WO2005102895A1 - エレベータの制御装置 - Google Patents

エレベータの制御装置 Download PDF

Info

Publication number
WO2005102895A1
WO2005102895A1 PCT/JP2004/004492 JP2004004492W WO2005102895A1 WO 2005102895 A1 WO2005102895 A1 WO 2005102895A1 JP 2004004492 W JP2004004492 W JP 2004004492W WO 2005102895 A1 WO2005102895 A1 WO 2005102895A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
car
torque command
elevator
signal
Prior art date
Application number
PCT/JP2004/004492
Other languages
English (en)
French (fr)
Inventor
Hiroshi Araki
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to EP04724357A priority Critical patent/EP1731467B1/en
Priority to CN200480009184.2A priority patent/CN100515899C/zh
Priority to JP2006519105A priority patent/JP4701171B2/ja
Priority to PCT/JP2004/004492 priority patent/WO2005102895A1/ja
Publication of WO2005102895A1 publication Critical patent/WO2005102895A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator

Definitions

  • the present invention relates to a control device for an elevator that adjusts an acceleration and a maximum speed by changing a speed pattern or the like given to a motor such as an elevator according to a load.
  • FIG. 10 is a diagram showing the relationship between output frequency (speed: hereinafter, frequency is the same as speed) and torque of a conventional elevator control device.
  • fo is the base frequency (rated speed)
  • Tmax is the maximum output torque value
  • Tx is the torque value required for the first load
  • Ty is the torque value required for the second load (however, , Fx indicates the maximum output frequency that can be output with the first load, and fy indicates the maximum output frequency that can be output with the second load.
  • the maximum output frequency for the first load is such that the torque obtained in a frequency band higher than the frequency fX is smaller than the torque value Tx required for the first load. Therefore, the frequency is lower than fx.
  • the maximum output frequency for the second load is lower than the frequency fy because the torque obtained in a frequency band higher than the frequency fy is smaller than the torque value Ty required for the second load.
  • the operating frequency was set to a frequency lower than the output frequency at which the torque for the assumed maximum load could be obtained, and the motor was rotated.
  • the maximum output frequency can be set high when the load is small, but if the load is large, the torque cannot be obtained enough unless the maximum output frequency is set low so that the elevator, etc. Therefore, it was necessary to set the maximum output frequency to a frequency at which sufficient torque could be obtained when the load was at the maximum, and then operated.
  • the maximum output frequency was set to fX, and the maximum output frequency was fX even when the load was small. For this reason, when the load is small, the maximum output frequency is low, so that it takes time to accelerate, and the operating time cannot be reduced, resulting in poor efficiency.
  • a power value is calculated from a voltage and a current at a frequency higher than a rated frequency and compared with the power value at the rated frequency.
  • the speed setting value is output to the variable speed device. Also, in the control device disclosed in Japanese Patent Application Laid-Open No.
  • a variable speed device having an inverter unit for converting DC power into AC power of a variable frequency and a variable voltage includes: Using a voltage detection circuit that detects the DC bus voltage on the input side, a current detection circuit that detects the current of each phase on the output side of the inverter, and the detected DC bus voltage and the detected current of each phase It has a control circuit that automatically determines the magnitude of the load connected to the inverter and determines and outputs the maximum output frequency.
  • the maximum speed was changed according to the load in order to reduce the operation time.
  • increasing the maximum speed does not necessarily shorten the operation time. If the travel distance is short, the operation time may be shorter when the acceleration is higher than the maximum speed. Therefore, simply changing the maximum speed according to the load will not As a result, there is a problem that the driving time becomes longer.
  • the load is detected by a weighing device provided in the car.However, since the weighing device includes a detection error, the maximum speed is determined based on the load detected by the weighing device. There was a problem that the torque would be insufficient if raised.
  • the present invention has been made to solve the above-described problems, and an elevator system capable of changing a maximum speed and an acceleration according to a load and a moving distance to shorten a driving time.
  • the purpose of the present invention is to provide a control device.
  • Another object of the present invention is to provide a control device for an elevator that can detect a load with high accuracy. Disclosure of the invention
  • An elevator control device includes a speed control device that generates a torque command value from a speed command value and a speed signal, and controls a motor and a balancing device by controlling an electric motor with a power converter based on the torque command value.
  • a speed control device that raises and lowers the weight, after a predetermined time after the elevator releases the brake, the torque command at the time of starting is retained, and the speed pattern that determines the car jerk, acceleration / deceleration, and rated speed according to the torque command is determined. To change.
  • a speed control device that generates a torque command value from the speed command value and the speed signal, controls the electric motor with the power converter based on the torque command value, raises and lowers the car and the counterweight, and reduces the load in the car.
  • a speed control device that generates a torque command value from the speed command value and the speed signal, controls the electric motor with the power converter based on the torque command value, raises and lowers the car and the counterweight, and reduces the load in the car.
  • an elevator that is equipped with a weighing device that detects and outputs a ⁇ signal, calculates the unbalanced load on the car side and the counterweight side based on the weighing signal, and corrects the torque command value based on this unbalanced load. After a predetermined time after the elevator release the brake, the starting torque command is held and the speed pattern that determines the car jerk, acceleration / deceleration, and rated speed is changed according to the torque command. is there.
  • the speed pattern has a predetermined standard value. Then, the acceleration / deceleration and the rated speed are increased at predetermined rise rates to values limited by the maximum output of the power converter and the maximum output of the motor.
  • the speed command that determines the car jerk, acceleration / deceleration, and rated speed is changed by correcting the travel loss to the torque command at the start of the elevator.
  • the number of passengers in the car is judged based on images taken by the camera inside the car during the elevator, and the jerk, acceleration / deceleration, and rated speed of the car are determined based on the camera signal that outputs the result.
  • the speed pattern to be determined is changed.
  • It also has a speed control device that generates a torque command value from the speed command value and the speed signal, controls the motor based on the torque command value to raise and lower the car and the counterweight, detects the load in the car, and outputs a ⁇ signal.
  • ⁇ device that outputs the signal, calculates the unbalanced load on the car side and the counterweight side based on the weighing signal, and corrects the torque command value based on this unbalanced load.
  • Judgment of the number of passengers in the car based on the torque command at the start of the elevator and the image taken by the camera in the car, and according to the camera signal that outputs the result, or a combination of them Equipped with a speed pattern determining device that selects the speed pattern that determines the car jerk, acceleration / deceleration, and rated speed from the acceleration and speed tables.
  • Acceleration and speed according to the distance traveled to the destination floor Is intended to vary the respective rising rates, the longer the moving distance of the target floor, to dominant an increase in maximum speed.
  • a weighing device that detects the load in the car and outputs a weighing signal is provided, and the speed pattern for determining the jerk, acceleration / deceleration, and rated speed of the car is changed in accordance with the weighing signal.
  • a check device is provided, and when the difference between the weighing signal and the torque command at the time of starting exceeds a predetermined value, the change of the speed pattern is stopped and returned to the standard value.
  • FIG. 1 is a system configuration diagram showing a control device for an elevator in Embodiment 1 of the present invention
  • FIG. 2 shows a relationship between a generated torque of a motor and a motor rotational speed in Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram for deriving an elevator mechanical system model according to Embodiment 1 of the present invention
  • FIG. 4 is a diagram illustrating a relationship between a car speed pattern and a motor torque pattern according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing a car speed pattern calculation procedure according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a speed and acceleration / deceleration table according to the first embodiment of the present invention.
  • FIG. 1 is a system configuration diagram showing a control device for an elevator in Embodiment 1 of the present invention
  • FIG. 2 shows a relationship between a generated torque of a motor and a motor rotational speed in Embodiment 1 of the present
  • FIG. 8 is a diagram showing another different speed / acceleration / deceleration table
  • FIG. 8 is a system configuration diagram showing an elevator control device according to Embodiment 2 of the present invention
  • FIG. 9 is a diagram showing Embodiment 4 of the present invention.
  • Kicking characteristic diagram showing the relationship between the motor evening can output torque and speed of the region of the first 0
  • Figure is a characteristic diagram showing the relationship between the output frequency and torque of the conventional Jer base Isseki controller.
  • FIG. 1 is a system configuration diagram showing a control device for an elevator in Embodiment 1 of the present invention.
  • the hoisting motor 2 is driven by a hoisting motor 1.
  • a main rope 3 is wound around a drive sheave 2 of a hoist, and a car 4 and a counterweight 5 are connected to both ends of the main rope 3, respectively.
  • the speed detector 6 is coupled to the hoisting motor 1 and outputs a speed signal 6 a corresponding to the rotation speed of the motor 1.
  • the weighing device 7 is provided in the car 4, detects a load in the car, and outputs a weighing signal 7a.
  • the power converter 8 supplies power for driving the electric motor 1.
  • the current detector 9 detects the current of the motor 1 and outputs a current signal 9a.
  • the speed command generator 10 generates a speed command value 10a for the entire elevator.
  • the speed controller 11 is connected to the speed command generator 10 and the speed detector 6, and outputs the first torque command value 11a by inputting the speed command value 10a and the speed signal 6a.
  • the balance compensating device 12 is connected to the input device 7, and receives the weighing signal 7a as input and outputs the torque compensating signal 12a.
  • the adder 13 is connected to the speed control device 11 and the ⁇ compensation device 12, and outputs the second torque command value 13a.
  • the torque controller 14 is connected to the adder 13, the speed detector 6, and the current detector 9, and the torque controller 14 outputs its output 14a.
  • the brake 15 holds the drive sheave 2 of the hoist stationary, and is released based on a start command 15 a from the speed command generator 10.
  • the starting torque command detecting device 16 holds the starting torque command after a predetermined time after the elevator releases the brake 15 based on the starting command 15a from the speed command generating device 10.
  • the travel loss calculating device 17 subtracts the torque compensation signal 1 2a from the balance compensator 12 from the second torque command value 13a while traveling at the rated speed or the constant speed based on the speed command value 10a. Then, the traveling loss 17 a during elevator traveling is calculated. ⁇
  • Checking device 19 is activated.Torque command 16a detected at startup by torque command detecting device 16 is compared with torque compensation signal 12a from compensating device 12. If it exceeds, ⁇ it determines that the detection error of the device 7 is large and outputs the abnormal signal 19 a to the speed command generator 10.
  • the ⁇ compensator 1 2 calculates the difference between the weight of the car 4 and the weight of the counterweight 5 from the ⁇ signal 7 a, that is, the unbalanced load, and calculates the torque compensation signal 1 2 a based on the unbalanced load. Calculate.
  • the torque compensation signal 12a corresponds to the motor torque for balancing the unbalanced load.
  • the speed controller 11 After the start of the car 4, the speed controller 11 outputs the first torque command value 11a based on the speed command value 10a and the speed signal 6a. Normally, the speed control calculation uses a PI calculation based on the deviation between the speed command value 10a and the speed signal 6a.
  • the first torque command value 11a is added to the torque compensation signal 12a by the adder 13 to obtain a second torque command value 13a.
  • the torque controller 14 calculates the output 14a from the second torque command value 13a, the speed signal 6a and the current signal 9a, and controls the torque of the hoisting motor 1 via the power converter 8. I do. As a result, the car 4 and the counterweight 5 move up and down.
  • the brake 15 of the drive sheave 2 of the hoist is released based on the start command 15a from the speed command generator 10.
  • the startup torque command detection device 16 holds the startup torque command after a predetermined time after the elevator releases the brake 15.
  • the traveling loss 17 a during the overnight running calculated by the traveling loss computing device 17 is corrected, and the balancing torque during traveling at a constant speed is computed.
  • the unbalance torque generated by the mass difference between the balancing torque cage 4 and the counterweight 5 can be replaced by the torque compensation signal 12 a output from the compensator 12. Since the device 7 includes a detection error, it is more accurate to calculate the balancing torque by using the torque command after the speed control device 11 controls the stationary holding after starting. can get.
  • FIG. 2 is a characteristic diagram showing the relationship between the generated torque of the motor and the motor rotation speed.
  • FIG. 3 is a schematic diagram for deriving a mechanical model of Elevator overnight showing the relationship between the hoisting motor 1, the drive sheave 2 of the hoisting machine, the car 4, and the balancing weight 5.
  • the lower part of Fig. 4 shows the torque pattern over time.
  • the upper row shows the car speed pattern at that time.
  • FIG. 5 is a flowchart showing a calculation processing procedure for generating a car speed pattern.
  • the hoisting motor 1 can operate in the shaded region surrounded by the motor torque shaft and the line of the maximum output value that changes with the motor rotation speed, and in the region including the boundary. is there.
  • This region may be a convex set, but if it is not the case, the operating region may be approximated to be a convex set, etc.
  • The region where the torque is positive is the power state, and the region where the torque is negative is the regenerative state. Represent.
  • This area is represented by ⁇ .
  • the area A is a rated traveling area in which the car 4 can travel at the rated speed and the standard acceleration / deceleration from the case where no passenger is in the car 4 to the maximum load.
  • Area B is a state in which the passenger is in the car 4 and the balance imbalance is small on the balance weight 5, that is, when the motor torque is lightly loaded, the variable acceleration / deceleration is calculated from the rated speed and the standard acceleration. This is an area where variable speed is possible.
  • T m is the motor torque
  • T 1 is the traveling loss torque
  • J is the moment of inertia of the hoist
  • r is the radius of the hoist
  • ml is the counterweight
  • m 2 is the car mass
  • Represents the rotational speed of the hoist.
  • g be the gravitational acceleration.
  • Tm ⁇ 2J / T + r (ml + m2) / 2 ⁇ a -one (ml-m2) g + T1...
  • the relational expression between the car acceleration and the motor torque is expressed as in equation (1).
  • the configuration is not limited to this configuration as long as the relationship between the two can be described by a linear function. You may.
  • the rotation speed of the motor Assuming that the hoist rotation speed is equal and V is the car speed, the car speed can be calculated from the motor rotation speed as in the following formula.
  • V r ⁇ (2)
  • FIG. 2 can be converted into a representation of the relationship between motor torque and car speed.
  • the motor rotation speed and the hoist rotation speed are assumed to be equal, the conversion is not limited to the above equation (2) as long as the relational expression between the two can be described by a linear function.
  • the present invention can be applied to a case where a speed reducer or the like is used.
  • the upper speed pattern is calculated from the above equation (1) and its integral value with respect to the lower torque pattern.
  • t0 to t7 indicate time
  • ⁇ t1 to ⁇ t7 indicate time intervals
  • v0 to v7 indicate car speeds for each time
  • TmO to Tm7 indicate motor torque for each time.
  • section ⁇ tl, ⁇ t3, ⁇ t5, and ⁇ t7 are running at constant jerk (change rate of jerk, ie, car acceleration), while sections At2 and ⁇ t6 are at constant acceleration.
  • Traveling, section ⁇ t 4 is a constant speed traveling section.
  • TM 0 ⁇ r (ml ⁇ m 2) g / 2 + ⁇ 1 ⁇ (3)
  • the traveling distance L or the number of traveling floors of the car is determined based on the next stop floor with respect to the destination floor set by the passenger at the car, the landing, etc. Is set.
  • the balancing torque detection processing in step S22 the starting torque command 16a detected by the starting torque command detecting device 16 and the elevator calculated by the traveling loss calculating device 17 are set.
  • the running torque 17 a is added to calculate the balancing torque.
  • step S23 the car travel distance L or the number of floors set in step S21 and the balancing torque calculated in step S22 are used. Select the speed, acceleration / deceleration table.
  • step S24 the speed pattern shown in FIG. 4 is generated based on the speed and the acceleration / deceleration table selected in step 23.
  • a plurality of speeds and acceleration / deceleration tables corresponding to the balancing torque or the loaded weight in the car (shown as a percentage of the rated value) and the driving direction as shown in FIG. Have.
  • the elevator control device selects the speed and acceleration / deceleration corresponding to the selected table from the table according to the motor torque and driving direction at the time of starting, and the elevator according to the selected speed and acceleration / deceleration. We drive all night.
  • the plurality of speed / acceleration / deceleration tables can be set, for example, as follows.
  • the speed / acceleration / deceleration table E in Fig. 6 is set in consideration of the car travel distance L for the car speed and the car acceleration / deceleration trade-off.
  • the table to be used is selected according to the distance between the floors to the destination floor.
  • the tables may be divided according to the number of floors passing along the way instead of the distance between floors.
  • a plurality of tables are provided according to the moving distance L.
  • the moving distance L is short, the operation time is shorter when the acceleration / deceleration is larger than the speed, and the operation efficiency is increased. Therefore, the acceleration / deceleration is set higher.
  • the moving distance L is large, the speed is set to be higher because the operation efficiency increases when the speed is larger than the acceleration / deceleration.
  • the travel distance L is calculated based on the information of the floor where the car stops at the time of starting and the floor where the car stops next time, and the table is selected according to the travel distance L. For example, if the moving distance L is 12 meters, the lowermost table is selected. Next, the speed and acceleration / deceleration according to the balancing torque on the horizontal axis are selected, and the operation of the elevator is started.
  • the table E is a table corresponding to the moving distance L, the balancing torque and the driving direction, but may be a table corresponding only to the moving distance L or a table corresponding to the balancing torque only.
  • a table corresponding to any of the above combinations, such as a table corresponding to the driving direction, may be used.
  • a speed / acceleration / deceleration table F as shown in FIG. 7 based on the ratio of the car load to the rated load may be used.
  • FIG. 8 is a system configuration diagram showing a control device for an elevator in Embodiment 2 of the present invention.
  • a drive sheave 2 of a hoisting machine driven by a hoisting motor 1 has a main rope 3 wound thereon, and a car 4 and a counterweight 5 are connected to both ends of the main rope 3, respectively.
  • Speed detector 6 Is coupled to the hoisting motor 1 and a speed signal corresponding to the rotation speed of the motor 1
  • the device 7 is provided in the car 4, detects the load in the car, and outputs the weighing signal 7a.
  • the power converter 8 supplies power for driving the electric motor 1.
  • the current detector 9 detects the current of the motor 1 and outputs a current signal 9a.
  • the speed command generator 10 generates a speed command value 10a for the entire elevator.
  • the speed controller 11 is connected to the speed command generator 10 and the speed detector 6, and receives the speed command value 10a and the speed signal 6a as inputs and outputs a first torque command value 11a.
  • the compensating device 12 is connected to the weighing device 7, and outputs the torque compensating signal 12a with the ⁇ signal 7a as input.
  • the adder 13 is connected to the speed controller 11 and the balance compensator 12 and outputs a second torque command value 13a.
  • the torque controller 14 is connected to the adder 13, the speed detector 6, and the current detector 9, and the torque controller 14 outputs its output 14a.
  • the brake 15 holds the drive sheave 2 of the hoist at rest, and is released based on a start command 15 a from the speed command generator 10.
  • a camera 18 is provided in the car 4 for the night, and the number of passengers in the car is determined based on the images taken by the camera 18, and the camera signal 18a that outputs the result is balanced. Regarded as torque.
  • the car passenger number detecting device 20 replaces the brake 15 based on the starting command 15a from the speed command generating device 10. After a specified time after opening, the torque command at startup is retained. Based on the speed command value 10a, the traveling loss calculation device 17 uses the second torque command value 13a running at the rated speed or a constant speed to calculate the torque compensation signal 1 2a from the balance compensation device 12. Is subtracted to calculate the travel loss 17 a during the overnight run.
  • the camera signal 18a is regarded as the balancing torque, and the acceleration / deceleration and the rated speed are determined by the speed pattern selection method shown in FIG. Set.
  • a predetermined standard speed V is determined as shown in the following equations (4) and (5) regardless of the speed / acceleration / deceleration table of the above-mentioned speed pattern selection method.
  • the standard acceleration / deceleration ⁇ 0, the acceleration / deceleration according to the balancing torque T (shown as a percentage of the rated value), and the rated speed V at the predetermined rise rates kl and k2, and the maximum of the power converter 8
  • V k2 / T X V 0... (4)
  • the speed pattern is changed to a standard speed V0, a standard acceleration / deceleration which is a predetermined standard value. Return to 0.
  • Embodiment 4 of the present invention there is provided control means for performing field-weakening control on control of the motor driving the hoist.
  • Field-weakening control is a motor control method applied to permanent magnet motors. The demagnetization effect caused by passing a negative current in the field magnetic flux direction (d-axis direction) suppresses the motor terminal voltage and increases the This is a control method that enables driving by rotation.
  • Fig. 9 shows the range of torque and speed that the motor can output.
  • Fig. 9 (a) shows the area where output is possible when field weakening control is not performed
  • Fig. 9 (b) shows the area where output is possible when field weakening control is performed. .
  • the weak field control By performing the weak field control, it is possible to extend the driving range of the motor to higher speeds. At this time, there is no need to change the capacity of electrical equipment such as an inverter. Therefore, by using the field-weakening control, the upper limit of the constant speed can be set to a higher speed without changing the electric device. This is particularly effective when the difference between the weight of the car and the weight of the counterweight is small. The reason for this is that When the difference in weight is small, the required motor torque is small, so the power consumption and regenerative power of the elevator are also small, and as a result, it is hardly affected by restrictions on power supply equipment capacity and restrictions on regenerative capacity. Also, due to the nature of field weakening control, the smaller the generated torque, the higher the motor rotation speed can be.
  • the method of increasing the voltage utilization rate of the inverter is to superimpose the third harmonic on the inverter voltage, and to adopt the two-phase modulation method, the motor is driven at a higher speed. It can be driven. Also, when the motor rotates at high speed and the output voltage of the inverter rises, the DC link voltage needs to be increased, and the electromagnetic noise of the motor increases. On the other hand, by correcting the dead time (T d) of the voltage source inverter, electromagnetic noise can be considerably suppressed.
  • the torque command at the time of starting is held after a predetermined time from when the elevator has released the brake, and the car jerk (acceleration), acceleration, and deceleration are held in accordance with the torque command.
  • Change the speed pattern that determines the speed and rated speed is changed by correcting the torque loss at the time of elevator startup based on the torque command during the previous run. Therefore, since the speed pattern is changed based on the torque command obtained by adding the running loss to the torque command after the speed control device controls the holding of the stationary state, the speed pattern does not include the detection error of the weighing device, etc. With high accuracy.
  • the speed pattern has a predetermined standard value.
  • the acceleration / deceleration and rated speed are increased at a predetermined rate of increase to values limited by the maximum output of the power converter and the maximum output of the motor.
  • the number of passengers in the car is judged based on images taken by the camera inside the car during the elevator, and the jerk, acceleration / deceleration, and rated speed of the car are determined based on the camera signal that outputs the result. Since the speed pattern to be determined is changed, it is possible to change the speed pattern accurately within the motor torque range even if a large detection error occurs in the weighing device or the like.
  • the number of passengers in the car is determined based on the ⁇ signal, the torque command at the time of starting the elevator, or the image taken by the camera in the car, and the result is output according to the camera signal, or a combination thereof.
  • a speed pattern determination device that selects the speed pattern that determines the car jerk, acceleration / deceleration, and rated speed from the acceleration and speed tables according to the speed of the car, the longer the travel distance to the destination floor, the higher the maximum speed Since the rate of increase in acceleration and that in speed are made variable so that the rise is dominant, a simple configuration has the effect of reducing the travel time of passengers and increasing the efficiency of car operation.
  • a weighing device that detects the load in the car and outputs a ⁇ signal is provided, and the elevator that changes the speed pattern that determines the car's jerk, acceleration / deceleration, and rated speed according to the weighing signal is also checked.
  • the speed pattern change is stopped and returned to the standard value. ⁇ A large detection error occurs in the device, etc. Even if it does, it detects it and stops changing the speed pattern, thus improving reliability.
  • the elevator control device of the present invention can change the maximum speed and the acceleration according to the load and the moving distance, and can shorten the operation time.
  • the load can be detected with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Abstract

速度指令値と速度信号からトルク指令値を発生する速度制御装置を有し、トルク指令値により電力変換装置で電動機を制御してかご及びつり合おもりを昇降させるエレベータにおいて、エレベータがブレーキを開放した所定時間後、起動時のトルク指令を保持して、そのトルク指令に応じて、かごのジャーク、加減速度、定格速度を決定する速度パターンを変更するエレベータの制御装置である。また、かご内荷重を検出して秤信号を出力する秤装置を設け、秤信号によりかご側とつり合おもり側の不平衡荷重を演算し、この不平衡荷重に基づいてトルク指令値を補正するエレベータにおいて、トルク指令に応じて、かごのジャーク、加減速度、定格速度を決定する速度パターンを変更する。

Description

エレべ一夕の制御装置
技術分野
この発明は、 負荷に応じて昇降機等のモータに与える速度パターン等 を変更して、 加速度や最高速度を調整するエレべ一夕の制御装置に関す 明
るものである。 書
背景技術
従来のエレべ一夕の制御装置に関する技術について、 第 1 0図を参照 しながら説明する。 第 1 0図は、 従来のエレベータの制御装置の出力周 波数 (速度:以下周波数は速度と同じ意味) とトルクの関係を示す図で ある。 第 1 0図において、 f oは基底周波数 (定格速度) 、 Tma xは 最大出力トルク値、 Txは第 1の負荷にて必要なトルク値、 Tyは第 2 の負荷にて必要なトルク値 (但し、 第 2の負荷ぐ第 1の負荷) 、 f xは 第 1の負荷にて出力できる最大出力周波数、 f yは第 2の負荷にて出力 できる最大出力周波数をそれぞれ示す。
基底周波数 f o以上の周波数域では、 例えば第 1の負荷 (必要トルク 値 Tx) に対する最大出力周波数は、 周波数 f Xより高い周波数帯で得 られるトルクが第 1の負荷に必要なトルク値 Txより小さくなるため、 周波数 f x以下となる。 また、 第 2の負荷 (必要トルク値 Ty) に対す る最大出力周波数は、 周波数 f yより高い周波数帯で得られるトルクが 第 2の負荷に必要なトルク値 Tyより小さくなるため、 周波数 f y以下 となる。
以上により、 大小各種の負荷に対して十分なトルクを得るためには、 想定される最大負荷に対するトルクを得ることができる出力周波数以 下の周波数に運転周波数を設定しモータを回転させていた。
上述したようなエレべ一夕の制御装置では、 負荷が小さい場合は最大 出力周波数を高く設定できるが、 負荷が大きい場合には最大出力周波数 を低く設定しないと十分なトルクが得られず昇降機等では上昇できな いといった問題があるため、 最大出力周波数を負荷が最大の場合にて十 分なトルクが得られる周波数に設定し運転する必要があった。
つまり、 第 1 0図に示す例では、 最大出力周波数を f Xに設定し、 負 荷が小さい場合でも最大出力周波数が f Xであった。 このため、 負荷が 小さい場合には最大出力周波数が低いため加速に時間がかかり、 運転時 間が短縮できず効率が悪いという問題点がある。
この問題点を解決するために、 例えば、 日本特開平 3— 5 6 3 0 8号 公報においては、 定格周波数以上の周波数を電圧、 電流から電力値を求 め、 定格周波数での電力値と比較し速度設定値を可変速装置に出力して いる。また、 日本特開平 8—1 0 7 6 9 9号公報における制御装置では、 直流電力を可変周波数、 可変電圧の交流電力に変換するィンバ一夕部を 有する可変速装置において、 ィンバ一夕部の入力側の直流母線電圧を検 出する電圧検出回路と、 ィンバ一夕部の出力側の各相の電流を検出する 電流検出回路と、 検出した直流母線電圧および検出した各相の電流を用 いてインバー夕部に接続された負荷の大小を自動判別し、 最大出力周波 数を決定して出力する制御回路とを備えている。
従来のエレべ一夕の制御装置では、 運転時間を短縮するために、 負荷 に応じて最高速度を変更するものであった。 しかしながら、 最高速度を 上げただけで運転時間が短縮するとは限らず、 移動距離が短ければ、 最 高速度より加速度を上げた場合の方が、 運転時間が短くなると考えられ る。 このため、 負荷に応じて最高速度を変更するだけでは、 移動距離に よつて運転時間が長くなるという問題点があつた。
また、 エレべ一夕の場合は負荷の検出をかごに設けられた秤装置で行 うが、 秤装置には検出誤差が含まれるため、 秤装置で検出した負荷に基 づいて、 最高速度を上げるとトルクが不足するという問題点があった。 この発明は、 上記のような問題点を解決するためになされたものであ り、 負荷と移動距離に応じて、 最高速度や加速度を変更し、 運転時間を 短縮することができるエレべ一夕の制御装置を提供することを目的と している。 また、 この発明は、 負荷の検出を精度高く検出することがで きるエレべ一夕の制御装置を提供することを目的としている。 発明の開示
この発明に係るエレべ一夕の制御装置は、 速度指令値と速度信号から トルク指令値を発生する速度制御装置を有し、 トルク指令値により電力 変換装置で電動機を制御してかご及びつり合おもりを昇降させるエレ ベータにおいて、 エレベータがブレーキを開放した所定時間後、 起動時 のトルク指令を保持して、 そのトルク指令に応じて、 かごのジャーク、 加減速度、 定格速度を決定する速度パターンを変更するものである。
また、 速度指令値と速度信号からトルク指令値を発生する速度制御装 置を有し、 トルク指令値により電力変換装置で電動機を制御してかご及 びつり合おもりを昇降させ、 かご内荷重を検出して抨信号を出力する秤 装置を設け、 秤信号によりかご側とつり合おもり側の不平衡荷重を演算 し、 この不平衡荷重に基づいてトルク指令値を補正するエレベータにお いて、.エレべ一夕がブレーキを開放した所定時間後、 起動時のトルク指 令を保持して、 そのトルク指令に応じて、 かごのジャーク、 加減速度、 定格速度を決定する速度パターンを変更するものである。
また、 速度パターンはあらかじめ定められた標準値を備え、 それに対 して、加減速度、定格速度を所定の上昇率で、電力変換装置の最大出力、 電動機の最大出力で制限される値まで上昇させる。
また、 前回走行の走行中のトルク指令に基づき、 エレべ一夕の起動時 のトルク指令に走行ロス分を補正して、 かごのジャーク、 加減速度、 定 格速度を決定する速度パターンを変更する。
また、 負荷の検出方法としてエレべ一夕のかご内のカメラで撮影した 画像によりかご内の乗客数を判断し、 その結果を出力するカメラ信号に 基づき、 かごのジャーク、 加減速度、 定格速度を決定する速度パターン を変更するものである。
また、 速度指令値と速度信号からトルク指令値を発生する速度制御装 置を有し、 トルク指令値により電動機を制御してかご及びつり合おもり を昇降させ、 かご内荷重を検出して枰信号を出力する枰装置を設け、 秤 信号によりかご側とつり合おもり側の不平衡荷重を演算し、 この不平衡 荷重に基づいてトルク指令値を補正するエレべ一夕において、 抨信号ま たは、 エレべ一夕の起動時のトルク指令、 またはかご内のカメラで撮影 した画像によりかご内の乗客数を判断し、 その結果を出力するカメラ信 号に応じて、 もしくはその組合せたものに応じて、 かごのジャーク、 加 減速度、 定格速度を決定する速度パターンを加速度、 速度テーブルより 選択する速度パターン決定装置を備え、 目的階への移動距離に応じて加 速度、 速度のそれぞれの上昇率を可変するものであり、 目的階への移動 距離が長いほど、 最大速度の上昇を優勢にする。
また、 かご内荷重を検出して秤信号を出力する秤装置を設け、 秤信号 に応じて、 かごのジャーク、 加減速度、 定格速度を決定する速度パター ンを変更するエレべ一夕において、 秤チェック装置を備え、 上記秤信号 と起動時のトルク指令の差が所定値を超えた場合、 速度パターンの変更 を停止して、 標準値に戻すようにする。 図面の簡単な説明
第 1図はこの発明の実施の形態 1におけるエレべ一夕の制御装置を 示すシステム構成図、 第 2図はこの発明の実施の形態 1におけるモータ の発生トルクとモー夕回転数の関係を表す特性図、 第 3図はこの発明の 実施の形態 1におけるエレベータの機械系モデル導出のための概略図、 第 4図はこの発明の実施の形態 1におけるかご速度パターンとモータ のトルクパターンの関係を表す特性図、 第 5図はこの発明の実施の形態 1におけるかご速度パターン演算手順を示すフローチャート、 第 6図は この発明の実施の形態 1における速度、 加減速度テーブルを示す図、 第 7図は他の異なる速度、 加減速度テーブルを示す図、 第 8図はこの発明 の実施の形態 2におけるエレベータの制御装置を示すシステム構成図、 第 9図はこの発明の実施の形態 4におけるモー夕の出力可能なトルク と速度の領域の関係を示す特性図、 第 1 0図は従来のエレべ一夕の制御 装置の出力周波数とトルクの関係を示す特性図である。 発明を実施するための最良の形態
以下、 この発明の実施の形態 1を、 図面に基づいて説明する。
第 1図は、 この発明の実施の形態 1におけるエレべ一夕の制御装置を 示すシステム構成図である。 第 1図において、 卷上用電動機 1により駆 動される.巻上機の駆動綱車 2は、 主索 3が巻き掛けられ、 主索 3の両端 にそれぞれかご 4及びつり合おもり 5が結合されている。 速度検出器 6 は卷上用電動機 1に結合され、 電動機 1の回転速度に対応する速度信号 6 aを出力する。 秤装置 7はかご 4に設けられ、 かご内荷重を検出して 秤信号 7 aを出力する。 電力変換器 8は電動機 1を駆動する電源を供給 する。 電流検出器 9は電動機 1の電流を検出して電流信号 9 aを出力す る。 速度指令発生装置 1 0はエレべ一夕の速度指令値 1 0 aを発生する。 速度制御装置 1 1は速度指令発生装置 1 0及び速度検出器 6に接続さ れ、 速度指令値 1 0 a及び速度信号 6 aを入力として第 1のトルク指令 値 1 1 aを出力する。 秤補償装置 1 2は抨装置 7に接続され、 秤信号 7 aを入力としてトルク補償信号 1 2 aを出力する。 加算器 1 3は速度制 御装置 1 1及び枰補償装置 1 2に接続され、 第 2のトルク指令値 1 3 a を出力する。 トルク制御装置 1 4は加算器 1 3、 速度検出器 6及び電流 検出器 9に接続されており、 トルク制御装置 1 4はその出力 1 4 aを出 力する。 ブレーキ 1 5は巻上機の駆動綱車 2を静止保持するものであり、 速度指令発生装置 1 0からの起動指令 1 5 aに基づき、 開放される。 起 動トルク指令検出装置 1 6は速度指令発生装置 1 0からの起動指令 1 5 aに基づき、 エレベータがブレーキ 1 5を開放した所定時間後、 起動 時のトルク指令を保持する。 走行ロス演算装置 1 7は速度指令値 1 0 a に基づき、 定格速度もしくは一定速度で走行中の第 2のトルク指令値 1 3 aから秤補償装置 1 2からのトルク補償信号 1 2 aを減算して、 エレ ベータ走行時の走行ロス 1 7 aを演算する。 枰チェック装置 1 9は起動 トルク指令検出装置 1 6 が検出した起動時のトルク指令 1 6 aと抨補 償装置 1 2からのトルク補償信号 1 2 aを比較して、 この値が所定値を 超えていたら、 抨装置 7の検出誤差が大きいと判断して異常信号 1 9 a を速度指令発生装置 1 0に出力する。
次に、 上記のように構成されたエレベータの制御装置の動作を説明す る。
かご 4に乗客が乗り込むと、 秤装置 7によってかご内荷重が検出され、 秤信号 7 aが出力される。 枰補償装置 1 2は抨信号 7 aからかご 4側の 重量とつり合おもり 5側の重量との差、 すなわち不平衡荷重を演算し、 この不平衡荷重に基づいてトルク補償信号 1 2 aを演算する。 このトル ク補償信号 1 2 aは不平衡荷重につり合うための電動機トルクに相当 する。
かご 4の起動後、 速度制御装置 1 1は速度指令値 1 0 aと速度信号 6 aに基づいて第 1のトルク指令値 1 1 aを出力する。 通常、 速度制御演 算は、 速度指令値 1 0 aと速度信号 6 aとの偏差による P I演算が用い られる。 第 1のトルク指令値 1 1 aはトルク補償信号 1 2 aと加算器 1 3で加算され、 第 2のトルク指令値 1 3 aとなる。 トルク制御装置 1 4 は第 2のトルク指令値 1 3 a、 速度信号 6 a及び電流信号 9 aから出力 1 4 aを演算し、 電力変換器 8を介して卷上用電動機 1のトルクを制御 する。 これにより、 かご 4及びつり合おもり 5は昇降する。
また、 かご 4の起動時、 速度指令発生装置 1 0からの起動指令 1 5 a に基づき、 巻上機の駆動綱車 2のブレーキ 1 5が開放される。 起動トル ク指令検出装置 1 6はエレベータがブレーキ 1 5を開放した所定時間 後、 起動時のトルク指令を保持する。 さらに、 走行ロス演算装置 1 7で 演算されたエレべ一夕走行時の走行ロス分 1 7 aを補正して、 一定速で 走行中の釣合トルクを演算する。 ここで、 釣合トルクのかご 4及びつり 合おもり 5の質量差で発生するアンバランストルクは、 枰補償装置 1 2 から出力されるトルク補償信号 1 2 aで代用しても構わないが、 秤装置 7には検出誤差が含まれているため、 起動後、 速度制御装置 1 1が静止 保持のコントロールをした後のトルク指令を使用して釣合トルクを算 出する方が、 精度高い結果が得られる。
次に、 速度パターンを生成するまでの手順について、 第 2図〜第 5図 を参照しながら説明する。 第 2図は、 モータの発生トルクとモー夕回転 数の関係を表す特性図である。 第 3図は、 卷上用電動機 1、 巻上機の駆 動綱車 2、 かご 4、 つり合おもり 5の関係を示すエレべ一夕の機械系モ デル導出のための概略図である。 第 4図の下段はモ一夕トルクパターン を表し、 その上段はそのときのかご速度パターンを表す。 第 5図はかご 速度パターンを生成するための演算処理手順を示したフローチャート である。
第 2図において、 巻上用電動機 1はモー夕トルク軸とモー夕回転数で 変化する最大出力値の線上で囲まれる斜線部の領域とその境界上を含 む領域内での動作が可能である。 この領域は凸集合であればよいが、 そ うでない場合も動作領域を凸集合となるように近似するなどすればよ レ^ トルクが正の領域はカ行状態、 負の領域は回生状態を表す。 この領 域を Ωで表す。 ここで、 Aの領域はかご 4内に乗客が乗っていない場合 から最大負荷まで、 定格速度、 標準加減速度で走行可能な定格走行領域 である。 また、 Bの領域はかご 4内に乗客が乗り込んだ状態で、 つり合 おもり 5に釣合アンバランスの小さい状態、 即ち、 モータトルクが軽負 荷時、 定格速度、 標準加速度から、 可変加減速度、 可変速度が可能な領 域である。
第 3図において、 T mはモータトルク、 T 1は走行ロストルク、 Jは 巻上機の慣性モーメント、 rは巻上機半径、 m lはつり合おもり質量、 m 2はかご質量、 はかご加速度、 ωは卷上機回転速度をそれぞれ表す。 また、 gを重力加速度とする。 第 3図の構成に対して運動方程式を導く ことにより、 モー夕トルクとかご加速度、 アンバランストルク、 走行口 ストルクの関係式が次式のように得られる。
Tm={2J/T + r(ml+ m2)/2}a -一 (ml- m2)g+ T1 … ( 1 )
なお、 第 3図の構成では、 かご加速度とモータトルクの関係式は式 ( 1 ) のように表されるが、 両者の関係が一次関数で記述され得るよう な構成ならばこの構成に限らなくてもよい。 次に、 モータの回転速度と 巻上機回転速度を等しいとし、 Vをかご速度とすると、 モータの回転速 度からかご速度が次式のように演算できる。
V = r ω ··· (2)
従って、 第 2図はモータトルクとかご速度の関係を表わすものへ変換 することができる。 なお、 モータの回転数と巻上機回転速度を等しいと したが、 両者の関係式が一次関数で記述され得るような変換ならば上記 式 (2) に限らなくてもよい。 例えば減速機等を用いた場合もこの発明 を適用できる。
第 4図において、 上段の速度パターンは下段のトルクパターンに対し、 上記式 (1) とその積分値により演算されるものである。 また、 第 4図 において、 t 0〜t 7は時刻、 Δ t 1〜Δ t 7は時間区間、 v 0〜v 7 は各時刻に対するかご速度、 TmO〜Tm7は各時刻に対するモータト ルクを示している。 ここで、 Tm0 = Tm3=Tm4 = Tm7=TM0、 Tml=Tm2=TMl、 Tm 5 = Tm 6 = TM 2である。 また、 ν θ = 0、 t 0 = 0とする。
この第 4図において、 区間 Δ t l、 Δ t 3 , Δ t 5 , Δ t 7はジャー ク (加加速度、 即ちかご加速度の変化率) 値一定走行、 区間 A t 2、 Δ t 6は加速度一定走行、 区間 Δ t 4は速度一定走行区間である。 また、 釣合トルク TM0は上記式 (1) に 0! = 0を代入して下記の式 (3) の ように計算できる。
TM 0 =- r (ml - m2) g/2 +Τ 1 ·'· (3) 実施の形態 1における速度指令発生装置 1 0における速度パターン の選択法について、 第 5図を用いて説明する。 第 5図において、 ステップ S 2 1の行先階設定処理では、 かご、 乗場 等で乗客により設定された行先階に対して、 次回停止階をもとにかごの 走行距離 Lもしくは走行階床数が設定される。 次に、 ステップ S 2 2の 釣合トルク検出処理では、 起動トルク指令検出装置 1 6で検出された起 動時のトルク指令 1 6 aと走行ロス演算装置 1 7で演算されたエレべ —夕走行時の走行ロス 1 7 aを加算して、釣合トルクを演算する。次に、 ステップ S 2 3の速度、 加減速度設定処理では、 ステップ S 2 1で設定 されたかごの走行距離 Lもしくは走行階床数、 およびステップ S 2 2で 演算された釣合トルクに応じて、 速度、 加減速度テーブルを選択する。 次に、 ステップ S 2 4の速度パターン生成処理では、 ステップ 2 3で選 択された速度、 加減速度テーブルに基づき、 第 4図に示す速度パターン を生成する。
トルク制約条件は、 第 4図の速度パターンおよびトルクパターンをモ 一夕の動作範囲内に納める必要がある。 従って、 ( 1 ) 式に基づいて、 起動時のモー夕トルクに応じて、 設定された速度パターンおよび加減速 度パターンで走行したとき、 モータトルクがモータの動作範囲内に納ま るように、 予め、 第 6図に示すような速度、 加減速度テーブルを作成す る。
この実施の形態 1では走行パターンとして、 第 6図に示すような、 釣 合トルクまたはかご内の積載重量 (定格に対する割合で示す) と運転方 向等に対応した複数の速度、 加減速度テーブルを持つ。 エレベータの制 御装置は選択されているテーブルに対して、 起動時のモータトルクと運 転方向に応じて、 それらに対応した速度と加減速度をテーブルから選択 し、 選択した速度と加減速度に従ってエレべ一夕の運転を行う。 前記複 数の速度、 加減速度テーブルは例えば以下のようにして設定することが できる。 第 6図の速度、 加減速度テーブル Eはかご速度とかご加減速度のトレ 一ドオフに対して、 かごの移動距離 Lを考慮して設定されたものである。 ここでは、 目的階までの階間距離が何メートルであるかで、 使用すべき テーブルを選択している。 なお、 階間距離ではなく、 途中通過する階床 数でテーブルを分けてもよい。 テーブルは移動距離 Lに応じて複数持つ。 移動距離 Lが短い場合には、 速度よりも加減速度を大きくした方が運転 時間が短くなり、 運行効率が上がるので加減速度を大きく設定している。 逆に移動距離 Lが大きい場合には、 加減速度よりも速度を大きくした方 が運行効率が上がるので速度が大きく設定されている。 この場合、 まず 起動時にかごが停止している階と次回に停止する階の情報をもとに移 動距離 Lを計算し、 その移動距離 Lに従ってテーブルが選択される。 例 えば、 移動距離 Lが 1 2メートルであった場合には、 最下段のテーブル が選択される。 次にその中で横軸の釣合トルクに応じた速度と加減速度 が選択され、 エレベータの運転が開始される。
前記テーブル Eは移動距離 Lと釣合トルクと運転方向に対応したテ —ブルとしたが、 移動距離 Lのみに対応したテーブル、 釣合トルクのみ に対応したテーブルとしてもよく、 また移動距離 Lと運転方向に対応し たテーブルなどのように、 上記のいずれかの組合せに対応したテーブル としてもよい。
また、 釣合トルクの代わりにかご負荷の定格負荷に対する割合をもと にした第 7図に示すような速度、 加減速度テーブル Fを使用してもよい。 次に、 この発明の実施の形態 2を、 図面に基づいて説明する。
第 8図は、 この発明の実施の形態 2におけるエレべ一夕の制御装置を 示すシステム構成図である。 第 8図において、 卷上用電動機 1により駆 動される巻上機の駆動綱車 2は、 主索 3が巻き掛けられ、 主索 3の両端 にそれぞれかご 4及びつり合おもり 5が結合されている。 速度検出器 6 は巻上用電動機 1に結合され、 電動機 1の回転速度に対応する速度信号
6 aを出力する。 枰装置 7はかご 4に設けられ、 かご内荷重を検出して 秤信号 7 aを出力する。 電力変換器 8は電動機 1を駆動する電源を供給 する。 電流検出器 9は電動機 1の電流を検出して電流信号 9 aを出力す る。 速度指令発生装置 1 0はエレべ一夕の速度指令値 1 0 aを発生する。 速度制御装置 1 1は速度指令発生装置 1 0及び速度検出器 6に接続さ れ、 速度指令値 1 0 a及び速度信号 6 aを入力として第 1のトルク指令 値 1 1 aを出力する。 抨補償装置 1 2は秤装置 7に接続され、 抨信号 7 aを入力としてトルク補償信号 1 2 aを出力する。 加算器 1 3は速度制 御装置 1 1及び秤補償装置 1 2に接続され、,第 2のトルク指令値 1 3 a を出力する。 トルク制御装置 1 4は加算器 1 3、 速度検出器 6及び電流 検出器 9に接続されており、 トルク制御装置 1 4はその出力 1 4 aを出 力する。 ブレーキ 1 5は巻上機の駆動綱車 2を静止保持するものであり、 速度指令発生装置 1 0からの起動指令 1 5 aに基づき、 開放される。 ェ レべ一夕のかご 4内にはカメラ 1 8が設けられ、 このカメラ 1 8で撮影 した画像によりかご内の乗客数を判断し、 その結果を出力するカメラ信 号 1 8 aを釣合トルクとみなしている。 実施の形態 1における起動トル ク指令検出装置 1 6に代わるかご内乗客数検出装置 2 0は速度指令発 生装置 1 0からの起動指令 1 5 aに基づき、 エレべ一夕がブレーキ 1 5 を開放した所定時間後、 起動時のトルク指令を保持する。 走行ロス演算 装置 1 7は速度指令値 1 0 aに基づき、 定格速度もしくは一定速度で走 行中の第 2のトルク指令値 1 3 aから秤補償装置 1 2からのトルク補 償信号 1 2 aを減算して、 エレべ一夕走行時の走行ロス 1 7 aを演算す る。
この実施の形態 2では、 カメラ信号 1 8 aを釣合トルクとみなして、 第 5図に示す速度パターンの選択法によって、 加減速度、 定格速度を決 定する。
また、 この発明の実施の形態 3として、 前述の速度パターン選択法の 速度 ·加減速度テーブルによらず、 下記の式 (4 ) 、 式 (5 ) に示すよ うに、あらかじめ定められた標準速度 V 0、標準加減速度 ο; 0に対して、 釣合トルク T (定格に対する割合で示す) に応じた加減速度ひ、 定格速 度 Vを所定の上昇率 kl、 k2で、 電力変換装置 8の最大出力、 電動機 1 の最大出力で制限される値まで上昇させる方法もある。
V = k2/ T X V 0 … (4)
= kl T X 0 … (5)
また、 第 1図の秤チェック装置 1 9が秤装置 7の検出誤差が大きいと 判断して異常信号を出力すると、 速度パターンをあらかじめ定められた 標準値である標準速度 V 0、 標準加減速度ひ 0に戻す。
また、 この発明の実施の形態 4として、 巻上機を駆動するモータの制 御に弱め界磁制御を行う制御手段を有する。 弱め界磁制御は永久磁石モ 一夕に適用されるモータの制御法であり、 界磁磁束方向 (d軸方向) に 負の電流を流すことによる減磁効果により、 モータの端子電圧を抑えて より高回転で駆動することを可能とする制御法である。 第 9図はモータ の出力可能なトルクと速度の領域を示している。第 9図の (a)は弱め界磁 制御を行わないときの出力可能な領域を示したものであり、 同じく(b) は弱め界磁制御を行った時の出力可能な領域を示したものである。 弱め 界磁制御を行うことにより、 モー夕の駆動領域を高速側まで広げること が可能となる。 また、 このときインバータ等の電気機器の容量を変更す る必要はない。 したがって、 弱め界磁制御を用いることにより、 電気機 器を変更することなく一定速速度の上限値をより高速側に設定するこ とができる。 これは特に、 かご側の重量とつり合いおもりの重量の差が 小さいほど効果を発揮する。 この理由はかご側重量とつり合いおもりの 重量の差が小さいときには必要なモータトルクが小さくなるため、 エレ ベータの消費電力や回生電力も小さくなり、 その結果電源設備容量の制 約や回生容量の制約条件等の影響も受けにくくなること、 及び弱め界磁 制御の性質から発生トルクが小さいほどモータの回転速度を高回転と できることによる。
また、 モータを高回転で駆動させるために、 インバー夕の電圧利用率 を上げる方法として、 インバー夕電圧に三次調波を重畳する方法、 2相 変調方式を採用すると、 更にモー夕を高回転で駆動させることができる。 また、 モータが高回転になってィンバー夕の出力電圧が上がると D C リンクの電圧値も高くする必要があり、 モータの電磁騒音が大きくなる。 これに対して、 電圧形インバー夕のデッドタイム (T d ) の補正を行う ことで、 電磁騒音をかなり抑制することができる。
以上のように、 この発明によれば、 エレべ一夕がブレーキを開放した 所定時間後、起動時のトルク指令を保持して、そのトルク指令に応じて、 かごのジャーク (加加速度) 、 加減速度、 定格速度を決定する速度パ夕 ーンを変更する。 また、 前回走行の走行中のトルク指令に基づき、 エレ ベータの起動時のトルク指令に走行ロス分を補正して、 かごのジャーク、 加減速度、 定格速度を決定する速度パターンを変更する。 従って、 速度 パターンの変更を速度制御装置が静止保持のコントロールをした後の トルク指令に走行ロスを加えたトルク指令に基づいて行うため、 秤装置 等の検出誤差を含まず、 走行ロス等の影響も加味され、 精度高い結果が 得られる。
また、 速度パターンはあらかじめ定められた標準値を備え、 それに対 して、加減速度、定格速度を所定の上昇率で、電力変換装置の最大出力、 電動機の最大出力で制限される値まで上昇させるように構成したため、 構成を簡単にでき、 かつ、 電力変換装置の最大出力、 電動機の最大出力 で制限され、 精度高い、 速度パターンを生成することができる。
また、 負荷の検出方法としてエレべ一夕のかご内のカメラで撮影した 画像によりかご内の乗客数を判断し、 その結果を出力するカメラ信号に 基づき、 かごのジャーク、 加減速度、 定格速度を決定する速度パターン を変更したため、 秤装置等に大きい検出誤差が発生したとしても、 正確 にモータトルク範囲内で速度パターンを変更することが可能になる。 また、 枰信号または、 エレべ一夕の起動時のトルク指令、 またはかご 内のカメラで撮影した画像によりかご内の乗客数を判断し、 その結果を 出力するカメラ信号に応じて、 もしくはその組合せたものに応じて、 か ごのジャーク、 加減速度、 定格速度を決定する速度パターンを加速度、 速度テーブルより選択する速度パターン決定装置を備え、 目的階への移 動距離が長いほど、 最大速度の上昇を優勢にするように、 加速度、 速度 のそれぞれの上昇率を可変するようにしたため、 簡単な構成で、 乗客の 移動時間が短縮され、 かごの運行効率が上がるという効果がある。
また、 かご内荷重を検出して抨信号を出力する秤装置を設け、 上記秤 信号に応じて、 かごのジャーク、 加減速度、 定格速度を決定する速度パ ターンを変更するエレベータにおいても、 抨チェック装置を備え、 上記 抨信号と起動時のトルク指令の差が所定値を超えた場合、 速度パターン の変更を停止して、 標準値に戻すようにしたため、 抨装置等に大きい検 出誤差が発生したとしても、 それを検出して速度パターンの変更を停止 するため、 信頼性を高くすることができる。 産業上の利用可能性
以上のように、 この発明のエレべ一夕の制御装置は、 負荷と移動距離 に応じて、 最高速度や加速度を変更し、 運転時間を短縮することができ る。 また、 負荷の検出を精度高く検出することができる。

Claims

請 求 の 範 囲
1 . 速度指令値と速度信号からトルク指令値を発生する速度制御装置を 有し、 上記トルク指令値により電力変換装置で電動機を制御してかご及 びつり合おもりを昇降させるエレベータにおいて、 エレべ一夕がブレー キを開放した所定時間後、 起動時のトルク指令を保持して、 そのトルク 指令に応じて、 かごのジャーク、 加減速度、 定格速度を決定する速度パ ターンを変更することを特徴とするエレべ一夕の制御装置。
2 . 速度指令値と速度信号からトルク指令値を発生する速度制御装置を 有し、 上記トルク指令値により電力変換装置で電動機を制御してかご及 びつり合おもりを昇降させ、 かつ、 かご内荷重を検出して秤信号を出力 する抨装置を設け、 上記秤信号により上記かご側とつり合おもり側の不 平衡荷重を演算し、 この不平衡荷重に基づいて上記トルク指令値を補正 するエレべ一夕において、 エレべ一夕がブレーキを開放した所定時間後、 起動時のトルク指令を保持して、 そのトルク指令に応じて、 かごのジャ ーク、 加減速度、 定格速度を決定する速度パターンを変更することを特 徴とするエレべ一夕の制御装置。
3 .速度パターンはあらかじめ定められた標準値を備え、それに対して、 加減速度、 定格速度を所定の上昇率で、 電力変換装置の最大出力、 電動 機の最大出力で制限される値まで上昇させることを特徴とする請求の 範囲第 1項又は第 2項に記載のエレべ一夕の制御装置。
4 . 前回走行の走行中のトルク指令に基づき、 エレべ一夕の起動時の卜 ルク指令に走行ロス分を補正して、 かごのジャーク、 加減速度、 定格速 度を決定する速度パターンを変更することを特徴とする請求の範囲第 1項〜第 3項のいずれかに記載のエレべ一夕の制御装置。
5 . 速度指令値と速度信号からトルク指令値を発生する速度制御装置を 有し、 上記トルク指令値により電動機を制御してかご及びつり合おもり を昇降させるエレベータにおいて、 エレベータのかご内のカメラで撮影 した画像によりかご内の乗客数を判断し、 その結果を出力するカメラ信 号に基づき、 かごのジャーク、 加減速度、 定格速度を決定する速度パ夕 —ンを変更することを特徴とするエレべ一夕の制御装置。
6 . 速度指令値と速度信号からトルク指令値を発生する速度制御装置を 有し、 上記トルク指令値により電動機を制御してかご及びつり合おもり を昇降させ、 かつ、 かご内荷重を検出して枰信号を出力する秤装置を設 け、 上記抨信号により上記かご側とつり合おもり側の不平衡荷重を演算 し、 この不平衡荷重に基づいて上記トルク指令値を補正するエレベータ において、 秤信号または、 エレベータの起動時のトルク指令、 またはか ご内のカメラで撮影した画像によりかご内の乗客数を判断し、 その結果 を出力するカメラ信号に応じて、 もしくはその組合せたものに応じて、 かごのジャーク、加減速度、定格速度を決定する速度パターンを加速度、 速度テーブルより選択する速度パターン決定装置を備え、 目的階への移 動距離に応じて加速度、 速度のそれぞれの上昇率を可変することを特徴 とするエレベータの制御装置。
7 . 目的階への移動距離が長いほど、 最大速度の上昇を優勢にすること を特徴とする請求の範囲第 6項に記載のエレべ一夕の制御装置。
8 . 速度指令値と速度信号からトルク指令値を発生する速度制御装置 を有し、 上記トルク指令値により電動機を制御してかご及びつり合おも りを昇降させるエレべ一夕において、 かご内荷重を検出して秤信号を出 力する秤装置を設け、上記秤信号に応じて、かごのジャーク、加減速度、 定格速度を決定する速度パターンを変更するとともに、 秤チェック装置 を備え、 上記秤信号と起動時のトルク指令の差が所定値を超えた場合、 速度パターンの変更を停止して、 あらかじめ定められた標準値に戻すこ とを特徴とするエレべ一夕の制御装置
PCT/JP2004/004492 2004-03-30 2004-03-30 エレベータの制御装置 WO2005102895A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04724357A EP1731467B1 (en) 2004-03-30 2004-03-30 Control device of elevator
CN200480009184.2A CN100515899C (zh) 2004-03-30 2004-03-30 电梯控制装置
JP2006519105A JP4701171B2 (ja) 2004-03-30 2004-03-30 エレベータの制御装置
PCT/JP2004/004492 WO2005102895A1 (ja) 2004-03-30 2004-03-30 エレベータの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/004492 WO2005102895A1 (ja) 2004-03-30 2004-03-30 エレベータの制御装置

Publications (1)

Publication Number Publication Date
WO2005102895A1 true WO2005102895A1 (ja) 2005-11-03

Family

ID=35196871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004492 WO2005102895A1 (ja) 2004-03-30 2004-03-30 エレベータの制御装置

Country Status (4)

Country Link
EP (1) EP1731467B1 (ja)
JP (1) JP4701171B2 (ja)
CN (1) CN100515899C (ja)
WO (1) WO2005102895A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056427A (ja) * 2006-08-31 2008-03-13 Toshiba Elevator Co Ltd エレベータ
WO2008068376A1 (en) * 2006-12-08 2008-06-12 Kone Corporation Elevator system
JP2009012883A (ja) * 2007-07-02 2009-01-22 Mitsubishi Electric Corp マルチかごエレベーターの制御装置
CN102234048A (zh) * 2010-04-22 2011-11-09 永大机电工业股份有限公司 电梯速度曲线修正方法
WO2012160888A1 (ja) * 2011-05-20 2012-11-29 三菱電機株式会社 エレベーター装置
JP2014105050A (ja) * 2012-11-26 2014-06-09 Toshiba Elevator Co Ltd エレベータ及びエレベータ運行方法
CN110817625A (zh) * 2019-10-25 2020-02-21 康力电梯股份有限公司 一种减小电梯无称重启动振动的方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132523A1 (ja) * 2006-05-16 2007-11-22 Mitsubishi Denki Kabushiki Kaisha エレベータの制御装置
WO2008117423A1 (ja) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation エレベータのブレーキ装置
FI120193B (fi) * 2008-01-09 2009-07-31 Kone Corp Hissijärjestelmän liikkeenohjaus
EP2256077B1 (en) * 2008-03-27 2016-09-28 Mitsubishi Electric Corporation Elevator control system
WO2010016826A1 (en) 2008-08-04 2010-02-11 Otis Elevator Company Elevator motion profile control
DE112010005324T5 (de) 2010-03-03 2012-12-27 Mitsubishi Electric Corporation Steuervorrichtung für einen Fahrstuhl
FI20105587A0 (fi) 2010-05-25 2010-05-25 Kone Corp Menetelmä hissikokoonpanon kuormituksen rajoittamiseksi sekä hissikokoonpano
JP5075947B2 (ja) * 2010-06-25 2012-11-21 株式会社日立製作所 エレベータ
JP5058310B2 (ja) * 2010-08-12 2012-10-24 株式会社日立ビルシステム エレベータ制御装置
JP5537532B2 (ja) * 2011-05-31 2014-07-02 三菱重工パーキング株式会社 リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法
CN103130054A (zh) * 2011-11-25 2013-06-05 深圳市一兆科技发展有限公司 一种获取轿厢运行速度的方法及相关装置
CN103684198B (zh) * 2012-08-30 2017-05-10 安川电机(中国)有限公司 马达控制装置及马达控制方法
EP2813458A1 (en) * 2013-06-10 2014-12-17 Kone Corporation Method and apparatus for estimating the weight of an elevator car
EP2945281B1 (en) * 2014-03-26 2016-11-30 Kone Corporation A method and apparatus for automatic elevator drive configuration
WO2016085757A1 (en) 2014-11-24 2016-06-02 Otis Elevator Company Electromagnetic brake system
CN104394370B (zh) * 2014-11-27 2017-07-18 新乡学院 一种智能化缆车速度控制方法
CN104484745B (zh) * 2014-11-27 2017-12-19 广州时怡便利店有限公司 城市超市信息发布系统
WO2016091198A1 (zh) * 2014-12-11 2016-06-16 冯春魁 电梯参数的获取、控制、运行和载荷监控的方法及系统
JP6211214B2 (ja) * 2015-01-13 2017-10-11 三菱電機株式会社 エレベータ制御装置
KR102084917B1 (ko) * 2016-06-30 2020-03-05 미쓰비시덴키 가부시키가이샤 엘리베이터의 제어 장치
CN110316629B (zh) * 2018-03-30 2021-10-08 上海三菱电梯有限公司 电梯称量装置自动校正方法
CN109484929A (zh) * 2018-10-16 2019-03-19 宁波宏大电梯有限公司 一种基于不同时间段控制电梯速度的系统及方法
KR102270066B1 (ko) * 2019-03-06 2021-06-25 엘에스일렉트릭(주) 엘리베이터의 비상 운전 제어장치 및 방법
CN113614014B (zh) * 2019-03-29 2023-08-29 三菱电机株式会社 电梯控制装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184078A (en) * 1981-05-08 1982-11-12 Tokyo Shibaura Electric Co Controller for elevator
JPH07165372A (ja) * 1993-12-14 1995-06-27 Hitachi Ltd エレベーターの制御方法
JPH07215611A (ja) * 1994-01-27 1995-08-15 Toshiba Corp エレベータのかご混雑度検出装置
JPH07228444A (ja) * 1994-02-15 1995-08-29 Hitachi Ltd エレベーターの監視装置及び制御装置
JPH07330231A (ja) * 1994-06-09 1995-12-19 Hitachi Ltd エレベータの制御装置
JPH09233898A (ja) * 1996-02-28 1997-09-05 Hitachi Ltd 交流電動機の制御装置及びエレベータの制御装置
JP2001278553A (ja) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp エレベータの群管理制御装置
JP2003192246A (ja) * 2001-12-26 2003-07-09 Toshiba Elevator Co Ltd エレベータの速度制御装置及び速度制御方法、並びに速度制御プログラム
JP2003238037A (ja) * 2001-12-10 2003-08-27 Mitsubishi Electric Corp エレベータの制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229103Y2 (ja) * 1984-12-25 1990-08-03
JP3908323B2 (ja) * 1996-03-29 2007-04-25 三菱電機株式会社 エレベーターの速度制御装置
JP3881746B2 (ja) * 1997-05-13 2007-02-14 日本オーチス・エレベータ株式会社 エレベータシステム
JPH11246184A (ja) * 1998-02-27 1999-09-14 Toyo Electric Mfg Co Ltd ホイストクレーン装置
JP4616447B2 (ja) * 2000-07-31 2011-01-19 三菱重工業株式会社 クレーンおよびクレーン制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184078A (en) * 1981-05-08 1982-11-12 Tokyo Shibaura Electric Co Controller for elevator
JPH07165372A (ja) * 1993-12-14 1995-06-27 Hitachi Ltd エレベーターの制御方法
JPH07215611A (ja) * 1994-01-27 1995-08-15 Toshiba Corp エレベータのかご混雑度検出装置
JPH07228444A (ja) * 1994-02-15 1995-08-29 Hitachi Ltd エレベーターの監視装置及び制御装置
JPH07330231A (ja) * 1994-06-09 1995-12-19 Hitachi Ltd エレベータの制御装置
JPH09233898A (ja) * 1996-02-28 1997-09-05 Hitachi Ltd 交流電動機の制御装置及びエレベータの制御装置
JP2001278553A (ja) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp エレベータの群管理制御装置
JP2003238037A (ja) * 2001-12-10 2003-08-27 Mitsubishi Electric Corp エレベータの制御装置
JP2003192246A (ja) * 2001-12-26 2003-07-09 Toshiba Elevator Co Ltd エレベータの速度制御装置及び速度制御方法、並びに速度制御プログラム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056427A (ja) * 2006-08-31 2008-03-13 Toshiba Elevator Co Ltd エレベータ
WO2008068376A1 (en) * 2006-12-08 2008-06-12 Kone Corporation Elevator system
US7743891B2 (en) 2006-12-08 2010-06-29 Kone Corporation Elevator system
JP2009012883A (ja) * 2007-07-02 2009-01-22 Mitsubishi Electric Corp マルチかごエレベーターの制御装置
CN102234048A (zh) * 2010-04-22 2011-11-09 永大机电工业股份有限公司 电梯速度曲线修正方法
WO2012160888A1 (ja) * 2011-05-20 2012-11-29 三菱電機株式会社 エレベーター装置
JP5634603B2 (ja) * 2011-05-20 2014-12-03 三菱電機株式会社 エレベーター装置
JP2014105050A (ja) * 2012-11-26 2014-06-09 Toshiba Elevator Co Ltd エレベータ及びエレベータ運行方法
CN110817625A (zh) * 2019-10-25 2020-02-21 康力电梯股份有限公司 一种减小电梯无称重启动振动的方法

Also Published As

Publication number Publication date
JPWO2005102895A1 (ja) 2007-08-30
EP1731467B1 (en) 2011-11-16
JP4701171B2 (ja) 2011-06-15
CN1767995A (zh) 2006-05-03
EP1731467A4 (en) 2009-11-11
EP1731467A1 (en) 2006-12-13
CN100515899C (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2005102895A1 (ja) エレベータの制御装置
JP3338680B2 (ja) 停電時のエレベータ救出運転制御方法
KR100994582B1 (ko) 엘리베이터의 제어 장치
JP4964903B2 (ja) エレベータ装置
WO2007013448A1 (ja) エレベータ装置
JP5554397B2 (ja) エレベーターの制御装置
US8789660B2 (en) Elevator system using a movement profile
JP2009051656A (ja) エレベータ制御装置
WO2007007637A1 (ja) エレベータの速度制御装置、速度制御方法、および速度制御プログラム
JP4397721B2 (ja) エレベータの制御装置
KR101268819B1 (ko) 엘리베이터 제어 장치
WO2005092764A1 (ja) エレベータ制御装置
KR101261763B1 (ko) 엘리베이터의 제어장치
JPH06321440A (ja) エレベーターの制御装置
JP2011195286A (ja) エレベータの制御装置
JP5746373B2 (ja) エレベーターの制御装置およびその制御方法
KR100735352B1 (ko) 엘리베이터의 제어장치
JP2000211829A (ja) エレベ―タ制御装置
JP2005132541A (ja) 昇降機械駆動用電動機の制御方法
JP3908323B2 (ja) エレベーターの速度制御装置
JPH09240935A (ja) 交流エレベータの制御装置
JP2004091199A (ja) エレベータの制御装置
JP2004256239A (ja) 油圧エレベータの改修方法
JP2004282925A (ja) エレベータ制御装置
KR20060130083A (ko) 엘리베이터 제어장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519105

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048091842

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004724357

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020057022964

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057022964

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004724357

Country of ref document: EP