて高抵抗化工程を行った結果を図5及び図6に示す。図5A~図5Dは、抵抗R2の抵抗値が50Ω、533Ω、1.1kΩ及び1.5kΩの場合における抵抗変化層113の抵抗値の変化をそれぞれ示すグラフである。図5A~図5Dにおいて、縦軸は高抵抗化された場合の抵抗変化層113の抵抗値を、横軸は高抵抗化用の電圧パルスが印加された回数をそれぞれ示している。
 また、図6は、これら図5A~図5Dに基づいて作成されたグラフであって、抵抗R2の抵抗値が50Ω、533Ω、1.1kΩ及び1.5kΩの場合において高抵抗化工程を行ったときの抵抗変化層113の抵抗値の最大値及び最小値をプロットしたものである。
 図5A~図5D及び図6に示すように、抵抗R2の抵抗値が小さいほど抵抗変化層113の抵抗値が高くなり、抵抗R2の抵抗値が大きいほど抵抗変化層113の抵抗値が低くなっている。
 このように、本実施の形態1の不揮発性記憶装置100では、高抵抗化工程において、抵抗R2の抵抗値が小さいほど、HR化用の電圧パルスの不揮発性記憶素子101に印加される分圧が大きくなり、その結果、抵抗変化層は大きい抵抗値を持つ高抵抗状態に変化する。また、抵抗R2の抵抗値が大きいほど、HR化用の電圧パルスの不揮発性記憶素子101に印加される分圧が小さくなり、その結果、抵抗変化層は小さい抵抗値を持つ高抵抗状態に変化する。
 言い換えると、高抵抗化工程において、可変負荷抵抗102の抵抗値が小さいほど、不揮発性記憶素子101の抵抗変化層は、HR化用の電圧パルスの印加にて到達可能な高抵抗状態に属する抵抗値のうち、より大きな抵抗値となる。
 このように、可変負荷抵抗102に現に設定されている負荷抵抗値に応じて、抵抗変化層が、抵抗値の互いに異なる複数の高抵抗状態のうちの何れかに設定されるのは、高抵抗化時に、第1電極112を基準として、第2電極111に、より大きな振幅を持つ正の電圧が印加されることにより、第2タンタル酸化物層113bにより多くの酸素イオンが集まり、抵抗値がより大きくなるためと考えられる。
 上述の通り、図4に示される可変負荷抵抗回路104が本実施の形態1における可変負荷抵抗102に相当する。したがって、本実験例の可変負荷抵抗回路104において設定された抵抗R2の複数の抵抗値は、図1及び図2に示される可変負荷抵抗102に設定される複数の負荷抵抗値のうちの一例を表している。これにより、次のことが言える。
 すなわち、可変負荷抵抗102の抵抗値が、不揮発性記憶素子101の抵抗値が互いに異なる高抵抗状態にそれぞれ対応する複数の負荷抵抗値のうちの何れか1つの負荷抵抗値に設定されている状態で、不揮発性記憶素子101に高抵抗化用の正極性の電圧パルスを与える書き込み電圧パルスを、電気回路108に印加することにより、不揮発性記憶素子101の抵抗値を、可変負荷抵抗102に現に設定されている負荷抵抗値に対応する抵抗値に設定することができる。
 その際に、電気回路108の両端に印加される書き込み電圧を変えることなく、つまり、電気回路108の両端に印加される電圧パルスの振幅は一定にし、かつ可変負荷抵抗102に設定する抵抗値を変えることで、不揮発性記憶素子101に印加される実効電圧を変えることができる。随時、書き込み電圧パルスの電圧を変化させる場合には、配線等の寄生容量成分などのプリチャージ時間が必要となり、不揮発性記憶素子101に印加される実効電圧の切り替えに時間を要するが、本構成では、書き込み電圧パルスの電圧を変化させないので不揮発性記憶素子101に印加される実効電圧を高速に切り替えることができる。
 なお、図6に示すように、負荷抵抗値が50Ωのときに不揮発性記憶素子に設定される抵抗値と、負荷抵抗値が533Ωのときに不揮発性記憶素子に設定される抵抗値との差は10倍程度あり、さらに、負荷抵抗値が50Ωのときと1500Ωのときにそれぞれ不揮発性記憶素子に設定される抵抗値を比べるとその差は20倍程度もある。
 このように、本実験例で用いた4種類の負荷抵抗値の中から、少なくとも2種類乃至3種類の負荷抵抗値を用いて、不揮発性記憶素子を高抵抗状態であってかつ隣接する抵抗値との間に十分に大きな弁別ウインドウを持つような複数の抵抗値に設定可能であることが確かめられた。この結果から、安定した記憶動作を実現することが可能であるといえる。
 本実施の形態1では、タンタル酸化物を用いたが、前述の酸化還元反応で抵抗変化を起こす他の遷移金属酸化物においても、同様に複数の高抵抗状態をとることができる。また、酸素含有率が異なるタンタル酸化物の積層構造を用いたが、単層構造の遷移金属酸化物に繰り返し正負の電気パルスを印加することにより、不揮発性記憶素子形成後に、電気的に第2の遷移金属酸化物層113bを、正パルスを印加する側に形成することもできる。
 [変形例]
 図7は、本発明の実施の形態1に係る不揮発性記憶装置の変形例を示す回路図である。この変形例では、可変負荷抵抗102がMOSトランジスタで構成されている。この変形例の場合、可変負荷抵抗102を構成しているMOSトランジスタのゲート電圧Vgの値を制御することにより、可変負荷抵抗102の値が制御される。
 より詳細に説明すると、例えば高抵抗化工程において印加するゲート電圧Vgを3種類設定し、書き込む情報に応じて何れかのゲート電圧Vgを印加することにより、可変負荷抵抗102の抵抗値を3種類設定し、これによって抵抗変化層の高抵抗状態の抵抗値を3つ設定できる。他方、低抵抗化工程においては、ゲート電圧Vgを1種類とすることにより可変負荷抵抗102の抵抗値を設定し、これによって抵抗変化層の低抵抗状態を設定する。その結果、1つの低抵抗状態及び3つの高抵抗状態を実現することができ、これらの各状態と各情報とを対応させることにより4値の記憶を実現することができる。
 (実施の形態2)
 実施の形態1では、不揮発性記憶素子101と可変負荷抵抗102とが直列に接続されている電気回路108に書き込み電圧パルスが印加される構成にて説明をした。これに対して、実施の形態2では、不揮発性記憶装置は、不揮発性記憶素子と可変負荷抵抗とが並列に接続され、さらに固定負荷抵抗を備え、不揮発性記憶素子と可変負荷抵抗とが並列に接続された回路に直列に固定負荷抵抗が接続されてなる2端子の電気回路に書き込み電圧パルスが印加される構成にて説明する。
 図8は、本発明の実施の形態2に係る不揮発性記憶装置の一構成例を示す回路図である。図8に示すとおり、本実施の形態の不揮発性記憶装置200は、抵抗変化型の不揮発性記憶素子201と、可変負荷抵抗202と、固定負荷抵抗204と、これらの不揮発性記憶素子201、可変負荷抵抗202及び固定負荷抵抗204に対して電圧パルスを印加するための電源203とを備えている。ここで、不揮発性記憶素子201と可変負荷抵抗202とは並列に接続されており、不揮発性記憶素子201及び可変負荷抵抗202が並列に接続された回路と、固定負荷抵抗204とが直列に接続されることによって2端子の電気回路208が構成されている。
 可変負荷抵抗202は、実施の形態1における可変負荷抵抗102と同様に、3つの抵抗202A,202A,202Aと、これらの抵抗202A,202A,202Aのそれぞれに接続されたスイッチング素子202B,202B,202Bとによる直列接続が互いに並列に接続されて構成されている。この構成により、スイッチング素子202B,202B,202Bのオン/オフによって、可変負荷抵抗202の値が変化することになる。本実施の形態の場合、3つのスイッチング素子202B,202B,202Bの何れか一つをオンとすることにより、可変負荷抵抗202の値を3種類設定することができる。もちろん、3つのスイッチング素子202B,202B,202Bのうちの2つ、あるいは3つ全てをオンにすることも可能である。
 電源203から出力された書き込み電圧パルスは、不揮発性記憶素子201、可変負荷抵抗202及び固定負荷抵抗204から構成される電気回路208に印加される。このとき、可変負荷抵抗202が、不揮発性記憶素子201からの電流の迂回経路となる。そのため、不揮発性記憶素子201に印加される電圧パルスの振幅は、可変負荷抵抗202の抵抗値により変化することになる。
 なお、不揮発性記憶素子201の構成は実施の形態1における不揮発性記憶素子101と同様であるので、説明を省略する。
 以上のように構成された本実施の形態2の不揮発性記憶装置200の場合も、実施の形態1の場合と同様に、高抵抗化工程において可変負荷抵抗202のスイッチング素子202B,202B,202Bのオン/オフを行い、これによって可変負荷抵抗202の値を変化させる。そのため、高抵抗化工程においては、可変負荷抵抗202の値に応じて、不揮発性記憶素子201の抵抗変化層に複数の異なる値の電圧パルスが印加されることになる。これにより、当該抵抗変化層の高抵抗状態を複数の抵抗値に設定することが可能になり、各抵抗値と各情報とを対応させることによって多値記憶を実現することができる。
 本実施の形態のように、可変負荷抵抗202が不揮発性記憶素子201に並列に接続された構成の場合、可変負荷抵抗202の抵抗値が小さいときには、可変負荷抵抗202への迂回電流が大きくなり、不揮発性記憶素子201へ流れる電流は小さくなる。この結果、不揮発性記憶素子201での電圧降下が小さくなり、不揮発性記憶素子201に直列に接続された固定負荷抵抗204での電圧降下が大きくなる。これにより、不揮発性記憶素子201に印加される実効電圧が小さくなる。その結果、不揮発性記憶素子201の抵抗変化層は、複数の高抵抗状態うち比較的低い抵抗値を持つ高抵抗状態へ変化する。
 逆に可変負荷抵抗202の抵抗値が大きいときには、不揮発性記憶素子201の抵抗変化層は、複数の高抵抗状態うち比較的高い抵抗値を持つ高抵抗状態へ変化する。よって、可変負荷抵抗202の抵抗値が大きいほど、不揮発性記憶素子201の抵抗変化層は、高抵抗状態に属する高い抵抗値となる。
 [変形例]
 図9は、本発明の実施の形態2に係る不揮発性記憶装置の変形例を示す回路図である。図9に示す変形例では、可変負荷抵抗202がMOSトランジスタで構成されている。また、選択トランジスタ205が、不揮発性記憶素子201と直列に接続されている。選択トランジスタ205は、複数の不揮発性記憶素子201を配列してメモリセルアレイを構成する場合に、個々の不揮発性記憶素子201に対応して設けられる選択トランジスタに相当する。この変形例の場合、可変負荷抵抗202を構成するMOSトランジスタのゲート電圧Vgの値を制御することにより、可変負荷抵抗202の抵抗値が制御される。
 そのため、実施の形態1の変形例(図7)の場合と同様に、高抵抗化工程において、印加するゲート電圧Vgを複数種類設定することにより、可変負荷抵抗202の高抵抗状態を複数の抵抗値に設定する。これらの各抵抗値と各情報とを対応させることにより、多値記憶を実現することができる。
 図10は、本発明の実施の形態2に係る不揮発性記憶装置の他の変形例を示す回路図である。この変形例は、図9に示す変形例における固定負荷抵抗204を負荷トランジスタで構成している。この変形例の場合、固定負荷抵抗204としての負荷トランジスタを適宜制御しながら、前述した図9に示す変形例の場合と同様にして動作することにより、多値記憶を実現することができる。
 (実施の形態3)
 実施の形態3は、実施の形態1又は2において説明した不揮発性記憶装置と同様、不揮発性記憶素子の抵抗値が互いに異なる複数の高抵抗状態を用いて多値記憶を実現する不揮発性記憶装置であり、各々が1つのトランジスタと1つの不揮発性記憶素子とで構成される1T1R型の複数のメモリセルがメモリセルアレイに配置される不揮発性記憶装置である。以下、この不揮発性記憶装置の構成及び動作について説明する。
 [不揮発性記憶装置の構成及び動作]
 図11は、本発明の実施の形態3に係る不揮発性記憶装置の構成の一例を示すブロック図である。図11に示すように、1T1R型の不揮発性記憶装置300は、基板上にメモリ本体部301を備えており、このメモリ本体部301は、メモリセルアレイ302と、行選択回路/ドライバ303と、列選択回路304と、情報の書き込みを行うための書き込み回路305と、選択ビット線に流れる電流量を検出し、3値以上のデータのうちの何れのデータが記憶されているかの判定を行うセンスアンプ306と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路307とを具備している。
 なお、図11では、説明を容易にするために、メモリセルアレイ302は3行×3列の場合を例に説明するが、これ以外のメモリセルアレイの構成、例えば、4行×4列や、16行×16列、M行×N列(M、Nはそれぞれ自然数)などの場合であってもかまわない。
 また、不揮発性記憶装置300は、セルプレート電源(VCP電源)308と、外部から入力されるアドレス信号を受け取るアドレス入力回路309と、外部から入力されるコントロール信号に基づいて、メモリ本体部301の動作を制御する制御回路310と、列選択回路304に接続された可変負荷抵抗回路311とをさらに備えている。セルプレート電源(VCP電源)308は、固定電圧電源であっても、可変電圧電源であってもかまわない。
 メモリセルアレイ302は、半導体基板の上に形成された、互いに交差するように配列された複数のワード線WL0,WL1,WL2,…および複数のビット線BL0,BL1,BL2,…と、これらのワード線WL0,WL1,WL2,…およびビット線BL0,BL1,BL2,…の交点に対応してそれぞれ設けられた複数のメモリセルM111,M112,M113,M121,M122,M123,M131,M132,M133(以下、「メモリセルM111,M112,…」と表す)とを備えている。
 メモリセルM111,M112,…のそれぞれは、複数のトランジスタT11,T12,T13,T21,T22,T23,T31,T32,T33,…(以下、「トランジスタT11,T12,…」と表す)のうちの1つと、トランジスタT11,T12,…と1対1に設けられた複数の不揮発性記憶素子R11,R12,R13,R21,R22,R23,R31,R32,R33,…(以下、「不揮発性記憶素子R11,R12,…」と表す)のうちの1つとが直列に接続されることによって構成されている。
 ここで、トランジスタT11,T12,…は、選択素子の一例であり、不揮発性記憶素子R11,R12,…は、実施の形態1の不揮発性記憶素子101に相当する。また、複数のワード線WL0,WL1,WL2,…および複数のビット線BL0,BL1,BL2,…が、第1配線および第2配線の一例である。
 また、メモリセルアレイ302は、ワード線WL0,WL1,WL2,…に平行して配列されている複数のプレート線PL0,PL1,PL2,…を備えている。
 トランジスタT11,T12,T13,…のドレインはビット線BL0に、トランジスタT21,T22,T23,…のドレインはビット線BL1に、トランジスタT31,T32,T33,…のドレインはビット線BL2に、それぞれ接続されている。
 また、トランジスタT11,T21,T31,…のゲートはワード線WL0に、トランジスタT12,T22,T32,…のゲートはワード線WL1に、トランジスタT13,T23,T33,…のゲートはワード線WL2に、それぞれ接続されている。
 さらに、トランジスタT11,T12,…のソースはそれぞれ、メモリセルM111,M112,…と接続されている。
 また、不揮発性記憶素子R11,R12,R13,…はプレート線PL0に、不揮発性記憶素子R21,R22,R23,…はプレート線PL1に、不揮発性記憶素子R31,R32,R33,…はプレート線PL2に、それぞれ接続されている。
 アドレス入力回路309は、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路/ドライバ303へ出力するとともに、列アドレス信号を列選択回路304へ出力する。ここで、アドレス信号は、複数のメモリセルM111,M112,…のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号は、アドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は、アドレス信号に示されたアドレスのうちの列のアドレスを示す信号である。
 制御回路310は、情報の書き込み工程(低抵抗化工程及び高抵抗化工程)においては、データ入出力回路307に入力された入力データDinに応じて、書き込み用電圧の印加を指示する書き込み信号を書き込み回路305へ出力する。他方、情報の読み出し工程において、制御回路310は、読み出し用電圧の印加を指示する読み出し信号を列選択回路304へ出力する。
 行選択回路/ドライバ303は、アドレス入力回路309から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0,WL1,WL2,…のうちの何れかを選択し、その選択されたワード線に対して、所定の電圧を印加する。
 また、列選択回路304は、アドレス入力回路309から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0,BL1,BL2,…のうちの何れかを選択し、その選択されたビット線に対して、書き込み用電圧または読み出し用電圧を印加する。
 書き込み回路305は、制御回路310から出力された書き込み信号を受け取った場合、列選択回路304に対して選択されたビット線に対して書き込み用電圧の印加を指示する信号を出力する。ここで、低抵抗化工程の場合は、選択されたメモリセルに、可変負荷抵抗回路311を介することなく、低抵抗化のための書き込み用電圧が印加される。他方、高抵抗化工程の場合は、選択されたメモリセルに、可変負荷抵抗回路311を介して、高抵抗化のための書き込み用電圧が印加される。
 可変負荷抵抗回路311は、メモリセルアレイ302が備えるメモリセルM111,M112,…のうち、行選択回路/ドライバ303及び列選択回路304によって選択されたメモリセルと電気的に接続される。この可変負荷抵抗回路311は、実施の形態1における可変負荷抵抗102又は実施の形態2における可変負荷抵抗202に相当し、高抵抗化工程において、高抵抗状態としての抵抗値が所定の複数の値をとるように設定されている。可変負荷抵抗回路311には、高抵抗書き込み時に、制御回路310から、どの高抵抗状態に高抵抗化させるかに応じて、どの負荷抵抗値にするかという信号が送られる。これにより、選択されたメモリセルが備える抵抗変化層の高抵抗状態を複数の抵抗値に設定することが可能になる。
 センスアンプ306は、情報の読み出し工程において、読み出し対象となる選択ビット線に流れる電流量を検出し、記憶されているデータを判別する。本実施の形態の場合、各メモリセルM111,M112,…の高抵抗状態を複数の抵抗値に設定し、それらの各抵抗値と各データとを対応させる。そのため、センスアンプ306は、選択されたメモリセルの抵抗変化層が低抵抗状態又は高抵抗状態の何れの状態にあるのか、さらに高抵抗状態の場合は、複数の高抵抗状態の抵抗値の何れの抵抗値にあるのかを判別し、それに応じて3値以上のデータのうち何れのデータが記憶されているのかを判定する。その結果得られた出力データDOは、データ入出力回路307を介して、外部回路へ出力される。
 上記のように動作することにより、不揮発性記憶装置300は、3値以上の多値記憶を実現する。
 図12は、本発明の実施の形態3に係る不揮発性記憶装置において、具体的に可変負荷抵抗回路311を適用した概略構成を示すブロック図である。図12に示すように、列選択回路304と書き込み回路305との間には、実施の形態1における可変負荷抵抗102(図2を参照)と同様に3つの抵抗及びスイッチング素子により構成された可変負荷抵抗回路311が設けられている。この構成の場合、高抵抗化工程においてこれらのスイッチング素子をオン/オフし、これによって可変負荷抵抗回路311の抵抗値を変化させる。
 可変負荷抵抗回路311は、メモリセルアレイ302が備える複数のメモリセルの中から、行選択回路/ドライバ303及び列選択回路304によって選択されるメモリセルと直列に接続されることによって電気回路を構成する。書き込み回路305はVCP電源308とともに、当該電気回路に高抵抗化用の書き込み電圧パルスを印加する。
 これにより、選択されたメモリセルの抵抗変化層の抵抗値が、高抵抗状態に属する異なる複数の抵抗値のうち、可変負荷抵抗回路311に現に設定されている負荷抵抗値に対応する抵抗値に設定され、多値記憶が実現される。
 図13は、本発明の実施の形態3に係る不揮発性記憶装置の他の概略構成を示すブロック図である。図13に示すように、VCP電源308及び列選択回路304と書き込み回路305との間には、実施の形態2の変形例における可変負荷抵抗202及び固定負荷抵抗204(図9を参照)と同様に、MOSトランジスタで構成された可変負荷抵抗回路311及び固定負荷抵抗312が設けられている。この構成の場合、高抵抗化工程において、書き込まれるデータの値に応じて可変負荷抵抗回路311のゲート電圧Vgを所定の値に設定し、これによって可変負荷抵抗回路311の抵抗値を変化させる。
 可変負荷抵抗回路311は、メモリセルアレイ302が備える複数のメモリセルの中から、行選択回路/ドライバ303及び列選択回路304によって選択されたメモリセルと並列に接続され、さらに固定負荷抵抗312と直列に接続されることによって電気回路を構成する。書き込み回路305はVCP電源308とともに、当該電気回路に高抵抗化用の書き込み電圧パルスを印加する。ここで、書き込み回路305とVCP電源308とを合わせた回路が、本発明の書き込み回路の一例である。
 これにより、選択されたメモリセルの抵抗変化層の抵抗値が高抵抗状態に属する異なる複数の抵抗値のうち、可変負荷抵抗回路311に現に設定されている負荷抵抗値に対応する抵抗値に設定され、多値記憶が実現される。
 (実施の形態4)
 実施の形態4は、実施の形態1又は2において説明した不揮発性記憶装置と同様、不揮発性記憶素子の抵抗値が異なる複数の高抵抗状態を用いて多値記憶を実現する不揮発性記憶装置であり、ワード線とビット線の交差する点にメモリセルが配置される、クロスポイント型の不揮発性記憶装置である。以下、この不揮発性記憶装置の構成及び動作について説明する。
 [不揮発性記憶装置の構成及び動作]
 図14は、本発明の実施の形態4に係る不揮発性記憶装置の構成の一例を示すブロック図である。図14に示すように、本実施の形態4に係る不揮発性記憶装置400は、半導体基板上にメモリ本体部401を備えており、このメモリ本体部401は、メモリセルアレイ402と、行選択回路/ドライバ403と、列選択回路/ドライバ404と、情報の書き込みを行うための書き込み回路405と、選択ビット線に流れる電流量を検出し、3値以上のデータのうちの何れのデータが記憶されているかの判別を行うセンスアンプ406と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路407とを具備している。
 図14では、説明を容易にするために、メモリセルアレイ302は3行×3列の場合を例に説明するが、図11の場合と同様、これ以外のメモリセルアレイの構成、例えば、4行×4列や、16行×16列、M行×N列(M、Nはそれぞれ自然数)などの場合であってもかまわない。
 また、不揮発性記憶装置400は、外部から入力されるアドレス信号を受け取るアドレス入力回路408と、外部から入力されるコントロール信号に基づいて、メモリ本体部401の動作を制御する制御回路409と、列選択回路/ドライバ404に接続された可変負荷抵抗回路410とをさらに備えている。
 メモリセルアレイ402は、図14に示すように、半導体基板上に互い平行に形成された複数のワード線WL0,WL1,WL2,…と、これらのワード線WL0,WL1,WL2,…の上方にその半導体基板の主面に平行な面内において互いに平行に、しかも複数のワード線WL0,WL1,WL2,…に立体交差するように形成された複数のビット線BL0,BL1,BL2,…とを備えている。
 また、これらのワード線WL0,WL1,WL2,…及びビット線BL0,BL1,BL2,…の交点に対応してマトリクス状に設けられた複数のメモリセルM211,M212,M213,M221,M222,M223,M231,M232,M123,…(以下、「メモリセルM211,M212,…」と表す)が設けられている。
 ここで、メモリセルM211,M212,…は、実施の形態1の不揮発性記憶素子101に相当する不揮発性記憶素子と、MIM(Metal-Insulator-Metal)ダイオード又はMSM(Metal-Semiconductor-Metal)ダイオード等で構成される双方向型の電流制御素子とが接続されて構成されている。なお、双方向型の電流制御素子は、当該電流制御素子が有している非線形な電流電圧特性(ダイオード特性)のために、メモリセルの両端が直接接続されているワード線とビット線との間に書き込み電圧パルスが印加された場合にのみ、当該メモリセルに電流を流す選択素子として機能する。
 アドレス入力回路408は、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路/ドライバ403へ出力するとともに、列アドレス信号を列選択回路/ドライバ404へ出力する。ここで、アドレス信号は、複数のメモリセルM211,M212,…のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号はアドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は同じく列のアドレスを示す信号である。
 制御回路409は、情報の書き込み工程(低抵抗化工程及び高抵抗化工程)において、データ入出力回路407に入力された入力データDinに応じて、書き込み用電圧の印加を指示する書き込み信号を書き込み回路405へ出力する。他方、情報の読み出し工程において、制御回路409は、読み出し動作を指示する読み出し信号を列選択回路/ドライバ404へ出力する。
 行選択回路/ドライバ403は、アドレス入力回路408から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0,WL1,WL2,…のうちの何れかを選択し、その選択されたワード線に対して、所定の電圧を印加する。
 また、列選択回路/ドライバ404は、アドレス入力回路408から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0,BL1,BL2,…のうちの何れかを選択し、その選択されたビット線に対して、書き込み用電圧または読み出し用電圧を印加する。
 書き込み回路405は、制御回路409から出力された書き込み信号を受け取った場合、行選択回路/ドライバ403に対して選択されたワード線に対する電圧の印加を指示する信号を出力するとともに、列選択回路/ドライバ404に対して選択されたビット線に対して書き込み用電圧の印加を指示する信号を出力する。ここで、低抵抗化工程の場合は、選択されたメモリセルに、可変負荷抵抗回路410を介することなく、低抵抗化のための書き込み用電圧が印加される。他方、高抵抗化工程の場合は、選択されたメモリセルに、可変負荷抵抗回路410を介して、高抵抗化のための書き込み用電圧が印加される。
 可変負荷抵抗回路410は、メモリセルアレイ402が備えるメモリセルM211,M212,…のうち、行選択回路/ドライバ403及び列選択回路/ドライバ404によって選択されたメモリセルと電気的に接続される。この可変負荷抵抗回路410は、実施の形態1における可変負荷抵抗102又は実施の形態2における可変負荷抵抗202に相当し、高抵抗化工程において、高抵抗状態としての抵抗値が所定の複数の値をとるように設定されている。これにより、選択されたメモリセルが備える抵抗変化層の高抵抗状態を複数の抵抗値に設定することが可能になる。
 センスアンプ406は、情報の読み出し工程において、読み出し対象となる選択ビット線に流れる電流量を検出し、記憶されているデータを判別する。本実施の形態の場合、各メモリセルM211,M212,…の高抵抗状態を複数の抵抗値設定し、それらの各抵抗値と各データとを対応させる。そのため、センスアンプ406は、選択されたメモリセルの抵抗変化層が低抵抗状態又は高抵抗状態の何れの状態にあるのか、さらに高抵抗状態の場合は、複数の高抵抗状態の抵抗値の何れの抵抗値にあるのかを判別し、それに応じて3値以上のデータのうち何れのデータが記憶されているのかを判定する。その結果得られた出力データDOは、データ入出力回路407を介して、外部回路へ出力される。
 上記のように動作することにより、不揮発性記憶装置400は、3値以上の多値記憶を実現する。
 なお、図14に示す本実施の形態4に係る不揮発性記憶装置におけるメモリセルアレイを、多層にして積み重ねることによって、多層化構造の不揮発性記憶装置を実現することも可能である。このように構成された多層化メモリセルアレイを設けることによって、超大容量不揮発性記憶装置を実現することが可能となる。
 また、実施の形態4の場合も、図12及び図13に示した実施の形態3の場合と同様にして、可変負荷抵抗回路410を構成することができる。
 図15は、不揮発性記憶装置400において、具体的に可変負荷抵抗回路410を適用した概略構成を示すブロック図である。図15に示すように、列選択回路/ドライバ404と書き込み回路405との間には、実施の形態1における可変負荷抵抗102(図2を参照)と同様に3つの抵抗及びスイッチング素子により構成された可変負荷抵抗回路410が設けられている。この構成の場合、高抵抗化工程においてこれらのスイッチング素子をオン/オフし、これによって可変負荷抵抗回路410の抵抗値を変化させる。
 可変負荷抵抗回路410は、メモリセルアレイ402が備える複数のメモリセルの中から、行選択回路/ドライバ403及び列選択回路/ドライバ404によって選択されたメモリセルと直列に接続されることによって電気回路を構成する。書き込み回路405は、当該電気回路に高抵抗化用の書き込み電圧パルスを印加する。
 これにより、選択されたメモリセルの抵抗変化層の抵抗値が、高抵抗状態に属する異なる複数の抵抗値のうち、可変負荷抵抗回路410に現に設定されている負荷抵抗値に対応する抵抗値に設定され、多値記憶が実現される。
 図16は、不揮発性記憶装置400の他の概略構成を示すブロック図である。図16に示すように、行選択回路/ドライバ403及び列選択回路/ドライバ404と書き込み回路405との間には、実施の形態2の変形例における可変負荷抵抗202及び固定負荷抵抗204(図9を参照)と同様に、MOSトランジスタで構成された可変負荷抵抗回路410及び固定負荷抵抗412が設けられている。この構成の場合、高抵抗化工程において、書き込まれるデータの値に応じて可変負荷抵抗回路410のゲート電圧Vgを所定の値に設定し、これによって可変負荷抵抗回路410の抵抗値を変化させる。
 可変負荷抵抗回路410は、メモリセルアレイ402が備える複数のメモリセルの中から、行選択回路/ドライバ403及び列選択回路/ドライバ404によって選択されたメモリセルと並列に接続され、さらに固定負荷抵抗412と直列に接続されることによって電気回路を構成する。書き込み回路405は、当該電気回路に高抵抗化用の書き込み電圧パルスを印加する。
 これにより、選択されたメモリセルの抵抗変化層の抵抗値が、高抵抗状態に属する異なる複数の抵抗値のうち、可変負荷抵抗回路410に現に設定されている負荷抵抗値に対応する抵抗値に設定され、多値記憶が実現される。
 本発明の不揮発性記憶装置及び不揮発性記憶装置の駆動方法はそれぞれ、パーソナルコンピュータまたは携帯型電話機などの種々の電子機器に用いられる不揮発性記憶装置及びその駆動方法などとして有用である。
 100  不揮発性記憶装置
 101  不揮発性記憶素子
 102  可変負荷抵抗
 102A,102A,102A  抵抗
 102B,102B,102B  スイッチング素子
 103  電源
 104  可変負荷抵抗回路
 108  電気回路
 111  第2電極
 112  第1電極
 113  抵抗変化層
 113a  第1の遷移金属酸化物層(第1タンタル酸化物層、第1ハフニウム酸化物層、第1ジルコニウム酸化物層)
 113b  第2の遷移金属酸化物層(第2タンタル酸化物層、第2ハフニウム酸化物層、第2ジルコニウム酸化物層)
 120  基板
 200  不揮発性記憶装置
 201  不揮発性記憶素子
 202  可変負荷抵抗
 202A,202A,202A  抵抗
 202B,202B,202B  スイッチング素子
 203  電源
 204  固定負荷抵抗
 205  選択トランジスタ
 208  電気回路
 300  不揮発性記憶装置
 301  メモリ本体部
 302  メモリセルアレイ
 303  行選択回路/ドライバ
 304  列選択回路
 305  書き込み回路
 306  センスアンプ
 307  データ入出力回路
 308  VCP電源
 309  アドレス入力回路
 310  制御回路
 311  可変負荷抵抗回路
 312  固定負荷抵抗
 400  不揮発性記憶装置
 401  メモリ本体部
 402  メモリセルアレイ
 403  行選択回路/ドライバ
 404  列選択回路/ドライバ
 405  書き込み回路
 406  センスアンプ
 407  データ入出力回路
 408  アドレス入力回路
 409  制御回路
 410  可変負荷抵抗回路
 412  固定負荷抵抗

Claims (20)

  1.  第1電極と、第2電極と、前記第1電極と前記第2電極との間に配設され、前記第1電極及び前記第2電極間に第1の極性の電圧パルスが印加された場合に抵抗状態が高抵抗状態から当該高抵抗状態よりも抵抗値が低い低抵抗状態へ変化し、前記第1電極及び前記第2電極間に前記第1の極性とは異なる第2の極性の電圧パルスが印加された場合に抵抗状態が低抵抗状態から当該低抵抗状態よりも抵抗値が高い高抵抗状態へ変化する抵抗変化層と、を有する不揮発性記憶素子と、
     前記不揮発性記憶素子と電気的に接続されることによって電気回路を構成する可変負荷抵抗と、
     前記不揮発性記憶素子に前記第2の極性の電圧パルスを与える書き込み電圧パルスが前記電気回路に印加される場合に、前記可変負荷抵抗の抵抗値を、前記抵抗変化層の抵抗値が互いに異なる高抵抗状態にそれぞれ対応する複数の負荷抵抗値のうちの何れか1つの負荷抵抗値に設定する制御回路と、
     を備える不揮発性記憶装置。
  2.  前記電気回路は、前記不揮発性記憶素子と前記可変負荷抵抗とが直列に接続されることによって構成され、
     前記制御回路は、前記抵抗変化層をより大きい抵抗値を持つ高抵抗状態へ変化させるために、前記可変負荷抵抗の抵抗値をより小さい負荷抵抗値に設定する、
     請求項1に記載の不揮発性記憶装置。
  3.  前記不揮発性記憶装置は、さらに、固定された抵抗値を持つ固定負荷抵抗を備え、
     前記電気回路は、前記不揮発性記憶素子と前記可変負荷抵抗とが並列に接続された回路と、前記固定負荷抵抗とが直列に接続されることによって構成され、
     前記制御回路は、前記抵抗変化層をより大きい抵抗値を持つ高抵抗状態へ変化させるために、前記可変負荷抵抗の抵抗値をより大きい負荷抵抗値に設定する、
     請求項1に記載の不揮発性記憶装置。
  4.  前記制御回路は、
     低抵抗状態の前記抵抗変化層及び前記可変負荷抵抗に前記第2の極性の電圧パルスが印加される場合に、
     前記可変負荷抵抗を第1の負荷抵抗値に設定することによって、前記抵抗変化層を第1の高抵抗状態に変化させ、
     前記可変負荷抵抗を前記第1の負荷抵抗値より小さい第2の負荷抵抗値に設定することによって、前記抵抗変化層を前記第1の高抵抗状態よりも抵抗値の大きい第2の高抵抗状態に変化させる、
     請求項1に記載の不揮発性記憶装置。
  5.  前記可変負荷抵抗は、少なくとも第1の負荷抵抗値と前記第1の負荷抵抗値より小さい第2の負荷抵抗値とに切り替え可能であり、
     前記抵抗変化層が低抵抗状態であり、かつ前記可変負荷抵抗が前記第1の負荷抵抗値である場合に、前記抵抗変化層及び前記可変負荷抵抗に印加された前記第2の極性の電圧パルスによって、前記抵抗変化層が第1の高抵抗状態となり、
     前記抵抗変化層が前記低抵抗状態であり、かつ前記可変負荷抵抗が前記第2の負荷抵抗値である場合に、前記抵抗変化層及び前記可変負荷抵抗に印加された前記第2の極性の電圧パルスによって、前記抵抗変化層が前記第1の高抵抗状態よりも抵抗値の大きい第2の高抵抗状態となる、
     請求項1に記載の不揮発性記憶装置。
  6.  前記不揮発性記憶装置は、さらに、前記可変負荷抵抗の抵抗値が前記複数の負荷抵抗値の何れに設定されている場合も、前記書き込み電圧パルスを前記電気回路に同一振幅にて印加する書き込み回路を備える、
     請求項1から5の何れか1項に記載の不揮発性記憶装置。
  7.  前記抵抗変化層及び前記可変負荷抵抗に前記第1の極性の電圧パルスを印加する場合に、前記抵抗変化層の低抵抗状態が1つのみ設定可能なように構成されている、
     請求項1から6の何れか1項に記載の不揮発性記憶装置。
  8.  前記抵抗変化層は第1の遷移金属で構成される第1の遷移金属酸化物と第2の遷移金属で構成される第2の遷移金属酸化物との積層構造で構成され、当該第1の遷移金属酸化物の酸素不足度が、当該第2の遷移金属酸化物の酸素不足度より大きい、
     請求項1から7の何れか1項に記載の不揮発性記憶装置。
  9.  前記第2の遷移金属酸化物の抵抗値は、前記第1の遷移金属酸化物の抵抗値より大きい、
     請求項8に記載の不揮発性記憶装置。
  10.  前記第1の遷移金属と前記第2の遷移金属は同じ金属である、
     請求項8又は9に記載の不揮発性記憶装置。
  11.  前記第1の遷移金属酸化物及び前記2の遷移金属酸化物は、何れもタンタル酸化物で構成される、
     請求項10に記載の不揮発性記憶装置。
  12.  前記第1の遷移金属と前記第2の遷移金属は異なる金属であり、前記第2の遷移金属の標準電極電位は、前記第1の遷移金属の標準電極電位より低い、
     請求項8又は9に記載の不揮発性記憶装置。
  13.  半導体基板上に形成され、互いに交差する方向に配列された複数の第1配線および複数の第2配線と、前記複数の第1配線および前記複数の第2配線の交点に対応してそれぞれ設けられた複数のメモリセルと、を有するメモリセルアレイと、
     前記複数のメモリセルの中から選択される1つの選択メモリセルと電気的に接続されることによって電気回路を構成する可変負荷抵抗回路と、
     前記可変負荷抵抗回路の抵抗値を複数の負荷抵抗値のうち何れか1つの負荷抵抗値に設定する制御回路と、
     を備え、
     前記複数のメモリセルのそれぞれは、選択素子と不揮発性記憶素子とが直列に接続されることによって構成され、
     前記不揮発性記憶素子のそれぞれは、第1電極と、第2電極と、前記第1電極と前記第2電極との間に配設され、前記第1電極及び前記第2電極間に第1の極性の電圧パルスが印加された場合に抵抗状態が高抵抗状態から当該高抵抗状態よりも抵抗値が低い低抵抗状態へ変化し、前記第1電極及び前記第2電極間に前記第1の極性とは異なる第2の極性の電圧パルスが印加された場合に抵抗状態が低抵抗状態から当該低抵抗状態よりも抵抗値が高い高抵抗状態へ変化する抵抗変化層とを有し、
     前記制御回路は、前記選択メモリセルに含まれる前記不揮発性記憶素子に前記第2の極性の電圧パルスを与える書き込み電圧パルスが前記電気回路に印加される場合に、前記可変負荷抵抗回路の抵抗値を、前記抵抗変化層の抵抗値が互いに異なる高抵抗状態にそれぞれ対応する複数の負荷抵抗値のうち何れか1つの負荷抵抗値に設定する、
     不揮発性記憶装置。
  14.  前記電気回路は、前記選択メモリセルと前記可変負荷抵抗回路とが直列に接続されることによって構成され、
     前記制御回路は、前記選択メモリセルに含まれる前記抵抗変化層をより大きい抵抗値を持つ高抵抗状態へ変化させるために、前記可変負荷抵抗回路の抵抗値をより小さい負荷抵抗値に設定する、
     請求項13に記載の不揮発性記憶装置。
  15.  前記不揮発性記憶装置は、さらに、固定された抵抗値を持つ固定負荷抵抗を備え、
     前記電気回路は、前記選択メモリセルと前記可変負荷抵抗回路とが電気的に並列に接続された回路と、前記固定負荷抵抗とが直列に接続されることによって構成され、
     前記制御回路は、前記選択メモリセルに含まれる前記抵抗変化層をより大きい抵抗値を持つ高抵抗状態へ変化させるために、前記可変負荷抵抗の抵抗値をより大きい負荷抵抗値に設定する、
     請求項13に記載の不揮発性記憶装置。
  16.  前記選択素子のそれぞれはトランジスタである、
     請求項13に記載の不揮発性記憶装置。
  17.  前記選択素子のそれぞれは双方向ダイオードである
     請求項13に記載の不揮発性記憶装置。
  18.  不揮発性記憶装置の駆動方法であって、前記不揮発性記憶装置は、
     第1電極と、第2電極と、前記第1電極と前記第2電極との間に配設され、前記第1電極及び前記第2電極間に第1の極性の電圧パルスが印加された場合に抵抗状態が高抵抗状態から当該高抵抗状態よりも抵抗値が低い低抵抗状態へ変化し、前記第1電極及び前記第2電極間に前記第1の極性とは異なる第2の極性の電圧パルスが印加された場合に抵抗状態が低抵抗状態から当該低抵抗状態よりも抵抗値が高い高抵抗状態へ変化する抵抗変化層と、を有する不揮発性記憶素子と、
     前記不揮発性記憶素子と電気的に接続されることによって電気回路を構成する可変負荷抵抗と、
     を備え、
     前記駆動方法は、
     前記可変負荷抵抗の抵抗値を、前記抵抗変化層の抵抗値が互いに異なる高抵抗状態にそれぞれ対応する複数の負荷抵抗値のうちの何れか1つの負荷抵抗値に設定する設定ステップと、
     前記可変負荷抵抗の抵抗値が前記1つの負荷抵抗値に設定されている状態で、前記不揮発性記憶素子に前記第2の極性の電圧パルスを与える書き込み電圧パルスを、前記電気回路に印加する書き込みステップと、
     を含む、
     不揮発性記憶装置の駆動方法。
  19.  前記電気回路は、前記不揮発性記憶素子と前記可変負荷抵抗とが直列に接続されることによって構成され、
     前記書き込みステップにおいて、前記抵抗変化層は、前記可変負荷抵抗に設定されている負荷抵抗値が小さいほど、大きい抵抗値を持つ高抵抗状態へ変化する、
     請求項18に記載の不揮発性記憶装置の駆動方法。
  20.  前記不揮発性記憶装置は、さらに、固定された抵抗値を持つ固定負荷抵抗を備え、
     前記電気回路は、前記不揮発性記憶素子と前記可変負荷抵抗とが並列に接続された回路と、前記固定負荷抵抗とが直列に接続されることによって構成され、
     前記書き込みステップにおいて、前記抵抗変化層は、前記可変負荷抵抗に設定されている負荷抵抗値が大きいほど、大きい抵抗値を持つ高抵抗状態へ変化する、
     請求項18に記載の不揮発性記憶装置の駆動方法。
PCT/JP2012/000433 2011-01-27 2012-01-24 不揮発性記憶装置 WO2012102025A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011014945A JP2014075159A (ja) 2011-01-27 2011-01-27 不揮発性記憶装置及び不揮発性記憶装置の駆動方法
JP2011-014945 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012102025A1 true WO2012102025A1 (ja) 2012-08-02

Family

ID=46580600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000433 WO2012102025A1 (ja) 2011-01-27 2012-01-24 不揮発性記憶装置

Country Status (2)

Country Link
JP (1) JP2014075159A (ja)
WO (1) WO2012102025A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463513A (zh) * 2014-05-20 2017-02-22 美光科技公司 极性、手性及非中心对称铁电材料,包含此类材料的存储器单元及相关装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025914A (ja) * 2003-06-12 2005-01-27 Sharp Corp 不揮発性半導体記憶装置及びその制御方法
JP2005235360A (ja) * 2004-01-20 2005-09-02 Sony Corp 記憶装置
WO2008096674A1 (ja) * 2007-02-09 2008-08-14 Sharp Kabushiki Kaisha 不揮発性半導体記憶装置及びその書き換え方法
WO2009107370A1 (ja) * 2008-02-25 2009-09-03 パナソニック株式会社 抵抗変化素子の駆動方法およびそれを用いた抵抗変化型記憶装置
WO2010116754A1 (ja) * 2009-04-10 2010-10-14 パナソニック株式会社 不揮発性記憶素子の駆動方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025914A (ja) * 2003-06-12 2005-01-27 Sharp Corp 不揮発性半導体記憶装置及びその制御方法
JP2005235360A (ja) * 2004-01-20 2005-09-02 Sony Corp 記憶装置
WO2008096674A1 (ja) * 2007-02-09 2008-08-14 Sharp Kabushiki Kaisha 不揮発性半導体記憶装置及びその書き換え方法
WO2009107370A1 (ja) * 2008-02-25 2009-09-03 パナソニック株式会社 抵抗変化素子の駆動方法およびそれを用いた抵抗変化型記憶装置
WO2010116754A1 (ja) * 2009-04-10 2010-10-14 パナソニック株式会社 不揮発性記憶素子の駆動方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463513A (zh) * 2014-05-20 2017-02-22 美光科技公司 极性、手性及非中心对称铁电材料,包含此类材料的存储器单元及相关装置及方法
US10242989B2 (en) 2014-05-20 2019-03-26 Micron Technology, Inc. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods
CN106463513B (zh) * 2014-05-20 2019-06-28 美光科技公司 铁电存储器单元及形成半导体结构的方法

Also Published As

Publication number Publication date
JP2014075159A (ja) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5313413B2 (ja) 抵抗変化素子の駆動方法、及び不揮発性記憶装置
JP4607257B2 (ja) 不揮発性記憶素子及び不揮発性記憶装置
JP5468087B2 (ja) 不揮発性記憶素子及び不揮発性記憶装置
US9082479B2 (en) Nonvolatile memory element and nonvolatile memory device
US8957399B2 (en) Nonvolatile memory element and nonvolatile memory device
WO2011013344A1 (ja) 抵抗変化型不揮発性記憶装置及びその書き込み方法
US8854864B2 (en) Nonvolatile memory element and nonvolatile memory device
JP2013157469A (ja) 可変抵抗素子、及び、不揮発性半導体記憶装置
WO2010109876A1 (ja) 抵抗変化素子の駆動方法及び不揮発性記憶装置
JPWO2008126365A1 (ja) 不揮発性記憶装置、不揮発性記憶素子および不揮発性記憶素子アレイ
JP5291269B2 (ja) 不揮発性半導体記憶素子、不揮発性半導体記憶装置およびその製造方法
JP2010021381A (ja) 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
KR102631895B1 (ko) 기억 소자 및 기억 장치
CN109791791B (zh) 非易失性存储装置、以及驱动方法
JP5367198B1 (ja) 抵抗変化型不揮発性記憶装置
JP2011044443A (ja) 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
WO2012102025A1 (ja) 不揮発性記憶装置
JP5312709B1 (ja) 抵抗変化素子の駆動方法及び不揮発性記憶装置
JP5291270B1 (ja) 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法
JP2012227275A (ja) 抵抗変化型不揮発性メモリセルおよび抵抗変化型不揮発性記憶装置
WO2020136974A1 (ja) 抵抗変化型不揮発性記憶素子およびそれを用いた抵抗変化型不揮発性記憶装置
JP2014086692A (ja) 不揮発性記憶素子及び不揮発性記憶素子の駆動方法
JP2012169000A (ja) 抵抗変化素子の駆動方法、不揮発性記憶装置、抵抗変化素子および多値記憶方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738755

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP