WO2012165236A1 - リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法 - Google Patents

リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法 Download PDF

Info

Publication number
WO2012165236A1
WO2012165236A1 PCT/JP2012/063092 JP2012063092W WO2012165236A1 WO 2012165236 A1 WO2012165236 A1 WO 2012165236A1 JP 2012063092 W JP2012063092 W JP 2012063092W WO 2012165236 A1 WO2012165236 A1 WO 2012165236A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lift
weight
mechanical parking
transporter
Prior art date
Application number
PCT/JP2012/063092
Other languages
English (en)
French (fr)
Inventor
野田 整一
善武 池田
博康 藤川
原 和也
貴眞 波多野
常洋 川島
正昭 税所
Original Assignee
三菱重工パーキング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工パーキング株式会社 filed Critical 三菱重工パーキング株式会社
Priority to CN201280003917.6A priority Critical patent/CN103392046B/zh
Priority to KR1020137013876A priority patent/KR101867112B1/ko
Priority to KR1020167008439A priority patent/KR20160042184A/ko
Priority to SG2013041850A priority patent/SG190732A1/en
Publication of WO2012165236A1 publication Critical patent/WO2012165236A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/22Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of movable platforms for horizontal transport, i.e. cars being permanently parked on palettes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45014Elevator, lift

Definitions

  • the present invention relates to a lift transporter control device, a mechanical parking device, and a lift transporter control method.
  • a lifting device that lifts and lowers a load has been provided with a lifting member such as a lift transporter, a motor for operating the lifting member and its control device, etc., and storage of the load based on control from the control device.
  • a lifting member such as a lift transporter, a motor for operating the lifting member and its control device, etc.
  • storage of the load based on control from the control device.
  • it is used in a mechanical parking device that uses a vehicle as a load.
  • a lifting device places a limit on the weight and size of the baggage to be lifted and determines whether the baggage is within a range that does not exceed the limit, and controls according to the determination result This prevents accidents and breakdowns.
  • a lifting device a lift carrier in a mechanical parking device
  • a control technique is disclosed in which the vehicle is delivered if the vehicle is exceeded.
  • the control device calculates the moving distance and deceleration point, and the speed pattern shown in FIG. The speed control was performed by switching between the high speed command and the low speed command.
  • the speed and acceleration / deceleration of the lift transporter are fixed values determined by the rated weight (heaviest weight) regardless of the weight of the vehicle (vehicle weight).
  • the performance of the motor that raises and lowers the lift transporter has a margin, and the performance of the motor has not been used effectively. That is, it is possible to increase the speed at which the lift carrier is moved up and down for a light vehicle.
  • the high speed command and the low speed command may be switched without passing through a period in which the speed is constant as in the case of long distance movement. is there. For this reason, since a rapid change in acceleration occurs, an overshoot occurs in the speed of the lift conveyor. Therefore, in order to ensure high stopping accuracy for stopping the lift conveyor on a predetermined floor, a low speed It was necessary to take a large section, and the lifting and lowering time of the lift transporter was long.
  • the present invention has been made in view of such circumstances, and includes a lift transporter control device, a mechanical parking device, and lift transport capable of shortening the ascending / descending time of a lift transporter on which a vehicle is placed. It is an object to provide a machine control method.
  • the lift transporter control device, the mechanical parking device, and the lift transporter control method of the present invention employ the following means.
  • the lift transporter control device is a lift transporter that is installed in a structure having a plurality of floors and moves up and down with the mounted vehicle, and a motor that lifts and lowers the lift transporter.
  • a lift transporter control device of a mechanical parking device provided with a plurality of storage shelves arranged on the floor along a hoistway where the lift transporter ascends and descends.
  • Weight estimation means for estimating the weight of the vehicle placed on the lift transporter, and acceleration, deceleration, and maximum speed for raising and lowering the lift transporter based on the weight of the vehicle estimated by the weight estimation means
  • the lift transporter on which the vehicle is placed and stopped is accelerated and guided by the derivation means.
  • the lift carrier is decelerated based on the deceleration derived by the deriving means, so that the lift carrier is stopped at the floor specified in advance.
  • Motor control means for controlling the motor.
  • the lift transporter control device is installed in a structure having a plurality of floors and lifts and lowers together with the mounted vehicle, the motor that lifts and lowers the lift transporter, and the lift transport It is provided in a mechanical parking apparatus provided with storage shelves arranged on a plurality of the floors along a hoistway where the machine ascends and descends. The vehicle is lifted and lowered by the lift transporter while being placed on the pallet.
  • the derivation means performs lift conveyance based on the vehicle weight estimated by the weight estimation means.
  • the acceleration, deceleration, and maximum speed for raising and lowering the machine are derived. Thereby, the speed of the lift conveyance machine suitable for the weight of the vehicle can be obtained.
  • the lift transporter on which the vehicle is placed and stopped is accelerated, and after reaching the derived maximum speed, based on the derived deceleration By decelerating the lift transporter, the motor is controlled to stop the lift transporter at a floor designated in advance.
  • the motor for raising and lowering the lift conveyor is controlled based on the acceleration, deceleration, and maximum speed suitable for the weight of the vehicle, it is possible to effectively utilize the performance of the motor.
  • the lift time of the lift conveyor can be shortened.
  • the lift transporter control device is based on the deceleration after the motor control unit maintains the maximum speed for a predetermined time when the speed of the lift transporter reaches the maximum speed.
  • the lift conveyor may be decelerated.
  • the lift transport machine when the speed of the lift transport machine reaches the maximum speed, the lift transport machine is decelerated after being kept at the maximum speed for a predetermined time. Change in torque (torque fluctuation) can be prevented.
  • the lift transporter control device includes a storage unit that stores information related to the vehicle stored in the storage shelf and information on the weight of the vehicle estimated by the weight estimation unit in association with each other.
  • the deriving means reads information on the weight of the vehicle that is lifted and lowered by the lift carrier from the storage means, and derives acceleration, deceleration, and maximum speed for raising and lowering the lift carrier based on the read information. May be.
  • the storage unit stores the information on the vehicle stored in the storage shelf and the information on the weight of the vehicle estimated by the weight estimation unit in association with each other, the vehicle in which the weight is stored is stored. With respect to, it is no longer necessary to estimate the weight each time the goods are received. For this reason, the time required for warehousing of the vehicle can be shortened.
  • the lift transporter control device reads out information on the weight of the vehicle to be unloaded from the storage unit when the derivation unit unloads the vehicle, and based on the read information, the lift conveyance
  • the acceleration, deceleration, and maximum speed for raising and lowering the machine may be derived.
  • the acceleration, the deceleration suitable for the vehicle weight, and A motor that raises and lowers the lift conveyor can be controlled based on the maximum speed.
  • the motor control means generates the torque based on the weight of the vehicle in at least one of entering the vehicle and leaving the vehicle.
  • the motor may be controlled to accelerate the lift transporter that is placed and stopped.
  • the motor since the motor generates torque based on the weight of the vehicle and then accelerates the lift transfer machine on which the vehicle is placed and stopped, the impact at the start of the motor is reduced. Therefore, it is possible to suppress the noise generated when the lift transporter is raised and lowered and to prolong the life of the machine parts.
  • the derivation unit has an acceleration, a deceleration, and a maximum speed for moving the lift transporter up and down based on the weight of the vehicle estimated by the weight estimation unit,
  • the jerk and deceleration are derived, and the motor control unit accelerates the lift transporter on which the vehicle is mounted and stopped based on the acceleration and jerk derived by the deriving unit.
  • the lift carrier machine is decelerated and designated in advance.
  • the motor may be controlled to stop the lift transporter on the floor.
  • the lift conveyance machine control device is based on the torque generated by the motor when the weight estimation unit raises the lift conveyance machine on which the vehicle is placed when the vehicle is received.
  • the weight of the vehicle may be estimated.
  • the weight of the vehicle is estimated based on the torque generated by the motor when the lift transporter on which the vehicle is placed is raised. Therefore, the weight of the vehicle can be estimated with a simple configuration.
  • the weight estimation unit sets a current value flowing in a lifting motor that raises the pallet on which the vehicle is placed from a predetermined reference position by a predetermined amount when the vehicle is received. Based on this, the weight of the vehicle may be estimated.
  • the weight of the vehicle is estimated based on the value of the current flowing through the lifting motor that raises the pallet on which the vehicle is placed from a predetermined reference position by a predetermined amount. Therefore, the weight of the vehicle can be estimated with a simple configuration.
  • the plurality of floors are divided into a plurality of regions in the height direction, the vehicle having a predetermined weight or less is transported to the region above, The vehicle that exceeds the determined weight may be transported to the area below.
  • the acceleration, deceleration and maximum speed of a vehicle with a light vehicle weight are increased and the driving time is shortened, the waiting time for loading and unloading can be shortened even if the vehicle is stored on the upper floor.
  • the mechanical parking apparatus is installed in a structure having a plurality of floors, and is a lift transporter that moves up and down with a mounted vehicle, and a motor that lifts and lowers the lift transporter And storage shelves arranged on a plurality of the floors along a hoistway along which the lift conveyor moves up and down, and the lift conveyor controller described above.
  • the lift transporter control method includes a lift transporter that is installed in a structure having a plurality of floors and moves up and down with the mounted vehicle, and a motor that lifts and lowers the lift transporter.
  • a lift transporter control method for a mechanical parking device comprising a plurality of storage shelves arranged on the floor along a hoistway where the lift transporter moves up and down.
  • a first step of estimating the weight of the vehicle placed on the lift transporter and a second step of deriving acceleration, deceleration and maximum speed for raising and lowering the lift transporter based on the estimated weight of the vehicle And, based on the derived acceleration, accelerate the lift transporter on which the vehicle is mounted and stopped, reach the derived maximum speed, and then lift the lift based on the derived deceleration Transport machine By causing the speed, and a third step of controlling the motor to stop the lift conveyor in the floor designated in advance, the.
  • the lift transporter control device sets one or more of the predetermined weights, divides the region into two or more, and a weight range divided by the predetermined weight; Corresponding to the weight range including the weight of the vehicle to which the empty pallet, which is a pallet on which the vehicle is not placed, is stored among the pallets on which the vehicle is placed and transported. It is preferable that a pallet determining means for removing the empty pallet is transported to the area where the empty pallet is taken out.
  • the empty pallet for placing the vehicle is taken out from the area corresponding to the weight range including the weight of the vehicle to be stored, and after the vehicle is placed, it is transported to the area where the pallet is taken out.
  • the vehicle is transported to a relatively lower area, and the vehicle included in the light weight range is transported to a relatively upper area. Is minimized, saving energy.
  • the pallet determining means of the lift transporter control device includes the weight of the vehicle when the empty pallet is not included in the weight range including the weight of the vehicle to be stored.
  • the empty pallet may be taken out from the area corresponding to the weight range one lighter than the weight range.
  • a heavy vehicle By temporarily evacuating the vehicle to the light weight range area and securing an empty pallet in the heavy weight range area (that is, securing an area where the vehicle can be stored), a heavy vehicle will be received later. Even in the case of a heavy weight range, only a light weight range area is available, so compared with the case where a heavy vehicle is transported upward, the heavy weight range area can be used more effectively, and the energy used at the time of warehousing is also minimized. Is done. Conventionally, since the storage was made in order from the lower side of the mechanical parking device without considering the vehicle weight, the lower side of the mechanical parking device has already been received first, and the vehicle with a heavy vehicle weight is later in time. Was received and stored above.
  • the lift transporter control device may calculate the weight distribution state of the vehicle at predetermined intervals and set the vehicle weight range based on the distribution state.
  • the vehicle weight range is reviewed at predetermined intervals, even if the vehicle weight of the vehicle to be stored is not decided and a temporary value is entered at the start of driving, it is adapted to the actual vehicle weight distribution. be able to. As a result, the empty pallet is taken out from the area suitable for the vehicle weight and transported, resulting in high performance.
  • the lift transporter control device counts the number of times each of the vehicles has been received, and the number of times is based on the vehicle, the number of times, and the weight of the vehicle.
  • a value is increased, and when the number is less than the average number of loading / unloading times, a corrected weight is calculated, and the vehicle weight range is calculated based on the corrected weight. It may be set.
  • the corrected weight taking into account the frequency of loading and unloading of the vehicle is calculated, and the vehicle weight range is reviewed based on the corrected weight, so that an optimal empty pallet suitable for the frequency can be selected.
  • the lift conveyance machine control apparatus of the said 1st aspect is matched with the intrinsic
  • the unique number of the vehicle is a number of a vehicle number mark (number plate), and is information that can be acquired by a method such as imaging with a camera or manually inputting by a user.
  • the lift transporter control device may set the vehicle weight range for each type of the vehicle.
  • the vehicle weight range is appropriately divided according to the type of vehicle (for example, high roof, ordinary vehicle, etc.), and the heavy weight range is assigned a lower area than the light weight range, so even if the vehicle type is different, it is equally Appropriate space will be allocated.
  • the lift transporter control device further includes a calculation unit that calculates an amount of energy required for loading and unloading the vehicle, and the calculation unit searches the empty pallet from the lower floor. And calculating a first energy amount required when the vehicle is placed and transported on the selected empty pallet, and placing the vehicle on the empty pallet selected by the pallet determining means. And calculating the second energy amount required when transported, and outputting the first energy amount and the second energy amount.
  • the user takes out the empty pallet from the lower floor, which is a conventional method, and takes out the empty pallet using the first energy amount required when transported and the pallet determining means of the first aspect, Since it can be compared with the amount of second energy required when transported, the effect of energy saving can be appealed quantitatively and visually.
  • a fourth aspect of the present invention is a mechanical parking device provided with any one of the above-described lift transporter control devices.
  • a fifth aspect of the present invention is a mechanical parking system including the mechanical parking device described above and a terminal connected to the mechanical parking device so as to be able to exchange information.
  • the maintenance staff can go to the site where the mechanical parking device is provided, and perform maintenance work by directly connecting the mechanical parking device and a terminal (for example, an inspection terminal).
  • a terminal for example, an inspection terminal.
  • exchange of information between the mechanical parking device and the terminal is performed by, for example, a dedicated cable, a network cable, or the like.
  • the mechanical parking device and the terminal connected to each other via a communication network may be remotely arranged.
  • a maintenance staff communicates by connecting a terminal (for example, an inspection terminal) provided in a remote place physically separated from the mechanical parking device so as to be communicable via a network or the like. Maintenance work can be performed from a remote location via a network.
  • a plurality of any of the mechanical parking devices described above and information associating the vehicle to be loaded / unloaded with the weight of the vehicle is used as user data, and the plurality of mechanical parking devices are And a mechanical parking system having the user data common to each other.
  • FIG. 1 is a schematic view of a mechanical parking apparatus 10 according to the first embodiment.
  • the mechanical parking device 10 is installed in a structure having a plurality of floors, along a lift transporter 14 that lifts and lowers the vehicle 12, and a hoistway 16 that lifts and lowers the lift transporter 14.
  • a storage shelf 18 disposed on a plurality of floors and a pallet 20 on which a vehicle 12 to be loaded and unloaded is loaded by a lift carrier 14 are provided.
  • the mechanical parking device 10 is described as a 90 ° turning type mechanical parking device, but the turning angle is not limited to 90 °, and may be, for example, 30 ° or 180 °.
  • the 90 ° turning type means that the direction in which the vehicle 12 is stored on the entry floor 22 where the vehicle 10 is stored / extracted is 90 ° different from the direction stored in the storage shelf 18, and the storage shelf 18 is stored in the storage shelf 18. This is a method of turning the vehicle on the entrance floor 22 by 90 °.
  • the mechanical parking apparatus 10 which concerns on this 1st Embodiment, and the entrance floor 22 are provided in the 1st floor, the arrangement position of an entrance floor is not specifically limited.
  • the mechanical parking device 10 includes a boarding floor 22 on the first floor, which is the lowest floor, and allows the vehicle 12 to enter the boarding floor 22 through the entrance and exit. It stores in the storage shelf 18 in the upper part. Moreover, the mechanical parking apparatus 10 takes out the vehicle 12 to be delivered from the storage shelf 18 and ejects it from the boarding floor 22 through the entrance / exit.
  • FIG. 2 is a functional block diagram showing an electrical configuration of the lift transporter control device 30 for controlling the lifting and lowering of the lift transporter 14.
  • the lift transporter control device 30 includes a ground control panel 34 that controls the mechanical parking device 10 based on the operation contents by the user with respect to the operation panel 32 that receives operations for entering and leaving the vehicle 12, and a lift transporter.
  • the motor control part 38 (inverter apparatus) which controls the raising / lowering motor 36 which raises / lowers 14 is provided.
  • the ground control panel 34 includes a control unit 40 that is a CPU (Central Processing Unit), a storage unit 42 that stores various data, a zero correction unit 44, and a power supply device 46.
  • a control unit 40 that is a CPU (Central Processing Unit)
  • a storage unit 42 that stores various data
  • a zero correction unit 44 and a power supply device 46.
  • the control unit 40 controls the lifting and lowering of the lift transporter 14 based on the weight (vehicle weight) of the vehicle 12 placed on the pallet 20.
  • the control unit 40 includes a weight estimation unit 48, and when the vehicle 12 is received, the weight estimation unit 48 raises the lift transporter 14 on which the vehicle 12 is placed (when scooping up).
  • the vehicle weight is estimated based on the torque generated by the lifting motor 36 (hereinafter referred to as “load torque”).
  • the weight estimation unit 48 receives a torque current value output from the motor control unit 38 to the lifting motor 36, obtains a load torque generated by the lifting motor 36 from the input torque current value, and calculates the load torque.
  • the vehicle weight is estimated based on correspondence information indicating the relationship between the torque and the vehicle weight.
  • the correspondence information may be information indicating the relationship between the vehicle weight and the load torque by a mathematical formula, or may be information indicating the relationship between the vehicle weight and the load torque in a list (table format). , Stored in the storage unit 42.
  • the zero correction unit 44 compares the weight of the pallet 20 estimated based on the load torque generated by the elevating motor 36 with the weight of the reference pallet 20 stored in the storage unit 42. Specifically, when the vehicle 12 is not placed on the pallet 20, the zero correction unit 44 compares the load torque generated by the lifting motor 36 with the load torque corresponding to the weight of the pallet 20 in the correspondence information. To do. As a result of comparison, if they do not match, the zero correction unit 44 corrects the correspondence information based on the load torque generated by the lifting motor 36 corresponding to the weight of the pallet 20 alone.
  • the correction by the zero correction unit 44 may be performed every time when entering or leaving is completed, or may be performed every predetermined period (for example, one day, two weeks, one month, etc.).
  • the control part 40 selects the position of the storage shelf 18 according to the estimated vehicle weight. Specifically, the vehicle weight is compared with a predetermined weight, and an empty storage shelf 18 having a shorter distance from the entrance floor 22 is selected for a vehicle 12 that is heavier than the predetermined weight. An empty storage shelf 18 is selected such that the lighter the vehicle 12 is, the longer the distance from the entry floor 22 is. In this case, since the load torque increases as the vehicle weight increases, a larger torque is required when moving the heavy vehicle 12 than when moving the light vehicle 12. From this, the power consumption of the mechanical parking apparatus 10 can be reduced by selecting the storage rack 18 in order to shorten the moving distance of the heavy vehicle 12.
  • the heavy vehicle 12 is placed on the lower floor and the vehicle weight is light. Since the vehicle 12 is placed on the upper floor, the light vehicle 12 has a higher acceleration, deceleration and maximum speed, and the driving time is shortened. It becomes.
  • the plurality of floors are divided into a plurality of regions in the height direction, and vehicles having a predetermined weight or less are transported to an upper (upper floor) region, and the vehicle exceeds the predetermined weight. Is transported to the lower (lower floor) area. Note that one predetermined weight may be set and the area may be divided into two, or two or more predetermined weights may be set and the area may be divided into three or more.
  • the force applied to the mechanical parking device 10 when an earthquake occurs can be reduced.
  • control unit 40 compares the estimated vehicle weight with the weight (rated weight) that can be transported by the lift transporter 14, and stops the transport by the lift transporter 14 when the estimated vehicle weight exceeds the rated weight. It is preferable to do. Thereby, the erroneous storage of the vehicle 12 having a weight greater than or equal to the rated weight can be prevented in advance, and damage or failure of the equipment such as the lift transporter 14 can be avoided.
  • control unit 40 derives the acceleration, deceleration, and maximum speed for raising and lowering the lift transporter 14 based on the vehicle amount estimated by the weight estimation unit 48, and the derived acceleration, deceleration, and maximum speed are derived. Is output to the motor control unit 38.
  • the storage unit 42 stores table information (hereinafter referred to as “decision table”) indicating acceleration, deceleration, and maximum speed for each vehicle weight, and the control unit 40 is based on the decision table. Thus, the acceleration, deceleration, and maximum speed according to the vehicle weight are derived.
  • control unit 40 outputs to the motor control unit 38 a high speed command for operating the lift transporter 14 at a high speed or a low speed command for operating at a low speed.
  • the motor control unit 38 controls the lifting motor 36 so as to move up and down at high speed.
  • the motor control unit 38 The elevating motor 36 is controlled so as to move up and down at a low speed.
  • current position information indicating the current position of the lift transporter 14 detected based on the number of rotations of the lifting motor 36 is input from the pulse generator 50 to the control unit 40.
  • the power supply device 46 supplies power to the control devices such as the lift motor 36 and the control unit 40 of the lift transporter 14 by turning on the mechanical parking device 10.
  • FIG. 3 is a flowchart showing the flow of the warehousing speed deriving process for deriving the acceleration, deceleration, and maximum speed of the lift transporter 14 at the time of warehousing, which is executed by the control unit 40 according to the first embodiment. .
  • the warehousing speed deriving process is performed by executing the warehousing speed deriving program stored in the storage unit 42.
  • the entry floor 22 is the first floor
  • the storage shelf 18 is provided above the entry floor 22, so that the vehicle 12 is placed at the time of entry.
  • the lift transporter 14 that has been lifted will rise.
  • Step 100 an operation of scooping up the lift transporter 14 on which the vehicle 12 is placed by a predetermined distance (hereinafter referred to as “scooping-up operation”) is performed.
  • the load torque generated by the elevating motor 36 is obtained based on the torque current value output from the motor control unit 38 in the scooping operation, and the vehicle placed on the lift transporter 14 is obtained from the load torque. Twelve vehicle weights are estimated.
  • the vehicle weight estimated in this step 102 is stored in the storage unit 42 as vehicle weight information in association with information related to the vehicle 12 (for example, a storage shelf number for storing the vehicle 12 or an identification number for the vehicle 12). Is done.
  • the acceleration, deceleration, and maximum speed of the lift carrier 14 corresponding to the vehicle weight estimated in step 102 are derived from the decision table stored in the storage unit 42.
  • the maximum value of the operating speed of the lift transporter 14 is calculated from the distance traveled by the lift transporter 14.
  • the moving distance of the lift transporter 14 is a distance from the entry floor 22 to a floor designated in advance for storing the vehicle 12 to be stored. That is, the maximum value of the driving speed is calculated by multiplying the acceleration derived in step 104 and the moving distance.
  • step 108 it is determined whether or not the maximum value of the driving speed calculated in step 106 is faster than the maximum speed derived in step 104. If the determination is affirmative, the process proceeds to step 110. Shifts to step 112.
  • step 110 the deceleration position of the accelerated lift transporter 14 is calculated using the maximum speed derived in step 104, and the process proceeds to step 114.
  • the deceleration position is a position for decelerating the accelerated lift transport machine 14 in order to reach the floor where the lift transport machine 14 stores the vehicle 12.
  • the deceleration position is calculated in consideration of the time during which the operation speed is maintained at the maximum speed for a predetermined time when the operation speed of the lift transporter 14 reaches the maximum speed.
  • step 112 the maximum value of the operating speed calculated in step 106 is set as the maximum speed of the lift transporter 14, and the deceleration position of the lift transporter 14 is calculated using the maximum value of the operating speed calculated in step 106. Control goes to step 114.
  • step 114 the acceleration, deceleration, and maximum speed of the lift carrier 14 are output to the motor control unit 38, and the high speed command is switched to complete the warehousing speed derivation process.
  • FIG. 4 is a speed pattern of the lift transporter 14 at the time of warehousing based on the control by the control unit 40 according to the first embodiment.
  • a low speed command is output from the control unit 40 to the motor control unit 38, and the lift transporter 14 is raised at a low speed.
  • the control unit 40 performs a warehousing speed derivation process.
  • the motor control unit 38 lifts at an acceleration (optimum acceleration) input from the control unit 40.
  • the elevating motor 36 is controlled so that the conveyor 14 is raised.
  • the motor control unit 38 may maintain the operating speed of the lift transporter 14 at the maximum speed for a predetermined time.
  • the lift motor 36 is controlled.
  • the control unit 40 outputs a low speed command to the motor control unit 38 when it is determined that the predetermined time has elapsed and the lift transporter 14 has reached the deceleration position based on the current position information input from the pulse generator 50.
  • the motor control unit 38 controls the lift motor 36 so that the lift transporter 14 moves up while decelerating at the deceleration (optimum deceleration) input from the control unit 40.
  • the mechanical parking apparatus 10 decelerates the lift conveyor 14 after maintaining the maximum speed for a predetermined time when the operating speed of the lift conveyor 14 reaches the maximum speed. Therefore, a rapid change in acceleration (a change in torque) can be prevented in the process from the acceleration carrier 14 to the deceleration. Therefore, since an overshoot of the operation speed of the lift transporter 14 due to a sudden change in acceleration does not occur, it is not necessary to take a large low speed section in order to ensure stopping accuracy.
  • the raising / lowering time of the lift conveyance machine 14 can be shortened.
  • the motor control unit 38 controls the lift motor 36 so that the lift transporter 14 is lifted at a predetermined low speed in order to ensure stop accuracy. After that, when the lift transporter 14 is detected by the stop dog corresponding to the floor where the lift transporter 14 stops, the control unit 40 turns off the low speed command to the motor control unit 38 to apply the brake. Then, the lift transfer machine 14 is stopped.
  • the speed pattern of long distance movement at the time of warehousing is the same as the speed pattern of short distance movement.
  • FIG. 5 is a flowchart showing the flow of the speed at delivery derivation process for deriving the acceleration, deceleration, and maximum speed of the lift transporter 14 at the time of delivery, which is executed by the control unit 40 according to the first embodiment. .
  • the delivery speed derivation process is performed by executing a delivery speed derivation program stored in the storage unit 42.
  • the entry floor 22 is the first floor
  • the storage shelf 18 is provided at the upper part of the entry floor 22, so that the vehicle 12 is placed at the time of delivery.
  • the lift conveyor 14 thus moved down.
  • FIG. 5 the same steps as those in FIG. 3 are denoted by the same reference numerals as those in FIG.
  • step 200 the vehicle weight of the vehicle 12 to be delivered is read from the vehicle weight information stored in the storage unit 42.
  • a load torque (hereinafter referred to as “torque bias value”) required when the vehicle 12 having the vehicle weight is placed on the lift transporter 14 is calculated.
  • torque bias value a load torque required when the vehicle 12 having the vehicle weight is placed on the lift transporter 14 is calculated.
  • a conversion ratio for converting the vehicle weight into the torque bias value is stored in the storage unit 42 in advance, and the read vehicle weight is multiplied by the conversion ratio to thereby calculate the torque. Calculate the bias value.
  • step 204 the torque bias value is output to the motor control unit 38, and the process proceeds to step 104.
  • FIG. 6 is a graph showing temporal changes in torque generated by the lifting motor 36.
  • the motor control unit 38 controls the lift motor 36 so as to generate a load torque that takes into account the torque bias while the lift transporter 14 is operating. That is, the lift motor 36 according to the first embodiment accelerates the lift transporter 14 on which the vehicle 12 is placed and stopped after generating a torque bias based on the vehicle weight. As a result, the lift motor 36 generates a load torque that can withstand the vehicle weight in advance, so that the lift transporter 14 is activated when the lift motor 36 is activated (when the lift transporter 14 on which the vehicle 12 is placed starts to descend). Impact is reduced. Therefore, the mechanical parking apparatus 10 according to the first embodiment can suppress the noise generated when the lift transporter 14 is lowered, and can extend the life of the mechanical parts.
  • FIG. 7 is a speed pattern of the lift transporter 14 at the time of delivery based on the control by the control unit 40 according to the first embodiment.
  • the motor control unit 38 performs control as shown in the short-distance movement speed pattern in FIG.
  • the lift motor 36 is controlled so that the lift carrier 14 descends at the acceleration (optimum acceleration) input from the unit 40.
  • the motor control unit 38 may maintain the operating speed of the lift transporter 14 at the maximum speed for a predetermined time.
  • the lift motor 36 is controlled.
  • the control unit 40 outputs a low speed command to the motor control unit 38 when it is determined that the predetermined time has elapsed and the lift transporter 14 has reached the deceleration position based on the current position information input from the pulse generator 50.
  • the motor control unit 38 controls the lift motor 36 so that the lift transporter 14 descends while decelerating at the deceleration (optimum deceleration) input from the control unit 40.
  • the motor control unit 38 controls the lift motor 36 so that the lift transporter 14 descends at a predetermined low speed in order to ensure stop accuracy.
  • the control unit 40 turns off the low speed command to the motor control unit 38 to apply the brake, and the lift conveyor 14 is stopped.
  • the speed pattern of the long distance movement at the time of delivery is the same as the speed pattern of the short distance movement.
  • the mechanical parking apparatus 10 controls the lift motor 36 that moves the lift carrier 14 up and down based on acceleration, deceleration, and maximum speed suitable for the vehicle weight.
  • the performance of the lift motor 36 can be effectively utilized, and as a result, the lift time of the lift transport machine 14 can be shortened.
  • the control unit 40 Based on the vehicle weight estimated by the weight estimation unit 48, the control unit 40 according to the second embodiment performs acceleration and deceleration as well as acceleration, deceleration, and maximum speed for raising and lowering the lift carrier 14. The derived values are output to the motor control unit 38.
  • the method for deriving jerk and deceleration is the same as the method for deriving acceleration and deceleration described in the first embodiment, and a description thereof will be omitted.
  • the motor control unit 38 according to the second embodiment is based on the acceleration and jerk derived by the control unit 40 (acceleration, jerk, and deceleration in the examples of FIGS. 8 and 9 to be described later).
  • the lift conveyor 36 After accelerating the lift carrier 14 on which the vehicle 12 is placed and stopping, and reaching the derived maximum speed, the derived deceleration and deceleration (in the examples of FIGS. 8 and 9 to be described later, Based on the deceleration, deceleration, and jerk), the lift conveyor 36 is decelerated to control the lift motor 36 to stop the lift conveyor at a predetermined floor (so-called S-shaped control). To do.
  • FIG. 8 is a speed pattern of the lift transporter 14 at the time of warehousing based on the control by the control unit 40 according to the second embodiment.
  • a low speed command is output from the control unit 40 to the motor control unit 38, and the lift transporter 14 is raised at a low speed.
  • the control unit 40 performs a warehousing speed derivation process.
  • the motor control unit 38 lifts at an acceleration (optimum acceleration) input from the control unit 40.
  • the elevating motor 36 is controlled so that the conveyor 14 is raised.
  • the acceleration is gradually increased with the jerk (optimum jerk) input from the control unit 40 until the optimum acceleration is reached.
  • the motor control part 38 which concerns on this 2nd Embodiment is the deceleration which was input from the control part 40 in the predetermined speed before the driving speed of the lift conveyance machine 14 reaches the maximum speed input from the control part 40.
  • the acceleration is reduced by (optimum deceleration) so that the operating speed of the lift transporter 14 reaches the maximum speed and the acceleration becomes zero (0).
  • the motor control unit 38 controls the elevating motor 36 so that the operation speed of the lift transporter 14 is maintained at the maximum speed for a predetermined time.
  • the control unit 40 outputs a low speed command to the motor control unit 38 when it is determined that the predetermined time has elapsed and the lift transporter 14 has reached the deceleration position based on the current position information input from the pulse generator 50.
  • a low speed command is input, the motor control unit 38 decelerates at the deceleration input from the control unit 40 until the deceleration (optimum deceleration) input from the control unit 40 is reached, and decelerates at the optimal deceleration.
  • the lift motor 36 is controlled so that the lift transporter 14 is raised.
  • the motor control unit 38 controls the lift motor 36 so that the lift transporter 14 is lifted at a predetermined low speed in order to ensure stop accuracy.
  • the motor control unit 38 controls the lifting motor 36 so that the acceleration of the lift transporter 14 becomes zero by accelerating at the optimum jerk. The low speed is used.
  • the control unit 40 turns off the low speed command to the motor control unit 38. Then, the brake is applied and the lift conveyance machine 14 is stopped.
  • the speed pattern of long distance movement at the time of warehousing is the same as the speed pattern of short distance movement.
  • FIG. 9 is a speed pattern of the lift transporter 14 at the time of delivery based on the control by the control unit 40 according to the second embodiment.
  • the motor control unit 38 performs control as shown in the short-distance movement speed pattern in FIG.
  • the lift motor 36 is controlled so that the lift carrier 14 descends at the acceleration (optimum acceleration) input from the unit 40. At this time, the acceleration is gradually increased with the jerk (optimum jerk) input from the control unit 40 until the optimum acceleration is reached.
  • the motor control part 38 which concerns on this 2nd Embodiment is the deceleration which was input from the control part 40 in the predetermined speed before the driving speed of the lift conveyance machine 14 reaches the maximum speed input from the control part 40.
  • the acceleration is decreased by (optimum deceleration) so that the acceleration becomes zero (0) when the operating speed of the lift transporter 14 reaches the maximum speed.
  • the motor control unit 38 controls the elevating motor 36 so that the operation speed of the lift transporter 14 is maintained at the maximum speed for a predetermined time.
  • the control unit 40 outputs a low speed command to the motor control unit 38 when it is determined that the predetermined time has elapsed and the lift transporter 14 has reached the deceleration position based on the current position information input from the pulse generator 50.
  • a low speed command is input, the motor control unit 38 decelerates at the deceleration input from the control unit 40 until the deceleration (optimum deceleration) input from the control unit 40 is reached, and decelerates at the optimal deceleration.
  • the lift motor 36 is controlled so that the lift transporter 14 is lowered.
  • the motor control unit 38 controls the lift motor 36 so that the lift transporter 14 descends at a predetermined low speed in order to ensure stop accuracy.
  • the motor control unit 38 causes the lifting motor 36 to move to zero (0) so that the acceleration of the lift transporter 14 becomes zero (0) by accelerating at the optimum jerk. Control to the above low speed.
  • the control unit 40 turns off the low-speed command to the motor control unit 38 when the lift conveyance device 14 is detected by the stop dog corresponding to the entrance floor 22. The brake is applied and the lift transporter 14 is stopped.
  • the speed pattern of the long distance movement at the time of delivery is the same as the speed pattern of the short distance movement.
  • the mechanical parking apparatus 10 since the S-shaped control is performed when the lift transporter 14 is moved up and down, a sudden acceleration change can be further suppressed, and the impact applied to the lift transporter 14 and the like. Is suppressed, noise generated when the lift transporter 14 is raised and lowered can be suppressed, and the life of the machine parts can be extended.
  • FIG. 10 is a flowchart showing the flow of the warehousing speed deriving process according to the third embodiment.
  • the same steps as those in FIG. 3 are denoted by the same reference numerals as those in FIG.
  • Step 100 an operation of scooping up the lift transporter 14 on which the vehicle 12 is placed by a predetermined distance (hereinafter referred to as “scooping-up operation”) is performed.
  • the vehicle weight is estimated from the load torque generated by the lifting / lowering motor 36 obtained from the torque current value output to the lifting / lowering motor 36 by the motor control unit 38 in the scooping operation.
  • a torque bias value is calculated from the vehicle weight.
  • step 304 the torque bias value is output to the motor control unit 38, the operation of the lift transporter 14 is resumed, and the process proceeds to step 104.
  • the motor control unit 38 moves up and down so as to generate a load torque taking into account the torque bias while operating the lift transporter 14.
  • the motor 36 is controlled.
  • the mechanical parking device 10 since the impact when the lift transporter 14 on which the vehicle 12 is placed is lifted is reduced, noise generated when the lift transporter 14 is lifted. In addition, the life of the machine part can be extended.
  • the present invention is not limited to this, and when the vehicle 12 is received.
  • the vehicle weight may be estimated based on the current value that flows through the lifting motor when the pallet 20 on which the vehicle 12 is placed is raised by a predetermined amount from a predetermined reference position.
  • the mechanical parking device 10 includes a turning device 60 that is provided on an entry floor where the vehicle 12 is loaded and unloaded and turns the pallet 20 on which the vehicle 12 is placed. .
  • the turning device 60 uses a lifting motor (not shown) to pallet the pallet 20 on which the vehicle 12 is placed in the storage shelf 18 from a predetermined reference position. 20 and the vehicle placed on the pallet 20 are raised.
  • the control unit 40 estimates the weight of the vehicle 12 based on the current flowing through the lifting motor.
  • the said each embodiment mentioned and demonstrated as an example the control method in the case of entering and leaving the vehicle 12 for the first time in the mechanical parking apparatus 10 is not limited to this.
  • the vehicle 12 of the vehicle 12 is determined from the vehicle weight information stored in the storage unit 42. It is also possible to read the weight and derive the acceleration, deceleration, maximum speed, and the like. As a result, when the storage destination shelf of the vehicle 12 is determined, the estimation of the vehicle weight can be omitted, and the warehousing operation of the vehicle 12 can be performed promptly.
  • the fourth embodiment of the present invention will be described below.
  • the structure of the mechanical parking apparatus 10 which concerns on this 4th Embodiment is the same as that of the structure of the mechanical parking apparatus 10 which concerns on 1st Embodiment shown in FIG. 1, description is abbreviate
  • the plurality of floors provided in the mechanical parking device 10 are divided into a plurality of areas in the height direction, and a vehicle 12 having a predetermined weight or less is transported to an upper (upper floor) area, and a predetermined weight is obtained.
  • the vehicle 12 exceeding the above is transported to a lower (lower floor) area.
  • FIG. 13 shows a configuration of the lift transporter control device 30 according to the fourth embodiment.
  • the lift transporter control device 30 includes a pallet determination unit (pallet determination means) 61, a data management unit 62, and a calculation unit 63 in addition to the units described in the above-described embodiment.
  • the pallet determination unit 61 takes out an empty pallet, which is the pallet 20 on which the vehicle 12 is not placed, from the pallet 20 on which the vehicle is placed and transported from an area corresponding to the weight range including the weight of the vehicle 12 to be stored.
  • the weight range is a range of weight divided by a predetermined weight, and is associated with each region when the mechanical parking device 10 is divided into a plurality of regions in the height direction. Further, it is desirable that the relatively lower floor area of the mechanical parking device 10 is associated with a heavy weight range, and the relatively upper floor area is associated with a light weight range.
  • the data management unit 62 stores various types of information such as shelf data, user data, and group determination data. Below, the various information stored in the data management part 62 is demonstrated.
  • the group determination data is associated with a weight range in which the mechanical parking device 10 is classified by weight and a region. For example, as shown in FIG. 14, when the predetermined weight is 2300 kg, 1900 kg, 1600 kg, 1300 kg, and 1000 kg, the weight range from 1901 kg to 2300 kg is set as the region A, and the weight range from 1601 kg to 1900 kg. Is a region B, a weight range from 1301 kg to 1600 kg is a region C, a weight range from 1001 kg to 1300 kg is a region D, and a weight range of 1000 kg or less is a region E.
  • the user ID indicating the identification information of the vehicle 12 and the vehicle weight information of the vehicle 12 are associated with each other.
  • user data is shown as in FIG.
  • the vehicle weight information of the user data is the estimated weight information of the vehicle 12 acquired by the weight estimating unit 48 of the control unit 40 as described in the first to third embodiments.
  • the weight information is stored in the storage unit 42, and is stored in the user data in association with the identification information of the vehicle 12.
  • the user ID of the user data is information such as a personal identification number, an IC card, and a remote controller, for example, and is information used as a key (key) for user authentication when the mechanical parking device 10 is used.
  • an area divided by the weight range and each floor of the mechanical parking device 10 are associated.
  • the 15-story mechanical parking device 10 is divided into five regions from region A to region E shown in FIG. Region A, the fourth to sixth floors as region B, the seventh to ninth floors as region C, the tenth to twelfth floors as region D, and the thirteenth to fifteenth floors as region E It is corresponded as.
  • the case where the mechanical parking device 10 is 15 stories and the weight range is divided into five is taken as an example, but the number of floors and the weight range of the mechanical parking device are described. The number is not particularly limited. Further, the predetermined weight value for dividing the weight range is not particularly limited.
  • the shelf data is associated with the identification information of the storage shelves and the information that indicates the presence state of the vehicle 12 for each storage shelf (whether or not the vehicle 12 is in stock).
  • the shelf data the storage shelf 18 in which the vehicle 12 is stored can be grasped, and the presence or absence of an empty pallet that is the pallet 20 on which the vehicle is not placed can be grasped.
  • the information which shows an in-vehicle state is information which is rewritten (updated) in response to the change of the usage condition of a storage shelf after entering / exiting.
  • the calculation unit 63 presents the amount of energy required for entering and leaving the vehicle 12. Specifically, the calculation unit 63 searches for an empty pallet from the lower floor, calculates the first energy amount Ea required when the vehicle 12 is placed on the selected empty pallet and transported, A second energy amount Eb required when the vehicle 12 is placed and transported on the empty pallet selected by the pallet determining unit is calculated, and the first energy amount Ea and the second energy amount Eb are output. More specifically, a necessary energy amount is calculated using the following formulas (1) and (2), and presented in a manner that can be compared with a numerical value or the like. Further, the calculation unit 63 causes the data management unit 62 to store energy saving data such as the first energy Ea, the second energy Eb, and the energy saving amount (energy saving amount; difference between the first energy Ea and the second energy Eb). .
  • energy saving data such as the first energy Ea, the second energy Eb, and the energy saving amount (energy saving amount; difference between the first energy Ea and the second energy Eb).
  • First energy amount Ea height from ground level to floor with empty pallet h1 [m] ⁇ measured vehicle weight [kg] ⁇ gravity acceleration [9.8 m / s 2 ] (1)
  • Second energy amount Eb height from ground level to floor with empty pallet h2 [m] ⁇ measured vehicle weight [kg] ⁇ gravity acceleration [9.8 m / s 2 ] (2)
  • Energy saving amount (first energy Ea)-(second energy amount Eb) (3)
  • the height h1 is a height indicating a floor (position) where an empty pallet is located by searching for an empty pallet in order from the bottom of the mechanical parking device.
  • the height h2 is a height indicating a floor (position) where an empty pallet is found by sequentially searching for an empty pallet in each area assigned in consideration of the vehicle weight by the method according to the present invention. That is, the height h1 and the height h2 indicate that the method for determining the height is different.
  • FIG. 17 is a flowchart showing the flow of the pallet 20 take-out process at the time of warehousing, which is executed by the lift transporter control device 30 according to the fourth embodiment.
  • step SA2 If there is no vehicle weight data of the vehicle 12 to be stored, empty pallets are searched in order from the lower floor (for example, the first floor in the case of a mechanical parking device from the first floor to the 15th floor) (step SA2). ). The presence / absence of an empty pallet is determined, and if there is an empty pallet (Yes in step SA3), the empty pallet is determined as a pallet 20 for receiving the vehicle 12 (step SA4), and the initial warehousing is completed. If there is no empty pallet, the search for the presence of an empty pallet is repeated in order from the lower floor to the upper floor so as to search for an empty pallet one floor above the searched lower floor ( No in step SA3).
  • Step SA5 when there is vehicle weight data corresponding to the identification information of the vehicle 12 to be stored, group determination data is searched, and information on an area corresponding to the vehicle weight range including the vehicle weight data of the vehicle 12 to be stored is read.
  • the mechanical parking device 10 determines whether or not there is an empty pallet in the area (step SA6). If there is an empty pallet, an empty pallet in the corresponding area is determined as the pallet 20 for receiving the vehicle 12 (step SA7), and this process is terminated. If there is no empty pallet, information on the area corresponding to the next weight range is read (step SA8), and the determination of the presence of an empty pallet in the area corresponding to the next weight range is repeated until an empty pallet is found. It is.
  • the “next weight range” that is the search target for the empty pallet is “one lighter weight range” than the weight range that is the search target range, and there is no empty pallet in the “one lighter weight range”.
  • “another lighter weight range” is selected as an empty pallet search area.
  • the parking area corresponding to the heavy weight range is searched by searching for the empty pallet by preferentially searching for the light weight range.
  • the empty pallet is extracted from the corresponding weight range, the vehicle 12 is placed on the extracted empty pallet, and the vehicle 12 is placed on the storage shelf 18 from which the empty pallet is extracted.
  • the placed pallet 20 is stored.
  • the weight of the vehicle 12 is estimated and estimated by the method described in the first to third embodiments. The speed is adjusted based on the weight.
  • step SB1 When a vehicle is stored by a conventional mechanical parking device, a storage shelf in which empty pallets that can be stored are arranged is searched based on the current number of stored mechanical parking devices, and the mechanical parking device The number of stages counted from the lower stage is referred to (step SB1).
  • step SB2 When the arrangement position (the number of steps from the lower level) of the empty pallet used for warehousing of the vehicle is determined, the first energy amount Ea required when the vehicle is admitted at that position is calculated (step SB2).
  • the pallet determination unit 61 searches for the incoming pallet and determines the empty pallet
  • the storage shelf in which the empty pallet is arranged is searched and the number of stages is referred (step SB3).
  • the second energy Eb necessary for arriving the vehicle at that position is calculated (step SB4).
  • the difference between the first energy amount Ea and the second energy amount Eb is calculated, and the energy saving amount is calculated (step SB5).
  • the lift transporter control device 10 in the case of warehousing of the vehicle 12 included in the heavy weight range, it is transported to a relatively lower region, and the light weight range. Since the vehicle included in is transported to a relatively upper region, the energy during the warehousing operation is minimized, energy is saved, and waiting time can be shortened.
  • the pallet determining unit 61 of the lift transporter control device 10 according to the present invention has one of the weight ranges including the weight of the vehicle 12 when there is no empty pallet in the weight range including the weight of the vehicle 12 to be stored.
  • the vehicle By removing the empty pallet from the area corresponding to the light weight range, the vehicle is temporarily retracted to the light weight range area, and a space in the heavy weight area is secured (that is, the vehicle 12 in the heavy weight range can be received). Area). Thereby, compared with the case where the heavy vehicle 12 is received later and the heavy vehicle 12 is transported upward because only the light weight region is vacated, the heavy weight region can be effectively used. The energy used sometimes can be minimized.
  • the empty pallet is taken out from the lower floor, which is a conventional method, and the empty pallet is taken out using the first energy amount Ea required when transported and the pallet determining unit 61 of the present invention,
  • the energy saving effect can be quantitatively and visually appealed.
  • presentation for example, by displaying energy-saving data with numerical values and illustrations on the operation panel 32, it is possible to appeal the effect of energy saving in real time. Since it can be left, it is possible to grasp the results of energy saving from various angles.
  • the vehicle weight information may be rearranged (sorted) in order of weight at a predetermined interval, and the weight range may be reviewed and changed based on the rearranged weight information.
  • the vehicle weight range is reviewed according to the weight distribution at predetermined intervals, so that it can be adapted to the weight distribution of the actually stored vehicle. Thereby, since empty pallets are taken out from the appropriate area corresponding to the vehicle weight and transported, the transport control of the mechanical parking device 10 has high performance.
  • operation data information such as shelf data, user data, and group determination data stored in the data management unit 62, and analysis of vehicle weight distribution for sorting vehicle weight information, etc. are maintained through an inspection terminal or the like. You may decide.
  • the maintenance work may be performed by a maintenance worker going to the site where the mechanical parking device 10 is provided, and connecting the mechanical parking device 10 and the inspection terminal directly, or the mechanical parking device. 10 may be connected to an inspection terminal provided in a physically remote location so as to be communicable via a network or the like, and a maintenance person may perform from a remote location via the network.
  • the present invention has been described using the three pieces of shelf data, user data, and group determination data stored in the data management unit 62, but the technical scope of the present invention is not limited to the above three data. Various changes or improvements can be added to the above data without departing from the gist of the invention, and forms to which the changes or improvements are added are also included in the technical scope of the present invention.
  • the lift transporter control device 30 may set the vehicle weight range for each type of the vehicle 12.
  • the group determination data includes each weight range of the high roof vehicle (list network).
  • the area A is changed from the area A to the area D according to the hanging part), and the area E is changed from the area E to the area H according to the respective weight ranges (outlined portions of the list) of the ordinary vehicle.
  • the allocation of the storage shelves in these areas A to H does not bias the vehicle weight range for each type of vehicle 12, but, for example, as shown in FIG. By assigning, even if the vehicle type of the vehicle 12 is different, an appropriate area is equally assigned. Thereby, the situation where waiting time changes with vehicle models can be prevented.
  • the fifth embodiment of the present invention will be described below.
  • the structure of the mechanical parking apparatus 10 which concerns on this 5th Embodiment is the same as that of the mechanical parking apparatus 10 which concerns on 1st Embodiment shown in FIG. 1
  • the structure of the lift conveyance machine control apparatus 30 is It is the same as that of the structure of the mechanical parking apparatus 10 concerning 4th Embodiment shown in FIG.
  • differences from the above-described embodiment will be mainly described.
  • the fifth embodiment is different from the above in that the empty pallet to be taken out is selected and the warehousing position is determined in consideration of the number of warehousing / retrieving times of the vehicle.
  • the lift transporter control device 30 includes a number counting unit (not shown) in addition to the configuration of the fourth embodiment.
  • the number counting unit counts the number of times each vehicle has been loaded and unloaded, and associates the counted information of the number of times of loading and unloading with the vehicle identification information and stores them as user data.
  • the user data is associated with a user ID indicating identification information of the vehicle 12, information on the vehicle weight of the vehicle 12, information on the number of loading / unloading of the vehicle, and a correction weight (for example, see FIG. 21).
  • the weight information of the vehicle 12 stored as user data is the estimated weight of the vehicle 12 acquired by the weight estimating unit 48 of the control unit 40. Information.
  • the group determination data is a correction weight range calculated by multiplying a provisional correction weight (for example, 2500) by a magnification (for example, 2.0 times, 0.6 times, etc.) indicating a weighting of the frequency.
  • the (weight range) is associated with the region (see FIG. 22).
  • the correction weight is set as follows. It is preferable to calculate based on a predetermined calculation formula and review and change the threshold value that is the corrected weight range of the group determination data.
  • the magnification indicating the weighting of the frequency may be set to a fixed value, or may be changed according to the situation by a maintenance staff or the like inputting from the outside.
  • the calculated correction weight is calculated on the basis of the number of times the vehicle 12 has been entered / exited within a predetermined period and the average number of times of entry / exit of all the vehicles 12 as indicated by the following equation (4).
  • Corrected weight measured weight [Kg] x number of loading / unloading / average number of loading / unloading of all vehicles (4)
  • the corrected weight is, for example, the value is small when the measured weight is the same and the number of loading / unloading is small, and the value is large when the number of loading / unloading is large. Is set as follows. In this way, by reviewing the vehicle weight range based on the corrected weight in consideration of the vehicle loading / unloading frequency, an optimum empty pallet suitable for the frequency can be selected.
  • FIG. 23 is a flowchart showing the flow of the pallet 20 take-out process at the time of warehousing, which is executed by the lift transporter control device according to the fifth embodiment.
  • empty pallets are searched in order from the lower floor (for example, the first floor in the case of a mechanical parking device from the first floor to the 15th floor) (step). SC2). The presence or absence of an empty pallet is determined. If there is an empty pallet (Yes in step SC3), the empty pallet is determined as a pallet for receiving the vehicle 12 (step SC4), and the number of times of warehousing is incremented by 1 by the frequency coefficient section. And complete the first goods receipt. If there is no empty pallet, the search for the presence of an empty pallet is repeated in order from the lower floor to the upper floor so as to search for an empty pallet one floor above the searched lower floor ( Step SC3 No).
  • the group determination data is retrieved, and a correction weight range including the correction weight corresponding to the vehicle 12 to be stored (shown in FIG. 22).
  • Information on the area corresponding to the weight range associated with each area) is read (step SC5).
  • the mechanical parking device 10 determines whether or not there is an empty pallet in the corresponding area (step SC6). If there is an empty pallet, the empty pallet in the corresponding area is determined as a pallet for receiving the vehicle 12, the number of times of warehousing is incremented by 1 by the number counting unit, and this process is terminated (step SC7).
  • the information of the area corresponding to the next corrected weight range is read (step SC8), it is determined whether there is an empty pallet in the area corresponding to the next corrected weight range, Repeat until found.
  • the “next corrected weight range” means that the “corrected weight range that is one smaller than the corrected weight range that is the search target range” is set as the search target area of the empty pallet, and “one less corrected weight range”. If there is no empty pallet, “one smaller correction weight range” is selected as the search target area of the empty pallet. As described above, when there is no empty pallet even if the smaller correction weight ranges are searched in order, “one correction weight range larger than the original correction weight range” is set as an empty pallet search area, and “one larger”. If there is no empty pallet in the “corrected weight range”, “another corrected weight range” is selected as an empty pallet search area.
  • the weight of the vehicle 12 is estimated and estimated by the method described in the first to third embodiments. The speed is adjusted based on the weight.
  • a small corrected weight range that is, a vehicle having a low storage frequency and a light weight.
  • a parking area corresponding to a large corrected weight range that is, a vehicle with a high loading / unloading frequency and a heavy weight
  • a state in which the vehicle weights can be easily rearranged is created.
  • the warehousing position is determined based on the corrected weight that takes into account the warehousing frequency of the vehicle and the vehicle weight. It becomes driving.
  • an optimal empty pallet can be selected for the frequency and the vehicle weight.
  • the sixth embodiment of the present invention will be described below.
  • the structure of the mechanical parking apparatus 10 which concerns on this 6th Embodiment is the same as that of the mechanical parking apparatus 10 which concerns on 1st Embodiment shown in FIG. 1
  • the structure of the lift conveyance machine control apparatus 30 is It is the same as that of the structure of the mechanical parking apparatus 10 concerning 4th Embodiment shown in FIG.
  • differences from the above-described embodiment will be mainly described.
  • the case where the user ID is used as the identification information of the vehicle 12 has been described as an example, assuming that the mechanical parking device used by the contracted user is determined in advance.
  • the sixth embodiment is different from the above in that the user is not determined and the vehicle unique number is used as the identification information.
  • a case where the present invention is applied to a time-lending mechanical parking apparatus will be described as an example.
  • the user data stores a unique number of each vehicle acquired as identification information in association with vehicle weight information.
  • the unique number of the vehicle is a number described on a vehicle number mark (number plate), and can be obtained, for example, by performing an imaging process using an imaging device such as a camera arranged in advance at a vehicle entry / exit standby position. .
  • an imaging device such as a camera arranged in advance at a vehicle entry / exit standby position.
  • the unique number of the vehicle 12 to be stored is acquired by an imaging process such as a camera, the unique number of the vehicle 12 that has been stored in the past and the weight of the vehicle 12 are associated with each other.
  • the user data is referred to, and it is determined whether or not the vehicle has entered and exited in the past. If there is information on the weight of the vehicle corresponding to the unique number in the user data, an empty pallet is taken out from the area corresponding to the weight range including the weight of the vehicle 12 corresponding to the unique number.
  • the weight of the vehicle 12 is estimated and estimated by the method described in the first to third embodiments. The speed is adjusted based on the weight.
  • the mechanical parking system 100 will be described with an example in which three mechanical parking devices 10 are provided, but the number of mechanical parking devices is not particularly limited.
  • the mechanical parking system 100 includes three mechanical parking devices 10 a, 10 b, 10 c and a monitoring unit 6.
  • the mechanical parking devices 10a, 10b, and 10c and the monitoring unit 6 are connected so as to be able to communicate with each other, and information is exchanged.
  • the monitoring unit 6 includes the data management unit described in the above-described embodiment, and refers to user data that is information associating an incoming vehicle stored in the data management unit with the weight of the vehicle.
  • a mechanical parking device for receiving 12 is selected.
  • the data management unit has common user data among all the mechanical parking devices 10a, 10b, and 10c.
  • the mechanical parking apparatus is operated by switching operation modes such as an entry / exit mode, a standby mode, an energy saving mode, and an end mode.
  • the entry / exit mode is an operation mode in which the vehicle is entered / exited from the storage shelf, and power is supplied to various devices.
  • the standby mode is an operation mode in which driving is performed with a predetermined amount of power consumed in the loading / unloading mode after the vehicle is loaded / unloaded.
  • the energy saving mode after a predetermined time elapses from the timing when the standby mode is set, the power is further reduced by a predetermined amount from the power consumed in the standby mode.
  • the end mode is a state in which power is not supplied to the mechanical parking device 1, and is a state in which power is not supplied to various devices.
  • the mechanical parking device that has an empty pallet and can store the vehicle 12
  • the priority order for receiving the incoming vehicle is sequentially set to the standby mode, the incoming / outgoing mode, and the energy saving mode. This allows efficient operation and eliminates wasted energy consumption.
  • the data management unit of the monitoring unit 6 refers to the user data and the vehicle weight corresponding to the user ID. The presence or absence of information is determined.
  • the mechanical parking device in the operation mode having a high priority of warehousing is compared by comparing the operation modes of the mechanical parking devices, The parking device 10 is selected.
  • the mechanical parking device 10 having a large empty shelf is selected, and the lower level of the selected mechanical parking device 10 (for example, the mechanical type from the first floor to the 15th floor).
  • empty pallets are searched in order from the first floor). The presence / absence of an empty pallet is determined. If there is an empty pallet, the empty pallet is determined as a pallet for receiving the vehicle 12, and the initial warehousing is completed.
  • the user data when there is vehicle weight data corresponding to the identification information of the vehicle 12 to be stored, group determination data is retrieved, and information on the region corresponding to the vehicle weight range including the vehicle weight data of the vehicle 12 to be stored. Is read out. Subsequently, for each mechanical parking device, it is determined whether there is an empty shelf in an area corresponding to the read vehicle weight range. When the number of the mechanical parking apparatus 10 with an empty shelf is one, the mechanical parking apparatus with an empty shelf is selected as an apparatus used for warehousing. When there are a plurality of mechanical parking apparatuses 10 with empty shelves, selection is performed as follows.
  • the respective operation modes are compared, and the mechanical parking device 10 used for warehousing is determined based on the operation mode. decide.
  • the state in which the vehicle is not stored in the storage shelf is compared, that is, the number of empty shelves is compared, and the mechanical parking device having a large number of empty shelves. 10 is selected. In this way, when the mechanical parking device 10 to be stored is selected, an empty pallet is taken out from a desired area of the selected mechanical parking device 10, and the present process ends.
  • the weight of the vehicle 12 is estimated and estimated by the method described in the first to third embodiments. The speed is adjusted based on the weight.
  • the mechanical parking system 100 by sharing user data in which a vehicle and the weight of the vehicle are associated with each other between a plurality of mechanical parking apparatuses,
  • the mechanical parking apparatus 10 suitable for the weight and the loading / unloading frequency can be selected, and the waiting time for loading / unloading of the user is shortened as the entire mechanical parking system. Moreover, it becomes energy saving of a mechanical parking system. Thereby, the environmentally friendly mechanical parking system 100 can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

 車両が載置されたリフト搬送機の昇降時間を短縮する、ことを目的とする。載置された車両と共に昇降するリフト搬送機を昇降モータ(36)によって昇降させる機械式駐車装置が備えるリフト搬送機制御装置(30)は、車両を入庫させる場合に、リフト搬送機に載置された車両の重量を推定し、推定した車重に基づいて、リフト搬送機を昇降させる加速度、減速度、及び最高速度を導出する。そして、リフト搬送機制御装置(30)が備えるモータ制御部(38)は、導出した加速度に基づいて、車両が載置されて停止しているリフト搬送機を加速させ、導出した最高速度に達した後、導出した減速度に基づいてリフト搬送機を減速させることで、予め指定された階にリフト搬送機を停止させるように昇降モータ(36)を制御する。

Description

リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法
 本発明は、リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法に関するものである。
 従来、荷物を昇降させる昇降装置は、リフト搬送機等の昇降部材と、昇降部材を稼働させるためのモータ及びその制御装置等とが設けられており、制御装置からの制御に基づいて荷物の格納、取り出し等の荷役作業が行われ、例えば、車両を荷物とする機械式駐車装置に用いられている。
 ところで、昇降装置(機械式駐車装置ではリフト搬送機)は、昇降させる荷物の重量や寸法に制限を設け、それら制限を超過しない範囲内の荷物か否かを判定し、判定結果に応じた制御をすることによって事故や故障を未然に防いでいる。
 例えば、特許文献1には、車両を載せた昇降部材が昇降する時の電流値を検出することにより車両の重量が所定重量を超過しているかを判定し、超過していなければ昇降部材の昇降を継続し、超過していれば車両を出庫させる制御技術が開示されている。
 また、従来の車両が載置されたリフト搬送機に対する制御は、予め速度と加減速度を固定で設定し、移動距離及び減速ポイントを制御装置が計算し、図12に示される速度パターンのように、高速指令と低速指令との切り替えによって速度制御を実施していた。
特開2001-63971号公報
 しかしながら、リフト搬送機の速度及び加減速度は、車両の重量(車重)にかかわらず、定格重量(最も重い重量)により決定された固定値であるため、車重の軽い車両に対しては、リフト搬送機を昇降させるモータの性能に余裕があり、モータの性能を有効に使用していなかった。すなわち、車重の軽い車両に対しては、リフト搬送機を昇降させる速度の上昇が可能であった。
 また、図12に示されるように、リフト搬送機を近距離移動させる場合、遠距離移動の場合のように速度が一定となる期間を経ずに、高速指令と低速指令とが切り替えられる場合がある。このため、急激な加速度の変化が発生するので、リフト搬送機の速度にオーバーシュートが発生するので、リフト搬送機を予め定められた階に停止させる停止精度を高く確保するために、低速度の区間を大きくとる必要があり、リフト搬送機の昇降時間が長くなっていた。
 本発明は、このような事情に鑑みてなされたものであって、車両が載置されたリフト搬送機の昇降時間を短縮することができるリフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法を提供することを目的とする。
 上記課題を解決するために、本発明のリフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法は、以下の手段を採用する。
 すなわち、本発明の第1の態様に係るリフト搬送機制御装置は、複数の階を有する構造物内に設置され、載置された車両と共に昇降するリフト搬送機、該リフト搬送機を昇降させるモータ、及び該リフト搬送機が昇降する昇降路に沿って複数の前記階に配設された格納棚を備える機械式駐車装置のリフト搬送機制御装置であって、前記車両を入庫させる場合に、前記リフト搬送機に載置された前記車両の重量を推定する重量推定手段と、前記重量推定手段によって推定された前記車両の重量に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度を導出する導出手段と、前記導出手段によって導出された前記加速度に基づいて、前記車両が載置されて停止している前記リフト搬送機を加速させ、前記導出手段によって導出された前記最高速度に達した後、前記導出手段によって導出された前記減速度に基づいて前記リフト搬送機を減速させることで、予め指定された前記階に前記リフト搬送機を停止させるように前記モータを制御するモータ制御手段と、を備える。
 上記態様によれば、リフト搬送機制御装置は、複数の階を有する構造物内に設置され、載置された車両と共に昇降するリフト搬送機、該リフト搬送機を昇降させるモータ、及び該リフト搬送機が昇降する昇降路に沿って複数の前記階に配設された格納棚を備える機械式駐車装置に設けられる。なお、車両は、パレットに載置された状態で、リフト搬送機によって昇降される。
 そして、重量推定手段によって、前記車両を入庫させる場合に、リフト搬送機に載置された車両の重量が推定され、導出手段によって、重量推定手段によって推定された車両の重量に基づいて、リフト搬送機を昇降させる加速度、減速度、及び最高速度が導出される。
 これにより、車両の重量に適したリフト搬送機の速度を得ることができる。
 さらに、モータ制御手段によって、導出された加速度に基づいて、車両が載置されて停止しているリフト搬送機を加速させ、導出された最高速度に達した後、導出された減速度に基づいてリフト搬送機を減速させることで、予め指定された階にリフト搬送機を停止させるようにモータが制御される。
 以上のように、車両の重量に適した加速度、減速度、及び最高速度に基づいてリフト搬送機を昇降させるモータを制御するので、該モータの性能を有効に活用することが可能となり、その結果、リフト搬送機の昇降時間を短縮することができる。
 また、上記態様のリフト搬送機制御装置は、前記モータ制御手段が、前記リフト搬送機の速度が前記最高速度に達した場合に、前記最高速度で所定時間保った後、前記減速度に基づいて前記リフト搬送機を減速させてもよい。
 上記態様によれば、リフト搬送機の速度が最高速度に達した場合に、最高速度で所定時間保った後、リフト搬送機を減速させるので、リフト搬送機が加速から減速に至る過程において、急激な加速度の変化(トルク変動)を防止することができる。
 従って、急激な加速度変化の発生によるリフト搬送機の速度のオーバーシュートが発生しないので、停止精度を確保するために、低速度の区間を大きくとる必要がなくなり、リフト搬送機の昇降時間を短縮することができる。
 また、上記態様のリフト搬送機制御装置は、前記格納棚に格納した前記車両に関する情報と、前記重量推定手段で推定された該車両の重量の情報とを対応付けて記憶する記憶手段を備え、前記導出手段が、前記リフト搬送機で昇降させる前記車両の重量の情報を前記記憶手段から読み出し、読み出した該情報に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度を導出してもよい。
 上記態様によれば、記憶手段によって、格納棚に格納した車両に関する情報と、重量推定手段で推定された該車両の重量の情報とが対応付けて記憶されるので、重量が記憶されている車両に関しては、入庫する毎に重量を推定する必要がなくなる。このため、車両の入庫に要する時間を短縮することができる。
 また、上記態様のリフト搬送機制御装置は、前記導出手段が、車両を出庫させる場合に、出庫させる前記車両の重量の情報を前記記憶手段から読み出し、読み出した該情報に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度を導出してもよい。
 上記態様によれば、車両を出庫させる場合に、出庫させる車両の重量の情報が記憶手段から読み出されるので、車両を出庫させる場合であっても、車両の重量に適した加速度、減速度、及び最高速度に基づいてリフト搬送機を昇降させるモータを制御することができる。
 また、上記態様のリフト搬送機制御装置は、前記モータ制御手段が、前記車両の入庫及び前記車両の出庫の少なくとも一方の場合において、前記車両の重量に基づいたトルクを発生した後に、前記車両が載置されて停止している前記リフト搬送機を加速させるように前記モータを制御してもよい。
 上記態様によれば、モータは、車両の重量に基づいたトルクを発生した後に、車両が載置されて停止しているリフト搬送機を加速させるので、モータの起動時の衝撃が削減される。従って、リフト搬送機を昇降させるときに生じる騒音を抑制すると共に、機械部品の寿命を長くすることができる。
 また、上記態様のリフト搬送機制御装置は、前記導出手段が、前記重量推定手段によって推定された前記車両の重量に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度と共に、加加速度及び減減速度を導出し、前記モータ制御手段が、前記導出手段によって導出された前記加速度及び前記加加速度に基づいて、前記車両が載置されて停止している前記リフト搬送機を加速させ、前記導出手段によって導出された前記最高速度に達した後、前記導出手段によって導出された前記減速度及び前記減減速度に基づいて、前記リフト搬送機を減速させることで、予め指定された前記階に前記リフト搬送機を停止させるように前記モータを制御してもよい。
 上記態様によれば、リフト搬送機の昇降において所謂S字制御が行われるので、急激な加速度変化をより抑制することができ、リフト搬送機等に加わる衝撃が抑制されこととなる。従って、リフト搬送機を昇降させるときに生じる騒音を抑制すると共に、機械部品の寿命を長くすることができる。
 また、上記態様のリフト搬送機制御装置は、前記重量推定手段が、前記車両の入庫時において、前記車両が載置された前記リフト搬送機を上昇させた際に前記モータが発生させるトルクに基づいて、前記車両の重量を推定してもよい。
 上記態様によれば、車両が載置されたリフト搬送機を上昇させた際にモータが発生させるトルクに基づいて、車両の重量が推定される。従って、簡易な構成で車両の重量を推定できる。
 また、上記態様のリフト搬送機制御装置は、前記重量推定手段が、前記車両の入庫時において、前記車両が載置されたパレットを所定の基準位置から所定量上昇させる昇降モータに流れる電流値に基づいて、前記車両の重量を推定してもよい。
 上記態様によれば、車両が載置されたパレットを所定の基準位置から所定量上昇させる昇降モータに流れる電流値に基づいて、車両の重量が推定される。従って、簡易な構成で車両の重量を推定できる。
 また、上記態様のリフト搬送機制御装置は、複数の前記階が、高さ方向に複数の領域に分けられ、予め定められた重量以下の前記車両を上方の前記領域へ搬送し、該予め定められた重量を超える前記車両を下方の前記領域へ搬送してもよい。上記態様によれば、車重の軽い車両は加速度、減速度及び最高速度が大きくなり、運転時間が短くなるので、上方階に格納しても入出庫待ち時間が短縮も可能となる。
 一方、本発明の第2の態様に係る機械式駐車装置は、複数の階を有する構造物内に設置され、載置された車両と共に昇降するリフト搬送機と、前記リフト搬送機を昇降させるモータと、前記リフト搬送機が昇降する昇降路に沿って複数の前記階に配設された格納棚と、上記記載のリフト搬送機制御装置と、を備える。
 また、本発明の第3の態様に係るリフト搬送機制御方法は、複数の階を有する構造物内に設置され、載置された車両と共に昇降するリフト搬送機、該リフト搬送機を昇降させるモータ、及び該リフト搬送機が昇降する昇降路に沿って複数の前記階に配設された格納棚を備える機械式駐車装置のリフト搬送機制御方法であって、前記車両を入庫させる場合に、前記リフト搬送機に載置された前記車両の重量を推定する第1工程と、推定した前記車両の重量に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度を導出する第2工程と、導出した前記加速度に基づいて、前記車両が載置されて停止している前記リフト搬送機を加速させ、導出した前記最高速度に達した後、導出した前記減速度に基づいて前記リフト搬送機を減速させることで、予め指定された前記階に前記リフト搬送機を停止させるように前記モータを制御する第3工程と、を含む。
 また、上記第1の態様のリフト搬送機制御装置は、前記予め定められた重量を1つ以上設定し、前記領域を2つ以上に分け、前記予め定められた重量によって区分けされる重量範囲と前記領域とが対応づけられており、前記車両を載せて搬送するパレットのうち、前記車両の載置されていないパレットである空きパレットを、入庫させる前記車両の重量が含まれる前記重量範囲に対応する前記領域から取り出すパレット決定手段を備え、入庫させる前記車両を載置したパレットを前記空きパレットを取り出した前記領域に搬送することが好ましい。
 車両を載置するための空きパレットは、入庫させる車両の重量が含まれる重量範囲に対応付けられた領域から取り出され、車両を載置後に、パレットが取り出された領域に搬送される。このように、重い重量範囲に含まれる車両の入庫の場合には比較的下方の領域に搬送され、軽い重量範囲に含まれる車両は比較的上方の領域に搬送されるので、入庫運転時のエネルギーが最小化され、省エネルギーとなる。
 また、上記第1の態様のリフト搬送機制御装置の前記パレット決定手段は、入庫させる前記車両の重量が含まれる前記重量範囲に前記空きパレットがない場合には、前記車両の重量が含まれる前記重量範囲より1つ軽い前記重量範囲に対応する前記領域から前記空きパレットを取り出してもよい。
 軽い重量範囲の領域に一時的に車両を退避させ、重い重量範囲の領域の空きパレットを確保(つまり、車両が入庫できる領域を確保)しておくことにより、後から重量の重い車両が入庫された場合であっても、軽い重量範囲の領域しか空いていないため重い車両が上方へ搬送されてしまう場合と比較して、重い重量範囲の領域を有効活用でき、入庫時に使用するエネルギーも最小化される。
 また、従来は、車重を考慮せずに機械式駐車装置の下方から順に入庫させていたので、機械式駐車装置の下方が先に入庫済みとなり、重い車重の車両が、時間的に後から入庫され上方に格納されていた。そのような場合には、入庫時に使用するエネルギーが大きくなり、特に、高揚型(高さ45m以上)の機械式駐車装置では、その影響が大きくなる傾向があったが、上記第1の態様によれば、軽い重量範囲が割り当てられる領域である上方を優先的に使用するので、従来のような重い車重の車両の入庫により無駄にエネルギーを使用することを防ぐことができる。
 また、上記第1の態様のリフト搬送機制御装置は、前記車両の重量の分布状態を所定間隔で算出し、前記分布状態に基づいて前記車重範囲を設定してもよい。
 所定間隔で車重範囲が見直されるので、入庫される車両の車重が決まっておらず、運転の開始時において仮値が入れられている場合であっても、実際の車重分布に適合させることができる。これにより、車重に適した領域から空きパレットが取り出され、搬送されることとなり、高性能となる。
 また、上記第1の態様のリフト搬送機制御装置は、各前記車両が入庫された回数を計数し、前記車両と、前記回数と、前記車両の重量とに基づいて、前記回数が全ての前記車両の平均入出庫回数より多い場合には値が大きくなり、前記回数が前記平均入出庫回数より少ない場合には値が小さくなる補正重量を算出し、該補正重量に基づいて前記車重範囲を設定してもよい。
 このように、車両の入出庫頻度を加味した補正重量を算出し、補正重量によって車重範囲の見直しを行うので、頻度に適した最適な空きパレットの選定ができる。
 また、上記第1の態様のリフト搬送機制御装置は、過去に入出庫させた前記車両の固有番号と前記車両の重量とが対応付けられており、前記車両を入庫させる場合に、入庫させる前記車両の前記固有番号を取得し、前記固有番号に対応する前記車両の重量の情報がある場合には、前記固有番号に対応する前記車両の重量を含む前記重量範囲に対応する前記領域から前記空きパレットを取り出してもよい。
 過去に入出庫させた車両の固有番号と重量とが対応付けられているので、時間貸しで運営する機械式駐車装置であっても、複数回利用する利用者は、固有番号から重量を特定できるので、省エネルギーを考慮した位置からパレットを取り出し、搬送され、エネルギーの無駄がない。また、車両の固有番号とは、車両番号標(ナンバープレート)の番号であり、例えば、カメラで撮像する、手動でユーザにより入力させる等の方法によって取得できる情報である。
 また、上記第1の態様のリフト搬送機制御装置は、前記車両の種類毎に前記車重範囲をそれぞれ設定してもよい。
 車両の種類(例えば、ハイルーフ、普通車等)によって車重範囲が適切に区分けされ、かつ、重い重量範囲は、軽い重量範囲より下方の領域が割り当てられるので、車種が異なっていても、平等に適切な領域が割り当てられることとなる。
 また、上記第1の態様のリフト搬送機制御装置は、前記車両の入出庫に必要とされるエネルギー量を算出する算出手段を備え、前記算出手段は、下方の前記階から前記空きパレットを検索し、選定された前記空きパレットに前記車両を載置して搬送した場合に必要とされる第1エネルギー量を算出し、前記パレット決定手段によって選定された前記空きパレットに前記車両を載置して搬送した場合に必要される第2エネルギー量を算出し、前記第1エネルギー量及び前記第2エネルギー量を出力してもよい。
 これにより、利用者に従来の方法である下方階から空きパレットを取り出し、搬送した場合に必要となる第1エネルギー量と、上記第1の態様のパレット決定手段を使用して空きパレットを取り出し、搬送した場合に必要となる第2エネルギー量とを比較できるので、省エネルギーの効果を定量的に、かつ、視覚的に訴えることができる。また、提示には、例えば、操作盤に数値やイラストで省エネルギー量を表示させる、紙のレポートで定期的に出力させる等の方法がある。
 本発明の第4の態様は、上記何れかのリフト搬送機制御装置を備えた機械式駐車装置である。
 本発明の第5の態様は、上記の機械式駐車装置と、前記機械式駐車装置と情報の授受可能に接続される端末と、を具備する機械式駐車システムである。
 このような構成によれば、保守員が機械式駐車装置の備えられている現地に出向き、機械式駐車装置と端末(例えば、点検用端末)とを直接接続して保守作業を行うことができる。また、機械式駐車装置と端末との情報の授受は、例えば、専用のケーブル、ネットワークケーブル等により行われる。
 上記第5の態様の機械式駐車システムは、通信ネットワークを介して相互に接続される前記機械式駐車装置と前記端末とが遠隔に配置されていてもよい。
 このような構成によれば、機械式駐車装置とは物理的に離れた遠隔地に設けられる端末(例えば、点検用端末)をネットワーク等で通信可能に接続しておくことにより、保守員が通信ネットワークを介して遠隔地から、保守作業を行うことができる。
 本発明の第6の態様は、上記何れかの機械式駐車装置を複数備え、入出庫させる前記車両と該車両の重量とを対応づけた情報をユーザデータとし、複数の前記機械式駐車装置間で共通の前記ユーザデータを有する機械式駐車システムである。
 複数の機械式駐車装置間において、車両と車両の重量とを対応付けたユーザデータを共有することにより、車重や入出庫頻度に適した機械式駐車装置を選定させることができ、入出庫待ち時間が短縮する、かつ、省エネルギーとなる。これにより、環境に優しい機械式駐車システムを提供することができる。
 本発明によれば、車両が載置されたリフト搬送機の昇降時間を短縮することができる、という優れた効果を有する。
本発明の第1実施形態に係る機械式駐車装置の概略図である。 本発明の第1実施形態に係るリフト搬送機制御装置の電気的構成を示した機能ブロック図である。 本発明の第1実施形態に係る入庫時速度決定処理の流れを示すフローチャートである。 本発明の第1実施形態に係る入庫時におけるリフト搬送機の速度パターンである。 本発明の第1実施形態に係る出庫時速度決定処理の流れを示すフローチャートである。 本発明の第1実施形態に係る昇降モータで発生させるトルクの時間変化を示したグラフである。 本発明の第1実施形態に係る出庫時におけるリフト搬送機の速度パターンである。 本発明の第2実施形態に係る入庫時におけるリフト搬送機の速度パターンである。 本発明の第2実施形態に係る出庫時におけるリフト搬送機の速度パターンである。 本発明の第3実施形態に係る入庫時速度決定処理の流れを示すフローチャートである。 他の実施形態に係る機械式駐車装置の出入口の構成図である。 従来のリフト搬送機の制御における速度パターンである。 本発明の第4実施形態に係るリフト搬送機制御装置の概略構成を示した図である。 本発明の第4実施形態に係るグループ決定データの一例を示した図である。 本発明の第4実施形態に係る棚データの一例を示した図である。 本発明の第4実施形態に係るユーザデータの一例を示した図である。 本発明の第4実施形態に係る入庫時における空きパレット取り出し処理の流れを示すフローチャートである。 本発明の第4実施形態に係るエネルギー算出処理の流れを示すフローチャートである。 本発明の第4実施形態の変形例に係る車種毎に車重範囲を割り当てたグループ決定データの一例を示した図である。 本発明の第4実施形態の変形例に係る複数の車種を含む場合の領域の割り当てを示す棚データの一例を示した図である。 本発明の第5実施形態に係るユーザデータの一例を示した図である。 本発明の第5実施形態に係るグループ決定データの一例を示した図である。 本発明の第5実施形態に係る入庫時における空きパレット取り出し処理の流れを示すフローチャートである。 本発明の第7実施形態に係る機械式駐車システムの概略図である。
 以下に、本発明に係るリフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法の一実施形態について、図面を参照して説明する。
〔第1の実施形態〕
 図1は、本第1実施形態に係る機械式駐車装置10の概略図である。
 図1に示されるように、機械式駐車装置10は、複数の階を有する構造物内に設置され、車両12を昇降させるリフト搬送機14、リフト搬送機14が昇降する昇降路16に沿って複数の階に配設された格納棚18、及びリフト搬送機14により把持され、入出庫させる車両12を載置するパレット20を備える。
 本第1実施形態では、機械式駐車装置10を90°旋回型の機械式駐車装置として説明するが、旋回角度は90°に限定されず、例えば30°や180°であってもよい。なお、90°旋回型とは、車両10を入出庫させる乗入階22に車両12を入庫させる向きと格納棚18に格納される向きとが90°異なり、格納棚18に格納する場合に、乗入階22の車両を90°旋回させる方式である。また、本第1実施形態に係る機械式駐車装置10、乗入階22が1階に設けられるが、乗入階の配設位置は特に限定されない。
 図1に示されるように、機械式駐車装置10は、最下階である1階に乗入階22を備え、出入口を介して乗入階22に車両12を入庫させ、乗入階22の上部にある格納棚18に格納させる。また、機械式駐車装置10は、出庫させる車両12を格納棚18から取り出し、出入口を介して乗入階22から出庫させる。
 図2は、リフト搬送機14の昇降を制御するためのリフト搬送機制御装置30の電気的構成を示した機能ブロック図である。
 リフト搬送機制御装置30は、車両12を入庫する操作及び出庫する操作を受け付ける操作盤32に対する利用者による操作内容に基づいて、機械式駐車装置10を制御する地上制御盤34、及びリフト搬送機14を昇降させる昇降モータ36を制御するモータ制御部38(インバータ装置)を備えている。
 地上制御盤34は、CPU(Central Processing Unit)である制御部40、各種データを記憶する記憶部42、ゼロ補正部44、及び電源装置46を備える。
 制御部40は、パレット20に載置された車両12の重量(車重)に基づいて、リフト搬送機14の昇降を制御する。このために、制御部40は、重量推定部48を備え、重量推定部48は、車両12の入庫時において、車両12が載置されたリフト搬送機14を上昇させた際(掬い上げ時)に昇降モータ36が発生させるトルク(以下、「負荷トルク」という。)に基づいて、車重を推定する。
 具体的には、重量推定部48は、モータ制御部38が昇降モータ36へ出力するトルク電流値が入力され、入力されたトルク電流値から、昇降モータ36が発生させる負荷トルクを求め、該負荷トルクと車重との関係を示す対応情報に基づいて、車重を推定する。なお、対応情報は、車重と負荷トルクとの関係を数式によって示した情報であってもよいし、車重と負荷トルクとの関係を一覧(テーブル形式)で示した情報であってもよく、記憶部42に記憶されている。
 ゼロ補正部44は、昇降モータ36が発生させる負荷トルクに基づいて推定されるパレット20の重量と、記憶部42に格納されている基準となるパレット20の重量とを比較する。
 具体的には、パレット20に車両12が載置されていない場合に、ゼロ補正部44は、昇降モータ36が発生させる負荷トルクと、対応情報におけるパレット20の重量に対応する負荷トルクとを比較する。そして、比較の結果、一致していなければ、ゼロ補正部44は、パレット20のみの重量に対応する昇降モータ36が発生させる負荷トルクに基づいて対応情報を補正する。
 ゼロ補正部44による補正は、入庫又は出庫が完了するたび毎に行われることとしてもよいし、所定期間(例えば、1日、2週間、1カ月等)毎に行うこととしてもよい。
 また、制御部40は、推定した車重に応じて、格納棚18の位置を選定することが好ましい。具体的には、車重を所定の重量と比較し、所定の重量より車重が重い車両12ほど乗入階22からの距離が短い、空きの格納棚18を選定し、所定の重量より車重が軽い車両12ほど乗入階22からの距離が長い、空きの格納棚18を選定する。これは、車重が重いほど負荷トルクが大きくなるので、車重が重い車両12を移動させる場合の方が、車重の軽い車両12を移動させる場合よりも大きなトルクが必要となる。このことから、車重が重い車両12の移動距離を短くするべく格納棚18を選定することにより、機械式駐車装置10の電力消費量を低減することができる。また、乗入階22が下方の階(例えば、図1のような機械式駐車装置10の1階)にある場合には、車重の重い車両12が下方階に置かれ、車重の軽い車両12が上方階に置かれるので、車重の軽い車両12は加速度、減速度及び最高速度が大きくなり、運転時間が短くなるので、上方階に格納しても入出庫待ち時間が短縮も可能となる。
 具体的には、複数の階は、高さ方向に複数の領域に分けられ、予め定められた重量以下の車両を上方(上方階)の領域へ搬送し、該予め定められた重量を超える車両を下方(下方階)の領域へ搬送する。なお、予め定められた重量を一つ設定し、上記領域を2つに分けてもよいし、予め定められた重量を2つ以上設定し、上記領域を3つ以上に分けてもよい。
 また、車重の軽い車両12が上方階に、車重の重い車両12が下方階に置かれるので、地震が発生した場合に機械式駐車装置10にかかる力を低減することができる。
 また、制御部40は、推定した車重とリフト搬送機14で搬送可能な重量(定格重量)とを比較し、推定した車重が定格重量を超える場合に、リフト搬送機14による搬送を中止することが好ましい。これにより、定格重量以上の重量の車両12の誤入庫を未然に防ぐことができ、リフト搬送機14等の機器の破損や故障を回避できる。
 さらに、制御部40は、重量推定部48によって推定された車量に基づいて、リフト搬送機14を昇降させる加速度、減速度、及び最高速度を導出し、導出した加速度、減速度、及び最高速度の値をモータ制御部38へ出力する。なお、記憶部42には、車重毎の加速度、減速度、及び最高速度を示したテーブル情報(以下、「デシジョンテーブル」という。)が記憶されており、制御部40は、デシジョンテーブルに基づいて、車重に応じた加速度、減速度、及び最高速度を導出する。
 そして、制御部40は、リフト搬送機14を高速で運転させるための高速指令、又は低速で運転させるための低速指令をモータ制御部38へ出力する。
 モータ制御部38は、制御部40からの高速指令が入力されると、高速で昇降させるように昇降モータ36を制御する一方、制御部40からの低速指令が入力されると、リフト搬送機14を低速で昇降させるように昇降モータ36を制御する。
 また、制御部40には、パルスジェネレータ50から、昇降モータ36の回転数に基づいて検出されたリフト搬送機14の現在位置を示す現在位置情報が入力される。
 電源装置46は、機械式駐車装置10に電源を投入することによって、リフト搬送機14の昇降モータ36や制御部40等の制御装置に電力を供給する。
 次に、本第1実施形態に係る機械式駐車装置10において実行される、入庫時におけるリフト搬送機14に対する制御について説明する。
 図3は、本第1実施形態に係る制御部40で実行される、入庫時におけるリフト搬送機14の加速度、減速度、及び最高速度を導出する入庫時速度導出処理の流れを示すフローチャートである。入庫時速度導出処理は、記憶部42に記憶されている入庫時速度導出プログラムが実行されることによって行われる。なお、本第1実施形態に係る機械式駐車装置10は、乗入階22が1階であり、乗入階22の上部に格納棚18が備えられているため、入庫時には車両12が載置されたリフト搬送機14が上昇することとなる。
 まず、ステップ100では、車両12が載置されたリフト搬送機14を所定距離だけ掬い上げる運転(以下、「掬い上げ運転」という。)を行う。
 次のステップ102では、掬い上げ運転においてモータ制御部38から出力されたトルク電流値に基づいて、昇降モータ36が発生させる負荷トルクを求め、該負荷トルクからリフト搬送機14に載置された車両12の車重を推定する。なお、本ステップ102によって推定された車重は、車両12に関する情報(例えば、車両12を格納する格納棚の番号や車両12の識別番号等)に関連付けて、記憶部42に車重情報として記憶される。
 次のステップ104では、記憶部42に記憶されているデシジョンテーブルから、ステップ102で推定した車重に応じたリフト搬送機14の加速度、減速度、及び最高速度を導出する。
 次のステップ106では、リフト搬送機14の移動距離からリフト搬送機14の運転速度の最大値を算出する。なお、リフト搬送機14の移動距離は、乗入階22から入庫対象の車両12を格納する予め指定された階までの距離である。すなわち、ステップ104で導出した加速度と移動距離とを乗算することによって、運転速度の最大値が算出される。
 次のステップ108では、ステップ106で算出した運転速度の最大値がステップ104で導出した最高速度よりも速いか否かを判定し、肯定判定の場合は、ステップ110へ移行し、否定判定の場合は、ステップ112へ移行する。
 ステップ110では、ステップ104で導出した最高速度を用いて、加速されたリフト搬送機14の減速位置を算出し、ステップ114へ移行する。
 なお、減速位置は、リフト搬送機14が車両12を格納する階へ到着するために、加速されたリフト搬送機14を減速させるための位置である。減速位置は、後述するように、リフト搬送機14の運転速度が最高速度に達した場合に、運転速度を最高速度で所定時間保つ時間も加味して算出される。
 ステップ112では、ステップ106で算出した運転速度の最大値をリフト搬送機14の最高速度に設定し、ステップ106で算出した運転速度の最大値を用いてリフト搬送機14の減速位置を算出し、ステップ114へ移行する。
 ステップ114では、リフト搬送機14の加速度、減速度、及び最高速度をモータ制御部38へ出力すると共に、高速指令に切り替え、入庫時速度導出処理を終了する。
 図4は、本第1実施形態に係る制御部40による制御に基づいた、入庫時におけるリフト搬送機14の速度パターンである。
 図4の近距離移動の速度パターンに示されるように、まず、制御部40からモータ制御部38へ低速指令が出力され、リフト搬送機14は低速で上昇される。このときに、制御部40は、入庫時速度導出処理を行う。
 そして、制御部40によって入庫時速度導出処理が行われた後に、高速指令がモータ制御部38へ出力されると、モータ制御部38は、制御部40から入力された加速度(最適加速度)でリフト搬送機14が上昇するように、昇降モータ36を制御する。
 リフト搬送機14の運転速度が制御部40から入力された最高速度に達した場合、モータ制御部38は、所定時間の間、リフト搬送機14の運転速度が最高速度で保たれるように、昇降モータ36を制御する。
 制御部40は、上記所定時間が経過し、パルスジェネレータ50から入力された現在位置情報に基づいてリフト搬送機14が減速位置に達したと判定したら、モータ制御部38へ低速指令を出力する。モータ制御部38は、低速指令が入力されると制御部40から入力された減速度(最適減速度)で減速しながらリフト搬送機14が上昇するように、昇降モータ36を制御する。
 このように、本第1実施形態に係る機械式駐車装置10は、リフト搬送機14の運転速度が最高速度に達した場合に、最高速度で所定時間保った後、リフト搬送機14を減速させるので、リフト搬送機14が加速から減速に至る過程において、急激な加速度の変化(トルク変化)を防止することができる。従って、急激な加速度変化の発生によるリフト搬送機14の運転速度のオーバーシュートが発生しないので、停止精度を確保するために、低速度の区間を大きくとる必要がなくなり、機械式駐車装置10は、リフト搬送機14の昇降時間を短縮することができる。
 そして、モータ制御部38は、停止精度を確保するために所定の低速度でリフト搬送機14が上昇するように昇降モータ36を制御する。その後、リフト搬送機14が停止する階に対応する停止用ドグによって、リフト搬送機14が検出されたら、制御部40は、モータ制御部38への低速指令をオフすることによって、ブレーキをかけさせ、リフト搬送機14を停止させる。
 なお、入庫時における遠距離移動の速度パターンも、上記近距離移動の速度パターンと同様である。
 次に、本第1実施形態に係る機械式駐車装置10において実行される、出庫時におけるリフト搬送機14に対する制御について説明する。
 図5は、本第1実施形態に係る制御部40で実行される、出庫時におけるリフト搬送機14の加速度、減速度、及び最高速度を導出する出庫時速度導出処理の流れを示すフローチャートである。出庫時速度導出処理は、記憶部42に記憶されている出庫速度導出プログラムが実行されることによって行われる。なお、本第1実施形態に係る機械式駐車装置10は、乗入階22が1階であり、乗入階22の上部に格納棚18が備えられているため、出庫時には車両12が載置されたリフト搬送機14が下降することとなる。
 また、図5における図3と同一のステップについては図3と同一の符号を付して、その説明を一部又は全部省略する。
 まず、ステップ200では、記憶部42に記憶されている車重情報から、出庫対象の車両12の車重を読み出す。
 次のステップ202では、ステップ200で読み出した車重に基づいて、該車重の車両12をリフト搬送機14に載置した場合に要する負荷トルク(以下、「トルクバイアス値」という。)を算出する。トルクバイアス値を車重から算出すためには、例えば、車重をトルクバイアス値に換算する換算比を予め記憶部42に記憶し、読み出した車重に該換算比を乗算することによって、トルクバイアス値を算出する。
 次のステップ204では、トルクバイアス値をモータ制御部38へ出力し、ステップ104へ移行する。
 図6は、昇降モータ36で発生させるトルクの時間変化を示したグラフである。
 図6に示されるように、モータ制御部38は、リフト搬送機14を運転している間、トルクバイアスを加味した負荷トルクを発生するように昇降モータ36を制御する。
 すなわち、本第1実施形態に係る昇降モータ36は、車重に基づいたトルクバイアスを発生した後に、車両12が載置されて停止しているリフト搬送機14を加速させる。これにより、昇降モータ36は、車重に耐える負荷トルクを予め発生させるため、リフト搬送機14は、昇降モータ36の起動時(車両12が載置されたリフト搬送機14の下降開始時)の衝撃が削減される。従って、本第1実施形態に係る機械式駐車装置10は、リフト搬送機14を下降させるときに生じる騒音を抑制すると共に、機械部品の寿命を長くすることができる。
 図7は、本第1実施形態に係る制御部40による制御に基づいた、出庫時におけるリフト搬送機14の速度パターンである。
 まず、制御部40によって出庫時速度導出処理が行われ、高速指令がモータ制御部38へ出力されると、モータ制御部38は、図7の近距離移動の速度パターンに示されるように、制御部40から入力された加速度(最適加速度)でリフト搬送機14が下降するように、昇降モータ36を制御する。
 リフト搬送機14の運転速度が制御部40から入力された最高速度に達した場合、モータ制御部38は、所定時間の間、リフト搬送機14の運転速度が最高速度で保たれるように、昇降モータ36を制御する。
 制御部40は、上記所定時間が経過し、パルスジェネレータ50から入力された現在位置情報に基づいてリフト搬送機14が減速位置に達したと判定したら、モータ制御部38へ低速指令を出力する。モータ制御部38は、低速指令が入力されると制御部40から入力された減速度(最適減速度)で減速しながらリフト搬送機14が下降するように、昇降モータ36を制御する。
 そして、モータ制御部38は、停止精度を確保するために所定の低速度でリフト搬送機14が下降するように昇降モータ36を制御する。その後、乗入階22に対応する停止用ドグによって、リフト搬送機14が検出されたら、制御部40は、モータ制御部38への低速指令をオフすることによって、ブレーキをかけさせ、リフト搬送機14を停止させる。
 なお、出庫時における遠距離移動の速度パターンも、上記近距離移動の速度パターンと同様である。
 以上説明したように、本第1実施形態に係る機械式駐車装置10は、車重に適した加速度、減速度、及び最高速度に基づいてリフト搬送機14を昇降させる昇降モータ36を制御するので、昇降モータ36の性能を有効に活用することが可能となり、その結果、リフト搬送機14の昇降時間を短縮することができる。
〔第2実施形態〕
 以下、本発明の第2実施形態について説明する。
 なお、本第2実施形態に係る機械式駐車装置10及びリフト搬送機制御装置30の構成は、図1,2に示す第1実施形態に係る機械式駐車装置10の構成と同様であるので説明を省略する。
 本第2実施形態に係る制御部40は、重量推定部48によって推定された車重に基づいて、リフト搬送機14を昇降させる加速度、減速度、及び最高速度と共に、加加速度及び減減速度を導出し、導出したこれらの値をモータ制御部38へ出力する。なお、加加速度及び減減速度の導出方法は、第1実施形態で説明した加速度及び減速度の導出方法と同様であるので、その説明を省略する。
 そして、本第2実施形態に係るモータ制御部38は、制御部40によって導出された加速度及び加加速度(後述する図8,9の例では、加速度、加加速度、及び減減速度)に基づいて、車両12が載置されて停止しているリフト搬送機14を加速させ、導出された最高速度に達した後、導出された減速度及び減減速度(後述する図8,9の例では、減速度、減減速度、及び加加速度)に基づいて、リフト搬送機を減速させることで、予め指定された階にリフト搬送機を停止させるように昇降モータ36を制御(所謂、S字制御)する。
 図8は、本第2実施形態に係る制御部40による制御に基づいた、入庫時におけるリフト搬送機14の速度パターンである。
 図8の近距離移動の速度パターンに示されるように、まず、制御部40からモータ制御部38へ低速指令が出力され、リフト搬送機14は低速で上昇される。このときに、制御部40は、入庫時速度導出処理を行う。
 そして、制御部40によって入庫時速度導出処理が行われた後に、高速指令がモータ制御部38へ出力されると、モータ制御部38は、制御部40から入力された加速度(最適加速度)でリフト搬送機14が上昇するように、昇降モータ36を制御する。このとき、制御部40から入力された加加速度(最適加加速度)で、最適加速度に達するまで徐々に加速度を上昇させる。
 そして、本第2実施形態に係るモータ制御部38は、リフト搬送機14の運転速度が制御部40から入力された最高速度に達する前の所定速度において、制御部40から入力された減減速度(最適減減速度)で加速度を減少させ、リフト搬送機14の運転速度が最高速度に達すると共に、加速度が零(0)となるようにする。その後、モータ制御部38は、所定時間の間、リフト搬送機14の運転速度が最高速度で保たれるように、昇降モータ36を制御する。
 制御部40は、上記所定時間が経過し、パルスジェネレータ50から入力された現在位置情報に基づいてリフト搬送機14が減速位置に達したと判定したら、モータ制御部38へ低速指令を出力する。モータ制御部38は、低速指令が入力されると制御部40から入力された減減速度で、制御部40から入力された減速度(最適減速度)に達するまで減速し、最適減速度で減速しながらリフト搬送機14が上昇するように、昇降モータ36を制御する。
 そして、モータ制御部38は、停止精度を確保するために所定の低速度でリフト搬送機14が上昇するように昇降モータ36を制御する。リフト搬送機14の運転速度を上記低速度とする場合、モータ制御部38は、最適加加速度で加速させることによって、リフト搬送機14の加速度が零となるように、昇降モータ36を制御し、上記低速度とする。その後、制御部40は、リフト搬送機14が停止する階に対応する停止用ドグによって、リフト搬送機14が検出されたら、制御部40は、モータ制御部38への低速指令をオフすることによって、ブレーキをかけさせ、リフト搬送機14を停止させる。
 なお、入庫時における遠距離移動の速度パターンも、上記近距離移動の速度パターンと同様である。
 一方、図9は、本第2実施形態に係る制御部40による制御に基づいた、出庫時におけるリフト搬送機14の速度パターンである。
 まず、制御部40によって出庫時速度導出処理が行われ、高速指令がモータ制御部38へ出力されると、図9の近距離移動の速度パターンに示されるように、モータ制御部38は、制御部40から入力された加速度(最適加速度)でリフト搬送機14が下降するように、昇降モータ36を制御する。このとき、制御部40から入力された加加速度(最適加加速度)で、最適加速度に達するまで徐々に加速度を上昇させる。
 そして、本第2実施形態に係るモータ制御部38は、リフト搬送機14の運転速度が制御部40から入力された最高速度に達する前の所定速度において、制御部40から入力された減減速度(最適減減速度)で加速度を減少させ、リフト搬送機14の運転速度が最高速度に達した場合に、加速度が零(0)となるようにする。その後、モータ制御部38は、所定時間の間、リフト搬送機14の運転速度が最高速度で保たれるように、昇降モータ36を制御する。
 制御部40は、上記所定時間が経過し、パルスジェネレータ50から入力された現在位置情報に基づいてリフト搬送機14が減速位置に達したと判定したら、モータ制御部38へ低速指令を出力する。モータ制御部38は、低速指令が入力されると制御部40から入力された減減速度で、制御部40から入力された減速度(最適減速度)に達するまで減速し、最適減速度で減速しながらリフト搬送機14が下降するように、昇降モータ36を制御する。
 そして、モータ制御部38は、停止精度を確保するために所定の低速度でリフト搬送機14が下降するように昇降モータ36を制御する。リフト搬送機14の運転速度を上記低速度とする場合、モータ制御部38は、最適加加速度で加速させることによって、リフト搬送機14の加速度が零(0)となるように、昇降モータ36を制御し、上記低速度とする。その後、制御部40は、リフト搬送機14が乗入階22に対応する停止用ドグによって、リフト搬送機14が検出されたら、制御部40は、モータ制御部38への低速指令をオフすることによって、ブレーキをかけさせ、リフト搬送機14を停止させる。
 なお、出庫時における遠距離移動の速度パターンも、上記近距離移動の速度パターンと同様である。
 本第2実施形態に係る機械式駐車装置10によれば、リフト搬送機14の昇降においてS字制御を行うので、急激な加速度変化をより抑制することができ、リフト搬送機14等に加わる衝撃が抑制され、リフト搬送機14を昇降させるときに生じる騒音を抑制すると共に、機械部品の寿命を長くすることができる。
〔第3実施形態〕
 以下、本発明の第3実施形態について説明する。
 なお、本第3実施形態に係る機械式駐車装置10及びリフト搬送機制御装置30の構成は、図1,2に示す第1実施形態に係る機械式駐車装置10の構成と同様であるので説明を省略する。
 本第3実施形態に係るモータ制御部38は、車両12の入庫の場合においても、車重に基づいたトルクバイアスを発生した後に、車両12が載置されて停止しているリフト搬送機14を加速させるように昇降モータ36を制御する。
 図10は、本第3実施形態に係る入庫時速度導出処理の流れを示すフローチャートである。なお、図10における図3と同一のステップについては図3と同一の符号を付して、その説明を一部又は全部省略する。
 まず、ステップ100では、車両12が載置されたリフト搬送機14を所定距離だけ掬い上げる運転(以下、「掬い上げ運転」という。)を行う。
 次のステップ102では、掬い上げ運転においてモータ制御部38が昇降モータ36へ出力したトルク電流値から求められる昇降モータ36が発生させる負荷トルクから、車重を推定する。
 次のステップ300では、リフト搬送機14の運転を停止させる。
 次のステップ302では、車重からトルクバイアス値を算出する。
 次のステップ304では、トルクバイアス値をモータ制御部38へ出力し、リフト搬送機14の運転を再開させ、ステップ104へ移行する。
 モータ制御部38は、トルクバイアス値と共に、リフト搬送機14の運転の再開指令が入力されると、リフト搬送機14を運転している間、トルクバイアスを加味した負荷トルクを発生するように昇降モータ36を制御する。
 従って、本第3実施形態に係る機械式駐車装置10は、車両12が載置されたリフト搬送機14を上昇させる際の衝撃が削減されるので、リフト搬送機14を上昇させるときに生じる騒音を抑制すると共に、機械部品の寿命を長くすることができる。
 以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更または改良を加えることができ、該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
 例えば、上記各実施形態では、昇降モータ36が発生させる負荷トルクに基づいて、車重を推定する形態について説明したが、本発明は、これに限定されるものではなく、車両12の入庫時において、車両12が載置されたパレット20を所定の基準位置から所定量上昇させる際に昇降モータに流れる電流値に基づいて、車重を推定する形態としてもよい。
 具体的には、機械式駐車装置10は、図11に示されるように、車両12を入出庫する乗入階に設けられ、車両12が載置されたパレット20を旋回させる旋回装置60を備える。そして、車両12の入庫時において、旋回装置60は、車両12が載置されたパレット20を格納棚18に格納する向きに旋回させる場合に、昇降モータ(不図示)によって所定の基準位置からパレット20とパレット20に載置される車両とを上昇させる。このとき制御部40は、昇降モータに流れる電流に基づいて、車両12の重量を推定する。
 また、上記各実施形態では、機械式駐車装置10に初めて車両12を入庫する場合と出庫する場合の制御方法を例に挙げて説明したが、本発明は、これに限定されるものではない。例えば、住居用の機械式駐車装置10において、所定の格納棚18に格納される車両12が予め決定されている場合には、記憶部42に記憶されている車重情報から該車両12の車重を読み出し、加速度、減速度、及び最高速度等の導出を行うこととしてもよい。
 これにより、車両12の格納先の棚が決定されているような場合には、車重の推定を省略することができるので、速やかに車両12の入庫作業が行えることとなる。
 また、上記各実施形態で説明した入庫時速度決定処理や出庫時速度決定処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
〔第4実施形態〕
 以下、本発明の第4実施形態について説明する。
 なお、本第4実施形態に係る機械式駐車装置10の構成は、図1に示す第1実施形態に係る機械式駐車装置10の構成と同様であるので説明を省略する。
 機械式駐車装置10に設けられる複数の階は、高さ方向に複数の領域に分けられ、予め定められた重量以下の車両12を上方(上方階)の領域へ搬送し、予め定められた重量を超える車両12を下方(下方階)の領域へ搬送する。なお、本実施形態においては、予め定められた重量が、5つ設定されていることとし、領域を5つに分けた機械式駐車装置10を例に挙げて説明する。
 本実施形態においては、契約を結んだ利用者が機械式駐車装置を直接操作し、また、操作する機械式駐車装置が予め決められているような場合を想定して説明する。
 図13は、本第4実施形態に係るリフト搬送機制御装置30の構成を示している。
 リフト搬送機制御装置30は、前述の実施形態に記載の各部に加え、パレット決定部(パレット決定手段)61、データ管理部62、及び算出部63を備えている。
 パレット決定部61は、車両を載せて搬送するパレット20のうち、車両12の載置されていないパレット20である空きパレットを、入庫させる車両12の重量が含まれる重量範囲に対応する領域から取り出す。重量範囲は、予め定められた重量によって区切られる重量の範囲であり、機械式駐車装置10を高さ方向に複数の領域に分けた場合の各領域に対応付けられる。また、機械式駐車装置10の比較的下方階の領域は重い重量範囲と対応付け、比較的上方階の領域は軽い重量範囲と対応づけることが望ましい。
 データ管理部62は、棚データ、ユーザデータ、及びグループ決定データの各種情報を格納している。以下に、データ管理部62に格納される各種情報について説明する。
 グループ決定データには、機械式駐車装置10が重量によって区分けされる重量範囲と領域とが対応づけられている。例えば、図14に示されるように、予め定められた重量が、2300Kg、1900Kg、1600Kg、1300Kg、及び1000Kgとした場合には、重量範囲1901Kgから2300Kgまでを領域Aとし、重量範囲1601Kgから1900Kgまでを領域Bとし、重量範囲1301Kgから1600Kgまでを領域Cとし、重量範囲1001Kgから1300Kgまでを領域Dとし、及び重量範囲1000Kg以下を領域Eとして対応づけられる。
 ユーザデータは、車両12の識別情報を示すユーザIDと、車両12の車重の情報とが対応づけられている。例えば、ユーザデータは図15のように示される。また、ユーザデータの車重の情報は、第1実施形態から第3実施形態で説明したように、制御部40の重量推定部48により取得される推定した車両12の重量情報である。重量情報は、リフト搬送機制御装置30に取得されると、記憶部42に格納されるとともに、車両12の識別情報と対応づけられてユーザデータに格納されるようになっている。また、ユーザデータのユーザIDは、例えば、暗証番号、ICカード、リモコン等の情報であり、機械式駐車装置10を使用する場合に、ユーザ認証するキー(鍵)として使用される情報である。
 棚データには、重量範囲によって区分けされた領域と、機械式駐車装置10の各階とが対応付けられている。例えば、図16に示されるように、15階建ての機械式駐車装置10を、図14で示された領域Aから領域Eまでの5つの領域に分ける場合に、第1階から第3階を領域Aとし、第4階から第6階を領域Bとし、第7階から第9階を領域Cとし、第10階から第12階を領域Dとし、第13階から第15階を領域Eとして対応づけられる。ここで、本実施形態においては、機械式駐車装置10が15階建てであり、重量範囲を5つに分けている場合を例に挙げているが、機械式駐車装置の階数及び重量範囲の領域数は特に限定されない。また、重量範囲を区分けする予め定められた重量の値も、特に限定されない。
 また、棚データには、格納棚の識別情報と、各格納棚に対する車両12の在車状態(車両12が入庫しているか否か)を示す情報とが対応づけられている。これにより、棚データが参照されることにより、車両12が格納されている格納棚18が把握できるとともに、車両が載置されていないパレット20である空きパレットの有無が把握できる。また、在車状態を示す情報は、入出庫が行われ、格納棚の使用状況の変化にともなって書きかえられる(更新される)情報である。
 算出部63は、車両12の入出庫に必要とされるエネルギー量を提示する。具体的には、算出部63は、下方の階から空きパレットを検索し、選定された空きパレットに車両12を載置して搬送した場合に必要とされる第1エネルギー量Eaを算出し、パレット決定部によって選定された空きパレットに車両12を載置して搬送した場合に必要される第2エネルギー量Ebを算出し、第1エネルギー量Ea及び第2エネルギー量Ebを出力する。より具体的には、以下の(1),(2)式を用いて、必要なエネルギー量を算出し、数値等によって比較可能に提示する。
 また、算出部63は、第1エネルギーEa、第2エネルギーEb、及び省エネ量(省エネルギー量;第1エネルギーEaと第2エネルギーEbとの差分)等の省エネ化データをデータ管理部62に格納させる。
  第1エネルギー量Ea=地上から空きパレットのある階までの高さh1〔m〕×計測した車重〔kg〕×重力加速度〔9.8m/s〕  (1)
  第2エネルギー量Eb=地上から空きパレットのある階までの高さh2〔m〕×計測した車重〔kg〕×重力加速度〔9.8m/s〕  (2)
  省エネ量=(第1エネルギーEa)-(第2エネルギー量Eb)  (3)
 ここで、上記高さh1は、機械式駐車装置の下段から順に空きパレットを検索して求め、空きパレットがある階(位置)を示す高さである。高さh2は、本発明に係る方法により車重を考慮して割り当てられた各領域で順次空きパレットを検索し、空きパレットがある階(位置)を示す高さである。即ち、高さh1と高さh2とは、高さ決定の方法が異なることを示している。
 以下に、本第4実施形態に係る機械式駐車装置10において実行される、入庫時におけるリフト搬送機14に対する制御について説明する。
 図17は、本第4実施形態に係るリフト搬送機制御装置30で実行される、入庫時におけるパレット20の取り出し処理の流れを示すフローチャートである。
 入庫する車両12が乗入階22に配置され、ユーザによって操作盤32を介してユーザIDが入力されると、データ管理部62のユーザデータが検索され、入庫する車両12の識別情報(ユーザID)に対応する車重データの有無が判定される(ステップSA1)。
 入庫する車両12の車重データがない場合には、下方階(例えば、1階から15階の機械式駐車装置である場合には、1階)から順に、空きパレットが検索される(ステップSA2)。空きパレットの有無が判定され、空きパレットがある場合には(ステップSA3のYes)、その空きパレットが、車両12を入庫させるパレット20として決定され(ステップSA4)、初回入庫を完了する。また、空きパレットがない場合には、検索した下方階の1つ上の階に対して空きパレットを検索するように、下方階から上方階に向けて順に空きパレットの有無の検索が繰り返される(ステップSA3のNo)。
 また、入庫させる車両12の識別情報に対応する車重データがある場合には、グループ決定データが検索され、入庫させる車両12の車重データが含まれる車重範囲に対応する領域の情報が読み出される(ステップSA5)。読み出された領域の情報に基づいて、機械式駐車装置10において、該当領域に空きパレットがあるか否かが判定される(ステップSA6)。空きパレットがある場合には、該当領域の空きパレットが、車両12を入庫させるパレット20として決定され(ステップSA7)、本処理を終了する。空きパレットがない場合には、次の重量範囲に対応する領域の情報が読みだされ(ステップSA8)、次の重量範囲に対応する領域における、空きパレット有無の判定が、空きパレットが見つかるまで繰り返される。
 また、空きパレットの検索対象である「次の重量範囲」とは、検索対象範囲となっている重量範囲よりも「1つ軽い重量範囲」とし、「1つ軽い重量範囲」に空きパレットがない場合には、「さらに1つ軽い重量範囲」を空きパレットの検索領域として選定する。また、このように、順に軽い重量範囲を検索対象としても空きパレットがない場合には、元の重量範囲より「1つ重い重量範囲」を空きパレットの検索領域とし、「1つ重い重量範囲」に空きパレットが無い場合には、「さらに1つ重い重量範囲」を空きパレットの検索領域として選定する。このように、入庫する車両12の重量が含まれる重量範囲に空きパレットがない場合には、軽い重量範囲を優先的に検索させて空きパレットを検索することにより、重い重量範囲に対応する駐車領域の空き状態を確保して、一時的に軽い重量範囲に車両12を格納させることで、重量の重い範囲を有効活用することができる。
 空きパレットを取り出す重量範囲が決定されると、該当する重量範囲から空きパレットが取り出され、取り出された空きパレットに車両12が載置され、さらに、空きパレットを取り出した格納棚18に車両12を載置したパレット20が格納される。
 また、取り出す空きパレットの選定後、車両12が格納棚18に格納されるまでの過程においては、第1実施形態から第3実施形態に上述した方法により、車両12の重量が推定され、推定された重量に基づいて速度調整等が行われる。
 次に、算出部63によってエネルギーの情報が算出され、提示される過程について、図18のフローチャートを示して説明する。
 まず、入庫させる車両がある場合に、従来方式の機械式駐車装置に入庫させた場合に必要となるエネルギー量Eaを算出する。従来方式の機械式駐車装置によって車両が入庫される場合には、機械式駐車装置の現在の格納台数に基づいて、入庫可能な空きパレットが配置されている格納棚が検索され、機械式駐車装置の下段から数えた場合の段数が参照される(ステップSB1)。車両の入庫に使用する空きパレットの配置位置(下段からの段数)が決まったら、その位置に車両を入庫させる場合に必要となる第1エネルギー量Eaが算出される(ステップSB2)。
 一方、上述した本実施形態にかかるパレット決定部61により入庫パレットが検索されて空きパレットを決定した場合の、空きパレットが配置されている格納棚が検索され、段数が参照される(ステップSB3)。車両の入庫に使用する空きパレットの配置位置が決まったら、その位置に車両を入庫させる場合に必要となる第2エネルギーEbが算出される(ステップSB4)。続いて、上記(3)式に基づいて、第1エネルギー量Eaと第2エネルギー量Ebとの差を算出し、省エネ量が算出される(ステップSB5)。
 省エネルギー量、第1エネルギー量、及び第2エネルギー量の情報が算出されると、これら算出結果は、操作盤32に画面表示して機械式駐車装置10のオーナーに対し数値で提示させたり、外部の出力装置等を介して視覚的に提示させたり(例えば、CO換算値等で示す)、印刷装置等を介して紙製のレポートに出力させる等の方法によって提示される(ステップSB6)。
 以上説明してきたように、本第4実施形態にかかるリフト搬送機制御装置10によれば、重い重量範囲に含まれる車両12の入庫の場合には比較的下方の領域に搬送され、軽い重量範囲に含まれる車両は比較的上方の領域に搬送されるので、入庫運転時のエネルギーが最小化され、省エネルギーとなり、待ち時間を短縮できる。また、本発明のリフト搬送機制御装置10のパレット決定部61は、入庫させる車両12の重量が含まれる重量範囲に空きパレットがない場合には、車両12の重量が含まれる重量範囲より1つ軽い重量範囲に対応する領域から空きパレットを取り出すことにより、軽い重量範囲の領域に一時的に車両を退避させ、重い重量範囲の領域の空きを確保(つまり、重い重量範囲の車両12が入庫できる領域を確保)できる。これにより、後から重い重量の車両12が入庫され、軽い重量範囲の領域しか空いていないため重い車両12が上方へ搬送されてしまう場合と比較すると、重い重量範囲の領域を有効活用でき、入庫時に使用するエネルギーも最小化できる。
 また、利用者に対し、従来の方法である下方階から空きパレットを取り出し、搬送した場合に必要となる第1エネルギー量Eaと、本発明のパレット決定部61を使用して空きパレットを取り出し、搬送した場合の第2エネルギー量Ebとを比較することにより、省エネルギーの効果を定量的に、かつ、視覚的に訴えることができる。また、提示には、例えば、操作盤32に数値やイラストで省エネ化データを表示させることにより、リアルタイムに省エネルギーの効果をアピールすることもできるし、紙のレポートで定期的に出力させ、記録として残す等もできるので、省エネルギーの結果を様々な角度から把握することができる。
 なお、グループ決定データは、所定間隔において、車重情報を重量順に並び替え(ソーティング)して、並び替えられた重量情報に基づいて、重量範囲が見直され、変更されることとしてもよい。
 このように、所定間隔で重量の分布に応じて車重範囲が見直されることにより、実際に格納される車両の重量の分布に適合させることができる。これにより、車重に対応する適切な領域から空きパレットが取り出され、搬送されるので、機械式駐車装置10の搬送制御が高性能となる。
 また、データ管理部62に格納される棚データ、ユーザデータ、グループ決定データ等の運用データの情報、及び車重情報をソーティングする車重分布の解析等は点検用端末等を介して保守作業されることにしてもよい。また、保守作業は、保守員が機械式駐車装置10が備えられている現地に出向き、機械式駐車装置10と点検用端末とを直接接続して行われることとしてもよいし、機械式駐車装置10とは物理的に離れた遠隔地に設けられる点検用端末をネットワーク等で通信可能に接続しておき、保守員がネットワークを介して遠隔地から行うこととしてもよい。
 以上、本発明を、データ管理部62に格納される棚データ、ユーザデータ、グループ決定データの3つを用いて説明したが、本発明の技術的範囲は上記3つのデータには限定されない。発明の要旨を逸脱しない範囲で上記データに多様な変更または改良を加えることができ、該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
〔第4実施形態の変形例〕
 また、リフト搬送機制御装置30は、車両12の種類毎に車重範囲をそれぞれ設定することとしてもよい。車両の種類(例えば、ハイルーフ車、普通車等)によって車重範囲が適切に区分けされる場合において、図19に示されるように、グループ決定データは、ハイルーフ車の各重量範囲(一覧表の網掛け部)に応じて領域Aから領域Dとし、普通車の各重量範囲(一覧表の白抜き部)に応じて領域Eから領域Hとする。また、これらの領域Aから領域Hの格納棚の割り当ては、車両12の種類毎に車重範囲を偏らせるのでなく、例えば、図20に示されるように、2つの領域毎に車種を交互に割り当てることにより、車両12の車種が異なっていても、平等に適切な領域が割り当てられることとなる。これにより、車種によって待ち時間が異なる事態を防ぐことができる。
〔第5実施形態〕
 以下、本発明の第5実施形態について説明する。
 なお、本第5実施形態に係る機械式駐車装置10の構成は、図1に示す第1実施形態に係る機械式駐車装置10の構成と同様であり、リフト搬送機制御装置30の構成は、図13に示す第4実施形態にかかる機械式駐車装置10の構成と同様である。ここでは、上述した実施形態と異なる点について主に説明する。本第5実施形態においては、車両の入出庫回数を考慮して、取り出す空きパレットを選定し、入庫位置が決定される点で上記と異なる。
 リフト搬送機制御装置30は、第4実施形態の構成に加え、回数計数部(図示せず)を備えている。回数計数部は、各車両が入出庫された回数を計数しており、計数された入出庫回数の情報と車両の識別情報とを対応づけ、ユーザデータとして格納させる。
 ユーザデータは、車両12の識別情報を示すユーザID、車両12の車重の情報、車両の入出庫回数の情報、及び補正重量が対応づけられている(例えば、図21参照)。ユーザデータとして格納される車両12の車重の情報は、上述した第1実施形態から第3実施形態で説明したように、制御部40の重量推定部48により取得される推定した車両12の重量情報である。
 グループ決定データは、暫定的な補正重量(例えば、2500)に対し、頻度の重みづけを示す倍率(例えば、2.0倍、0.6倍など)を乗算することにより算出される補正重量範囲(重量範囲)と、領域とを対応づける(図22参照)。なお、グループ決定データに格納されるデータが増えてきた場合(即ち、各車両の入出庫回数の計数が上がり、ある程度の分布が把握できるようなった場合)には、以下のように補正重量を所定の計算式に基づいて算出し、グループ決定データの補正重量範囲となる閾値を見直し、変更することが好ましい。
 なお、頻度の重みづけを示す倍率は、固定値が設定されていることとしてもよいし、保守員等が外部から入力することにより、状況に応じて設定変更できるようにしてもよい。
 補正重量の閾値を見直す方法について説明する。算出される補正重量は、下記(4)式で示されるように、所定期間内において車両12が入出庫された回数と、全ての車両12の平均入出庫回数とに基づいて算出される。
  補正重量=計測重量〔Kg〕×入出庫回数/全車両の平均入出庫回数  (4)
 上記(4)式から示されるように、補正重量は、例えば、計測重量が同じであって、入出庫回数が少ない場合には値が小さくなり、入出庫回数が大きい場合には値が大きくなるように設定される。
 このように、車両の入出庫頻度を考慮した補正重量によって車重範囲を見直すことにより、頻度に適した最適な空きパレットの選定ができる。
 以下に、本第5実施形態に係る機械式駐車装置10において実行される、入庫時におけるリフト搬送機14に対する制御について説明する。
 図23は、本第5実施形態に係るリフト搬送機制御装置で実行される、入庫時におけるパレット20の取り出し処理の流れを示すフローチャートである。
 入庫する車両12が乗入階22に配置され、ユーザによって操作盤を介してユーザIDが入力されると、データ管理部62のユーザデータが検索され、入庫する車両12の識別情報(ユーザID)に対応する補正重量の情報の有無が判定される(ステップSC1)。
 入庫する車両12の補正重量の情報がない場合には、下方階(例えば、1階から15階の機械式駐車装置である場合には、1階)から順に、空きパレットが検索される(ステップSC2)。空きパレットの有無が判定され、空きパレットがある場合には(ステップSC3のYes)、その空きパレットが、車両12を入庫させるパレットとして決定され(ステップSC4)、回数係数部によって入庫回数が1インクリメントされて、初回入庫を完了する。また、空きパレットがない場合には、検索した下方階の1つ上の階に対して空きパレットを検索するように、下方階から上方階に向けて順に空きパレットの有無の検索が繰り返される(ステップSC3のNo)。
 また、入庫させる車両12の識別情報に対応する補正重量の情報がある場合には、グループ決定データが検索され、入庫させる車両12に対応する、補正重量が含まれる補正重量範囲(図22に示される各領域に対応づけられた重量範囲)に対応する領域の情報が読み出される(ステップSC5)。読みだされた領域の情報に基づいて、機械式駐車装置10において、該当領域に空きパレットがあるか否かが判定される(ステップSC6)。空きパレットがある場合には、該当領域の空きパレットを車両12を入庫させるパレットに決定し、回数計数部によって入庫回数が1インクリメントされて、本処理を終了する(ステップSC7)。
 空きパレットがない場合には、次の補正重量範囲に対応する領域の情報が読みだされ(ステップSC8)、次の補正重量範囲に対応する領域における、空きパレットの有無を判定し、空きパレットが見つかるまで繰り返される。
 ここで、「次の補正重量範囲」とは、検索対象範囲となっている補正重量範囲よりも「1つ小さい補正重量範囲」を空きパレットの検索対象領域とし、「1つ小さい補正重量範囲」に空きパレットがない場合には、「さらに1つ小さい補正重量範囲」を空きパレットの検索対象領域として選定する。また、このように、順に小さい補正重量範囲を検索対象としても空きパレットがない場合には、元の補正重量範囲より「1つ大きい補正重量範囲」を空きパレットの検索領域とし、「1つ大きい補正重量範囲」に空きパレットが無い場合には、「さらに1つ大きい補正重量範囲」を空きパレットの検索領域として選定する。
 また、取り出す空きパレットの選定後、車両12が格納棚18に格納されるまでの過程においては、第1実施形態から第3実施形態に上述した方法により、車両12の重量が推定され、推定された重量に基づいて速度調整等が行われる。
 このように、入庫する車両12の補正重量が含まれる補正重量範囲に空きパレットがない場合には、小さい補正重量範囲(即ち、入出庫頻度は少なく重量は軽い車両)に対応する領域を優先的に空きパレットを検索することにより、大きい補正重量範囲(即ち、入出庫頻度は多く重量は重い車両)に対応する駐車領域の空き状態を確保して補正重量範囲の大きい範囲を有効活用し、また、一時的に小さい補正重量範囲に車両12を格納させることで、車重の並び替えしやすい状態を作る。
 以上説明してきたように、本第5実施形態にかかるリフト搬送機制御装置10によれば、車両の入出庫頻度と車重とを加味する補正重量に基づいて入庫位置が決定されるので、省エネルギー運転となる。また、補正重量によって車重範囲の見直しを行うので、頻度と車重とに最適な空きパレットの選定ができる。
〔第6実施形態〕
 以下、本発明の第6実施形態について説明する。
 なお、本第6実施形態に係る機械式駐車装置10の構成は、図1に示す第1実施形態に係る機械式駐車装置10の構成と同様であり、リフト搬送機制御装置30の構成は、図13に示す第4実施形態にかかる機械式駐車装置10の構成と同様である。ここでは、上述した実施形態と異なる点について主に説明する。上記実施形態においては、契約した利用者が使用する機械式駐車装置が予め決められていることを想定し、車両12の識別情報としてユーザIDを利用する場合を例に挙げて説明していたが、本第6実施形態においては、ユーザが決まっておらず、識別情報として車両の固有番号を使用する点で上記と異なる。また、本実施形態においては、時間貸し機械式駐車装置に適用する場合を例に挙げて説明することとする。
 ユーザデータは、識別情報として取得した各車両の固有番号を、車重の情報と対応づけて格納している。車両の固有番号とは、車両番号標(ナンバープレート)に記載されている番号であり、例えば、車両の入出庫待機位置に予め配置したカメラ等の撮像装置によって撮像処理することにより得ることができる。これにより、入出庫が行われる車両の識別情報を簡便に取得でき、ユーザデータに番号情報として格納できる。
 車両12を入庫させる場合には、カメラ等の撮像処理によって入庫させる車両12の固有番号が取得されると、過去に入出庫させた車両12の固有番号と車両12の重量とが対応付けられたユーザデータが参照され、過去に入出庫したことのある車両か否かが判定される。ユーザデータにおいて、固有番号に対応する車両の重量の情報がある場合には、固有番号に対応する車両12の重量を含む重量範囲に対応する領域から空きパレットを取り出す。
 また、取り出す空きパレットの選定後、車両12が格納棚18に格納されるまでの過程においては、第1実施形態から第3実施形態に上述した方法により、車両12の重量が推定され、推定された重量に基づいて速度調整等が行われる。
 このように、過去に入出庫させた車両の固有番号と重量とが対応付けられることにより、時間貸しで運営する機械式駐車装置であっても、複数回利用している利用者は、固有番号から重量を推定できるので、省エネルギーを考慮した位置からパレットを取り出し搬送させる運用ができる。
 また、時間貸し機械式駐車装置の場合には、例えば、平日はオフィス用の普通車が多く、土日祝日はファミリー用のボックス車等の普通車と比較して重い重量の車両が多くなることが考えられるので、データ決定テーブルで区分けする重量範囲は、曜日や繁盛期(年末年始やイベント時期など)に応じて変更することが好ましい。これにより、車重に適した最適なパレットの選定が可能となる。
〔第7実施形態〕
 以下、本発明の第7実施形態について説明する。
 なお、本第7実施形態に係る機械式駐車装置10の構成は、図1に示す第1実施形態に係る機械式駐車装置10の構成と同様であるので説明を省略する。また、本第7実施形態においては、図24に示されるような、複数の機械式駐車装置10を有する機械式駐車システム100であって、複数の機械式駐車装置間で入出庫させる車両と車重とのユーザデータを共有している点で、上述した実施形態と異なる。本実施形態においては、マンション等において、契約ユーザが利用可能な機械式駐車装置が複数あるような場合を想定して説明する。また、機械式駐車システム100には機械式駐車装置10が3機、備えられている場合を例に挙げて説明するが、機械式駐車装置の個数は特に限定されない。
 機械式駐車システム100は、3機の機械式駐車装置10a、10b、10c及び監視部6を備えている。機械式駐車装置10a、10b、10cと監視部6は、通信可能に接続されており、情報が授受されるようになっている。
 監視部6は、上述の実施形態で記載したデータ管理部を備えており、データ管理部に格納されている入庫車両と該車両の重量とを対応づけた情報であるユーザデータを参照し、車両12を入庫させる機械式駐車装置を選定する。データ管理部は、全ての機械式駐車装置10a、10b、10c間で、共通のユーザデータを有している。
 ここで、機械式駐車システムにおいて、車両を入出庫させる機械式駐車装置を選定するのに使用される運転モードについて説明する。機械式駐車装置は、入出庫モード、待機モード、省エネモード、及び終了モード等の運転モードが切り替えられて、運転されている。
 入出庫モードは、車両を格納棚から入出庫させる運転モードであり、各種機器に電力が供給されている状態である。待機モードは、車両の入出庫がなされた後、入出庫モードにおいて消費される電力を所定量低減して運転する運転モードである。省エネモードは、待機モードになったタイミングから所定時間経過後に、待機モードにおいて消費される電力から、さらに所定量電力を低減して運転する。終了モードは、機械式駐車装置1に電力が供給されていない状態であり、各種機器に電力が供給されていない状態である。本実施形態においては、空きパレットがあり車両12を入庫させることのできる機械式駐車装置が、入庫車両を受け入れる優先順位は順に、待機モード、入出庫モード、省エネモードとする。これにより、効率良く運転させ、消費エネルギーの無駄をなくす。
 機械式駐車システムにおいて、入庫させる車両がある場合には、ユーザが操作盤を介してユーザID等を入力すると、監視部6のデータ管理部はユーザデータを参照し、ユーザIDに対応する車重情報の有無が判定される。ユーザデータにおいて、入庫する車両12の車重データがない場合には、各機械式駐車装置の運転モードが比較されて入庫の優先順位の高い運転モードの機械式駐車装置が、入庫を受け入れる機械式駐車装置10として選定される。運転モードで機械式駐車装置10を選定できない場合には、空き棚の大きい機械式駐車装置10が選定され、選定された機械式駐車装置10の下方階(例えば、1階から15階の機械式駐車装置である場合には、1階)から順に、空きパレットが検索される。空きパレットの有無が判定され、空きパレットがある場合には、その空きパレットが、車両12を入庫させるパレットとして決定され、初回入庫を完了する。
 ユーザデータにおいて、入庫させる車両12の識別情報に対応する車重データがある場合には、グループ決定データが検索され、入庫させる車両12の車重データが含まれる車重範囲に対応する領域の情報が読み出される。続いて、各機械式駐車装置に対し、その読み出された車重範囲に対応する領域の空き棚の有無が判定される。空き棚がある機械式駐車装置10が1機である場合には、空き棚のある機械式駐車装置が入庫に使用される装置として選定される。空き棚がある機械式駐車装置10が複数ある場合には、次のように選定を行う。
 複数の機械式駐車装置10のうち、該当領域の空きパレットを有する号機が複数見つかった場合には、それぞれの運転モードを比較し、運転モードに基づいて、入庫に使用する機械式駐車装置10を決定する。また、運転モードによっても選定できる機械式駐車装置10がない場合には、格納棚に車両が入庫されていない状態を比較、即ち、空き棚数を比較し、空き棚数が多い機械式駐車装置10が選定される。このようにして、入庫させる機械式駐車装置10が選定されると、選定された機械式駐車装置10の所望の領域から空きパレットが取り出され、本処理を終了する。
 また、取り出す空きパレットの選定後、車両12が格納棚18に格納されるまでの過程においては、第1実施形態から第3実施形態に上述した方法により、車両12の重量が推定され、推定された重量に基づいて速度調整等が行われる。
 以上説明してきたように、本第7実施形態に係る機械式駐車システム100においては、複数の機械式駐車装置間において、車両と車両の重量とを対応付けたユーザデータを共有することにより、車重や入出庫頻度に適した機械式駐車装置10を選定することができ、機械式駐車システム全体として、ユーザの入出庫待ち時間が短縮する。また、機械式駐車システムの省エネルギーとなる。これにより、環境に優しい機械式駐車システム100を提供することができる。
10 機械式駐車装置
12 車両
14 リフト搬送機
30 リフト搬送機制御装置
36 昇降モータ
38 モータ制御部
40 制御部
42 記憶部
48 重量推定部
61 パレット決定部
62 データ管理部
63 算出部
 
 
 
 

Claims (24)

  1.  複数の階を有する構造物内に設置され、載置された車両と共に昇降するリフト搬送機、該リフト搬送機を昇降させるモータ、及び該リフト搬送機が昇降する昇降路に沿って複数の前記階に配設された格納棚を備える機械式駐車装置のリフト搬送機制御装置であって、
     前記車両を入庫させる場合に、前記リフト搬送機に載置された前記車両の重量を推定する重量推定手段と、
     前記重量推定手段によって推定された前記車両の重量に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度を導出する導出手段と、
     前記導出手段によって導出された前記加速度に基づいて、前記車両が載置されて停止している前記リフト搬送機を加速させ、前記導出手段によって導出された前記最高速度に達した後、前記導出手段によって導出された前記減速度に基づいて前記リフト搬送機を減速させることで、予め指定された前記階に前記リフト搬送機を停止させるように前記モータを制御するモータ制御手段と、
    を備えたリフト搬送機制御装置。
  2.  前記モータ制御手段は、前記リフト搬送機の速度が前記最高速度に達した場合に、前記最高速度で所定時間保った後、前記減速度に基づいて前記リフト搬送機を減速させる請求項1記載のリフト搬送機制御装置。
  3.  前記格納棚に格納した前記車両に関する情報と、前記重量推定手段で推定された該車両の重量の情報とを対応付けて記憶する記憶手段を備え、
     前記導出手段は、前記リフト搬送機で昇降させる前記車両の重量の情報を前記記憶手段から読み出し、読み出した該情報に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度を導出する請求項1又は請求項2記載のリフト搬送機制御装置。
  4.  前記導出手段は、車両を出庫させる場合に、出庫させる前記車両の重量の情報を前記記憶手段から読み出し、読み出した該情報に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度を導出する請求項3記載のリフト搬送機制御装置。
  5.  前記モータ制御手段は、前記車両の入庫及び前記車両の出庫の少なくとも一方の場合において、前記車両の重量に基づいたトルクを発生した後に、前記車両が載置されて停止している前記リフト搬送機を加速させるように前記モータを制御する請求項1から請求項4の何れか1項記載のリフト搬送機制御装置。
  6.  前記導出手段は、前記重量推定手段によって推定された前記車両の重量に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度と共に、加加速度及び減減速度を導出し、
     前記モータ制御手段は、前記導出手段によって導出された前記加速度及び前記加加速度に基づいて、前記車両が載置されて停止している前記リフト搬送機を加速させ、前記導出手段によって導出された前記最高速度に達した後、前記導出手段によって導出された前記減速度及び前記減減速度に基づいて、前記リフト搬送機を減速させることで、予め指定された前記階に前記リフト搬送機を停止させるように前記モータを制御する請求項1から請求項5の何れか1項記載のリフト搬送機制御装置。
  7.  前記重量推定手段は、前記車両の入庫時において、前記車両が載置された前記リフト搬送機を上昇させた際に前記モータが発生させるトルクに基づいて、前記車両の重量を推定する請求項1から請求項6の何れか1項記載のリフト搬送機制御装置。
  8.  前記重量推定手段は、前記車両の入庫時において、前記車両が載置されたパレットを所定の基準位置から所定量上昇させる昇降モータに流れる電流値に基づいて、前記車両の重量を推定する請求項1から請求項7の何れか1項記載のリフト搬送機制御装置。
  9.  複数の前記階は、高さ方向に複数の領域に分けられ、予め定められた重量以下の前記車両を上方の前記領域へ搬送し、該予め定められた重量を超える前記車両を下方の前記領域へ搬送する請求項1から請求項8の何れか1項記載のリフト搬送機制御装置。
  10.  複数の階を有する構造物内に設置され、載置された車両と共に昇降するリフト搬送機と、
     前記リフト搬送機を昇降させるモータと、
     前記リフト搬送機が昇降する昇降路に沿って複数の前記階に配設された格納棚と、
     請求項1から請求項8の何れか1項に記載のリフト搬送機制御装置と、
    を備えた機械式駐車装置。
  11.  複数の階を有する構造物内に設置され、載置された車両と共に昇降するリフト搬送機、該リフト搬送機を昇降させるモータ、及び該リフト搬送機が昇降する昇降路に沿って複数の前記階に配設された格納棚を備える機械式駐車装置のリフト搬送機制御方法であって、
     前記車両を入庫させる場合に、前記リフト搬送機に載置された前記車両の重量を推定する第1工程と、
     推定した前記車両の重量に基づいて、前記リフト搬送機を昇降させる加速度、減速度、及び最高速度を導出する第2工程と、
     導出した前記加速度に基づいて、前記車両が載置されて停止している前記リフト搬送機を加速させ、導出した前記最高速度に達した後、導出した前記減速度に基づいて前記リフト搬送機を減速させることで、予め指定された前記階に前記リフト搬送機を停止させるように前記モータを制御する第3工程と、
    を含むリフト搬送機制御方法。
  12.  前記予め定められた重量を1つ以上設定し、前記領域を2つ以上に分け、前記予め定められた重量によって区分けされる重量範囲と前記領域とが対応づけられており、前記車両を載せて搬送するパレットのうち、前記車両の載置されていないパレットである空きパレットを、入庫させる前記車両の重量が含まれる前記重量範囲に対応する前記領域から取り出すパレット決定手段を備え、
     入庫させる前記車両を載置したパレットを前記空きパレットを取り出した前記領域に搬送する請求項9記載のリフト搬送機制御装置。
  13.  前記パレット決定手段は、入庫させる前記車両の重量が含まれる前記重量範囲に前記空きパレットがない場合には、前記車両の重量が含まれる前記重量範囲より1つ軽い前記重量範囲に対応する前記領域から前記空きパレットを取り出す請求項12記載のリフト搬送機制御装置。
  14.  前記車両の重量の分布状態を所定間隔で算出し、前記分布状態に基づいて前記車重範囲を設定する請求項12または請求項13記載のリフト搬送機制御装置。
  15.  各前記車両が入庫された回数を計数し、前記車両と、前記回数と、前記車両の重量とに基づいて、前記回数が全ての前記車両の平均入出庫回数より多い場合には値が大きくなり、前記回数が前記平均入出庫回数より少ない場合には値が小さくなる補正重量を算出し、該補正重量に基づいて前記車重範囲を設定する請求項12から請求項14の何れか1項記載のリフト搬送機制御装置。
  16.  過去に入出庫させた前記車両の固有番号と前記車両の重量とが対応付けられており、前記車両を入庫させる場合に、入庫させる前記車両の前記固有番号を取得し、前記固有番号に対応する前記車両の重量の情報がある場合には、前記固有番号に対応する前記車両の重量を含む前記重量範囲に対応する前記領域から前記空きパレットを取り出す請求項12から請求項15の何れか1項記載のリフト搬送機制御装置。
  17.  前記車両の種類毎に前記車重範囲をそれぞれ設定する請求項12から請求項16の何れか1項記載のリフト搬送機制御装置。
  18.  前記車両の入出庫に必要とされるエネルギー量を算出する算出手段を備え、
     前記算出手段は、下方の前記階から前記空きパレットを検索し、選定された前記空きパレットに前記車両を載置して搬送した場合に必要とされる第1エネルギー量を算出し、前記パレット決定手段によって選定された前記空きパレットに前記車両を載置して搬送した場合に必要される第2エネルギー量を算出し、前記第1エネルギー量及び前記第2エネルギー量を出力する請求項12から請求項17の何れか1項記載のリフト搬送機制御装置。
  19.  請求項12から請求項18の何れか1項記載のリフト搬送機制御装置を備えた機械式駐車装置。
  20.  請求項19記載の機械式駐車装置と、
     前記機械式駐車装置と情報の授受可能に接続される端末と、を具備する機械式駐車システム。
  21.  通信ネットワークを介して相互に接続される前記機械式駐車装置と前記端末とが遠隔に配置されている請求項20記載の機械式駐車システム。
  22.  請求項19記載の機械式駐車装置を複数備え、
     入出庫させる前記車両と該車両の重量とを対応づけた情報をユーザデータとし、複数の前記機械式駐車装置間で共通の前記ユーザデータを有する機械式駐車システム。
  23.  複数の前記機械式駐車装置と、
     複数の前記機械式駐車装置と情報の授受可能に接続される端末と、を具備する請求項22記載の機械式駐車システム。
  24.  通信ネットワークを介して相互に接続される複数の前記機械式駐車装置と前記端末とが遠隔に配置されている請求項23記載の機械式駐車システム。
     
PCT/JP2012/063092 2011-05-31 2012-05-22 リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法 WO2012165236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280003917.6A CN103392046B (zh) 2011-05-31 2012-05-22 起重机传送机控制装置、机械式停车装置、以及起重机传送机控制方法
KR1020137013876A KR101867112B1 (ko) 2011-05-31 2012-05-22 리프트 반송기 제어 장치, 기계식 주차 장치, 및 리프트 반송기 제어 방법
KR1020167008439A KR20160042184A (ko) 2011-05-31 2012-05-22 리프트 반송기 제어 장치, 기계식 주차 장치, 및 리프트 반송기 제어 방법
SG2013041850A SG190732A1 (en) 2011-05-31 2012-05-22 Lift-conveyor control device, mechanical parking apparatus, and lift-conveyor control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011122435 2011-05-31
JP2011-122435 2011-05-31
JP2011229200A JP5537532B2 (ja) 2011-05-31 2011-10-18 リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法
JP2011-229200 2011-10-18

Publications (1)

Publication Number Publication Date
WO2012165236A1 true WO2012165236A1 (ja) 2012-12-06

Family

ID=47259096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063092 WO2012165236A1 (ja) 2011-05-31 2012-05-22 リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法

Country Status (5)

Country Link
JP (1) JP5537532B2 (ja)
KR (2) KR20160042184A (ja)
CN (2) CN103392046B (ja)
SG (1) SG190732A1 (ja)
WO (1) WO2012165236A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020243252A3 (en) * 2019-05-28 2021-03-04 Vehicle Service Group, Llc Load-sensing vehicle lift

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968810B2 (ja) * 2013-03-11 2016-08-10 住友重機械工業株式会社 機械式駐車場
CN103499941B (zh) * 2013-10-14 2016-03-16 广州市寰宇电子科技有限公司 智能储运系统
JP6502662B2 (ja) * 2014-12-24 2019-04-17 株式会社デンソー 車両制御装置
JP6768183B2 (ja) * 2015-01-23 2020-10-14 株式会社五合 報知装置及び移動システム
CN105421855A (zh) * 2015-12-28 2016-03-23 郑州思辩科技有限公司 一种立体车库车位动态分配计算及专用智能起重系统
CN106564367B (zh) * 2016-10-20 2020-07-07 国网山东省电力公司菏泽供电公司 仓储作业车装卸系统以及仓储作业车
CN108460088B (zh) * 2018-01-23 2021-11-02 郑州嘉晨电器有限公司 基于云端模型的叉车提升重量估测系统及方法
CN110844828A (zh) * 2019-12-05 2020-02-28 徐州鸿拓信息技术有限公司 一种信息技术重量统计装置
EP3988476A1 (de) * 2020-10-26 2022-04-27 BITO-Lagertechnik Bittmann GmbH Verfahren zur einlagerung von ladungsträgern in einem regal

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624180A (ja) * 1985-07-01 1987-01-10 株式会社日立製作所 エレベ−タ−の起動制御装置
JPH0571367U (ja) * 1992-02-28 1993-09-28 日本ケーブル株式会社 機械式駐車装置の入庫停止位置指示装置
JPH076421U (ja) * 1992-09-24 1995-01-31 村田機械株式会社 立体駐車場
JPH07163190A (ja) * 1993-12-02 1995-06-23 Murata Mach Ltd モータ駆動制御装置
JP2000073600A (ja) * 1998-09-02 2000-03-07 Hokoku Kogyo Co Ltd 立体駐車装置
JP2000333483A (ja) * 1999-05-21 2000-11-30 Matsushita Electric Ind Co Ltd モータ制御装置
JP2001323676A (ja) * 2000-05-16 2001-11-22 Ishikawajima Transport Machinery Co Ltd 駐車位置変更機能付き機械式駐車装置
JP2005076288A (ja) * 2003-08-29 2005-03-24 Mitsubishi Heavy Ind Ltd 駐車場制御装置、携帯型通信端末、駐車場制御方法およびプログラム
WO2007039927A1 (ja) * 2005-09-30 2007-04-12 Mitsubishi Denki Kabushiki Kaisha エレベータの制御装置
JP2007526953A (ja) * 2003-12-24 2007-09-20 グラシア、ロペ,フェルナンド 物体の保管
JP2011122384A (ja) * 2009-12-11 2011-06-23 Mitsubishi Heavy Industries Parking Co Ltd 機械式駐車装置及びその制御方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191910A (ja) * 1988-01-27 1989-08-02 Omron Tateisi Electron Co 移動体の加減速制御方法
JP3200674B2 (ja) * 1994-12-08 2001-08-20 新明和工業株式会社 機械式駐車設備及びその格納制御方法
JP2001063971A (ja) 1999-08-27 2001-03-13 Nissei Ltd 昇降装置の駆動制御方法及び装置並びにエレベータ式立体駐車装置の昇降駆動制御装置
JP2001090367A (ja) * 1999-09-17 2001-04-03 Fuji Hensokuki Co Ltd 駐車装置の昇降リフトの昇降速度制御装置
JP3900789B2 (ja) * 2000-04-14 2007-04-04 セイコーエプソン株式会社 モータの速度・加速度決定方法、加減速生成方法、加減速制御方法、加減速制御装置及びモータ制御装置
US6488128B1 (en) * 2000-12-12 2002-12-03 Otis Elevator Company Integrated shaft sensor for load measurement and torque control in elevators and escalators
CN100581969C (zh) * 2001-12-10 2010-01-20 三菱电机株式会社 电梯控制装置
JP2005047696A (ja) * 2003-07-31 2005-02-24 Toyota Industries Corp 自動倉庫
CN100447364C (zh) * 2003-12-24 2008-12-31 费尔南多·格雷西亚·洛佩兹 物品储存系统
WO2005102895A1 (ja) * 2004-03-30 2005-11-03 Mitsubishi Denki Kabushiki Kaisha エレベータの制御装置
JP4942299B2 (ja) * 2005-01-04 2012-05-30 Ihi運搬機械株式会社 駐車装置と昇降装置
CN101050670B (zh) * 2007-05-10 2013-05-08 杨崇恩 智能型立体车库
JP4568343B2 (ja) * 2008-04-03 2010-10-27 ファナック株式会社 機械可動部の加減速制御方法
CN101510087B (zh) * 2009-01-21 2010-11-10 西安交通大学 微小线段高速加工的前瞻自适应速度控制方法
JP5469383B2 (ja) * 2009-06-17 2014-04-16 新明和工業株式会社 エレベータ式駐車装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624180A (ja) * 1985-07-01 1987-01-10 株式会社日立製作所 エレベ−タ−の起動制御装置
JPH0571367U (ja) * 1992-02-28 1993-09-28 日本ケーブル株式会社 機械式駐車装置の入庫停止位置指示装置
JPH076421U (ja) * 1992-09-24 1995-01-31 村田機械株式会社 立体駐車場
JPH07163190A (ja) * 1993-12-02 1995-06-23 Murata Mach Ltd モータ駆動制御装置
JP2000073600A (ja) * 1998-09-02 2000-03-07 Hokoku Kogyo Co Ltd 立体駐車装置
JP2000333483A (ja) * 1999-05-21 2000-11-30 Matsushita Electric Ind Co Ltd モータ制御装置
JP2001323676A (ja) * 2000-05-16 2001-11-22 Ishikawajima Transport Machinery Co Ltd 駐車位置変更機能付き機械式駐車装置
JP2005076288A (ja) * 2003-08-29 2005-03-24 Mitsubishi Heavy Ind Ltd 駐車場制御装置、携帯型通信端末、駐車場制御方法およびプログラム
JP2007526953A (ja) * 2003-12-24 2007-09-20 グラシア、ロペ,フェルナンド 物体の保管
WO2007039927A1 (ja) * 2005-09-30 2007-04-12 Mitsubishi Denki Kabushiki Kaisha エレベータの制御装置
JP2011122384A (ja) * 2009-12-11 2011-06-23 Mitsubishi Heavy Industries Parking Co Ltd 機械式駐車装置及びその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020243252A3 (en) * 2019-05-28 2021-03-04 Vehicle Service Group, Llc Load-sensing vehicle lift

Also Published As

Publication number Publication date
CN105003111A (zh) 2015-10-28
KR20130099996A (ko) 2013-09-06
SG190732A1 (en) 2013-07-31
CN103392046B (zh) 2016-01-20
JP5537532B2 (ja) 2014-07-02
CN105003111B (zh) 2018-06-01
JP2013011158A (ja) 2013-01-17
KR101867112B1 (ko) 2018-06-12
CN103392046A (zh) 2013-11-13
KR20160042184A (ko) 2016-04-18

Similar Documents

Publication Publication Date Title
JP5537532B2 (ja) リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法
CN109422059B (zh) 堆装起重机
US8794388B2 (en) Elevator group control apparatus
JP5859599B2 (ja) リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法
KR101149660B1 (ko) 물품 보관 설비
CA2624330A1 (en) Method and apparatus to prevent or minimize the entrapment of passengers in elevators during a power failure
JP5884594B2 (ja) 自動倉庫
TW491799B (en) Conveyance device provided with a plurality of running motors
JP5217696B2 (ja) 電源設備
SG190906A1 (en) Energy efficient elevator installation
JP5714277B2 (ja) エレベーターシステム
JP2004123350A (ja) 物流機器の運転制御方法及び装置
TW200846269A (en) Method for operation of a lift installation, and corresponding lift installation
JP2016216999A (ja) 多階式駐車装置
JPH0672512A (ja) 自動倉庫の制御方法
JP2009143687A (ja) エレベータの運転装置及び運転方法
JP5465591B2 (ja) 垂直搬送機の蓄電制御装置
JP6444629B2 (ja) 機械式駐車装置の制御装置、機械式駐車装置、及び機械式駐車装置の制御方法
JP6394292B2 (ja) 自動倉庫
JP6219337B2 (ja) 搬送設備の電源システム
CN104030101A (zh) 电梯
JP5339156B2 (ja) ピッキング設備
CN116873674A (zh) 一种基于货物重量的电梯节能调度方法、装置及电梯
JP6368615B2 (ja) 機械式駐車装置とその運転方法
JPH06100161A (ja) 吊下荷移載装置付き電車の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137013876

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793881

Country of ref document: EP

Kind code of ref document: A1