JP5830655B2 - 不揮発性記憶素子の駆動方法 - Google Patents

不揮発性記憶素子の駆動方法 Download PDF

Info

Publication number
JP5830655B2
JP5830655B2 JP2014090344A JP2014090344A JP5830655B2 JP 5830655 B2 JP5830655 B2 JP 5830655B2 JP 2014090344 A JP2014090344 A JP 2014090344A JP 2014090344 A JP2014090344 A JP 2014090344A JP 5830655 B2 JP5830655 B2 JP 5830655B2
Authority
JP
Japan
Prior art keywords
electrode
resistance
nonvolatile memory
metal oxide
memory element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014090344A
Other languages
English (en)
Other versions
JP2014232559A (ja
Inventor
健生 二宮
健生 二宮
幸治 片山
幸治 片山
高木 剛
剛 高木
魏 志強
志強 魏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014090344A priority Critical patent/JP5830655B2/ja
Publication of JP2014232559A publication Critical patent/JP2014232559A/ja
Application granted granted Critical
Publication of JP5830655B2 publication Critical patent/JP5830655B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0071Write using write potential applied to access device gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Description

本開示は、不揮発性記憶素子の駆動方法関する。
近年、デジタル技術の進展に伴って、携帯情報機器や情報家電等の電子機器がより一層高機能化している。これらの電子機器の高機能化に伴い、使用される半導体素子の微細化及び高速化が急速に進んでいる。その中でも、フラッシュメモリに代表されるような大容量の不揮発性記憶装置の用途が急速に拡大している。さらに、このフラッシュメモリに置き換わる次世代の不揮発性記憶装置として、電気的信号によって抵抗値が可逆的に変化する性質を有する抵抗変化型の不揮発性記憶素子を備えた不揮発性記憶装置の研究開発が進んでいる。
特許文献1は、基板に形成されたトランジスタと、前記トランジスタのドレインに連結されているデータ貯蔵部とを備え、前記データ貯蔵部の所定の電圧範囲で現れる抵抗特性が別の電圧範囲で現れる抵抗特性と全く異なるデータ貯蔵物質層を含むことを特徴とする1T−1Rまたは1D−1Rで構成された不揮発性メモリ装置を開示する。さらに特許文献1には、データ貯蔵物質層として使用できる可変抵抗物質層として、ニッケル酸化膜(NiO)、バナジウム酸化膜(V)、亜鉛酸化膜(ZnO)、ニオブ酸化膜(Nb)、チタン酸化膜(TiO)、タングステン酸化膜(WO)またはコバルト酸化膜(CoO)等のような遷移金属酸化膜が例示されている。
非特許文献1は、可変抵抗物質層として、PCMO(Pr1−xCaMnO)が用いられている。
特開2004−363604号公報
W.W.Zhuang et al., "Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory(RRAM)", IEDM Technical Digest, pp.193−196, December 2002
本発明は、不揮発性記憶素子において抵抗値のばらつきを低減させることを目的としている。
上記目的を達成するために、本発明に係る駆動方法の一態様(aspect)は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に設けられ、前記第1電極と前記第2電極との間に印加される電圧パルスに応じて、低抵抗状態と前記低抵抗状態よりも抵抗値が高い高抵抗状態との間を可逆的に変化する抵抗変化層と、を有する抵抗変化型素子と、前記第1電極に接続された第1入出力端子と、第2入出力端子と、前記第1入出力端子と前記第2入出力端子との間の導通を制御するゲート端子と、を有する電界効果トランジスタと、を備える、不揮発性記憶素子の駆動方法であって、前記抵抗変化層を前記低抵抗状態から前記高抵抗状態へと変化させる際に、前記第2電極と前記第2入出力端子との間に第1の極性の消去電圧パルスを印加し、前記抵抗変化層を前記高抵抗状態から前記低抵抗状態へと変化させる際に、前記第2電極と前記第2入出力端子との間に前記第1の極性とは異なる第2の極性の書き込み電圧パルスを印加し、前記第2の極性は、前記電界効果トランジスタの前記第2入出力端子がソース端子となる極性であり、前記高抵抗状態にある前記抵抗変化層を前記低抵抗状態にするために、前記第2電極と前記第2入出力端子との間に第1書き込み電圧パルスを印可する場合に、前記電界効果トランジスタのゲート端子に、第1ゲート電圧を印加し、過抵抗状態にある前記抵抗変化型層を前記低抵抗状態にするために、前記第2電極と前記第2入出力端子との間に電圧の絶対値が前記第1書き込み電圧パルスよりも大きい第2書き込み電圧パルスを印可する場合に、前記電界効果トランジスタのゲート端子に、電圧の絶対値が前記第1ゲート電圧よりも小さい第2ゲート電圧を印加する。
本発明の不揮発性記憶素子の駆動方法によれば、不揮発性記憶素子における抵抗値のばらつきを低減させることができる。
図1は、第1実施形態にかかる不揮発性記憶素子が備える抵抗変化型素子の概略構成の一例を示す断面図である。 図2Aは、第1実施形態にかかる不揮発性記憶素子の一例を示す等価回路図である。 図2Bは、第1実施形態にかかる抵抗変化型素子の一例を示す等価回路図である。 図2Cは、第1実施形態にかかる電界効果トランジスタの一例を示す等価回路図である。 図3は、第1実施形態にかかる不揮発性記憶素子の概略構成の一例を示す断面図である。 図4は、第1実施形態にかかる不揮発性記憶素子の駆動方法の一例を示すフローチャートである。 図5は、実験例にかかる不揮発性記憶素子の抵抗変化動作の一例を示す図である。 図6Aは、実験例にかかる不揮発性記憶素子における抵抗値のばらつきを比較する図である。 図6Bは、実験例のフローチャートである。 図7は、実験例にかかる不揮発性記憶素子において、高抵抗状態と過抵抗状態とのそれぞれについて、書き込みステップにおける抵抗値と電圧との関係を示す図である。 図8は、実験例にかかる不揮発性記憶素子において、ゲート電圧を一定として、書き込み電圧を変えた場合のN型MISFETの負荷曲線を示す図である。 図9は、実験例にかかる不揮発性記憶素子において、書き込み電圧に応じてゲート電圧を変えた場合のN型MISFETの負荷曲線を示す図である。 図10は、第1実施形態の変形例にかかる不揮発性記憶素子が備える抵抗変化型素子の概略構成の一例を示す断面図である。 図11は、第1実施形態の変形例にかかる不揮発性記憶素子の概略構成の一例を示す断面図である。 図12は、第2実施形態にかかる不揮発性記憶装置の構成を示すブロック図である。 図13Aは、第2実施形態にかかる不揮発性記憶装置の消去動作(低抵抗状態から高抵抗状態へ変化させる場合)における電圧印加のパターンを示すタイミングチャートである。 図13Bは、第2実施形態にかかる不揮発性記憶装置の通常の書込動作(高抵抗状態から低抵抗状態へ変化させる場合)における電圧印加のパターンを示すタイミングチャートである。 図13Cは、第2実施形態にかかる不揮発性記憶装置の、過抵抗状態から低抵抗状態へ変化させる場合における電圧印加のパターンを示すタイミングチャートである。 図13Dは、第2実施形態にかかる不揮発性記憶装置の読出動作における電圧印加のパターンを示すタイミングチャートである。
抵抗変化型の不揮発性記憶素子において抵抗値のばらつきを低減させるべく、鋭意検討が加えられた。その結果、以下の知見が得られた。
抵抗変化型の不揮発性記憶素子の場合、書き換え特性が問題になりうる。すなわち、抵抗値の低い状態(低抵抗状態)から変化することで実現される抵抗値の高い状態(高抵抗状態)における抵抗値は常に一定ではなく、通常の高抵抗状態における抵抗値よりも高くなる場合がある。このような過抵抗状態にある不揮発性記憶素子に、通常の書き込み電圧パルスを印加しても、低抵抗状態に書き込めない。かかる場合にも、不揮発性記憶素子を低抵抗状態に書き込むためには、通常の書き込み電圧パルスよりも高い電圧を有するパルスを素子に印加する必要がある。
しかしながら、通常よりも高い電圧を有するパルスで書き込みを行った場合には、不揮発性記憶素子に大きな電流が流れてしまうため、不揮発性記憶素子の特性が劣化し、抵抗値のばらつきが増大する。抵抗値のばらつきは、いったん発生すると元に戻らない。かかる抵抗値のばらつきは、大きな電流が不揮発性記憶素子に流れることによる、フィラメントの不可逆的な拡大に起因すると推察された。
かかる抵抗値のばらつきを低減するためには、過抵抗状態にある不揮発性記憶素子を低抵抗状態に変化させる場合において、不揮発性記憶素子に流れる電流を制限するのが有効である。電流制限には、不揮発性記憶素子が備える電界効果トランジスタのゲート電圧を利用しうる。
ゲート電圧により電流制限を精度よく行うためには、基板バイアス効果の影響を小さくする必要がある。そのためには、電界効果トランジスタの2個の主電極のうち、低抵抗化時に書き込み電圧パルスを印加する際、抵抗変化型素子に接続されていない側の主電極がソース電極となるのが好ましい。抵抗変化型素子の接続されている側の主電極がソース電極になると、ソース電極の電位が、抵抗変化型素子による電位降下の影響を受けて変動してしまうからである。
なお、ゲート電圧とは、基板電位を基準としたゲート端子の電位、すなわち基板とゲート端子との電位差をいう。
かかる関係が実現するように、抵抗変化型素子の極性(低抵抗化時に流れる電流の向き)と電界効果トランジスタの極性(N型かP型か)とを考慮して、抵抗変化型素子と電界効果トランジスタとを接続し、メモリセルを構成する。すなわち、低抵抗化時に抵抗変化型素子から遠い側の主電極がソース電極となるように、抵抗変化型素子と電界効果トランジスタとを接続する。
その上で、不揮発性記憶素子が過抵抗状態にあると判定された場合、不揮発性記憶素子を低抵抗状態へと書き込む際に、電界効果トランジスタのゲート電圧を通常よりも低く設定する。かかる制御により、電界効果トランジスタによる適切な電流制限を実現することができる。よって、低抵抗化時に不揮発性記憶素子に過大な電流が流れることによる抵抗値のばらつきを、低減することができる。
以下、添付図面を参照しつつ、本発明の実施形態について説明する。
以下で説明する実施形態は、いずれも本発明の一具体例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、あくまで一例であり、本発明を限定するものではない。また、以下の実施形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状及び寸法比等については正確な表示ではない場合がある。また、製造方法においては、必要に応じて、各工程の順序等を変更でき、かつ、他の公知の工程を追加できる。
(第1実施形態)
第1実施形態の不揮発性記憶素子の駆動方法は、第1電極と、第2電極と、第1電極と第2電極との間に設けられ、第1電極と第2電極との間に印加される電圧パルスに応じて、低抵抗状態と低抵抗状態よりも抵抗値が高い高抵抗状態との間を可逆的に変化する抵抗変化層と、を有する抵抗変化型素子と、第1電極に接続された第1入出力端子と、第2入出力端子と、第1入出力端子と第2入出力端子との間の導通を制御するゲート端子と、を有する電界効果トランジスタと、を備える、不揮発性記憶素子の駆動方法であって、抵抗変化層を低抵抗状態から高抵抗状態へと変化させる際に、第2電極と第2入出力端子との間に第1の極性の消去電圧パルスを印加し、抵抗変化層を高抵抗状態から低抵抗状態へと変化させる際に、第2電極と第2入出力端子との間に第1の極性とは異なる第2の極性の書き込み電圧パルスを印加し、第2の極性は、電界効果トランジスタの第2入出力端子がソース端子となる極性であり、高抵抗状態にある抵抗変化層を低抵抗状態にするために、第2電極と第2入出力端子との間に第1書き込み電圧パルスを印可する場合に、電界効果トランジスタのゲート端子に、第1ゲート電圧を印加し、過抵抗状態にある抵抗変化型層を低抵抗状態にするために、第2電極と第2入出力端子との間に電圧の絶対値が第1書き込み電圧パルスよりも大きい第2書き込み電圧パルスを印可する場合に、電界効果トランジスタのゲート端子に、電圧の絶対値が第1ゲート電圧よりも小さい第2ゲート電圧を印加する。
かかる構成では、不揮発性記憶素子における抵抗値のばらつきを低減させることができる。
「第1ゲート電圧」および「第2ゲート電圧」は、基板電位を基準としたゲート端子の電位、すなわち基板とゲート端子との電位差である。
「過抵抗状態」とは、低抵抗状態に変化させるために、高抵抗状態にある不揮発性記憶素子を低抵抗状態に変化させるために印加する電圧の絶対値よりも大きな絶対値の電圧を印加しなければならない程度に不揮発性記憶素子の抵抗値が高くなっている状態をいう。
「過抵抗状態」には、製造直後の不揮発性記憶素子であって、フォーミングをしなければ抵抗変化動作をするようにならない状態は含まない。「過抵抗状態」には、フォーミングが不要な不揮発性記憶素子であって、製造後、一度も電圧パルスが印加されていない状態を含む。
過抵抗状態にあるか否かの判定基準は、特に限定されない。
具体的には例えば、第1書き込み電圧パルスを印加することで低抵抗状態に変化する高抵抗状態の不揮発性記憶素子が取りうる抵抗値の範囲を高抵抗範囲とするとき、不揮発性記憶素子の抵抗値が、高抵抗範囲を超えて高い範囲にある場合に、不揮発性記憶素子が過抵抗状態にあると判定しうる。この場合、過抵抗状態の不揮発性記憶素子が取りうる抵抗値の範囲を過抵抗範囲とするとき、過抵抗範囲の下限の抵抗値は、高抵抗範囲の上限の抵抗値より高くしうる。
あるいは例えば、高抵抗状態にある不揮発性記憶素子に第1書き込み電圧パルスを印加しても低抵抗状態に変化しない場合に、不揮発性記憶素子が過抵抗状態にあると判定しうる。
上記駆動方法において、電界効果トランジスタが、N型FETであり、第1の極性は、第2入出力端子の電位が第2電極の電位よりも低くなる極性であり、第2の極性は、第2入出力端子の電位が第2電極の電位よりも高くなる極性であってもよい。
上記駆動方法において、電界効果トランジスタが、P型FETであり、第1の極性は、第2入出力端子の電位が第2電極の電位よりも高くなる極性であり、第2の極性は、第2入出力端子の電位が第2電極の電位よりも低くなる極性であってもよい。
上記駆動方法において、抵抗変化層は、酸素不足型の金属酸化物を有する第1抵抗変化層と、第1抵抗変化層よりも酸素不足度が小さい金属酸化物を有する第2抵抗変化層と、を備え、電界効果トランジスタが、N型FETであり、第1抵抗変化層が第2電極に接し、第2抵抗変化層が第1電極に接してもよい。
かかる構成では、優れた書き換え特性を有する不揮発性記憶素子を得ることができ、かつN型MISFETを用いることで、不揮発性記憶素子をより高密度に集積することが可能になる。
上記駆動方法において、抵抗変化層は、酸素不足型の金属酸化物を有する第1抵抗変化層と、第1抵抗変化層よりも酸素不足度が小さい金属酸化物を有する第2抵抗変化層と、を備え、電界効果トランジスタが、P型FETであり、第1抵抗変化層が第1電極に接し、第2抵抗変化層が第2電極に接してもよい。
かかる構成では、抵抗変化型素子の加工が容易な不揮発性記憶素子を得ることができる。
上記駆動方法において、電界効果トランジスタが、N型FETであり、第1電極の標準電極電位をE1とし、第2電極の標準電極電位をE2とするとき、E1>E2を満足してもよい。
かかる構成では、優れた書き換え特性を有する不揮発性記憶素子を得ることができ、かつN型MISFETを用いることで、不揮発性記憶素子をより高密度に集積することが可能になる。
上記駆動方法において、電界効果トランジスタが、P型FETであり、第1電極の標準電極電位をE1とし、第2電極の標準電極電位をE2とするとき、E2>E1を満足してもよい。
かかる構成では、抵抗変化型素子の加工が容易な不揮発性記憶素子を得ることができる。
上記駆動方法において、抵抗変化層は、第1金属酸化物を有する第1抵抗変化層と、第2金属酸化物を有する第2抵抗変化層と、を備え、第1金属酸化物と第2金属酸化物とが同じ金属の酸化物であり、第1金属酸化物の組成をMOxと表し、第2金属酸化物の組成をMOyと表すとき、y>xを満足してもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記駆動方法において、第1金属酸化物と第2金属酸化物とがタンタル酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記駆動方法において、第1金属酸化物と第2金属酸化物とがハフニウム酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記駆動方法において、第1金属酸化物と第2金属酸化物とがジルコニウム酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記駆動方法において、抵抗変化層は、第1金属酸化物を有する第1抵抗変化層と、第2金属酸化物を有する第2抵抗変化層と、を備え、第1金属酸化物と第2金属酸化物とが互いに異なる金属の酸化物であり、第1金属酸化物を構成する金属の標準電極電位をENとし、第2金属酸化物を構成する金属の標準電極電位をEMとすると、EN<EMを満足してもよい。
かかる構成では、第1金属酸化物と第2金属酸化物とが同じ金属の酸化物である場合に比べ、不揮発性記憶素子のより安定した抵抗変化動作を実現できる。
上記駆動方法において、第1金属酸化物がタンタル酸化物であり、第2金属酸化物がアルミニウム酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記駆動方法において、第1金属酸化物がタンタル酸化物であり、第2金属酸化物がハフニウム酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記駆動方法において、駆動方法は、抵抗変化層を低抵抗状態にする場合に、ゲート端子に第1ゲート電圧を与えると共に、第2電極と第2入出力端子との間に第1書き込み電圧パルスを印加するステップ(A)と、ステップ(A)の後に、抵抗変化層が低抵抗状態に変化していない場合には、抵抗変化層が過抵抗状態にあると判定し、ゲート端子に第2ゲート電圧を与えると共に、第2電極と第2入出力端子との間に第2書き込み電圧パルスを印加するステップ(B)と、を含んでもよい。
かかる構成では、効率的に過抵抗状態にある不揮発性記憶素子を低抵抗状態へと変化させることができる。
[装置構成]
<抵抗変化型素子の構成>
図1は、第1実施形態にかかる不揮発性記憶素子が備える抵抗変化型素子の概略構成の一例を示す断面図である。
図1に示す例において、第1実施形態にかかる不揮発性記憶素子が備える抵抗変化型素子10は、第1電極2と、第2電極4と、抵抗変化層3とを備えている。
抵抗変化層3は、第1電極2と第2電極4との間に設けられ、第1電極2と第2電極4との間に印加される電圧パルスに応じて、低抵抗状態と低抵抗状態よりも抵抗値が高い高抵抗状態との間を可逆的に変化する。第1電極2と抵抗変化層3とは物理的に接触している。第2電極4と抵抗変化層3とは物理的に接触している。
抵抗変化層3は、例えば、第1電極2と第2電極4との間に与えられる電圧の極性に応じて高抵抗状態と低抵抗状態とを可逆的に遷移する。図1に示す例では、抵抗変化層3は、第1電極2に接続する第2抵抗変化層3bと、第2電極4に接続する第1抵抗変化層3aの少なくとも2層を積層して構成される。ただし、抵抗変化層3が複数の層からなることは必須ではなく、抵抗変化層3が単一の層から構成されていてもよい。
第1抵抗変化層3aは、酸素不足型の第1金属酸化物で構成され、第2抵抗変化層3bは、第1金属酸化物よりも酸素不足度が小さい第2金属酸化物で構成されている。抵抗変化型素子の第2抵抗変化層3b中には、電気パルスの印加に応じて酸素不足度が可逆的に変化する微小な局所領域が形成されている。局所領域は、酸素欠陥サイトから構成されるフィラメントを含むと考えられる。
「酸素不足度」とは、金属酸化物において、その化学量論的組成(複数の化学量論的組成が存在する場合は、そのなかで最も抵抗値が高い化学量論的組成)の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。化学量論的組成の金属酸化物は、他の組成の金属酸化物と比べて、より安定でありかつより高い抵抗値を有している。
例えば、金属がタンタル(Ta)の場合、上述の定義による化学量論的組成の酸化物はTaであるので、TaO2.5と表現できる。TaO2.5の酸素不足度は0%であり、TaO1.5の酸素不足度は、酸素不足度=(2.5−1.5)/2.5=40%となる。また、酸素過剰の金属酸化物は、酸素不足度が負の値となる。なお、本明細書中では、特に断りのない限り、酸素不足度は正の値、0、負の値も含むものとして説明する。
酸素不足度の小さい酸化物は化学量論的組成の酸化物により近いため抵抗値が高く、酸素不足度の大きい酸化物は酸化物を構成する金属により近いため抵抗値が低い。
「酸素含有率」とは、総原子数に占める酸素原子の比率である。例えば、Taの酸素含有率は、総原子数に占める酸素原子の比率(O/(Ta+O))であり、71.4atm%となる。したがって、酸素不足型のタンタル酸化物は、酸素含有率は0より大きく、71.4atm%より小さいことになる。例えば、第1金属酸化物を構成する金属と、第2金属酸化物を構成する金属とが同種である場合、酸素含有率は酸素不足度と対応関係にある。すなわち、第2金属酸化物の酸素含有率が第1金属酸化物の酸素含有率よりも大きいとき、第2金属酸化物の酸素不足度は第1金属酸化物の酸素不足度より小さい。
抵抗変化層3を、タンタルを用いて構成する場合、第1抵抗変化層3aを構成する第1金属酸化物の組成をTaOとした場合にxが0.8以上1.9以下であり、かつ、第2抵抗変化層3bを構成する第2金属酸化物の組成をTaOとした場合にyが2.1以上である場合に、抵抗変化層3の抵抗値を安定して高速に変化させることができる。この場合、第2抵抗変化層3bの膜厚は、1nm以上8nm以下としてもよい。
抵抗変化層3を構成する金属は、タンタル以外の金属を用いてもよい。抵抗変化層3を構成する金属としては、遷移金属、またはアルミニウム(Al)を用いることができる。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)、ニッケル(Ni)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。
例えば、ハフニウム酸化物を用いる場合、第1金属酸化物の組成をHfOとした場合にxが0.9以上1.6以下であり、かつ、第2金属酸化物の組成をHfOとした場合にyがxの値よりも大である場合に、抵抗変化層3の抵抗値を安定して高速に変化させることができる。この場合、第2金属酸化物の膜厚は、1〜5nmとしてもよい。
また、ジルコニウム酸化物を用いる場合、第1金属酸化物の組成をZrOとした場合にxが0.9以上1.4以下であり、かつ、第2金属酸化物の組成をZrOとした場合にyがxの値よりも大である場合に、抵抗変化層3の抵抗値を安定して高速に変化させることができる。この場合、第2金属酸化物の膜厚は、1〜5nmとしてもよい。
第1金属酸化物を構成する第1の金属と、第2金属酸化物を構成する第2の金属とは、異なる金属を用いてもよい。この場合、第2金属酸化物は、第1金属酸化物よりも酸素不足度が小さい、つまり抵抗が高くてもよい。このような構成とすることにより、抵抗変化時に第1電極と第2電極との間に印加された電圧は、第2金属酸化物に、より多くの電圧が分配され、第2金属酸化物中で発生する酸化還元反応をより起こしやすくすることができる。
第1抵抗変化層3aとなる第1金属酸化物を構成する第1の金属と、第2抵抗変化層3bとなる第2金属酸化物を構成する第2の金属とを、互いに異なる材料を用いる場合、第2の金属の標準電極電位は、第1の金属の標準電極電位より低くてもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。これにより、標準電極電位が相対的に低い第2金属酸化物において、酸化還元反応が起こりやすくなる。なお、抵抗変化現象は、抵抗が高い第2金属酸化物中に形成された微小な局所領域中で酸化還元反応が起こってフィラメント(導電パス)が変化することにより、その抵抗値(酸素不足度)が変化すると考えられる。
例えば、第1金属酸化物に酸素不足型のタンタル酸化物(TaO)を用い、第2金属酸化物にチタン酸化物(TiO)を用いることにより、安定した抵抗変化動作が得られる。チタン(標準電極電位=−1.63eV)はタンタル(標準電極電位=−0.6eV)より標準電極電位が低い材料である。このように、第2金属酸化物に第1金属酸化物より標準電極電位が低い金属の酸化物を用いることにより、第2金属酸化物中でより酸化還元反応が発生しやすくなる。その他の組み合わせとして、高抵抗層となる第2金属酸化物にアルミニウム酸化物(Al)を用いることができる。例えば、第1金属酸化物に酸素不足型のタンタル酸化物(TaO)を用い、第2金属酸化物にアルミニウム酸化物(Al)を用いてもよい。
積層構造の抵抗変化層3における抵抗変化現象は、高抵抗化及び低抵抗化のいずれも抵抗が高い第2抵抗変化層3b中に形成された微小な局所領域中で酸化還元反応が起こって、局所領域中のフィラメント(導電パス)が変化することにより、第2抵抗変化層3bの抵抗値が変化すると考えられる。
つまり、第2電極4に、第1電極2を基準にして負の電圧を印加したとき、抵抗変化層3中の酸素イオンが第2抵抗変化層3bに引き寄せられる。これによって、第2抵抗変化層3b中に形成された微小な局所領域中で酸化反応が発生し、酸素不足度が減少する。その結果、局所領域中のフィラメントが繋がりにくくなり、抵抗値が増大すると考えられる。
逆に、第2電極4に、第1電極2を基準にして正の電圧を印加したとき、第2抵抗変化層3b中の酸素イオンが第1抵抗変化層3a側に押しやられる。これによって、第2抵抗変化層3b中に形成された微小な局所領域中で還元反応が発生し、酸素不足度が増加する。その結果、局所領域中のフィラメントが繋がりやすくなり、抵抗値が減少すると考えられる。
第1電極2及び第2電極4は、例えば、Au(金)、Pt(白金)、Ir(イリジウム)、Cu(銅)、TiN(窒化チタン)及びTaN(窒化タンタル)のうちの1つまたは複数の材料を用いて構成される。
酸素不足度がより小さい第2金属酸化物で構成される第2抵抗変化層3bに接続されている第1電極2は、例えば、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)など、第2金属酸化物を構成する金属及び第2電極4を構成する材料と比べて標準電極電位がより高い材料で構成してもよい。
酸素不足度がより大きい第1金属酸化物で構成される第1抵抗変化層3aに接続されている第2電極4は、例えば、タングステン(W)、ニッケル(Ni)、タンタル(Ta)、チタン(Ti)、アルミニウム(Al)、窒化タンタル(TaN)、窒化チタン(TiN)など、第1金属酸化物を構成する金属と比べて標準電極電位がより低い材料で構成してもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。
すなわち、第2電極4を構成する材料の標準電極電位E2と、第2抵抗変化層3bとなる第2金属酸化物を構成する金属の標準電極電位EMと、第1金属酸化物を構成する金属の標準電極電位ENと、第1電極2を構成する材料の標準電極電位E1との間には、EM<E1かつE2<E1なる関係を満足してもよい。さらには、E1>EMで、EN≧E2の関係を満足してもよい。
上記の構成とすることにより、第1電極2と第2抵抗変化層3bとの界面近傍の第2金属酸化物中において、選択的に酸化還元反応が発生し、安定した抵抗変化現象が得られる。
図1に示す例では、抵抗変化型素子10が基板1の上に形成されている。基板1は、例えばシリコン基板により構成されうる。ただし、基板1は抵抗変化型素子の必須構成要素ではない。
<抵抗変化型素子の製造方法>
次に、抵抗変化型素子10の製造方法の一例について説明する。
まず、基板1上に、スパッタリング法により、第1電極2を構成する材料(例えば、イリジウム(Ir))の膜を形成する。
その後、当該膜の上に、第2抵抗変化層3bを構成する第2金属酸化物の膜を形成する。第2金属酸化物の膜は、例えば、タンタル酸化物ターゲットをアルゴンガス中、又はアルゴンガス及び酸素ガス中でスパッタリングすることによって形成してもよく、CVD(Chemical Vapor Deposition:化学気相成長)法やALD(Atomic Layer Deposition:原子層堆積)法を用いて形成してもよい。
次に、第2金属酸化物の膜上に第1抵抗変化層3aを構成する第1金属酸化物の膜を形成する。第1金属酸化物の膜は、例えばTaターゲットをアルゴンガス及び酸素ガス中でスパッタリングする、いわゆる反応性スパッタリング法によって形成してもよい。ここで、第1金属酸化物の酸素不足度は、スパッタリングに用いるアルゴンガスに対する酸素ガスの流量比を変えることにより調整してもよい。なお、基板は特に加熱することなく室温にて膜形成してもよい。
次に、第1金属酸化物の膜上に、スパッタリング法により、第2電極4を構成する材料(例えば窒化タンタル(TaN))の膜を形成する。
第1電極材料の膜、第2金属酸化物の膜、第1金属酸化物の膜、及び第2電極材料の膜をパターニングすることにより、それぞれ所望の大きさ及び形状の第1電極2と、第2抵抗変化層3bと、第1抵抗変化層3aと、第2電極4とを形成する。
以上の工程により、抵抗変化型素子10が得られる。
<不揮発性記憶素子の構成>
図2Aは、第1実施形態にかかる不揮発性記憶素子の一例を示す等価回路図である。図2Aに示す例において、第1実施形態にかかる不揮発性記憶素子は、1つのトランジスタと1つの抵抗変化型素子とで構成される、いわゆる1T1R型の不揮発性記憶素子である。
不揮発性記憶素子30は、抵抗変化型素子10と電界効果トランジスタ20とを備える。抵抗変化型素子10については、上述した通りであるので、詳細な説明を省略する。
電界効果トランジスタ20は、第1電極2に接続された第1入出力端子21と、第2入出力端子22と、第1入出力端子21と第2入出力端子22との間の導通を制御するゲート端子23と、を有する。
なお、WLがワード線を示し、SLがソース線を示し、BLがビット線を示している。電界効果トランジスタ20は、不揮発性記憶素子30の選択と非選択とを切り替えるスイッチであるとともに、不揮発性記憶素子30に流れる電流値を制御する制御器でもある。
図2Bは、第1実施形態にかかる抵抗変化型素子の一例を示す等価回路図である。
図2Bに示すように、抵抗変化型素子10は、第2電極4及び第1電極2にそれぞれ接続された2つの端子を有する2端子構造の素子である。抵抗変化型素子10の一方の端子は、電界効果トランジスタ20の1つの端子と接続されている。本明細書においては、抵抗変化型素子10の具備する2つの端子のうち、電界効果トランジスタ20に接続されている一方の端子を第2端子12と呼び、電界効果トランジスタ20に接続されていない他方の端子を第1端子11と呼ぶ。
図2Cは、第1実施形態にかかる電界効果トランジスタの一例を示す等価回路図である。
図2Cに示すように、電界効果トランジスタ20は、少なくともソース端子、ドレイン端子、ゲート端子の3つの端子を有する素子である。本明細書においては、これらの3つの端子のうち、抵抗変化型素子10に接続されている端子を第1入出力端子21と呼び、トランジスタの動作により第1入出力端子21と導通可能な他方の端子を第2入出力端子22と呼ぶ。また、トランジスタ動作において、第1入出力端子21と第2入出力端子22との間の導通を制御する端子をゲート端子23と呼ぶ。
電界効果トランジスタ20は、オン状態において、第1入出力端子21及び第2入出力端子22のうち、一方がソース端子として働き、他方はドレイン端子として働く。後述するように、どちらがソース端子(あるいはドレイン端子)であるかは、電流の流れる向き、及びキャリアの極性によって決まる。
電界効果トランジスタ20は、例えば、MISFET(金属−絶縁体−半導体 電界効果トランジスタ:Metal−Insulator−Semiconductor Field−Effect Transistor)、および、MISFETの一種であるMOSFET(金属−酸化物−半導体 電界効果トランジスタ:Metal−Oxide−Semiconductor Field−Effect Transistor)のいずれか一方としうる。
以下、簡便のため、電界効果トランジスタ20を、単にトランジスタ20と呼ぶことがある。また、電界効果トランジスタ20を、実施の形態における具体例に従ってMISFET20、N型MISFET20、P型MISFET20と呼ぶこともある。
図2B及び図2Cでは、抵抗変化型素子10及び電界効果トランジスタ20について、それぞれ別個独立に説明したが、これは簡便に説明するための回路図上の表現である。したがって、例えば、抵抗変化型素子10及び電界効果トランジスタ20がデバイスとして一体となっていてもよい。
例えば、電界効果トランジスタ20の第1入出力端子21が、抵抗変化型素子10の第1電極2を兼ねていてもよい。また、抵抗変化型素子10の第2端子12と、電界効果トランジスタ20の第1入出力端子21とは、電気的に接続されていればよい。例えば、抵抗変化型素子10と電界効果トランジスタ20との間にその他の導電性を有する部材が介在していてもよい。
図3は、第1実施形態にかかる不揮発性記憶素子の概略構成の一例を示す断面図である。
図3に示す例において、不揮発性記憶素子30は、抵抗変化型素子10と電界効果トランジスタ20とを備える。なお、図3では、一例として、電界効果トランジスタ20がN型MISFETである場合について示している。
電界効果トランジスタ20がN型MISFETであるとき、多数キャリアは電子である。他方、電界効果トランジスタ20がP型MISFETであるとき、多数キャリアは正孔である。
一般的に、電子の移動度は正孔の移動度よりも大きいため、同じゲート絶縁膜26の構造(材料および膜厚)で、同じサイズのMISFET20を作成した場合、N型MISFETの方がP型MISFETより電流駆動能力が大きい。そのため、同じ電流駆動能力を有するMISFET20を作製する場合、N型MISFETの方が素子サイズを小さくでき、不揮発性記憶素子30をより高密度に集積できる。
抵抗変化型素子10は、図1に示した抵抗変化型素子10と同様に、第1電極2と、抵抗変化層3と、第2電極4とを備える。抵抗変化層3は、第1抵抗変化層3aと第2抵抗変化層3bとを有している。したがって、第1電極2を基準にして第2電極4に負電圧を与える極性の電圧パルスを抵抗変化層3に印加したときに、抵抗変化層3が高抵抗化する。反対に、第1電極2を基準にして第2電極4に正電圧を与える極性の電圧パルスを抵抗変化層3に印加したときに、抵抗変化層3が低抵抗化する。
N型MISFET20は、半導体基板24と、半導体基板24上に配置された第1拡散層25a及び第2拡散層25bと、半導体基板24上に第1拡散層25aと第2拡散層25bとを跨ぐ(半導体基板24の厚み方向から見て部分的に重なり合う)ように配置されたゲート絶縁膜26と、ゲート絶縁膜26上に配置されたゲート電極27とを備える。なお、ゲート絶縁膜26が酸化膜である場合、N型MISFET20は、N型MOSFETとも呼ばれる。
MISFET20は、種々の公知の方法によって形成できる。N型MISFET20上には、層間絶縁層28が形成されており、層間絶縁層28内を貫通して、抵抗変化型素子10の第1電極2とMISFET20の第1拡散層25aとを接続する導電ビア29が形成されている。
N型MISFET20において、半導体基板24と、第1拡散層25a及び第2拡散層25bとは、反対導電型である。半導体基板24がP型である場合、第1拡散層25a及び第2拡散層25bはN型である。この場合、MISFET20はN型MISFETである。半導体基板24がN型である場合、第1拡散層25a及び第2拡散層25bはP型である。この場合、MISFET20はP型MISFETである。
図2A及び図3には、MISFET20がN型MISFET20である場合の接続関係が示されている。なお、後述するように、MISFET20がP型MISFET20である場合には、抵抗変化層3に印加される電圧の極性と、抵抗変化層3の抵抗値が変化する方向(低抵抗化または高抵抗化)との対応関係が、MISFET20がN型MISFET20である場合の対応関係と反対になるように接続される。例えば、抵抗変化層3が上下非対称な構造を有する際には、MISFET20がP型MISFET20である場合における抵抗変化層3の上下の向きを、MISFET20がN型MISFET20である場合における抵抗変化層3の上下の向きと反対向きになるように配置してもよい。また、第1電極2を構成する材料と第2電極4を構成する材料とが異なる際には、MISFET20がP型MISFET20である場合における第1電極2の材料および第2電極4の材料が、MISFET20がN型MISFET20である場合における第1電極2の材料および第2電極4の材料と上下入れ替わるように構成してもよい。
図3で示した不揮発性記憶素子30の断面構造は一例であり、本実施形態に係る不揮発性記憶素子30における、抵抗変化型素子10の構造、電界効果トランジスタ20の構造、及び、抵抗変化型素子10と電界効果トランジスタ20との接続部の構造は、図3の例示に限定されない。以下では、説明の簡便のため、特に断らない限り、図2A及び図3に示す電界効果トランジスタ20はN型MISFET20であるものとして説明する。
図3に示した不揮発性記憶素子30では、第1電極2の標準電極電位をE1とし、第2電極4の標準電極電位をE2とすると、E1>E2を満たしてもよい。このような標準電極電位の要件を満たすことで、第1電極2と第2抵抗変化層3bとの界面近傍で安定に抵抗変化現象が発現する。
抵抗変化層3が単一の層で構成されている場合において、第1電極2の標準電極電位をE1とし、第2電極4の標準電極電位をE2とすると、E1>E2を満たしてもよい。このような標準電極電位の要件を満たすことで、第1電極2と抵抗変化層3との界面近傍で安定に抵抗変化現象が発現する。かかる場合においても、第1電極2を基準にして第2電極4に負電圧を与える極性の電圧パルスを抵抗変化層3に印加したときに、抵抗変化層3が高抵抗化する。反対に、第1電極2を基準にして第2電極4に正電圧を与える極性の電圧パルスを抵抗変化層3に印加したときに、抵抗変化層3が低抵抗化する。したがって、各電極と、トランジスタ20の各入出力端子との接続関係を上述と同様にすることで、後述するものと同様な極性の電圧パルスを用いた駆動方法を使用できる。
[駆動方法]
次に、上述したように構成された不揮発性記憶素子30の駆動方法について説明する。
<概要>
以下では、抵抗変化型素子10の抵抗値が、所定の高い値(例えば、500000Ω)にある場合を高抵抗状態といい、所定の低い値(例えば、10000Ω)にある場合を低抵抗状態という。また、本明細書中では、抵抗変化型素子10(抵抗変化層3)が高抵抗状態から低抵抗状態へ変化することを低抵抗化と呼び、低抵抗状態から高抵抗状態へ変化することを高抵抗化と呼ぶことがある。
本実施形態では、不揮発性記憶素子30に対して、電源等を用いて電圧を印加することにより、抵抗変化層3の抵抗状態を以下のように変化させることができる。
まず、第2の極性で電圧値がVLR1、パルス幅がPWLRの電圧パルス(書き込み電圧パルス)を、抵抗変化型素子10の第1端子11とトランジスタ20の第2入出力端子22間に印加することにより、抵抗変化層3を高抵抗状態から低抵抗状態へ変化させる。以下では、これを書き込みステップと呼ぶ。本明細書中において、第2の極性とは、抵抗変化層3を高抵抗状態から低抵抗状態へ変化させるのに要する電圧パルスの極性を意味する。
例えば、図2A及び図3に示した接続関係にある場合、抵抗変化型素子10内の第2電極4の電位が、N型MISFET20の第2拡散層25bの電位に対して相対的に高くなるような電圧の極性が、第2の極性である。このとき、抵抗変化型素子10に印加される電圧は、第2電極4を基準にして第1電極2に負電圧を与える極性の電圧であるため、抵抗変化層3は高抵抗状態から低抵抗状態へ変化する。
次に、第2の極性とは異なる第1の極性で電圧値がVHR、パルス幅がPWHRの電圧パルス(消去電圧パルス)を、抵抗変化型素子10の第1端子11とトランジスタ20の第2入出力端子22間に印加する。これにより、抵抗変化層3を低抵抗状態から高抵抗状態へ変化させる。以下では、これを消去ステップと呼ぶ。本明細書中において、第1の極性とは、抵抗変化層3を低抵抗状態から高抵抗状態へ変化させるのに要する電圧パルスの極性を意味する。
例えば、図2A及び図3に示した接続関係にある場合、抵抗変化型素子10内の第2電極4の電位が、N型MISFET20の第2拡散層25bの電位に対して相対的に低くなるような電圧の極性が第1の極性である。このとき、抵抗変化型素子10に印加される電圧は、第2電極4を基準にして第1電極2に正電圧を与える極性の電圧であるため、抵抗変化層3は低抵抗状態から高抵抗状態へ変化する。
以上の書き込みステップ及び消去ステップを繰り返すことにより、不揮発性記憶素子30が動作する。パルス幅PWLRとPWHRは、例えばそれぞれ50nsとすることができる。
抵抗変化層3が低抵抗状態及び高抵抗状態の何れの状態にあるかは、所定値の読み出し用の電圧パルス(以下、読み出し電圧パルスと呼ぶ)を印加して判定される。
読み出し電圧パルスによって抵抗変化型素子10に印加される電圧値の大きさ(絶対値)は、抵抗変化層3に抵抗変化をもたらす閾値電圧よりも小さい。したがって、読み出し電圧パルスは、抵抗変化型素子10の抵抗状態に影響を及ぼさない。例えば、抵抗変化層3が低抵抗状態にある場合に、第1の極性の読み出し電圧パルスが抵抗変化型素子10及びトランジスタ20に印加された(第1端子11と第2入出力端子22との間に印加された)としても、抵抗変化層3の抵抗状態は変化せず、低抵抗状態のままで維持される。同様にして、抵抗変化層3が高抵抗状態にある場合に、第2の極性の読み出し電圧パルスが抵抗変化型素子10及びトランジスタ20に印加された(第1端子11と第2入出力端子22との間に印加された)としても、抵抗変化層3の抵抗状態は変化せず、高抵抗状態のままで維持される。
本実施形態に係る不揮発性記憶素子30に対して上記の駆動方法を実行すると、不揮発性記憶素子30を1つのメモリセルとして使用できる。例えば、抵抗変化層3が低抵抗状態にある場合を「1」に対応させ、高抵抗状態にある場合を「0」に対応させることにより、1ビットのメモリセルとなる。
<不揮発性記憶素子における抵抗変化型素子とトランジスタとの接続関係>
本実施形態に係る不揮発性記憶素子30は、書き込みステップ(低抵抗化)において、第2入出力端子22がソース端子となるように、抵抗変化型素子10と電界効果トランジスタ20とが接続されている。言い換えると、書き込みステップにおいて、電界効果トランジスタ20の端子のうち、抵抗変化型素子10と接続されている側の端子が、ドレイン端子となっている。
本明細書中において、「ソース」とは、電界効果トランジスタ20における多数キャリアの供給源を意味する。一方、「ドレイン」とは、電界効果トランジスタ20における多数キャリアの排出口を意味する。第1入出力端子21及び第2入出力端子22のうち、一方がソース端子であるとき、他方がドレイン端子である。同様にして、第1拡散層25a及び第2拡散層25bのうち、一方がソース領域であるとき、他方がドレイン領域である。電界効果トランジスタ20がN型であるとき、多数キャリアは電子である。他方、電界効果トランジスタ20がP型であるとき、多数キャリアは正孔である。
本実施形態に係る電界効果トランジスタ20のように電流が双方向に流れる場合、電流の流れる方向によってソース及びドレインが切り替わる。本実施形態では、不揮発性記憶素子30に印加される電圧の極性が、書き込みステップと消去ステップとで反対極性であるため、これに伴ってソースとドレインとが逆転する。すなわち、書き込みステップにおけるソース及びドレインは、それぞれ、消去ステップにおけるドレイン及びソースとなる。
電界効果トランジスタ20がN型MISFET20である場合、オン電流が第1入出力端子21から第2入出力端子22へ流れるとき、第1入出力端子21はドレイン端子であり、第2入出力端子22はソース端子である。一方、オン電流が第2入出力端子22から第1入出力端子21へ流れるとき、第1入出力端子21はソース端子であり、第2入出力端子22はドレイン端子である。
電界効果トランジスタ20がP型MISFET20である場合、オン電流が第1入出力端子21から第2入出力端子22へ流れるとき、第1入出力端子21はソース端子であり、第2入出力端子22はドレイン端子である。一方、オン電流が第2入出力端子22から第1入出力端子21へ流れるとき、第1入出力端子21はドレイン端子であり、第2入出力端子22はソース端子である。
電界効果トランジスタ20がN型MISFET20である場合、書き込みステップにおいて、図2A及び図3の不揮発性記憶素子30に印加される書き込み電圧パルスは、上述の通り、抵抗変化型素子10内の第2電極4の電位(第1端子11の電位)が、N型MISFET20の第2拡散層25bの電位(第2入出力端子22の電位)に対して相対的に高くなる電圧パルスである。このとき、電流は、第1端子11、第2端子12、第1入出力端子21、第2入出力端子22の順で流れる。このとき、N型MISFET20を流れる多数キャリアは電子である。したがって、書き込みステップにおいて、N型MISFET20の第2入出力端子22がソース端子となる。
同様に考えると、消去ステップにおいて、図2A及び図3の不揮発性記憶素子30に印加される消去電圧パルスは、書き込みステップの場合と比べて電圧の極性が反対になるため、N型MISFET20の第1入出力端子21がソース端子となる。
電界効果トランジスタ20がP型MISFET20である場合、後述するように、抵抗変化型素子10の上下の向きが、電界効果トランジスタ20がP型MISFET20である場合の反対になる(変形例参照)。したがって、書き込みステップにおいて、不揮発性記憶素子30に印加される書き込み電圧パルスは、抵抗変化型素子10内の第2電極4の電位(第1端子11の電位)が、P型MISFET20の第2拡散層25bの電位(第2入出力端子22の電位)に対して相対的に低くなる電圧パルスである。このとき、電流は、第2入出力端子22、第1入出力端子21、第2端子12、第1端子11の順で流れる。このとき、P型MISFET20を流れる多数キャリアは正孔である。したがって、書き込みステップにおいて、P型MISFET20の第2入出力端子22がソース端子となる。
同様に考えると、消去ステップにおいて、不揮発性記憶素子30に印加される消去電圧パルスは、書き込みステップの場合と比べて電圧の極性が反対になる。したがって、P型MISFET20の第1入出力端子21がソース端子となる。
<書き込みステップにおける不揮発性記憶素子の駆動方法と基板バイアス効果>
以下に、本実施形態の不揮発性記憶素子30の書き込み動作と基板バイアス効果(body effect)との関連について、図2A及び図3を参照しつつ説明する。以下で説明する基板バイアス効果の影響は、電界効果トランジスタ20がN型MISFET20である場合を例として説明するが、後述するように、電界効果トランジスタ20がN型MISFET20である場合に限らない。
書き込みステップにおいて、不揮発性記憶素子30に書き込み電圧パルスが印加されると、抵抗変化型素子10の第1端子11には相対的に高い電位が与えられ、N型MISFET20の第2入出力端子22には相対的に低い電位が与えられる。このときの電位差である第1書き込みパルス電圧VL1の電圧値をVLR1とする。同時に、ゲート端子23に第1ゲート電圧(電圧(絶対値):VG1)を与えることで、N型MISFETはON状態になる。このとき、N型MISFET20のソース電位(第2入出力端子22の電位)は、抵抗変化型素子10による電圧降下の影響を受けず、第2入出力端子22に印加される電位によって決まる。
これは、N型MISFET20のソース端子(第2入出力端子22)が、不揮発性記憶素子30の両端の一方に位置する(抵抗変化型素子に接続されている側の端子ではない)ことに起因する。N型MISFET20のソース電位(第2入出力端子22の電位)は、例えば、半導体基板24の電位とほぼ同じに維持される。そのため、N型MISFET20に生じる基板バイアス効果の影響は小さく、ゲート電圧を制御することにより、N型MISFET20のオン電流値を精度よく制御することができる。
<消去ステップにおける不揮発性記憶素子の駆動方法>
一方、消去ステップにおいて、不揮発性記憶素子30に消去電圧パルスが印加されると、抵抗変化型素子10の第1端子11には相対的に低い電位が与えられ、N型MISFET20の第2入出力端子22に相対的に高い電位が与えられる。このとき、N型MISFET20のソース電位(第1入出力端子21の電位)の絶対値は、半導体基板24の電位よりも相対的に高くなる。そのため、基板バイアス効果の影響が大きくなり、N型MISFET20の負荷曲線は図9に模式的に示したようになる。言い換えると、消去ステップにおいて、N型MISFET20はソースフォロワで動作する。また、第1端子11と第2端子12との間に印加される電圧は、ゲート端子23に与えられる電圧よりも小さくしてもよい。
<本実施形態における駆動方法>
本実施形態における不揮発性記憶素子の駆動方法は、以下のような特徴を有する。
(1)抵抗変化層3を低抵抗状態から高抵抗状態へと変化させる際に、第2電極4と第2入出力端子22との間に第1の極性の消去電圧パルスを印加する。
(2)抵抗変化層3を高抵抗状態から低抵抗状態へと変化させる際に、第2電極4と第2入出力端子22との間に第1の極性とは異なる第2の極性の書き込み電圧パルスを印加する。
(3)第2の極性は、電界効果トランジスタ20の第2入出力端子22がソース端子となる極性である。
(4)高抵抗状態にある抵抗変化層3を低抵抗状態にするために、第2電極4と第2入出力端子22との間に第1書き込み電圧パルスを印可する場合に、電界効果トランジスタ20のゲート端子23に、第1ゲート電圧を印加する。
(5)過抵抗状態にある抵抗変化層3を低抵抗状態にするために、第2電極4と第2入出力端子22との間に電圧の絶対値が第1書き込み電圧パルスよりも大きい第2書き込み電圧パルスを印可する場合に、電界効果トランジスタ20のゲート端子23に、電圧の絶対値が第1ゲート電圧よりも小さい第2ゲート電圧を印加する。
図4は、第1実施形態にかかる不揮発性記憶素子の駆動方法の一例を示すフローチャートである。以下、図4を参照しつつ、本実施形態の不揮発性記憶素子の駆動方法について説明する。
不揮発性記憶素子の低抵抗状態への書き込みが開始されると(スタート)、まず、第2電極4と第2入出力端子22との間に第1書き込み電圧パルスVL1が印加されると共に、ゲート端子23に第1ゲート電圧VG1が印加される(ステップS101)。第1書き込み電圧パルスVL1の印加と第1ゲート電圧VG1の印加の前後関係は特に限定されない。例えば、第1ゲート電圧VG1の印加が開始された後に、第1書き込み電圧パルスVL1の印加が開始され、かつ、第1書き込み電圧パルスVL1の印加が終了した後に、第1ゲート電圧VG1の印加が終了してもよい。
その後、不揮発性記憶素子30が低抵抗状態にあるか否かの判定が行われる(ステップS102)。ステップS102の判定結果がYESであれば、書き込みは終了される(エンド)。
ステップS103の判定結果がNOであれば、不揮発性記憶素子30が過抵抗状態にあると判定される。そこで、第2電極4と第2入出力端子22との間に第2書き込み電圧パルスVL2が印加されると共に、ゲート端子23に第2ゲート電圧VG2が印加される(ステップS103)。ここで、第1書き込み電圧パルスVL1の電圧値(絶対値)をVLR1とし、第2書き込み電圧パルスVL2の電圧値(絶対値)をVLR2とするとき、VLR2>VLR1を満たす。同時に、VG1>VG2を満たす。
ステップS101において印加される書き込み電圧パルスよりも電圧の大きな書き込み電圧パルスが印加されることにより、不揮発性記憶素子30は低抵抗状態へと変化しやすくなる。このとき、ゲート電圧をステップS101よりも小さくすることで、トランジスタにより電流制限が行われる。不揮発性記憶素子30に過剰な電流が流れる可能性を低減することができる。従って、低抵抗化時に不揮発性記憶素子30に過大な電流が流れることによる抵抗値のばらつきを、低減することができる。
なお、上述の説明では、第1書き込み電圧パルスを印加した後に不揮発性記憶素子30が低抵抗状態にあるか否かを判定し、判定結果がNOである場合には、不揮発性記憶素子30が過抵抗状態にあると判定した。しかしながら、不揮発性記憶素子30が過抵抗状態にあるか否かの判定は、他の方法により行われてもよい。例えば、不揮発性記憶素子30の抵抗値を検出することで、不揮発性記憶素子30が過抵抗状態にあるか否かの判定が行われてもよい。
本実施形態の駆動方法によれば、抵抗変化型素子の良好な書き換え特性が維持されるので、安定した記憶動作が実現できる。
[実験例]
第1実施形態で説明したものと同様の構成の不揮発性記憶素子を作成し、抵抗変化動作をさせて、抵抗値のばらつきを検討した。具体的には、不揮発性記憶素子の構成は以下の通りとした。
第2電極4及び抵抗変化層3の大きさは0.5μm×0.5μm(面積0.25μm)とし、第1電極2と抵抗変化層3とが接する部分の大きさも0.5μm×0.5μm(面積0.25μm)とした。第2電極4及び第1電極2の厚みは、いずれも50nmとした。
第1抵抗変化層3aに用いる第1金属酸化物の組成はTaO(x=1.6)とした。第2抵抗変化層3bに用いる第2金属酸化物の組成はTaO(y=2.47)とした。抵抗変化層3の厚みは50nm、第1抵抗変化層3aの厚みは44nm、第2抵抗変化層3bの厚みは6nmとした。
電界効果トランジスタ20は、基板材料をシリコンとし、ゲート絶縁膜26は、材料をシリコン酸化物とし、幅は0.44μmとした。ゲート電極27は、材料をポリシリコンとした。
図5は、実験例にかかる抵抗変化型素子10の抵抗変化動作の一例を示す図である。図に示している抵抗変化動作の回数は10回である。抵抗変化型素子10を低抵抗化させるときに流す電流は200μAとした。図5から明らかなように、抵抗変化型素子10の抵抗値は、高抵抗状態でも低抵抗状態でも、同一の抵抗値に設定されているのではない。
図6Aは、実験例にかかる不揮発性記憶素子における抵抗値のばらつきを比較する図である。図6Bは、実験例のフローチャートである。
本実験例では、まず、低抵抗化時の電流を200μAとして、不揮発性記憶素子30を、50回だけ抵抗変化動作させた(図6BのI)。次に、低抵抗化時の電流を300μAとして、不揮発性記憶素子30を、高抵抗状態から低抵抗状態へ変化させた。最後に、再び低抵抗化時の電流を200μAとして、不揮発性記憶素子30を、50回だけ抵抗変化動作させた(図6BのII)。
図6Aにおいて、黒丸(●)は、当初、低抵抗化時の電流を200μAとして、50回だけ抵抗変化動作させた場合における、不揮発性記憶素子30の、低抵抗状態における抵抗値の分布(正規確率)を示す(図6BのI)。
図6Aにおいて、白い三角(△)は、300μAでの低抵抗化動作を実行した後に、低抵抗化時の電流を200μAとして、50回だけ抵抗変化動作させた場合における、不揮発性記憶素子30の、低抵抗状態における抵抗値の分布(正規確率)を示す(図6BのII)。
図6Aから明らかなように、同じ電流値で低抵抗化しているにもかかわらず、高い電流を印加して実行された低抵抗化の後では、高い電流を印加して実行された低抵抗化の前と比較して、抵抗値のばらつきが大きくなっている。すなわち、一度300μAで抵抗変化動作を行うことで、低抵抗状態の読み出し抵抗値の分布が大きくなっている。このように、一度でも不揮発性記憶素子30に大きな電流を流すと、低抵抗状態における抵抗値のばらつきは大きくなってしまう。
以上の結果から、書き換え特性に優れた不揮発性記憶素子を得るためには、一定の電流で書き込みステップを行うことが必要であると推察された。
しかしながら、図5に示されているように、不揮発性記憶素子30の高抵抗状態における抵抗値は一定ではない。図5に示した例では、高抵抗状態における抵抗値はおおよそ30から60(a.u.)と、2倍程度のばらつきがある。高抵抗状態の抵抗値は大きくばらつく結果、定常動作時(例えば図5における抵抗値が60(a.u.)以下)よりも大きい、過抵抗状態になってしまう場合がある(例えば図5における抵抗値が100(a.u.)以上)。
図7は、実験例にかかる不揮発性記憶素子において、高抵抗状態と過抵抗状態とのそれぞれについて、書き込みステップにおける抵抗値と電圧との関係を示す図である。高抵抗状態にある不揮発性記憶素子の抵抗値は、45(a.u.)であり、過抵抗状態にある不揮発性記憶素子の抵抗値は、108(a.u.)である。
図6から明らかなように、高抵抗状態よりも抵抗値が高い過抵抗状態場合には、第1書き込みパルス電圧(電圧の絶対値:VLR1)では低抵抗化できず、より高い電圧を持つ第2書き込みパルス電圧(電圧の絶対値:VLR2、VLR2>VLR1)を用いる必要がある。
図8は、実験例にかかる不揮発性記憶素子において、ゲート電圧を一定として、書き込み電圧を変えた場合のN型MISFETの負荷曲線を示す図である。書き込みパルス電圧をVLR1からVLR2に高くすることで、N型MISFET20の負荷曲線が変化する。この場合には抵抗変化型素子10に定常よりも高い電流が流れる。このように、高抵抗状態における抵抗値が過剰に高くなった抵抗変化型素子10を低抵抗化させる場合には、抵抗変化型素子10に大きな電流を与えてしまい、前述した理由により書き換え特性が劣化してしまう。
したがって、書き換え特性に優れた不揮発性記憶素子を実現するためには、高抵抗状態が過抵抗状態となった場合でも、同じ電流で書き込みステップを行えるようにする必要がある。
すなわち、不揮発性記憶素子が高抵抗状態にある場合の通常の書き込みステップにおいて、第1書き込みパルス電圧VL1の電圧値(絶対値)をVLR1、ゲート端子に与える電圧の電圧値(絶対値)をVG1とする。
一方、不揮発性記憶素子が過抵抗状態である場合の書き込みステップにおいて、第2書き込み電圧パルスVL2の電圧値(絶対値)をVLR2(VLR2>VLR1)、ゲート端子に与える電圧の電圧値(絶対値)をVG2(VG2<VG1)とすることで、抵抗変化型素子に過剰な電流値が流れることを抑制することができる。
図9は、実験例にかかる不揮発性記憶素子において、書き込み電圧に応じてゲート電圧を変えた場合のN型MISFETの負荷曲線を示す図である。図9に示すように、第2書き込み電圧パルス(電圧:VLR2)を印可した場合でも、図8に示した例に比べ、ゲート電圧がVG2に設定されているため、抵抗変化型素子10に流れる電流量は低く抑えられている。VG2の値は、N型MISFET20のゲート長、チャネル幅(共に図示せず)、VG1、VLR1、及びVLR2の値に応じて適宜設定することができる。具体的には例えば、VG2は、ゲート電圧をVG2としつつ第2書き込み電圧パルスを印可した場合の飽和電流が、ゲート電圧をVG1としつつ第2書き込み電圧パルスを印可した場合の飽和電流よりも、ゲート電圧をVG1としつつ第1書き込みパルス電圧VL1を印加した場合の飽和電流に近づくように、設定されうる。あるいは例えば、VG2は、第2書き込み電圧パルスを印可した場合の飽和電流が、第1書き込みパルス電圧VL1を印加した場合の飽和電流と一致するように、設定されうる。
以上の結果から、図9に示したような駆動方法を用いることで、高抵抗状態が過抵抗状態になった場合でも一定の電流で書き込みステップを行うことができ、安定した書き換え特性を実現することができることが確認された。
また、上述した駆動方法を効果的に用いるために、通常の書き込みステップを行った後、不揮発性記憶素子30が低抵抗状態にあるか判定してもよい。すなわち、まず通常の書き込みステップにおいて、不揮発性記憶素子30に第1書き込み電圧パルスVL1を、ゲート端子23に第1ゲート電圧VG1を印可する(図4のステップS101)。次に、不揮発性記憶素子30が低抵抗状態にあるか判定する(図4のステップS102)。この判定方法は、上述したように読み出し電圧パルスを不揮発性記憶素子30に印可することで行えばよい。不揮発性記憶素子30が低抵抗状態ではないと判定された場合、不揮発性記憶素子30は過抵抗状態であったと考えられる。この場合は、不揮発性記憶素子30に第2書き込み電圧パルスVL2を、ゲート端子23に第2ゲート電圧VG2を与える(図4のステップS103)ことで、不揮発性記憶素子30を確実に低抵抗状態とすることができる。
[変形例]
上述の例では、電界効果トランジスタ20として、N型MISFETを用いたが、これに限られるわけではない。本変形例は、N型MISFET20の代わりに、P型MISFET20を用いる。
図1に示した抵抗変化型素子10では、第2抵抗変化層3b上に第1抵抗変化層3aを配置しているが、逆であってもよい。図10は、第1実施形態の変形例にかかる不揮発性記憶素子が備える抵抗変化型素子の概略構成の一例を示す断面図である。
本変形例の不揮発性記憶素子が備える抵抗変化型素子15は、抵抗変化型素子10と比べて、第2抵抗変化層3bと第1抵抗変化層3aとの配置が異なる。抵抗変化型素子の構造は、後述のように、電界効果トランジスタ20との接続により適宜に設計することができる。
図11は、第1実施形態の変形例にかかる不揮発性記憶素子の概略構成の一例を示す断面図である。本変形例の不揮発性記憶素子31と図3に示す不揮発性記憶素子30との相違点は、電界効果トランジスタ20が、N型MISFETではなく、P型MISFETである点と、第2抵抗変化層3b及び第1抵抗変化層3aの上下が入れ替わっている点である。なお、第2抵抗変化層3b及び第1抵抗変化層3aのそれぞれの構成は、第1実施形態と同様とすることができるので、詳細な説明を省略する。
本変形例では、酸素不足度がより小さい第2金属酸化物で構成される第2抵抗変化層3bと接する第2電極4は、第2金属酸化物を構成する金属及び第1電極2を構成する材料と比べて標準電極電位が高くてもよく、例えばPt(白金)、Ir(イリジウム)、パラジウム(Pd)などとしてもよい。かかる貴金属材料は一般に加工することが難しいが、不揮発性記憶素子31のように抵抗変化型素子10の上部に配置することにより、比較的加工を容易にすることができる。
酸素不足度がより大きい第1金属酸化物で構成される第1抵抗変化層3aに接続されている第1電極2は、例えば、タングステン(W)、ニッケル(Ni)、タンタル(Ta)、チタン(Ti)、アルミニウム(Al)、窒化タンタル(TaN)、窒化チタン(TiN)など、第2金属酸化物を構成する金属と比べて標準電極電位がより低い材料で構成してもよい。
図11に示した不揮発性記憶素子31では、第1電極2の標準電極電位をE1とし、第2電極4の標準電極電位をE2とすると、E2>E1を満たしてもよい。このよう標準電極電位の要件を満たすことで、第2電極4と第2抵抗変化層3bとの界面近傍で安定に抵抗変化現象が発現する。
本変形例においても、抵抗変化型素子の良好な書き換え特性が維持されるので、安定した記憶動作が実現できる。
(第2実施形態)
第2実施形態の不揮発性記憶装置は、第1実施形態およびその変形例にかかる不揮発性記憶素子を用いてメモリセルアレイを構成し、第1実施形態およびその変形例で述べた不揮発性記憶素子の駆動方法を実行するものである。
第2実施形態の不揮発性記憶装置は、第1電極と、第2電極と、第1電極と第2電極との間に設けられ、第1電極と第2電極との間に印加される電圧パルスに応じて、低抵抗状態と低抵抗状態よりも抵抗値が高い高抵抗状態との間を可逆的に変化する抵抗変化層と、を有する抵抗変化型素子と、第1電極に接続された第1入出力端子と、第2入出力端子と、第1入出力端子と第2入出力端子との間の導通を制御するゲート端子と、を有する電界効果トランジスタと、を備え、マトリクス状に配列される複数の不揮発性記憶素子と、マトリクスのそれぞれの行または列に対応して配列される複数の不揮発性記憶素子の第2電極にそれぞれ接続される複数の第1配線と、マトリクスのそれぞれの行または列に対応して配列される複数の不揮発性記憶素子の第2入出力端子にそれぞれ接続される複数の第2配線と、マトリクスのそれぞれの行または列に対応して配列される複数の不揮発性記憶素子のゲート端子にそれぞれ接続される複数の第3配線と、第1配線と第2配線との間に、第1の極性を有する第3電圧パルスと、第1の極性とは異なる第2の極性を有する第1電圧パルスと、第2の極性を有し、かつ第1電圧パルスよりも絶対値が大きい第2電圧パルスと、を含む複数の電圧パルスを選択的に印加することができる書き込み器と、第3配線に、第1ゲート電圧と、第1ゲート電圧よりも絶対値が小さい第2ゲート電圧と、を含む複数のゲート電圧パルスを選択的に印加することができるゲート電圧設定器と、を備え、第2の極性は、電界効果トランジスタの第2入出力端子がソース端子となる極性であり、書き込み器が、複数の第1配線および複数の第2配線の少なくとも一部に第2電圧パルスを印加する場合に、ゲート電圧設定器が、第2電圧パルスが印加されるメモリセルの少なくとも1つに接続されている第3配線に第2ゲート電圧を印加するように制御する、制御器を備える。
かかる構成では、不揮発性記憶素子における抵抗値のばらつきを低減させることができる。
上記不揮発性記憶装置は、複数のメモリセルのそれぞれの抵抗値情報を読み出す読み出し回路を備え、制御器は、読み出し回路から入力される信号に基づいて、複数の第1配線および複数の第2配線の少なくとも一部に第1電圧パルスおよび第2電圧パルスのいずれか一方を選択して印加させてもよい。
上記不揮発性記憶装置は、ゲート電圧回路は、第1ゲート電圧を生成するための第1のゲート用電源と、第2ゲート電圧を生成するための第2のゲート用電源と、を含んでもよい。
上記不揮発性記憶装置は、電界効果トランジスタが、N型FETであり、第1の極性は、第2入出力端子の電位が第2電極の電位よりも高くなる極性であり、第2の極性は、第2入出力端子の電位が第2電極の電位よりも低くなる極性であってもよい。
上記不揮発性記憶装置において、電界効果トランジスタが、P型FETであり、第1の極性は、第2入出力端子の電位が第2電極の電位よりも低くなる極性であり、第2の極性は、第2入出力端子の電位が第2電極の電位よりも高くなる極性であってもよい。
上記不揮発性記憶装置において、抵抗変化層は、酸素不足型の金属酸化物を有する第1抵抗変化層と、第1抵抗変化層よりも酸素不足度が小さい金属酸化物を有する第2抵抗変化層と、を備え、電界効果トランジスタが、N型FETであり、第1抵抗変化層が第2電極に接し、第2抵抗変化層が第1電極に接していてもよい。
かかる構成では、優れた書き換え特性を有する不揮発性記憶素子を得ることができ、かつN型MISFETを用いることで、不揮発性記憶素子をより高密度に集積することが可能になる。
上記不揮発性記憶装置において、抵抗変化層は、酸素不足型の金属酸化物を有する第1抵抗変化層と、第1抵抗変化層よりも酸素不足度が小さい金属酸化物を有する第2抵抗変化層と、を備え、電界効果トランジスタが、P型FETであり、第1抵抗変化層が第1電極に接し、第2抵抗変化層が第2電極に接していてもよい。
かかる構成では、抵抗変化型素子の加工が容易な不揮発性記憶素子を得ることができる。
上記不揮発性記憶装置において、電界効果トランジスタが、N型FETであり、第1電極の標準電極電位をE1とし、第2電極の標準電極電位をE2とするとき、E1>E2を満足してもよい。
かかる構成では、優れた書き換え特性を有する不揮発性記憶素子を得ることができ、かつN型MISFETを用いることで、不揮発性記憶素子をより高密度に集積することが可能になる。
上記不揮発性記憶装置において、電界効果トランジスタが、P型FETであり、第1電極の標準電極電位をE1とし、第2電極の標準電極電位をE2とするとき、E2>E1を満足してもよい。
かかる構成では、抵抗変化型素子の加工が容易な不揮発性記憶素子を得ることができる。
上記不揮発性記憶装置において、抵抗変化層は、第1金属酸化物を有する第1抵抗変化層と、第2金属酸化物を有する第2抵抗変化層と、を備え、第1金属酸化物と第2金属酸化物とが同じ金属の酸化物であり、第1金属酸化物の組成をMOと表し、第2金属酸化物の組成をMOと表すとき、y>xを満足してもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記不揮発性記憶装置において、第1金属酸化物と第2金属酸化物とがタンタル酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記不揮発性記憶装置において、第1金属酸化物と第2金属酸化物とがハフニウム酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記不揮発性記憶装置において、第1金属酸化物と第2金属酸化物とがジルコニウム酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記不揮発性記憶装置において、抵抗変化層は、第1金属酸化物を有する第1抵抗変化層と、第2金属酸化物を有する第2抵抗変化層と、を備え、第1金属酸化物と第2金属酸化物とが互いに異なる金属の酸化物であり、第1金属酸化物を構成する金属の標準電極電位をENとし、第2金属酸化物を構成する金属の標準電極電位をEMとすると、EN<EMを満足してもよい。
かかる構成では、第1金属酸化物と第2金属酸化物とが同じ金属の酸化物である場合に比べ、不揮発性記憶素子のより安定した抵抗変化動作を実現できる。
上記不揮発性記憶装置において、第1金属酸化物がタンタル酸化物であり、第2金属酸化物がアルミニウム酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記不揮発性記憶装置において、第1金属酸化物がタンタル酸化物であり、第2金属酸化物がハフニウム酸化物であってもよい。
かかる構成では、不揮発性記憶素子の安定した抵抗変化動作を実現できる。
上記不揮発性記憶装置において、第2ゲート電圧が選択される頻度は、第1ゲート電圧が選択される頻度の10000分の1以下であってもよい。
[装置構成]
図12は、第2実施形態にかかる不揮発性記憶装置の構成を示すブロック図である。
図12に示すように、第2実施形態に係る不揮発性記憶装置200は、半導体基板上に、メモリ本体部201を備えており、メモリ本体部201は、図2Aおよび図3に示された1T1R型の不揮発性記憶素子(メモリセル)をマトリクス状に配列することで構成されたメモリアレイ202と、行選択回路208と、ワード線ドライバWLDおよびソース線ドライバSLDからなる行ドライバ207と、列選択回路203と、データの書き込みを行うための書き込み回路206と、選択ビット線に流れる電流量を検出し、高抵抗状態をデータ「0」と判定し、また低抵抗状態をデータ「1」と判定するセンスアンプ204と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路205とを備える。
センスアンプ204(読み出し回路)は、基準電流生成回路702と、比較回路704とを備える。
さらに、抵抗変化電圧電源220として、VLR1を出力する第1電圧電源221(第1のゲート用電源)と、VLR2を出力する第2電圧電源222(第2のゲート用電源)と、VHRを出力する第3電圧電源223を備えている。
さらに、ゲート電圧電源230として、VG1を出力する第1ゲート電圧電源231と、VG2を出力する第2ゲート電圧電源232と、VGreadを出力する読出ゲート電圧電源233とを備えている。
さらに、外部から入力されるアドレス信号を受け取るアドレス入力回路209と、外部から入力されるコントロール信号に基づいてメモリ本体部201の動作を制御する制御回路210と、を備えている。
メモリアレイ202は、半導体基板の上に形成された、互いに交差するように配列された複数のワード線WL0、WL1、WL2、WL3、・・・および複数のビット線BL0、BL1、BL2、・・・と、これらのワード線WL0、WL1、WL2、WL3、・・・、およびビット線BL0、BL1、BL2、・・・の交点に対応してそれぞれ設けられた複数のNMOSトランジスタN11、N12、N13、N14、・・・、N21、N22、N23、N24、・・・、N31、N32、N33、N34、・・・(以下、「トランジスタN11、N12、・・・」と表す)と、トランジスタN11、N12、・・・と1対1に直列接続された複数の抵抗変化型素子R11、R12、R13、R14、・・・、R21、R22、R23、R24、・・・、R31、R32、R33、R34、・・・(以下、「抵抗変化型素子R11、R12、・・・」と表す)とを備え、個々がメモリセルM11、M12、M13、M14、・・・、M21、M22、M23、M24、・・・M31、M32、M33、M34、・・・(以下、「メモリセルM11、M12、・・・」と表す)を構成している。
メモリセルM11、M12、・・・のそれぞれは、例えば、図2Aおよび図3に示された第1実施形態の1T1R型不揮発性記憶素子と同様の構成とすることができるので、詳細な説明を省略する。
図12に示すように、トランジスタN11、N21、N31、・・・のゲート端子はワード線WL0に接続され、トランジスタN12、N22、N32、・・・のゲート端子はワード線WL1に接続され、トランジスタN13、N23、N33、・・・のゲート端子はワード線WL2に接続され、トランジスタN14、N24、N34、・・・のゲート端子はワード線WL3に接続されている。ワード線WL1、WL2、WL3、・・・は、第1実施形態の第3配線に相当する。
また、トランジスタN11、N21、N31、・・・およびトランジスタN12、N22、N32、・・・の第2入出力端子はソース線SL0に共通に接続され、トランジスタN13、N23、N33、・・・およびトランジスタN14、N24、N34、・・・の第2入出力端子はソース線SL2に共通に接続されている。すなわち、ソース線SL0、SL2、・・・は、ワード線WL0、WL1、WL2、WL3、・・・に対して平行となり、ビット線BL0、BL1、BL2、・・・に対して交差(第2実施形態では、垂直方向)するように配置されている。なお、上記の構成例では、ソース線はワード線と平行に配置されているが、ビット線と平行に配置してもよい。また、ソース線は、接続されるトランジスタに共通の電位を与えるプレート線として構成しているが、行選択回路/ドライバと同様の構成のソース線選択回路/ドライバを有し、選択されたソース線と非選択のソース線を異なる電圧(極性も含む)で駆動する構成としてもよい。ソース線SL0、SL2、・・・は、第1実施形態の第2配線に相当する。なお、図12に示す例では、トランジスタN11、N21、N31、・・・はN型FETである。
また、抵抗変化型素子R11、R12、R13、R14、・・・の第2電極はビット線BL0に接続され、抵抗変化型素子R21、R22、R23、R24、・・・の第2電極はビット線BL1に接続され、抵抗変化型素子R31、R32、R33、R34、・・・の第2電極はビット線BL2に接続されている。このように、実施形態におけるメモリアレイ202では、抵抗変化型素子R11、R21、R31、・・・の第2電極がNMOSトランジスタN11、N21、N31・・・を介さずに、対応するビット線BL0、BL1、BL2、・・・に直接接続される構成を取っている。ビット線BL0、BL1、BL2、・・・は、第1実施形態の第1配線に相当する。
通常の書込動作時(高抵抗状態から低抵抗状態への変化)において、データ入出力回路205に入力された入力データDinは書き込み動作を指示している。このとき、制御回路210は、第1電圧パルスの印加を指示する信号を書き込み回路206および行ドライバ207へ出力する。第1電圧パルスは、例えば、第1実施形態の第1書き込み電圧パルスとすることができる。
過抵抗状態から低抵抗状態への変化において、制御回路210は、第2電圧パルスの印加を指示する信号を書き込み回路206および行ドライバ207へ出力する。第2電圧パルスは、例えば、第1実施形態の第2書き込み電圧パルスとすることができる。
消去動作時(低抵抗状態から高抵抗状態への変化)において、データ入出力回路205に入力された入力データDinは消去動作を指示している。このとき、制御回路210は、第3電圧パルスの印加を指示する信号を書き込み回路206および行ドライバ207へ出力する。第3電圧パルスは、例えば、第1実施形態の消去電圧パルスとすることができる。
読出動作時において、制御回路210は、読み出し電圧パルスの印加を指示する信号を書き込み回路206および行ドライバ207へ出力する。このとき、センスアンプ204は、選択されたビット線を流れる電流と、基準電流生成回路702から入力される電流とを、比較回路704で比較することにより、選択されたメモリセルが高抵抗状態であるか低抵抗状態であるかを判定する。判定結果は、データ入出力回路205を介して出力されると共に、制御回路210にも出力される。読み出し電圧パルスは、例えば、第1実施形態の読み出し電圧パルスとすることができる。
制御回路210は、通常の書込動作において、第1電圧パルスが印加された(図4のステップS101)後に、センスアンプ204を介して選択されたメモリセルを読み出す。その結果、当該メモリセルが高抵抗状態にある(低抵抗状態に変化していない)場合には、選択されたメモリセルが過抵抗状態にあると判定する(図4のステップS102)。この場合には制御回路210は、上述のように、選択されたメモリセルに、第2電圧パルスの印加を行う(図4のステップS103)。
行選択回路208は、アドレス入力回路209から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、行ドライバ207より、複数のワード線WL0、WL1、WL2、WL3、・・・のうちの何れかに対応するワード線ドライバ回路WLDより、その選択されたワード線に対して、所定の電圧を印加する。所定の電圧は、ゲート電圧電源230より入力される電圧を含み、第1ゲート電圧VG1と、第1ゲート電圧よりも絶対値が小さい第2ゲート電圧VG2と、読出ゲート電圧VGreadと、0Vと、を含みうる。行ドライバ207は、制御回路210から入力される信号に基づいて、VG1とVG2とVGreadと0Vとのいずれかを、選択されたワード線に印加する。
行選択回路208は、アドレス入力回路209から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、行ドライバ207より、複数のソース線SL0、SL2、・・・のうちの何れかに対応するソース線ドライバ回路SLDより、選択されたソース線に対して、所定の電圧を印加する。所定の電圧は、抵抗変化電圧電源220から入力される電圧を含み、VHRと0Vとを含みうる。行ドライバ207は、制御回路210から入力される信号に基づいて、VHRと0Vとのいずれかを、選択されたソース線に印加する。
書き込み回路206は、選択されたビット線に対して、所定の電圧を印加する。所定の電圧は、抵抗変化電圧電源220から入力される電圧を含み、VLR1とVLR2とVreadと0Vとを含みうる。書き込み回路206は、制御回路210から入力される信号に基づいて、VLR1とVLR2とVreadと0Vとのいずれかを、選択されたビット線に印加する。
図12に示す例では、書き込み回路206と、抵抗変化電圧電源220と、行選択回路208と、行ドライバ207と、列選択回路203とで、書き込み器が構成しうる。
図12に示す例では、ゲート電圧電源230と、行選択回路208と、行ドライバ207とで、ゲート電圧設定器が構成しうる。
図12に示す例では、制御回路210が、制御器を構成しうる。
[電圧印加のパターン]
図13A〜図13Dは、第2実施形態にかかる不揮発性記憶装置における電圧印加のパターンを示すタイミングチャートである。図13Aは、消去動作(低抵抗状態から高抵抗状態へ変化させる場合)における電圧印加のパターンである。図13Bは、通常の書込動作(高抵抗状態から低抵抗状態へ変化させる場合)における電圧印加のパターンである。図13Cは、過抵抗状態から低抵抗状態へ変化させる場合における電圧印加のパターンである。図13Dは、読出動作における電圧印加のパターンである。いずれの図でも、選択されたメモリセルが、ワード線WL0と、ビット線BL0と、ソース線SL0とに接続されている場合を例に説明する。
以下の動作は、制御回路210が、書き込み回路206と、抵抗変化電圧電源220と、行選択回路208と、行ドライバ207と、列選択回路203と、ゲート電圧電源230と、を制御することにより実行されうる。
消去動作(低抵抗状態から高抵抗状態へ変化させる場合)では、図13Aに示すように、第3電圧パルスが印加される前、ソース線SL0にもワード線WL0にもビット線BL0にも、0Vが印加されている。その後、まずワード線WL0にWLDから第1ゲート電圧VG1が印加されることで、選択されたメモリセルのトランジスタがONとなる。その後、パルス印加のタイミングでソース線ドライバからソース線SL0にVHRが印加される。このとき、ビット線BL0とソース線SL0との間には、ビット線BL0を基準として、所定のパルス幅で電圧がVHRである電圧パルス(第3電圧パルス、消去電圧パルス)が印加され、選択されたメモリセルは低抵抗状態から高抵抗状態へと変化する。ビット線BL0(第1配線、第2電極)の電位は、ソース線SL0(第2配線、第2入出力端子)の電位よりも低く、これが第1の極性となる。このとき、トランジスタN11はN型FETであって、ソース線SL0に接続された第2入出力端子は、高電位側、すなわちドレイン端子となる。
通常の書き込み動作(高抵抗状態から低抵抗状態へ変化させる場合)では、図13Bに示すように、第1電圧パルスが印加される前、ソース線SL0にもワード線WL0にもビット線BL0にも、0Vが印加されている。その後、まずワード線WL0にWLDから第1ゲート電圧VG1が印加されることで、選択されたメモリセルのトランジスタがONとなる。その後、パルス印加のタイミングで書き込み回路206からビット線BL0にVLR1が印加される。このとき、ソース線SL0とビット線BL0との間には、ソース線SL0を基準として、所定のパルス幅で電圧がVLR1である電圧パルス(第1電圧パルス、第1書き込み電圧パルス)が印加され、選択されたメモリセルは高抵抗状態から低抵抗状態へと変化する。ビット線BL0(第1配線、第2電極)の電位は、ソース線SL0(第2配線、第2入出力端子)の電位よりも高く、これが第2の極性となる。このとき、トランジスタN11はN型FETであって、ソース線SL0に接続された第2入出力端子は、低電位側、すなわちソース端子となる。
過抵抗状態から低抵抗状態へ変化させる場合、図13Cに示すように、第2電圧パルスが印加される前には、ソース線SL0にもワード線WL0にもビット線BL0にも、0Vが印加されている。その後、まずワード線WL0にWLDから第2ゲート電圧VG2が印加されることで、選択されたメモリセルのトランジスタがONとなると共に、所定の電流制限が加えられる。その後、パルス印加のタイミングで書き込み回路206からビット線BL0にVLR2が印加される。このとき、ソース線SL0とビット線BL0との間には、ソース線SL0を基準として、所定のパルス幅で電圧がVLR2である電圧パルス(第2電圧パルス、第2書き込み電圧パル)が印加され、選択されたメモリセルは超抵抗状態から低抵抗状態へと変化する。ビット線BL0(第1配線、第2電極)の電位は、ソース線SL0(第2配線、第2入出力端子)の電位よりも高く、第2の極性となる。このとき、トランジスタN11はN型FETであって、ソース線SL0に接続された第2入出力端子は、低電位側、すなわちソース端子となる。
選択されたメモリセルからデータを読み出す場合、図13Dに示すように、読み出し電圧パルスが印加される前には、ソース線SL0にもワード線WL0にもビット線BL0にも、0Vが印加されている。その後、まずワード線WL0にWLDからVGreadが印加されることで、選択されたメモリセルのトランジスタがONとなる。その後、パルス印加のタイミングでソース線ドライバからソース線SL0にVreadが印加される。このとき、ソース線SL0とビット線BL0との間には電圧Vreadが印加される。その結果、選択されたメモリセルの抵抗状態を反映した量の電流がビット線BL0とソース線SL0との間を流れることになる。
その他、第2実施形態の不揮発性記憶装置においても、第1実施形態で説明した不揮発性記憶素子の構成(図1〜図3、図10、図11)および動作方法(図4)等を適用可能である。よって、それらの具体的構成については詳細な説明を省略する。
上記説明では、トランジスタがN型FETである場合について説明したが、トランジスタがP型FETである場合には、例えば、抵抗変化型素子を逆向きに接続した上で、印加される電圧の極性を逆転させることで、同様の動作が可能となる。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
本発明の一態様は、不揮発性記憶素子における抵抗値のばらつきを低減させる不揮発性記憶素子の駆動方法として有用である。
1 基板
2 第1電極
3 抵抗変化層
3a 第1抵抗変化層
3b 第2抵抗変化層
4 第2電極
10 抵抗変化型素子
11 第1端子
12 第2端子
15 抵抗変化型素子
20 電界効果トランジスタ
21 第1入出力端子
22 第2入出力端子
23 ゲート端子
24 半導体基板
25a 第1拡散層
25b 第2拡散層
26 ゲート絶縁膜
27 ゲート電極
28 層間絶縁層
29 導電ビア
30 不揮発性記憶素子
31 不揮発性記憶素子

Claims (15)

  1. 第1電極と、第2電極と、前記第1電極と前記第2電極との間に設けられ、前記第1電極と前記第2電極との間に印加される電圧パルスに応じて、低抵抗状態と前記低抵抗状態よりも抵抗値が高い高抵抗状態との間を可逆的に変化する抵抗変化層と、を有する抵抗変化型素子と、
    前記第1電極に接続された第1入出力端子と、第2入出力端子と、前記第1入出力端子と前記第2入出力端子との間の導通を制御するゲート端子と、を有する電界効果トランジスタと、
    を備える不揮発性記憶素子の駆動方法であって、
    前記抵抗変化層を前記低抵抗状態から前記高抵抗状態へと変化させる際に、前記第2電極と前記第2入出力端子との間に第1の極性の消去電圧パルスを印加し、
    前記抵抗変化層を前記高抵抗状態から前記低抵抗状態へと変化させる際に、前記第2電極と前記第2入出力端子との間に前記第1の極性とは異なる第2の極性の書き込み電圧パルスを印加し、
    前記第2の極性は、前記電界効果トランジスタの前記第2入出力端子がソース端子となる極性であり、
    前記高抵抗状態にある前記抵抗変化層を前記低抵抗状態にするために、前記第2電極と前記第2入出力端子との間に第1書き込み電圧パルスを印可する場合に、前記電界効果トランジスタのゲート端子に、第1ゲート電圧を印加し、
    過抵抗状態にある前記抵抗変化層を前記低抵抗状態にするために、前記第2電極と前記第2入出力端子との間に電圧の絶対値が前記第1書き込み電圧パルスよりも大きい第2書き込み電圧パルスを印可する場合に、前記電界効果トランジスタのゲート端子に、電圧の絶対値が前記第1ゲート電圧よりも小さい第2ゲート電圧を印加する、
    不揮発性記憶素子の駆動方法。
  2. 前記電界効果トランジスタが、N型FETであり、
    前記第1の極性は、前記第2入出力端子の電位が前記第2電極の電位よりも高くなる極性であり、
    前記第2の極性は、前記第2入出力端子の電位が前記第2電極の電位よりも低くなる極性である、
    請求項1に記載の不揮発性記憶素子の駆動方法。
  3. 前記電界効果トランジスタが、P型FETであり、
    前記第1の極性は、前記第2入出力端子の電位が前記第2電極の電位よりも低くなる極性であり、
    前記第2の極性は、前記第2入出力端子の電位が前記第2電極の電位よりも高くなる極性である、
    請求項1に記載の不揮発性記憶素子の駆動方法。
  4. 前記抵抗変化層は、
    酸素不足型の金属酸化物を有する第1抵抗変化層と、
    前記第1抵抗変化層よりも酸素不足度が小さい金属酸化物を有する第2抵抗変化層と、
    を備え、
    前記電界効果トランジスタが、N型FETであり、
    前記第1抵抗変化層が前記第2電極に接し、
    前記第2抵抗変化層が前記第1電極に接する、
    請求項1に記載の不揮発性記憶素子の駆動方法。
  5. 前記抵抗変化層は、
    酸素不足型の金属酸化物を有する第1抵抗変化層と、
    前記第1抵抗変化層よりも酸素不足度が小さい金属酸化物を有する第2抵抗変化層と、
    を備え、
    前記電界効果トランジスタが、P型FETであり、
    前記第1抵抗変化層が前記第1電極に接し、
    前記第2抵抗変化層が前記第2電極に接する、
    請求項1に記載の不揮発性記憶素子の駆動方法。
  6. 前記電界効果トランジスタが、N型FETであり、前記第1電極の標準電極電位をE1とし、前記第2電極の標準電極電位をE2とするとき、E1>E2を満足する、
    請求項1に記載の不揮発性記憶素子の駆動方法。
  7. 前記電界効果トランジスタが、P型FETであり、前記第1電極の標準電極電位をE1とし、前記第2電極の標準電極電位をE2とするとき、E2>E1を満足する、
    請求項1に記載の不揮発性記憶素子の駆動方法。
  8. 前記抵抗変化層は、
    第1金属酸化物を有する第1抵抗変化層と、
    第2金属酸化物を有する第2抵抗変化層と、
    を備え、
    前記第1金属酸化物と前記第2金属酸化物とが同じ金属の酸化物であり、
    前記第1金属酸化物の組成をMOxと表し、前記第2金属酸化物の組成をMOyと表すとき、y>xを満足する、
    請求項1から7の何れか1項に記載の不揮発性記憶素子の駆動方法。
  9. 前記第1金属酸化物と前記第2金属酸化物とがタンタル酸化物である、
    請求項8に記載の不揮発性記憶素子の駆動方法。
  10. 前記第1金属酸化物と前記第2金属酸化物とがハフニウム酸化物である、
    請求項8に記載の不揮発性記憶素子の駆動方法。
  11. 前記第1金属酸化物と前記第2金属酸化物とがジルコニウム酸化物である、
    請求項8に記載の不揮発性記憶素子の駆動方法。
  12. 前記抵抗変化層は、
    第1金属酸化物を有する第1抵抗変化層と、
    第2金属酸化物を有する第2抵抗変化層と、
    を備え、
    前記第1金属酸化物と前記第2金属酸化物とが互いに異なる金属の酸化物であり、
    前記第1金属酸化物を構成する金属の標準電極電位をENとし、前記第2金属酸化物を構成する金属の標準電極電位をEMとすると、EN<EMを満足する、
    請求項1から7の何れか1項に記載の不揮発性記憶素子の駆動方法。
  13. 前記第1金属酸化物がタンタル酸化物であり、前記第2金属酸化物がアルミニウム酸化物である、
    請求項12に記載の不揮発性記憶素子の駆動方法。
  14. 前記第1金属酸化物がタンタル酸化物であり、前記第2金属酸化物がハフニウム酸化物である、
    請求項12に記載の不揮発性記憶素子の駆動方法。
  15. 請求項1に記載の不揮発性記憶素子の駆動方法であって、
    前記駆動方法は、
    前記抵抗変化層を前記低抵抗状態にする場合に、前記ゲート端子に第1ゲート電圧を与えると共に、前記第2電極と前記第2入出力端子との間に第1書き込み電圧パルスを印加するステップ(A)と、
    前記ステップ(A)の後に、前記抵抗変化層が前記低抵抗状態に変化していない場合には、前記抵抗変化層が過抵抗状態にあると判定し、前記ゲート端子に第2ゲート電圧を与えると共に、前記第2電極と前記第2入出力端子との間に第2書き込み電圧パルスを印加するステップ(B)と、を含む、
    不揮発性記憶素子の駆動方法。
JP2014090344A 2013-04-30 2014-04-24 不揮発性記憶素子の駆動方法 Expired - Fee Related JP5830655B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014090344A JP5830655B2 (ja) 2013-04-30 2014-04-24 不揮発性記憶素子の駆動方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013095116 2013-04-30
JP2013095116 2013-04-30
JP2014090344A JP5830655B2 (ja) 2013-04-30 2014-04-24 不揮発性記憶素子の駆動方法

Publications (2)

Publication Number Publication Date
JP2014232559A JP2014232559A (ja) 2014-12-11
JP5830655B2 true JP5830655B2 (ja) 2015-12-09

Family

ID=51789147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014090344A Expired - Fee Related JP5830655B2 (ja) 2013-04-30 2014-04-24 不揮発性記憶素子の駆動方法

Country Status (2)

Country Link
US (1) US9087582B2 (ja)
JP (1) JP5830655B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153319B2 (en) * 2011-03-14 2015-10-06 Panasonic Intellectual Property Management Co., Ltd. Method for driving nonvolatile memory element, and nonvolatile memory device having a variable resistance element
US9053789B1 (en) * 2012-04-23 2015-06-09 Adesto Technologies Corporation Triggered cell annihilation for resistive switching memory devices
US20150380309A1 (en) * 2014-06-26 2015-12-31 Intermolecular Inc. Metal-insulator-semiconductor (MIS) contact with controlled defect density
US9224951B1 (en) * 2014-07-21 2015-12-29 Intermolecular, Inc. Current-limiting electrodes
US9576651B2 (en) * 2015-01-21 2017-02-21 Taiwan Semiconductor Manufacturing Company Limited RRAM and method of read operation for RRAM
CN104978988B (zh) * 2015-05-22 2017-08-25 江苏时代全芯存储科技有限公司 记忆体装置
US9577009B1 (en) * 2015-11-13 2017-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell with PMOS access transistor
US11037052B2 (en) * 2015-12-30 2021-06-15 SK Hynix Inc. Method of reading data from synapses of a neuromorphic device
US11043265B2 (en) * 2016-02-12 2021-06-22 Hewlett Packard Enterprise Development Lp Memory devices with volatile and non-volatile behavior
US9679643B1 (en) * 2016-03-09 2017-06-13 Taiwan Semiconductor Manufacturing Co., Ltd. Resistive memory device having a trimmable resistance of at least on of a driver and a sinker is trimmed based on a row location
KR102578854B1 (ko) * 2016-12-31 2023-09-19 에스케이하이닉스 주식회사 저항성 메모리 소자 및 이의 제조 방법
US11489112B2 (en) 2017-09-28 2022-11-01 Intel Corporation Resistive random access memory device and methods of fabrication
US10734576B2 (en) * 2018-03-16 2020-08-04 4D-S, Ltd. Resistive memory device having ohmic contacts
US10803939B2 (en) * 2018-08-22 2020-10-13 Micron Technology, Inc. Techniques for programming a memory cell
TWI775138B (zh) * 2020-09-03 2022-08-21 力晶積成電子製造股份有限公司 複合型記憶體結構
CN116456727A (zh) * 2023-06-14 2023-07-18 北京大学 一种能够保持循环间开关比的阻变存储器及其制备方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102525B2 (en) 2008-10-07 2012-01-24 OptoTrace (SuZhou) Technologies, Inc. Systems and methods for detecting chemical and biological substances
US7460224B2 (en) 2005-12-19 2008-12-02 Opto Trace Technologies, Inc. Arrays of nano structures for surface-enhanced Raman scattering
US8213007B2 (en) 2003-05-27 2012-07-03 Optotrace Technologies, Inc. Spectrally sensing chemical and biological substances
US8031335B2 (en) 2003-05-27 2011-10-04 Opto Trace Technologies, Inc. Non-invasive disease diagnosis using light scattering probe
US7956997B2 (en) 2003-05-27 2011-06-07 Optotrace Technologies, Inc. Systems and methods for food safety detection
US7242469B2 (en) 2003-05-27 2007-07-10 Opto Trace Technologies, Inc. Applications of Raman scattering probes
US8081308B2 (en) 2003-05-27 2011-12-20 Optotrace Technologies, Inc. Detecting chemical and biological impurities by nano-structure based spectral sensing
US7892489B2 (en) 2003-05-27 2011-02-22 Optotrace Technologies, Inc. Light scattering device having multi-layer micro structure
US7384792B1 (en) 2003-05-27 2008-06-10 Opto Trace Technologies, Inc. Method of fabricating nano-structured surface and configuration of surface enhanced light scattering probe
KR100773537B1 (ko) 2003-06-03 2007-11-07 삼성전자주식회사 한 개의 스위칭 소자와 한 개의 저항체를 포함하는비휘발성 메모리 장치 및 그 제조 방법
JP4113493B2 (ja) 2003-06-12 2008-07-09 シャープ株式会社 不揮発性半導体記憶装置及びその制御方法
US7812938B2 (en) 2007-06-12 2010-10-12 Opto Trace Technologies, Inc. Integrated chemical separation light scattering device
US9086379B2 (en) 2004-05-24 2015-07-21 OptoTrace (SuZhou) Technologies, Inc. System for chemical separation and identification
US8441631B2 (en) 2004-05-24 2013-05-14 OptoTrace (SuZhou) Technologies, Inc. Integrated device capable of performing chemical separation and light scattering
US8582099B2 (en) 2005-12-19 2013-11-12 Optotrace Technologies, Inc. Monitoring network based on nano-structured sensing devices
US9182352B2 (en) 2005-12-19 2015-11-10 OptoTrace (SuZhou) Technologies, Inc. System and method for detecting oil or gas underground using light scattering spectral analyses
JP4195715B2 (ja) * 2006-07-31 2008-12-10 シャープ株式会社 半導体記憶装置
JP2008146740A (ja) * 2006-12-08 2008-06-26 Sharp Corp 半導体記憶装置
US8323580B2 (en) 2007-05-29 2012-12-04 OptoTrace (SuZhou) Technologies, Inc. Multi-layer micro structure for sensing substance
US8958070B2 (en) 2007-05-29 2015-02-17 OptoTrace (SuZhou) Technologies, Inc. Multi-layer variable micro structure for sensing substance
JP2009037703A (ja) 2007-08-02 2009-02-19 Toshiba Corp 抵抗変化メモリ
JP2009146478A (ja) 2007-12-12 2009-07-02 Sony Corp 記憶装置および情報再記録方法
JP4720912B2 (ja) * 2009-01-22 2011-07-13 ソニー株式会社 抵抗変化型メモリデバイス
US8406035B2 (en) 2009-05-14 2013-03-26 Panasonic Corporation Nonvolatile memory device and method of writing data to nonvolatile memory device
TWI428929B (zh) * 2009-11-24 2014-03-01 Ind Tech Res Inst 控制方法
JP4838399B2 (ja) * 2010-03-30 2011-12-14 パナソニック株式会社 不揮発性記憶装置及び不揮発性記憶装置への書き込み方法
JP5369071B2 (ja) 2010-09-30 2013-12-18 シャープ株式会社 可変抵抗素子のフォーミング処理方法、及び、不揮発性半導体記憶装置
WO2012056689A1 (ja) * 2010-10-29 2012-05-03 パナソニック株式会社 不揮発性記憶装置
WO2012090404A1 (ja) 2010-12-27 2012-07-05 パナソニック株式会社 不揮発性記憶素子、その製造方法
CN102822901B (zh) * 2011-03-25 2014-09-24 松下电器产业株式会社 电阻变化型非易失性元件的写入方法及存储装置
US8867259B2 (en) 2011-08-11 2014-10-21 Panasonic Corporation Method of programming variable resistance nonvolatile memory element

Also Published As

Publication number Publication date
JP2014232559A (ja) 2014-12-11
US9087582B2 (en) 2015-07-21
US20140321197A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5830655B2 (ja) 不揮発性記憶素子の駆動方法
US9378817B2 (en) Variable resistance nonvolatile memory element writing method and variable resistance nonvolatile memory device
JP5475058B2 (ja) 抵抗変化型不揮発性記憶装置
KR101541573B1 (ko) 기억 소자 및 기억 장치
TWI443821B (zh) A memory element and a memory device, and a method of operating the memory device
US8179714B2 (en) Nonvolatile storage device and method for writing into memory cell of the same
CN103250252B (zh) 非易失性存储元件及非易失性存储装置
JP5209151B1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法
JP4529654B2 (ja) 記憶素子及び記憶装置
JP5395314B2 (ja) 不揮発性記憶素子および不揮発性記憶装置
JP5490961B2 (ja) 不揮発性記憶素子の駆動方法及び不揮発性記憶装置
JP5351363B1 (ja) 不揮発性記憶素子および不揮発性記憶装置
JP2012128892A (ja) 記憶装置
CN109791791B (zh) 非易失性存储装置、以及驱动方法
JP2010278275A (ja) 半導体記憶装置
JP5312709B1 (ja) 抵抗変化素子の駆動方法及び不揮発性記憶装置
TWI545816B (zh) 儲存裝置及儲存單元
JP5291270B1 (ja) 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法
JP2014086692A (ja) 不揮発性記憶素子及び不揮発性記憶素子の駆動方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5830655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees