WO2012165583A1 - Cvd装置、及び、cvd膜の製造方法 - Google Patents

Cvd装置、及び、cvd膜の製造方法 Download PDF

Info

Publication number
WO2012165583A1
WO2012165583A1 PCT/JP2012/064176 JP2012064176W WO2012165583A1 WO 2012165583 A1 WO2012165583 A1 WO 2012165583A1 JP 2012064176 W JP2012064176 W JP 2012064176W WO 2012165583 A1 WO2012165583 A1 WO 2012165583A1
Authority
WO
WIPO (PCT)
Prior art keywords
cvd apparatus
plasma cvd
plasma
gas
electrode
Prior art date
Application number
PCT/JP2012/064176
Other languages
English (en)
French (fr)
Inventor
楠原 昌樹
Original Assignee
株式会社和廣武
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社和廣武 filed Critical 株式会社和廣武
Priority to JP2012546277A priority Critical patent/JP6088247B2/ja
Priority to US14/122,028 priority patent/US9831069B2/en
Priority to KR1020147000005A priority patent/KR101929607B1/ko
Priority to EP12792957.8A priority patent/EP2717657A4/en
Priority to CN201280027217.0A priority patent/CN103766000B/zh
Priority to KR1020167035084A priority patent/KR20160148721A/ko
Publication of WO2012165583A1 publication Critical patent/WO2012165583A1/ja
Priority to US15/797,180 priority patent/US20180076008A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/3255Material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45595Atmospheric CVD gas inlets with no enclosed reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2431Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes using cylindrical electrodes, e.g. rotary drums
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/245Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated using internal electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/246Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated using external electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an atmospheric pressure CVD apparatus using a dielectric barrier discharge plasma and a method for producing a CVD film, and more particularly to a method for producing a nitride film using an atmospheric pressure CVD apparatus.
  • JP 58-220477 A JP 2002-110671 A JP 2002-176119 A JP 2008-98128 A JP 2004-39993 A JP 63-50025 A
  • Patent Document 1 discloses a method of increasing energy conversion efficiency by using a silicon nitride film as an antireflection film of a silicon solar cell.
  • the plasma CVD method used for forming a nitride film has been performed under a reduced pressure of 10 ⁇ 2 to several Torr in order to stably generate plasma. Therefore, expensive equipment such as a decompression system and a decompression process of the film formation chamber are necessary, and it is difficult to reduce the manufacturing cost.
  • Patent Document 2 discloses a technique for manufacturing a thin film by atmospheric pressure CVD.
  • FIG. 12 is a cross-sectional view of a conventional atmospheric pressure CVD apparatus described in Patent Document 2.
  • the CVD apparatus shown in FIG. 12 arranges a pair of electrodes 114 and 115 facing the inside of the container 111, introduces a source gas from the gas inlet 111, and applies a pulse electric field to the electrodes 114 and 115.
  • Plasma is generated through the dielectrics 116 and 117, and plasma 118 generated on the substrate 121 is sprayed from the plasma outlet 119 to form the thin film 120.
  • a method for forming a nitride film is described in Example 3 of Patent Document 2, and a plasma is generated by introducing a mixed gas obtained by diluting silane gas and ammonia gas with argon gas into a container 111.
  • silicon plasma and nitrogen plasma react mainly inside the container, not on the substrate, so that there is a problem that a nitride film is hardly formed on the substrate. there were.
  • Patent Document 3 also discloses a technique for manufacturing a thin film by atmospheric pressure CVD.
  • the method disclosed in Patent Document 2 is plasma spray film formation, whereas the method disclosed in Patent Document 3 is film formation in a discharge space. Therefore, it is possible to form a nitride film on the substrate, but there is a difference in the film formation rate near each of the gas inlet and the gas outlet, especially when introducing multiple types of gases such as nitride film formation.
  • the uniformity of film formation is significantly reduced.
  • the substrate since the substrate is disposed in the discharge space, the substrate is liable to be damaged by plasma.
  • An object of the present invention is to provide an atmospheric pressure CVD apparatus capable of obtaining a high film formation speed and film formation uniformity, and mainly for manufacturing a solar cell at low cost. Therefore, a nitride film can be formed under atmospheric pressure.
  • An object is to provide a CVD apparatus.
  • the present invention (1) is configured by stacking a predetermined number of flow path plates, and electrode wires are arranged in a non-contact state in the hollow portion of the ceramic member having a hollow portion on the gas outlet side end surface of the flow path plate.
  • the plasma CVD apparatus is characterized in that a discharge electrode is provided.
  • the present invention (2) is the plasma CVD apparatus according to the invention (1), wherein a gas passage is formed on a side surface of the flow path plate.
  • the present invention (3) is the plasma CVD apparatus according to the invention (1) or the invention (2), wherein the inside of the hollow portion is a vacuum.
  • the present invention (4) is the plasma CVD apparatus according to the invention (1) or the invention (2), wherein a gas is enclosed in the hollow portion, and the gas is a noble gas.
  • the present invention (5) is the plasma CVD apparatus according to the invention (4), characterized in that the inside of the hollow portion is depressurized to 250 Torr or less.
  • the present invention (6) is the plasma CVD apparatus according to the invention (4) or the invention (5), wherein the noble gas is Ar gas or Ne gas.
  • the present invention (7) one end of the electrode wire is connected to a metal foil, and the end of the metal foil serves as an external lead portion. In the middle of the electrode wire, one end of the ceramic member is squeezed to contact and seal the metal foil.
  • the present invention (8) is the plasma CVD apparatus according to any one of the inventions (1) to (7), wherein the electrode wire is made of Ni or a Ni alloy.
  • the present invention (9) is the plasma CVD apparatus according to any one of the inventions (1) to (7), wherein the electrode wire is made of W containing Th or ThO.
  • the present invention (10) is the plasma CVD apparatus according to the invention (9), characterized in that the Th content is 4% by weight or less.
  • the present invention (11) is the plasma CVD apparatus according to any one of the inventions (1) to (10), wherein the electrode wire is a coiled electrode wire.
  • the present invention (12) is characterized in that a layer made of an emitter material is formed on the surface of the electrode wire, and the emitter material is a material having a work function smaller than the material of the electrode wire ( 1)
  • the present invention (13) is the plasma CVD apparatus according to the invention (12), wherein the emitter material is a material having a perovskite crystal structure.
  • the invention (14) is characterized in that the emitter material is any one or more compounds selected from the group consisting of TiSrO, MgO, and TiO.
  • the invention (12) or the invention (13) This is a plasma CVD apparatus.
  • the layer made of the emitter material is formed by pulverizing the raw material of the emitter material in a mortar, dissolving it in water, applying it to the surface of the electrode wire using glue, and then firing it.
  • the plasma CVD apparatus according to any one of the inventions (12) to (14), wherein the plasma CVD apparatus is a layer.
  • the present invention (16) is the plasma CVD apparatus according to any one of the inventions (12) to (14), wherein the layer made of the emitter material is a layer formed by MOCVD.
  • the present invention (17) is the plasma CVD apparatus according to any one of the inventions (7) to (16), wherein the metal foil is Mo or Mo alloy.
  • the present invention (18) a predetermined number of flow path plates are stacked, and a discharge electrode in which an electrode wire or a metal foil is enclosed inside a ceramic member is provided on the gas outlet side end face of the flow path plate. It is a plasma CVD apparatus characterized by the above-mentioned.
  • the present invention (19) is the plasma CVD apparatus according to the invention (18), wherein a gas passage is formed on a side surface of the flow path plate.
  • the present invention (20) is the plasma CVD apparatus according to the invention (18) or the invention (19), wherein the metal foil is Mo or Mo alloy.
  • the present invention (21) is the plasma CVD apparatus according to any one of the inventions (1) to (20), wherein the ceramic is quartz.
  • the present invention (22) is the plasma CVD apparatus according to any one of the inventions (1) to (20), wherein the ceramic is translucent alumina.
  • the present invention (23) is the plasma CVD apparatus according to any one of the inventions (1) to (22), wherein the flow path plate is made of a heat-resistant metal.
  • the present invention (24) is the plasma CVD apparatus according to any one of the inventions (1) to (22), wherein the flow path plate is made of ceramic.
  • the discharge electrode has a tenon on the gas outlet side end face of the flow path plate, a tenon on one surface of the discharge electrode, and the tenon hole is fitted into the tenon.
  • the present invention (26) is the plasma CVD apparatus according to any one of the inventions (1) to (24), wherein the discharge electrode is provided on the lower surface of the flow path plate using a holder.
  • the present invention (27) is the plasma CVD apparatus according to any one of the inventions (1) to (24), wherein the flow path plate and the discharge electrode are integrally formed.
  • the present invention (28) is the plasma CVD apparatus according to the invention (27), characterized in that the gas passage is formed after the flow path plate and the discharge electrode are integrally formed.
  • the present invention (29) is the plasma CVD apparatus according to the invention (27), wherein the gas passage is formed when the flow path plate and the discharge electrode are integrally formed.
  • the present invention (30) is the plasma CVD apparatus according to any one of the inventions (1) to (29), characterized in that a substrate is disposed at a position facing the discharge electrode.
  • the present invention (31) is the plasma CVD apparatus according to the invention (30), characterized in that the substrate is movable.
  • the present invention (32) is the plasma CVD apparatus according to the invention (31), characterized in that the substrate is a band-shaped substrate fed by roll rolls.
  • the present invention (33) is the plasma CVD apparatus according to any one of the inventions (1) to (32), which is a silicon nitride film forming apparatus.
  • the present invention (34) is the plasma CVD apparatus according to any one of the inventions (1) to (32), which is a silicon film forming apparatus.
  • the present invention (35) is characterized in that, in the plurality of flow path plates, at least a nitrogen source gas and a silicon source gas are supplied, and the nitrogen source gas and the silicon source gas are supplied from different flow path plates.
  • the present invention (36) is the plasma CVD apparatus according to any one of the inventions (1) to (34), wherein at least a mixed gas of a nitrogen source gas and a silicon source gas is supplied to the plurality of flow path plates. is there.
  • the present invention (37) is the plasma CVD apparatus according to any one of the inventions (33) to (36), wherein the silicon nitride film or the silicon film is continuously formed.
  • the present invention (38) is the plasma CVD apparatus according to any one of the inventions (1) to (37), characterized in that the gas outlet is opened downward.
  • the present invention (39) is the plasma CVD apparatus according to any one of the inventions (1) to (37), characterized in that the gas outlet opens in the horizontal direction.
  • a plurality of the discharge electrodes and a bias voltage for the substrate are alternately applied with a positive bias voltage and a negative bias voltage with respect to the adjacent discharge electrodes, and are negative with respect to the substrate.
  • the plasma CVD apparatus according to any one of the inventions (31) to (39), wherein a film is formed by applying a bias voltage.
  • a bias voltage for the plurality of discharge electrodes and the substrate is alternately applied with a positive bias voltage and a negative bias voltage to the adjacent discharge electrodes, and the substrate is set to a floating potential.
  • the plasma CVD apparatus according to any one of the inventions (31) to (39), wherein film formation is performed.
  • a plurality of discharge electrodes and a bias voltage for the substrate are applied by applying a positive bias voltage to the discharge electrode and applying a negative bias voltage to the substrate.
  • This is a plasma CVD apparatus according to any one of the inventions (31) to (39).
  • a dielectric substrate is disposed under the substrate, and a film is formed by applying a positive bias voltage to the dielectric substrate.
  • 41) a plasma CVD apparatus.
  • the present invention (44) is the plasma CVD apparatus according to any one of the inventions (1) to (43), wherein the film is formed while the discharge electrode is cooled with a noble gas or an inert gas.
  • the electric field generated by the discharge electrode for plasma generation is a high frequency electric field or a pulse electric field, and the frequency of the high frequency electric field or the pulse electric field is lower than 13.56 MHz, or 13.56 MHz.
  • the present invention (46) is the plasma CVD apparatus according to any one of the inventions (1) to (45), wherein a movable quartz member is fitted in the gas passage.
  • This invention (47) is a discharge electrode by which an electrode wire is arrange
  • the present invention (48) is the discharge electrode according to the invention (47), characterized in that the inside of the hollow portion is a vacuum.
  • the present invention (49) is the discharge electrode according to the invention (47), wherein a gas is enclosed in the hollow portion, and the gas is a noble gas.
  • the present invention (50) is the discharge electrode according to the invention (49), characterized in that the inside of the hollow portion is depressurized to 250 Torr or less.
  • the present invention (51) is the discharge electrode according to the invention (49) or the invention (50), wherein the noble gas is Ar gas or Ne gas.
  • one end of the electrode wire is connected to a metal foil, and the end of the metal foil serves as an external lead portion, and in the middle, the one end of the ceramic member is squeezed to contact and seal the metal foil.
  • the present invention (53) is the discharge electrode according to any one of the inventions (47) to (52), wherein the electrode wire is made of Ni or a Ni alloy.
  • the present invention (54) is the discharge electrode according to any one of the inventions (47) to (53), wherein the electrode wire is made of W containing Th or ThO.
  • the present invention (55) is the discharge electrode according to the invention (54), wherein the content of Th is 4% by weight or less.
  • the present invention (56) is the discharge electrode according to any one of the inventions (47) to (55), wherein the electrode wire is a coiled electrode wire.
  • the present invention (57) is characterized in that a layer made of an emitter material is formed on the surface of the electrode wire, and the emitter material is a material having a work function smaller than that of the electrode wire material ( 47) to the discharge electrode of the invention (56).
  • the present invention (58) is the discharge electrode according to the invention (57), wherein the emitter material is a material having a perovskite crystal structure.
  • the invention (59) is characterized in that the emitter material is any one or more compounds selected from the group consisting of TiSrO, MgO and TiO.
  • the invention (57) or the invention (58) The discharge electrode.
  • the layer made of the emitter material is formed by pulverizing the raw material of the emitter material in a mortar, dissolving it in water, applying it on the surface of the electrode wire using glue, and then firing it.
  • the present invention (61) is the discharge electrode according to any one of the inventions (57) to (59), wherein the layer made of the emitter material is a layer formed by MOCVD.
  • the present invention (62) is the discharge electrode according to any one of the inventions (52) to (61), wherein the metal foil is Mo or Mo alloy.
  • the present invention (63) is a CVD film manufacturing method for forming a CVD film using the plasma CVD apparatus according to any one of the inventions (1) to (46).
  • the present invention (1), (6), (7), (47), (51), (52), (63), stable glow discharge can be formed even under atmospheric pressure, and the film thickness High-speed deposition of a nitride film with excellent uniformity becomes possible. Realizes low-cost production and mass supply of solar cells.
  • the present invention (2) to (5)) and (48) to (50) stable plasma generation by glow discharge can be realized more easily.
  • the present invention (8) to (10) and (53) to (55) the work function of the electrode line is lowered and thermionic emission is promoted, so that plasma is easily generated.
  • the discharge area can be increased by increasing the surface area of the electrode wire.
  • the present invention (12) to (15) and (57) to (60) electrons are emitted not only from the electrode wire but also from the emitter material.
  • the discharge state is also stabilized.
  • the gap between the coils can be sufficiently filled with the emitter material.
  • the emitter material can be formed more densely and the composition ratio can be improved.
  • the adhesion to the ceramic member is improved.
  • a stable glow discharge can be formed even under atmospheric pressure, and a nitride film excellent in film thickness uniformity can be formed at high speed. Realizes low-cost production and mass supply of solar cells. Since the hollow portion is not provided, the device can be easily manufactured.
  • the present invention (19) to (22) stable plasma generation by glow discharge can be realized more easily.
  • the present invention (23) it is possible to prevent thermal deformation of the flow path plate due to the heat generating electrode.
  • the ceramic is excellent in heat resistance, and the difference in thermal expansion coefficient from the electrode is small.
  • an existing flow path plate can be used.
  • the present invention (26) mortise processing is unnecessary, and attachment / detachment is facilitated.
  • the present invention (27) to (29) the device can be easily manufactured.
  • stable plasma generation by glow discharge can be realized more easily.
  • the present invention (31) and (32) it is possible to form a large area film with high film thickness uniformity.
  • the present invention (33) and (34) it is possible to manufacture a useful electronic device such as a solar cell at low cost.
  • a silicon nitride film and a silicon film can be formed with high purity by using a single combined device.
  • the apparatus configuration is simplified.
  • the present invention (37) it is possible to form a large area with high film thickness uniformity.
  • the present invention (38) the film formation uniformity is improved.
  • the installation area of the apparatus can be reduced.
  • stable plasma generation by glow discharge can be realized more easily. Since the plasma is generated in a wider area, the film forming speed is increased.
  • collision of positive ions such as argon with the substrate can be mitigated, damage to the thin film on the deposited substrate can be reduced, and a denser thin film can be formed.
  • stable plasma generation by glow discharge can be realized more easily.
  • collision of positive ions such as argon with the substrate can be mitigated, damage to the thin film on the deposited substrate can be reduced, and a denser thin film can be formed. It is.
  • overheating of the discharge electrode can be prevented.
  • FIG. 1 It is a figure which shows the structure of the electrode of the CVD apparatus which concerns on the Example of this invention.
  • (A) And (b) is a figure which shows the method of manufacturing the electrode of the CVD apparatus based on the Example of this invention.
  • (A) is a front view of a first specific example of the plasma head of the present invention, and (b) and (c) are side views of the first specific example.
  • (A) And (b) is the front view and side view of the 2nd example of the plasma head of this invention, respectively.
  • (A) is a front view of the 1st specific example of the unit member of the plasma head of this invention,
  • (b) And (c) is a side view of a 1st specific example.
  • (A) is a front view of the 2nd example of the unit member of the plasma head of this invention
  • (b) And (c) is a side view of a 2nd example
  • (A) is a front view of the unit member of the third specific example of the plasma head of the present invention
  • (b) and (c) are side views of the third specific example.
  • (A), (b), (c) is sectional drawing of the plasma head of the CVD apparatus based on the Example of this invention. It is sectional drawing of the plasma head of the CVD apparatus which concerns on the Example of this invention. It is sectional drawing of the flow-path board of the CVD apparatus which concerns on the Example of this invention. It is sectional drawing of the conventional CVD apparatus.
  • the inventors of the present application have conducted intensive studies mainly for the purpose of realizing atmospheric pressure CVD of a silicon nitride film.
  • plasma spray film formation was adopted, and in order to enable stable glow discharge, plasma formation by dielectric barrier discharge was adopted.
  • the plasma head as the plasma generation unit is composed of a plurality of unit members each having an independent plasma outlet, for example, silicon nitride
  • silicon plasma and nitrogen plasma were separately generated by each unit member.
  • the unit member for generating silicon plasma and the unit member for generating nitrogen plasma in parallel so as to be adjacent to each other is effective in improving the uniformity of the deposited film.
  • the plasma supplied from the blowout port does not react in the plasma head, but reacts in the space between the blowout port and the substrate to form a nitride film, so that a nitride film can be formed on the substrate extremely efficiently. It became possible.
  • the source gas was supplied independently to the unit members of each plasma head, and the electrodes were arranged so that the electric energy applied for plasma generation could be controlled independently. This makes it possible to perform film formation by setting each plasma generation condition to an optimum condition.
  • the inventors of the present application also paid attention to the structure of the electrode and the structure of the portion where the substrate is disposed, and the electrode is sealed in the quartz member, and a space is provided between the electrode and the quartz member. Is placed on a support member made of quartz, and plasma is supplied from the plasma head to the substrate, so that the plasma is stable and the deposition rate of the nitride film can be improved, and the reproducibility of the film thickness and film quality can be improved.
  • atmospheric pressure varies depending on the atmospheric pressure and altitude of the place where the apparatus is used, but specifically, a pressure of 8 ⁇ 10 4 to 12 ⁇ 10 4 Pa. It is. If it is the pressure of this range, it is not necessary to use a large-scale apparatus for pressure reduction or pressurization, and the equipment cost can be reduced.
  • FIG. 1 is a diagram showing a structure of an electrode of a CVD apparatus according to an embodiment of the present invention. Quartz members 203 and 204 are attached to gas ejection portions of the flow path plates 201 and 202 through which the process gas flows, and electrode wires 205 and 206 are disposed in hollow portions of the quartz members 203 and 204.
  • the gas molecules constituting the process gas ejected from the gas ejection portions of the flow path plates 201 and 202 are given electrical energy by the discharge between the electrode wires 205 and 206 and the substrate 209, and become plasma to be ejected onto the substrate 209.
  • a nitride film is deposited on the substrate 209 by the reaction of ions therein.
  • the electrode wires 205 and 206 and the quartz members 203 and 204 are preferably installed in a state of floating in the hollow portion without being in direct contact with each other.
  • the atmosphere in the hollow part is preferably in a vacuum or a reduced pressure state.
  • a noble gas such as Ar or Ne is preferably used as the gas sealed in the hollow portion.
  • the degree of pressure reduction is preferably 250 Torr or less.
  • the substrate 209 is preferably placed on a support member 210 made of quartz. Plasma stability is improved.
  • the shape of the quartz members 203 and 204 is not particularly limited as long as a long hollow portion is provided so that a linear electrode can be disposed inside.
  • the cross-sectional shape of the hollow portion is not particularly limited, but is preferably circular.
  • the quartz member is provided with a convex portion so as to be attached to the flow path plate by fitting.
  • the flow path plate is provided with a concave portion corresponding to the convex portion. Conversely, a concave portion may be provided in the quartz member, and a convex portion may be provided in the flow path plate.
  • the electrodes arranged on the upper part of the substrate 209 such as the electrode lines 205 and 206 are called upper electrodes, and the electrodes arranged on the lower part of the substrate 209 (lower part of the support member 210) are called lower electrodes.
  • the main body of the flow path plate and the electrode as separate members and fit them using a tenon and a mortise hole. It is also possible to provide it. The mortise groove processing is unnecessary and it becomes easy to attach and detach. Further, the main body of the flow path plate and the electrode may be integrally formed. The device can be manufactured easily.
  • the gas passage may be formed by processing after integral formation of the flow path plate and the discharge electrode, or may be formed simultaneously with the integral formation of the flow path plate and the discharge electrode. It was found that plasma was not generated when Ar was flowed, although nitrogen and ammonia, which are process gases for nitride films, were flown from the beginning. Therefore, by first flowing Ar to generate plasma, increasing the number of electrons in the plasma, and gradually increasing the flow rate of nitrogen and ammonia, the plasma necessary for generating the nitride film is generated stably. I found out that In the embodiment shown in FIG. 1, the electrode wire is installed in a state of floating in the hollow portion without directly contacting the quartz member, but the electrode wire directly contacts the quartz member without providing the hollow portion. You may install as follows.
  • the plasma head can be easily manufactured. It is preferable to use Mo or Mo alloy for the electrode wire or the metal foil. Mo or Mo alloy has good adhesion to the ceramic. Whether or not a hollow portion is provided around the electrode wire, a ceramic member is preferably used as an insulating member (corresponding to the members 203 and 204) constituting the electrode, and quartz is used as the ceramic member. Alternatively, translucent alumina is preferably used. Further, the material of the flow path plate may be a heat-resistant metal or ceramic.
  • An electrode used in a conventional CVD apparatus has, for example, a structure in which carbon is exposed. Therefore, there is a problem that impurities contained in carbon are exposed to the outside.
  • the outside of the electrode wire is connected to a quartz tube. Because it is covered with, there is no risk of impurities coming out. It is preferable to use W as the material of the electrode wire. Moreover, it is more preferable to use W containing Th or ThO, and the content of Th is preferably 4% by weight or less. Since the work function of the electrode line is lowered and thermionic emission is promoted, the generation of plasma is facilitated. It is preferable to heat the entire electrode by supplying an appropriate current to the electrode wire from the outside.
  • the temperature of the electrode surface is low, a nitride film or a silicon film may be deposited on the electrode surface, which is not preferable because of problems such as narrowing or clogging the flow path.
  • a nitride film or a silicon film may be deposited on the electrode surface, which is not preferable because of problems such as narrowing or clogging the flow path.
  • the work function of a metal such as Th or PTO added to the electrode material made of W can be controlled. This allows control of the electron density emitted from the metal and allows for more precise control of the CVD process.
  • a radioactive substance to the surface of the electrode material. For example, strontium is preferably applied. By applying a radioactive substance, plasma is easily excited.
  • the emitter material it is preferable to use a material having a work function smaller than that of the electrode wire as the emitter material, and to form a layer made of the emitter material on the surface of the electrode wire. It is preferable to use a material having a perovskite crystal structure as the emitter material. Moreover, it is preferable to use any one or more compounds selected from the compound group consisting of TiSrO, MgO, and TiO. In either case, the work function of the electrode line is lowered and thermionic emission is promoted, so that plasma is easily generated.
  • the layer made of the emitter material is formed by pulverizing the raw material of the emitter material in a mortar, dissolving it in water, applying it on the surface of the electrode wire using glue, and then firing it.
  • the quartz electrode formed of the electrode wire disposed in the quartz member not only be used as a high-frequency electrode as described above but also function as a heater. By using the quartz electrode as a heater, the temperature of the film body can be controlled, for example, by raising the temperature of the film body.
  • FIGS. 2A and 2B are views showing a method of manufacturing an electrode of a CVD apparatus according to an embodiment of the present invention.
  • a hollow quartz member 214 having an opening 214 at one end and closed at the other end is prepared.
  • the electrode 212 for example, an electrode wire made of Ni or Ni alloy is used.
  • the electrode wire is a straight electrode wire, but is more preferably a coiled electrode wire. The coil shape increases the electrode area and increases the discharge area.
  • a lead wire 213 is attached to the end of the electrode 212.
  • a metal foil made of Mo or Mo alloy and having a thickness of about 20 ⁇ m is used.
  • the inside of the quartz member 211 is depressurized to a vacuum or a pressure of 250 Torr or lower, and the opening 214 is sealed as shown in FIG.
  • the electrode member supported by the lead wire 217 in a state where the electrode 216 floats without contacting the quartz member 215 is completed.
  • a noble gas such as Ar or Ne is preferably used as the sealing gas when the hollow portion is decompressed.
  • a clean gas for example, Ar gas having an impurity concentration of 10 ppb or less before introducing the sealed gas.
  • the first specific example of the unit member is a unit member of a plasma head when generating capacitively coupled plasma.
  • the unit member includes a dielectric member 42 and a pair of electrodes 45 and 46 that sandwich the dielectric member 42.
  • the dielectric member 42 includes a hole that penetrates vertically, and the hole functions as the plasma generation passage 43.
  • the dielectric member 42 may be formed as an integral member, or a plurality of members may be bonded together or combined. When formed with a plurality of members, it is preferable to process the gas so that no gas leaks at the joint.
  • One end of the hole serves as a gas inlet 41, and an electric field is applied to the electrodes 45 and 46 to give electric energy to the introduced gas molecules, thereby generating plasma composed of radicals, ions, and electrons.
  • an electric field a constant electric field, a high-frequency electric field, a pulse electric field, or the like is preferably used, and a pulse electric field is particularly preferable. Since the electric field is applied through the dielectric, charge accumulation and extinction are repeated on the surface of the dielectric even when a constant electric field is applied. Therefore, the plasma discharge state does not lead to arc discharge but becomes stable glow discharge. The generated plasma is blown out from the plasma supply port 50 which is the other end of the hole.
  • the unit member may be provided with one plasma supply port as shown in a side view in FIG. 3B, or may be provided with a plurality of plasma supply ports as shown in FIG. 5C.
  • plasma may be supplied from one plasma supply port.
  • the dielectric member can be arranged in parallel with a gap and the gap portion can be used as the gas passage. is there.
  • the material of the dielectric member is preferably a metal oxide such as plastic, glass, silicon dioxide, aluminum oxide. In particular, it is preferable to use quartz glass. It is preferable to use a dielectric member having a relative dielectric constant of 2 or more. More preferably, a dielectric member having a relative dielectric constant of 10 or more is used.
  • the thickness of the dielectric member is preferably 0.01 to 4 mm. If it is too thick, a high voltage is required to generate discharge plasma, and if it is too thin, arc discharge tends to occur.
  • the electrode material is preferably a metal or alloy such as copper, aluminum, or stainless steel. The distance between the electrodes is preferably 0.1 to 50 mm, although it depends on the thickness of the dielectric member and the magnitude of the applied voltage.
  • FIG. 3A is a front view of a first specific example of the plasma head of the present invention
  • FIGS. 3B and 3C are side views of the first specific example.
  • the plasma head is formed by sequentially adjoining a plurality of plasma head unit members including the plasma head unit members 1, 2 and 3.
  • the buffer member 10 is inserted between the plasma head unit members, and the plasma head unit members are arranged in parallel.
  • the buffer member is not necessarily a member essential for the configuration of the plasma head, but when inserted, for example, a fragile member such as glass is used as the dielectric member 5, and a plurality of plasma head unit members are fastened and fixed.
  • the plasma head may also be provided with one plasma supply port as shown in the side view in FIG. 3B, depending on the structure of the unit member to be used. As shown in FIG. A plasma supply port may be provided.
  • FIGS. 4A and 4B are a front view and a side view, respectively, of a second specific example of the plasma head of the present invention.
  • the plasma head is formed by sequentially adjoining a plurality of plasma head unit members including the plasma head unit members 21, 22, and 23.
  • the plasma head is provided with a plurality of plasma supply ports as shown in a side view in FIG.
  • the dielectric member 35 is processed so as to have a hollow portion inside. This hollow portion functions as a gas distribution passage and a plasma generation passage.
  • a hollow portion may be formed inside the integral dielectric member, or a hollow portion may be formed by forming a recess in one dielectric plate and bonding another dielectric plate.
  • a gas serving as a plasma generation raw material is supplied from a gas supply port 34.
  • a gas distribution passage region that distributes the gas supplied from the gas supply port 34 to the plurality of plasma generation passages 36 is formed in the upper portion of the dielectric member 35.
  • FIG. 8 is a cross-sectional view of a CVD apparatus according to an embodiment of the present invention.
  • the CVD apparatus includes a source gas supply unit 101 that supplies a first gas, a source gas unit 102 that supplies a second gas, a plasma head 104 in which a plasma head unit member and a buffer member are sequentially arranged adjacent to each other, and a plasma head
  • the power source 103 supplies power to the unit member, and the substrate transport unit 110 that transports the substrate.
  • the plasma head unit member includes a dielectric member having a plasma generation passage and an electrode.
  • a raw material gas is introduced from the upper gas inlet, and an electric field is applied to the raw material gas molecules from the electrode through the dielectric member in the plasma generation passage and excited to generate plasma composed of radicals, ions, and electrons.
  • the generated plasma is supplied from the lower plasma supply port to the substrate 109 placed on the substrate transfer unit 110.
  • Film formation is performed while the substrate is moved by the transfer unit. This enables continuous film formation. It is more preferable that the substrate is a belt-like substrate that is fed by a roll roll. Alternatively, a method may be employed in which the substrate is in a stationary position during film formation and is moved to the next film formation surface by a transfer unit after film formation.
  • a lower electrode (not shown) is provided below the substrate 109 so that a bias voltage can be applied from the lower side of the substrate.
  • the gas outlet may be opened downward as shown in FIG. 8 or may be opened horizontally. When the gas outlet is opened downward, the film formation uniformity is improved. When the gas outlet is opened in the horizontal direction, the installation area of the apparatus can be reduced. Since the plasma discharge is a dielectric barrier discharge, the plasma is a stable glow discharge. The plasma is non-equilibrium plasma having a high electron temperature and a low temperature of radicals and ions. This makes it possible to avoid an excessive temperature rise of the substrate. In the case of generating a silicon nitride film, for example, silane gas and ammonia gas are used as the source gas.
  • Silane gas and ammonia gas are alternately supplied to adjacent plasma head unit members, and silicon plasma 105 and nitrogen plasma 106 are generated in the respective plasma generation passages.
  • the silicon plasma and the nitrogen plasma spread downward from the plasma supply port in the range of several mm to several cm, and the plasma reaction region 107 is formed.
  • the nitride film 108 is formed on the substrate 109.
  • other silicon source gases or nitrogen source gases can be used.
  • the silicon source gas silane, disilane, or a mixed gas obtained by diluting these gases with an inert gas can be used.
  • the nitrogen source gas ammonia, nitrogen, or a mixed gas obtained by diluting these gases with an inert gas can be used.
  • the silicon source gas and the nitrogen source gas can be independently supplied from the adjacent flow path plates to generate a silicon nitride film.
  • a curtain seal gas made of an inert gas such as nitrogen at both ends of these flow path plates.
  • the flow rates of the silicon source gas and the nitrogen source gas can be controlled independently, and the process conditions can be precisely controlled. It is also possible to generate a silicon nitride film by supplying a mixed gas of a silicon source gas and a nitrogen source gas from the same flow path plate.
  • the device configuration is simplified.
  • a silicon film In addition to the silicon nitride film, it is also possible to generate a silicon film by supplying only the silicon source gas without supplying the nitrogen source gas.
  • a noble gas or a mixed gas containing a noble gas eg, argon and nitrogen
  • FIG. 11A is cross-sectional views of a flow path plate of a CVD apparatus according to an embodiment of the present invention.
  • the flow path 332 (FIG. 11A) surrounded by the flow path plate 331 and the dielectric members 333 and 334 moves the flow path 336 (FIG. 11B), by moving the dielectric members 333 and 334.
  • the cross-sectional area can be controlled.
  • the gas flow rate can be controlled. For example, the gas flow velocity can be increased by narrowing the gas passage area.
  • Plasma generation conditions Conditions for generating plasma are appropriately determined according to the purpose of using plasma.
  • plasma is generated by applying a constant electric field, a high-frequency electric field, a pulsed electric field, or an electric field by microwaves between a pair of electrodes.
  • the operating frequency may be 13.56 MHz, which is used in a general plasma apparatus, or may be higher or lower.
  • Patent Document 6 discloses a technique for preventing damage to a deposited film using high frequency plasma of 100 MHz in a plasma apparatus. By controlling the frequency of the electric field, the deposition rate, the film quality of the deposited film, and the like can be optimized.
  • the electric field for generating plasma it is particularly preferable to use a pulse electric field.
  • the electric field strength of the pulse electric field is preferably in the range of 10 to 1000 kV / cm.
  • the frequency of the pulse electric field is preferably 0.5 kHz or more.
  • FIG. 6A is a front view of a second specific example of the unit member of the plasma head of the present invention
  • FIGS. 6B and 6C are side views of the second specific example.
  • the second specific example is a unit member of a plasma head for inductively coupled plasma generation.
  • the unit member includes a dielectric member 62 and an induction coil 64 arranged adjacent to the periphery of the dielectric member 62.
  • the dielectric member 62 includes a hole that penetrates vertically, and the hole functions as the plasma generation passage 63.
  • the dielectric member 62 may be formed as an integral member, or a plurality of members may be bonded together or combined. When formed with a plurality of members, it is preferable to process the gas so that no gas leaks at the joint.
  • One end of the hole serves as a gas inlet 61, and a current is passed through the induction coil 64 to give magnetic energy to the gas molecules introduced by the formed magnetic field, thereby generating plasma composed of radicals, ions, and electrons.
  • the state of the plasma discharge is a stable glow discharge.
  • the generated plasma is blown out from the plasma supply port 65 which is the other end of the hole.
  • plasma is generally supplied from the plasma supply port 65 to a range of several mm to several cm.
  • the unit member may include one plasma supply port as shown in the side view of FIG. 6B, or may include a plurality of plasma supply ports as shown in FIG. 6C.
  • plasma may be supplied from one plasma supply port.
  • FIG. 7A is a front view of a unit member of a third specific example of the plasma head of the present invention
  • FIGS. 7B and 7C are side views of the third specific example.
  • a third specific example is a unit member of a plasma head for inductively coupled plasma generation.
  • the unit member includes a dielectric member 82 and an induction coil 84 disposed adjacent to the dielectric member 82.
  • the dielectric member 82 includes a hole that penetrates vertically, and the hole functions as the plasma generation passage 83.
  • the dielectric member 82 may be configured as an integral member, or may be formed by bonding a plurality of members together or in combination.
  • the terminal 86 and the terminal 87 of the induction coil 84 are spaced apart via a dielectric member so as not to make electrical contact.
  • One end of the hole serves as a gas inlet 81, and a current is passed through the induction coil 84 to give magnetic energy to the gas molecules introduced by the formed magnetic field, thereby generating plasma composed of radicals, ions, and electrons.
  • the state of the plasma discharge is a stable glow discharge.
  • the generated plasma is blown out from the plasma supply port 85 which is the other end of the hole.
  • plasma is generally supplied from the plasma supply port 85 to a range of several mm to several cm.
  • the unit member may be provided with one plasma supply port as shown in a side view in FIG. 7B, or may be provided with a plurality of plasma supply ports as shown in FIG. 7C.
  • plasma may be supplied from one plasma supply port.
  • the dielectric member having a hollow portion is formed by forming recesses on the surfaces of a plurality of dielectric members, and then bonding the dielectric members having recesses together, or by combining a dielectric member having recesses and a flat dielectric member. It can be formed by bonding.
  • the plasma member unit member is formed by further laminating the dielectric member, which has been bonded by such a method to form the hollow portion, with an electrode or an induction coil. Further, a plurality of plasma head units are stacked via a buffer member such as Teflon (registered trademark) to form a plasma head.
  • the plasma head unit can also be produced using an injection molding method.
  • An electrode or induction coil and a core are arranged in a mold, and a raw material for the dielectric member is poured into the mold. Thereafter, the core is removed from the mold, leaving the electrode or induction coil.
  • a plurality of the produced plasma head unit members are further laminated through a buffer member such as Teflon (registered trademark) to form a plasma head.
  • Patent Document 4 discloses a method for modifying or sterilizing an object surface by irradiating the object with plasma generated by dielectric discharge from a plasma head in which a plurality of dielectric thin tubes are bundled.
  • the technique disclosed in Patent Document 4 includes a plurality of plasma outlets, the gas inlet and the electrode for generating plasma are not independent in each thin tube. Further, there is no description suggesting a technique in which each thin tube is provided with an independent gas inlet and electrode. Therefore, from the contents described in Patent Document 4, it is not possible to easily devise a technique for generating different plasmas in a plurality of plasma generation units according to the present invention and causing a plasma reaction in the space between the plasma head and the substrate. Absent.
  • Patent Document 5 discloses a technique for forming a metal-containing thin film such as silicon oxide by reacting a metal-containing gas such as TEOS with a reaction gas such as oxygen.
  • the technique described in Patent Document 5 is a technique for forming a thin film by merging and reacting a plasma reaction gas and a non-plasma metal-containing gas.
  • a plasma head has a plurality of unit members arranged in parallel. This is different from the technique according to the present invention in which a thin film is formed by a reaction between different plasmas after different plasma is generated for each unit member.
  • the technology according to the present invention is a technology capable of forming a plasma blowing port that generates different plasmas in close proximity to each other by stacking a plurality of dielectric members and electrodes alternately, and can be formed with high density. 5 cannot easily devise the technique according to the present invention.
  • Example 1 Electrode test 1
  • the minimum supply power for spontaneous ignition of the plasma is changed by changing the conditions of the gas flowing through the hollow portion atmosphere and the flow path plate. It was measured. For comparison, measurement was also performed on a discharge electrode having no hollow portion.
  • the flow path plate was formed of a shellac member, and the gas passage was formed on the side surface of the flow path plate.
  • the member which comprises a discharge electrode used the following.
  • Electrode wire Straight electrode wire (Ni), one end connected to metal foil (Mo), no emitter material used.
  • Ceramic material Quartz It was found that when the power output of the plasma spontaneously ignited is 700 W or less, no fireworks discharge occurs, the plasma state is stable, and it is suitable for film formation. As a result, it has been found that it is preferable to use Ar not containing N 2 as the carrier gas flowing through the flow path plate in order to maintain the plasma stably. Further, it was found that the atmosphere of the hollow portion is preferably vacuum sealed or Ar sealed at 250 Torr or less. In addition, as a result of experiments conducted using another gas as the sealing gas, excellent results similar to those of Ar were obtained even when a noble gas such as Ne other than Ar was used as the carrier gas and the sealing gas for the hollow portion.
  • Example 2 Electrode test 2 Next, by using the electrode according to the present invention, the material of the member and the condition of the gas flowing through the flow path plate were changed, and the minimum supply power at which plasma spontaneously ignited was measured.
  • the discharge electrode had a hollow portion and was filled with noble gas (250 Torr). Further, the flow path plate was formed of a heat-resistant metal member, and the gas passage was formed on the side surface of the flow path plate.
  • Condition 1 Linear electrode wire (Ni alloy), one end connected to metal foil (Mo), emitter material was not used, quartz was used for the ceramic member, and Ni—W alloy was used for the Ni alloy.
  • Condition 2 Linear electrode wire (Ni), one end connected to metal foil (Mo alloy), emitter material was not used, quartz was used for the ceramic member, and Mo—W alloy was used for the Mo alloy.
  • Condition 3 Linear electrode wire (Th ⁇ 1 wt% contained W), one end connected to metal foil (Mo), emitter material not used, ceramic member is quartz
  • Condition 4 Linear electrode wire (Th ⁇ 4 weight) % Containing W), one end connected to metal foil (Mo), no emitter material is used, ceramic material is quartz condition 5: linear electrode wire (Th ⁇ 10 wt% containing W), one end is metal foil (Mo) Connected to, emitter material is not used, ceramic member is quartz condition 6: linear electrode wire (ThO ⁇ 4 wt% containing W), one end connected to metal foil (Mo), emitter material is not used, ceramic member Is quartz condition 7: linear electrode wire (Ni), one end is connected to metal foil (Mo), emitter material is not used, ceramic member is translucent alumina condition
  • Example 3 Electrode test 3
  • the minimum supply power at which the plasma spontaneously ignites was measured by changing the layer of the emitter material formed on the surface of the electrode wire and the condition of the gas flowing through the flow path plate.
  • the discharge electrode had a hollow portion and was filled with noble gas (250 Torr).
  • Example 4 (Nitride film formation evaluation 1) When using an electrode prepared for dielectric barrier discharge to generate atmospheric pressure plasma using a high-frequency power source or a low-frequency power source, in addition to simply applying an appropriate execution voltage between the upper and lower electrodes For example, by applying a voltage as a bias to the lower electrode to soften the collision energy of electrons or charged reaction molecules that collide with the substrate surface, the damage of the substrate is controlled and the intended reaction proceeds better. You can also A silicon nitride film was deposited by applying a bias voltage so that plasma was generated not only between the electrode and the substrate but also between the electrode and the electrode, and the film quality was evaluated. FIGS.
  • FIG. 9A, 9B, and 9C are cross-sectional views of the plasma head of the CVD apparatus according to the embodiment of the present invention.
  • FIG. 9A is a diagram showing a plasma generation state when a positive bias voltage and a negative bias voltage are sequentially applied to a plurality of electrodes with the substrate as the ground potential.
  • FIG. 9B shows a case where the substrate potential in FIG.
  • FIG. 9C is a diagram showing a plasma generation state when a positive bias voltage is applied to all the electrodes with the substrate as the ground potential.
  • Ceramic member Quartz Compared with the case where a nitride film is formed by a thermal CVD method as a conventional method.
  • the deposition rate was improved as compared with the thermal CVD method in any case of bias application shown in FIGS. 9 (a), (b), and (c).
  • a particularly high film formation rate was obtained in the case of bias application shown in FIG.
  • the etching rate by buffered hydrofluoric acid was evaluated. The smaller the etching rate, the denser the film quality.
  • the thermal CVD method can form a dense film at a low deposition rate.
  • FIG. In the CVD method according to the present invention using the plasma head shown in (a), (b), and (c), it was found that the film quality was most dense particularly in the case shown in FIG. 9 (a).
  • Example 5 (Nitride film formation evaluation 2) A film formation evaluation experiment similar to that in Example 4 was performed by changing the plasma excitation frequency.
  • FIG. 10 is a cross-sectional view of the plasma head of the CVD apparatus according to the embodiment of the present invention.
  • a dielectric substrate 325 is disposed under the deposition substrate 324, and a bias voltage application electrode 326 is disposed thereunder.
  • a positive bias voltage is applied to the bias voltage application electrode 326 by a power source 327. It is considered that the substrate damage caused by the argon positive ions 328 from the electrode 322 toward the deposition substrate 324 is alleviated by the electric field formed by the bias voltage application electrode 326.
  • the film quality of the deposited thin film was finer when a positive bias voltage was applied by the power source 327 than when it was not applied.
  • Example 7 2000 W at 13.56 MHz to investigate the effect of cooling the discharge electrode After the Ar gas plasma was continuously generated for 1 hour with the RF power, the electrode temperature was measured. As a result, when cooling was not performed, the electrode temperature became 150 ° C., whereas when cooling with Ar gas and nitrogen gas, the respective electrode temperatures were 50 ° C. and 60 ° C., and a sufficient cooling effect was obtained. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Plasma Technology (AREA)

Abstract

 太陽電池の反射防止膜には、従来、減圧プラズマCVDにより形成された窒化膜が用いられていた。しかし、減圧プロセスは、設備コストやプロセスコストが高いため、太陽電池の製造コストを低減するのが困難であった。 誘電体部材を介して電界又は磁界を印加しプラズマを発生させるプラズマヘッド単位部材を複数並列に並べたプラズマヘッドにより、誘電体バリア放電による大気圧プラズマCVDで窒化膜を形成することにした。誘電体放電により大気圧でも安定したグロー放電プラズマを形成することができ、隣接するプラズマ吹出し口から異なるプラズマを発生、反応させることにより、大気圧での窒化膜形成が可能になり、低コストの太陽電池製造が実現可能になった。

Description

CVD装置、及び、CVD膜の製造方法
 本発明は、誘電体バリア放電プラズマを用いた常圧CVD装置、及び、CVD膜の製造方法に関し、特に、常圧CVD装置による窒化膜の製造方法に関する。
特開昭58-220477号公報 特開2002-110671号公報 特開2002-176119号公報 特開2008-98128号公報 特開2004-39993号公報 特開昭63-50025号公報
 太陽光発電は、資源枯渇や温室効果ガス排出などの問題を抱える石油エネルギーに代わり、クリーンなエネルギーとして近年広く用いられるようになってきた。特許文献1には、シリコン太陽電池の反射防止膜としてシリコン窒化膜を用いることによりエネルギー変換効率を高める方法が開示されている。窒化膜の形成に用いるプラズマCVD法は、従来、プラズマを安定して発生させるために10-2~数Torrの減圧下で成膜を行っていた。そのため減圧システムなどの高価な設備や成膜室の減圧工程が必要で製造コストの低減が困難であった。太陽光発電のさらなる普及のためには、より低コストで太陽電池を製造する装置や製造方法の開発が望まれていた。
 特許文献2には、大気圧CVDにより薄膜を製造する技術が開示されている。図12は、特許文献2に記載された従来の大気圧CVD装置の断面図である。一般的に、大気圧下ではヘリウムなどの特定のガス以外は安定してプラズマ状態を保持することができず、瞬時にアーク放電状態に移行することが知られている。図12に示すCVD装置は、容器111の内部に対向する一対の電極114、115を配置し、ガス導入口111から原料ガスを導入し、電極114、115に対しパルス電界を印加することにより固体誘電体116、117を介してプラズマを発生させ、プラズマ吹出し口119から基板121上に発生したプラズマ118を吹き付け、薄膜120を形成する。固体誘電体を介して電極に電界を印加することで、気体の種類によらず安定したグロー放電プラズマを発生させることが可能になる。窒化膜の形成方法については特許文献2の実施例3に記載されており、シランガスとアンモニアガスをアルゴンガスで希釈した混合ガスを容器111に導入してプラズマを発生させている。しかし、この方法で実際に成膜を行おうとすると、シリコンプラズマと窒素プラズマが、基板上ではなく、主に容器の内部で反応してしまうため、基板上では窒化膜がほとんど形成されないという問題があった。
 特許文献3には、やはり、大気圧CVDにより薄膜を製造する技術が開示されている。特許文献2に開示された方法が、プラズマ吹き付け成膜であるのに対し、特許文献3に開示された方法は、放電空間内成膜である。そのため、基板上の窒化膜の形成は可能になるが、ガス導入口とガス排出口のそれぞれの近傍で成膜速度に差が生じ、特に、窒化膜の形成など複数種のガスを導入する場合に成膜均一性の低下が顕著になるという問題があった。また、放電空間内に基板を配置する方式であるため、基板がプラズマダメージを受けやすいという問題があった。
 本発明は、高い成膜速度、成膜均一性が得られる大気圧CVD装置の提供を目的とし、主に低コストで太陽電池を製造するため、大気圧下で窒化膜の成膜が可能なCVD装置の提供を目的とする。
 本発明(1)は、流路板を所定枚数積み重ねて構成され、前記流路板のガス出口側端面に、中空部を有するセラミック部材の該中空部内に電極線が非接触状態で配置されてなる放電電極が設けられていることを特徴とするプラズマCVD装置である。
 本発明(2)は、前記流路板の側面にガス通路が形成されていることを特徴とする前記発明(1)のプラズマCVD装置である。
 本発明(3)は、前記中空部内が真空であることを特徴とする前記発明(1)又は前記発明(2)のプラズマCVD装置である。
 本発明(4)は、前記中空部内にガスが封入され、前記ガスが貴ガスであることを特徴とする前記発明(1)又は前記発明(2)のプラズマCVD装置である。
 本発明(5)は、前記中空部内が250Torr以下に減圧されていることを特徴とする前記発明(4)のプラズマCVD装置である。
 本発明(6)は、前記貴ガスがArガス又はNeガスであること特徴とする前記発明(4)又は前記発明(5)のプラズマCVD装置である。
 本発明(7)は、前記電極線の一端が金属箔に接続され、該金属箔の端が外部引き出し部となり、その途中においては、セラミック部材の一端を絞り込んで該金属箔を接触封止させてあることを特徴とする前記発明(1)乃至前記発明(6)のプラズマCVD装置である。
 本発明(8)は、前記電極線がNi又はNi合金からなることを特徴とする前記発明(1)乃至前記発明(7)のプラズマCVD装置である。
 本発明(9)は、前記電極線がTh又はThOを含有するWからなることを特徴とする前記発明(1)乃至前記発明(7)のプラズマCVD装置である。
 本発明(10)は、Thの含有量が4重量%以下であることを特徴とする前記発明(9)のプラズマCVD装置である。
 本発明(11)は、前記電極線がコイル状電極線であることを特徴とする前記発明(1)乃至前記発明(10)のプラズマCVD装置である。
 本発明(12)は、前記電極線の表面にエミッタ材からなる層が形成されており、前記エミッタ材が前記電極線の材料よりも仕事関数の小さい材料であることを特徴とする前記発明(1)乃至前記発明(11)のプラズマCVD装置である。
 本発明(13)は、前記エミッタ材がペロブスカイト型結晶構造を有する材料であることを特徴とする前記発明(12)のプラズマCVD装置である。
 本発明(14)は、前記エミッタ材が、TiSrO、MgO、TiOからなる化合物群から選択されたいずれか1種以上の化合物であることを特徴とする前記発明(12)又は前記発明(13)のプラズマCVD装置である。
 本発明(15)は、前記エミッタ材からなる層が、前記エミッタ材の原料を乳鉢で粉砕後、水に溶き、にかわを用いて前記電極線の表面に塗布した後、焼成することにより形成した層であることを特徴とする前記発明(12)乃至前記発明(14)のプラズマCVD装置である。
 本発明(16)は、前記エミッタ材からなる層が、MOCVDにより形成した層であることを特徴とする前記発明(12)乃至前記発明(14)のプラズマCVD装置である。
 本発明(17)は、前記金属箔がMo又はMo合金であることを特徴とする前記発明(7)乃至前記発明(16)のプラズマCVD装置である。
 本発明(18)は、流路板を所定枚数積み重ねて構成され、前記流路板のガス出口側端面に、セラミック部材の内部に電極線又は金属箔が封入配置されてなる放電電極が設けられていることを特徴とするプラズマCVD装置である。
 本発明(19)は、前記流路板の側面にガス通路が形成されていることを特徴とする前記発明(18)のプラズマCVD装置である。
 本発明(20)は、前記金属箔がMo又はMo合金であることを特徴とする前記発明(18)又は前記発明(19)のプラズマCVD装置である。
 本発明(21)は、前記セラミックが石英であることを特徴とする前記発明(1)乃至前記発明(20)のプラズマCVD装置である。
 本発明(22)は、前記セラミックが透光性アルミナであることを特徴とする前記発明(1)乃至前記発明(20)のプラズマCVD装置である。
 本発明(23)は、前記流路板が耐熱性を有する金属からなることを特徴とする前記発明(1)乃至前記発明(22)のプラズマCVD装置である。
 本発明(24)は、前記流路板がセラミックからなることを特徴とする前記発明(1)乃至前記発明(22)のプラズマCVD装置である。
 本発明(25)は、前記流路板の前記ガス出口側端面にほぞ穴を有し、前記放電電極の一面にほぞを有し、該ほぞ穴を該ほぞに嵌合することにより前記放電電極を前記流路板に設けたことを特徴とする前記発明(1)乃至前記発明(24)のプラズマCVD装置である。
 本発明(26)は、保持具を用いて、前記放電電極を前記流路板の下面に設けたことを特徴とする前記発明(1)乃至前記発明(24)のプラズマCVD装置である。
 本発明(27)は、前記流路板と前記放電電極を一体成形してあることを特徴とする前記発明(1)乃至前記発明(24)のプラズマCVD装置である。
 本発明(28)は、前記ガス通路を前記流路板と前記放電電極の一体成形後に加工して形成することを特徴とする前記発明(27)のプラズマCVD装置である。
 本発明(29)は、前記ガス通路を前記流路板と前記放電電極の一体成形時に形成することを特徴とする前記発明(27)のプラズマCVD装置である。
 本発明(30)は、前記放電電極に対向した位置に基板を配置してあることを特徴とする前記発明(1)乃至前記発明(29)のプラズマCVD装置である。
 本発明(31)は、前記基板が移動可能であることを特徴とする前記発明(30)のプラズマCVD装置である。
 本発明(32)は、前記基板がロールツロールで送られる帯状基板であることを特徴とする前記発明(31)のプラズマCVD装置である。
 本発明(33)は、窒化シリコン膜の成膜装置であることを特徴とする前記発明(1)乃至前記発明(32)のプラズマCVD装置である。
 本発明(34)は、シリコン膜の成膜装置であることを特徴とする前記発明(1)乃至前記発明(32)のプラズマCVD装置である。
 本発明(35)は、前記複数の流路板において、少なくとも窒素源ガスとシリコン源ガスを供給し、前記窒素源ガスと前記シリコン源ガスを異なる流路板から供給することを特徴とする前記発明(1)乃至前記発明(34)のプラズマCVD装置である。
 本発明(36)は、前記複数の流路板において、少なくとも窒素源ガスとシリコン源ガスの混合ガスを供給することを特徴とする前記発明(1)乃至前記発明(34)のプラズマCVD装置である。
 本発明(37)は、前記窒化シリコン膜又は前記シリコン膜を連続的に成膜するための装置であることを特徴とする前記発明(33)乃至前記発明(36)のプラズマCVD装置。
 本発明(38)は、前記ガス出口が下方向に向けて開口していることを特徴とする前記発明(1)乃至前記発明(37)のプラズマCVD装置である。
 本発明(39)は、前記ガス出口が水平方向に向けて開口していることを特徴とする前記発明(1)乃至前記発明(37)のプラズマCVD装置である。
 本発明(40)は、複数の前記放電電極、及び、前記基板に対するバイアス電圧が、隣りあう前記放電電極に対し交互に正のバイアス電圧と負のバイアス電圧を印加し、前記基板に対し負のバイアス電圧を印加して成膜を行うことを特徴とする前記発明(31)乃至前記発明(39)のプラズマCVD装置である。
 本発明(41)は、複数の前記放電電極、及び、前記基板に対するバイアス電圧が、隣りあう前記放電電極に対し交互に正のバイアス電圧と負のバイアス電圧を印加し、前記基板をフローティング電位として成膜を行うことを特徴とする前記発明(31)乃至前記発明(39)のプラズマCVD装置である。
 本発明(42)は、複数の前記放電電極、及び、前記基板に対するバイアス電圧が、前記放電電極に対し正のバイアス電圧を印加し、前記基板に対し負のバイアス電圧を印加して成膜を行うことを特徴とする前記発明(31)乃至前記発明(39)のプラズマCVD装置である。
 本発明(43)は、前記基板の下に誘電体基板を配置し、前記誘電体基板に正のバイアス電圧を印加して成膜を行うことを特徴とする前記発明(40)乃至前記発明(41)のプラズマCVD装置である。
 本発明(44)は、前記放電電極を貴ガス又は不活性ガスにより冷却しながら成膜を行うことを特徴とする前記発明(1)乃至前記発明(43)のプラズマCVD装置である。
 本発明(45)は、プラズマ生成のために前記放電電極により発生する電界が高周波電界又はパルス電界であり、前記高周波電界又はパルス電界の周波数が13.56MHzよりも低い周波数、又は、13.56MHzよりも高い周波数であることを特徴とする前記発明(1)乃至前記発明(44)のプラズマCVD装置である。
本発明(46)は、前記ガス通路内に移動可能な石英部材をはめ込んだことを特徴とする前記発明(1)乃至前記発明(45)のプラズマCVD装置である。
本発明(47)は、中空部を有するセラミック部材の該中空部内に電極線が非接触状態で配置されてなる放電電極である。
本発明(48)は、前記中空部内が真空であることを特徴とする前記発明(47)の放電電極である。
本発明(49)は、前記中空部内にガスが封入され、前記ガスが貴ガスであることを特徴とする前記発明(47)の放電電極である。
本発明(50)は、前記中空部内が250Torr以下に減圧されていることを特徴とする前記発明(49)の放電電極である。
本発明(51)は、前記貴ガスがArガス又はNeガスであること特徴とする前記発明(49)又は前記発明(50)の放電電極である。
本発明(52)は、前記電極線の一端が金属箔に接続され、該金属箔の端が外部引き出し部となり、その途中においては、セラミック部材の一端を絞り込んで該金属箔を接触封止させてあることを特徴とする前記発明(47)乃至前記発明(51)の放電電極である。
本発明(53)は、前記電極線がNi又はNi合金からなることを特徴とする前記発明(47)乃至前記発明(52)の放電電極である。
本発明(54)は、前記電極線がTh又はThOを含有するWからなることを特徴とする前記発明(47)乃至前記発明(53)の放電電極である。
本発明(55)は、Thの含有量が4重量%以下であることを特徴とする前記発明(54)の放電電極である。
本発明(56)は、前記電極線がコイル状電極線であることを特徴とする前記発明(47)乃至前記発明(55)の放電電極である。
本発明(57)は、前記電極線の表面にエミッタ材からなる層が形成されており、前記エミッタ材が前記電極線の材料よりも仕事関数の小さい材料であることを特徴とする前記発明(47)乃至前記発明(56)の放電電極である。
本発明(58)は、前記エミッタ材がペロブスカイト型結晶構造を有する材料であることを特徴とする前記発明(57)の放電電極である。
本発明(59)は、前記エミッタ材が、TiSrO、MgO、TiOからなる化合物群から選択されたいずれか1種以上の化合物であることを特徴とする前記発明(57)又は前記発明(58)の放電電極である。
本発明(60)は、前記エミッタ材からなる層が、前記エミッタ材の原料を乳鉢で粉砕後、水に溶き、にかわを用いて前記電極線の表面に塗布した後、焼成することにより形成した層であることを特徴とする前記発明(57)乃至前記発明(59)の放電電極である。
本発明(61)は、前記エミッタ材からなる層が、MOCVDにより形成した層であることを特徴とする前記発明(57)乃至前記発明(59)の放電電極である。
本発明(62)は、前記金属箔がMo又はMo合金であることを特徴とする前記発明(52)乃至前記発明(61)の放電電極である。
本発明(63)は、前記発明(1)乃至前記発明(46)のプラズマCVD装置を用いCVD膜を成膜するCVD膜の製造方法である。
 本発明(1)、(6)、(7)、(47)、(51)、(52)、(63)によれば、大気圧下でも安定したグロー放電の形成が可能になり、膜厚均一性に優れた窒化膜の高速成膜が可能になる。太陽電池の低コスト製造、大量供給が実現する。
 本発明(2)~(5))、(48)~(50)によれば、グロー放電による安定したプラズマの生成がより容易に実現できる。
 本発明(8)~(10)、(53)~(55)によれば、電極線の仕事関数が下がり、熱電子放出が促進されるので、プラズマの発生が容易になる。
 本発明(11)、(56)によれば、電極線の表面積の増加により放電面積を大きくすることができる。
 本発明(12)~(15)、(57)~(60)によれば、電極線だけでなく、エミッタ材からも電子が放出されるので、より低電力でも放電が開始し、開始後の放電状態も安定になる。
 本発明(16)、(61)によれば、エミッタ材によりコイルの隙間を十分に埋めることができる。また、エミッタ材がより緻密に形成でき、組成比も良好になる。
 本発明(17)、(62)によれば、セラミック部材との密着性が良好になる。
 本発明(18)によれば、大気圧下でも安定したグロー放電の形成が可能になり、膜厚均一性に優れた窒化膜の高速成膜が可能になる。太陽電池の低コスト製造、大量供給が実現する。中空部を設けていないので、装置の作製が容易になる。
 本発明(19)~(22)によれば、グロー放電による安定したプラズマの生成がより容易に実現できる。
 本発明(23)によれば、発熱する電極による流路板の熱変形を防止できる。
 本発明(24)によれば、セラミックは耐熱性に優れ、また、電極との熱膨張率の差が小さい。
 本発明(25)によれば、既存の流路板を利用可能である。
 本発明(26)によれば、ほぞ溝加工が不要で、着脱が容易になる。
 本発明(27)~(29)によれば、装置の製造が容易になる。
 本発明(30)によれば、グロー放電による安定したプラズマの生成がより容易に実現できる。
 本発明(31)、(32)によれば、膜厚均一性の高い大面積の成膜が可能になる。
 本発明(33)、(34)によれば、太陽電池等の有用な電子デバイスの低コスト製造が可能である。
 本発明(35)によれば、窒化シリコン膜とシリコン膜をひとつの兼用装置で高純度に成膜できる。
 本発明(36)によれば、装置構成が簡便になる。
 本発明(37)によれば、膜厚均一性の高い大面積の成膜が可能になる。
 本発明(38)によれば、成膜均一性が向上する。
 本発明(39)によれば、装置の設置面積を小さくできる。
 本発明(40)によれば、グロー放電による安定したプラズマの生成がより容易に実現できる。プラズマがより広い領域で生成されるので、成膜速度が大きくなる。また、アルゴンなどの正イオンが基板に衝突するのを緩和可能であり、成膜された基板上の薄膜に対するダメージを軽減可能であり、より緻密な薄膜の形成が可能である。
 本発明(41)、(42)によれば、グロー放電による安定したプラズマの生成がより容易に実現できる。
 本発明(43)によれば、アルゴンなどの正イオンが基板に衝突するのを緩和可能であり、成膜された基板上の薄膜に対するダメージを軽減可能であり、より緻密な薄膜の形成が可能である。
 本発明(44)によれば、放電電極の過熱を防止可能である。
 本発明(45)によれば、通常プラズマ装置で使用される13.56MHz以外の電力を成膜プロセスに利用可能である。使用周波数を制御することにより基板上の薄膜に対するダメージ軽減も可能である。
 本発明(46)によれば、ガスの流路面積を調整でき、プラズマ状態や成膜状態を最適化することが可能である。
本発明の実施例に係るCVD装置の電極の構造を示す図である。 (a)及び(b)は、本発明の実施例に係るCVD装置の電極を製造する方法を示す図である。 (a)は、本発明のプラズマヘッドの第一の具体例の正面図であり、(b)及び(c)は、第一の具体例の側面図である。 (a)及び(b)は、それぞれ、本発明のプラズマヘッドの第二の具体例の正面図及び側面図である。 (a)は、本発明のプラズマヘッドの単位部材の第一の具体例の正面図であり、(b)及び(c)は、第一の具体例の側面図である。 (a)は、本発明のプラズマヘッドの単位部材の第二の具体例の正面図であり、(b)及び(c)は、第二の具体例の側面図である。 (a)は、本発明のプラズマヘッドの第三の具体例の単位部材の正面図であり、(b)及び(c)は、第三の具体例の側面図である。 本発明の実施例に係るCVD装置の断面図である。 (a)、(b)、(c)は、本発明の実施例に係るCVD装置のプラズマヘッドの断面図である。 本発明の実施例に係るCVD装置のプラズマヘッドの断面図である。 本発明の実施例に係るCVD装置の流路板の断面図である。 従来のCVD装置の断面図である。
1、2、3 プラズマヘッド単位部材
4、11、15 ガス導入口
5、12、16 誘電体部材
6、13、17 プラズマ生成通路
7、14、18 プラズマ供給口
8、9 電極
10 緩衝部材
21、22、23 プラズマヘッド単位部材
24。35 ガス分配通路
25、33 誘電体部材
26、36 プラズマ生成通路
27、37 プラズマ供給口
28、29 電極
30 緩衝部材
31 ガス分配通路領域
32 プラズマ生成通路領域
34 ガス供給配管
41、47、51 ガス導入口
42、48、52 誘電体部材
43、49、53 プラズマ生成通路
44、50、54 プラズマ供給口
45、46 電極
61、66、71 ガス導入口
62、67、72 誘電体部材
63、68、73 プラズマ生成通路
65、70、75 プラズマ供給口
64、69、74 誘導コイル
81、88、95 ガス導入口
82、89、96 誘電体部材
83、90、97 プラズマ生成通路
85、91、98 プラズマ供給口
84、92、99 誘導コイル
86、87、93、94 コイル端子
101、102 原料ガス供給ユニット
103 電源
104 プラズマヘッド
105、106 プラズマ
107 プラズマ反応領域
108 薄膜
109 基板
110 基板搬送ユニット
111 ガス導入口
112 電源
113 容器
114、115 電極
116、117 固体誘電体
118 プラズマ
119 プラズマ吹出し口
120 薄膜
121 基板
201、202 流路板
203、204 石英部材
205、206 電極線
207、208 ガスフローの方向
209 基板
210 支持部材
211、215 石英部材
212、216 電極線
213、217 電極引き出し線
214 開口部
218 封止部
301、306、311、321 流路板
302、307、312、322 放電電極
303、308、313、323 プラズマ
304、309、314、324 基板
305、310、315、325 誘電体基板
326 バイアス電圧印加電極
327 バイアス電圧印加電源
328 アルゴン正イオン
331、335、339 流路板
332、336、340 流路
333、334、337、338、341、342 誘電体部材
  以下、本発明の最良形態について説明する。
(誘電体バリア放電によるグロー放電)
 本願発明者等は、シリコン窒化膜の大気圧CVDの実現を主な目的として鋭意検討を行った。まず、基板のプラズマダメージを防止するため、プラズマ吹き付け成膜を採用し、安定したグロー放電を可能とするため、誘電体バリア放電によるプラズマ形成を採用した。従来法の欠点であるプラズマ発生容器内でのプラズマの反応を防止するため、プラズマ生成部であるプラズマヘッドを、それぞれ独立したプラズマ吹出し口を備えた複数の単位部材で構成し、例えば、シリコン窒化膜のCVDにおいては、シリコンプラズマと窒素プラズマをそれぞれの単位部材で別々に生成することにした。さらに、シリコンプラズマ発生用の単位部材と窒素プラズマ発生用の単位部材が隣接するように並列に配置すると、堆積膜の均一性向上に有効であることがわかった。吹出し口から供給されるプラズマは、プラズマヘッドの中では反応せずに、吹出し口と基板の間の空間で反応し窒化膜を形成するため、極めて効率よく基板上に窒化膜を形成することが可能になった。また、それぞれのプラズマヘッドの単位部材に独立して原料ガスを供給し、プラズマ生成のため印加する電気エネルギーを独立して制御できるように電極を配置した。このことにより、各プラズマの生成条件をそれぞれ最適な条件に設定して成膜を行うことが可能になった。
 また、従来、大気圧でプラズマを生成する場合は、安定して継続的にプラズマを生成するのが困難であるという問題があった。本願発明者等は、電極の構造、及び、基板を配置する部分の構造にも注目し、電極を石英部材の中に封止し、かつ電極と石英部材の間に空間を設け、さらに、基板を石英からなる支持部材の上に置いて、プラズマヘッドからプラズマを基板に供給することで、プラズマが安定して、窒化膜の堆積速度の向上、膜厚や膜質の再現性の向上が可能になることを見出した。
 なお、本明細書で「大気圧」とは、装置を使用する場所の気圧や高度にも依存して変化するが、具体的には、8×10~12×10Paの圧力のことである。この範囲の圧力であれば、減圧や加圧用の大掛かりな装置を用いる必要がなく、設備コストの低減が可能である。
(電極の構造の具体例)
 図1は、本発明の実施例に係るCVD装置の電極の構造を示す図である。プロセスガスを流す流路板201、202のガス噴出部に、石英部材203、204が取りつけられ、石英部材203、204の中空部に電極線205、206が配置されている。流路板201、202のガス噴出部から噴き出すプロセスガスを構成するガス分子は、電極線205、206と基板209間の放電により電気エネルギーを与えられ、プラズマになって基板209に噴射され、プラズマ中のイオンの反応により、基板209上に窒化膜が堆積する。電極線205、206と石英部材203、204は、直接接触せずに、中空部の中で浮いた状態で設置するのが好ましい。中空部内の雰囲気は、真空又は減圧状態にするのが好ましい。減圧状態とする場合は、中空部に封入するガスとしては、Ar、Neなどの貴ガスを用いるのが好ましい。減圧の程度としては、250Torr以下とするのが好ましい。中空部を、真空、又は、貴ガス封入により250Torr以下の減圧とすることにより、より低い電力供給でプラズマが自然発火し、均一な放電による安定したプラズマ生成が可能になる。流路板201、202は、例えば、Alからなる板を加工して作製する。基板209は、石英からなる支持部材210の上に置くのが好ましい。プラズマの安定性が向上する。石英部材203、204の形状は、線状の電極を内部に配置できるように長い中空部を備えていれば、特に限定されるものではない。中空部の断面形状も特に限定されるものではないが、円形であるのが特に好ましい。また、石英部材は、流路板に対し、はめ込みにより取りつけられるように凸部を備えているのが好ましい。流路板には、係る凸部に対応した凹部を設けるものとする。逆に、石英部材に凹部を設け、流路板に凸部を設けてもよい。
 また、支持部材210の下に電極を設けてプラズマに印加するバイアス電圧を制御するのが好ましい。この場合、電極線205、206等の基板209の上部に配置した電極を上部電極と呼び、基板209の下部(支持部材210の下部)に配置した電極を下部電極と呼ぶ。
 図1に示すように、流路板の本体と電極を別の部材として作製し、ほぞとほぞ穴を用い嵌合することも可能であるが、保持具を用いて電極を流路板の下面に設けることも可能である。ほぞ溝加工が不要で、着脱が容易になる。また、流路板の本体と電極を一体成形してもよい。装置の製造が容易になる。ガス通路は流路板と放電電極の一体成形後に加工して形成してもよいし、流路板と放電電極の一体成形時に同時に形成してもよい。
 窒化膜のプロセスガスである窒素やアンモニアを最初から流してもプラズマは生成されないが、Arを流すとプラズマが生成されることがわかった。従って、最初Arを流してプラズマを生成しておいて、プラズマ中の電子を増やしておき、少しずつ、窒素やアンモニアの流量を増やすことで、窒化膜の生成に必要なプラズマが安定して生成されることがわかった。
 図1に示す実施例では、電極線が石英部材に直接接触せずに中空部の中で浮いた状態で設置したものであるが、中空部を設けずに電極線が石英部材に直接接触するように設置してもよい。プラズマヘッドの作製が容易になる。電極線又は金属箔には、Mo又はMo合金を用いるのが好ましい。Mo又はMo合金は、セラミックとの密着性が良好である。
 電極線の周りに中空部を設ける場合でも、設けない場合でも、電極を構成する絶縁部材(上記部材203、204に相当する)としては、セラミック部材を用いるのが好ましく、このセラミック部材としては石英又は透光性アルミナを用いるのが好ましい。また、流路板の材質を、耐熱性を有する金属、又は、セラミックとしてもよい。
 従来のCVD装置で用いられる電極は、例えば、カーボンが露出した構造であるため、カーボンに含まれる不純物が外に出る問題があったが、本発明に係る電極構造は電極線の外側を石英管で覆っているので不純物が外部に出るおそれがない。
 電極線の材質は、Wを用いるのが好ましい。また、Th又はThOを含有するWを用いるのがより好ましく、Thの含有量が4重量%以下とするのが好ましい。電極線の仕事関数が下がり、熱電子放出が促進されるので、プラズマの発生が容易になる。
 電極線に適切な電流を外部から供給して電極全体を加熱するのが好ましい。電極表面の温度が低いと電極表面に窒化膜やシリコン膜が堆積する可能性があり、流路を狭めたり詰まらせたりする等の問題があり好ましくない。電極を加熱することにより、電極表面における堆積物の成長を防止することが可能になる。また、電極の温度を制御することにより、Wからなる電極材料に付加されたThやPTOなどの金属の仕事関数を制御可能になる。これにより金属から放出される電子密度の制御が可能になり、CVDプロセスのより精密な制御が可能になる。
 また、電極材の表面に放射性物質を塗布するのが好ましい。例えば、ストロンチウムを塗布するのが好ましい。放射性物質を塗布することによりプラズマが励起しやすくなる。
 また、電極線の材料よりも仕事関数の小さい材料をエミッタ材として用い、電極線の表面にエミッタ材からなる層を形成するのが好ましい。エミッタ材として、ペロブスカイト型結晶構造を有する材料を用いるのが好ましい。また、TiSrO、MgO、TiOからなる化合物群から選択されたいずれか1種以上の化合物を用いるのが好ましい。いずれの場合も、電極線の仕事関数が下がり、熱電子放出が促進されるので、プラズマの発生が容易になる。
 エミッタ材からなる層は、エミッタ材の原料を乳鉢で粉砕後、水に溶き、にかわを用いて電極線の表面に塗布した後、焼成することにより形成する。或いは、MOCVDにより形成してもよい。エミッタ材によりコイルの隙間を十分に埋めることができる。また、エミッタ材がより緻密に形成でき、組成比も良好になる。
 また、石英部材の中に配置した電極線からなる石英電極は、上記したように高周波電極として用いるだけでなく、ヒーターとして機能させるのが好ましい。石英電極をヒーターとして用いることにより、被膜体の温度を上げる等、被膜体の温度制御が可能になる。
(電極の製造方法)
 図2(a)及び(b)は、本発明の実施例に係るCVD装置の電極を製造する方法を示す図である。最初に図2(a)に示すように、一端に開口部214を有し、もう一端が閉じた中空の石英部材214を用意する。電極212は、例えば、Ni又はNi合金からなる電極線を用いる。図2では、電極線は直線状の電極線であるが、コイル状電極線とするのがより好ましい。コイル状とすることにより電極面積の増加し、放電面積を大きくすることが可能になる。電極212の端部には、引き出し線213を取りつけておく。引出し線は、例えば、Mo又はMo合金からなる厚さ20μm程度の金属箔を用いる。次に、石英部材211の内部を減圧して、真空又は250Torr以下の圧力にし、図2(b)に示すように、開口部214を封止する。これにより、電極216が石英部材215に接触せずに浮いた状態で引き出し線217により支持された電極部材が完成する。
 中空部を減圧にする場合の封入ガスは、上記したように、Ar、Neなどの貴ガスを用いるのが好ましい。また、中空部に封入ガスを導入する前に、不純物濃度が10ppb以下のクリーンなガス(例えばArガス)を用いて、中空部内をパージしてから封入ガスを導入するのが好ましい。
(プラズマヘッドの単位部材の第一の具体例)
 図5(a)及び(b)は、それぞれ、本発明のプラズマヘッドの単位部材の第一の具体例の正面図及び側面図である。単位部材の第一の具体例は、容量結合プラズマを生成する場合のプラズマヘッドの単位部材である。単位部材は、誘電体部材42と誘電体部材42を挟着する一対の電極45、46とから構成される。誘電体部材42は上下に貫通する孔部を備えており、該孔部がプラズマ生成通路43として機能する。誘電体部材42は一体の部材で構成してもよく、複数の部材を貼り合わせて、或いは、組み合わせて形成してもよい。複数の部材で形成した場合は、接合部でガスがリークしないように加工するのが好ましい。孔部の一端がガス導入口41となり、電極45、46に電界を印加し、導入したガス分子に対し電気エネルギーを与え、ラジカル、イオン、電子からなるプラズマを生成する。電界は、一定電界、高周波電界、パルス電界などを用いるのが好ましく、特に、パルス電界を用いるのが好ましい。誘電体を介して電界を印加するので、一定電界を印加した場合でも、誘電体の表面で電荷の蓄積と消滅が繰り返される。そのため、プラズマ放電の状態は、アーク放電に至らず安定したグロー放電となる。生成したプラズマは、孔部のもう一つの端部であるプラズマ供給口50から吹き出す。プラズマ生成条件にもよるが、一般的にプラズマ供給口50から数mmから数cmの範囲にプラズマが供給される。単位部材は、図3(b)に側面図を示すように、一つのプラズマ供給口を備えていてもよく、図5(c)に示すように複数のプラズマ供給口を備えていてもよい。小さい基板に成膜を行う場合は、一つのプラズマ供給口からプラズマを供給してもよい。大面積の基板に成膜を行う場合は、複数のプラズマ供給口からプラズマを供給するほうが成膜均一性向上の点で好ましい。
 また、図5に示すように、誘電体部材にガス通路用の孔部を設けなくても、誘電体部材を間隔をあけて平行に配置し、間隙部をガス通路として利用することも可能である。
 誘電体部材の材料は、プラスティック、ガラス、二酸化シリコン、酸化アルミニウムなどの金属酸化物を用いるのが好ましい。特に、石英ガラスを用いるのが好ましい。比誘電率が2以上の誘電体部材を用いるのが好ましい。比誘電率が10以上の誘電体部材を用いるのがさらに好ましい。誘電体部材の厚さは、0.01~4mmとするのが好ましい。厚すぎると放電プラズマを発生するのに高電圧を要し、薄すぎるとアーク放電が発生しやすくなる。
 電極の材料は、銅、アルミニウム、ステンレスなどの金属や合金を用いるのが好ましい。電極間の距離は、誘電体部材の厚さ、印加電圧の大きさにもよるが、0.1~50mmとするのが好ましい。
(プラズマヘッドの構造)
 (プラズマヘッドの第一の具体例)
 図3(a)は、本発明のプラズマヘッドの第一の具体例の正面図であり、図3(b)及び(c)は、第一の具体例の側面図である。プラズマヘッドは、プラズマヘッド単位部材1、2、3を含め、複数のプラズマヘッド単位部材を順次隣接させて形成されている。図3(a)では、プラズマヘッド単位部材の間に緩衝部材10を挿入してプラズマヘッド単位部材を並列配置している。緩衝部材は必ずしもプラズマヘッドの構成に必須な部材ではないが、挿入することにより、例えば、ガラスなどの破損しやすい部材を誘電体部材5として使用し、複数のプラズマヘッド単位部材を締め付けて固定する際に、誘電体部材5が破損するのを防止できる。プラズマヘッドも、使用する単位部材の構造に応じて、図3(b)に側面図を示すように、一つのプラズマ供給口を備えていてもよく、図3(c)に示すように複数のプラズマ供給口を備えていてもよい。
 (プラズマヘッドの第二の具体例)
 図4(a)及び(b)は、それぞれ、本発明のプラズマヘッドの第二の具体例の正面図及び側面図である。プラズマヘッドは、プラズマヘッド単位部材21、22、23を含め、複数のプラズマヘッド単位部材を順次隣接させて形成されている。プラズマヘッドは、図2(b)に側面図を示すように、複数のプラズマ供給口を備えている。誘電体部材35は、内部に中空部を備えるように加工されている。この中空部が、ガス分配通路やプラズマ生成通路として機能する。一体の誘電体部材の内部に中空部を形成してもよいし、一枚の誘電体板に凹部を形成し、他の誘電体板を貼り合わせて中空部を形成してもよい。プラズマ生成原料となるガスは、ガス供給口34から供給される。誘電体部材35の上部にはガス供給口34から供給されたガスを複数のプラズマ生成通路36に分配するガス分配通路領域が形成されている。このような構造とすることにより、簡素な構造で、原料ガスを均等に多数のプラズマ生成部に供給できるので、CVD装置の小型化に貢献する。
(CVD装置の構造)
 図8は、本発明の実施例に係るCVD装置の断面図である。CVD装置は、第一のガスを供給する原料ガス供給ユニット101と、第二のガスを供給する原料ガスユニット102と、プラズマヘッド単位部材と緩衝部材を順次隣接配置したプラズマヘッド104と、プラズマヘッド単位部材に電力を供給する電源103と、基板を搬送する基板搬送ユニット110とから構成される。プラズマヘッド単位部材は、プラズマ生成通路を備えた誘電体部材と電極からなる。上部のガス導入口から原料ガスを導入し、プラズマ生成通路において、誘電体部材を介して電極から電界を原料ガス分子に印加して励起し、ラジカル、イオン、電子からなるプラズマを生成する。生成したプラズマを下部のプラズマ供給口から基板搬送ユニット110上に置かれた基板109に供給する。搬送ユニットにより基板を移動しながら成膜を行う。これにより連続成膜が可能になる。基板がロールツロールで送られる帯状基板であることがより好ましい。又は、成膜中、基板は静止位置にあり、成膜後搬送ユニットにより次の成膜面に移動する方式を採用してもよい。
 なお、基板109の下方には図示しない下部電極があり、基板の下側からバイアス電圧を印加可能になっている。
 ガス出口は図8に示すように下方向に向けて開口していてもよいし、水平方向に向けて開口していてもよい。ガス出口を下方向に向けて開口する場合は、成膜均一性が向上する。ガス出口を水平方向に向けて開口する場合は、装置の設置面積を小さくできる。
 プラズマ放電は誘電体バリア放電であるため、プラズマは安定したグロー放電となる。また、プラズマは、電子の温度が高く、ラジカル、イオンの温度が低い非平衡プラズマとなる。これにより基板の過剰な温度上昇を回避することが可能になる。
 シリコン窒化膜を生成する場合は、例えば、原料ガスは、シランガスとアンモニアガスを用いる。隣接するプラズマヘッド単位部材に交互にシランガスとアンモニアガスを供給し、それぞれのプラズマ生成通路でシリコンプラズマ105と窒素プラズマ106を生成する。シリコンプラズマと窒素プラズマはプラズマ供給口から下方に数mmから数cmの範囲に広がり、プラズマ反応領域107が形成される。この領域に接触するように基板109を配置することにより、基板109上に窒化膜108が形成される。
 シリコン窒化膜を生成する場合は、他のシリコン源ガスや窒素源ガスを用いることも可能である。シリコン源ガスとしては、シランやジシラン、又は、これらのガスを不活性ガスで希釈した混合ガスを用いることができる。窒素源ガスとしては、アンモニアや窒素、又は、これらのガスを不活性ガスで希釈した混合ガスを用いることができる。
 複数の流路板のうち、隣接する流路板によりシリコン源ガスと窒素源ガスを独立して供給し、シリコン窒化膜を生成することができる。その際、これらの流路板の両端で窒素などの不活性ガスからなるカーテンシール用のガスを流すことも可能である。シリコン源ガスと窒素源ガスの流量を独立して制御可能であり、プロセス条件の精密制御が可能である。
 また、シリコン源ガスと窒素源ガスの混合ガスを同一の流路板から供給してシリコン窒化膜を生成することも可能である。装置構成が簡便になる。
 シリコン窒化膜以外にも、窒素源ガスを供給せず、シリコン源ガスのみ供給することによりシリコン膜を生成することも可能である。
 成膜などのためプラズマを励起する間、流路板の内部の電極近傍に貴ガス又は貴ガスを含む混合ガス(例:アルゴンと窒素)を導入し、電極の空冷を行うのが好ましい。冷却を行わずに、プラズマ励起により電極自体の熱が上昇すると、電極表面に使用している誘電体以外の膜や異物が付着して電極としての機能が損なわれるという問題があり、その防止のため、20℃程度の温度の冷却ガスを循環させるのが好ましい。
 また、プロセスガスやキャリアガスが通過するガス通路や流路板の間のスペースに移動可能な誘電体部材をはめ込むのが好ましい。誘電体部材は石英を用いるのが好ましい。ガス流路面積を調整することが可能で、プロセスの制御性が向上する。図11(a)、(b)、(c)は、本発明の実施例に係るCVD装置の流路板の断面図である。流路板331と誘電体部材333、334に囲まれた流路332(図11(a))は、誘電体部材333、334を移動させることにより、流路336(図11(b))、流路340(図11(c))に示すように、断面積を制御することが可能である。流路面積を制御することによりガスの流速を制御することが可能になる。例えば、ガスの流路面積を狭くすることによりガスの流速を大きくすることができる。
(プラズマ生成条件)
 プラズマを生成する条件は、プラズマを利用する目的に応じて適宜決定される。容量結合プラズマを生成する場合は、一対の電極間に一定電界、高周波電界、パルス電界、マイクロ波による電界を印加しプラズマを発生させる。一定電界以外の電界を印加する場合、使用周波数は、一般的なプラズマ装置で使用される13.56MHzでもよいし、それ以上でも、それ以下でもよい。特許文献6には、プラズマ装置で100MHzの高周波プラズマを用い堆積膜への損傷を防止する技術が開示されている。電界の周波数を制御することにより、堆積速度、堆積膜の膜質等を最適化することができる。
 プラズマ生成用の電界は、特に、パルス電界を用いるのが好ましい。パルス電界の電界強度は、10~1000kV/cmの範囲とするのが好ましい。パルス電界の周波数は、0.5kHz以上とするのが好ましい。
(誘導結合プラズマ装置)
 (プラズマヘッドの単位部材の第二の具体例)
 本発明のプラズマヘッドに係る技術的思想は、容量結合プラズマ生成用プラズマヘッドに限定して適用されるものではなく、例えば、誘導結合プラズマ生成用プラズマヘッドに適用することも可能である。
 図6(a)は、本発明のプラズマヘッドの単位部材の第二の具体例の正面図であり、図6(b)及び(c)は、第二の具体例の側面図である。第二の具体例は、誘導結合プラズマ生成用プラズマヘッドの単位部材である。単位部材は、誘電体部材62と誘電体部材62の周囲に隣接して配置された誘導コイル64とから構成される。誘電体部材62は上下に貫通する孔部を備えており、該孔部がプラズマ生成通路63として機能する。誘電体部材62は一体の部材で構成してもよく、複数の部材を貼り合わせて、或いは、組み合わせて形成してもよい。複数の部材で形成した場合は、接合部でガスがリークしないように加工するのが好ましい。孔部の一端がガス導入口61となり、誘導コイル64に電流を流し、形成される磁界により導入したガス分子に対し磁気エネルギーを与え、ラジカル、イオン、電子からなるプラズマを生成する。プラズマ放電の状態は、安定したグロー放電となる。生成したプラズマは、孔部のもう一つの端部であるプラズマ供給口65から吹き出す。プラズマ生成条件にもよるが、一般的にプラズマ供給口65から数mmから数cmの範囲にプラズマが供給される。単位部材は、図6(b)に側面図を示すように、一つのプラズマ供給口を備えていてもよく、図6(c)に示すように複数のプラズマ供給口を備えていてもよい。小さい基板に成膜を行う場合は、一つのプラズマ供給口からプラズマを供給してもよい。大面積の基板に成膜を行う場合は、複数のプラズマ供給口からプラズマを供給するほうが好ましい。
 (プラズマヘッドの第三の具体例)
 図7(a)は、本発明のプラズマヘッドの第三の具体例の単位部材の正面図であり、図7(b)及び(c)は、第三の具体例の側面図である。第三の具体例は、誘導結合プラズマ生成用プラズマヘッドの単位部材である。単位部材は、誘電体部材82と誘電体部材82に隣接して配置された誘導コイル84とから構成される。誘電体部材82は上下に貫通する孔部を備えており、該孔部がプラズマ生成通路83として機能する。誘電体部材82は一体の部材で構成してもよく、複数の部材を貼り合わせて、或いは、組み合わせて形成してもよい。複数の部材で形成した場合は、接合部でガスがリークしないように加工するのが好ましい。誘導コイル84の端子86と端子87は電気的に接触しないように、誘電体部材を介して離間して配置される。孔部の一端がガス導入口81となり、誘導コイル84に電流を流し、形成される磁界により導入したガス分子に対し磁気エネルギーを与え、ラジカル、イオン、電子からなるプラズマを生成する。プラズマ放電の状態は、安定したグロー放電となる。生成したプラズマは、孔部のもう一つの端部であるプラズマ供給口85から吹き出す。プラズマ生成条件にもよるが、一般的にプラズマ供給口85から数mmから数cmの範囲にプラズマが供給される。単位部材は、図7(b)に側面図を示すように、一つのプラズマ供給口を備えていてもよく、図7(c)に示すように複数のプラズマ供給口を備えていてもよい。小さい基板に成膜を行う場合は、一つのプラズマ供給口からプラズマを供給してもよい。大面積の基板に成膜を行う場合は、複数のプラズマ供給口からプラズマを供給するほうが好ましい。
(プラズマヘッドの製造方法)
 (貼り合わせ法)
 本発明に係るプラズマヘッドを構成する誘電体部材の作製を行うには、プラズマ生成通路やガス分配通路のような複雑な形状の中空部を加工する必要がある。係る中空部を有する誘電体部材は、複数の誘電体部材の表面に凹部を形成した後、凹部を有する誘電体部材同士を貼り合わせる、又は、凹部を有する誘電体部材と平坦な誘電体部材を貼り合わせて形成することが可能である。
 係る方法で貼り付けて中空部を形成した誘電体部材を、さらに、電極又は誘導コイルと積層してプラズマヘッド単位部材を形成する。さらに、複数のプラズマヘッド単位をテフロン(登録商標)などの緩衝部材を介して積層してプラズマヘッドを形成する。
 (射出成形法)
 プラズマヘッド単位は、射出成型法を用いても作製することが可能である。電極又は誘導コイルと中子とを型の中に配置して、誘電体部材の原料を前記型の中に流し込む。その後、型から取り外し、電極又は誘導コイルは残して中子を抜きとる。作製したプラズマヘッド単位部材は、さらに、テフロン(登録商標)などの緩衝部材を介して複数積層してプラズマヘッドを形成する。
(類似の先行技術との相違点)
 特許文献4には、複数の誘電体細管を束ねたプラズマヘッドから誘電体放電により生成したプラズマを物体に照射して、物体表面の改質や殺菌を行う方法が開示されている。しかし、特許文献4に開示された技術は、複数のプラズマ吹出し口を備えているものの、ガス導入口やプラズマを生成する電極が、各細管で独立したものではない。また、各細管のそれぞれに独立したガス導入口や電極を備える技術を示唆する記載もない。従って、特許文献4に記載された内容から、本発明に係る複数配置されたプラズマ生成部で異なるプラズマを発生し、プラズマヘッドと基板の間の空間でプラズマ反応させる技術を容易に考案できるものではない。
 特許文献5には、TEOSなどの金属含有ガスと酸素などの反応ガスを反応させ、酸化シリコンなどの金属含有薄膜を形成する技術が開示されている。しかし、特許文献5に記載された技術は、プラズマ化した反応ガスとプラズマ化していない金属含有ガスを合流させて反応させ薄膜を形成する技術であり、プラズマヘッドを複数の単位部材を並列配置して構成し、該単位部材ごとに異なるプラズマを発生させた後、係る異なるプラズマ同士の反応で薄膜を形成する本発明に係る技術とは異なる。本発明に係る技術は、複数の誘電体部材と電極を交互に積層することにより、異なるプラズマを生成するプラズマ吹出し口を極めて近接させて高密度に形成することが可能な技術であり、特許文献5に記載された内容から本発明に係る技術を容易に考案できるものではない。
 以上のように、本発明に係るCVD装置、及び、CVD膜の製造方法を用いることにより、例えば、太陽電池の反射防止膜形成を目的とする高品質窒化膜の低コスト製造が可能になり、エレクトロニクスの分野で大きく貢献する。
 以下に、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に限定されない。
(実施例1)
(電極試験1)
 本発明に係る中空部を備えた電極(上部電極)のプラズマ生成最適条件を調べるために、中空部雰囲気と流路板に流すガスの条件を変更して、プラズマが自然着火する最低供給電力を測定した。比較のため、中空部を持たない放電電極についても測定を行った。また、流路板はセラック部材により形成し、ガス通路は、流路板の側面に形成した。
 
Figure JPOXMLDOC01-appb-T000001
 
なお、放電電極を構成する部材は以下のものを用いた。
電極線:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材は使用せず。
セラミック部材:石英
 
 プラズマが自然着火する電源出力が700W以下の場合が、花火放電が発生せず、プラズマ状態も安定し、成膜に適していることがわかった。その結果、プラズマを安定に維持するため流路板に流すキャリアガスとしては、Nを含まないArを用いるのが好適であることがわかった。また、中空部の雰囲気としては、真空封止にするか、250Torr以下のAr封止とするのが好ましいことがわかった。また、封入ガスを他のガスとして行った実験により、Ar以外のNe等の貴ガスを、キャリアガス及び中空部の封入ガスとして用いた場合でもArと同様の優れた結果が得られた。
(実施例2)
(電極試験2)
 次に、本発明に係る電極を用い、部材の材料と流路板に流すガスの条件を変更して、プラズマが自然着火する最低供給電力を測定した。なお、放電電極は中空部あり、貴ガス封入(250Torr)とした。また、流路板は耐熱性金属部材により形成し、ガス通路は、流路板の側面に形成した。
 
Figure JPOXMLDOC01-appb-T000002
 
条件1:直線状電極線(Ni合金)、一端が金属箔(Mo)に接続、エミッタ材は使用せず、セラミック部材は石英、Ni合金はNi-W合金を用いた。
条件2:直線状電極線(Ni)、一端が金属箔(Mo合金)に接続、エミッタ材は使用せず、セラミック部材は石英、Mo合金はMo-W合金を用いた。
条件3:直線状電極線(Th・1重量%含有W)、一端が金属箔(Mo)に接続、エミッタ材は使用せず、セラミック部材は石英
条件4:直線状電極線(Th・4重量%含有W)、一端が金属箔(Mo)に接続、エミッタ材は使用せず、セラミック部材は石英
条件5:直線状電極線(Th・10重量%含有W)、一端が金属箔(Mo)に接続、エミッタ材は使用せず、セラミック部材は石英
条件6:直線状電極線(ThO・4重量%含有W)、一端が金属箔(Mo)に接続、エミッタ材は使用せず、セラミック部材は石英
条件7:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材は使用せず、セラミック部材は透光性アルミナ
条件8:コイル状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材は使用せず、セラミック部材は石英
(実施例3)
(電極試験3)
次に、本発明に係る電極を用い、電極線の表面に形成するエミッタ材からなる層と流路板に流すガスの条件を変更して、プラズマが自然着火する最低供給電力を測定した。なお、放電電極は中空部あり、貴ガス封入(250Torr)とした。
 
Figure JPOXMLDOC01-appb-T000003
 
条件9:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材は使用せず、セラミック部材は石英
条件10:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材として、ペロブスカイト型結晶構造のTiSrOをにかわ塗布・焼成により形成、セラミック部材は石英
条件11:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材として、ペロブスカイト型結晶構造のMgOをにかわ塗布・焼成により形成、セラミック部材は石英
条件12:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材として、ペロブスカイト型結晶構造のTiOをにかわ塗布・焼成により形成、セラミック部材は石英
条件13:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材として、ペロブスカイト型結晶構造のTiSrOをMOCVDにより形成、セラミック部材は石英
条件14:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材として、ペロブスカイト型結晶構造のMgOをMOCVDにより形成、セラミック部材は石英
条件15:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材として、ペロブスカイト型結晶構造のTiOをMOCVDにより形成、セラミック部材は石英
(実施例4)
(窒化膜の成膜評価1)
 誘電体バリア放電用に準備した電極を利用して、高周波電源、或いは、低周波電源を用い、大気圧プラズマを発生させる場合、単に上部及び下部電極間に適切な実行電圧を印加することに加え、例えば、下部電極にバイアスとして電圧を印加し、基板表面に衝突する電子、或いは、荷電した反応分子の衝突エネルギーを和らげ、基板のダメージを制御し目的とする反応がより良く進行するようにすることもできる。電極と基板間だけでなく、電極と電極の間でプラズマが発生するようにバイアス電圧を印加して窒化シリコン膜を堆積し、膜質を評価した。
 図9(a)、(b)、(c)は、本発明の実施例に係るCVD装置のプラズマヘッドの断面図である。図9(a)は、基板をアース電位として、複数の電極に対し順に正のバイアス電圧、負のバイアス電圧を印加した場合のプラズマの生成状態を示す図である。図9(b)は、図9(a)における基板電位をフローティングとした場合である。図9(c)は、基板をアース電位として、全ての電極に正のバイアス電圧を印加した場合のプラズマの生成状態を示す図である。
 堆積膜を評価したところ、図9(a)に示す場合は、グロー放電による安定したプラズマが生成し、緻密な薄膜が得られたのに対し、図9(b)、(c)の場合は、グロー放電による安定したプラズマが生成したものの、図9(a)の場合にくらべ緻密さに欠ける薄膜が得られた。図9(a)の場合は、隣接する電極間でもプラズマが形成され、プラズマ領域が広く、成膜速度が大きくなる。また、基板に対する正イオンの衝突が緩和されるので、堆積膜におけるダメージが小さくなるものと考えられる。
 
Figure JPOXMLDOC01-appb-T000004
 
なお、放電電極を構成する部材は以下のものを用いた。プラズマ励起周波数は13.56MHzを用いた。
中空部あり、真空封止
電極線:直線状電極線(Ni)、一端が金属箔(Mo)に接続、エミッタ材は使用せず。
セラミック部材:石英
 従来法として熱CVD法により窒化膜を形成する場合と比較した。本発明の成膜法では、図9(a)、(b)、(c)に示すいずれのバイアス印加の場合も熱CVD法と比較し、堆積速度の向上がみられた。その中でも、図9(a)に示すバイアス印加の場合に、特に高い成膜速度が得られた。一方、堆積した膜の膜質を評価するために、緩衝フッ酸によるエッチング速度を評価した。エッチング速度が小さいほど膜質が緻密であることを示す。熱CVD法では堆積速度は低いものの緻密な膜の形成が可能である。それに対し、図9
(a)、(b)、(c)に示すプラズマヘッドを用いた本発明によるCVD法の中では、特に図9(a)に示す場合が最も膜質が緻密になることがわかった。
(実施例5)
(窒化膜の成膜評価2)
実施例4と同様の成膜評価実験を、プラズマ励起周波数を変化させて行った。
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
(実施例6)
 アルゴンイオン等の正イオンの衝突による基板ダメージの緩和を目的として、基板側に正のバイアス電圧を印加する方式の効果を評価した。図10は、本発明の実施例に係るCVD装置のプラズマヘッドの断面図である。堆積基板324の下に誘電体基板325を配置し、その下にバイアス電圧印加電極326を配置した。バイアス電圧印加電極326には、電源327により正のバイアス電圧を印加している。電極322から堆積基板324に向かうアルゴンの正イオン328による基板ダメージがバイアス電圧印加電極326により形成される電界により緩和されると考えられる。実験の結果、堆積した薄膜の膜質は、電源327により正のバイアス電圧を印加した場合は印加しなかった場合に比べ、より緻密になっていることがわかった。
(実施例7)
 放電電極の冷却の効果を調べるため、13.56MHzで2000W
のRF電力でArガスプラズマを1時間発生し続けた後、電極温度を測定した。その結果、冷却を行わない場合は、電極温度が150℃になったのに対し、Arガス及び窒素ガスで冷却した場合、それぞれの電極温度は50℃、60℃と十分な冷却の効果が得られた。

Claims (63)

  1. 流路板を所定枚数積み重ねて構成され、前記流路板のガス出口側端面に、中空部を有するセラミック部材の該中空部内に電極線が非接触状態で配置されてなる放電電極が設けられていることを特徴とするプラズマCVD装置。
  2. 前記流路板の側面にガス通路が形成されていることを特徴とする請求項1記載のプラズマCVD装置。
  3. 前記中空部内が真空であることを特徴とする請求項1又は2のいずれか1項記載のプラズマCVD装置。
  4. 前記中空部内にガスが封入され、前記ガスが貴ガスであることを特徴とする請求項1又は2のいずれか1項記載のプラズマCVD装置。
  5. 前記中空部内が250Torr以下に減圧されていることを特徴とする請求項4記載のプラズマCVD装置。
  6. 前記貴ガスがArガス又はNeガスであること特徴とする請求項4又は5のいずれか1項記載のプラズマCVD装置。
  7. 前記電極線の一端が金属箔に接続され、該金属箔の端が外部引き出し部となり、その途中においては、セラミック部材の一端を絞り込んで該金属箔を接触封止させてあることを特徴とする請求項1乃至6のいずれか1項記載のプラズマCVD装置。
  8. 前記電極線がNi又はNi合金からなることを特徴とする請求項1乃至7のいずれか1項記載のプラズマCVD装置。
  9. 前記電極線がTh又はThOを含有するWからなることを特徴とする請求項1乃至7のいずれか1項記載のプラズマCVD装置。
  10. Thの含有量が4重量%以下であることを特徴とする請求項9記載のプラズマCVD装置。
  11. 前記電極線がコイル状電極線であることを特徴とする請求項1乃至10のいずれか1項記載のプラズマCVD装置。
  12. 前記電極線の表面にエミッタ材からなる層が形成されており、前記エミッタ材が前記電極線の材料よりも仕事関数の小さい材料であることを特徴とする請求項1乃至11のいずれか1項記載のプラズマCVD装置。
  13. 前記エミッタ材がペロブスカイト型結晶構造を有する材料であることを特徴とする請求項12記載のプラズマCVD装置。
  14. 前記エミッタ材が、TiSrO、MgO、TiOからなる化合物群から選択されたいずれか1種以上の化合物であることを特徴とする請求項12又は13のいずれか1項記載のプラズマCVD装置。
  15. 前記エミッタ材からなる層が、前記エミッタ材の原料を乳鉢で粉砕後、水に溶き、にかわを用いて前記電極線の表面に塗布した後、焼成することにより形成した層であることを特徴とする請求項12乃至14のいずれか1項記載のプラズマCVD装置。
  16. 前記エミッタ材からなる層が、MOCVDにより形成した層であることを特徴とする請求項12乃至14のいずれか1項記載のプラズマCVD装置。
  17. 前記金属箔がMo又はMo合金であることを特徴とする請求項7乃至16のいずれか1項記載のプラズマCVD装置。
  18. 流路板を所定枚数積み重ねて構成され、前記流路板のガス出口側端面に、セラミック部材の内部に電極線又は金属箔が封入配置されてなる放電電極が設けられていることを特徴とするプラズマCVD装置。
  19. 前記流路板の側面にガス通路が形成されていることを特徴とする請求項18記載のプラズマCVD装置。
  20. 前記金属箔がMo又はMo合金であることを特徴とする請求項18又は19のいずれか1項記載のプラズマCVD装置。
  21. 前記セラミックが石英であることを特徴とする請求項1乃至20のいずれか1項記載のプラズマCVD装置。
  22. 前記セラミックが透光性アルミナであることを特徴とする請求項1乃至20のいずれか1項記載のプラズマCVD装置。
  23. 前記流路板が耐熱性を有する金属からなることを特徴とする請求項1乃至22のいずれか1項記載のプラズマCVD装置。
  24. 前記流路板がセラミックからなることを特徴とする請求項1乃至22のいずれか1項記載のプラズマCVD装置。
  25. 前記流路板の前記ガス出口側端面にほぞ穴を有し、前記放電電極の一面にほぞを有し、該ほぞ穴を該ほぞに嵌合することにより前記放電電極を前記流路板に設けたことを特徴とする請求項1乃至24のいずれか1項記載のプラズマCVD装置。
  26. 保持具を用いて、前記放電電極を前記流路板の下面に設けたことを特徴とする請求項1乃至24のいずれか1項記載のプラズマCVD装置。
  27. 前記流路板と前記放電電極を一体成形してあることを特徴とする請求項1乃至24のいずれか1項記載のプラズマCVD装置。
  28. 前記ガス通路を前記流路板と前記放電電極の一体成形後に加工して形成することを特徴とする請求項27記載のプラズマCVD装置。
  29. 前記ガス通路を前記流路板と前記放電電極の一体成形時に形成することを特徴とする請求項27記載のプラズマCVD装置。
  30. 前記放電電極に対向した位置に基板を配置してあることを特徴とする請求項1乃至29のいずれか1項記載のプラズマCVD装置。
  31. 前記基板が移動可能であることを特徴とする請求項30記載のプラズマCVD装置。
  32. 前記基板がロールツロールで送られる帯状基板であることを特徴とする請求項31記載のプラズマCVD装置。
  33. 窒化シリコン膜の成膜装置であることを特徴とする請求項1乃至32のいずれか1項記載のプラズマCVD装置。
  34. シリコン膜の成膜装置であることを特徴とする請求項1乃至32のいずれか1項記載のプラズマCVD装置。
  35. 前記複数の流路板において、少なくとも窒素源ガスとシリコン源ガスを供給し、前記窒素源ガスと前記シリコン源ガスを異なる流路板から供給することを特徴とする請求項1乃至34のいずれか1項記載のプラズマCVD装置。
  36. 前記複数の流路板において、少なくとも窒素源ガスとシリコン源ガスの混合ガスを供給することを特徴とする請求項1乃至34のいずれか1項記載のプラズマCVD装置。
  37. 前記窒化シリコン膜又は前記シリコン膜を連続的に成膜するための装置であることを特徴とする請求項33乃至36のいずれか1項記載のプラズマCVD装置。
  38. 前記ガス出口が下方向に向けて開口していることを特徴とする請求項1乃至37のいずれか1項記載のプラズマCVD装置。
  39. 前記ガス出口が水平方向に向けて開口していることを特徴とする請求項1乃至37のいずれか1項記載のプラズマCVD装置。
  40. 複数の前記放電電極、及び、前記基板に対するバイアス電圧が、隣りあう前記放電電極に対し交互に正のバイアス電圧と負のバイアス電圧を印加し、前記基板に対し負のバイアス電圧を印加して成膜を行うことを特徴とする請求項31乃至39のいずれか1項記載のプラズマCVD装置。
  41. 複数の前記放電電極、及び、前記基板に対するバイアス電圧が、隣りあう前記放電電極に対し交互に正のバイアス電圧と負のバイアス電圧を印加し、前記基板をフローティング電位として成膜を行うことを特徴とする請求項31乃至39のいずれか1項記載のプラズマCVD装置。
  42. 複数の前記放電電極、及び、前記基板に対するバイアス電圧が、前記放電電極に対し正のバイアス電圧を印加し、前記基板に対し負のバイアス電圧を印加して成膜を行うことを特徴とする請求項31乃至39のいずれか1項記載のプラズマCVD装置。
  43. 前記基板の下に誘電体基板を配置し、前記誘電体基板に正のバイアス電圧を印加して成膜を行うことを特徴とする請求項40乃至41のいずれか1項記載のプラズマCVD装置。
  44. 前記放電電極を貴ガス又は不活性ガスにより冷却しながら成膜を行うことを特徴とする請求項1乃至43のいずれか1項記載のプラズマCVD装置。
  45. プラズマ生成のために前記放電電極により発生する電界が高周波電界又はパルス電界であり、前記高周波電界又はパルス電界の周波数が13.56MHzよりも低い周波数、又は、13.56MHzよりも高い周波数であることを特徴とする請求項1乃至44のいずれか1項記載のプラズマCVD装置。
  46. 前記ガス通路内に移動可能な石英部材をはめ込んだことを特徴とする請求項1乃至45のいずれか1項記載のプラズマCVD装置。
  47. 中空部を有するセラミック部材の該中空部内に電極線が非接触状態で配置されてなる放電電極。
  48. 前記中空部内が真空であることを特徴とする請求項47記載の放電電極。
  49. 前記中空部内にガスが封入され、前記ガスが貴ガスであることを特徴とする請求項47記載の放電電極。
  50. 前記中空部内が250Torr以下に減圧されていることを特徴とする請求項49記載の放電電極。
  51. 前記貴ガスがArガス又はNeガスであること特徴とする請求項49又は50のいずれか1項記載の放電電極。
  52. 前記電極線の一端が金属箔に接続され、該金属箔の端が外部引き出し部となり、その途中においては、セラミック部材の一端を絞り込んで該金属箔を接触封止させてあることを特徴とする請求項47乃至51のいずれか1項記載の放電電極。
  53. 前記電極線がNi又はNi合金からなることを特徴とする請求項47乃至52のいずれか1項記載の放電電極。
  54. 前記電極線がTh又はThOを含有するWからなることを特徴とする請求項47乃至53のいずれか1項記載の放電電極。
  55. Thの含有量が4重量%以下であることを特徴とする請求項54記載の放電電極。
  56. 前記電極線がコイル状電極線であることを特徴とする請求項47乃至55のいずれか1項記載の放電電極。
  57. 前記電極線の表面にエミッタ材からなる層が形成されており、前記エミッタ材が前記電極線の材料よりも仕事関数の小さい材料であることを特徴とする請求項47乃至56のいずれか1項記載の放電電極。
  58. 前記エミッタ材がペロブスカイト型結晶構造を有する材料であることを特徴とする請求項57記載の放電電極。
  59. 前記エミッタ材が、TiSrO、MgO、TiOからなる化合物群から選択されたいずれか1種以上の化合物であることを特徴とする請求項57又は58のいずれか1項記載の放電電極。
  60. 前記エミッタ材からなる層が、前記エミッタ材の原料を乳鉢で粉砕後、水に溶き、にかわを用いて前記電極線の表面に塗布した後、焼成することにより形成した層であることを特徴とする請求項57乃至59のいずれか1項記載の放電電極。
  61. 前記エミッタ材からなる層が、MOCVDにより形成した層であることを特徴とする請求項57乃至59のいずれか1項記載の放電電極。
  62. 前記金属箔がMo又はMo合金であることを特徴とする請求項52乃至61のいずれか1項記載の放電電極。
  63. 請求項1乃至46のいずれか1項記載のプラズマCVD装置を用いCVD膜を成膜するCVD膜の製造方法。
PCT/JP2012/064176 2011-06-03 2012-05-31 Cvd装置、及び、cvd膜の製造方法 WO2012165583A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012546277A JP6088247B2 (ja) 2011-06-03 2012-05-31 Cvd装置、及び、cvd膜の製造方法
US14/122,028 US9831069B2 (en) 2011-06-03 2012-05-31 CVD apparatus and method for forming CVD film
KR1020147000005A KR101929607B1 (ko) 2011-06-03 2012-05-31 Cvd 장치, 및 cvd 막의 제조 방법
EP12792957.8A EP2717657A4 (en) 2011-06-03 2012-05-31 CVD DEVICE AND CVD FILM MANUFACTURING METHOD
CN201280027217.0A CN103766000B (zh) 2011-06-03 2012-05-31 Cvd装置以及cvd膜的制造方法
KR1020167035084A KR20160148721A (ko) 2011-06-03 2012-05-31 Cvd 장치, 및 cvd 막의 제조 방법
US15/797,180 US20180076008A1 (en) 2011-06-03 2017-10-30 Discharge electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011125340 2011-06-03
JP2011-125340 2011-06-03
JP2012081778 2012-03-30
JP2012-081778 2012-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/122,028 A-371-Of-International US9831069B2 (en) 2011-06-03 2012-05-31 CVD apparatus and method for forming CVD film
US15/797,180 Division US20180076008A1 (en) 2011-06-03 2017-10-30 Discharge electrode

Publications (1)

Publication Number Publication Date
WO2012165583A1 true WO2012165583A1 (ja) 2012-12-06

Family

ID=47259435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064176 WO2012165583A1 (ja) 2011-06-03 2012-05-31 Cvd装置、及び、cvd膜の製造方法

Country Status (7)

Country Link
US (2) US9831069B2 (ja)
EP (1) EP2717657A4 (ja)
JP (2) JP6088247B2 (ja)
KR (2) KR20160148721A (ja)
CN (1) CN103766000B (ja)
TW (1) TWI608122B (ja)
WO (1) WO2012165583A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103889138A (zh) * 2012-12-24 2014-06-25 中国科学院微电子研究所 等离子体放电装置
US20140186990A1 (en) * 2011-06-03 2014-07-03 Wacom Cvd apparatus and method for forming cvd film
CN104561894A (zh) * 2014-12-25 2015-04-29 信利(惠州)智能显示有限公司 一种掩膜板的制造方法
WO2015131981A1 (en) * 2014-03-05 2015-09-11 Dow Corning France Plasma treatment of substrates
WO2016067380A1 (ja) * 2014-10-29 2016-05-06 東芝三菱電機産業システム株式会社 放電発生器とその電源装置
WO2016210187A1 (en) * 2015-06-26 2016-12-29 Sunpower Corporation Thermal compression bonding approaches for foil-based metallization of solar cells

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473464B1 (ko) * 2014-07-30 2014-12-18 성균관대학교산학협력단 무기박막의 제조방법 및 이를 위한 제조장치
CN105369218B (zh) * 2014-08-06 2019-02-01 成均馆大学校产学协力团 无机薄膜的高速沉积方法以及用于所述方法的装置
CN105369222B (zh) * 2014-08-06 2019-02-01 成均馆大学校产学协力团 包含多种前体的无机薄膜的制备方法及用于该方法的装置
CN105821395B (zh) * 2015-01-22 2019-08-13 成均馆大学校产学协力团 金属氧化物薄膜的沉积方法及其制备装置
DE112015007036B4 (de) * 2015-10-19 2023-09-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Filmbildungsvorrichtung
WO2018003002A1 (ja) * 2016-06-28 2018-01-04 東芝三菱電機産業システム株式会社 活性ガス生成装置及び成膜処理装置
CN107190247B (zh) * 2017-06-20 2019-02-22 山西潞安太阳能科技有限责任公司 一种太阳能电池pecvd多层钝化减反膜的制备方法
EP3474635B1 (en) * 2017-10-17 2021-08-18 Leibniz-Institut für Plasmaforschung und Technologie e.V. Modular plasma jet treatment system
US11600517B2 (en) * 2018-08-17 2023-03-07 Taiwan Semiconductor Manufacturing Co., Ltd. Screwless semiconductor processing chambers
CN112626500A (zh) * 2020-12-03 2021-04-09 无锡市邑晶半导体科技有限公司 一种基于等离子体增强原子层沉积技术制备纳米金颗粒薄膜的方法
CN115449780B (zh) * 2022-08-17 2024-04-09 安徽工业大学 一种等离子体射流快速制备亲疏水微流道的装置与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190137A (ja) * 1992-01-14 1993-07-30 Matsushita Electron Corp 冷陰極蛍光ランプ
JP2003132847A (ja) * 2001-10-26 2003-05-09 Toto Ltd 高圧放電灯及び照明装置
JP2004076076A (ja) * 2002-08-14 2004-03-11 Konica Minolta Holdings Inc 大気圧プラズマ処理装置及び大気圧プラズマ処理方法
JP2007173197A (ja) * 2005-05-25 2007-07-05 Sumitomo Electric Ind Ltd 電極材料
JP2007273752A (ja) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd プラズマ処理装置およびプラズマ生成装置
JP2009260281A (ja) * 2008-03-28 2009-11-05 Mitsubishi Electric Corp 薄膜形成方法および薄膜形成装置、並びにそれを用いて製造された薄膜半導体装置
JP2011108615A (ja) * 2009-10-23 2011-06-02 Sharp Corp プラズマ処理装置

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2485479A (en) * 1948-10-08 1949-10-18 Koppers Co Inc Electrochemical production of nitrogen oxide
US2806931A (en) * 1952-09-22 1957-09-17 Gosta C Akerlof Electrical heating device
US3271619A (en) * 1963-07-26 1966-09-06 Gen Electric Triggered vacuum discharge device
JPS5345072A (en) * 1976-10-04 1978-04-22 Matsushita Electronics Corp High pressure metal vapor discharge lamp
JPS58220477A (ja) 1982-06-16 1983-12-22 Japan Solar Energ Kk 太陽電池の製造方法
JPS6350025A (ja) 1986-08-20 1988-03-02 Tadahiro Omi 半導体製造装置
US5130170A (en) * 1989-06-28 1992-07-14 Canon Kabushiki Kaisha Microwave pcvd method for continuously forming a large area functional deposited film using a curved moving substrate web with microwave energy with a directivity in one direction perpendicular to the direction of microwave propagation
EP0482230B1 (de) * 1990-10-22 1995-06-21 Heraeus Noblelight GmbH Hochleistungsstrahler
JP2714247B2 (ja) * 1990-10-29 1998-02-16 キヤノン株式会社 マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する方法及び装置
JP2824808B2 (ja) * 1990-11-16 1998-11-18 キヤノン株式会社 マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する装置
JPH06314587A (ja) * 1993-04-30 1994-11-08 Tanaka Kikinzoku Kogyo Kk 放電を伴う電極用複合材料
JP3015268B2 (ja) 1994-12-27 2000-03-06 オーニット株式会社 低温プラズマ発生体
DE19635232A1 (de) * 1996-08-30 1998-03-05 Siemens Ag Verfahren und Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
US6194036B1 (en) * 1997-10-20 2001-02-27 The Regents Of The University Of California Deposition of coatings using an atmospheric pressure plasma jet
US7029636B2 (en) * 1999-12-15 2006-04-18 Plasmasol Corporation Electrode discharge, non-thermal plasma device (reactor) for the pre-treatment of combustion air
JP2002110671A (ja) 2000-07-28 2002-04-12 Sekisui Chem Co Ltd 半導体素子の製造方法
JP2002158219A (ja) 2000-09-06 2002-05-31 Sekisui Chem Co Ltd 放電プラズマ処理装置及びそれを用いた処理方法
JP4755754B2 (ja) 2000-12-06 2011-08-24 株式会社東芝 窒化珪素基板およびそれを用いた窒化珪素回路基板並びにその製造方法
CA2452939A1 (en) * 2001-07-02 2003-01-16 Seth Tropper A novel electrode for use with atmospheric pressure plasma emitter apparatus and method for using the same
JP5131629B2 (ja) * 2001-08-13 2013-01-30 日産自動車株式会社 固体電解質型燃料電池の製造方法
EP1293587A1 (en) * 2001-09-14 2003-03-19 Kabushiki Kaisha Kobe Seiko Sho Vacuum coating apparatus with central heater
JP2004006536A (ja) * 2002-05-31 2004-01-08 Ishikawajima Harima Heavy Ind Co Ltd 薄膜製造方法及び装置
JP4231250B2 (ja) 2002-07-05 2009-02-25 積水化学工業株式会社 プラズマcvd装置
US6963259B2 (en) * 2002-06-27 2005-11-08 Harris Corporation High efficiency resonant line
JP3686647B2 (ja) 2002-10-07 2005-08-24 積水化学工業株式会社 プラズマ表面処理装置の電極構造
WO2004061929A1 (ja) * 2002-12-27 2004-07-22 Hitachi Kokusai Electric Inc. プラズマ発生装置、オゾン発生装置、基板処理装置、及び半導体デバイスの製造方法
WO2004108984A1 (ja) * 2003-06-06 2004-12-16 Konica Minolta Holdings, Inc. 薄膜形成方法および薄膜形成体
US7090811B2 (en) * 2003-12-11 2006-08-15 General Motors Corporation Method of reducing NOx in diesel engine exhaust
JP4393878B2 (ja) * 2004-01-19 2010-01-06 株式会社キーエンス 除電器
US7737382B2 (en) * 2004-04-01 2010-06-15 Lincoln Global, Inc. Device for processing welding wire
JP2006024634A (ja) * 2004-07-06 2006-01-26 Sharp Corp プラズマプロセス装置
JP4576190B2 (ja) * 2004-09-29 2010-11-04 三菱重工業株式会社 プラズマ処理装置
US20060156983A1 (en) * 2005-01-19 2006-07-20 Surfx Technologies Llc Low temperature, atmospheric pressure plasma generation and applications
EP1689216A1 (en) * 2005-02-04 2006-08-09 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Atmospheric-pressure plasma jet
JP4574387B2 (ja) * 2005-02-21 2010-11-04 積水化学工業株式会社 プラズマ処理装置
US7922979B2 (en) * 2005-03-28 2011-04-12 Mitsubishi Denki Kabushiki Kaisha Silent discharge plasma apparatus
CN101128964B (zh) * 2005-03-28 2012-05-09 三菱电机株式会社 无声放电式等离子体装置
US20090301860A1 (en) * 2005-05-31 2009-12-10 Nittetsu Mining Co., Ltd. Gas excitation apparatus having suspended electrode and gas excitation method
US7662253B2 (en) * 2005-09-27 2010-02-16 Lam Research Corporation Apparatus for the removal of a metal oxide from a substrate and methods therefor
RU2462534C2 (ru) * 2006-07-31 2012-09-27 Текна Плазма Системз Инк. Плазменная обработка поверхности с использованием диэлектрических барьерных разрядов
JP2008098128A (ja) 2006-10-11 2008-04-24 Kunihide Tachibana 大気圧プラズマ発生照射装置
EP1918965A1 (en) * 2006-11-02 2008-05-07 Dow Corning Corporation Method and apparatus for forming a film by deposition from a plasma
KR101144423B1 (ko) 2006-11-16 2012-05-10 엘지전자 주식회사 휴대 단말기 및 휴대 단말기의 화면 표시 방법
CN101245449A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 大批量生产薄膜的等离子箱
JP4845831B2 (ja) * 2007-08-07 2011-12-28 積水化学工業株式会社 プラズマ処理装置
CN101227790B (zh) * 2008-01-25 2011-01-26 华中科技大学 等离子体喷流装置
JP2009179427A (ja) * 2008-01-30 2009-08-13 Fujifilm Corp 搬送装置および真空成膜装置
US8022377B2 (en) * 2008-04-22 2011-09-20 Applied Materials, Inc. Method and apparatus for excimer curing
US7976908B2 (en) * 2008-05-16 2011-07-12 General Electric Company High throughput processes and systems for barrier film deposition and/or encapsulation of optoelectronic devices
JP2009280873A (ja) * 2008-05-23 2009-12-03 Fujifilm Corp ガスバリアフィルムの製造方法
US8994270B2 (en) * 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
TWI387400B (zh) * 2008-10-20 2013-02-21 Ind Tech Res Inst 電漿系統
JP4833272B2 (ja) * 2008-11-25 2011-12-07 パナソニック電工Sunx株式会社 プラズマ処理装置
WO2010107722A1 (en) * 2009-03-16 2010-09-23 Drexel University Tubular floating electrode dielectric barrier discharge for applications in sterilization and tissue bonding
EP2413349A4 (en) * 2009-03-24 2015-11-25 Toray Industries PLASMA PROCESSING DEVICE AND METHOD FOR MANUFACTURING AMORPHOUS SILICON THIN LAYER USING THE SAME
CN101583233A (zh) * 2009-03-24 2009-11-18 新奥光伏能源有限公司 一种常压等离子体装置
WO2011092186A1 (de) * 2010-01-26 2011-08-04 Leibniz-Institut Für Plasmaforschung Und Technologie E. V. Vorrichtung und verfahren zur erzeugung einer elektrischen entladung in hohlkörpern
JP2011162851A (ja) * 2010-02-10 2011-08-25 Fujifilm Corp ガスバリアフィルムの製造方法
KR101693673B1 (ko) * 2010-06-23 2017-01-09 주성엔지니어링(주) 가스분배수단 및 이를 포함한 기판처리장치
KR20120002795A (ko) * 2010-07-01 2012-01-09 주성엔지니어링(주) 피딩라인의 차폐수단을 가지는 전원공급수단 및 이를 포함한 기판처리장치
DE102011076806A1 (de) * 2011-05-31 2012-12-06 Leibniz-Institut für Plasmaforschung und Technologie e.V. Vorrichtung und Verfahren zur Erzeugung eines kalten, homogenen Plasmas unter Atmosphärendruckbedingungen
US9831069B2 (en) * 2011-06-03 2017-11-28 Wacom CVD apparatus and method for forming CVD film
JP6175721B2 (ja) * 2012-11-09 2017-08-09 株式会社渡辺商行 オゾン発生装置、及び、オゾン発生方法
US9269544B2 (en) * 2013-02-11 2016-02-23 Colorado State University Research Foundation System and method for treatment of biofilms
US9084334B1 (en) * 2014-11-10 2015-07-14 Illinois Tool Works Inc. Balanced barrier discharge neutralization in variable pressure environments
WO2016168502A1 (en) * 2015-04-14 2016-10-20 The Board Of Regents For Oklahoma State University Plasma thread

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190137A (ja) * 1992-01-14 1993-07-30 Matsushita Electron Corp 冷陰極蛍光ランプ
JP2003132847A (ja) * 2001-10-26 2003-05-09 Toto Ltd 高圧放電灯及び照明装置
JP2004076076A (ja) * 2002-08-14 2004-03-11 Konica Minolta Holdings Inc 大気圧プラズマ処理装置及び大気圧プラズマ処理方法
JP2007173197A (ja) * 2005-05-25 2007-07-05 Sumitomo Electric Ind Ltd 電極材料
JP2007273752A (ja) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd プラズマ処理装置およびプラズマ生成装置
JP2009260281A (ja) * 2008-03-28 2009-11-05 Mitsubishi Electric Corp 薄膜形成方法および薄膜形成装置、並びにそれを用いて製造された薄膜半導体装置
JP2011108615A (ja) * 2009-10-23 2011-06-02 Sharp Corp プラズマ処理装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186990A1 (en) * 2011-06-03 2014-07-03 Wacom Cvd apparatus and method for forming cvd film
US9831069B2 (en) * 2011-06-03 2017-11-28 Wacom CVD apparatus and method for forming CVD film
CN103889138A (zh) * 2012-12-24 2014-06-25 中国科学院微电子研究所 等离子体放电装置
WO2015131981A1 (en) * 2014-03-05 2015-09-11 Dow Corning France Plasma treatment of substrates
WO2016067380A1 (ja) * 2014-10-29 2016-05-06 東芝三菱電機産業システム株式会社 放電発生器とその電源装置
JPWO2016067380A1 (ja) * 2014-10-29 2017-04-27 東芝三菱電機産業システム株式会社 放電発生器とその電源装置
US11466366B2 (en) 2014-10-29 2022-10-11 Toshiba Mitsubishi—Electric Industrial Systems Corporation Electric discharge generator and power supply device of electric discharge generator
CN104561894A (zh) * 2014-12-25 2015-04-29 信利(惠州)智能显示有限公司 一种掩膜板的制造方法
WO2016210187A1 (en) * 2015-06-26 2016-12-29 Sunpower Corporation Thermal compression bonding approaches for foil-based metallization of solar cells
US9722103B2 (en) 2015-06-26 2017-08-01 Sunpower Corporation Thermal compression bonding approaches for foil-based metallization of solar cells

Also Published As

Publication number Publication date
KR20160148721A (ko) 2016-12-26
JP6088247B2 (ja) 2017-03-01
JP2017112366A (ja) 2017-06-22
US9831069B2 (en) 2017-11-28
US20140186990A1 (en) 2014-07-03
US20180076008A1 (en) 2018-03-15
CN103766000A (zh) 2014-04-30
EP2717657A1 (en) 2014-04-09
KR20140045973A (ko) 2014-04-17
TW201311927A (zh) 2013-03-16
KR101929607B1 (ko) 2018-12-14
CN103766000B (zh) 2018-04-10
JP6386519B2 (ja) 2018-09-05
EP2717657A4 (en) 2014-11-12
JPWO2012165583A1 (ja) 2015-02-23
TWI608122B (zh) 2017-12-11

Similar Documents

Publication Publication Date Title
JP6386519B2 (ja) Cvd装置、及び、cvd膜の製造方法
JP6175721B2 (ja) オゾン発生装置、及び、オゾン発生方法
KR101529578B1 (ko) 플라즈마 기판 처리 장치 및 방법
US20080139003A1 (en) Barrier coating deposition for thin film devices using plasma enhanced chemical vapor deposition process
US20080303744A1 (en) Plasma processing system, antenna, and use of plasma processing system
JPH05275345A (ja) プラズマcvd方法およびその装置
KR101568944B1 (ko) 플라즈마 발생 장치 및 cvd 장치
CN106797698B (zh) 原子团气体产生系统
KR20140037226A (ko) 플라즈마 성막 장치
JP2616760B2 (ja) プラズマ気相反応装置
JP2008274334A (ja) 反射防止膜成膜装置及び反射防止膜製造方法
JP2013125761A (ja) 半導体製造装置及び半導体製造方法
US20230282459A1 (en) Batch type substrate processing apparatus
JPWO2008123295A1 (ja) プラズマ処理装置
KR102426960B1 (ko) 플라즈마를 이용하여 실리콘 산화막을 형성하는 방법
JP2017141159A (ja) オゾン発生装置、及び、オゾン発生方法
JPH06112133A (ja) 透明誘電体膜を基体上に被覆する方法
JP4890313B2 (ja) プラズマcvd装置
JP2018200877A (ja) 放電電極
JP2013207142A (ja) プラズマ形成装置
JP2006283119A (ja) 成膜装置及び成膜方法
JP2010132955A (ja) 基板処理装置
JP2015179770A (ja) 基板処理装置、及び半導体装置の製造方法
JP2018062713A (ja) プラズマcvd装置及びプラズマcvd法
JP2013134815A (ja) 沿面放電型プラズマ生成器ならびにそれを用いた成膜方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012546277

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14122028

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147000005

Country of ref document: KR

Kind code of ref document: A