WO2013046598A1 - グリース組成物及びそのグリース組成物が封入された車輪支持用転がり軸受ユニット - Google Patents

グリース組成物及びそのグリース組成物が封入された車輪支持用転がり軸受ユニット Download PDF

Info

Publication number
WO2013046598A1
WO2013046598A1 PCT/JP2012/005940 JP2012005940W WO2013046598A1 WO 2013046598 A1 WO2013046598 A1 WO 2013046598A1 JP 2012005940 W JP2012005940 W JP 2012005940W WO 2013046598 A1 WO2013046598 A1 WO 2013046598A1
Authority
WO
WIPO (PCT)
Prior art keywords
grease composition
oil
base oil
rolling bearing
rust inhibitor
Prior art date
Application number
PCT/JP2012/005940
Other languages
English (en)
French (fr)
Inventor
一弘 曽我
宮川 貴之
宣行 稲見
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201280045315.7A priority Critical patent/CN103814119A/zh
Priority to US13/824,241 priority patent/US20140193110A1/en
Priority to DE112012003999.8T priority patent/DE112012003999T5/de
Publication of WO2013046598A1 publication Critical patent/WO2013046598A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6633Grease properties or compositions, e.g. rheological properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/06Mixtures of thickeners and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • C10M2215/1026Ureas; Semicarbazides; Allophanates used as thickening material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/76Reduction of noise, shudder, or vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the present invention relates to a grease composition and a wheel bearing rolling bearing unit in which the grease composition is enclosed, and in particular, a rolling element and a raceway surface are enclosed in a bearing used with a high rolling element load (high contact surface pressure). Further, the present invention relates to a grease composition that can keep the rotational torque (rolling frictional resistance) of a bearing low even under a high rolling element load, and a wheel bearing rolling bearing unit for rotatably supporting a wheel with respect to an automobile suspension device. .
  • Patent Document 1 describes a structure as shown in FIG.
  • This wheel support rolling bearing unit 100 is a so-called third generation inner ring rotating type driven wheel unit, and a flange for fixing the outer ring 102 to a suspension device (not shown) on the outer diameter side of the outer ring 102 which is a stationary wheel.
  • a hub 107 which is a rotating raceway is supported on a radially inner side by a plurality of balls 105 and 105 which are rolling elements, respectively.
  • double row outer ring raceways 110a and 110b are provided on the inner peripheral surface of the outer ring 102, and a first inner ring raceway, which is each of the outer peripheral surface of the hub 107, is a rotary side raceway surface. 121 and a second inner ring raceway 122 are provided.
  • the hub 107 is a combination of the hub body 103 and the inner ring 104.
  • the mounting flange 111 for supporting the wheel on the outer end portion of the outer peripheral surface of the hub body 103 has a smaller diameter than the portion where the first inner ring raceway 121 is formed in the same portion near the inner end of the intermediate portion.
  • Small diameter step portions 125 are respectively provided.
  • “inside” in the axial direction refers to a side that is closer to the middle in the width direction of the vehicle when assembled to the vehicle, for example, the right side of FIG. 4.
  • the side that is outside the width direction of the vehicle is referred to as “outside” in the axial direction.
  • the small-diameter step portion 125 and the inner ring 104 provided with the second inner ring raceway 122 having a circular arc cross section on the outer peripheral surface are externally fitted. Further, the inner end surface of the inner ring 104 is pressed against the hub main body 103 by a crimping portion 126 formed by plastic deformation of the inner end portion of the hub main body 103 radially outward. At the same time, a preload is applied to the bearing unit, which is a structure of the rear (DB) combination, and high rigidity is maintained against the road surface reaction force applied as a moment load.
  • a male screw is formed on the inner end portion of the hub main body 103, and the inner end surface of the inner ring 104 is pressed and fixed with a nut.
  • a seal ring 106 is provided between the outer peripheral surface of the outer end of the outer ring 102 and the outer peripheral surface of the intermediate portion of the hub body 103, and a cap 108 a is provided on the inner end surface of the outer ring 102.
  • the internal space 117 provided with the balls 105, 105 is blocked from the external space.
  • Grease is sealed in the internal space 117 to lubricate the rolling parts of the outer ring raceways 110a and 110b, the first inner ring raceway 121 and the second inner ring raceway 122, and the balls 105 and 105.
  • the wheel support rolling bearing unit 100 has been described above by taking the so-called third generation driven wheel unit as an example.
  • a female spline that can be fitted with a constant velocity joint spline is formed in the center of the hub body 103.
  • a third-generation drive wheel unit in which the cap 108a is replaced with a seal ring is also widely used, and so-called first-generation and second-generation wheel support rolling bearing units are also used.
  • Patent Document 1 discloses that the kinematic viscosity at 100 ° C. is 5.0 ⁇ 10 ⁇ 6 to 9.0 ⁇ .
  • grease of 10 ⁇ 6 m 2 / s (5-9 cSt) rolling resistance of rolling contact parts is reduced, rotational torque is reduced, and vehicle running performance centering on acceleration performance and fuel efficiency performance
  • a wheel bearing rolling bearing unit with improved performance has been proposed.
  • the rolling bearing unit for supporting a vehicle has a heavy load (for example, a rolling element load equivalent to the static rated load of the bearing with a rotation acceleration of about 0.8 G) at a low speed rotation of several hundred rpm level (for example, 800 rpm ⁇ 100 km / h).
  • a heavy load for example, a rolling element load equivalent to the static rated load of the bearing with a rotation acceleration of about 0.8 G
  • a low speed rotation of several hundred rpm level for example, 800 rpm ⁇ 100 km / h.
  • the grease base oil described in Patent Document 1
  • it is effective to a certain extent for lowering torque under low-load and high-speed running conditions, such as high-speed straight-running conditions, but under normal use conditions (medium / low-speed or light-turning conditions).
  • the oil film thickness is reduced, which does not necessarily lead to a reduction in torque, and there is a possibility that abnormal noise may be generated due to the rough surface of the raceway surface and rolling elements.
  • the wheel-supporting rolling bearing unit supports the mass of the vehicle body via the wheels and, depending on the running state of the vehicle, the road surface reaction force (a variable load such as radial, thrust, and moment) input from the tire contact point. There is a load. If the rigidity of the wheel bearing rolling bearing unit is low, the camber angle may change due to fluctuations in the road surface reaction force, which may lead to deterioration (instability) in handling (steerability, stability).
  • the supporting rolling bearing unit is provided with high rigidity by applying a preload on the rear combination.
  • the wheel bearing rolling bearing unit may be transported over a long distance in a state in which the wheel does not rotate and receives only vibration after being assembled to the vehicle. Therefore, as shown in FIG. 4, a ball and a raceway surface, called false Brinering, are provided between the rolling elements 105, 105 and the outer ring raceways 110 a, 110 b, the first inner ring raceway 121, and the second inner ring raceway 122. Fretting wear phenomenon is likely to occur.
  • urea-based grease that has more base oil separation than lithium-based grease, which has been conventionally used as wheel grease (or chassis grease), is used. Lubricating between the ball and the raceway surface with oil can be mentioned. However, if the base oil is separated too much, there is a problem that oil leaks from the seal or the lubricity of the grease decreases.
  • the present invention has been made paying attention to the above problems, and its purpose is to reduce the load sensitivity of the rotational torque of the wheel bearing rolling bearing unit (to reduce the correlation coefficient between the rolling element load and the torque).
  • a grease composition capable of maintaining the performance for example, fretting resistance, water resistance, leakage resistance
  • An object of the present invention is to provide a wheel bearing rolling bearing unit in which a grease composition is enclosed.
  • the present inventors have conducted extensive studies, and as a result, mainly by defining a suitable combination of base oil and thickener, the load sensitivity of the rotational torque of the wheel bearing rolling bearing unit (Reducing the correlation coefficient between rolling element load and torque), while maintaining the performance (for example, fretting resistance, water resistance, leakage resistance) required for the wheel bearing rolling bearing unit while reducing the torque, It was found that good lubrication can be maintained for a long time.
  • the grease composition according to an aspect of the present invention for solving the above-described problems includes at least a base oil of a specific formulation, a thickener, A grease composition containing a rust inhibitor and an antiwear agent,
  • the base oil is mineral oil, synthetic oil or a mixed oil thereof, and the mixing ratio (mass ratio) of the mineral oil and the synthetic oil is 0: 100 to 20:80,
  • the base oil has a kinematic viscosity at 40 ° C. of 70 to 150 mm 2 / s,
  • the pour point of the base oil is ⁇ 40 ° C. or lower.
  • the thickener is the following general formula (I) contained in an amount of 10 to 40% by mass based on the total amount of the grease composition, or the following thickener contained in an amount of 10 to 30% by mass based on the total amount of the grease composition.
  • a diurea compound represented by the general formula (II) The rust inhibitor includes a carboxylic acid rust inhibitor, a carboxylate rust inhibitor, and an amine rust inhibitor,
  • the antiwear agent may be triphenyl phosphorothioate.
  • R 2 NHCONH—R 1 —NHCONH—R 3 ...
  • R 1 represents an aromatic hydrocarbon group having 6 to 15 carbon atoms
  • R 2 and R 3 represent an aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • R 2 and R 3 May be the same or different.
  • R 5 NHCONH—R 4 —NHCONH—R 6 ...
  • R 4 is an aromatic hydrocarbon group having 6 to 15 carbon atoms
  • R 5 and R 6 are aliphatic hydrocarbon groups having 6 to 20 carbon atoms
  • cyclohexyl derivatives having 6 to 12 carbon atoms.
  • the ratio of the cyclohexyl derivative group in the total amount of R 5 and R 6 is 50 to 90 mol%, and R 5 and R 6 may be the same or different.
  • the grease composition is excellent in low-temperature fretting property and low torque because the low-temperature fluidity and wear characteristics are good by including a thickener containing 10 to 40% by mass. Can be provided.
  • the thickener containing the aromatic diurea compound represented by the general formula (I) is contained in an amount of 10 to 40% by mass based on the total amount of the grease composition, low leakage when encapsulated in the bearing is achieved. Excellent by combining 3 types of carboxylic acid rust preventive additive, carboxylate rust preventive additive and amine rust preventive agent and triphenylphosphotothioate as an antiwear agent. Thus, it is possible to provide a grease composition excellent in peeling resistance, abrasion resistance, fretting resistance and corrosion resistance.
  • a thickener containing at least one of the alicyclic diurea compound and the aliphatic diurea compound represented by the general formula (II) is contained in an amount of 10 to 30% by mass based on the total amount of the grease composition.
  • a grease composition excellent in low-temperature fretting properties and low torque properties can be provided.
  • carboxylic acid-based rust preventive additive, carboxylate-based rust preventive additive and amine-based rust preventive agent and anti-wear agent it is possible to improve peeling resistance, wear resistance, and corrosion resistance.
  • An excellent grease composition can be provided.
  • a wheel bearing rolling bearing unit according to an aspect of the present invention is filled with the grease composition described above.
  • a wheel support rolling bearing unit capable of maintaining the performance required for the wheel support rolling bearing unit and maintaining a good lubrication state for a long time while reducing the load sensitivity of the rotational torque is provided. be able to.
  • a grease composition capable of maintaining the performance required for a wheel bearing rolling bearing unit and maintaining a good lubrication state for a long time while reducing the load sensitivity of rotational torque, and the grease composition It is possible to provide a wheel bearing rolling bearing unit in which is enclosed.
  • a grease composition according to an embodiment includes a base oil, a thickener composed of a diurea compound, a rust inhibitor, and an antiwear agent.
  • Base oil mineral oil, synthetic oil or a mixed oil thereof is used.
  • the mixing ratio (mass ratio) of mineral oil and synthetic oil in the base oil is 0: 100 to 20:80.
  • the base oil has a kinematic viscosity at 40 ° C. of 70 to 150 mm 2 / s.
  • the pour point of the base oil is ⁇ 40 ° C. or lower.
  • the mineral oil examples include paraffinic mineral oil and naphthenic mineral oil, which are refined by appropriately combining distillation under reduced pressure, oil removal, solvent extraction, hydrocracking, solvent dewaxing, sulfuric acid washing, clay purification, hydrorefining, etc. Is mentioned.
  • the synthetic oil examples include hydrocarbon oils, aromatic oils, ester oils, ether oils, and the like.
  • the base oil of the present embodiment adopts a hydrocarbon oil among the synthetic oils, the torque characteristics are good, and the bearing rubber seal (the wheel bearing rolling bearing unit is made of nitrile rubber or fluorine rubber). It is preferable in terms of good compatibility.
  • hydrocarbon oil examples include normal paraffin, isoparaffin, polybutene, polyisobutylene, 1-decene oligomer, poly- ⁇ -olefin such as 1-decene and ethylene co-oligomer, and hydrides thereof.
  • aromatic oil examples include alkylbenzenes such as monoalkylbenzene and dialkylbenzene, and alkylnaphthalenes such as monoalkylnaphthalene, dialkylnaphthalene and polyalkylnaphthalene.
  • ester oils include diester oils such as dibutyl sebacate, di-2-ethylhexyl sebacate, dioctyl adipate, diisodecyl adipate, ditridecyl adipate, ditridecyl glutarate, methyl acetyl cinnolate, or trioctyl Aromatic ester oils such as trimellitate, tridecyl trimellitate, tetraoctyl pyromellitate, trimethylolpropane caprylate, trimethylolpropane verargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol base Examples include polyol ester oils such as largonate, and complex ester oils that are oligoesters of polyhydric alcohols and mixed fatty acids of dibasic acids and monobasic acids.
  • ether oil examples include polyethylene glycol, polypropylene glycol, polyethylene glycol monoether, polyglycol such as polypropylene glycol monoether, or monoalkyl triphenyl ether, alkyl diphenyl ether, dialkyl diphenyl ether, pentaphenyl ether, tetraphenyl ether.
  • phenyl ether oils such as monoalkyl tetraphenyl ether and dialkyl tetraphenyl ether.
  • the mineral oil and the synthetic oil can be selected as appropriate, but as described above, if the rolling bearing unit for wheel support is used at high load and high surface pressure, the pressure viscosity coefficient is Since it is easy to obtain low torque by using a synthetic oil that is low and has a low high-pressure viscosity, a higher mixing ratio of the synthetic oil is preferable, and 100% synthetic oil is more preferable.
  • low molecular weight poly- ⁇ -olefins that have a flexible alkyl group as a branched structure are difficult to orderly align molecular chains because the alkyl group takes various conformations, and can be easily used under high pressure. Is preferable because it is not crystallized or solidified and can maintain a viscous liquid state.
  • the above base oil must be selected to have a kinematic viscosity that increases the oil film thickness as much as possible, even in boundary lubrication, in order to avoid noise generation at low temperature startup and seizure at high temperature and heavy load. There is. If the kinematic viscosity at 40 ° C. is 70 to 150 mm 2 / s, the occurrence of the above problems can be avoided when the bearing temperature is in the range of ⁇ 40 ° C. to 160 ° C. Further, if the kinematic viscosity at 40 ° C.
  • the operating temperature of the wheel-supporting rolling bearing unit is assumed to be, for example, ⁇ 40 ° C. to 160 ° C. Therefore, the base oil having a pour point of ⁇ 40 ° C. or less is used. When the pour point of the base oil is ⁇ 40 ° C. or higher, fretting wear at low temperatures is inferior.
  • the pressure viscosity coefficient ⁇ of the base oil calculated at 40 ° C. using the following So-Klaus equation is set to 33 GPa ⁇ 1 or less, more preferably 27 GPa ⁇ 1 or less.
  • the pressure viscosity coefficient ⁇ at 40 ° C. of the base oil exceeds 33 GPa ⁇ 1 , the bearing torque increases.
  • the pressure viscosity coefficient ⁇ at 40 ° C. of the base oil can be calculated using the following So-Klaus estimation formula.
  • ⁇ 0 is the kinematic viscosity of the base oil at 40 ° C.
  • a diurea compound can be preferably used.
  • aliphatic diurea, alicyclic diurea, and aromatic diurea can be used.
  • aromatic diurea is used in consideration of fretting wear caused by vibrations caused by operation.
  • the thickener is a diurea compound represented by the following general formula (I) or general formula (II).
  • the aromatic diurea used as the thickener is specifically a diurea compound represented by the following general formula (I).
  • R 1 represents an aromatic hydrocarbon group having 6 to 15 carbon atoms
  • R 2 and R 3 represent an aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • R 2 and R 3 may be the same or different.
  • R 2 —NHCONH—R 1 —NHCONH—R 3 ...
  • the content of the diurea compound represented by the general formula (I) is less than 10% by mass, it is difficult to maintain the grease state, which is not preferable.
  • the content of the diurea compound represented by the above general formula (I) exceeds 40% by mass, the grease composition becomes too hard, and the lubrication state cannot be sufficiently exhibited. Absent.
  • the aliphatic diurea or alicyclic diurea used as the thickener is specifically a diurea compound represented by the following general formula (II).
  • R 4 is an aromatic hydrocarbon group having 6 to 15 carbon atoms
  • R 5 and R 6 are aliphatic hydrocarbon groups having 6 to 20 carbon atoms, and 6 to 12 carbon atoms. Represents a cyclohexyl derivative group, and the ratio of the cyclohexyl derivative group in the total amount of R 5 and R 6 is 50 to 90 mol%, and R 5 and R 6 may be the same or different.
  • the urea-based thickener can be used.
  • the medium carbon steel is used. It is necessary to select a combination in which the oil film thickness is as thick as possible in relation to the base oil and the raceway surface made of heat-treated hardened steel such as carburized steel or bearing steel, or the ball made of heat-treated hardened steel. is there.
  • lubricating oil has polarity, and has obtained lubricity by adsorbing a polar group to a metal (steel) surface.
  • the thickener has polarity and the base oil is nonpolar. Since the thickener herein is a diurea compound, in other words, a urea resin, the thickener itself has an effect of preventing metal contact and lubrication.
  • This diurea compound has an aromatic hydrocarbon group and is adsorbed on the raceway surface and balls to prevent metal contact (substantially the same effect as when the oil film is thickened). If a non-polar hydrocarbon oil such as poly- ⁇ -olefin is used, a more suitable grease composition for a wheel support rolling bearing unit can be obtained.
  • the said rust preventive agent contains three types of rust preventive agents, a carboxylic acid type rust preventive agent, a carboxylate salt type rust preventive agent, and an amine type rust preventive agent.
  • rust preventive agents a carboxylic acid type rust preventive agent, a carboxylate salt type rust preventive agent, and an amine type rust preventive agent.
  • the content of the rust preventive agent with respect to the total amount of the grease composition is 0.1 to 5% by mass of the carboxylic acid type rust preventive agent and the carboxylate type rust preventive agent with respect to the total amount of the grease composition. If the addition amount is less than 0.1% by mass, a sufficient effect cannot be obtained, and even if the addition amount exceeds 5%, the effect is not improved. Considering these, the addition amount is preferably 0.5 to 3% by mass.
  • the amount of the amine-based rust inhibitor added is 0.1 to 3% by mass of the total amount of grease.
  • the amount added is less than 0.1% by mass, sufficient effects cannot be obtained, and if it exceeds 3%, the effect is not improved, and the amount of adsorption on the bearing member surface increases too much, resulting from the enclosed grease. There is a risk of inhibiting the formation of oxide films and the like.
  • carboxylic acid rust preventive examples include monocarboxylic acids, linear fatty acids such as lauric acid and stearic acid, and saturated carboxylic acids having a naphthene nucleus.
  • Dicarboxylic acids include succinic acid derivatives such as succinic acid, alkyl succinic acid, alkyl succinic acid half ester, alkenyl succinic acid, alkenyl succinic acid half ester, succinimide, hydroxy fatty acid, mercapto fatty acid, sarcosine derivative, and wax or Examples thereof include an oxidized wax such as an oxide of petrolatum. Among them, succinic acid half ester is preferable.
  • carboxylate-based rust preventive examples include fatty acid, naphthenic acid, abietic acid, lanolin fatty acid, alkenyl succinic acid, and metal salts of amino acid derivatives.
  • metal salts of amino acid derivatives include cobalt, manganese, zinc, aluminum, calcium, barium, lithium, magnesium, copper etc. are mentioned. Of these, zinc naphthenate is preferred.
  • amine-based rust preventive examples include alkoxyphenylamines, amine salts of fatty acids, and partial amides of dibasic carboxylic acids. Of these, fatty acid amine salts are preferred.
  • a sulfur-phosphorus (SP) compound is used as the antiwear agent.
  • the sulfur-phosphorus (SP) compounds include triphenyl phosphate compounds and dithiophosphate compounds.
  • triphenyl phosphorothioate (TPPT) represented by the following general formula (III): Is preferred.
  • the content of the antiwear agent is preferably 0.1 to 5% by mass with respect to the total amount of the grease composition. If the content is less than 0.1% by mass, a sufficient effect cannot be obtained, and if it exceeds 5%, the effect is not improved.
  • other additives may be added to the grease composition of the present embodiment as desired.
  • antioxidants, extreme pressure agents, oiliness improvers, metal deactivators and the like can be added alone or in admixture of two or more.
  • the content (addition amount) of these other additives is not limited as long as the effect of the present invention is not impaired, but is usually 0.1 to 20% by mass of the total amount of the grease composition. If the addition amount is less than 0.1% by mass, the effect of addition is not sufficient, and even if added in excess of 20% by mass, the effect is saturated, and the amount of base oil is relatively small, so that the lubricity may be lowered. There is.
  • antioxidant examples include amine-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, and zinc dithiophosphate.
  • amine-based antioxidant examples include phenyl-1-naphthylamine, phenyl-2-naphthylamine, diphenylamine, phenylenediamine, oleylamidoamine, phenothiazine and the like.
  • phenolic antioxidant examples include pt-butyl-phenyl salicylate, 2,6-di-t-butyl-p-phenylphenol, 2,2′-methylenebis (4-methyl-6- t-octylphenol), 4,4′-butylidenebis-6-t-butyl-m-cresol, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, n-octadecyl- ⁇ - (4′-hydroxy-3 ′, 5 '-Di-t-butylphenyl) propionate, 2-n-octyl-thio-4,6-di (4'-hydroxy-3', 5'-di-t-butyl) phenoxy-1,3,5- Hinders
  • Examples of the extreme pressure agent include organic molybdenum.
  • Oil improver examples of the oiliness improver include fatty acids such as oleic acid and stearic acid, alcohols such as lauryl alcohol and oleyl alcohol, amines such as stearylamine and cetylamine, phosphate esters such as tricresyl phosphate, and animal and vegetable oils.
  • Metal deactivator examples of the metal deactivator include benzotriazole.
  • the method for producing the grease composition of the present embodiment containing each of the above components is not particularly limited and is appropriately selected depending on the intended purpose.
  • the thickener aromatic diurea in the base oil is used.
  • Compound, or aliphatic diurea and alicyclic diurea are reacted, and then quantitatively added to each of the above rust inhibitor and the above-mentioned anti-wear agent, and sufficiently stirred and kneaded with a kneader or a roll mill. It is done. In this process, it is also effective to heat.
  • mineral oil A is a mineral oil having a kinematic viscosity at 40 ° C. of 30 mm 2 / s.
  • mineral oil B is a mineral oil having a kinematic viscosity at 40 ° C. of 70 mm 2 / s.
  • mineral oil C is a mineral oil having a kinematic viscosity at 40 ° C. of 75 mm 2 / s.
  • Mineral oil D is a mineral oil having a kinematic viscosity at 40 ° C. of 100 mm 2 / s.
  • Mineral oil E is a mineral oil having a kinematic viscosity at 40 ° C. of 130 mm 2 / s.
  • Mineral oil F is a mineral oil having a kinematic viscosity at 40 ° C. of 150 mm 2 / s.
  • poly ⁇ -olefin oil G is a synthetic oil having a kinematic viscosity at 40 ° C. of 30 mm 2 / s.
  • Poly ⁇ -olefin oil H is a synthetic oil having a kinematic viscosity at 40 ° C. of 70 mm 2 / s.
  • Poly ⁇ -olefin oil I is a synthetic oil having a kinematic viscosity at 40 ° C. of 75 mm 2 / s.
  • Poly ⁇ -olefin oil J is a synthetic oil having a kinematic viscosity at 40 ° C.
  • Poly ⁇ -olefin oil K is a synthetic oil having a kinematic viscosity at 40 ° C. of 130 mm 2 / s.
  • the “poly ⁇ -olefin oil L” is a synthetic oil having a kinematic viscosity at 40 ° C. of 150 mm 2 / s.
  • the “poly ⁇ -olefin oil M” is a synthetic oil having a kinematic viscosity at 40 ° C. of 160 mm 2 / s.
  • ester oil N is a synthetic oil having a kinematic viscosity of 75 mm 2 / s at 40 ° C.
  • Ether oil O is a synthetic oil having a kinematic viscosity of 75 mm 2 / s at 40 ° C.
  • aromatic diurea is a diurea compound formed by the reaction of 4,4′-diphenylmethane diisocyanate and p-toluidine.
  • alicyclic diurea is a diurea compound formed by the reaction of 4,4′-diphenylmethane diisocyanate and cyclohexylamine.
  • aliphatic diurea is a diurea compound formed by the reaction of 4,4′-diphenylmethane diisocyanate and stearylamine.
  • the consistency of each grease composition in Tables 1 to 4 is NLGI (National Lubricating Grease Institute) No. Adjusted to 2.
  • test bearings of Comparative Examples 1, 3 to 6, and 8 to 13 were all 1.0 or more, whereas as shown in Tables 1 and 2, Each of the test bearings of Examples 1 to 17 has a relative torque value of less than 1.0 and satisfies the above acceptance criteria.
  • a grease composition using a base oil having a pressure viscosity coefficient ⁇ at 40 ° C. of 33 GPa ⁇ 1 or less has excellent torque characteristics, and further a grease using a base oil having a pressure viscosity coefficient ⁇ at 40 ° C. of 27 GPa ⁇ 1 or less. It has been found that the composition has particularly excellent torque characteristics.
  • Friction test The sliding friction coefficient of each grease composition was measured with a ball-on-disk tester. As the test piece, SUJ2 having a 3/8 inch ball and a mirror-finished disk was used. The test conditions were as follows: Each grease composition was applied to the disk at a thickness of 0.5 mm, the vertical load was 500 g, the sliding speed was 1 m / s, and the average coefficient of friction for 1 second from 1 second to 2 seconds after the test was started. The friction coefficient of each grease composition was used. The evaluation standard was a relative friction coefficient with respect to Comparative Example 1, and a grease composition having a relative friction coefficient of less than 1.0 was accepted. The evaluation results are shown in Tables 1 to 4.
  • Rolling four-ball test The water resistance of each grease composition was evaluated by a rolling four-ball test. That is, three steel balls for bearing with a diameter of 15 mm were prepared, placed in a regular triangle shape in a cylindrical container with an inner diameter of 36.0 mm at the bottom, an inner diameter of 31.63 mm at the upper end, and a depth of 10.98 mm. 20 g of 20% water mixed in the product is applied, and another 5/8 inch diameter bearing ball is placed in a recess formed by 3 steel balls, and 5/8 inch diameter at room temperature. The bearing steel balls were rotated at 1000 min ⁇ 1 while applying a surface pressure of 4.1 GPa. As a result, three steel balls for bearings having a diameter of 15 mm revolve while rotating, but were continuously rotated until separation occurred. The total number of revolutions when peeling occurred was defined as the life. The evaluation results are shown in Tables 1 to 4.
  • the evaluation of the bearing leakage test is such that the relative leakage rate is 2.0 when the result of the bearing leakage test of the grease composition of Comparative Example 1 having the composition shown in Tables 3 and 4 (leakage rate of the grease composition) is 1. The following was regarded as acceptable, and a relative leakage rate of less than 2.0 was regarded as unacceptable.
  • the pour point is ⁇ 40 ° C. or lower
  • the kinematic viscosity is 70 to 130 mm 2 / s
  • the mixing ratio (mass%) of mineral oil and synthetic oil is 0: 100 to 20
  • a grease composition comprising a base oil of 80 and an aromatic diurea compound and a thickener having a content of 10 to 40% by mass is low-temperature fretting property, low torque property, and when sealed in a bearing It can be seen that the low leakage property is excellent.
  • the grease composition in which the base oil does not satisfy the above conditions or the content of the thickener does not satisfy the above conditions is inferior in lubricity. It can be seen that either the wear resistance, the seizure resistance, or the low leakage when encapsulated in the bearing is inferior.
  • the grease composition containing three types of carboxylic acid-based rust preventive additive, carboxylate-based rust preventive additive and amine-based rust preventive agent and an anti-wear agent is It can be seen that it has excellent peelability, wear resistance, fretting resistance and corrosion resistance.
  • barium was used as a rust inhibitor without blending three types of carboxylic acid rust preventive additive, carboxylate rust preventive additive, and amine rust preventive agent. It can be seen that the grease composition blended with sulfonate cannot obtain sufficient peel resistance and corrosion resistance.
  • the carboxylic acid-based rust preventive additive, the carboxylate-based rust preventive additive, and the amine-based rust preventive agent have a function of suppressing increase in the total acid value.
  • a grease composition in which the total acid value decreases that is, In order to provide a grease composition with high thermal stability, it was found that the content (% by mass) of the rust inhibitor should be 1% by mass or more based on the total amount of the grease composition. It can also be seen that the grease composition containing no antiwear agent does not provide sufficient wear resistance. It can also be seen that a grease composition using an aliphatic urea compound as a thickener is inferior in fretting resistance. As mentioned above, although embodiment of this invention has been described, this invention is not limited to this, A various change and improvement can be performed.
  • FIG. 1 is a cross-sectional view showing a configuration of a third generation hub unit bearing to which the wheel supporting rolling bearing unit of the present embodiment can be applied.
  • a female spline that can be fitted to a spline of a constant velocity joint is formed at the center of the hub body 3, and the cap 108a shown in FIG. This is a third generation drive wheel bearing 1.
  • the inner ring 4 is fixed by caulking similarly to FIG.
  • the shoulder 9 of the constant velocity joint 7 is brought into contact with the end face of the inner ring 4 as shown in FIG.
  • the inner ring 4 is fixed by the axial force of the nut 10 of the constant velocity joint 7 that fastens the shaft portion 8 of the constant velocity joint 7 in the cavity.
  • the relationship between the fastening torque of the screw and the axial force has a large variation (as a result, the variation in the preload is large), so that the grease composition of an embodiment described above is shown in FIG. When applied to a hub unit bearing of the type), the effect is further increased.
  • FIG. 1D is a sectional view showing an example of a third generation hub unit bearing for a driven wheel having a large PCD (Pitch Circle Diameter) in the outer row.
  • PCD Peak Circle Diameter
  • FIGS. 2A to 2E are cross-sectional views showing the configuration of a first generation hub unit bearing to which the wheel bearing rolling bearing unit of the present embodiment can be applied.
  • 2 (a) and 2 (b) are so-called first generation hub unit bearings
  • FIG. 2 (c) representing a “driving wheel hub unit bearing”
  • a diagram representing a “driven wheel hub unit bearing”.
  • both the outer and inner rings are combined with actual parts such as knuckles and hubs by an interference fit, and fixed and used with nuts.
  • the first generation hub unit bearing to which the wheel bearing rolling bearing unit of the present embodiment is applied is also used in outer ring rotation.
  • the bearing when the bearing is used for rotating the outer ring, grease is collected on the outer ring side due to centrifugal force, and the lubrication state on the inner ring side having a high surface pressure is deteriorated.
  • the grease composition of an embodiment described above is substantially an oil film. Since it has the same effect as increasing the thickness of the outer ring, it can be suitably used for rotating the outer ring.
  • FIGS. 3A to 3H are cross-sectional views showing the configuration of a second generation hub unit bearing to which the wheel support rolling bearing unit of the present embodiment can be applied.
  • 3 (a) to 3 (e) are so-called second generation hub unit bearings, FIG. 3 (f) and FIG. 3 (g) showing “hub unit bearings for driven wheels” and “hub unit bearings for driving wheels”.
  • the first generation hub unit bearing has a structure in which a part of the actual machine part is incorporated, so the preload range is smaller than that of the first generation hub unit bearing. Although it is narrow, the preload range is larger than that of the third generation hub unit bearing, and the same effect as the first generation hub unit bearing can be obtained because it is also used for outer ring rotation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 回転トルクの荷重感受性を下げつつ、車輪支持用転がり軸受ユニットに必要な性能を維持し、良好な潤滑状態を長時間維持できるグリース組成物、及びそのグリース組成物を封入した車輪支持用転がり軸受ユニットを提供する。そのために、基油と、増ちょう剤と、防錆剤と、摩耗防止剤とを含有し、上記基油が鉱油、合成油又これらの混合油であり、上記鉱油と上記合成油との混合比(質量比)が0:100~20:80であり、上記基油の40℃における動粘度が70~150mm/sであり、上記基油の流動点が-40℃以下であるグリース組成物及びそのグリース組成物を封入した車輪支持用転がり軸受ユニットである。

Description

グリース組成物及びそのグリース組成物が封入された車輪支持用転がり軸受ユニット
 本発明は、グリース組成物及びそのグリース組成物が封入された車輪支持用転がり軸受ユニットに関し、特に、転動体と軌道面が高転動体荷重(高接触面圧)で使用される軸受に封入され、高転動体荷重下でも軸受の回転トルク(転がり摩擦抵抗)を低く抑えることのできるグリース組成物、及び自動車の懸架装置に対して車輪を回転自在に支持するための車輪支持用転がり軸受ユニットに関する。
 車輪支持用転がり軸受ユニットとして、例えば、特許文献1には図4に示すような構造が記載されている。この車輪支持用転がり軸受ユニット100は、所謂第3世代の内輪回転型従動輪用ユニットであり、静止輪である外輪102の外径側には図示しない懸架装置に外輪102を固定するためのフランジが形成され、内径側に、回転側軌道輪であるハブ107を、それぞれが転動体である複数の玉105,105により、回転自在に支持している。
 なお、転動体105,105としては、図4では玉を例示しているが、重量の嵩む車両用の車輪支持用転がり軸受にあっては、ころが適用される場合もある。
 このために、上記外輪102の内周面にそれぞれが静止側軌道面である複列の外輪軌道110a,110bを、上記ハブ107の外周面にそれぞれが回転側軌道面である第1の内輪軌道121及び第2の内輪軌道122を、それぞれ設けている。
 このハブ107は、ハブ本体103と内輪104とを組み合わせてなる。これらのうち、ハブ本体103の外周面の外端部に車輪を支持するための取付フランジ111を、同じく中間部内端寄り部分に、上記第1の内輪軌道121を形成した部分よりも小径である小径段部125を、それぞれ設けている。
 なお、本明細書中で、軸方向に関して「内」とは、車両への組み付け状態で車両の幅方向中寄りとなる側を言い、例えば図4の右側を言う。これに対して、図4の左側で、車両の幅方向外寄りとなる側を、軸方向に関して「外」と言う。
 そして、この小径段部125、及び外周面に断面円弧形状である上記第2の内輪軌道122を設けた上記内輪104を外嵌している。
 更に、上記ハブ本体103の内端部を径方向外方に塑性変形させてなる加締め部126により、上記内輪104の内端面を押さえ付けて、この内輪104を上記ハブ本体103に対して固定すると共に、背面(DB)組合せの構造である軸受ユニットに予圧を与え、モーメント荷重として負荷される路面反力に対し、高い剛性を維持している。
 なお、加締め部126に代わり、ハブ本体103の内端部に雄ネジを形成し、ナットで内輪104の内端面を押さえ付けて固定する場合もある。
 上記外輪102の外端部内周面と上記ハブ本体103の中間部外周面との間には、シールリング106を、また、外輪102の内端面にはキャップ108aを設けて、上記外輪102の内周面と上記ハブ107の外周面との間で上記各玉105,105を設けた内部空間117と、外部空間とを遮断している。
 この内部空間117内にはグリースを封入して、上記各外輪軌道輪110a,110b及び上記第1の内輪軌道121及び第2の内輪軌道122と上記各玉105,105との転がり部の潤滑を行うようにしている。
 以上、いわゆる第3世代の従動輪用ユニットを例に、車輪支持用転がり軸受ユニット100の説明を行ったが、ハブ本体103の中心部に等速ジョイントのスプラインと嵌合可能な雌スプラインを形成し、上記キャップ108aをシールリングに置き換えた、第3世代の駆動輪用ユニットも広く適用されているし、いわゆる第1世代及び第2世代の車輪支持用転がり軸受ユニットも使用されている。
 このような軸受は、近年における省エネルギ化の流れを受けて改良が望まれており、例えば、特許文献1には、100℃での動粘度が5.0×10-6~9.0×10-6/s(5~9cSt)のグリースを使用することで、転がり接触部の転がり抵抗を低減して、回転トルクを低減し、加速性能や燃費性能を中心とする車両の走行性能を向上させた車輪支持用転がり軸受ユニットが提案されている。
特開2003-239999号公報
 しかしながら、車両支持用転がり軸受ユニットは、数百rpmレベルの低速回転(例えば、800rpm≒100km/h)で重荷重(例えば、旋回加速度0.8G程で軸受の静定格荷重相当の転動体荷重(接触面圧)に達する)を支承するアプリケーションであるため、流体潤滑となる十分な油膜厚さを確保し難く、通常は境界潤滑で使用されているため、特許文献1に記載のグリース(基油が従来よりも低粘度)は、高速直進条件のように、低荷重高回転の走行条件での低トルク化にはある程度有効であるものの、通常の使用条件(中低速、あるいは軽旋回条件)では、かえって油膜厚さを減らしてしまい、必ずしもトルクの低減に繋がらないばかりか、軌道面や転動体の面荒れにより異音が発生する虞があった。
 また、車輪支持用転がり軸受ユニットは、車輪を介して車体の質量を支えると共に、車両の走行状態に応じ、タイヤ接地点から入力される路面反力(ラジアル、スラスト、モーメントなどの変動荷重)を負荷している。
 車輪支持用転がり軸受ユニットの剛性が低いと、路面反力の変動に伴い、キャンバ角が変化し、操安性(操縦性、安定性)が悪化(不安定)になる虞があるため、車輪支持用転がり軸受ユニットは、背面組合せの上、予圧が付与されることで、高い剛性を持たせている。
 近年、車両の高性能化と高速道路の延伸などにより、車輪支持用転がり軸受ユニットに求められる剛性は高まる傾向にあり、それに伴い予圧も高めの設定をされることが増え、回転トルクは増加傾向である。
 一方、自動車は地球環境保護の観点から省資源、省エネルギが求められ、許容される車輪支持用転がり軸受の質量(サイズ)、回転トルクは減少を求められる傾向であり、高剛性と、小型化及び低トルクという、相反する課題を解決する必要に迫られている。
 その他にも、車輪支持用転がり軸受ユニットは、車両に組み付け後、車輪は回らず振動だけ受ける状態で、長距離の新車輸送が行われることがある。
 そのため、図4に示すように、転動体105,105と外輪軌道110a,110b、第1の内輪軌道121、及び第2の内輪軌道122との間にフォールスブリネリングと呼ばれる、玉と軌道面のフレッチング摩耗現象が発生しやすい。
 フォールスブリネリングが発生すると、軸受ユニットの寿命が低下したり、不快な振動や騒音を発生したりする。フォールスブリネリングの第1の対策としては、軸受ユニットの予圧を高め、振動による接触楕円の面積の変化を抑え、玉と軌道面との間に発生する微小滑りを抑制することが挙げられる。しかし、前述のように、予圧の増加は回転トルクの増加に繋がり、また、著しい予圧の増加は軸受寿命の低下に繋がるため、あまり予圧を大きくすることはできない。
 一方、フォールスブリネリングの第2の対策としては、従来、ホイール用グリース(あるいはシャシグリース)として一般的であったリチウム系グリースより基油分離の多いウレア系グリースを使用し、その分離した基油で玉と軌道面との間を潤滑することが挙げられる。しかし、あまり基油を分離させてしまうと、シールからの油漏れが発生したり、グリースとしても潤滑性が低下するという問題があった。
 そこで、本発明は上記の問題点に着目してなされたものであり、その目的は、車輪支持用転がり軸受ユニットの回転トルクの荷重感受性を下げ(転動体荷重とトルクとの相関係数を下げ)、低トルク化しつつ、車輪支持用転がり軸受ユニットに必要な性能(例えば、耐フレッチング性や耐水性、耐漏洩性)を維持し、良好な潤滑状態を長時間維持できるグリース組成物、及びそのグリース組成物が封入された車輪支持用転がり軸受ユニットを提供することにある。
 上記課題を解決するため、本発明者らが鋭意検討を重ねた結果、主として基油と、増ちょう剤との好適な組合せを規定することにより、車輪支持用転がり軸受ユニットの回転トルクの荷重感受性を下げ(転動体荷重とトルクとの相関係数を下げ)、低トルク化しつつ、車輪支持用転がり軸受ユニットに必要な性能(例えば、耐フレッチング性や耐水性、耐漏洩性)を維持し、良好な潤滑状態を長時間維持できることを知見した。
 本発明は、本発明者らによる上記知見に基づくものであり、上記課題を解決するための本発明のある態様に係るグリース組成物は、少なくとも、特定配合の基油と、増ちょう剤と、防錆剤と、摩耗防止剤とを含有するグリース組成物であって、
 上記基油が鉱油、合成油又これらの混合油であり、上記鉱油と上記合成油の混合比(質量比)が0:100~20:80であり、
 上記基油の40℃における動粘度が70~150mm/sであり、
 上記基油の流動点が-40℃以下である。
 ここで、上記増ちょう剤は当該グリース組成物全量に対して10~40質量%含有された下記一般式(I)、又は、当該グリース組成物全量に対して10~30質量%含有された下記一般式(II)で表されたジウレア化合物であり、
 上記防錆剤が、カルボン酸系防錆剤、カルボン酸塩系防錆剤、及びアミン系防錆剤を含み、
 上記摩耗防止剤が、トリフェニルホスホロチオエートであってもよい。
-NHCONH-R-NHCONH-R・・・・・・一般式(I)
(一般式(I)中のRは炭素数6~15の芳香族系炭化水素基、R及びRは炭素数6~12の芳香族系炭化水素基を示す。R及びRは同一であっても異なっていてもよい。)
-NHCONH-R-NHCONH-R・・・・・・一般式(II)
(一般式(II)中のRは炭素数6~15の芳香族系炭化水素基、R及びRは炭素数6~20の脂肪族炭化水素基、炭素数6~12のシクロヘキシル誘導体基を示し、R及びRの全量中に占めるシクロヘキシル誘導体基の割合が、50~90モル%であり、R及びRは同一であっても異なっていてもよい。)
 流動点が-40℃以下であり、動粘度が70~150mm/sであり、鉱油と合成油との混合比(質量%)が0:100~20:80である基油と、ジウレア化合物からなる増ちょう剤からなり、10~40質量%の含有量の増ちょう剤とを含むことにより、低温流動性と摩耗特性が良好なので、低温フレッチング性、低トルク性に優れたグリース組成物を提供することができる。
 また、上記一般式(I)で表された芳香族系ジウレア化合物を含む増ちょう剤が当該グリース組成物全量に対して10~40質量%含有されたことにより、軸受に封入した際の低漏洩性に優れ、防錆剤としてカルボン酸系防錆添加剤、カルボン酸塩系防錆添加剤及びアミン系防錆剤の3種及び摩耗防止剤としてトリフェニルホスホトチオエートを配合することにより、強固な表面保護膜を形成させ、耐剥離性、耐摩耗性、耐フレッチング性及び耐腐食性に優れたグリース組成物を提供することができる。
 また、車両に組み付けられた車輪支持用転がり軸受ユニットとしての使用温度(例えば、-40℃~160℃)の範囲で、玉と軌道面との金属接触を極力避けることで、耐久性、耐摩擦性を保ちつつ、低トルク性を実現できる。
 また、新車輸送時の雰囲気温度(例えば、-40℃~50℃)の範囲で、耐フレッチング性及び耐摩耗性を発揮し、フォールスブリネリングの発生を防止する。さらには、泥水環境で使用される車輪支持用転がり軸受ユニットにとって必須の特性である耐水性能に優れたグリース組成物を提供することができる。
 上記一般式(II)で表された脂環式ジウレア化合物及び脂肪族ジウレア化合物の少なくともいずれかのジウレア化合物を含む増ちょう剤が当該グリース組成物全量に対して10~30質量%含有されたことにより、低温フレッチング性低トルク性に優れたグリース組成物を提供することができる。また、カルボン酸系防錆添加剤、カルボン酸塩系防錆添加剤及びアミン系防錆剤の3種及び摩耗防止剤を配合することにより、耐剥離性、耐摩耗性、及び耐腐食性に優れたグリース組成物を提供することができる。
 さらに、本発明のある態様の車輪支持用転がり軸受ユニットは、上記のいずれかに記載のグリース組成物が封入されている。このような構成とすることにより、回転トルクの荷重感受性を下げつつ、車輪支持用転がり軸受ユニットに必要な性能を維持し、良好な潤滑状態を長時間維持できる車輪支持用転がり軸受ユニットを提供することができる。
 本発明のある態様によれば、回転トルクの荷重感受性を下げつつ、車輪支持用転がり軸受ユニットに必要な性能を維持し、良好な潤滑状態を長時間維持できるグリース組成物、及びそのグリース組成物を封入した車輪支持用転がり軸受ユニットを提供することができる。
本発明のある態様に係る車輪支持用転がり軸受ユニットを、第3世代のハブユニット軸受として適用した形態の断面図である。 本発明のある態様に係る車輪支持用転がり軸受ユニットを、第1世代のハブユニット軸受として適用した形態の断面図である。 本発明のある態様に係る車輪支持用転がり軸受ユニットを、第2世代のハブユニット軸受として適用した形態の断面図である。 従来の車輪支持用転がり軸受ユニットの一例としての、第3世代の従動輪用ハブユニット軸受の断面図である。 本発明のある態様に係る車輪支持用転がり軸受ユニットの実施例1における防錆剤配合量と全酸価との関係を示すグラフである。
 以下、本発明のある態様に係るグリース組成物、及びそのグリース組成物を封入した車輪支持用転がり軸受ユニットの実施形態について図面を参照して説明する。
(グリース組成物)
 ある態様に係るグリース組成物は、基油と、ジウレア化合物からなる増ちょう剤と、防錆剤と、摩耗防止剤とを含有する。
<基油>
 上記基油としては、鉱油、合成油又はこれらの混合油が用いられる。
 上記基油における鉱油と合成油の混合比(質量比)は、0:100~20:80である。合成油の混合比が80質量%以下であると、良好なトルク特性と耐熱性が維持できない。また、上記基油の40℃における動粘度は70~150mm/sである。また、上記基油の流動点は、-40℃以下である。
 上記鉱油の具体例としては、減圧蒸留、油剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、硫酸洗浄、白土精製、水素化精製等を、適宜組み合わせて精製したパラフィン系鉱油、ナフテン系鉱油が挙げられる。
 また、上記合成油としては、炭化水素系油、芳香族系油、エステル系油、エーテル系油等が挙げられる。ここで、本実施形態の基油は、合成油の中でも、炭化水素油を採用することが、トルク特性が良好であるとともに、軸受ゴムシール(車輪支持用転がり軸受ユニットにはニトリルゴムや弗素ゴムが好適に使用される)の適合性が良好である点で好ましい。
 炭化水素系油の具体例としては、ノルマルパラフィン、イソパラフィン、ポリブテン、ポリイソブチレン、1-デセンオリゴマー、1-デセンとエチレンコオリゴマー等のポリ-α-オレフィンまたはこれらの水素化物等が挙げられる。
 上記芳香族系油としては、モノアルキルベンゼン、ジアルキルベンゼン等のアルキルベンゼン、あるいはモノアルキルナフタレン、ジアルキルナフタレン、ポリアルキルナフタレン等のアルキルナフタレン等が挙げられる。
 上記エステル系油の具体例としては、ジブチルセバケート、ジ-2-エチルヘキシルセバケート、ジオクチルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジトリデシルグルタレート、メチル・アセチルシノレート等のジエステル油、あるいはトリオクチルトリメリテート、トリデシルトリメリテート、テトラオクチルピロメリテート等の芳香族エステル油、更にはトリメチロールプロパンカプリレート、トリメチロールプロパンベラルゴネート、ペンタエリスリトール-2-エチルヘキサノエート、ペンタエリスリトールベラルゴネート等のポリオールエステル油、更にはまた、多価アルコールと二塩基酸・一塩基酸の混合脂肪酸とのオリゴエステルであるコンプレックスエステル油等が挙げられる。
 上記エーテル系油の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールモノエーテル、ポリプロピレングリコールモノエーテル等のポリグリコール、あるいはモノアルキルトリフェニルエーテル、アルキルジフェニルエーテル、ジアルキルジフェニルエーテル、ペンタフェニルエーテル、テトラフェニルエーテル、モノアルキルテトラフェニルエーテル、ジアルキルテトラフェニルエーテル等のフェニルエーテル油等が挙げられる。
 上記基油については、上記鉱油及び合成油が適宜選択可能であるが、前述のように、車輪支持用転がり軸受ユニットが高負荷高面圧で使用されることを考慮すれば、圧力粘度係数が低く、高圧粘度が小さい合成油を用いることで、低トルクを得やすくなるので、合成油の混合比が高いほうが好ましく、100%合成油とすればなおよい。特に、柔軟性を持つアルキル基を分枝構造としてもつ低分子量のポリ-α-オレフィンは、アルキル基が様々なコンフォーメーションを取るため、分子鎖の秩序だった整列が難しく、高圧下でも容易には結晶化・固体化せず、粘稠な液体状態を保つことができるので好ましい。
[動粘度]
 また、上記基油は、低温起動時の異音発生や、高温重荷重での焼付きを避けるために、境界潤滑にあっても、少しでも油膜厚さを厚くするような動粘度を選ぶ必要がある。40℃における動粘度を70~150mm/sとすれば、軸受温度が-40℃~160℃の範囲で上記不具合の発生を避けることができる。また、40℃における動粘度を70~130mm/sとすれば、低温起動時の軌道面の損傷がなくなるので好ましく、40℃における動粘度を70~100mm/sとすれば、低温起動時の常温に対するトルクの増加も抑えられるため、さらに好ましい。
[流動点]
 上述のように、車輪支持用転がり軸受ユニットとしての使用温度は、例えば、-40℃~160℃と想定されるので、上記基油は、流動点が-40℃以下のものが用いられる。上記基油の流動点が-40℃以上であると、低温時のフレッチング摩耗が劣る。
[圧力粘度係数]
 上記基油の40℃における、下記So-Klausの推算式を用いて算出した圧力粘度係数αを33GPa-1以下、さらに好ましくは27GPa-1以下とする。上記基油の40℃における圧力粘度係数αが33GPa-1を超えると、軸受トルクが高くなる。具体的には、基油の40℃における圧力粘度係数αは、下記のSo-Klausの推算式を用いて算出することができる。
 なお、下記式において、νは、40℃における基油の動粘度、mはWalterの式(ν=(10AT-m0-0.7)の定数、ρは40℃における基油の密度である。
(数1)
α=1.030+3.509(logν3.0627+2.412×10-4 5.1903(logν1.5976-3.387(logν3.0975ρ0.1162
<増ちょう剤>
 上記増ちょう剤には、ジウレア化合物が好適に使用できる。例えば、脂肪族ジウレア、脂環式ジウレア、芳香族ジウレアが使用できる。好ましくは、運転に伴う振動により生じるフレッチング摩耗を考慮して、芳香族ジウレアが用いられる。
 上記増ちょう剤は、具体的に、下記一般式(I)又は一般式(II)で表されたジウレア化合物である。
[芳香族ジウレア化合物]
 上記増ちょう剤として用いられる芳香族ジウレアは、具体的に、下記一般式(I)で表されたジウレア化合物である。なお、下記一般式(I)において、Rは炭素数6~15の芳香族系炭化水素基、R及びRは炭素数6~12の芳香族系炭化水素基を示す。R及びRは同一であっても異なっていてもよい。
-NHCONH-R-NHCONH-R・・・・・・一般式(I)
 ここで、上述したように、上記一般式(I)で表されたジウレア化合物の含有率が10質量%未満であると、グリース状態を維持することが困難になってしまうため、好ましくない。一方、上記一般式(I)で表されたジウレア化合物の含有率が40質量%を超えると、グリース組成物が硬くなりすぎて、潤滑状態を十分に発揮することができなくなってしまうため、好ましくない。
[脂肪族ジウレア、脂環式ジウレア]
 上記増ちょう剤として用いられる脂肪族ジウレア、又は脂環式ジウレアは、具体的に、下記一般式(II)で表されたジウレア化合物である。なお、下記一般式(II)において、Rは炭素数6~15の芳香族系炭化水素基、R及びRは炭素数6~20の脂肪族炭化水素基、炭素数6~12のシクロヘキシル誘導体基を示し、R及びRの全量中に占めるシクロヘキシル誘導体基の割合が、50~90モル%であり、R及びRは同一であっても異なっていてもよい。
 ここで、下記一般式(II)で表されたジウレア化合物の含有率が10質量%未満であると、グリース状態を維持することが困難になってしまうため、好ましくない。一方、下記一般式(II)で表されたジウレア化合物の含有率が30質量%を超えると、グリース組成物が硬くなりすぎて、潤滑状態を十分に発揮することができなくなってしまうため、好ましくない。
-NHCONH-R-NHCONH-R・・・・・・一般式(II)
 上記増ちょう剤については、上記ウレア系増ちょう剤が使用可能であるが、前述のように、車輪支持用転がり軸受ユニットが高負荷高面圧で使用されることを考慮すれば、中炭素鋼、浸炭鋼あるいは軸受鋼等の熱処理硬化された鋼材からなる軌道面や、やはり熱処理硬化された鋼材からなる玉と、基油との関係において、油膜厚さがなるべく厚くなる組合せを選択する必要がある。
 ここで、特に考慮すべきことは、基油及び増ちょう剤の極性の有無である。
 上記基油及び増ちょう剤は共に、所謂、有機高分子であるが、芳香族系等の極性を持つ高分子と、脂肪族系や脂環族系等の無極性の高分子とがある。
 一般に、潤滑油は、極性を持たせ、極性基を金属(鋼材)表面に吸着させることで潤滑性を得ている。
 しかし、グリースの場合には、基油と増ちょう剤との金属表面との三角関係となるため、基油及び増ちょう剤の両方に極性を持たせてしまうと、例えば、基油及び増ちょう剤のそれぞれの極性基が金属表面に吸着され、残りの部分が反発しあうので、基油と増ちょう剤との親和性が悪くなる、というような問題が発生する。
 したがって、基油及び増ちょう剤の一方に極性を持たせ、他方を無極性とすることが好ましい。
 車輪支持用転がり軸受ユニット用グリース組成物の場合、高面圧低速回転のアプリケーションであり、十分な油膜形成を期待できない、また、全く油膜形成の期待できない静止状態でのフレッチング摩耗(フォールスブリネリング)の防止性能も要求されるため、増ちょう剤に極性を持たせ、基油を無極性にすることが好ましい。
 ここでいう増ちょう剤は、ジウレア化合物、言い換えれば、ウレア樹脂であるため、増ちょう剤自体に金属接触を防ぎ、潤滑する効果を持っている。
 このジウレア化合物を、芳香族系炭化水素基を持つものとし、軌道面、及び玉に吸着させて、金属接触を防ぎ(実質的に油膜が厚くなった状態と同じ効果が得られる)、基油を極性のない炭化水素系油、例えば、ポリ-α-オレフィン等とすれば、より好適な車輪支持用転がり軸受ユニット用グリース組成物を得ることができる。
<防錆剤>
 上記防錆剤は、カルボン酸系防錆剤、カルボン酸塩系防錆剤、及びアミン系防錆剤の3種の防錆剤を含む。これら3種の防錆剤を組み合わせることで、これまでよりも耐水性(防錆性能)を向上させることができるので、泥水環境で使用され、高面圧のために錆による面荒れや水素脆性の感受性の高い車輪支持用転がり軸受ユニットに封入されるグリースとして好ましい。
 上記防錆剤のグリース組成物全量に対する含有量は、カルボン酸系防錆剤及びカルボン酸塩系防錆剤はグリース組成物全量に対してそれぞれ0.1~5質量%である。添加量が0.1質量%未満では十分な効果は得られず、5%を超えて添加しても効果の向上がない。これらを考慮すると、添加量は0.5~3質量%が好ましい。アミン系防錆剤の添加量はグリース全量の0.1~3質量%である。添加量が0.1質量%未満では十分な効果は得られず、3%を超えて添加しても効果の向上がない上、軸受部材表面への吸着量が多くなりすぎ、封入グリースに由来する酸化膜等の生成を阻害する恐れがでてくる。
[カルボン酸系防錆剤]
 上記カルボン酸系防錆剤としては、モノカルボン酸では、ラウリン酸、ステアリン酸等の直鎖脂肪酸、並びにナフテン核を有する飽和カルボン酸が挙げられる。また、ジカルボン酸では、コハク酸、アルキルコハク酸、アルキルコハク酸ハーフエステル、アルケニルコハク酸、アルケニルコハク酸ハーフエステル、コハク酸イミド等のコハク酸誘導体、ヒドロキシ脂肪酸、メルカプト脂肪酸、ザルコシン誘導体、並びにワックスやペトロラタムの酸化物等の酸化ワックス等が挙げられる。中でも、コハク酸ハーフエステルが好適である。
[カルボン酸塩系防錆剤]
 上記カルボン酸塩系防錆剤としては、脂肪酸、ナフテン酸、アビエチン酸、ラノリン脂肪酸、アルケニルコハク酸、アミノ酸誘導体の各金属塩等が挙げられる。なお、上記金属塩の金属元素としては、コバルト、マンガン、亜鉛、アルミニウム、カルシウム、バリウム、リチウム、マグネシウム、銅等が挙げられる。中でも、ナフテン酸亜鉛が好適である。
[アミン系防錆剤]
 上記アミン系防錆剤としては、アルコキシフェニルアミン、脂肪酸のアミン塩、二塩基性カルボン酸の部分アミド等を挙げることができる。中でも、脂肪酸のアミン塩が好適である。
<摩耗防止剤>
 上記摩耗防止剤としては、硫黄-リン系(SP系)化合物が用いられる。硫黄-リン系(SP系)化合物としては、トリフェニルフォスフェート系化合物やジチオフォスフェート系化合物が挙げられるが、本実施形態では、下記一般式(III)で表されるトリフェニルホスホロチオエート(TPPT)が好適である。
Figure JPOXMLDOC01-appb-C000001
 上記摩耗防止剤の含有量は、グリース組成物全量に対して、0.1~5質量%が好ましい。含有量が0.1質量%未満では十分な効果は得られず、5%を超えても効果の向上がない。
<その他の添加剤>
 本実施形態のグリース組成物には、各種性能を更に向上させるために、所望によりその他の添加剤を添加してもよい。例えば、酸化防止剤、極圧剤、油性向上剤、金属不活性化剤等をそれぞれ単独で、あるいは2種以上を混合して添加することができる。
 これらその他の添加剤の含有量(添加量)は、本発明の効果を損なわない範囲であれば制限はないが、通常はグリース組成物全量の0.1~20質量%である。添加量が0.1質量%未満では添加効果が十分ではなく、20質量%を超えて添加しても効果が飽和するとともに、基油の量が相対的に少なくなるため潤滑性が低下するおそれがある。
[酸化防止剤]
 上記酸化防止剤は、アミン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤、ジチオリン酸亜鉛等が挙げられる。
 アミン系酸化防止剤の具体例としては、フェニル-1-ナフチルアミン、フェニル-2-ナフチルアミン、ジフェニルアミン、フェニレンジアミン、オレイルアミドアミン、フェノチアジン等が挙げられる。
 また、フェノール系酸化防止剤の具体例としては、p-t-ブチル-フェニルサリシレート、2,6-ジ-t-ブチル-p-フェニルフェノール、2,2’-メチレンビス(4-メチル-6-t-オクチルフェノール)、4、4’-ブチリデンビス-6-t-ブチル-m-クレゾール、テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、2-n-オクチル-チオ-4,6-ジ(4’-ヒドロキシ-3’,5’-ジ-t-ブチル)フェノキシ-1,3,5-トリアジン、4、4’-チオビス(6-t-ブチル-m-クレゾール)、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール等のヒンダードフェノール等が挙げられる。
[極圧剤]
 上記極圧剤としては、例えば、有機モリブデン等が挙げられる。
[油性向上剤]
 上記油性向上剤としては、オレイン酸やステアリン酸等の脂肪酸、ラウリルアルコールやオレイルアルコール等のアルコール、ステアリルアミンやセチルアミン等のアミン、リン酸トリクレジル等のリン酸エステル、動植物油等が挙げられる。
[金属不活性化剤]
 上記金属不活性化剤としては、例えば、ベンゾトリアゾール等が挙げられる。
<グリース組成物の製造方法>
 上記各成分を含有する本実施形態のグリース組成物の製造方法は、特に制限はなく、目的に応じて適宜選択されるが、一般的には上記基油中で上記増ちょう剤(芳香族ジウレア化合物、又は脂肪族ジウレア及び脂環式ジウレア)の原料を反応させた後、上記防錆剤及び上記摩耗防止剤をそれぞれ定量添加し、ニーダやロールミル等で十分に攪拌し、均一分散して得られる。なお、この処理に際し、加熱することも有効である。また、その他の添加剤を添加する場合は、上記防錆剤と同時に添加することが工程上好ましい。
 以下に、上記実施形態におけるグリース組成物に基づく実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。
(実施例1~17、比較例1~13)
 表1及び表4に示す組成のグリース組成物を調製し、各グリース組成物について、スクリーニングテストとして、下記に示す(1)軸受トルク試験、(2)摩擦試験、(3)高速四球試験(耐摩耗性試験)、(4)耐フレッチング試験、(5)転がり四球試験(耐水性試験)、(6)軸受漏洩試験、(7)低温フレッチング試験、(8)高温放置試験を行った。上記(1)~(8)の各試験の概要を下記に説明すると共に各試験結果を表1~表4に併記する。
 ここで、表1~表4中の「基油」の欄のうち、「鉱油A」は、40℃における動粘度が30mm/sである鉱油である。また、「鉱油B」は、40℃における動粘度が70mm/sである鉱油である。また、「鉱油C」は、40℃における動粘度が75mm/sである鉱油である。また、「鉱油D」は、40℃における動粘度が100mm/sである鉱油である。また、「鉱油E」は、40℃における動粘度が130mm/sである鉱油である。また、「鉱油F」は、40℃における動粘度が150mm/sである鉱油である。
 また、表1~表4中の「基油」の欄のうち、「ポリαオレフィン油G」は、40℃における動粘度が30mm/sの合成油である。また、「ポリαオレフィン油H」は、40℃における動粘度が70mm/sの合成油である。また、「ポリαオレフィン油I」は、40℃における動粘度が75mm/sの合成油である。また、「ポリαオレフィン油J」は、40℃における動粘度が100mm/sの合成油である。また、「ポリαオレフィン油K」は、40℃における動粘度が130mm/sの合成油である。また、「ポリαオレフィン油L」は、40℃における動粘度が150mm/sの合成油である。また、「ポリαオレフィン油M」は、40℃における動粘度が160mm/sの合成油である。
 また、表1~表4中の「基油」の欄のうち、「エステル油N」は、40℃における動粘度75mm/sの合成油である。また、「エーテル油O」は、40℃における動粘度75mm/sの合成油である。
 また、表1~表4中の「増ちょう剤」の欄のうち、「芳香族ジウレア」は、4,4’-ジフェニルメタンジイソシアネートとp-トルイジンとの反応で生成したジウレア化合物である。また、「脂環式ジウレア」は、4,4’-ジフェニルメタンジイソシアネートとシクロヘキシルアミンとの反応で生成したジウレア化合物である。また、「脂肪族ジウレア」は、4,4’-ジフェニルメタンジイソシアネートとステアリルアミンとの反応で生成したジウレア化合物である。
 なお、表1~表4中の各グリース組成物のちょう度は、NLGI(米国グリース協会規格:National Lubricating Grease Institute) No.2に調整した。
(1)軸受トルク試験
 非接触シ-ル付きの単列深溝玉軸受(内径17mm、外径40mm、幅12mm)に、表1~表4に示す各グリース組成物を充慎して、供試軸受を作製した。そして、供試軸受を、回転数450r/min、アキシアル荷重392N、ラジアル荷重29.4Nにて600秒間回転させた後、回転トルクを測定した。評価基準は、比較例1に対する相対トルク値であり、この相対トルク値が1.0未満である供試軸受に充填されたグリース組成物を合格とした。評価結果を表1~表4に示す。
 表3及び表4に示すように、比較例1,3~6,8~13の供試軸受は何れも1.0以上であるのに対して、表1及び表2に示すように、実施例1~17の供試軸受は何れも相対トルク値が1.0未満であり、上記合格基準を満たしている。
 また、40℃における圧力粘度係数αが33GPa-1以下の基油を用いたグリース組成物はトルク特性が優れ、さらに、40℃における圧力粘度係数αが27GPa-1以下の基油を用いたグリース組成物は特にトルク特性が優れることがわかった。
(2)摩擦試験
 ボールオンディスク試験機で各グリース組成物のすべり摩擦係数を測定した。試験片には、ボールに3/8インチ、ディスクに鏡面仕上げをしたSUJ2を用いた。試験条件は、ディスクに各グリース組成物を厚さ0.5mmで塗布し、垂直荷重500g、すべり速度1m/sとし、試験開始1秒後から2秒後までの1秒間の摩擦係数の平均を各グリース組成物の摩擦係数とした。評価基準は、比較例1に対する相対摩擦係数であり、この相対摩擦係数が1.0未満であるグリース組成物を合格とした。評価結果を表1~表4に示す。
 表3及び表4に示すように、比較例1,3~6、8~13の各グリース組成物は何れも1.0以上であるのに対して、表1及び表2に示すように、実施例1~17の各グリース組成物は何れも相対摩擦係数が1.0未満であり、上記合格基準を満たしている。
(3)高速四球試験(耐摩耗性試験)
 ASTM D2596に規定された高速四球試験により、各グリース組成物の耐摩耗性を評価した。即ち、各グリース組成物で充満された試験容器に3個の固定球を正三角形状に固定し、3個の鋼球で形成される窪みに、回転軸に取り付けた1個の回転球を置き、ある荷重を加えながら1770rpmで10秒間回転させ、そのときに固定球に生じた摩耗痕を測定した。そして、摩耗痕の平均直径がASTM D 2596に記された補償摩耗痕径値より小さくなるときの荷重(最大非焼付き荷重)を求めた。また、回転球を同様にして回転させ、溶着が生じたときの荷重(溶着荷重)を求めた。
 耐摩耗性は最大非焼付き荷重(L.N.S.L:Last Non-seizure Load)及び溶着荷重(W.P.:Weld Point)により評価し、最大非焼付き荷重は490N以上、溶着荷重は1236N以上をそれぞれ合格(Good)とした。評価結果を表1~表4に示す。
(4)耐フレッチング試験
 各グリース組成物について、ASTM D4170に規定された試験方法により耐フレッチング試験を行い、試験前後の質量差を測定し、下記3ランクに分類した。自動車用としてはAランク及びBランクが好ましいとされており、本試験でもAランク及びBランクを合格とした。評価結果を表1~表4に示す。
 Aランク:質量減が3mg以下
 Bランク:質量減が3mg超5mg未満
 Cランク:質量減が5mg以上
(5)転がり四球試験(耐水性試験)
 転がり四球試験により、各グリース組成物の耐水性を評価した。即ち、直径15mmの軸受用鋼球を3個用意し、底面の内径36.0mm、上端部の内径31.63mm、深さ10.98mmの円筒状容器内に正三角形状に置き、各グリース組成物に水を20%混入させたものを20g塗布し、更に3個の鋼球で形成される窪みに直径5/8インチの軸受用鋼球を1個置き、室温で、直径5/8インチの軸受用鋼球を面圧4.1GPaの負荷を加えながら1000min-1で回転させた。これにより、3個の直径15mmの軸受用鋼球も自転しながら公転するが、剥離が生じるまで連続回転させた。剥離が生じた時点の総回転数を寿命とした。評価結果を表1~表4に示す。
(6)軸受漏洩試験
 各グリース組成物について、非接触シール付の単列深溝玉軸受(内径25mm、外径62mm、幅17mm)に封入すると共に、外輪温度80℃、アキシアル荷重98N、ラジアル荷重98N、回転速度5000rpmにて20時間連続回転させ、回転前後のグリース組成物の質量差からグリース組成物の漏洩率(軸受漏洩試験)を測定した。評価結果を表1~表4に示す。なお、軸受漏洩試験の評価は、表3及び表4に示す組成の比較例1のグリース組成物の軸受漏洩試験の結果(グリース組成物の漏洩率)を1とした相対漏洩率が2.0以下を合格とし、相対漏洩率が2.0未満を不合格とした。
(7)低温フレッチング試験
 各グリース組成物について、SNR-FEB2試験(荷重:8000N,5時間、揺動角:6°、揺動サイクル:24Hz、温度:-20℃)により低温フレッチング試験を行い、試験前後の質量差を測定し、下記3ランクに分類した。自動車用としてはAランク及びBランクが好ましいとされており、本試験でもAランク及びBランクを合格とした。評価結果を表1~表4に示す。
 Aランク:質量減が20mg以下
 Bランク:質量減が20mg超50mg未満
 Cランク:質量減が50mg以上
(8)高温放置試験(熱安定性試験)
 各グリース組成物を金属板に厚さ2mmで塗布し、150℃の恒温槽に200時間放置した。その後、水酸化カリウムで全酸価を測定し、恒温放置していない当該グリース組成物の全酸価との差を計算した。この値はグリースの酸化が進んでいるほど大きな値を示し、劣化が進んでいるということができる。本実施例では、全酸価が減少したもの(負の値)を合格とした。評価結果を表1~表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び表2に示すように、流動点が-40℃以下であり、動粘度が70~130mm/sであり、鉱油と合成油との混合比(質量%)が0:100~20:80である基油と、芳香族系ジウレア化合物からなり、10~40質量%の含有量の増ちょう剤とを含むグリース組成物は、低温フレッチング性、低トルク性、及び軸受に封入した際の低漏洩性が優れることがわかる。これに対し、表3及び表4に示すように、基油が上記条件を満たさないか、又は増ちょう剤の含有量が上記条件を満たさないグリース組成物は、潤滑性が劣るため、トルク特性、耐摩耗性、耐焼付性、及び軸受に封入した際の低漏洩性のいずれかが劣る結果となっていることがわかる。
 また、表1及び表2に示すように、カルボン酸系防錆添加剤、カルボン酸塩系防錆添加剤及びアミン系防錆剤の3種及び摩耗防止剤を配合したグリース組成物は、耐剥離性、耐摩耗性、耐フレッチング性及び耐腐食性に優れることがわかる。これに対し、表3及び表4に示すように、カルボン酸系防錆添加剤、カルボン酸塩系防錆添加剤及びアミン系防錆剤の3種を配合せずに、防錆剤としてバリウムスルホネートを配合したグリース組成物は、十分な耐剥離性及び耐腐食性を得られないことがわかる。特に、カルボン酸系防錆添加剤、カルボン酸塩系防錆添加剤及びアミン系防錆剤には、全酸価増加を抑制する機能があることがわかった。表1~表4の結果を元に、図5に示すように、防錆剤の含有量と全酸価増加量との関係を明確にした結果、全酸価が減少するグリース組成物、すなわち、熱安定性の高いグリース組成物を提供するためには、防錆剤の含有率(質量%)がグリース組成物全量に対して1質量%以上である必要があることがわかった。また、摩耗防止剤を配合しないグリース組成物では十分な耐摩耗性が得られていないこともわかる。また、増ちょう剤として脂肪族ウレア化合物を便用したグリース組成物は耐フレッチング性に劣ることもわかる。
 以上、本発明の実施の形態について説明してきたが、本発明はこれに限定されずに、種々の変更、改良を行うことができる。
(車輪支持用転がり軸受ユニット)
 以下に、車輪支持用転がり軸受ユニットのある実施形態について説明する。なお、本実施形態の説明においては、上述したある実施形態のグリース組成物を適用可能な車輪支持用転がり軸受ユニット及びその車輪支持用転がり軸受ユニットを使用したアクスル構造の例に関して説明する。
 図1は、本実施形態の車輪支持用転がり軸受ユニットが適用可能な第3世代のハブユニット軸受の構成を示す断面図である。図1(a),(b)は、ハブ本体3の中心部に等速ジョイントのスプラインと嵌合可能な雌スプラインを形成し、図4に示すキャップ108aをシールリング6,6に置き換えた、第3世代の駆動輪用軸受1である。
 図1(a)に示すハブユニット軸受1は、図4と同様に、内輪4は加締め固定されている。これに対し、図1(b)に示すハブユニット軸受1は、図1(c)に示すように、内輪4の端面に等速ジョイント7の肩部9が当接され、ハブ本体3のパイロットキャビティ内で等速ジョイント7の軸部8を締結する等速ジョイント7のナット10の軸力で内輪4は固定されている。
 ここで、周知のように、ネジの締結トルクと軸力との関係は、バラツキが大きい(結果的に予圧のバラツキが大きい)ので、上述したある実施形態のグリース組成物は、図1(b)の形式のハブユニット軸受に適用すれば、より効果が大きくなる。
 一方、図1(d)は、外側列のPCD(Pitch Circle Diameter)が大きな従動輪用の第3世代のハブユニット軸受の例を示した断面図である。図1(d)に示すような構造においては、軸受の剛性が高まり、自動車の操安性が高まる反面、封入されたグリースが外側列方向に移動し、その結果、内側列の潤滑がプアーになったり、外側列の発生トルクが大きくなったり、外側列側のシールからグリースが漏れやすくなるという問題が発生しやすくなる。
 このような場合でも、耐久性、耐摩耗性を保ちつつ、低トルク性を実現でき、耐漏洩性能に優れる上述したある実施形態のグリース組成物が有効に機能する。
 図2(a)~(e)は、本実施形態の車輪支持用転がり軸受ユニットが適用可能な第1世代のハブユニット軸受の構成を示す断面図である。図2(a)、(b)は、所謂、第1世代ハブユニット軸受であり、「駆動輪用ハブユニット軸受」を表す図2(c)、及び「従動輪用ハブユニット軸受」を表す図2(d),(e)に示すように、外内輪とも締り嵌めでナックル、ハブ等の実機部品と組み合わされ、ナットで固定され使用される。
 ここで、図2(a)、(b)に示す第1世代のハブユニット軸受においては、嵌め合いやナットの軸力が予圧に影響するため、車両組付け後の軸受予圧の範囲はかなり大きなものとなり、それに伴い、回転トルクのバラツキも大きくなる。
 上述したある実施形態のグリース組成物は、車輪支持用転がり軸受ユニットの回転トルクの荷重感受性を下げる(転動体荷重とトルクとの相関係数を下げる)ので予圧レンジの広い第1世代のハブユニット軸受に安定した低トルクをもたらす。
 また、図2(e)に示すように、本実施形態の車輪支持用転がり軸受ユニットを適用した第1世代のハブユニット軸受は、外輪回転でも使用される。
 一般に、軸受を外輪回転で用いる場合は、遠心力によりグリースが外輪側に集まり、面圧の高い内輪側の潤滑状態が悪化するが、上述したある実施形態のグリース組成物は、実質的に油膜を厚くするのと同様な効果があるため、外輪回転にも好適に使用できる。
 さらに、図2(b)に示すように、軸受が円錐タイプの場合、ころ(転動体5)の頭部と大鍔部4aとの間に滑り接触が発生するが、このような場合、上述したある実施形態のグリース組成物による、実質的に油膜を厚くするのと同様の効果が、焼き付き防止に効果を奏する。
 図3(a)~(h)は、本実施形態の車輪支持用転がり軸受ユニットが適用可能な第2世代のハブユニット軸受の構成を示す断面図である。図3(a)~(e)は、所謂、第2世代ハブユニット軸受であり、「従動輪用ハブユニット軸受」を表す図3(f),(g)、及び「駆動輪用ハブユニット軸受」を表す図3(h)に示すように、第1世代のハブユニット軸受に実機部品の一部を取り込んだ構造をしているため、第1世代のハブユニット軸受に比べれば、予圧範囲は狭くなるものの、第3世代のハブユニット軸受に比べれば予圧範囲は大きく、外輪回転でも使用されるため、第1世代のハブユニット軸受同様の効果が得られる。

Claims (4)

  1.  基油と、増ちょう剤と、防錆剤と、摩耗防止剤とを含有するグリース組成物であって、
     前記基油が鉱油、合成油又これらの混合油であり、前記鉱油と前記合成油との混合比(質量比)が0:100~20:80であり、
     前記基油の40℃における動粘度が70~150mm/sであり、
     前記基油の流動点が-40℃以下であることを特徴とするグリース組成物。
  2.  前記増ちょう剤が当該グリース組成物全量に対して10~40質量%含有された下記一般式(I)で表された芳香族系ジウレア化合物を含み、
     前記防錆剤が、カルボン酸系防錆剤、カルボン酸塩系防錆剤、及びアミン系防錆剤を含み、
     前記摩耗防止剤が、トリフェニルホスホロチオエートであることを特徴とする請求項1に記載のグリース組成物。
    -NHCONH-R-NHCONH-R
                     ・・・・・・一般式(I)
    (一般式(I)中のRは炭素数6~15の芳香族系炭化水素基、R及びRは炭素数6~12の芳香族系炭化水素基を示す。R及びRは同一であっても異なっていてもよい。)
  3.  前記増ちょう剤が当該グリース組成物全量に対して10~30質量%含有された下記一般式(II)で表された脂環式ジウレア化合物及び脂肪族ジウレア化合物の少なくともいずれかのジウレア化合物を含み、
     前記防錆剤が、カルボン酸系防錆剤、カルボン酸塩系防錆剤、及びアミン系防錆剤を含み、
     前記摩耗防止剤が、トリフェニルホスホロチオエートであることを特徴とする請求項1に記載のグリース組成物。
    -NHCONH-R-NHCONH-R
                     ・・・・・・一般式(II)
    (一般式(I)中のRは炭素数6~15の芳香族系炭化水素基、R及びRは炭素数6~20の脂肪族炭化水素基、又は炭素数6~12のシクロヘキシル誘導体基を示す。R及びRの増ちょう剤全量中に占めるシクロヘキシル誘導体基の割合が50~90モル%であり、R及びRは同一であっても異なっていてもよい。)
  4.  請求項1~請求項3のいずれかに記載のグリース組成物を封入したことを特徴とする車輪支持用転がり軸受ユニット。
PCT/JP2012/005940 2011-09-26 2012-09-18 グリース組成物及びそのグリース組成物が封入された車輪支持用転がり軸受ユニット WO2013046598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280045315.7A CN103814119A (zh) 2011-09-26 2012-09-18 润滑脂组合物及封入有该润滑脂组合物的车轮支承用滚动轴承单元
US13/824,241 US20140193110A1 (en) 2011-09-26 2012-09-18 Grease Composition and Wheel Supporting Rolling Bearing Unit Having Grease Composition Packed Therein
DE112012003999.8T DE112012003999T5 (de) 2011-09-26 2012-09-18 Schmiermittelzusammensetzung und mit Schmiermittelzusammensetzung gefüllte Radhalterungs-Wälzlagereinheit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-209410 2011-09-26
JP2011209410 2011-09-26
JP2012130636A JP5895723B2 (ja) 2011-09-26 2012-06-08 車輪支持用転がり軸受ユニット
JP2012-130636 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013046598A1 true WO2013046598A1 (ja) 2013-04-04

Family

ID=47994684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005940 WO2013046598A1 (ja) 2011-09-26 2012-09-18 グリース組成物及びそのグリース組成物が封入された車輪支持用転がり軸受ユニット

Country Status (5)

Country Link
US (1) US20140193110A1 (ja)
JP (1) JP5895723B2 (ja)
CN (1) CN103814119A (ja)
DE (1) DE112012003999T5 (ja)
WO (1) WO2013046598A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103675A (zh) * 2014-03-12 2016-11-09 协同油脂株式会社 润滑脂组合物及封入润滑脂的车轮用轴承
CN107057807A (zh) * 2015-11-10 2017-08-18 美蓓亚株式会社 润滑脂组合物、滚动轴承和马达
WO2020059346A1 (ja) * 2018-09-21 2020-03-26 ミネベアミツミ株式会社 グリース組成物を用いた転がり軸受

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008856A1 (ja) 2013-07-19 2015-01-22 Ntn株式会社 転がり軸受
JP6219084B2 (ja) * 2013-07-19 2017-10-25 Ntn株式会社 転がり軸受
WO2015129897A1 (ja) * 2014-02-28 2015-09-03 出光興産株式会社 機械の組付け用潤滑油組成物
JP6476738B2 (ja) 2014-10-22 2019-03-06 協同油脂株式会社 転がり軸受用グリース組成物及び転がり軸受
JP6348050B2 (ja) * 2014-11-05 2018-06-27 日本グリース株式会社 風力発電機用生分解性グリース組成物
CN105802704B (zh) * 2015-01-21 2020-04-17 精工电子有限公司 润滑脂、滚动轴承、滚动轴承装置及信息记录重放装置
US20170130157A1 (en) * 2015-11-10 2017-05-11 Minebea Co., Ltd. Grease composition, rolling bearing, and motor
EP3438232B1 (en) * 2016-03-31 2022-05-04 Idemitsu Kosan Co., Ltd. Lubricating oil composition, and precision reduction gear using same
JP6753699B2 (ja) * 2016-05-27 2020-09-09 ミネベアミツミ株式会社 転がり軸受
JP6858501B2 (ja) * 2016-07-11 2021-04-14 セイコーインスツル株式会社 グリース、転がり軸受、転がり軸受装置及び情報記録再生装置
JP6845633B2 (ja) * 2016-08-04 2021-03-17 協同油脂株式会社 グリース組成物
WO2019039536A1 (ja) * 2017-08-23 2019-02-28 Ntn株式会社 グリース封入転がり軸受
CN110914389A (zh) * 2018-01-31 2020-03-24 出光兴产株式会社 润滑脂组合物
DE102018129457B3 (de) * 2018-11-22 2020-03-26 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung von Schmierstoffeigenschaften
JP2020128766A (ja) * 2019-02-07 2020-08-27 Ntn株式会社 円すいころ軸受
CN111139119B (zh) * 2020-01-02 2022-04-19 中国石油化工股份有限公司 一种汽车等速万向节外球笼润滑脂组合物及其制备方法
CN111944589A (zh) * 2020-07-23 2020-11-17 中国石油化工股份有限公司 用于新能源汽车等速万向节的润滑脂组合物及其制备方法
CN117940539A (zh) * 2021-09-13 2024-04-26 协同油脂株式会社 车辆用轮毂单元轴承用润滑脂组合物
CN115232659A (zh) * 2022-02-08 2022-10-25 中国石油化工股份有限公司 一种汽车服务市场等速万向节外球笼润滑脂组合物及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298537A (ja) * 2004-04-06 2005-10-27 Nsk Ltd 自動車電装補機用グリース組成物及び自動車電装補機用転がり軸受
JP2006124426A (ja) * 2004-10-26 2006-05-18 Nsk Ltd グリース組成物,転がり軸受,及び車輪支持用転がり軸受装置
JP2006292039A (ja) * 2005-04-08 2006-10-26 Nsk Ltd 車輪支持用転がり軸受ユニット
JP2007112920A (ja) * 2005-10-21 2007-05-10 Nsk Ltd グリース組成物、並びにパワステポンプ用転がり軸受及び過給機用転がり軸受
WO2008044650A1 (fr) * 2006-10-06 2008-04-17 Idemitsu Kosan Co., Ltd. Graisse
JP2009209179A (ja) * 2008-02-29 2009-09-17 Nsk Ltd グリース組成物及び転動装置
JP2009299846A (ja) * 2008-06-16 2009-12-24 Nsk Ltd 鉄鋼圧延機用転がり軸受
JP2010024440A (ja) * 2008-06-16 2010-02-04 Kyodo Yushi Co Ltd グリース組成物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337593B2 (ja) * 1995-06-22 2002-10-21 日本精工株式会社 転がり軸受用グリース組成物
JP2003013973A (ja) * 2001-06-28 2003-01-15 Ntn Corp 耐熱・高速・高荷重転がり軸受およびグリース組成物
JP4283491B2 (ja) * 2002-04-26 2009-06-24 新日本石油株式会社 グリース組成物
JP4883743B2 (ja) * 2002-08-02 2012-02-22 Ntn株式会社 グリース組成物および該グリース組成物封入軸受
JP2005105238A (ja) * 2003-01-06 2005-04-21 Nsk Ltd 自動車電装補機用グリース組成物及び前記グリース組成物を封入した転がり軸受
JP4272930B2 (ja) * 2003-06-18 2009-06-03 昭和シェル石油株式会社 等速ジョイント用ウレアグリース組成物
CN1922295A (zh) * 2004-02-23 2007-02-28 日本精工株式会社 润滑脂组合物以及转动装置
JP2006169386A (ja) * 2004-12-16 2006-06-29 Showa Shell Sekiyu Kk 潤滑グリース組成物及びそれを用いた軸受
WO2006064869A1 (ja) * 2004-12-17 2006-06-22 Ntn Corporation グリース組成物およびグリース封入転がり軸受
WO2006078035A1 (ja) * 2005-01-24 2006-07-27 Nsk Ltd. 転がり軸受、ハブユニット軸受用グリース組成物及び車両用ハブユニット軸受
JP5086528B2 (ja) * 2005-06-07 2012-11-28 Ntn株式会社 ハブベアリング用グリースおよびハブベアリング
EP1956072A4 (en) * 2005-09-02 2011-02-23 Ntn Toyo Bearing Co Ltd LUBRICATING GREASE AND BEARING BEARING COMPRISED WITH LUBRICATING GREASE
US8153568B2 (en) * 2005-09-28 2012-04-10 Ntn Corporation Water-resistant grease and water-resistant-grease-enclosed rolling bearing and hub
JP2008239706A (ja) * 2007-03-26 2008-10-09 Kyodo Yushi Co Ltd グリース組成物及び軸受
US20140199009A1 (en) * 2011-08-26 2014-07-17 Nsk Ltd. Grease composition and rolling device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298537A (ja) * 2004-04-06 2005-10-27 Nsk Ltd 自動車電装補機用グリース組成物及び自動車電装補機用転がり軸受
JP2006124426A (ja) * 2004-10-26 2006-05-18 Nsk Ltd グリース組成物,転がり軸受,及び車輪支持用転がり軸受装置
JP2006292039A (ja) * 2005-04-08 2006-10-26 Nsk Ltd 車輪支持用転がり軸受ユニット
JP2007112920A (ja) * 2005-10-21 2007-05-10 Nsk Ltd グリース組成物、並びにパワステポンプ用転がり軸受及び過給機用転がり軸受
WO2008044650A1 (fr) * 2006-10-06 2008-04-17 Idemitsu Kosan Co., Ltd. Graisse
JP2009209179A (ja) * 2008-02-29 2009-09-17 Nsk Ltd グリース組成物及び転動装置
JP2009299846A (ja) * 2008-06-16 2009-12-24 Nsk Ltd 鉄鋼圧延機用転がり軸受
JP2010024440A (ja) * 2008-06-16 2010-02-04 Kyodo Yushi Co Ltd グリース組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103675A (zh) * 2014-03-12 2016-11-09 协同油脂株式会社 润滑脂组合物及封入润滑脂的车轮用轴承
CN106103675B (zh) * 2014-03-12 2019-02-15 协同油脂株式会社 润滑脂组合物及封入润滑脂的车轮用轴承
US10584750B2 (en) 2014-03-12 2020-03-10 Kyodo Yushi Co., Ltd. Grease composition and grease-filled wheel bearing
CN107057807A (zh) * 2015-11-10 2017-08-18 美蓓亚株式会社 润滑脂组合物、滚动轴承和马达
CN107057807B (zh) * 2015-11-10 2021-07-23 美蓓亚株式会社 润滑脂组合物、滚动轴承和马达
WO2020059346A1 (ja) * 2018-09-21 2020-03-26 ミネベアミツミ株式会社 グリース組成物を用いた転がり軸受

Also Published As

Publication number Publication date
JP5895723B2 (ja) 2016-03-30
JP2013082882A (ja) 2013-05-09
DE112012003999T5 (de) 2014-08-21
US20140193110A1 (en) 2014-07-10
CN103814119A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5895723B2 (ja) 車輪支持用転がり軸受ユニット
WO2013031705A1 (ja) グリース組成物及び転動装置
EP3118287B1 (en) Grease composition and grease-filled wheel bearing
JP5681414B2 (ja) ハブユニット軸受用グリース組成物
JP7042375B2 (ja) ハブユニット
JP5096703B2 (ja) 耐水性グリース組成物及び車両用ハブユニット軸受
JP5110843B2 (ja) ゴムシール付き軸受用グリース組成物及び車両用ゴムシール付きハブユニット軸受
JP2017002306A (ja) グリース組成物および車両用転動装置
JP2015075180A (ja) ハブユニット軸受
JP2010084142A (ja) グリース組成物および該グリース組成物を封入した転がり軸受
JP5244537B2 (ja) 車輪用軸受装置
JP2018059618A (ja) 車両用転動装置
JP7303659B2 (ja) 円すいころ軸受
WO2021246049A1 (ja) グリース組成物および転がり軸受
JP2018168332A (ja) グリース組成物、転がり軸受、およびハブベアリング
JP2015229704A (ja) グリース組成物及び転がり軸受
JP2009019703A (ja) 車輪支持装置
JP2015229705A (ja) グリース組成物及び転がり軸受
JP5335019B2 (ja) 自動車車輪軸受用グリース組成物
JP2009019704A (ja) 車輪支持用転がり軸受ユニット
JP2006052751A (ja) 車輪支持用転がり軸受ユニット
JP2007077350A (ja) 電磁クラッチ用、コンプレッサー用及びアイドラプーリ用転がり軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13824241

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120039998

Country of ref document: DE

Ref document number: 112012003999

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836579

Country of ref document: EP

Kind code of ref document: A1