WO2013033925A1 - 小型无人飞行器用两轴云台及小型无人飞行器用三轴云台 - Google Patents

小型无人飞行器用两轴云台及小型无人飞行器用三轴云台 Download PDF

Info

Publication number
WO2013033925A1
WO2013033925A1 PCT/CN2011/079704 CN2011079704W WO2013033925A1 WO 2013033925 A1 WO2013033925 A1 WO 2013033925A1 CN 2011079704 W CN2011079704 W CN 2011079704W WO 2013033925 A1 WO2013033925 A1 WO 2013033925A1
Authority
WO
WIPO (PCT)
Prior art keywords
bracket
motor
axis
unmanned aerial
aerial vehicle
Prior art date
Application number
PCT/CN2011/079704
Other languages
English (en)
French (fr)
Inventor
汪滔
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014528829A priority Critical patent/JP6389121B2/ja
Priority to KR1020177020283A priority patent/KR101833331B1/ko
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to MX2014002732A priority patent/MX344931B/es
Priority to AU2011376583A priority patent/AU2011376583B2/en
Priority to CA2848223A priority patent/CA2848223A1/en
Priority to EP11872105.9A priority patent/EP2759480B1/en
Priority to EP21151317.1A priority patent/EP3828086A1/en
Priority to KR1020147009447A priority patent/KR101762489B1/ko
Priority to RU2014113934/11A priority patent/RU2589534C2/ru
Priority to BR112014005381A priority patent/BR112014005381A2/pt
Priority to EP19169577.4A priority patent/EP3549872B1/en
Publication of WO2013033925A1 publication Critical patent/WO2013033925A1/zh
Priority to US14/045,606 priority patent/US8938160B2/en
Priority to US14/564,016 priority patent/US9648240B2/en
Priority to US15/487,172 priority patent/US10321060B2/en
Priority to US16/392,868 priority patent/US11140322B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage

Definitions

  • the invention relates to the field of unmanned aerial vehicles, in particular to a two-axis pan/tilt for a small unmanned aerial vehicle used for aerial photography or monitoring and a three-axis gimbal for a small unmanned aerial vehicle.
  • the drone has the characteristics of small size, light weight, low cost, flexible operation and high safety. It can be widely used in aerial photography, monitoring, search and rescue, resource exploration and other fields. Since the UAV itself has high-frequency vibration and low-frequency jitter, it is necessary to configure an aerial stabilization platform for carrying cameras and cameras for stable shooting.
  • the aerial stability platform mostly detects the change of the attitude of the camera or the camera through the electronic device, and controls the reverse compensation of the servo to realize the stability of the camera or the camera.
  • most pan/tilt heads use mechanical gear drives for the purpose of two-, three- or multi-axis rotation of a camera or camera.
  • the unmanned aerial vehicle Due to the hysteresis of the gear transmission, the unmanned aerial vehicle has a long response time in the various postures such as turning, hovering, ascending, descending or tilting, and the steering gear is adjusted slowly, which makes it difficult for the camera or camera to adjust the angle in time.
  • the gear transmission platform is not flexible, and can not be steplessly adjusted, resulting in low adjustment accuracy, can not eliminate the impact caused by low frequency sway or body tilt, so it is difficult to shoot high quality images, can not meet professional needs.
  • the technical problem to be solved by the present invention is that the pan/tilt head used for the small and medium-sized unmanned aerial vehicles in the prior art has a long response time due to the use of the gear transmission, and cannot adapt to various flight attitudes of the unmanned aerial vehicle in time, and cannot be steplessly adjusted. There is a defect that the adjustment precision is not high, and a pan/tilt for a small unmanned aerial vehicle is provided, which can solve the above problem well.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a two-axis pan/tilt for a small unmanned aerial vehicle, including a frame assembly, a transmission assembly and a camera assembly, the frame assembly including a first bracket and a second bracket And a third bracket, the camera assembly is fixed on the first bracket, the first bracket is rotated and disposed on the second bracket, and the second bracket is rotated and disposed on the third bracket;
  • the first motor and the second motor are driven, the first motor drives the first bracket to rotate about its rotation axis relative to the second bracket, and the second motor drives the second bracket relative to the rotation axis thereof
  • the third bracket rotates.
  • the present invention relates to a two-axis pan/tilt for a small unmanned aerial vehicle.
  • the X-axis of the rotation axis of the first bracket is perpendicular to the Y-axis of the rotation axis of the second bracket.
  • the present invention relates to a two-axis pan/tilt for a small unmanned aerial vehicle.
  • the stator of the first motor is fixed on the first bracket, and the rotor of the first motor is fixedly disposed with the second bracket.
  • the present invention relates to a two-axis pan/tilt for a small unmanned aerial vehicle.
  • the stator of the second motor is fixed on the second bracket, and the rotor of the second motor is fixedly disposed with the second bracket.
  • the present invention relates to a two-axis pan/tilt for a small unmanned aerial vehicle.
  • the center of gravity of the first bracket and the camera assembly falls on the X-axis of the rotation axis of the first bracket.
  • the present invention relates to a two-axis pan/tilt for a small unmanned aerial vehicle.
  • the center of gravity of the first bracket, the second bracket and the camera assembly as a whole falls on the Y-axis of the rotation axis of the second bracket.
  • the invention also provides a small size
  • a three-axis pan/tilt head for an unmanned aerial vehicle includes the two-axis pan/tilt head for the small unmanned aerial vehicle, the transmission assembly further includes a third motor, and the frame assembly further includes a connecting frame for external fixation, the third The motor drives the third bracket to rotate relative to the connecting frame about its axis of rotation Z.
  • the invention is a small
  • the unmanned aerial vehicle uses a three-axis pan/tilt head.
  • the stator of the third motor is fixed on the connecting frame, and the rotor of the third motor is fixedly connected to the third bracket.
  • the invention is a small
  • the unmanned aerial vehicle uses a three-axis pan/tilt head, and preferably, the center of gravity of the first bracket, the second bracket, the third bracket and the camera assembly as a whole falls on the rotation of the third bracket
  • the axis is on the Z axis.
  • the invention is a small
  • the unmanned aerial vehicle uses a three-axis pan/tilt.
  • the transmission assembly includes a fourth motor that drives the camera assembly to rotate about its rotation axis.
  • the invention can achieve the following beneficial effects: the rotation of the first bracket relative to the second bracket realizes the shifting of the camera assembly in the vertical plane or the head angle, and the camera assembly itself rotates by the left or right tilting of the second bracket relative to the third bracket.
  • the circumferential direction of the third bracket enables the circumferential shooting of the camera assembly; the motor is used as the motive power of the direct pan/tilt frame assembly, which consumes less energy and saves energy; at the same time, the motor drive can realize stepless adjustment and short response time.
  • the utility model can quickly start, stop or adjust the speed in time to adapt to various flight postures of the unmanned aerial vehicle, thereby improving the shooting stability of the camera assembly.
  • FIG. 1 is a schematic exploded view of a two-axis pan/tilt head for a small unmanned aerial vehicle according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic exploded view of a three-axis gimbal for a small unmanned aerial vehicle according to Embodiment 2 of the present invention
  • FIG. 3 is a first schematic structural view of a three-axis gimbal assembly structure for a small unmanned aerial vehicle according to a second embodiment of the present invention
  • FIG. 4 is a second schematic structural view of a three-axis pan/tilt head assembly for a small unmanned aerial vehicle according to a second embodiment of the present invention
  • FIG. 5 is a schematic exploded view of a three-axis gimbal mounted to a multi-rotor mounting bracket for a small unmanned aerial vehicle according to Embodiment 2 of the present invention
  • FIG. 6 is a first schematic structural view of an assembly structure of a three-axis gimbal mounted to a multi-rotor mounting bracket for a small unmanned aerial vehicle according to a second embodiment of the present invention
  • Fig. 7 is a second schematic view showing the assembly structure of a three-axis gimbal mounted to a multi-rotor mounting bracket for a small unmanned aerial vehicle according to a second embodiment of the present invention.
  • the two-axis pan/tilt is used for the unmanned aerial vehicle, and specifically includes the frame assembly, the transmission assembly, and the camera assembly 1.
  • the frame assembly includes a first bracket 2 and a second bracket 4, and the camera assembly 1 is fixed to the first bracket 2.
  • the shape of the image pickup unit 1 is not limited to the square shape shown in Fig. 1, and may be a circular shape or the like which is common on the market.
  • the first bracket 2 is disposed on the second bracket 4 by the pin rotation of the end portion, and the rotation structure can realize the camera assembly 1 Head up or bow down.
  • the camera assembly 1 is rotated to the right or left to ensure the stability of the photographing or photographing.
  • the second bracket 4 can rotate around the shaft.
  • the left and right sides of the second bracket 4 are rotated by a certain angle to drive the first bracket 2 and the camera assembly 1 to rotate integrally.
  • the power source provided by the embodiment is a motor
  • the direct driving of the small motor has the following advantages: (1) the direct power consumption of the motor is small, energy saving and environmental protection; (2) response time Short, able to adjust quickly and in time to adapt to various flight attitudes of the UAV, so that the camera module has high shooting stability; (3)
  • the motor can achieve stepless adjustment, uniform speed change, and can continuously, within the allowable speed range, The speed is arbitrarily adjusted, the impact on the mechanism member is small, and the stability is good. Specifically, as shown in FIG.
  • the transmission assembly includes a first motor 3 and a second motor 5, and the first motor 3 directly drives the first bracket 2 to rotate about the rotation axis (ie, the X axis) relative to the second bracket 4,
  • the second motor 5 directly drives the second bracket 4 to rotate about its rotation axis (ie, the Y axis).
  • the motor is used as the frame component of the direct power head of the motive power, which consumes less energy and saves electric energy.
  • the motor drive can realize stepless adjustment, and the action response time is short, and the speed can be quickly started, stopped or adjusted in time to adapt to no.
  • the human aircraft has various flight attitudes, thereby improving the shooting stability of the camera assembly.
  • the X axis of the rotation axis of the first bracket 2 is perpendicular to the Y axis of the rotation axis of the second bracket 4.
  • the stator of the first motor 3 is fixed on the first bracket 2, and the rotor of the first motor 3 is fixedly disposed with the second bracket 4.
  • the first motor 3 directly drives the second bracket 4 such that the first bracket 2 rotates relative to the second bracket 4.
  • the positions of the stator and the rotor of the third motor 3 are interchangeable, that is, the rotor of the first motor 3 is fixed on the first bracket 2, and the stator and the second bracket 4 are fixedly disposed, and the relative rotation function can also be realized. .
  • the stator of the second motor 5 is fixed to the third bracket 6, and the rotor of the second motor 5 is fixedly disposed with the second bracket 4.
  • the second motor 5 directly drives the second bracket 4 such that the second bracket 4 rotates relative to the third bracket 6.
  • the positions of the stator and the rotor of the second motor 5 are interchangeable, that is, the rotor of the second motor 5 is fixed on the third bracket 6, and the stator and the second bracket 4 are fixedly disposed, and the relative rotation function can also be realized. .
  • the transmission component includes a fourth motor, and the fourth motor drives the camera.
  • the assembly 1 is rotated about its axis of rotation K axis.
  • the rotation of the second bracket 4 about the Y-axis can realize the rotation of the lens of the camera assembly 1; when the K-axis is perpendicular to the Y-axis, the lens of the camera assembly 1 is realized by the fourth motor. rotation.
  • the center of gravity of the first bracket 2 and the camera assembly 1 falls on the rotating shaft of the first bracket 2.
  • the first bracket 2 is rotated to an arbitrary angle, and no rotational moment is generated, that is, the first bracket 2 It does not sway back and forth due to the torque, increasing the stability of the camera assembly 1 during the rotation.
  • the UAV is running smoothly, that is, without the motor driving condition, the first bracket 2 and the camera assembly 1 are also in a dynamic equilibrium state.
  • the pan/tilt provided by the embodiment is suitable for a small unmanned aerial vehicle for aerial photography or monitoring
  • the first motor 3, the second motor 5 and the fourth motor are preferably DC brushless motors.
  • the advantages of using DC brushless motor for unmanned aerial vehicles are: (1) Electronic commutation instead of traditional mechanical commutation, reliable performance, no wear and tear, low failure rate, and life expectancy is about 6 times higher than brush motor; (2) It is a static motor with small no-load current; (3) High efficiency (4) Small volume.
  • the transmission assembly further includes an inertial sensor, a microprocessor, and a signal line.
  • the inertial sensor includes a gyroscope for detecting an angular velocity signal and an accelerometer for detecting an acceleration signal, and the microprocessor controls the first motor 3 and the second motor according to the angular velocity signal and the acceleration signal. Start, stop, and speed. By setting the inertial sensor to dynamically monitor the attitude of the UAV in time, and to quickly and timely control the start and stop of the motor, thereby improving the shooting stability of the camera assembly.
  • the unmanned aerial vehicle can be structurally modified with a pan/tilt head for a two-axis pan/tilt to achieve rotation in any other two directions.
  • the improved small unmanned aerial vehicle with a pan/tilt head is a two-axis pan/tilt.
  • the rack assembly, the transmission assembly and the camera assembly 1 comprise a first bracket 2, a third bracket 6 and a connecting bracket 8.
  • the camera assembly 1 is fixed on the first bracket 2, and the first bracket 2 and the third bracket 6 are rotatably disposed. This rotating structure can realize the head-up or head-down rotation of the camera assembly 1.
  • the connecting frame 8 is externally fixed on the helicopter or the multi-rotor aircraft; the third bracket 6 is circumferentially rotatable relative to the connecting frame 8 to drive the entire circumferential rotation of the gimbal.
  • the power source provided by the embodiment is a motor, and the direct driving of the small motor has the following advantages: (1) the direct power consumption of the motor is small, energy saving and environmental protection; (2) response time Short, able to adjust quickly and in time to adapt to various flight attitudes of the UAV, so that the camera module has high shooting stability; (3) The motor can achieve stepless adjustment, uniform speed change, and can continuously, within the allowable speed range, The speed is arbitrarily adjusted, the impact on the mechanism member is small, and the stability is good.
  • the transmission assembly includes a first motor 3 and a third motor 7, and the first motor 3 directly drives the first bracket 2 to rotate about its rotation axis (ie, the X axis) to drive the lens of the camera assembly 1 to pitch and rotate; 7 directly drives the third bracket 6 to rotate circumferentially about its rotation axis (Z-axis), thereby driving the camera assembly 1 to perform ring-shaped shooting around the Z-axis.
  • first motor 3 directly drives the first bracket 2 to rotate about its rotation axis (ie, the X axis) to drive the lens of the camera assembly 1 to pitch and rotate
  • 7 directly drives the third bracket 6 to rotate circumferentially about its rotation axis (Z-axis), thereby driving the camera assembly 1 to perform ring-shaped shooting around the Z-axis.
  • the unmanned aerial vehicle can also be related to the structural improvement of the two-axis pan/tilt, including the frame assembly, the transmission component and the camera assembly 1.
  • the frame assembly includes a second bracket 4 and a third bracket 6.
  • the camera assembly 1 is fixed on the second bracket 4.
  • the second bracket 4 can be rotated by a certain angle around the axis of rotation Y.
  • the rotation of the second bracket 4 drives the camera assembly 1 to the left and right. Tilting.
  • the third bracket 6 is circumferentially rotatable about its rotation axis (ie, the Z axis) to drive the camera assembly 1 to the ring sweep.
  • the transmission assembly includes a second motor 5 and a third motor 7, and the second motor 5 directly drives the second bracket 4 to rotate about a rotation axis thereof (ie, the Y axis) with respect to the third bracket 6, and the third motor 7 directly drives the third
  • the bracket 6 is rotated circumferentially about its axis of rotation (i.e., the Z-axis).
  • the rotation axis Y axis of the second bracket 4 is perpendicular to the rotation axis Z axis of the third bracket 6.
  • the frame assembly further includes a connecting frame 8, and the third bracket 6 is rotatably disposed on the connecting frame 8.
  • the stator of the third motor 7 is fixed on the connecting frame 8, and the rotor is fixedly connected to the third bracket 6.
  • the positions of the stator and the rotor of the first motor 3, the second motor 5, and the third motor 7 are interchangeable, and the purpose of rotation can also be achieved.
  • the unmanned aerial vehicle (PTZ) 100 is a three-axis rotating pan/tilt head, and specifically includes a frame assembly, a transmission assembly, and a camera assembly 1.
  • the frame assembly includes a first bracket 2, a second bracket 4, a third bracket 6, and a connecting bracket 8.
  • the camera assembly 1 is fixed on the first bracket 2, and in order to realize the rotation of the camera assembly 1 along the X axis (ie, the rotation axis of the first bracket 2), the first bracket 2 and the second bracket 4 are rotatably disposed, and the rotating structure can be realized.
  • the head or lower head of the camera assembly 1 rotates.
  • the camera assembly 1 performs right or left tilting to ensure the smoothness of photographing or photographing, as shown in FIG. 2, the second bracket 4 and the third bracket. 6
  • the left and right rotation of the second bracket 4 drives the first bracket 2 and the camera assembly 1 to rotate integrally.
  • the connecting frame 8 is externally fixed to the helicopter or the multi-rotor aircraft, and the third bracket 6 is rotatable relative to the connecting frame 8 about the Z-axis.
  • the power source provided by the embodiment is a motor
  • the small motor drive has the following advantages: (1) the direct drive of the motor consumes less energy, and is energy-saving and environmentally friendly; 2) The response time is short, and it can be quickly adjusted in time to adapt to various flight attitudes of the UAV, so that the shooting stability of the camera assembly is high; (3) The motor can achieve stepless adjustment, uniform speed change, and can be in the allowed speed range. The speed is continuously and arbitrarily adjusted, and the impact on the mechanism member is small, and the stability is good. Specifically, as shown in FIG. 2, FIG. 3, and FIG.
  • the transmission assembly includes a first motor 3, a second motor 5, and a third motor 7, and the first motor 3 directly drives the first bracket 2 relative to the X axis of the rotation axis thereof.
  • the second bracket 4 rotates, and the second motor 5 directly drives the second bracket 4 to rotate relative to the third bracket 6 about its axis of rotation Y.
  • the third motor 7 directly drives the third bracket 6 to rotate circumferentially about the Z-axis.
  • the motor is used as the frame component of the direct power head of the motive power, which consumes less energy and saves electric energy.
  • the motor drive can realize stepless adjustment, and the action response time is short, and the speed can be quickly started, stopped or adjusted in time to adapt to no.
  • the human aircraft has various flight attitudes, thereby improving the shooting stability of the camera assembly.
  • the rotation axis X axis of the first holder 2, the rotation axis Y axis of the second holder 4, and the rotation axis Z axis of the third holder 6 are perpendicular to each other.
  • the stator of the third motor 7 is fixed to the landing gear 8, and the rotor is fixed to the third bracket 6. More specifically, the positioning block 9 is fixedly coupled to the two U-shaped connecting frames 8, and the stator of the third motor 7 is fixed to the positioning block 9 by bolts or screws.
  • the third bracket 6 is fixedly provided with a connecting block 11 , and the sleeve 10 with the built-in perforation is fixed on the connecting block 11 .
  • the through hole on the sleeve 10 is matched with the rotor of the third motor 7 , and the rotor is inserted into the through hole and Fitted with perforation. It can be understood that the positions of the stator and the rotor can be interchanged, and the same can be achieved for the purpose of rotation.
  • the center of gravity of the first holder 2 and the imaging unit 1 falls on the X-axis of the rotation axis of the first holder 2.
  • the first bracket 2 is rotated to an arbitrary angle, and no rotational moment is generated, that is, the first bracket 2 It does not sway back and forth due to the torque, increasing the stability of the camera assembly 1 during the rotation; when the UAV is running smoothly, that is, without the motor driving condition, the first bracket 2 and the camera assembly 1 are also in a dynamic equilibrium state.
  • the center of gravity of the first bracket 2, the second bracket 4, the third bracket 6 and the camera assembly 1 as a whole falls on the third bracket.
  • the axis of rotation of 6 is on the Z axis.
  • the first motor 3, the second motor 5, the third motor 7, and the fourth motor are all DC brushless motors.
  • the advantages of using the DC brushless motor for the UAV 100 are: (1) Electronic commutation instead of the traditional mechanical commutation, reliable performance, no wear and tear, low failure rate, and the life expectancy is about 6 times higher than that of the brush motor. (2) is a static motor, small no-load current; (3) high efficiency; (4) small size.
  • the transmission assembly further includes an inertial sensor, a microprocessor, and a signal line.
  • the inertial sensor includes a gyroscope for detecting an angular velocity signal and an accelerometer for detecting an acceleration signal, and the microprocessor controls the first motor 3 and the second motor according to the angular velocity signal and the acceleration signal. Start, stop, and speed. By setting the inertial sensor to dynamically monitor the attitude of the UAV in time, and to quickly and timely control the start and stop of the motor, thereby improving the shooting stability of the camera assembly.
  • the unmanned aerial vehicle is structurally improved on the basis of the three-axis pan/tilt head 100, and the rotation function of the lens of the camera unit 1 is increased.
  • the camera assembly 1 is not limited to the shape shown in FIG. 2 or FIG. 3, and the camera assembly 1 may be in the form of a swivel shape or the like.
  • the left and right rotation of the second bracket 4 about the Y-axis can only drive the lens of the camera assembly 1 in the vertical plane.
  • the transmission assembly further includes a fourth motor that directly drives the camera assembly 1 to rotate about its rotation axis K-axis.
  • K-axis is parallel or coaxial with the Y-axis
  • the rotation of the second bracket 4 about the Y-axis can realize the rotation of the lens of the camera assembly 1;
  • the lens of the camera assembly 1 is realized by the fourth motor. rotation.
  • FIG. 6 and FIG. 7 are structural diagrams of a three-axis pan/tilt 100 mounted to a multi-rotor aircraft for a small unmanned aerial vehicle.
  • the multi-rotor aircraft includes a multi-rotor mount 200, an inertial measurement module, GPS, and other components.
  • the multi-rotor mount 200 includes a base 21, a plurality of support arms 22 fixedly disposed on the base 21, and a rotor member 23 disposed on the support arm 22.
  • the small unmanned aerial vehicle is fixed to the base 21 by screws, rivets, welding, etc. by the connecting frame 8 of the three-axis pan/tilt head 100, and the positioning block 9 is fixed on the connecting frame 8 by screws, and the stator of the third motor 7 is fixed in the positioning.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Accessories Of Cameras (AREA)
  • Toys (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Studio Devices (AREA)
  • Aviation & Aerospace Engineering (AREA)

Abstract

一种无人飞行器用两轴云台及无人飞行器用三轴云台,包括机架组件、传动组件以及摄像组件(1),机架组件包括第一支架(2)、第二支架(4)以及第三支架(6);摄像组件(1)固定在第一支架(2)上,第一支架(2)与第二支架(4)转动设置,第二支架(4)与第三支架(6)转动设置;传动组件包括第一电机(3)以及第二电机(5),第一电机(3)驱动第一支架(2)绕其旋转轴相对第二支架(4)转动,第二电机(5)驱动第二支架(4)绕其旋转轴相对第三支架(6)转动。

Description

小型无人飞行器用两轴云台及小型无人飞行器用三轴云台
技术领域
本发明涉及无人飞行器领域,尤其涉及一种用于航拍或监测的小型无人飞行器用两轴云台和小型无人飞行器用三轴云台。
背景技术
无人机具有体积小、重量轻、费用低、操作灵活和安全性高的特点,可广泛应用于航拍、监测、搜救、资源勘查等领域。由于无人机本身存在高频震动和低频抖动,需要配置航拍稳定平台用来搭载摄像机、照相机以实现稳定拍摄。航拍稳定平台多是通过电子设备检测摄像机或照相机的姿态变化,控制舵机反向补偿来实现摄像机或照相机的稳定。现有技术中,大多数云台采用机械齿轮驱动来实现摄像机或照相机的两轴、三轴或多轴转动的目的。由于齿轮传动都存在滞后性,无人飞行器在转弯、悬停、上升、下降或倾斜等各种姿态下,云台响应时间长,舵机调整慢,从而使摄像机或照相机很难及时调整角度以适应无人飞行器姿态的调整,导致摄像机或照相机图像质量受到影响。同时,齿轮传动平台灵活性不高,不能进行无级调节从而导致调节精度不高,不能消除由于低频晃动或机体倾斜造成的影响,因此也很难拍摄出高质量的图像,无法满足专业需求。
发明内容
本发明要解决的技术问题在于,针对现有技术中小型无人飞行器用云台由于采用齿轮传动导致存在响应时间长、不能及时适应无人飞行器各种飞行姿态,而且不能进行无级调节从而导致存在调节精度不高的缺陷,,提供一种小型无人飞行器用云台,能够很好解决上述问题。
本发明解决其技术问题所采用的技术方案是:构造一种小型无人飞行器用两轴云台,包括机架组件、传动组件以及摄像组件,所述机架组件包括第一支架、第二支架以及第三支架,所述摄像组件固定在所述第一支架上,所述第一支架与所述第二支架转动设置,所述第二支架与所述第三支架转动设置;所述传动组件包括第一电机以及第二电机,所述第一电机驱动所述第一支架绕其旋转轴相对所述第二支架转动,所述第二电机驱动所述第二支架绕其旋转轴相对所述第三支架转动。
本发明一种小型无人飞行器用两轴云台,优选的,所述第一支架的旋转轴X轴与所述第二支架的旋转轴Y轴垂直设置。
本发明一种小型无人飞行器用两轴云台,优选的,所述第一电机的定子固定在所述第一支架上,所述第一电机的转子与所述第二支架固定设置。
本发明一种小型无人飞行器用两轴云台,优选的,所述第二电机的定子固定在所述第二支架上,所述第二电机的转子与所述第二支架固定设置。
本发明一种小型无人飞行器用两轴云台,优选的,所述第一支架与所述摄像组件的重心落在所述第一支架的旋转轴X轴上。
本发明一种小型无人飞行器用两轴云台,优选的,所述第一支架、所述第二支架与所述摄像组件整体的重心落在所述第二支架的旋转轴Y轴上。
本发明还提供一种小型 无人飞行器用三轴云台,包括上述小型无人飞行器用两轴云台,所述传动组件还包括第三电机,所述机架组件还包括用于对外固定的连接架,所述第三电机驱动所述第三支架绕其旋转轴Z轴相对所述连接架转动。
本发明一种小型 无人飞行器用三轴云台,优选的,所述第三电机的定子固定在所述连接架上,所述第三电机的转子固定连接所述第三支架上。
本发明一种小型 无人飞行器用三轴云台,优选的,其特征在于,所述第一支架、所述第二支架、所述第三支架与所述摄像组件整体的重心落在所述第三支架的旋转轴Z轴上。
本发明一种小型 无人飞行器用三轴云台,进一步的,所述传动组件包括第四电机,所述第四电机驱动所述摄像组件绕其自转轴转动。
本发明可达到以下有益效果:通过第一支架相对第二支架的转动实现摄像组件在垂直平面内抬头或低头角度的转变,通过第二支架相对第三支架的左倾或右倾转动实现摄像组件自身转动,通过第三支架的周向转动实现摄像组件的环向拍摄;采用电机作为原动力直接云台的机架组件,耗能较小、节省电能;同时电机驱动能够实现无级调节,动作响应时间短,能够快速启动、停止或及时调整转速大小以适应无人飞行器各种飞行姿态,从而提高摄像组件的拍摄稳定性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例一提供的小型 无人飞行器用两轴云台的爆炸结构示意图;
图2是本发明实施例二提供的小型 无人飞行器用三轴云台的爆炸结构示意图;
图3是本发明实施例二提供的小型 无人飞行器用三轴云台组装结构示意图一;
图4是本发明实施例二提供的小型 无人飞行器用三轴云台组装结构示意图二;
图5是本发明实施例二提供的小型 无人飞行器用三轴云台安装至多旋翼安装架的爆炸结构示意图;
图6是本发明实施例二提供的小型 无人飞行器用三轴云台安装至多旋翼安装架的组装结构示意图一;
图7是本发明实施例二提供的小型 无人飞行器用三轴云台安装至多旋翼安装架的组装结构示意图二。
附图标号说明:
100 、云台 200、多旋翼安装架
1 、摄像组件 2、第一支架
3 、第一电机 4、第二支架
5 、第二电机 6、第三支架
7 、第三电机 8、连接架
9 、定位块 10、套筒
11 、连接块 21、基座
22 、支撑臂 23、旋翼构件
24 、支撑架
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
实施例一
如图1所示,为本发明提供一种 无人飞行器用两轴云台,具体包括机架组件、传动组件以及摄像组件1。机架组件包括第一支架2和第二支架4,摄像组件1固定在第一支架2上。此处摄像组件1的形状不局限于图1中所示的方形,还可以为市面上常见的圆形或其它形状。为了实现摄像组件1沿X轴(即:第一支架2的旋转轴)旋转,第一支架2通过端部的销轴转动设置在第二支架4上,这种转动结构能够实现摄像组件1的抬头或低头旋转。为了适应无人飞行器在飞行过程中的左倾或右倾飞行,摄像组件1相对应的进行右倾或左倾转动,以保证拍照或摄像的平稳性,如图1所示,第二支架4可绕自身转轴Y轴转动,第二支架4的左右转动一定角度从而带动第一支架2和摄像组件1整体转动。为了驱动第一支架2、第二支架4,本实施例提供的动力源为电机,采用小型电机直接驱动具有以下优点:(1)电机直接驱动耗能较小,节能环保;(2)响应时间短、能够及时快速调整以适应无人飞行器各种飞行姿态,从而使摄像组件的拍摄稳定性高;(3)电机能够实现无级调节,速度变化均匀,能够在允许的速度范围内连续地、任意地调节速度大小,对机构构件的冲击性较小,稳定性能佳。具体的,如图1所示,传动组件包括第一电机3以及第二电机5,第一电机3直接驱动第一支架2绕其旋转轴(即:X轴)相对第二支架4转动,第二电机5直接驱动第二支架4绕其旋转轴(即:Y轴)转动。本实施例采用电机作为原动力直接云台的机架组件,耗能较小、节省电能;同时电机驱动能够实现无级调节,动作响应时间短,能够快速启动、停止或及时调整转速大小以适应无人飞行器各种飞行姿态,从而提高摄像组件的拍摄稳定性。
为了便于电机及时调整转动角度,作为优选,第一支架2的旋转轴X轴与第二支架4的旋转轴Y轴垂直设置。
具体的,如图1所示,第一电机3的定子固定在第一支架2上,第一电机3的转子与第二支架4固定设置。第一电机3直接驱动第二支架4,从而使第一支架2相对第二支架4发生相对转动。此处需注意,第三电机3的定子和转子的位置可互换,即:第一电机3的转子固定在第一支架2上,定子与第二支架4固定设置,同样能够实现相对转动功能。
作为优选,如图1所示,第二电机5的定子固定在第三支架6上,第二电机5的转子与第二支架4固定设置。第二电机5直接驱动第二支架4,从而使第二支架4相对第三支架6发生相对转动。此处需注意,第二电机5的定子和转子的位置可互换,即:第二电机5的转子固定在第三支架6上,定子与第二支架4固定设置,同样能够实现相对转动功能。
无人飞行器在飞行过程中,当摄像组件1的镜头的中心轴转动至垂直于X轴与Y轴构成的平面时,第二支架4绕Y轴的左右转动只能带动摄像组件1的镜头在垂直面的一定范围内扫射,不能实现摄像组件1的镜头自身转动。为了使镜头转动至垂直于X轴与Y轴构成的平面时仍能够全方位调整镜头的角度,在上述技术方案的基础上,作为优选实施例,传动组件包括第四电机,第四电机驱动摄像组件1绕其自转轴K轴转动。当K轴与Y轴平行或同轴时,第二支架4绕Y轴的转动能够实现摄像组件1的镜头的自转;当K轴垂直于Y轴时,摄像组件1的镜头通过第四电机实现自转。
进一步的,为了增大摄像组件1拍摄过程中的稳定性能,第一支架2与摄像组件1的重心落在第一支架2的旋转轴。通过力学分析,当第一支架2与摄像组件1的重心落在第一支架2的旋转轴X轴上时,第一支架2转动至任意角度,均不会产生转动力矩,即第一支架2不会因为力矩而来回晃动,增加转动过程中的摄像组件1的稳定性。当无人飞行器平稳运行时,即无需电机驱动状况下,第一支架2和摄像组件1也处于动态平衡状态。
同样道理,通过力学分析,为了增加稳定性能,避免绕Y轴旋转的整体组件产生转动力矩,作为优选方案,如图1所示,第一支架2、第二支架4与摄像组件1整体的重心落在第二支架4的旋转轴上。
在上述技术方案的基础上,作为优选,本实施例提供的云台适用于航拍或监测的小型无人飞行器,第一电机3、第二电机5以及第四电机优选为直流无刷电机。无人飞行器用云台采用直流无刷电机的好处在于:(1)电子换向来代替传统的机械换向,性能可靠、永无磨损、故障率低,寿命比有刷电机提高了约6倍;(2)属静态电机,空载电流小;(3)效率高(4)体积小。
进一步的,传动组件还包括惯性传感器、微处理器以及信号线, 惯性传感器包括用于检测角速度信号的陀螺仪以及用于检测加速度信号的加速度计,微处理器根据角速度信号与加速度信号来控制第一电机 3 、第二电机 5 的启动、停止以及转速大小。通过设置惯性传感器来及时动态监测无人飞行器的姿态,并快速及时控制电机的启停, 从而提高摄像组件的拍摄稳定性。
在上述技术方案的基础上, 无人飞行器用云台为两轴云台可以进行结构改进,以实现其他任意两个方向上的转动。改进后的小型无人飞行器用云台为两轴云台具体包括机架组件、传动组件以及摄像组件1,机架组件包括第一支架2、第三支架6和连接架8。摄像组件1固定在第一支架2上,第一支架2与第三支架6转动设置,这种转动结构能够实现摄像组件1的抬头或低头旋转。连接架8对外固定在直升机或多旋翼飞行器上;第三支架6相对连接架8可周向转动,从而带动云台整体周向旋转。为了驱动第一支架2、第三支架6,本实施例提供的动力源为电机,采用小型电机直接驱动具有以下优点:(1)电机直接驱动耗能较小,节能环保;(2)响应时间短、能够及时快速调整以适应无人飞行器各种飞行姿态,从而使摄像组件的拍摄稳定性高;(3)电机能够实现无级调节,速度变化均匀,能够在允许的速度范围内连续地、任意地调节速度大小,对机构构件的冲击性较小,稳定性能佳。具体的,传动组件包括第一电机3以及第三电机7,第一电机3直接驱动第一支架2绕其旋转轴(即:X轴)转动从而带动摄像组件1的镜头俯仰转动;第三电机7直接驱动第三支架6绕其旋转轴(Z轴)周向旋转运动,从而带动摄像组件1绕Z轴进行环形拍摄。
同样的,为了同时实现摄像组件1的左右倾转动以及周向旋转, 无人飞行器用云台为两轴云台还可以进行相关结构改进,具体包括机架组件、传动组件以及摄像组件1。机架组件包括第二支架4以及第三支架6,摄像组件1固定在第二支架4上,第二支架4可绕旋转轴Y轴转动一定角度,第二支架4的转动带动摄像组件1左右倾转动。第三支架6可绕其旋转轴(即:Z轴)周向旋转从而带动摄像组件1环向扫拍。传动组件包括第二电机5以及第三电机7,第二电机5直接驱动第二支架4绕其旋转轴(即:Y轴)相对第三支架6转动一定角度,第三电机7直接驱动第三支架6绕其旋转轴(即:Z轴)周向旋转转动。作为优选,第二支架4的旋转轴Y轴与第三支架6的旋转轴Z轴垂直设置。机架组件还包括连接架8,第三支架6转动设置在连接架8上,具体地,第三电机7的定子固定在连接架8上,转子与第三支架6固定连接。
在上述实施例中,第一电机3、第二电机5、第三电机7各自的定子和转子的位置可互换,也能够实现转动的目的。
实施例二
如图2、图3、图4所示,为本发明提供的一个优选实施例,该 无人飞行器用云台100为可三轴转动云台,具体包括机架组件、传动组件以及摄像组件1。如图2所示,机架组件包括第一支架2、第二支架4、第三支架6以及连接架8。摄像组件1固定在第一支架2上,为了实现摄像组件1沿X轴(即:第一支架2的旋转轴)旋转,第一支架2与第二支架4转动设置,这种转动结构能够实现摄像组件1的抬头或低头旋转。为了适应无人飞行器在飞行过程中的左倾或右倾飞行,摄像组件1相对应的进行右倾或左倾转动,以保证拍照或摄像的平稳性,如图2所示,第二支架4与第三支架6转动设置,第二支架4的左右转动从而带动第一支架2和摄像组件1整体转动。为了实现摄像组件1的周向旋转以进行360度范围内转动拍摄,连接架8对外固定在直升机或多旋翼飞行器上,第三支架6可绕Z轴相对连接架8转动。为了驱动第一支架2、第二支架4以及第三支架6,本实施例提供的动力源为电机,采用小型电机驱动具有以下优点:(1)电机直接驱动耗能较小,节能环保;(2)响应时间短、能够及时快速调整以适应无人飞行器各种飞行姿态,从而使摄像组件的拍摄稳定性高;(3)电机能够实现无级调节,速度变化均匀,能够在允许的速度范围内连续地、任意地调节速度大小,对机构构件的冲击性较小,稳定性能佳。具体的,如图2、图3、图4所示,传动组件包括第一电机3、第二电机5以及第三电机7,第一电机3直接驱动第一支架2绕其旋转轴X轴相对第二支架4转动,第二电机5直接驱动第二支架4绕其旋转轴Y轴相对第三支架6转动,第三电机7直接驱动第三支架6绕Z轴周向旋转。本实施例采用电机作为原动力直接云台的机架组件,耗能较小、节省电能;同时电机驱动能够实现无级调节,动作响应时间短,能够快速启动、停止或及时调整转速大小以适应无人飞行器各种飞行姿态,从而提高摄像组件的拍摄稳定性。
作为优选,第一支架2的旋转轴X轴、第二支架4的旋转轴Y轴以及第三支架6的旋转轴Z轴三者相互垂直设置。
具体地,如图2所示,第三电机7的定子固定在起落架8上,转子固定在第三支架6上。更具体地,定位块9固定连接两个U型连接架8,第三电机7的定子通过螺栓或螺钉固定在定位块9上。第三支架6上固定设置有连接块11,内置穿孔的套筒10固定在连接块11上,套筒10上的穿孔与第三电机7的转子相适配,转子插接在该穿孔内并与穿孔过盈配合。可以理解,定子和转子的位置可以互换,同样能够实现转动目的。
在上述技术方案的基础上,为了增大摄像组件1拍摄过程中的稳定性能,第一支架2与摄像组件1的重心落在第一支架2的旋转轴X轴上。通过力学分析,当第一支架2与摄像组件1的重心落在第一支架2的旋转轴X轴上时,第一支架2转动至任意角度,均不会产生转动力矩,即第一支架2不会因为力矩而来回晃动,增加转动过程中的摄像组件1的稳定性;当无人飞行器平稳运行时,即无需电机驱动状况下,第一支架2和摄像组件1也处于动态平衡状态。
同样道理,为了增加稳定性能,避免绕Y轴旋转的整体组件产生转动力矩,作为优选方案,如图1所示,第一支架2、第二支架4与摄像组件1整体的重心落在第二支架4的旋转轴上。
同样,为了避免绕Z轴转动的整体组件产生转动力矩,如图2、图3所示,第一支架2、第二支架4、第三支架6与摄像组件1整体的重心落在第三支架6的旋转轴Z轴上。
作为优选,第一电机3、第二电机5、第三电机7以及第四电机均为直流无刷电机。无人飞行器用云台100采用直流无刷电机的好处在于:(1)电子换向来代替传统的机械换向,性能可靠、永无磨损、故障率低,寿命比有刷电机提高了约6倍;(2)属静态电机,空载电流小;(3)效率高;(4)体积小。
进一步的,传动组件还包括惯性传感器、微处理器以及信号线, 惯性传感器包括用于检测角速度信号的陀螺仪以及用于检测加速度信号的加速度计,微处理器根据角速度信号与加速度信号来控制第一电机 3 、第二电机 5 的启动、停止以及转速大小。通过设置惯性传感器来及时动态监测无人飞行器的姿态,并快速及时控制电机的启停, 从而提高摄像组件的拍摄稳定性。
在上述技术方案的基础上,作为优选,在上述小型 无人飞行器用三轴云台100的基础上进行结构改进,增加了摄像组件1的镜头的自转功能。此处需注意,摄像组件1不局限于图2或图3中所示的形状,摄像组件1可以为回转体形或其他形状。小型无人飞行器在飞行过程中,当摄像组件1的镜头转动至垂直于X轴与Y轴构成的平面时,第二支架4绕Y轴的左右转动只能带动摄像组件1的镜头在垂直面的一定范围内扫射,不能实现摄像组件1的镜头自身转动。为了使镜头转动至垂直于X轴与Y轴构成的平面时仍能够全方位调整镜头的角度,传动组件还包括第四电机,第四电机直接驱动摄像组件1绕其自转轴K轴转动。当K轴与Y轴平行或同轴时,第二支架4绕Y轴的转动能够实现摄像组件1的镜头的自转;当K轴垂直于Y轴时,摄像组件1的镜头通过第四电机实现自转。
此处需注意,实施例一和实施例二中提供的小型 无人飞行器用两轴云台、小型无人飞行器用三轴云台100可用于安装至直升机,也可以用于安装至多旋翼飞行器,例如:四桨、六桨或八桨等。图5、图6、图7为小型无人飞行器用三轴云台100安装至多旋翼飞行器的结构示意图,多旋翼飞行器包括多旋翼安装架200、惯性测量模块、GPS以及其他元器件。多旋翼安装架200包括基座21、固定设置在基座21上且均布的多个支撑臂22、以及设置在支撑臂22上的旋翼构件23。小型无人飞行器用三轴云台100的连接架8通过螺钉、铆钉、焊接等方式固定在基座21上,定位块9通过螺钉固定在连接架8上,第三电机7的定子固定在定位块9上。可以理解,定子和转子的位置可以互换,同样能够实现转动目的。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

  1. 一种小型无人飞行器用两轴云台,包括机架组件、传动组件以及摄像组件(1),其特征在于:
    所述机架组件包括第一支架(2)、第二支架(4)以及第三支架(6),所述摄像组件(1)固定在所述第一支架(2)上,所述第一支架(2)与所述第二支架(4)转动设置,所述第二支架(4)与所述第三支架(6)转动设置;
    所述传动组件包括第一电机(3)以及第二电机(5),所述第一电机(3)直接驱动所述第一支架(2)相对所述第二支架(4)转动,所述第二电机(5)直接驱动所述第二支架(4)相对所述第三支架(6)转动。
  2. 根据权利要求1所述的小型无人飞行器用两轴云台,其特征在于,所述第一支架(2)的旋转轴X轴与所述第二支架(4)的旋转轴Y轴垂直设置。
  3. 根据权利要求1所述的小型无人飞行器用两轴云台,其特征在于,所述第一电机(3)的定子固定在所述第一支架(2)上,所述第一电机(3)的转子与所述第二支架(4)固定设置;
    或者,所述第一电机(3)的转子固定在所述第一支架(2)上,所述第一电机(3)的定子与所述第二支架(4)固定设置。
  4. 根据权利要求1所述的小型无人飞行器用两轴云台,其特征在于,所述第二电机(5)的定子固定在所述第三支架(6)上,所述第二电机(5)的转子与所述第二支架(4)固定设置;
    或者,所述第二电机(5)的转子固定在所述第三支架(6)上,所述第二电机(5)的定子与所述第二支架(4)固定设置。
  5. 根据权利要求1所述的小型无人飞行器用两轴云台,其特征在于,所述第一支架(2)与所述摄像组件(1)的重心落在所述第一支架(2)的旋转轴X轴上。
  6. 根据权利要求1所述的小型无人飞行器用两轴云台,其特征在于,所述第一支架(2)、所述第二支架(4)与所述摄像组件(1)整体的重心落在所述第二支架(4)的旋转轴Y轴上。
  7. 一种小型 无人飞行器用三轴云台,包括如权利要求1-6任一项所述的小型无人飞行器用两轴云台,其特征在于:所述传动组件还包括第三电机(7),所述机架组件还包括用于对外固定的连接架(8),所述第三电机(7)直接驱动所述第三支架(6)相对所述连接架(8)转动。
  8. 根据权利要求7所述的小型 无人飞行器用三轴云台,其特征在于,所述第三电机(7)的定子固定在所述连接架(8)上,所述第三电机(7)的转子固定连接所述第三支架(6)上;
    或者,所述第三电机(7)的转子固定在所述连接架(8)上,所述第三电机(7)的定子固定连接所述第三支架(6)上。
  9. 根据权利要求8所述的小型无人飞行器用三轴云台,其特征在于,所述第一支架(2)、所述第二支架(4)、所述第三支架(6)与所述摄像组件(1)整体的重心落在所述第三支架(6)的旋转轴Z轴上。
  10. 根据权利要求9所述的小型无人飞行器用三轴云台,其特征在于,所述传动组件包括第四电机,所述第四电机驱动所述摄像组件(1)绕其自转轴转动。
PCT/CN2011/079704 2011-09-09 2011-09-15 小型无人飞行器用两轴云台及小型无人飞行器用三轴云台 WO2013033925A1 (zh)

Priority Applications (15)

Application Number Priority Date Filing Date Title
RU2014113934/11A RU2589534C2 (ru) 2011-09-09 2011-09-15 Платформа для использования в малоразмерных беспилотных летательных аппаратах
KR1020147009447A KR101762489B1 (ko) 2011-09-09 2011-09-15 소형 무인 항공기에 사용하기 위한 2축 플랫폼 및 소형 무인 항공기에 사용하기 위한 3축 플랫폼
MX2014002732A MX344931B (es) 2011-09-09 2011-09-15 Plataforma de doble eje para su uso en un pequeño vehículo aéreo no tripulado y plataforma de triple eje para su uso en un pequeño vehículo aéreo no tripulado.
KR1020177020283A KR101833331B1 (ko) 2011-09-09 2011-09-15 소형 무인 항공기에 사용하기 위한 2축 플랫폼 및 소형 무인 항공기에 사용하기 위한 3축 플랫폼
CA2848223A CA2848223A1 (en) 2011-09-09 2011-09-15 Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle
EP11872105.9A EP2759480B1 (en) 2011-09-09 2011-09-15 Dual-axis ball head for use in small unmanned aerial vehicle and triple-axis ball head for use in small unmanned aerial vehicle
BR112014005381A BR112014005381A2 (pt) 2011-09-09 2011-09-15 plataforma de eixo duplo para uso em um pequeno veículo aéreo não tripulado e plataforma de eixo triplo para uso em um pequeno veículo aéreo não tripulado
JP2014528829A JP6389121B2 (ja) 2011-09-09 2011-09-15 小型無人航空機に使用するための3軸架台
AU2011376583A AU2011376583B2 (en) 2011-09-09 2011-09-15 Dual-axis platform for use in small unmanned aerial vehicle and tri-axis platform for use in small unmanned aerial vehicle
EP21151317.1A EP3828086A1 (en) 2011-09-09 2011-09-15 Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle
EP19169577.4A EP3549872B1 (en) 2011-09-09 2011-09-15 Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle
US14/045,606 US8938160B2 (en) 2011-09-09 2013-10-03 Stabilizing platform
US14/564,016 US9648240B2 (en) 2011-09-09 2014-12-08 Stabilizing platform
US15/487,172 US10321060B2 (en) 2011-09-09 2017-04-13 Stabilizing platform
US16/392,868 US11140322B2 (en) 2011-09-09 2019-04-24 Stabilizing platform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110268339 2011-09-09
CN201110268339.6 2011-09-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079703 Continuation-In-Part WO2013033924A1 (zh) 2011-09-09 2011-09-15 无人机用两轴云台、无人机用三轴云台以及多旋翼飞行器

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2011/079703 Continuation-In-Part WO2013033924A1 (zh) 2011-09-09 2011-09-15 无人机用两轴云台、无人机用三轴云台以及多旋翼飞行器
PCT/CN2011/082462 Continuation-In-Part WO2013033954A1 (zh) 2011-09-09 2011-11-18 陀螺式动态自平衡云台

Publications (1)

Publication Number Publication Date
WO2013033925A1 true WO2013033925A1 (zh) 2013-03-14

Family

ID=46667300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079704 WO2013033925A1 (zh) 2011-09-09 2011-09-15 小型无人飞行器用两轴云台及小型无人飞行器用三轴云台

Country Status (10)

Country Link
EP (3) EP3828086A1 (zh)
JP (1) JP6389121B2 (zh)
KR (2) KR101833331B1 (zh)
CN (2) CN102996984B (zh)
AU (1) AU2011376583B2 (zh)
BR (1) BR112014005381A2 (zh)
CA (1) CA2848223A1 (zh)
MX (1) MX344931B (zh)
RU (1) RU2589534C2 (zh)
WO (1) WO2013033925A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549380B1 (ko) * 2013-11-11 2015-09-02 성현엠엔티(주) 항공촬영용 카메라 고정장치
KR101574601B1 (ko) * 2014-03-31 2015-12-04 세종대학교산학협력단 비전센서가 결합된 다중회전익 무인비행체 및 다중회전익 무인비행체의 자율비행 제어방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
CN105217051A (zh) * 2015-10-29 2016-01-06 中国科学院遥感与数字地球研究所 无人机单相机多角度拍摄支撑装置
CN105292509A (zh) * 2015-10-29 2016-02-03 中国科学院遥感与数字地球研究所 无人机双相机多角度拍摄支撑装置
CN106114878A (zh) * 2016-06-30 2016-11-16 张春生 一种船载无人机语音互动装置
EP3450814A1 (en) * 2014-07-07 2019-03-06 SZ DJI Osmo Technology Co., Ltd. A quick gimbal connector and an aerial vehicle
CN110001986A (zh) * 2019-04-24 2019-07-12 太原科技大学 一种基于舵机传动的双轴云台
US10447912B2 (en) 2015-10-20 2019-10-15 SZ DJI Technology Co., Ltd. Systems, methods, and devices for setting camera parameters
CN111824439A (zh) * 2020-07-24 2020-10-27 浙江点辰航空科技有限公司 一种无人机支架

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013033954A1 (zh) 2011-09-09 2013-03-14 深圳市大疆创新科技有限公司 陀螺式动态自平衡云台
CA2848223A1 (en) * 2011-09-09 2013-03-14 SZ DJI Technology Co., Ltd Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle
CN103388730A (zh) * 2013-07-08 2013-11-13 张伯文 陀螺与重力双稳定云台
US8903568B1 (en) 2013-07-31 2014-12-02 SZ DJI Technology Co., Ltd Remote control method and terminal
CN103471472B (zh) * 2013-08-30 2015-09-16 昂海松 一种发射微型火箭推进特种弹的空中反恐装置
CN103470925B (zh) * 2013-09-04 2015-07-08 中国科学院深圳先进技术研究院 自动控制空间转动装置
CN103472859A (zh) * 2013-09-17 2013-12-25 梁辛 手持拍摄校准方法及手持拍摄电子辅助仪
WO2015051501A1 (en) 2013-10-08 2015-04-16 SZ DJI Technology Co., Ltd Apparatus and methods for stabilization and vibration reduction
CN103576427B (zh) * 2013-11-05 2017-02-08 易瓦特科技股份公司 一种三轴式云台
CN103672338B (zh) * 2014-01-04 2015-07-01 周玉红 一种扫描电眼固定装置
LT6222B (lt) 2014-02-05 2015-10-26 My Research, Uab Stabilizuojama platforma videokamerai
CN103984193B (zh) * 2014-03-14 2020-10-16 广州虹天航空科技有限公司 拍摄设备稳定器及其控制方法
CN112432038A (zh) 2014-04-28 2021-03-02 深圳市大疆创新科技有限公司 手持式平台
ES2720299T3 (es) 2014-04-30 2019-07-19 Sz Dji Osmo Technology Co Ltd Aparato de control, cabezal de soporte que usa el mismo, y método de control de cabezal de soporte
CN109458529B (zh) * 2014-04-30 2021-08-20 深圳市大疆灵眸科技有限公司 控制装置、及其应用的云台以及控制云台的方法
US10347423B2 (en) 2014-05-12 2019-07-09 Capacitor Sciences Incorporated Solid multilayer structure as semiproduct for meta-capacitor
SG11201609435WA (en) 2014-05-12 2016-12-29 Capacitor Sciences Inc Energy storage device and method of production thereof
US10340082B2 (en) 2015-05-12 2019-07-02 Capacitor Sciences Incorporated Capacitor and method of production thereof
JP6219543B2 (ja) 2014-06-27 2017-10-25 エスゼット ディージェイアイ オスモ テクノロジー カンパニー リミテッドSZ DJI Osmo Technology Co., Ltd. 雲台
CN105782661B (zh) * 2014-06-27 2017-11-21 深圳市大疆灵眸科技有限公司 云台
WO2016000194A1 (zh) * 2014-06-30 2016-01-07 深圳市大疆创新科技有限公司 一种摄像控制方法、装置及云台设备
CN104390110A (zh) * 2014-11-04 2015-03-04 南京航空航天大学 三轴动态自稳云台及工作方法
JP6668341B2 (ja) 2014-11-04 2020-03-18 キャパシタ サイエンシス インコーポレイテッド エネルギー蓄積デバイスおよびその製造方法
DE102014016987A1 (de) * 2014-11-18 2016-05-19 Mark Fellinger Vorrichtung zur beweglichen Halterung einer Kamera
KR101684364B1 (ko) * 2015-01-09 2016-12-21 주식회사 대한항공 무인항공기 명령과 자세정보를 이용한 임무장비 안정화 방법
FR3032052B1 (fr) * 2015-01-26 2017-03-10 Parrot Drone muni d'une camera video et de moyens de compensation des artefacts produits aux angles de roulis les plus importants
CN104627361B (zh) * 2015-02-05 2018-01-05 深圳雷柏科技股份有限公司 一种模块化无人飞行器
MX2017010875A (es) 2015-02-26 2017-12-15 Capacitor Sciences Inc Capacitor autorregenerante y métodos de producción del mismo.
CN105042299B (zh) * 2015-04-22 2017-05-31 零度智控(北京)智能科技有限公司 无人飞行器机载云台
CN105894607B (zh) * 2015-04-30 2018-09-07 睿驰智能汽车(广州)有限公司 行车记录装置及利用行车记录装置的调整控制方法
WO2016183734A1 (zh) * 2015-05-15 2016-11-24 深圳市大疆创新科技有限公司 云台
KR102397946B1 (ko) * 2015-05-15 2022-05-13 삼성전자주식회사 촬상 장치, 이를 채용한 원격 제어 비행체 및 촬상 장치의 자세 제어 방법
JP6261090B2 (ja) * 2015-05-18 2018-01-17 株式会社amuse oneself 無人飛行体
US9932358B2 (en) 2015-05-21 2018-04-03 Capacitor Science Incorporated Energy storage molecular material, crystal dielectric layer and capacitor
CN104914864B (zh) * 2015-05-22 2018-06-08 深圳市大疆灵眸科技有限公司 一种移动装置、移动装置控制系统及控制方法
CN107735317B (zh) 2015-06-01 2021-01-08 深圳市大疆创新科技有限公司 具有气压传感器的uav和在uav内隔离安置气压传感器的方法
US9941051B2 (en) 2015-06-26 2018-04-10 Capactor Sciences Incorporated Coiled capacitor
CN105045018B (zh) * 2015-07-30 2017-09-01 极翼机器人(上海)有限公司 云台
CN111578081A (zh) * 2015-09-06 2020-08-25 深圳市大疆灵眸科技有限公司 云台、遥控车辆及遥控运载系统
KR101715637B1 (ko) 2015-09-24 2017-03-14 대한민국(미래창조과학부 국립전파연구원장) 드론에 탑재된 전파 수집 유닛의 모션 제어 기구
JP2017067878A (ja) * 2015-09-29 2017-04-06 日本電産サンキョー株式会社 撮像装置
US10026553B2 (en) 2015-10-21 2018-07-17 Capacitor Sciences Incorporated Organic compound, crystal dielectric layer and capacitor
KR20170050924A (ko) 2015-11-02 2017-05-11 삼성전자주식회사 3축 조정 소형 짐벌
KR102510389B1 (ko) * 2015-12-09 2023-03-15 삼성전자주식회사 소형 카메라 짐벌 및 이를 구비한 전자 장치
EP3396225B1 (en) 2015-12-23 2020-07-15 SZ DJI Osmo Technology Co., Ltd. Support mechanism, adjusting apparatus and pan tilt head for use with same
CN105599914A (zh) * 2016-01-05 2016-05-25 零度智控(北京)智能科技有限公司 一种云台
CN105667818A (zh) * 2016-01-05 2016-06-15 零度智控(北京)智能科技有限公司 一种云台
CN114435611A (zh) 2016-01-26 2022-05-06 深圳市大疆创新科技有限公司 增稳平台
US10305295B2 (en) 2016-02-12 2019-05-28 Capacitor Sciences Incorporated Energy storage cell, capacitive energy storage module, and capacitive energy storage system
KR20170105334A (ko) * 2016-03-09 2017-09-19 엘지전자 주식회사 카메라 모듈
US9978517B2 (en) 2016-04-04 2018-05-22 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US10153087B2 (en) 2016-04-04 2018-12-11 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
WO2017183637A1 (ja) * 2016-04-19 2017-10-26 インダストリーネットワーク株式会社 ドローン飛行体
CN105831908A (zh) * 2016-05-06 2016-08-10 苏州市职业大学 一种带自拍架的登山杖
CN105882994B (zh) * 2016-05-26 2018-08-17 南京奇蛙智能科技有限公司 一种全景相机三轴云台
CN107438807B (zh) * 2016-06-17 2021-05-18 深圳市大疆灵眸科技有限公司 固持装置控制方法、固持装置、手持云台及无人机
CN107577103A (zh) * 2016-07-05 2018-01-12 深圳市红狐狸智能科技有限公司 一种自带两轴增稳的微型镜头模组
KR102514566B1 (ko) 2016-08-23 2023-03-27 삼성전자주식회사 전자 장치 및 그의 동작 방법
CN107237971A (zh) * 2016-10-28 2017-10-10 深圳市科卫泰实业发展有限公司 基于陀螺仪姿态检测的船载自稳云台
CN106444859B (zh) * 2016-11-10 2019-07-26 广州市景沃电子有限公司 一种横滚角运动隔离的单轴稳定云台及控制方法
JP2018083604A (ja) * 2016-11-25 2018-05-31 計二 馬場 小型無人航空機の墜落に伴なう事故防止装置
US10395841B2 (en) 2016-12-02 2019-08-27 Capacitor Sciences Incorporated Multilayered electrode and film energy storage device
CN206561952U (zh) * 2017-01-23 2017-10-17 深圳市道通智能航空技术有限公司 飞行器及其云台限位装置
IT201700013381A1 (it) * 2017-02-08 2018-08-08 Cartoni S P A Sistema per il supporto di camera da ripresa.
IT201700026182A1 (it) * 2017-03-09 2018-09-09 Topview S R L Start Up Innovativa Aeromobile drone
CN107089324A (zh) * 2017-04-26 2017-08-25 浙江点辰航空科技有限公司 一种无人机的翼桨连接结构
CN107089320A (zh) * 2017-04-26 2017-08-25 浙江点辰航空科技有限公司 一种自适应翼桨一体化无人机
KR102358694B1 (ko) * 2017-05-17 2022-02-07 엘지이노텍 주식회사 짐벌 장치 및 비행 장치
KR102411140B1 (ko) * 2017-06-13 2022-06-21 엘지이노텍 주식회사 짐벌 장치 및 비행 장치
CN107226214B (zh) * 2017-06-26 2023-04-07 中国电建集团成都勘测设计研究院有限公司 一种无人机上全景相机安装结构
CN107235156B (zh) * 2017-06-26 2023-07-25 中国电建集团成都勘测设计研究院有限公司 可收放和连续调节的无人机全景视频采集相机安装结构
CN107585320A (zh) * 2017-10-31 2018-01-16 深圳市中航佳智能科技有限公司 一种云台装置及无人机
JP6649342B2 (ja) * 2017-11-09 2020-02-19 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機、及び無人航空機で慣性計測ユニットを分離する方法
CN107932524A (zh) * 2017-11-30 2018-04-20 北京理工大学 一种消除重力扭矩的三自由度仿生眼颈部机构
KR102490560B1 (ko) 2018-01-16 2023-01-19 엘지이노텍 주식회사 비행체에 장착되는 3축 회전 장치
WO2019183799A1 (zh) * 2018-03-27 2019-10-03 深圳市大疆创新科技有限公司 控制模块及手持设备
WO2019205125A1 (zh) * 2018-04-28 2019-10-31 深圳市大疆创新科技有限公司 增稳装置和手持云台装置
CN110352315B (zh) * 2018-05-30 2021-03-02 深圳市大疆创新科技有限公司 云台、手持云台和手持拍摄装置
CN108725817A (zh) * 2018-06-05 2018-11-02 广东工业大学 一种具有防抖功能的四轴无人机
CN108513106A (zh) * 2018-06-07 2018-09-07 广州鼎飞科技有限公司 一种动物视频追踪仪及系统
CN108953905A (zh) * 2018-09-25 2018-12-07 哈尔滨理工大学 一种双目视觉相机支撑结构及其位姿调整方法
CN111656298A (zh) * 2018-09-30 2020-09-11 深圳市大疆创新科技有限公司 云台的控制方法、云台、可移动平台及可读存储介质
DE102018009279B3 (de) 2018-11-23 2019-12-19 Mark Fellinger Vorrichtung zur Halterung einer Kamera oder anderer Bauteile
DE102018009606B3 (de) 2018-12-06 2019-12-24 Mark Fellinger Vorrichtung zur Halterung eines Kamerasystems an bewegten Objekten
CN109668032B (zh) * 2018-12-21 2021-06-15 东北农业大学 一种摄像头防抖动数据采集装置
CN109714537B (zh) * 2019-01-24 2021-05-14 黄河科技学院 基于计算机的数字图像处理平台
KR102161771B1 (ko) * 2019-05-14 2020-10-05 경북대학교 산학협력단 무인항공비행체
CN111959802A (zh) * 2019-05-20 2020-11-20 辽宁巨维建设工程有限公司 一种多角度可变式三维建模云台
KR102287049B1 (ko) 2020-01-22 2021-08-06 성균관대학교산학협력단 추력전환장치 및 이를 포함하는 무인비행체
DE202021001556U1 (de) 2021-04-28 2021-07-23 Marc Fellinger Vorrichtung zur Halterung eines Kamerasystems
CN114413135A (zh) * 2022-03-01 2022-04-29 河南传知智能科技有限公司 一种用于手机拍摄360度全景图片的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242128A (ja) * 2003-02-07 2004-08-26 Nippon Hoso Kyokai <Nhk> 空中撮影用カメラ雲台
CN101093733A (zh) * 2007-07-05 2007-12-26 浙江大学 一种以航模直升机为载体的两自由度航拍云台
JP2009023379A (ja) * 2007-07-17 2009-02-05 Kaoru Hattori 空中撮影装置
CN201287830Y (zh) * 2008-10-14 2009-08-12 西安展翼航空科技有限公司 航拍摄像机用稳定支架
CN101734377A (zh) * 2009-12-15 2010-06-16 深圳市大疆创新科技有限公司 三自由度惯性稳定航拍云台

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085354A (en) * 1957-01-31 1963-04-16 Westinghouse Electric Corp Multi-gimbal flight simulator
US4752791A (en) * 1987-07-28 1988-06-21 Allred Charles N Camera mount
JP2620560B2 (ja) * 1989-01-12 1997-06-18 多摩川精機株式会社 撮像部用ジンバル機構
JPH0678182A (ja) * 1992-08-26 1994-03-18 Japan Aviation Electron Ind Ltd 安定化雲台サーボループ回路
US5900925A (en) * 1997-05-09 1999-05-04 Service Vision, S.A. Computer assisted camera control system
US5954310A (en) * 1997-10-03 1999-09-21 Autonomous Effects, Inc. Apparatus and method for positioning a payload about multiple axes
US5897223A (en) * 1997-11-17 1999-04-27 Wescam Inc. Stabilized platform system for camera
JP3820035B2 (ja) * 1998-09-01 2006-09-13 日本サーボ株式会社 スリップリング組立体を内蔵した直接駆動電動機装置
JP2001235793A (ja) * 2000-02-22 2001-08-31 Diamond Air Service Kk 3軸駆動撮影装置
FR2824393B1 (fr) * 2001-05-03 2003-07-25 Sagem Procede et dispositif de navigation longue duree
JP2002344784A (ja) * 2001-05-18 2002-11-29 Sony Corp ビデオカメラ装置
US6939061B2 (en) * 2002-01-31 2005-09-06 Alps Electric Co., Ltd. Turntable device and optical apparatus
DE10208413B4 (de) * 2002-02-27 2004-01-29 Georg Thoma Schwenkbarer Stativkopf für eine Kamera
JP2004112553A (ja) * 2002-09-20 2004-04-08 Victor Co Of Japan Ltd 撮像装置の支持装置
JP4284496B2 (ja) * 2003-01-14 2009-06-24 多摩川精機株式会社 空間安定装置
US7000883B2 (en) * 2003-01-17 2006-02-21 The Insitu Group, Inc. Method and apparatus for stabilizing payloads, including airborne cameras
JP2005234230A (ja) * 2004-02-19 2005-09-02 Canon Inc 雲台装置
US8453987B2 (en) * 2004-06-30 2013-06-04 Robotzone, Llc Pan and tilt systems
JP4532318B2 (ja) * 2005-03-25 2010-08-25 ヤマハ発動機株式会社 無人ヘリコプタ
US7292319B1 (en) * 2005-05-24 2007-11-06 Lockheed Martin Corp. Optical tracking device employing a three-axis gimbal
JP2007096493A (ja) * 2005-09-27 2007-04-12 Canon Inc 撮影装置
JP2007183356A (ja) * 2006-01-05 2007-07-19 Casio Comput Co Ltd 防振装置
JP2008022120A (ja) * 2006-07-11 2008-01-31 Elmo Co Ltd 撮像装置
CN201002722Y (zh) * 2007-01-25 2008-01-09 仝昊天 飞行器二自由度稳像云台
CN201060679Y (zh) * 2007-07-05 2008-05-14 浙江大学 以航模直升机为载体的两自由度航拍云台
RU2369535C1 (ru) * 2008-02-28 2009-10-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ оптимизации динамических условий функционирования гравитационно-чувствительных установок в условиях остаточных микроускорений на борту орбитальных космических аппаратов и устройство для его реализации
JP2010039350A (ja) * 2008-08-07 2010-02-18 Tamagawa Seiki Co Ltd 空間安定装置の重量バランス調整構造
DE102008039468A1 (de) * 2008-08-25 2010-03-04 Stefan Reich Vorrichtung und Verfahren zur Lagestabilisierung von Kameras
CN102095060A (zh) * 2009-12-09 2011-06-15 天津天地伟业数码科技有限公司 重载云台的机芯结构
CN201604796U (zh) * 2010-03-23 2010-10-13 贵阳帝三数字技术有限公司 智能航拍无人飞行器
KR101042200B1 (ko) * 2010-09-02 2011-06-16 드림스페이스월드주식회사 Pcb를 사용한 무인 비행체
CA2848223A1 (en) * 2011-09-09 2013-03-14 SZ DJI Technology Co., Ltd Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242128A (ja) * 2003-02-07 2004-08-26 Nippon Hoso Kyokai <Nhk> 空中撮影用カメラ雲台
CN101093733A (zh) * 2007-07-05 2007-12-26 浙江大学 一种以航模直升机为载体的两自由度航拍云台
JP2009023379A (ja) * 2007-07-17 2009-02-05 Kaoru Hattori 空中撮影装置
CN201287830Y (zh) * 2008-10-14 2009-08-12 西安展翼航空科技有限公司 航拍摄像机用稳定支架
CN101734377A (zh) * 2009-12-15 2010-06-16 深圳市大疆创新科技有限公司 三自由度惯性稳定航拍云台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2759480A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549380B1 (ko) * 2013-11-11 2015-09-02 성현엠엔티(주) 항공촬영용 카메라 고정장치
KR101574601B1 (ko) * 2014-03-31 2015-12-04 세종대학교산학협력단 비전센서가 결합된 다중회전익 무인비행체 및 다중회전익 무인비행체의 자율비행 제어방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
EP3450814A1 (en) * 2014-07-07 2019-03-06 SZ DJI Osmo Technology Co., Ltd. A quick gimbal connector and an aerial vehicle
US10447912B2 (en) 2015-10-20 2019-10-15 SZ DJI Technology Co., Ltd. Systems, methods, and devices for setting camera parameters
CN105217051A (zh) * 2015-10-29 2016-01-06 中国科学院遥感与数字地球研究所 无人机单相机多角度拍摄支撑装置
CN105292509A (zh) * 2015-10-29 2016-02-03 中国科学院遥感与数字地球研究所 无人机双相机多角度拍摄支撑装置
CN106114878A (zh) * 2016-06-30 2016-11-16 张春生 一种船载无人机语音互动装置
CN110001986A (zh) * 2019-04-24 2019-07-12 太原科技大学 一种基于舵机传动的双轴云台
CN111824439A (zh) * 2020-07-24 2020-10-27 浙江点辰航空科技有限公司 一种无人机支架

Also Published As

Publication number Publication date
JP2014528868A (ja) 2014-10-30
KR20140082695A (ko) 2014-07-02
BR112014005381A2 (pt) 2017-03-28
EP2759480A1 (en) 2014-07-30
CN202392374U (zh) 2012-08-22
MX2014002732A (es) 2014-08-01
CN102996984A (zh) 2013-03-27
CA2848223A1 (en) 2013-03-14
AU2011376583A1 (en) 2014-04-24
KR101833331B1 (ko) 2018-02-28
EP3828086A1 (en) 2021-06-02
AU2011376583B2 (en) 2016-11-17
EP3549872B1 (en) 2021-02-24
EP3549872A1 (en) 2019-10-09
CN102996984B (zh) 2017-02-08
KR20170087535A (ko) 2017-07-28
JP6389121B2 (ja) 2018-09-12
RU2589534C2 (ru) 2016-07-10
KR101762489B1 (ko) 2017-07-27
EP2759480A4 (en) 2015-06-24
MX344931B (es) 2017-01-11
RU2014113934A (ru) 2015-10-20
EP2759480B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2013033925A1 (zh) 小型无人飞行器用两轴云台及小型无人飞行器用三轴云台
WO2013033924A1 (zh) 无人机用两轴云台、无人机用三轴云台以及多旋翼飞行器
WO2013033954A1 (zh) 陀螺式动态自平衡云台
CN107585320A (zh) 一种云台装置及无人机
US11543738B2 (en) Camera stabilization system
CN207496957U (zh) 一种云台装置及无人机
KR20200017319A (ko) 가상현실용 카메라 짐벌
WO2017132982A1 (zh) 旋翼无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528829

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/002732

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: P223/2014

Country of ref document: AE

ENP Entry into the national phase

Ref document number: 2848223

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147009447

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2014113934

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011376583

Country of ref document: AU

Date of ref document: 20110915

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014005381

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014005381

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140307