RU2589534C2 - Платформа для использования в малоразмерных беспилотных летательных аппаратах - Google Patents

Платформа для использования в малоразмерных беспилотных летательных аппаратах Download PDF

Info

Publication number
RU2589534C2
RU2589534C2 RU2014113934/11A RU2014113934A RU2589534C2 RU 2589534 C2 RU2589534 C2 RU 2589534C2 RU 2014113934/11 A RU2014113934/11 A RU 2014113934/11A RU 2014113934 A RU2014113934 A RU 2014113934A RU 2589534 C2 RU2589534 C2 RU 2589534C2
Authority
RU
Russia
Prior art keywords
bracket
engine
axis
rotation
platform
Prior art date
Application number
RU2014113934/11A
Other languages
English (en)
Other versions
RU2014113934A (ru
Inventor
Тао ВАН
Original Assignee
ШЗ ДЦзИ ТЕКНОЛОДЖИ КО., ЛТД
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ШЗ ДЦзИ ТЕКНОЛОДЖИ КО., ЛТД filed Critical ШЗ ДЦзИ ТЕКНОЛОДЖИ КО., ЛТД
Publication of RU2014113934A publication Critical patent/RU2014113934A/ru
Application granted granted Critical
Publication of RU2589534C2 publication Critical patent/RU2589534C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Accessories Of Cameras (AREA)
  • Toys (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Studio Devices (AREA)
  • Aviation & Aerospace Engineering (AREA)

Abstract

Изобретение относится к области авиации, в частности к конструкциям подвесов аппаратуры на летательных аппаратах. Платформа для использования в малоразмерном беспилотном летательном аппарате содержит раму в сборе, трансмиссионный блок и съемочный блок (1). Рама содержит первую скобу (2), вторую скобу (4), третью скобу (6) и соединительную раму (8) для крепления снаружи. Съемочный блок (1) закреплен на первой скобе (2), первая скоба (2) поворотно соединена со второй скобой (4), вторая скоба (4) поворотно соединена с третьей скобой (6). Трансмиссионный блок содержит первый двигатель (3), который непосредственно соединен с первой скобой (2) и приводит ее в движение для поворота относительно второй скобы (4), второй двигатель (5), непосредственно соединенный со второй скобой (4) и приводящий ее в движение относительно третьей скобы (6), а третий двигатель (7) приводит в движение третью скобу (6) для поворота относительно соединительной рамы (8). Центр тяжести первой скобы (2), второй скобы (4), третьей скобы (6) и съемочного блока (1) в целом приходится на ось Z вращения третьей скобы (6). Достигается возможность повышения точности корректировки положения платформы. 7 з.п. ф-лы, 7 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Данное изобретение относится к области беспилотных летательных аппаратов, в частности к двухосным платформам для использования в малоразмерных беспилотных летательных аппаратах и трехосным платформам для использования в малоразмерных беспилотных летательных аппаратах с целью аэро(фото)съемки или воздушного наблюдения.
УРОВЕНЬ ТЕХНИКИ
Беспилотный летательный аппарат характеризуется малыми габаритами, легким весом, низкой себестоимостью, гибкостью эксплуатации и высокой безопасностью и может широко применяться в таких сферах деятельности как аэро(фото)съемка, воздушное наблюдение, поиск и спасение, а также исследование природных ресурсов. Так как беспилотный летательный аппарат испытывает негативные воздействия высокочастотной вибрации и низкочастотного дрожания, его необходимо оборудовать стабилизирующей платформой для аэро(фото)съемки, которая смещает видеокамеру или фотоаппарат для достижения устойчивости съемки. Стабилизирующие платформы для аэро(фото)съемки определяют изменения положения видеокамеры или фотоаппарата обыкновенно посредством электронного устройства и управляют обратной балансировкой управляющего двигателя для достижения стабилизации видеокамеры или фотоаппарата. На известном уровне техники большинство платформ применяют механический привод для достижения двухосного, трехосного или многоосного поворота видеокамеры или фотоаппарата. Так как у зубчатого привода всегда имеется некоторое запаздывание во время нахождения беспилотного летательного аппарата в различных положениях (как например, поворот, парящий полет, набор высоты, снижение или наклон), время срабатывания платформы является большим, управляющий двигатель медленно выполняет корректировку, поэтому видеокамере или фотоаппарату крайне сложно своевременно откорректировать угол наклона, чтобы адаптироваться к изменениям положения беспилотного летательного аппарата, что в результате влияет на качество изображения видеокамеры или фотоаппарата. В то же время платформа с зубчатым приводом не обладает высокой гибкостью работы, не может выполнять плавно изменяемую корректировку, поэтому точность корректировки не является высокой и не может устранить влияние низкочастотного дрожания или наклона корпуса ЛА, что крайне усложняет получение изображений высокого качества и достижение профессиональных целей.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В настоящем изобретении предложена платформа для использования в малоразмерном беспилотном летательном аппарате для решения технической проблемы, которая состоит в том, что платформа для использования в малоразмерном беспилотном летательном аппарате на известном уровне техники имеет долгое время срабатывания из-за использования зубчатого привода, не может своевременно адаптироваться к различным летным положениям беспилотного летательного аппарата и не может выполнять плавно изменяемую корректировку, из-за чего точность корректировки не является высокой.
Техническое решение, принятое в настоящем изобретении для решения технической проблемы, состоит в следующем: двухосная платформа для использования в малоразмерном беспилотном летательном аппарате сконструирована таким образом, что содержит: раму в сборе, трансмиссионный блок и съемочный блок. Рама в сборе содержит первую скобу, вторую скобу и третью скобу; съемочный блок закреплен на первой скобе; первая скоба свободно вращается вокруг второй скобы, а вторая скоба свободно вращается вокруг третьей скобы. Трансмиссионный блок содержит первый двигатель и второй двигатель, где первый двигатель приводит в движение первую скобу для поворота вокруг своей оси по отношению ко второй скобе, а второй двигатель приводит в движение вторую скобу для поворота вокруг своей оси по отношению к третьей скобе.
В соответствии с настоящим изобретением предпочтительно, чтобы в двухосной платформе для использования в малоразмерном беспилотном летательном аппарате ось вращения Х первой скобы располагалась перпендикулярно к оси вращения Y второй скобы.
В соответствии с настоящим изобретением предпочтительно, чтобы в двухосной платформе для использования в малоразмерном беспилотном летательном аппарате статор первого электродвигателя был закреплен на первой скобе, а ротор первого электродвигателя был закреплен на второй скобе.
В соответствии с настоящим изобретением предпочтительно, чтобы в двухосной платформе для использования в малоразмерном беспилотном летательном аппарате статор второго электродвигателя был закреплен на второй скобе, а ротор второго электродвигателя был закреплен на третьей скобе.
В соответствии с настоящим изобретением предпочтительно, чтобы в двухосной платформе для использования в малоразмерном беспилотном летательном аппарате центр тяжести первой скобы и съемочного блока приходился на ось вращения Х первой скобы.
В соответствии с настоящим изобретением предпочтительно, чтобы в двухосной платформе для использования в малоразмерном беспилотном летательном аппарате центр тяжести первой скобы, второй скобы и съемочного блока в совокупности приходился на ось вращения Y второй скобы.
В настоящем изобретении также предложена 3-осная платформа для использования в малоразмерном беспилотном летательном аппарате, содержащая в себя вышеупомянутую двухосную платформу для использования в малоразмерном беспилотном летательном аппарате, в которой трансмиссионный блок дополнительно содержит третий электродвигатель, рама в сборе дополнительно включает соединительную раму для крепления снаружи, а третий электродвигатель вращает третью скобу вокруг своей оси Z по отношению к соединительной раме.
В соответствии с настоящим изобретением предпочтительно, чтобы в 3-осной платформе для использования в малоразмерном беспилотном летательном аппарате статор третьего электродвигателя был закреплен на соединительной раме, а ротор третьего электродвигателя был закреплен на третьей скобе.
3-осная платформа для использования в малоразмерном беспилотном летательном аппарате, предпочтительно отличающаяся тем, что центр тяжести первой скобы, второй скобы, третьей скобы и съемочного блока в совокупности приходится на ось вращения Z третьей скобы.
В 3-осной платформе для использования в малоразмерном беспилотном летательном аппарате в соответствии с настоящим изобретением трансмиссионный блок дополнительно содержит четвертый электродвигатель, который вращает съемочный блок вокруг своей оси.
Настоящее изобретение имеет следующие преимущества: изменение положения съемочного блока при восходящем или нисходящем наклоне в вертикальной плоскости достигается посредством вращения первой скобы по отношению ко второй скобе; вращение самого съемочного блока достигается посредством наклонного вращения второй скобы влево или вправо по отношению к третьей скобе, круговая съемка съемочным блоком достигается посредством вращения третьей скобы по окружности; двигатели - источники двигательной энергии - напрямую соединены с рамой платформы, тем самым потребляя меньше энергии и экономя электрическую энергию. К тому же привод от электродвигателя позволяет достичь плавно изменяемой корректировки, т.к. двигатели имеют короткое время срабатывания и способны быстро приходить в движение и останавливаться, или оперативно корректировать величину скорости вращения для адаптации к различным летным положениям беспилотного летательного аппарата, тем самым улучшая устойчивость съемки съемочным блоком.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Настоящее изобретение будет описано далее со ссылкой на варианты осуществления и чертежи, на которых:
Фиг.1 представляет собой структурную схему 2-осной платформы в разобранном виде для использования в малоразмерном беспилотном летательном аппарате в соответствии с вариантом осуществления 1 настоящего изобретения.
Фиг.2 представляет собой структурную схему 3-осной платформы в разобранном виде для использования в малоразмерном беспилотном летательном аппарате в соответствии с вариантом осуществления 2 настоящего изобретения.
Фиг.3 представляет собой структурную схему 3-осной платформы в собранном виде №1 для использования в малоразмерном беспилотном летательном аппарате в соответствии с вариантом осуществления 2 настоящего изобретения.
Фиг.4 представляет собой структурную схему 3-осной платформы в собранном виде №2 для использования в малоразмерном беспилотном летательном аппарате в соответствии с вариантом осуществления 2 настоящего изобретения.
Фиг.5 представляет собой структурную схему 3-осной платформы в разобранном виде для использования в малоразмерном беспилотном летательном аппарате в соответствии с вариантом осуществления 2 настоящего изобретения, которая крепится к многовинтовой опорной раме.
Фиг.6 представляет собой структурную схему 3-осной платформы в собранном виде №1 для использования в малоразмерном беспилотном летательном аппарате в соответствии с вариантом осуществления 2 настоящего изобретения, которая крепится к многовинтовой опорной раме.
Фиг.7 представляет собой структурную схему 3-осной платформы в собранном виде №2 для использования в малоразмерном беспилотном летательном аппарате в соответствии с вариантом осуществления 2 настоящего изобретения, которая крепится к многовинтовой опорной раме.
Детальное описание предпочтительных вариантов осуществления
Конкретные варианты осуществления настоящего изобретения будут детально описаны со ссылкой на чертежи для лучшего понимания технических свойств, предметов и влияний настоящего изобретения.
Вариант осуществления 1
Как показано на фиг.1, в настоящем изобретении предложена 2-осная платформа для использования в малоразмерном беспилотном летательном аппарате, содержащая, в частности, раму в сборе, трансмиссионный блок и съемочный блок 1. Рама в сборе содержит первую скобу 2 и вторую скобу 4; съемочный блок 1 закреплен на первой скобе 2. В данном случае форма съемочного блока 1 не ограничивается прямоугольником, как показано на фиг.1, и может также быть круглой, или другой формы, которые встречаются на рынке. Для достижения вращения съемочного блока 1 вокруг оси X (т. е. оси вращения первой скобы 2), первая скоба 2 поворотно соединена со второй скобой 4 с помощью фиксатора на конце. Такая поворотная конструкция делает возможным восходящий или нисходящий поворот съемочного блока 1. Для адаптации к наклонному полету влево или вправо беспилотного летательного аппарата съемочный блок 1 осуществляет наклонный поворот вправо или влево соответственно для достижения стабилизации фото- или видеосъемки. Как показано на фиг.1, вторая скоба 4 вращается вокруг собственной оси Y, а также вторая скоба 4 поворачивается влево или вправо на определенный угол, чтобы таким образом повернуть первую скобу 2 и съемочный блок 1 в целом. Для приведения в движение первой скобы 2 и второй скобы 4 в настоящем конструктивном воплощении предложены электродвигатели в качестве источника двигательной энергии. Использование компактного электродвигателя с прямой передачей имеет следующие преимущества: (1) двигатель работает напрямую с меньшим энергопотреблением, тем самым экономя энергию и защищая окружающую среду; (2) двигатель имеет короткое время срабатывания и способен выполнять быструю и своевременную корректировку для адаптации к различным летным положениям беспилотного летательного аппарата, что улучшает устойчивость съемки съемочным блоком; (3) двигатель может достичь плавно изменяемой корректировки и равномерного изменения скорости, способен корректировать величину скорости постоянно и произвольно в допустимом диапазоне частот вращения, оказывает меньшее влияние на составные части механизмов, и обладает высокой прочностью. В частности, как показано на фиг.1, трансмиссионный блок содержит первый двигатель 3 и второй двигатель 5, где первый двигатель 3 непосредственно приводит в движение первую скобу 2, вращая ее вокруг собственной оси (т.е. оси X) по отношению ко второй скобе 4, а второй двигатель 5 непосредственно приводит в движение вторую скобу 4, вращая ее вокруг собственной оси (т.е. оси Y). Настоящий вариант реализации использует электродвигатели в качестве движущей силы, которые напрямую соединены с рамой платформы, тем самым потребляя меньше энергии и экономя электрическую энергию. К тому же привод от электродвигателя позволяет достичь плавно изменяемой корректировки, т.к. двигатели имеют короткое время срабатывания и способны быстро приходить в движение и останавливаться, или оперативно корректировать величину скорости вращения для адаптации к различным летным положениям беспилотного летательного аппарата, тем самым улучшая устойчивость съемки съемочным блоком.
Для обеспечения выполнения электродвигателями своевременного выравнивания углов поворота является предпочтительным, чтобы ось вращения X первой скобы 2 располагалась перпендикулярно к оси вращения Y второй скобы 4.
В частности, как показано на фиг.1, статор первого двигателя 3 закреплен на первой скобе 2, а ротор первого двигателя 3 закреплен на второй скобе 4. Первый двигатель 3 непосредственно приводит в движение вторую скобу 4 для вращения первой скобы 2 по отношению ко второй скобе 4. Здесь следует заметить, что статор и ротор первого двигателя 3 являются взаимозаменяемыми по расположению, т.е. ротор первого двигателя 3 может быть закреплен на первой скобе 2, а статор может быть закреплен на второй скобе 4, что позволяет также достичь функции относительного вращения.
Как показано на фиг.1, предпочтительно, чтобы статор второго двигателя 5 был закреплен на третьей скобе 6, а ротор второго двигателя 5 был закреплен на второй скобе 4. Второй двигатель 5 непосредственно приводит в движение вторую скобу 4 для вращения второй скобы 4 по отношению к третьей скобе 6. Здесь следует заметить, что статор и ротор второго двигателя 5 являются взаимозаменяемыми по расположению, т.е. ротор второго двигателя 5 может быть закреплен на третьей скобе 6, а статор может быть закреплен на второй скобе 4, что позволяет также достичь функции относительного вращения.
Во время полета беспилотного летательного аппарата, когда центральная ось объектива съемочного блока 1 поворачивается в положение, перпендикулярное плоскости, образуемой осью X и осью Y, поворот второй скобы 4 влево или вправо вокруг оси Y может приводить в движение объектив съемочного блока 1 для осмотра в определенном промежутке перпендикулярной плоскости и не позволяет достичь собственного вращения объектива съемочного блока 1. Для осуществления всенаправленного выравнивания угла объектива, когда объектив поворачивается в положение, перпендикулярное плоскости, образуемой осью X и осью Y, на основании вышеуказанного технического решения в качестве предпочтительного варианта реализации трансмиссионный блок содержит четвертый двигатель, который приводит в движение съемочный блок 1 для вращения его вокруг своей оси K. Когда ось K является параллельной или соосной оси Y, поворот второй скобы 4 вокруг оси Y позволяет достичь собственного вращения объектива съемочного блока 1; когда ось K является перпендикулярной оси Y, объектив съемочного блока 1 достигает собственного вращения посредством четвертого двигателя.
Кроме того, для улучшения устойчивости во время съемки съемочным блоком 1 центр тяжести первой скобы 2 и съемочного блока 1 приходится на ось вращения первой скобы 2. При помощи механического анализа было выявлено, что, когда центр тяжести первой скобы 2 и съемочного блока 1 приходится на ось вращения Х первой скобы 2, первая скоба 2 не создает момент вращения под любым углом поворота, т.е. первая скоба 2 не будет покачиваться из стороны в сторону из-за момента, поэтому устойчивость съемочного блока 1 во время поворота улучшается. Во время устойчивого полета беспилотного летательного аппарата, а именно, когда привод от электродвигателя не является необходимым, первая скоба 2 и съемочный блок 1 также находятся в динамически уравновешенном состоянии.
Также при помощи механического анализа было выявлено, что для улучшения устойчивости и предотвращения поворота всей конструкции вокруг оси Y из-за момента вращения предпочтительно, чтобы центр тяжести первой скобы 2, второй скобы 4 и съемочного блока 1 в совокупности приходился на ось вращения второй скобы 4, как показано на фиг.1.
На основании вышеуказанного технического решения является предпочтительным, чтобы платформа, предложенная настоящим вариантом реализации, была адаптирована для малоразмерного беспилотного летательного аппарата для аэро(фото)съемки и воздушного наблюдения, а первый двигатель 3, второй двигатель 5 и четвертый двигатель являлись предпочтительно бесщеточными электродвигателями постоянного тока. Преимущества использования бесщеточных электродвигателей постоянного тока в платформе, применяемой в беспилотном летательном аппарате, заключаются в следующем: (1) электронная коммутация, вместо обыкновенной механической коммутации, позволяет достичь надежности в работе, постоянной износостойкости, низкой частоты отказов и более долгого ресурса, который составляет в шесть раз больше, чем ресурс щеточного двигателя; (2) бесщеточный электродвигатель постоянного тока является статическим двигателем с небольшим холостым током; (3) высокий КПД; (4) небольшой размер.
Кроме того, трансмиссионный блок дополнительно содержит инерционный датчик, микропроцессор и сигнальную линию; инерционный датчик содержит гироскоп для приема сигнала угловой скорости и акселерометр для приема сигнала ускорения, микропроцессор управляет включением, выключением и величиной скорости вращения первого двигателя 3 и второго двигателя 5 в соответствии с сигналом угловой скорости и сигналом ускорения. Положения беспилотного летательного аппарата своевременно и динамично контролируются инерционным датчиком, а включение и выключение двигателей контролируется быстро и своевременно, что улучшает устойчивость съемки съемочным блоком.
На основе указанного выше технического решения 2-осная платформа для использования в беспилотном летательном аппарате может быть конструктивно усовершенствована, чтобы иметь возможность поворачиваться в любых других двух направлениях. Улучшенная платформа для использования в малоразмерном беспилотном летательном аппарате представляет собой 2-осную платформу, которая в частности, содержит раму в сборе, трансмиссионный блок и съемочный блок 1. Рама в сборе содержит первую скобу 2, третью скобу 6 и соединительную раму 8. Съемочный блок 1 закреплен на первой скобе 2, первая скоба 2 поворотно соединена с третьей скобой 6. Такая поворотная конструкция делает возможным восходящий или нисходящий поворот съемочного блока 1. Соединительная рама 8 снаружи закреплена на вертолете или многовинтовом летательном аппарате; третья скоба 6 вращается по кругу по отношению к соединительной раме 8, таким образом, вращая платформу в целом по кругу. Для приведения в движение первой скобы 2 и третьей скобы 6 в качестве источника энергии настоящим вариантом реализации предложен электродвигатель. Использование компактного электродвигателя с прямой передачей имеет следующие преимущества: (1) двигатель работает напрямую с меньшим энергопотреблением, тем самым экономя энергию и защищая окружающую среду; (2) двигатель имеет короткое время срабатывания и способен выполнять быструю и своевременную корректировку для адаптации к различным летным положениям беспилотного летательного аппарата, что улучшает устойчивость съемки съемочным блоком; (3) двигатель может достичь плавно изменяемой корректировки и равномерного изменения скорости, способен корректировать величину скорости постоянно и произвольно в допустимом диапазоне частот вращения, оказывает меньшее влияние на составные части механизмов и обладает высокой прочностью. В частности, трансмиссионный блок содержит первый двигатель 3 и третий двигатель 7, в котором первый двигатель 3 непосредственно приводит в движение первую скобу 2 для поворота вокруг своей оси (т.е. оси X) и тем самым осуществляя восходящий и нисходящий поворот объектива съемочного блока 1; третий двигатель 7 непосредственно приводит в движение третью скобу 6 для кругового вращения вокруг своей оси (т.е. оси Z), таким образом, приводя в движение съемочный блок 1 для выполнения круговой съемки вокруг оси Z.
Также 2-осная платформа для использования в беспилотном летательном аппарате может быть конструктивно усовершенствована для достижения одновременного наклонного вращения влево и вправо и кругового вращения съемочного блока 1. Улучшенная платформа содержит, в частности, раму в сборе, трансмиссионный блок и съемочный блок 1. Рама в сборе содержит вторую скобу 4 и третью скобу 6. Съемочный блок 1 закреплен на второй скобе 4, а вторая скоба 4 вращается вокруг оси Y на определенный угол. Вращение второй скобы 4 наклоняет съемочный блок 1 влево или вправо. Третья скоба 6 вращается по окружности вокруг своей оси (т.е. оси Z), приводя, таким образом, съемочный блок 1 в движение для осмотра и съемки по окружности. Трансмиссионный блок содержит второй двигатель 5 и третий двигатель 7, в котором второй двигатель 5 непосредственно приводит в движение вторую скобу 4 для поворота на определенный угол вокруг своей оси (т.е. оси Y) по отношению к третьей скобе 6, а третий двигатель 7 непосредственно приводит в движение третью скобу 6 для поворота по окружности вокруг своей оси (т.е. оси Z). Предпочтительно, чтобы ось вращения Y второй скобы 4 располагалась перпендикулярно к оси вращения Z третьей скобы 6. Рама механизма дополнительно содержит соединительную раму 8, а третья скоба 6 поворотно соединена с соединительной рамой 8. В частности, статор третьего двигателя 7 закреплен на соединительной раме 8, а его ротор жестко соединен с третьей скобой 6.
В указанном выше варианте реализации статор и ротор каждого из электродвигателей - первого 3, второго 5 и третьего 7 - являются взаимозаменяемыми по расположению, что может также способствовать вращению.
Вариант реализации 2
В предпочтительном варианте реализации, как показано на фиг.2, 3 и 4, в настоящем изобретении предложена платформа 100 для использования в беспилотном летательном аппарате. Такая платформа 100 представляет собой платформу, которая может вращаться в трех плоскостях и содержит, в частности, раму в сборе, трансмиссионный блок и съемочный блок 1. Как показано на фиг.2, рама в сборе содержит первую скобу 2, вторую скобу 4, третью скобу 6 и соединительную раму 8. Съемочный блок 1 закреплен на первой скобе 2. Для достижения вращения съемочного блока 1 вокруг оси X (т. е. оси вращения первой скобы 2), первая скоба 2 поворотно соединена со второй скобой 4. Такая поворотная конструкция делает возможным восходящий или нисходящий поворот съемочного блока 1. Для адаптации к наклонному полету влево или вправо беспилотного летательного аппарата съемочный блок 1 осуществляет наклонный поворот вправо или влево соответственно для достижения стабилизации фото- или видеосъемки. Как показано на фиг.2, вторая скоба 4 поворотно соединена с третьей скобой 6, а также вторая скоба 4 поворачивается влево или вправо, чтобы таким образом осуществлять вращение первой скобы 2 и съемочного блока 1 в целом. Чтобы сделать возможным вращение съемочного блока 1 по окружности для осуществления круговой съемки в пределах 360 градусов, соединительная рама 8 крепится снаружи к вертолету или многовинтовому летательному аппарату; третья скоба 6 может вращаться вокруг оси Z по отношению к соединительной раме 8. Для приведения в движение первой скобы 2, второй скобы 4 и третьей скобы 6 в настоящем конструктивном воплощении предложен электродвигатель в качестве источника двигательной энергии. Использование компактного электродвигателя с прямой передачей имеет следующие преимущества: (1) двигатель работает напрямую с меньшим энергопотреблением, тем самым экономя энергию и защищая окружающую среду; (2) двигатель имеет короткое время срабатывания и способен выполнять быструю и своевременную корректировку для адаптации к различным летным положениям беспилотного летательного аппарата, что улучшает устойчивость съемки съемочным блоком; (3) двигатель может достичь плавно изменяемой корректировки и равномерного изменения скорости, способен корректировать величину скорости постоянно и произвольно в допустимом диапазоне частот вращения, оказывает меньшее влияние на составные части механизмов и обладает высокой прочностью. В частности, как показано на фиг.2, 3 и 4, трансмиссионный блок содержит первый двигатель 3, второй двигатель 5 и третий двигатель 7, где первый двигатель 3 непосредственно приводит в движение первую скобу 2, вращая ее вокруг собственной оси X по отношению ко второй скобе 4, второй двигатель 5 непосредственно приводит в движение вторую скобу 4, вращая ее вокруг собственной оси Y по отношению к третьей скобе 6, и третий двигатель 7 непосредственно приводит в движение третью скобу 6, вращая ее по окружности вокруг собственной оси Z. Настоящий вариант реализации использует электродвигатели в качестве движущей силы, которые напрямую соединены с рамой платформы, тем самым потребляя меньше энергии и экономя электрическую энергию. К тому же привод от электродвигателя позволяет достичь плавно изменяемой корректировки, т.к. двигатели имеют короткое время срабатывания и способны быстро приходить в движение и останавливаться, или оперативно корректировать величину скорости вращения для адаптации к различным летным положениям беспилотных летательных аппаратов, тем самым улучшая устойчивость съемки съемочным блоком.
Является предпочтительным, чтобы ось вращения X первой скобы 2, ось вращения Y второй скобы 4 и ось вращения Z третьей скобы 6 располагались перпендикулярно друг к другу.
В частности, как показано на фиг.2, статор третьего двигателя 7 закреплен на шасси 8, а его ротор закреплен на третьей скобе 6. Более того, две U-образные соединительные рамки 8 жестко соединены позиционной вставкой 9, а статор третьего двигателя 7 крепится к позиционной вставке 9 с помощью болта или винта. Соединительная вставка 11 закреплена на третьей скобе 6, а муфта 10 со встроенным сквозным отверстием закреплена на соединительной вставке 11. Сквозное отверстие в муфте 10 совпадает с ротором третьего двигателя 7, ротор вставляется в сквозное отверстие. Следует понимать, что статор и ротор являются взаимозаменяемыми по расположению, что может также способствовать вращению.
На основе указанного выше технического решения для улучшения устойчивости съемочного блока 1 во время съемки центр тяжести первой скобы 2 и съемочного блока 1 приходится на ось вращения Х первой скобы 2. При помощи механического анализа было выявлено, что, когда центр тяжести первой скобы 2 и съемочного блока 1 приходится на ось вращения Х первой скобы 2, первая скоба 2 не создает момент вращения под любым углом поворота, т.е. первая скоба 2 не будет покачиваться из стороны в сторону из-за момента, поэтому устойчивость съемочного блока 1 во время поворота улучшается. Во время устойчивого полета беспилотного летательного аппарата, то есть, когда привод от электродвигателя не является необходимым, первая скоба 2 и съемочный блок 1 также находятся в динамически уравновешенном состоянии.
Также для улучшения устойчивости и предотвращения поворота всей конструкции вокруг оси Y из-за момента вращения предпочтительно, чтобы центр тяжести первой скобы 2, второй скобы 4 и съемочного блока 1 в целом приходился на ось вращения второй скобы 4, как показано на фиг.1.
Также для предотвращения поворота всей конструкции вокруг оси Z из-за момента вращения, центр тяжести первой скобы 2, второй скобы 4, третьей скобы 6 и съемочного блока 1 в целом приходится на ось вращения Z третьей скобы 6, как показано на фиг.2 и фиг.3.
Является предпочтительным, чтобы первый двигатель 3, второй двигатель 5, третий двигатель 7 и четвертый двигатель являлись бесщеточными электродвигателями постоянного тока. Преимущества использования бесщеточных электродвигателей постоянного тока в платформе 100, применяемой в беспилотном летательном аппарате, заключаются в следующем: (1) электронная коммутация, вместо обыкновенной механической коммутации, позволяет достичь надежности в работе, постоянной износостойкости, низкой частоты отказов и более долгого ресурса, который составляет в шесть раз больше, чем ресурс щеточного двигателя; (2) бесщеточный электродвигатель постоянного тока является статическим двигателем с небольшим холостым током; (3) высокий КПД; (4) небольшой размер.
Кроме того, трансмиссионный блок дополнительно содержит инерционный датчик, микропроцессор и сигнальную линию; инерционный датчик содержит гироскоп для приема сигнала угловой скорости и акселерометр для приема сигнала ускорения; микропроцессор управляет включением, выключением и величиной скорости вращения первого двигателя 3 и второго двигателя 5 в соответствии с сигналом угловой скорости и сигналом ускорения. Положения беспилотного летательного аппарата своевременно и динамично контролируются инерционным датчиком, а включение и выключение двигателей контролируется быстро и своевременно, что улучшает устойчивость съемки съемочным блоком.
На основании указанного выше технического решения рекомендуется улучшение конструкции на основе 3-осной платформы 100 для использования в беспилотном летательном аппарате для дополнительной функции собственного вращения объектива съемочного блока 1. Здесь следует отметить, что форма съемочного блока 1 не ограничивается формой, указанной на фиг.2 или фиг.3, и что съемочный блок 1 может также быть в форме вращающегося тела или других фигур. Во время полета беспилотного летательного аппарата, когда центральная ось объектива съемочного блока 1 поворачивается в положение, перпендикулярное плоскости, образуемой осью X и осью Y, поворот второй скобы 4 влево или вправо вокруг оси Y может двигать объектив съемочного блока 1 для осмотра в определенном промежутке перпендикулярной плоскости и не может достичь собственного вращения объектива съемочного блока 1. Для осуществления всенаправленного выравнивания угла объектива, когда объектив поворачивается в положение, перпендикулярное плоскости, образуемой осью X и осью Y, трансмиссионный блок дополнительно содержит четвертый двигатель, который непосредственно приводит в движение съемочный блок 1 для вращения вокруг своей собственной оси K. Когда ось K является параллельной или соосной оси Y, поворот второй скобы 4 вокруг оси Y позволяет достичь собственного вращения объектива съемочного блока 1; когда ось K является перпендикулярной оси Y, объектив съемочного блока 1 достигает собственного вращения посредством четвертого двигателя.
Следует заметить, что 2-осная платформа для использования в малоразмерном беспилотном летательном аппарате и 3-осная платформа 100 для использования в малоразмерном беспилотном летательном аппарате, предложенные в первом и втором вариантах реализации, могут устанавливаться на вертолет или на многовинтовой летательный аппарат, например летательный аппарат с четырьмя, шестью или восемью лопастями. Фиг.5, 6 и 7 - это структурная схема 3-осной платформы 100 для использования в малоразмерном беспилотном летательном аппарате, которая крепится к многовинтовому летательному аппарату. Многовинтовой летательный аппарат включает многовинтовую опорную раму 200, инерциальный измерительный модуль, GPS и другие элементы. Многовинтовая опорная рама 200 включает основание 21, несколько опорных рычагов 22, неподвижно закрепленных и равномерно распределенных на основании 21, и роторы 23, расположенные на опорных рычагах 22. Соединительная рама 8 3-осной платформы 100 для использования в малоразмерном беспилотном летательном аппарате прикреплена к основанию 21 с помощью винтов, клепок или сварки, позиционная вставка 9 прикреплена к соединительной раме 8 при помощи винта, а статор третьего двигателя 7 прикреплен к позиционной вставке 9. Следует понимать, что статор и ротор являются взаимозаменяемыми по расположению, что может также способствовать вращению.
Варианты реализации настоящего изобретения были описаны выше со ссылкой на чертежи. Тем не менее настоящее изобретение не ограничивается приведенными выше вариантами. Конкретные варианты, приведенные выше, являются скорее иллюстративными, чем ограничительными. С учетом настоящего изобретения специалисты в данной области, не отклоняясь от сути настоящего изобретения и в пределах объема изобретения, определенного в прилагаемых пунктах патентной заявки, вправе создать много форм, все из которых подпадают под действие настоящего изобретения.
Описание позиций
100 платформа
200 многовинтовая опорная рама
1 съемочный блок
2 первая скоба
3 первый двигатель
4 вторая скоба
5 второй двигатель
6 третья скоба
7 третий двигатель
8 соединительная рама
9 позиционная вставка
10 муфта
11 соединительная вставка
21 основание
22 опорный рычаг
23 ротор
24 опорная рама

Claims (8)

1. Платформа для использования в малоразмерном беспилотном летательном аппарате, содержащая раму в сборе, трансмиссионный блок и съемочный блок (1), отличающаяся тем, что:
рама в сборе содержит первую скобу (2), вторую скобу (4), третью скобу (6) и соединительную раму (8) для крепления снаружи, при этом съемочный блок (1) закреплен на первой скобе (2), первая скоба (2) поворотно соединена со второй скобой (4), вторая скоба (4) поворотно соединена с третьей скобой (6);
трансмиссионный блок содержит первый двигатель (3), второй двигатель (5) и третий двигатель (7), причем первый двигатель (3) непосредственно соединен с первой скобой (2) и приводит ее в движение для поворота относительно второй скобы (4), второй двигатель (5) непосредственно соединен со второй скобой (4) и приводит ее в движение для поворота относительно третьей скобы (6), а третий двигатель (7) непосредственно приводит в движение третью скобу (6) для поворота относительно соединительной рамы (8); и
центр тяжести первой скобы (2), второй скобы (4), третьей скобы (6) и съемочного блока (1) в целом приходится на ось Z вращения третьей скобы (6).
2. Платформа по п. 1, отличающаяся тем, что ось X вращения первой скобы (2) расположена перпендикулярно оси Y вращения второй скобы (4).
3. Платформа по п. 1, отличающаяся тем, что статор первого двигателя (3) закреплен на первой скобе (2), а ротор первого двигателя (3) закреплен на второй скобе (4); или
ротор первого двигателя (3) закреплен на первой скобе (2), а статор первого двигателя (3) закреплен на второй скобе (4).
4. Платформа по п. 1, отличающаяся тем, что статор второго двигателя (5) закреплен на третьей скобе (6), а ротор второго двигателя (5) закреплен на второй скобе (4); или
ротор второго двигателя (5) закреплен на третьей скобе (6), а статор второго двигателя (5) закреплен на второй скобе (4).
5. Платформа по п. 1, отличающаяся тем, что центр тяжести первой скобы (2) и съемочного блока (1) приходится на ось X вращения первой скобы (2).
6. Платформа по п. 1, отличающаяся тем, что центр тяжести первой скобы (2), второй скобы (4) и съемочного блока (1) в целом приходится на ось Y вращения второй скобы (4).
7. Платформа по п. 1, отличающаяся тем, что статор третьего двигателя (7) закреплен на соединительной раме (8), а ротор третьего двигателя (7) закреплен на третьей скобе (6); или
ротор третьего двигателя (7) закреплен на соединительной раме (8), а статор третьего двигателя (7) закреплен на третьей скобе (6).
8. Платформа по п. 1, отличающаяся тем, что трансмиссионный блок содержит четвертый двигатель, приводящий в движение съемочный блок (1) для поворота вокруг собственной оси.
RU2014113934/11A 2011-09-09 2011-09-15 Платформа для использования в малоразмерных беспилотных летательных аппаратах RU2589534C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110268339.6 2011-09-09
CN201110268339 2011-09-09
PCT/CN2011/079704 WO2013033925A1 (zh) 2011-09-09 2011-09-15 小型无人飞行器用两轴云台及小型无人飞行器用三轴云台

Publications (2)

Publication Number Publication Date
RU2014113934A RU2014113934A (ru) 2015-10-20
RU2589534C2 true RU2589534C2 (ru) 2016-07-10

Family

ID=46667300

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014113934/11A RU2589534C2 (ru) 2011-09-09 2011-09-15 Платформа для использования в малоразмерных беспилотных летательных аппаратах

Country Status (10)

Country Link
EP (3) EP3549872B1 (ru)
JP (1) JP6389121B2 (ru)
KR (2) KR101833331B1 (ru)
CN (2) CN202392374U (ru)
AU (1) AU2011376583B2 (ru)
BR (1) BR112014005381A2 (ru)
CA (1) CA2848223A1 (ru)
MX (1) MX344931B (ru)
RU (1) RU2589534C2 (ru)
WO (1) WO2013033925A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780022C1 (ru) * 2022-04-11 2022-09-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Подвес мультиспектральной камеры к дрону

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013033954A1 (zh) 2011-09-09 2013-03-14 深圳市大疆创新科技有限公司 陀螺式动态自平衡云台
CA2848223A1 (en) * 2011-09-09 2013-03-14 SZ DJI Technology Co., Ltd Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle
CN103388730A (zh) * 2013-07-08 2013-11-13 张伯文 陀螺与重力双稳定云台
US8903568B1 (en) 2013-07-31 2014-12-02 SZ DJI Technology Co., Ltd Remote control method and terminal
CN103471472B (zh) * 2013-08-30 2015-09-16 昂海松 一种发射微型火箭推进特种弹的空中反恐装置
CN103470925B (zh) * 2013-09-04 2015-07-08 中国科学院深圳先进技术研究院 自动控制空间转动装置
CN103472859A (zh) * 2013-09-17 2013-12-25 梁辛 手持拍摄校准方法及手持拍摄电子辅助仪
JP2016541026A (ja) 2013-10-08 2016-12-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 安定化と振動低減のための装置および方法
CN103576427B (zh) * 2013-11-05 2017-02-08 易瓦特科技股份公司 一种三轴式云台
KR101549380B1 (ko) * 2013-11-11 2015-09-02 성현엠엔티(주) 항공촬영용 카메라 고정장치
CN103672338B (zh) * 2014-01-04 2015-07-01 周玉红 一种扫描电眼固定装置
LT6222B (lt) 2014-02-05 2015-10-26 My Research, Uab Stabilizuojama platforma videokamerai
CN103984193B (zh) * 2014-03-14 2020-10-16 广州虹天航空科技有限公司 拍摄设备稳定器及其控制方法
KR101574601B1 (ko) * 2014-03-31 2015-12-04 세종대학교산학협력단 비전센서가 결합된 다중회전익 무인비행체 및 다중회전익 무인비행체의 자율비행 제어방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
CN112429256A (zh) * 2014-04-28 2021-03-02 深圳市大疆创新科技有限公司 手持式支撑件
DK3139239T3 (en) 2014-04-30 2019-04-15 Sz Dji Osmo Technology Co Ltd Control unit, cradle head for use and cradle control method
CN109458529B (zh) * 2014-04-30 2021-08-20 深圳市大疆灵眸科技有限公司 控制装置、及其应用的云台以及控制云台的方法
KR102331588B1 (ko) 2014-05-12 2021-11-30 캐패시터 사이언시스 인코포레이티드 에너지 저장 디바이스 및 이의 생산 방법
US10340082B2 (en) 2015-05-12 2019-07-02 Capacitor Sciences Incorporated Capacitor and method of production thereof
US10347423B2 (en) 2014-05-12 2019-07-09 Capacitor Sciences Incorporated Solid multilayer structure as semiproduct for meta-capacitor
CN104603517B (zh) 2014-06-27 2016-06-01 深圳市大疆创新科技有限公司 云台
CN105782661B (zh) * 2014-06-27 2017-11-21 深圳市大疆灵眸科技有限公司 云台
WO2016000194A1 (zh) * 2014-06-30 2016-01-07 深圳市大疆创新科技有限公司 一种摄像控制方法、装置及云台设备
CN107719682B (zh) * 2014-07-07 2020-10-16 深圳市大疆灵眸科技有限公司 云台快速插接装置及飞行器
AU2015343211A1 (en) 2014-11-04 2017-04-27 Capacitor Sciences Incorporated Energy storage devices and methods of production thereof
CN104390110A (zh) * 2014-11-04 2015-03-04 南京航空航天大学 三轴动态自稳云台及工作方法
DE102014016987A1 (de) * 2014-11-18 2016-05-19 Mark Fellinger Vorrichtung zur beweglichen Halterung einer Kamera
KR101684364B1 (ko) * 2015-01-09 2016-12-21 주식회사 대한항공 무인항공기 명령과 자세정보를 이용한 임무장비 안정화 방법
FR3032052B1 (fr) * 2015-01-26 2017-03-10 Parrot Drone muni d'une camera video et de moyens de compensation des artefacts produits aux angles de roulis les plus importants
CN104627361B (zh) * 2015-02-05 2018-01-05 深圳雷柏科技股份有限公司 一种模块化无人飞行器
KR20170118764A (ko) 2015-02-26 2017-10-25 캐패시터 사이언시스 인코포레이티드 자기-회복 커패시터 및 이들의 생산 방법
CN105042299B (zh) * 2015-04-22 2017-05-31 零度智控(北京)智能科技有限公司 无人飞行器机载云台
CN105894607B (zh) * 2015-04-30 2018-09-07 睿驰智能汽车(广州)有限公司 行车记录装置及利用行车记录装置的调整控制方法
KR102397946B1 (ko) * 2015-05-15 2022-05-13 삼성전자주식회사 촬상 장치, 이를 채용한 원격 제어 비행체 및 촬상 장치의 자세 제어 방법
CN105992903B (zh) * 2015-05-15 2019-04-12 深圳市大疆灵眸科技有限公司 云台
JP6261090B2 (ja) * 2015-05-18 2018-01-17 株式会社amuse oneself 無人飛行体
US9932358B2 (en) 2015-05-21 2018-04-03 Capacitor Science Incorporated Energy storage molecular material, crystal dielectric layer and capacitor
CN108443680B (zh) * 2015-05-22 2020-06-05 深圳市大疆灵眸科技有限公司 一种移动装置、移动装置控制系统及控制方法
CN107735317B (zh) 2015-06-01 2021-01-08 深圳市大疆创新科技有限公司 具有气压传感器的uav和在uav内隔离安置气压传感器的方法
US9941051B2 (en) 2015-06-26 2018-04-10 Capactor Sciences Incorporated Coiled capacitor
CN105045018B (zh) * 2015-07-30 2017-09-01 极翼机器人(上海)有限公司 云台
WO2017035842A1 (zh) * 2015-09-06 2017-03-09 深圳市大疆创新科技有限公司 云台、遥控车辆及遥控运载系统
KR101715637B1 (ko) 2015-09-24 2017-03-14 대한민국(미래창조과학부 국립전파연구원장) 드론에 탑재된 전파 수집 유닛의 모션 제어 기구
JP2017067878A (ja) * 2015-09-29 2017-04-06 日本電産サンキョー株式会社 撮像装置
WO2017066927A1 (en) 2015-10-20 2017-04-27 SZ DJI Technology Co., Ltd. Systems, methods, and devices for setting camera parameters
US10026553B2 (en) 2015-10-21 2018-07-17 Capacitor Sciences Incorporated Organic compound, crystal dielectric layer and capacitor
CN105217051B (zh) * 2015-10-29 2017-07-07 中国科学院遥感与数字地球研究所 无人机单相机多角度拍摄支撑装置
CN105292509B (zh) * 2015-10-29 2018-09-18 中国科学院遥感与数字地球研究所 无人机双相机多角度拍摄支撑装置及控制方法
KR20170050924A (ko) * 2015-11-02 2017-05-11 삼성전자주식회사 3축 조정 소형 짐벌
KR102510389B1 (ko) 2015-12-09 2023-03-15 삼성전자주식회사 소형 카메라 짐벌 및 이를 구비한 전자 장치
EP3396225B1 (en) * 2015-12-23 2020-07-15 SZ DJI Osmo Technology Co., Ltd. Support mechanism, adjusting apparatus and pan tilt head for use with same
CN105667818A (zh) * 2016-01-05 2016-06-15 零度智控(北京)智能科技有限公司 一种云台
CN105599914A (zh) * 2016-01-05 2016-05-25 零度智控(北京)智能科技有限公司 一种云台
CN114435611A (zh) 2016-01-26 2022-05-06 深圳市大疆创新科技有限公司 增稳平台
US10305295B2 (en) 2016-02-12 2019-05-28 Capacitor Sciences Incorporated Energy storage cell, capacitive energy storage module, and capacitive energy storage system
KR20170105334A (ko) * 2016-03-09 2017-09-19 엘지전자 주식회사 카메라 모듈
US10153087B2 (en) 2016-04-04 2018-12-11 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US9978517B2 (en) 2016-04-04 2018-05-22 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
JP6844097B2 (ja) * 2016-04-19 2021-03-17 インダストリーネットワーク株式会社 ドローン飛行体
CN105831908A (zh) * 2016-05-06 2016-08-10 苏州市职业大学 一种带自拍架的登山杖
CN105882994B (zh) * 2016-05-26 2018-08-17 南京奇蛙智能科技有限公司 一种全景相机三轴云台
CN107438807B (zh) 2016-06-17 2021-05-18 深圳市大疆灵眸科技有限公司 固持装置控制方法、固持装置、手持云台及无人机
CN106114878A (zh) * 2016-06-30 2016-11-16 张春生 一种船载无人机语音互动装置
CN107577103A (zh) * 2016-07-05 2018-01-12 深圳市红狐狸智能科技有限公司 一种自带两轴增稳的微型镜头模组
KR102514566B1 (ko) 2016-08-23 2023-03-27 삼성전자주식회사 전자 장치 및 그의 동작 방법
CN107237971A (zh) * 2016-10-28 2017-10-10 深圳市科卫泰实业发展有限公司 基于陀螺仪姿态检测的船载自稳云台
CN106444859B (zh) * 2016-11-10 2019-07-26 广州市景沃电子有限公司 一种横滚角运动隔离的单轴稳定云台及控制方法
JP2018083604A (ja) * 2016-11-25 2018-05-31 計二 馬場 小型無人航空機の墜落に伴なう事故防止装置
US10395841B2 (en) 2016-12-02 2019-08-27 Capacitor Sciences Incorporated Multilayered electrode and film energy storage device
CN206561952U (zh) * 2017-01-23 2017-10-17 深圳市道通智能航空技术有限公司 飞行器及其云台限位装置
IT201700013381A1 (it) * 2017-02-08 2018-08-08 Cartoni S P A Sistema per il supporto di camera da ripresa.
IT201700026182A1 (it) * 2017-03-09 2018-09-09 Topview S R L Start Up Innovativa Aeromobile drone
CN107089324A (zh) * 2017-04-26 2017-08-25 浙江点辰航空科技有限公司 一种无人机的翼桨连接结构
CN107089320A (zh) * 2017-04-26 2017-08-25 浙江点辰航空科技有限公司 一种自适应翼桨一体化无人机
KR102358694B1 (ko) * 2017-05-17 2022-02-07 엘지이노텍 주식회사 짐벌 장치 및 비행 장치
KR102411140B1 (ko) * 2017-06-13 2022-06-21 엘지이노텍 주식회사 짐벌 장치 및 비행 장치
CN107235156B (zh) * 2017-06-26 2023-07-25 中国电建集团成都勘测设计研究院有限公司 可收放和连续调节的无人机全景视频采集相机安装结构
CN107226214B (zh) * 2017-06-26 2023-04-07 中国电建集团成都勘测设计研究院有限公司 一种无人机上全景相机安装结构
CN107585320A (zh) * 2017-10-31 2018-01-16 深圳市中航佳智能科技有限公司 一种云台装置及无人机
JP6649342B2 (ja) * 2017-11-09 2020-02-19 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機、及び無人航空機で慣性計測ユニットを分離する方法
CN107932524A (zh) * 2017-11-30 2018-04-20 北京理工大学 一种消除重力扭矩的三自由度仿生眼颈部机构
KR102490560B1 (ko) 2018-01-16 2023-01-19 엘지이노텍 주식회사 비행체에 장착되는 3축 회전 장치
WO2019183799A1 (zh) * 2018-03-27 2019-10-03 深圳市大疆创新科技有限公司 控制模块及手持设备
CN110573786A (zh) * 2018-04-28 2019-12-13 深圳市大疆创新科技有限公司 增稳装置和手持云台装置
CN112984354A (zh) * 2018-05-30 2021-06-18 深圳市大疆创新科技有限公司 云台、手持云台和手持拍摄装置
CN108725817A (zh) * 2018-06-05 2018-11-02 广东工业大学 一种具有防抖功能的四轴无人机
CN108513106A (zh) * 2018-06-07 2018-09-07 广州鼎飞科技有限公司 一种动物视频追踪仪及系统
CN108953905A (zh) * 2018-09-25 2018-12-07 哈尔滨理工大学 一种双目视觉相机支撑结构及其位姿调整方法
WO2020062281A1 (zh) * 2018-09-30 2020-04-02 深圳市大疆创新科技有限公司 云台的控制方法、云台、可移动平台及可读存储介质
DE102018009279B3 (de) 2018-11-23 2019-12-19 Mark Fellinger Vorrichtung zur Halterung einer Kamera oder anderer Bauteile
DE102018009606B3 (de) 2018-12-06 2019-12-24 Mark Fellinger Vorrichtung zur Halterung eines Kamerasystems an bewegten Objekten
CN109668032B (zh) * 2018-12-21 2021-06-15 东北农业大学 一种摄像头防抖动数据采集装置
CN109714537B (zh) * 2019-01-24 2021-05-14 黄河科技学院 基于计算机的数字图像处理平台
CN110001986A (zh) * 2019-04-24 2019-07-12 太原科技大学 一种基于舵机传动的双轴云台
KR102161771B1 (ko) * 2019-05-14 2020-10-05 경북대학교 산학협력단 무인항공비행체
CN111959802A (zh) * 2019-05-20 2020-11-20 辽宁巨维建设工程有限公司 一种多角度可变式三维建模云台
KR102287049B1 (ko) 2020-01-22 2021-08-06 성균관대학교산학협력단 추력전환장치 및 이를 포함하는 무인비행체
CN111824439A (zh) * 2020-07-24 2020-10-27 浙江点辰航空科技有限公司 一种无人机支架
DE202021001556U1 (de) 2021-04-28 2021-07-23 Marc Fellinger Vorrichtung zur Halterung eines Kamerasystems
CN114413135A (zh) * 2022-03-01 2022-04-29 河南传知智能科技有限公司 一种用于手机拍摄360度全景图片的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752791A (en) * 1987-07-28 1988-06-21 Allred Charles N Camera mount
CN101093733A (zh) * 2007-07-05 2007-12-26 浙江大学 一种以航模直升机为载体的两自由度航拍云台
RU2369535C1 (ru) * 2008-02-28 2009-10-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ оптимизации динамических условий функционирования гравитационно-чувствительных установок в условиях остаточных микроускорений на борту орбитальных космических аппаратов и устройство для его реализации
CN101734377A (zh) * 2009-12-15 2010-06-16 深圳市大疆创新科技有限公司 三自由度惯性稳定航拍云台

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085354A (en) * 1957-01-31 1963-04-16 Westinghouse Electric Corp Multi-gimbal flight simulator
JP2620560B2 (ja) * 1989-01-12 1997-06-18 多摩川精機株式会社 撮像部用ジンバル機構
JPH0678182A (ja) * 1992-08-26 1994-03-18 Japan Aviation Electron Ind Ltd 安定化雲台サーボループ回路
US5900925A (en) * 1997-05-09 1999-05-04 Service Vision, S.A. Computer assisted camera control system
US5954310A (en) * 1997-10-03 1999-09-21 Autonomous Effects, Inc. Apparatus and method for positioning a payload about multiple axes
US5897223A (en) * 1997-11-17 1999-04-27 Wescam Inc. Stabilized platform system for camera
JP3820035B2 (ja) * 1998-09-01 2006-09-13 日本サーボ株式会社 スリップリング組立体を内蔵した直接駆動電動機装置
JP2001235793A (ja) * 2000-02-22 2001-08-31 Diamond Air Service Kk 3軸駆動撮影装置
FR2824393B1 (fr) * 2001-05-03 2003-07-25 Sagem Procede et dispositif de navigation longue duree
JP2002344784A (ja) * 2001-05-18 2002-11-29 Sony Corp ビデオカメラ装置
US6939061B2 (en) * 2002-01-31 2005-09-06 Alps Electric Co., Ltd. Turntable device and optical apparatus
DE10208413B4 (de) * 2002-02-27 2004-01-29 Georg Thoma Schwenkbarer Stativkopf für eine Kamera
JP2004112553A (ja) * 2002-09-20 2004-04-08 Victor Co Of Japan Ltd 撮像装置の支持装置
JP4284496B2 (ja) * 2003-01-14 2009-06-24 多摩川精機株式会社 空間安定装置
US7000883B2 (en) * 2003-01-17 2006-02-21 The Insitu Group, Inc. Method and apparatus for stabilizing payloads, including airborne cameras
JP4319844B2 (ja) * 2003-02-07 2009-08-26 日本放送協会 空中撮影用カメラ雲台
JP2005234230A (ja) * 2004-02-19 2005-09-02 Canon Inc 雲台装置
US8453987B2 (en) * 2004-06-30 2013-06-04 Robotzone, Llc Pan and tilt systems
JP4532318B2 (ja) * 2005-03-25 2010-08-25 ヤマハ発動機株式会社 無人ヘリコプタ
US7292319B1 (en) * 2005-05-24 2007-11-06 Lockheed Martin Corp. Optical tracking device employing a three-axis gimbal
JP2007096493A (ja) * 2005-09-27 2007-04-12 Canon Inc 撮影装置
JP2007183356A (ja) * 2006-01-05 2007-07-19 Casio Comput Co Ltd 防振装置
JP2008022120A (ja) * 2006-07-11 2008-01-31 Elmo Co Ltd 撮像装置
CN201002722Y (zh) * 2007-01-25 2008-01-09 仝昊天 飞行器二自由度稳像云台
CN201060679Y (zh) * 2007-07-05 2008-05-14 浙江大学 以航模直升机为载体的两自由度航拍云台
JP2009023379A (ja) * 2007-07-17 2009-02-05 Kaoru Hattori 空中撮影装置
JP2010039350A (ja) * 2008-08-07 2010-02-18 Tamagawa Seiki Co Ltd 空間安定装置の重量バランス調整構造
DE102008039468A1 (de) * 2008-08-25 2010-03-04 Stefan Reich Vorrichtung und Verfahren zur Lagestabilisierung von Kameras
CN201287830Y (zh) * 2008-10-14 2009-08-12 西安展翼航空科技有限公司 航拍摄像机用稳定支架
CN102095060A (zh) * 2009-12-09 2011-06-15 天津天地伟业数码科技有限公司 重载云台的机芯结构
CN201604796U (zh) * 2010-03-23 2010-10-13 贵阳帝三数字技术有限公司 智能航拍无人飞行器
KR101042200B1 (ko) * 2010-09-02 2011-06-16 드림스페이스월드주식회사 Pcb를 사용한 무인 비행체
CA2848223A1 (en) * 2011-09-09 2013-03-14 SZ DJI Technology Co., Ltd Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752791A (en) * 1987-07-28 1988-06-21 Allred Charles N Camera mount
CN101093733A (zh) * 2007-07-05 2007-12-26 浙江大学 一种以航模直升机为载体的两自由度航拍云台
RU2369535C1 (ru) * 2008-02-28 2009-10-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ оптимизации динамических условий функционирования гравитационно-чувствительных установок в условиях остаточных микроускорений на борту орбитальных космических аппаратов и устройство для его реализации
CN101734377A (zh) * 2009-12-15 2010-06-16 深圳市大疆创新科技有限公司 三自由度惯性稳定航拍云台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А Крайнев "Механика машин" фундаментальный словарь, Москва, изд. "Машиностроение", 2000, с.143. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780022C1 (ru) * 2022-04-11 2022-09-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Подвес мультиспектральной камеры к дрону

Also Published As

Publication number Publication date
KR20140082695A (ko) 2014-07-02
CN102996984B (zh) 2017-02-08
WO2013033925A1 (zh) 2013-03-14
EP3549872A1 (en) 2019-10-09
RU2014113934A (ru) 2015-10-20
EP2759480B1 (en) 2019-06-05
CA2848223A1 (en) 2013-03-14
AU2011376583A1 (en) 2014-04-24
JP2014528868A (ja) 2014-10-30
EP3549872B1 (en) 2021-02-24
MX344931B (es) 2017-01-11
CN202392374U (zh) 2012-08-22
KR101762489B1 (ko) 2017-07-27
KR20170087535A (ko) 2017-07-28
CN102996984A (zh) 2013-03-27
EP2759480A1 (en) 2014-07-30
AU2011376583B2 (en) 2016-11-17
EP2759480A4 (en) 2015-06-24
KR101833331B1 (ko) 2018-02-28
BR112014005381A2 (pt) 2017-03-28
JP6389121B2 (ja) 2018-09-12
EP3828086A1 (en) 2021-06-02
MX2014002732A (es) 2014-08-01

Similar Documents

Publication Publication Date Title
RU2589534C2 (ru) Платформа для использования в малоразмерных беспилотных летательных аппаратах
US11140322B2 (en) Stabilizing platform
KR101749996B1 (ko) 무인 항공기에 사용하기 위한 2축 플랫폼, 무인 항공기에 사용하기 위한 3축 플랫폼 및 다중-회전자 항공기
US20200361629A1 (en) Stabilizing platform
WO2017070982A1 (zh) 一种电机、云台及飞行器
WO2015085499A1 (zh) 非正交轴载体
WO2021190216A1 (zh) 全景摄像无人机
CN111703589A (zh) 用于航空相机检测的具有像移补偿的地面模拟平台
JP2022162125A (ja) 飛行体
CN108725817A (zh) 一种具有防抖功能的四轴无人机
CN106741892A (zh) 一种多旋翼航拍飞行器
CN203753417U (zh) 无人飞机云台结构
WO2019173988A1 (zh) 一种旋转机构、无人机的起落架及机架、无人机
CN213443142U (zh) 用于航空相机检测的具有像移补偿的地面模拟平台
CN110979669A (zh) 一种可变式碟形飞艇无人机
WO2017132982A1 (zh) 旋翼无人机

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20170914