WO2012151820A1 - 复合材料、用其制作的高频电路基板及其制作方法 - Google Patents

复合材料、用其制作的高频电路基板及其制作方法 Download PDF

Info

Publication number
WO2012151820A1
WO2012151820A1 PCT/CN2011/079650 CN2011079650W WO2012151820A1 WO 2012151820 A1 WO2012151820 A1 WO 2012151820A1 CN 2011079650 W CN2011079650 W CN 2011079650W WO 2012151820 A1 WO2012151820 A1 WO 2012151820A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
frequency circuit
dielectric loss
film
powder
Prior art date
Application number
PCT/CN2011/079650
Other languages
English (en)
French (fr)
Inventor
苏民社
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to EP20110865413 priority Critical patent/EP2706088A4/en
Priority to US14/115,748 priority patent/US10194528B2/en
Priority to KR1020137029305A priority patent/KR101575944B1/ko
Publication of WO2012151820A1 publication Critical patent/WO2012151820A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/038Use of an inorganic compound to impregnate, bind or coat a foam, e.g. waterglass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0116Porous, e.g. foam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249958Void-containing component is synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers

Definitions

  • the present invention relates to the field of composite materials, and in particular to a composite material, a high-frequency circuit substrate produced therefrom, and a method of fabricating the same. Background technique
  • high-frequency circuit substrates use low dielectric constant resins to obtain good high-frequency properties.
  • These low-k dielectric resins include polyphenylene ether, cyanate esters, and carbon-carbon-free double bonds.
  • CCL is generally made of fiberglass cloth as a reinforcing material.
  • the glass fiber cloth has a dielectric constant of at least 3.7 (Q glass). Due to the large dielectric constant of the glass fiber cloth, the dielectric constant of the copper-clad board made of other resins is hard to be reduced except for PTFE.
  • the dielectric constant in the circuit board is made by using a woven material as a reinforcing material (such as a glass fiber cloth), a woven fiber cloth due to weaving, and a node at the intersection of the woven fibers. It is not isotropic in the X and Y directions of the plane, and there is a difference in dielectric constant in the X and Y directions.
  • a high-frequency signal is transmitted in a high-frequency circuit substrate, signal attenuation occurs due to a difference in dielectric constants in the X and Y directions, which affects signal transmission stability.
  • U.S. Patent No. 6,218,815 uses two kinds of polytetrafluoroethylene resins and a mixture of fillers to cast a film to form a circuit board.
  • the circuit material produced by this method is made of a thermoplastic polytetrafluoroethylene resin, and has excellent dielectric properties, and there is no difference in dielectric constant between the X and Y directions.
  • this casting method is prone to cracks when a thick film is formed.
  • the yield is not high; especially when it is necessary to make a circuit board with a large thickness, a plurality of layers of thin films are required to be stacked together, and the production efficiency is not high.
  • U.S. Patent No. 4,772,509 uses a porous expanded polytetrafluoroethylene film to impregnate polyimide to form a prepreg, and then fabricates the circuit substrate.
  • U.S. Patent No. 5,652,055 uses a porous expanded polytetrafluoroethylene film to impregnate a thermosetting resin to form a circuit substrate.
  • these two patents are made of thermosetting resins with a large dielectric loss tangent (dielectric loss tangent greater than 0.01).
  • the fabrication of the circuit board has a dielectric property that is inferior to that of the circuit board made of polytetrafluoroethylene resin in the patent US6218015. Summary of the invention
  • the object of the present invention is to provide a composite material, which adopts a porous ePTFE film as a carrier material, and provides a dielectric constant of a prepreg and a high-frequency circuit substrate in the X and Y directions, thereby reducing the dielectric of the high-frequency circuit substrate. Constant and dielectric loss tangent.
  • Another object of the present invention is to provide a high-frequency circuit substrate fabricated using the above composite material, which has a dielectric constant in the X and Y directions, and a high-frequency dielectric property, which is better in signal transmission of a high-frequency circuit. .
  • Still another object of the present invention is to provide a method for producing a high-frequency circuit substrate produced by using the above composite material, which comprises a porous ePTFE film as a carrier material, has good formability, does not cause cracks, and operates a cylinder.
  • the present invention provides a composite material, the composition of which comprises:
  • ePTFE film a porous expanded polytetrafluoroethylene film
  • the fluoropolymer having low dielectric loss is in polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkoxy vinyl ether copolymer (PFA), and perfluoroethylene propylene copolymer (FEP).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkoxy vinyl ether copolymer
  • FEP perfluoroethylene propylene copolymer
  • the porous expanded polytetrafluoroethylene film is made of a polytetrafluoroethylene resin to which no ceramic filler is added or added.
  • the porous expanded polytetrafluoroethylene film is produced by an expansion stretching method, and has a pore diameter of 1 to 100 ⁇ m, a porosity of 30 to 98%, and a thickness of 0.5 to 300 ⁇ m.
  • the content of the powder filler accounts for 0 to 70% by volume of the total amount of the fluoropolymer dispersion emulsion and the powder filler having a low dielectric loss; the particle size of the powder filler is 0.01-15 ⁇ m, and the maximum particle diameter does not exceed 100. ⁇ m.
  • the powder filler is selected from the group consisting of crystalline silica, molten silica, spherical silica, alumina, barium titanate, barium titanate, barium titanate, boron nitride, aluminum nitride, carbonization.
  • crystalline silica molten silica, spherical silica, alumina, barium titanate, barium titanate, barium titanate, boron nitride, aluminum nitride, carbonization.
  • an adjuvant comprising an emulsifier and a dispersing agent.
  • the present invention also provides a high-frequency circuit substrate comprising: a plurality of prepregs superposed on each other and metal foils respectively pressed on both sides thereof, the plurality of prepregs being made of the composite material.
  • the gold It is a foil, which is copper, brass, aluminum, nickel, or an alloy or composite metal foil of these metals.
  • the present invention provides a method of fabricating the above high frequency circuit substrate, comprising the steps of:
  • Step 1 Weigh the composition of the composite material: (1) a fluoropolymer dispersion emulsion having a low dielectric loss; (2) a porous expanded polytetrafluoroethylene film; (3) a powder filler;
  • Step 2 dispersing the fluoropolymer dispersion emulsion with low dielectric loss, diluting with water to a suitable viscosity, and then adjusting the pH to 8-12 with ammonia water, mixing the powder filler and the auxiliary agent, and adding to the above-mentioned adjusted dispersion emulsion Medium, stirring and mixing, uniformly dispersing the powder filler therein to obtain a glue;
  • Step 3 impregnating the porous expanded polytetrafluoroethylene film with the above glue, and controlling to a suitable thickness, and then baking at 80 to 300 ° C to remove moisture and additives to form a prepreg;
  • Step 4 stacking the plurality of prepregs as described above, pressing each of the metal foils up and down, placing them in a press for hot pressing to obtain the high-frequency circuit substrate, and having a hot pressing temperature of 350 to 400 ° C.
  • the pressure is 25 ⁇ 100 Kg/cm 2 .
  • the glue has a solid content of 30 to 80%; the glue forms a fluoropolymer resin layer on the surface of the porous expanded polytetrafluoroethylene film, and the thickness thereof is controlled to be less than 20 ⁇ m.
  • a porous ePTFE film having excellent dielectric properties as a carrier material can reduce the dielectric constant and dielectric loss tangent of the composite material and the high-frequency circuit substrate;
  • the porous ePTFE film has good flatness and uniformity, and the high-frequency circuit substrate and prepreg which are prepared as the carrier material have dielectric constants in the X and Y directions; again, prepreg
  • the thickness can be adjusted according to the thickness of the porous ePTFE film of different thicknesses, avoiding the problem of cracking caused by the use of casting in the prior art (e.g., US Pat. No. 6,218,015). detailed description
  • the present invention provides a composite material comprising: (1) a fluoropolymer dispersed emulsion having a low dielectric loss; (2) a porous expanded polytetrafluoroethylene film (ePTFE film); (3) a powder filler.
  • a fluoropolymer dispersed emulsion having a low dielectric loss comprising: (1) a fluoropolymer dispersed emulsion having a low dielectric loss; (2) a porous expanded polytetrafluoroethylene film (ePTFE film); (3) a powder filler.
  • ePTFE film porous expanded polytetrafluoroethylene film
  • fluoropolymer dispersion emulsion having a low dielectric loss of the present invention examples include polytetrafluoroethylene, a fluorine-containing copolymer, and the like, and examples thereof include a polytetrafluoroethylene (PTFE) dispersion emulsion and a tetrafluoroethylene group.
  • PTFE polytetrafluoroethylene
  • a perfluoroalkoxy vinyl ether copolymer (PFA) dispersion emulsion, a perfluoroethylene propylene copolymer (FEP) dispersion emulsion, and the above dispersion emulsion may be used in combination of one or more.
  • the dispersion emulsion of the present invention disperses 25% to 60% of fluoropolymer particles in water as a medium. In water, it is in a stable dispersion state by a nonionic surfactant to form an emulsion.
  • the particle size of the fluoropolymer particles in the dispersion emulsion is in the range of 0.02 to 0.5 ⁇ m to facilitate subsequent impregnation.
  • the porous ePTFE film of the present invention may be formed by an expansion stretching method in which a large number of open pores are formed, and the pores are preferably sized to facilitate entry of the resin and the filler.
  • the porous ePTFE film is selected from the group consisting of an ePTFE film having a pore diameter of 1 to 100 ⁇ m, a porosity of 30 to 98%, and a thickness of 0.5 to 300 ⁇ m, preferably having a pore diameter of 3 to 50 ⁇ m, and a porosity. It is an ePTFE film of 50 to 98% and a thickness of 30 to 300 ⁇ m.
  • the ePTFE film has a large amount of pores inside, and can easily disperse the entry of materials such as emulsions and powder fillers during immersion.
  • the porous ePTFE film of the present invention may be made of a pure PTFE resin (polytetrafluoroethylene resin) or a PTFE resin to which a ceramic filler is added.
  • the surface of the porous ePTFE film is preferably subjected to a certain treatment, preferably a plasma treatment.
  • the composite material of the present invention can also be added to a powder filler, and the powder filler serves the purpose of improving dimensional stability and lowering CTE.
  • the content of the powder filler accounts for 0 to 70 Vol% (volume percent), preferably 30 to 55 Vol%, of the total amount of the fluoropolymer and the powder filler having a low dielectric loss.
  • the powder filler includes crystalline silica, molten silica, spherical silica, barium titanate, barium titanate, barium titanate, boron nitride, aluminum nitride, silicon carbide, aluminum oxide, Titanium dioxide, glass powder, glass chopped fiber, talc powder, mica powder, carbon black, carbon nanotubes, metal powder, polyphenylene sulfide, etc., the above fillers may be used alone or in combination, wherein the optimum filler is a molten type Silica or titanium dioxide.
  • the median diameter of the filler is 0.01 ⁇ 15 ⁇ ⁇ , and the maximum particle size is not more than ⁇ ⁇ ⁇ , and the median diameter of the filler is preferably 0.5 ⁇ 10 ⁇ ⁇ .
  • the surface of the powder filler can be treated, such as with a coupling agent. Also included are auxiliaries, including emulsifiers and dispersants.
  • the method for manufacturing a high-frequency circuit substrate using the above composite material comprises the following steps: Step 1. Weigh the composition of the composite material: (1) a fluoropolymer dispersion emulsion having a low dielectric loss; (2) a porous expansion a polytetrafluoroethylene film; (3) a powder filler.
  • Step 2 dispersing the fluoropolymer dispersion emulsion with low dielectric loss, diluting to a suitable viscosity with water, and then adjusting the enthalpy value to 8-12 with ammonia water, mixing the powder filler and the auxiliary agent, and adding to the above-mentioned adjusted dispersion emulsion Medium, stirring and mixing, uniformly dispersing the powder filler therein to obtain a glue;
  • Step 3 Impregnate the porous ePTFE film with the above glue, and control to a suitable thickness, and then bake at 80 to 300 ° C to remove moisture, additives and the like to form a prepreg.
  • the glue forms a fluoropolymer resin layer on the surface of the porous expanded polytetrafluoroethylene film, and the thickness of the prepreg passes The thickness of the porous ePTFE film and the fluoropolymer resin layer on the porous ePTFE film are determined together.
  • a porous ePTFE film of different thickness may be used.
  • the ePTFE film is controlled after the glue is filled with the pores of the ePTFE film.
  • the thickness of the resin layer above 20 microns, preferably below 10 microns, ensures that a thicker (greater than 250 microns) prepreg is made to avoid cracking of the fluoropolymer resin layer impregnated on the porous ePTFE film.
  • the thickness of the fluoropolymer resin layer on the porous ePTFE film is controlled by the solid content of the resin and filler of the fluoropolymer dispersion emulsion.
  • the solid content of the resin mixture i.e., the glue
  • the solid content of the resin mixture can be adjusted between 30 and 80%, preferably between 35 and 50%.
  • the immersion operation can be carried out by a general-purpose dip-coating machine made of a copper-clad board.
  • the temperature of the sizing machine oven can be set in stages. The oven is used at a temperature range of 80-300 ° C to remove moisture and emulsifiers and dispersants.
  • Step 4 stacking the plurality of prepregs as described above, pressing each of the metal foils up and down, placing them in a press for hot pressing to obtain the high-frequency circuit substrate, and having a hot pressing temperature of 350 to 400 ° C.
  • the pressure is 25 ⁇ 100 Kg/cm 2 .
  • the metal foil is copper, brass, aluminum, nickel, or an alloy of these metals or a composite metal foil.
  • the produced high-frequency circuit substrate comprises: a plurality of prepregs superposed on each other and metal foils respectively pressed on both sides thereof, the plurality of prepregs being made of the composite material.
  • dielectric properties of the above-described high-frequency circuit substrate that is, dielectric constant and dielectric loss tangent, high-frequency performance, and heat resistance are further described and described in the following embodiments.
  • the polytetrafluoroethylene dispersion emulsion having a solid content of 60% was adjusted to a viscosity of 20 mPa-s (20 ° C) with deionized water, and then the enthalpy was adjusted to 11 with ammonia water, and the mixture was uniformly stirred.
  • An ePTFE film having a thickness of 40 ⁇ m and a porosity of 92% was impregnated with the above-mentioned adjusted polytetrafluoroethylene dispersion emulsion, and then sent to an oven for baking at 280 ° C to remove moisture and auxiliary agents (emulsifiers, dispersants).
  • auxiliary agents emulsifiers, dispersants
  • the obtained high-frequency circuit substrate was tested to have a dielectric constant of 2.08 (10 GHz) and a dielectric loss tangent of 0.0002 (10 GHz).
  • the polytetrafluoroethylene dispersion emulsion with a solid content of 60% was adjusted to a viscosity of 15 mPa.s (20 ° C) with deionized water, and then the enthalpy value was adjusted to about 11 with ammonia water, and the mixture was stirred and mixed uniformly.
  • Will The molten silica powder (weight ratio of silicon powder to PTFE is 1:1) is added to the above emulsion, and the silica is uniformly dispersed in the emulsion by stirring to obtain an impregnable gum.
  • the ePTFE film having a thickness of 300 ⁇ m and a porosity of 95% was impregnated with the above-mentioned adjusted glue, and then sent to an oven for baking at 280 ° C to remove moisture and additives (emulsifiers, dispersants) to prepare a prepreg.
  • the resulting prepreg had a thickness of 308 microns and was free of cracks.
  • One sheet of the above prepreg was taken, one piece of copper foil was pressed up and down, and placed in a press for hot pressing to obtain the high-frequency circuit substrate, the temperature was 380 ° C, and the pressure was 70 kg/cm 2 .
  • the obtained high-frequency circuit substrate was tested to have a dielectric constant of 2.53 (10 GHz) and a dielectric loss tangent of 0.0003 (10 GHz).
  • the polytetrafluoroethylene dispersion emulsion with a solid content of 60% was adjusted to a viscosity of 15 mPa.s (20 ° C) with deionized water, and then the enthalpy value was adjusted to about 11 with ammonia water, and the mixture was stirred and mixed uniformly.
  • the molten silica powder (weight ratio of silicon powder to PTFE was 1:1) was added to the above emulsion, and the silica was uniformly dispersed in the emulsion by stirring to obtain an impregnable gum.
  • An ePTFE film filled with a fused silica filler having a thickness of 120 ⁇ m and a porosity of 95% (the content of the fused silica filler in the film was 50%) was impregnated with the above-mentioned adjusted glue, and then sent to an oven at 280. Baking, removal of moisture and auxiliaries (emulsifiers, dispersants), and preparation of prepregs, the resulting prepreg had a thickness of 128 microns and was free of cracks.
  • One sheet of the above prepreg was taken, and one piece of copper foil was pressed up and down, and placed in a press to be hot pressed to obtain the high-frequency circuit substrate at a temperature of 380 ° C and a pressure of 100 kg/cm 2 .
  • the obtained high-frequency circuit substrate was tested to have a dielectric constant of 2.65 (10 GHz) and a dielectric loss tangent of 0.0003 (10 GHz).
  • An ePTFE film having a thickness of 40 ⁇ m and a porosity of 92% was impregnated with the above glue, and then baked in an oven at 155 ° C to remove the solvent dimethylformamide to prepare a prepreg having a thickness of 54 ⁇ m.
  • a polyimide resin synthesized from a dianhydride and a diamine was dissolved in dimethylformamide, and an appropriate amount of triphenylphosphine was added as a curing accelerator to prepare a gum solution.
  • An ePTFE film having a thickness of 40 ⁇ m and a porosity of 92% was impregnated with the above glue, and then baked in an oven at 155 ° C to remove the solvent dimethylformamide to prepare a prepreg having a thickness of 50 ⁇ m.
  • the obtained high-frequency circuit substrate was tested to have a dielectric constant of 3.32 (10 GHz) and a dielectric loss tangent of 0.006 (10 GHz).
  • the above examples and comparative examples refer to the IPC4101 standard for the detection of copper clad laminates.
  • the dielectric properties are tested by the SPDR (splite post dielectric resonator) method.
  • the test conditions are A state, 10 GHz.
  • the thickness of the prepared prepreg can be adjusted without cracks, and the obtained high-frequency circuit substrate material has a low dielectric constant and dielectric loss angle, and high frequency performance is good.
  • the woven fiber is not used as the reinforcing material, the uniformity inside the substrate is good, and there is no difference in the dielectric constant in the X/Y direction.
  • the dielectric loss tangent ratio of the resulting circuit substrate is made of a thermoplastic fluoropolymer resin and a porous ePTFE.
  • the circuit board used in conjunction with the film has a much larger dielectric constant. Therefore, the circuit board used in combination with the thermoplastic fluoropolymer resin and the porous gap ePTFE film has more excellent high-frequency performance and is more effective in signal transmission of high-frequency circuits.
  • the circuit board of the present invention has more excellent dielectric properties than a general copper foil substrate, i.e., has a low dielectric constant and dielectric loss tangent, and has high frequency performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

复合材料、 用其制作的高频电路基板及其制作方法 技术领域
本发明涉及复合材料技术领域, 尤其涉及一种复合材料、 用其制作的 高频电路基板及其制作方法。 背景技术
近年来, 随着信息通讯设备高性能化、 高功能化以及网络化的发展, 为了高速传输及处理大容量信息, 操作信号趋向于高频化, 电子产品的使 用频率持续走高, 要求基板材料的介电常数越来越低, 介电损耗越来越 小, 而且要求基板介电常数的均匀性要好。
目前高频电路基板使用低介电常数的树脂来获得良好的高频性能, 这 些低介电常数的树脂包括有由聚苯醚、 氰酸酯、 含有碳 -碳不饱和双键的只 由碳氢元素构成的热固性树脂、 PTFE 等几种树脂。 覆铜板一般使用玻璃 纤维布作为增强材料。 但是玻璃纤维布的介电常数最低只可以做到 3.7(Q 玻璃), 受玻璃纤维布介电常数大的影响, 除 PTFE外, 其它树脂制作的覆 铜板的介电常数很难降低。
另一方面, 在目前高频电路基板中, 因使用编织材料做增强材料(如 玻璃纤维布) , 编织纤维布因编织的原因以及编织纤维交叉部分的节点存 在, 使得电路板中的介电常数在平面的 X、 Y方向的不是各向同性, 存在 X、 Y 方向的介电常数差异。 这样高频信号在高频电路基板中传输时, 因 在 X、 Y 方向的介电常数的不同产生信号的衰减, 影响信号传输的稳定 性。
美国专利 US6218015采用两种聚四氟乙烯树脂配合并混合填料浇铸成 薄膜后进行电路基板的制作。 这种方法制作的电路材料因整板采用热塑性 聚四氟乙烯树脂, 介电性能优异, X、 Y 方向的介电常数也不存在差异, 但这种浇注方法制作较厚的薄膜时容易产生裂纹, 成品率不高; 特别是在 需要制作厚度较大的电路板时, 需要许多层薄膜叠加在一起制成, 生产效 率不高。
美国专利 US4772509采用多孔隙的膨胀聚四氟乙烯薄膜浸渍聚酰亚胺 制作成半固化片, 然后进行电路基板的制作。 美国专利 US5652055采用多 孔隙的膨胀聚四氟乙烯薄膜浸渍热固性树脂制作电路基板。 但是这两个专 利因采用介质损耗角正切大(介质损耗角正切大于 0.01 ) 的热固性树脂进 行电路基板的制作, 其介电性能要比专利 US6218015采用聚四氟乙烯树脂 制作的电路基板介电性能差。 发明内容
本发明的目的在于提供一种复合材料, 采用多孔隙的 ePTFE薄膜为载 体材料, 提供预浸料及高频电路基板介电常数在 X、 Y方向各向同性, 能 够降低高频电路基板的介电常数和介质损耗角正切。
本发明的另一目的在于提供使用上述复合材料制作的高频电路基板, 具有介电常数在 X、 Y方向各向同性, 及高频介电性能, 在高频电路的信 号传输中效果更好。
本发明的再一目的在于提供使用上述复合材料制作的高频电路基板的 制作方法, 采用多孔隙的 ePTFE薄膜为载体材料, 具有良好的成型性, 不 产生裂纹, 工艺操作筒便。
为实现上述目的, 本发明提供一种复合材料, 其组成物包括:
( 1 )具有低介电损耗的氟聚合物分散乳液;
( 2 ) 多孔隙的膨胀聚四氟乙烯薄膜(ePTFE薄膜) ; 及
( 3 )粉末填料。
所述具有低介电损耗的氟聚合物为聚四氟乙烯(PTFE ) 、 四氟乙烯- 全氟烷氧基乙烯基醚共聚物 (PFA ) 、 及全氟乙烯丙烯共聚物 (FEP ) 中 的一种或多种。
所述多孔隙的膨胀聚四氟乙烯薄膜由聚四氟乙烯树脂制成, 该聚四氟 乙烯树脂不添加或添加有陶瓷填料。
所述多孔隙的膨胀聚四氟乙烯薄膜是通过膨胀拉伸方法制作而成, 其 孔径为 1~100 μ ιη, 孔隙率为 30~98% , 厚度为 0.5~300 μ m。
所述粉末填料含量占具有低介电损耗的氟聚合物分散乳液和粉末填料 总量的 0~70体积%; 粉末填料的粒径中度值为 0.01-15 μ ιη, 最大粒径不 超过 100 μ m。
所述粉末填料选自结晶型二氧化硅、 熔融型的二氧化硅、 球型二氧化 硅、 氧化铝、 钛酸锶、 钛酸钡、 钛酸锶钡、 氮化硼、 氮化铝、 碳化硅、 二 氧化钛、 玻璃粉、 玻璃短切纤维、 滑石粉、 云母粉、 碳黑、 碳纳米管、 金 属粉、 及聚^ £醚中的一种或多种。
还包括(4 )助剂, 该助剂包括有乳化剂及分散剂。
本发明还提供一种高频电路基板, 包括: 数张相互叠合的预浸料及分 别压覆于其两侧的金属箔, 该数张预浸料均由所述复合材料制作。 所述金 属箔, 为铜、 黄铜、 铝、 镍、 或这些金属的合金或复合金属箔。
同时, 本发明提供一种上述高频电路基板的制作方法, 包括下述步 骤:
步骤 1、 称取复合材料的组成物: (1 )具有低介电损耗的氟聚合物分 散乳液; ( 2 ) 多孔隙的膨胀聚四氟乙烯薄膜; ( 3 )粉末填料;
步骤 2、 将具有低介电损耗的氟聚合物分散乳液, 用水稀释至适当的 粘度, 然后用氨水调节 PH值至 8-12, 将粉末填料和助剂混合, 加入到上 述调节好的分散乳液中, 搅拌混合, 使粉末填料均一的分散在其中, 制得 胶液;
步骤 3、 用上述胶液浸渍多孔隙的膨胀聚四氟乙烯薄膜, 并控制到合 适的厚度, 然后于 80~300°C烘烤去除水分及助剂, 形成预浸料;
步骤 4、 将上述的预浸料数张相叠合, 上下各压覆一张金属箔, 放进 压机进行热压制得所述高频电路基板, 热压温度为 350~400°C , 热压压力 为 25~100 Kg/cm2
所述胶液的固体含量为 30~80%; 所述胶液在多孔隙的膨胀聚四氟乙 烯薄膜表面上形成氟聚合物树脂层, 其厚度控制在 20微米以下。
本发明的有益效果: 首先, 采用介电性能优异的多孔隙的 ePTFE薄膜 作为载体材料, 能够降低复合材料及高频电路基板的介电常数和介质损耗 角正切;
其次, 多孔隙的 ePTFE薄膜平整度、 均匀性好, 用其作为载体材料, 制作成的高频电路基板及预浸料具有介电常数在 X、 Y方向各向同性; 再次, 预浸料的厚度可以根据采用不同厚度的多孔隙的 ePTFE薄膜的 厚度调节, 避免了现有技术(如 US6218015专利) 中使用浇注法生产厚膜 产生的裂纹问题。 具体实施方式
本发明提供一种复合材料, 包括: (1 ) 具有低介电损耗的氟聚合物 分散乳液; ( 2 ) 多孔隙的膨胀聚四氟乙烯薄膜( ePTFE 薄膜) ; ( 3 )粉 末填料。
作为本发明的具有低介电损耗的氟聚合物分散乳液的实例, 包括聚四 氟乙烯, 和含氟的共聚物等, 可以列举的有聚四氟乙烯 (PTFE ) 分散乳 液、 四氟乙烯一全氟烷氧基乙烯基醚共聚物 (PFA ) 分散乳液、 全氟乙烯 丙烯共聚物 (FEP ) 分散乳液, 上述分散乳液可一种或多种混合使用。 本 发明所述的分散乳液是以水为介质, 将 25%~60%的氟聚合物微粒分散在 水里, 通过非离子表面活性剂使之处于稳定分散状态, 形成一种乳液。 分 散乳液中氟聚合物微粒粒径在 0.02~0.5微米范围内, 以方便后面的浸渍。
本发明所述的多孔隙的 ePTFE薄膜, 这种薄膜可以是通过膨胀拉伸方 法制作而成, 在其中有大量的开口的孔隙, 孔隙的大小以可方便树脂和填 料进入为好。 根据本发明, 所述的多孔隙的 ePTFE薄膜选用孔径为 1~100 μ ιη、 孔隙率为 30~98%、 厚度 0.5~300 μ m 的 ePTFE薄膜, 优选孔径为 3~50 μ ιη、 孔隙率为 50~98%、 厚度 30~300 μ m的 ePTFE薄膜。 该 ePTFE 薄膜因内部有大量孔隙存在, 在浸渍时, 可以方便分散乳液、 粉末填料等 材料的进入。
本发明所述的多孔隙的 ePTFE薄膜, 可以是纯 PTFE树脂 (聚四氟乙 烯树脂)制成的, 也可以是添加了陶瓷填料的 PTFE树脂制成。 根据本发 明, 所述的多孔隙的 ePTFE薄膜表面以经过一定的处理为好, 优选等离子 体处理。
本发明的复合材料还可加入粉末填料, 粉末填料起着改善尺寸稳定 性、 降低 CTE等目的。 所述粉末填料的含量占具有低介电损耗的氟聚合物 和粉末填料总量的 0~70 Vol % (体积百分比) , 优选 30~55Vol%。 粉末填 料包括有结晶型二氧化硅、 熔融型的二氧化硅、 球型二氧化硅、 钛酸锶、 钛酸钡、 钛酸锶钡、 氮化硼、 氮化铝、 碳化硅、 氧化铝、 二氧化钛、 玻璃 粉、 玻璃短切纤维、 滑石粉、 云母粉、 碳黑、 碳纳米管、 金属粉、 聚苯硫 醚等, 以上填料可以单独使用或混合使用, 其中, 最佳填料是熔融型的二 氧化硅或二氧化钛。 为方便填料可以进入到 ePTFE薄膜的孔隙中, 填料的 粒径中度值为 0.01~15 μ ιη, 最大粒径不超过 ΙΟΟ μ ιη, 优选填料的粒径中 度值为 0.5~10 μ ιη。 为达到更好的性能, 粉末填料的表面可以经过处理, 如使用偶联剂进行处理等。 还包括助剂, 助剂包括有乳化剂及分散剂等。
使用上述复合材料制作高频电路基板的方法, 包括下述步骤: 步骤 1、 称取复合材料的组成物: (1 )具有低介电损耗的氟聚合物分 散乳液; ( 2 ) 多孔隙的膨胀聚四氟乙烯薄膜; ( 3 )粉末填料。
步骤 2、 将具有低介电损耗的氟聚合物分散乳液, 用水稀释至适当的 粘度, 然后用氨水调节 ΡΗ值至 8-12, 将粉末填料和助剂混合, 加入到上 述调节好的分散乳液中, 搅拌混合, 使粉末填料均一的分散在其中, 制得 胶液;
步骤 3、 用上述胶液浸渍多孔隙的 ePTFE 薄膜, 并控制到合适的厚 度, 然后在 80~300°C烘烤除去水分、 助剂等形成预浸料。 所述胶液在多孔 隙的膨胀聚四氟乙烯薄膜表面上形成氟聚合物树脂层, 预浸料的厚度通过 多孔隙的 ePTFE薄膜, 以及多孔隙的 ePTFE薄膜上的氟聚合物树脂层的 厚度共同决定。 为了获取不同厚度的预浸料, 可以采用不同厚度的多孔隙 的 ePTFE薄膜, 在浸渍由所述氟聚合物分散乳液等形成的胶液后, 在胶液 填充满 ePTFE薄膜孔隙后, 控制 ePTFE薄膜上的树脂层厚度在 20微米以 下, 优选控制在 10微米以下, 这样可以保证制作更厚(大于 250微米) 的预浸料而避免多孔隙的 ePTFE薄膜上浸渍的氟聚合物树脂层产生裂纹。
所述多孔隙的 ePTFE薄膜上的氟聚合物树脂层厚度通过氟聚合物分散 乳液的树脂及填料的固体含量来控制。 树脂混合物 (即胶液) 的固体含量 可调节在 30~80%之间, 优选 35~50%。
浸渍操作可以采用覆铜板制作的通用浸渍上胶机进行, 上胶机烘箱的 温度可以分段设定, 烘箱采用的温度范围为 80~300°C , 以去除水分以及乳 化剂、 分散剂等。
步骤 4、 将上述的预浸料数张相叠合, 上下各压覆一张金属箔, 放进 压机进行热压制得所述高频电路基板, 热压温度为 350~400°C , 热压压力 为 25~100 Kg/cm2。 所述金属箔, 为铜、 黄铜、 铝、 镍、 或这些金属的合 金或复合金属箔。
所制作的高频电路基板, 包括: 数张相互叠合的预浸料及分别压覆于 其两侧的金属箔, 该数张预浸料均由所述复合材料制作。
针对上述制成的高频电路基板的介电性能, 即介电常数和介质损耗角 正切、 高频性能及耐热性能, 如下述实施例进一步给予详加说明与描述。
实施例 1
将固含量为 60 %的聚四氟乙烯分散乳液用去离子水调节粘度为 20mPa-s ( 20°C ) , 然后用氨水调节 ΡΗ值至 11 , 搅拌混合均匀。
用上述调节好的聚四氟乙烯分散乳液浸渍厚度为 40微米、 孔隙率为 92%的 ePTFE薄膜, 然后送入烘箱于 280°C烘烤, 除去水分和助剂 (乳化 剂、 分散剂) , 制作成预浸料, 预浸料厚度为 51 微米, 该制成的预浸料 没有裂紋。
取 5 张上述的预浸料相叠合, 上下各压覆一张铜箔, 放进压机进行热 压制得所述高频电路基板, 热压温度为 350 °C ~400 °C , 热压压力为 70Kg/cm2。 测试该制得的高频电路基板, 介电常数为 2.08 ( 10GHZ ) , 介 质损耗角正切为 0.0002 ( 10GHZ ) 。
实施例 2
将固含量为 60 %的聚四氟乙烯分散乳液用去离子水调节粘度为 15mPa.s ( 20°C ) , 然后用氨水调节 ΡΗ值至 11 左右, 搅拌混合均匀。 将 熔融型的二氧化硅粉末(硅 粉和 PTFE的重量比为 1: 1 ) 加入以上乳液 中, 搅拌使二氧化硅均一的分散在乳液中, 制得可浸渍的胶液。
用上述调节好的胶液浸渍厚度为 300微米、 孔隙率为 95%的 ePTFE薄 膜, 然后送入烘箱于 280°C烘烤, 除去水分和助剂 (乳化剂、 分散剂) , 制作成预浸料, 该制成的预浸料厚度为 308微米, 没有裂纹。
取上述的预浸料 1 张, 上下各压覆一张铜箔, 放进压机进行热压制得 所述高频电路基板, 温度为 380°C , 压力为 70Kg/cm2。 测试该制得的高频 电路基板, 介电常数为 2.53 ( 10GHZ ) , 介质损耗角正切为 0.0003 ( 10GHZ ) 。
实施例 3
将固含量为 60 %的聚四氟乙烯分散乳液用去离子水调节粘度为 15mPa.s ( 20°C ) , 然后用氨水调节 ΡΗ值至 11 左右, 搅拌混合均匀。 将 熔融型的二氧化硅粉末(硅 粉和 PTFE的重量比为 1: 1 ) 加入以上乳液 中, 搅拌使二氧化硅均一的分散在乳液中, 制得可浸渍的胶液。
用上述调节好的胶液浸渍厚度为 120微米、 孔隙率为 95%的填充有熔 融二氧化硅填料的 ePTFE 薄膜 (薄膜中熔融二氧化硅填料的含量为 50% ) , 然后送入烘箱于 280°C烘烤, 除去水分和助剂 (乳化剂、 分散 剂) , 制作成预浸料, 该制成的预浸料厚度为 128微米, 没有裂纹。
取上述的预浸料 1 张, 上下各压覆一张铜箔, 放进压机进行热压制得 所述高频电路基板, 温度为 380°C , 压力为 100Kg/cm2。 测试该制得的高 频电路基板, 介电常数为 2.65 ( 10GHZ ) , 介质损耗角正切为 0.0003 ( 10GHZ ) 。
比较例 1
将双酚 A环氧树脂 (环氧树脂 A ) 、 溴化环氧树脂 (环氧树脂 B )溶 解在二甲基甲酰胺中, 并添加相对于环氧树脂 0.7摩尔比胺当量的双氰胺 作固化剂和适量 2-MI ( 2-甲基咪唑)做促进剂, 然后在室温下混合得到胶 液。
用以上胶液浸渍厚度为 40微米、 孔隙率为 92%的 ePTFE薄膜, 然后 送入烘箱于 155°C烘烤, 除去溶剂二甲基甲酰胺, 制作成厚度为 54微米的 预浸料。
取 5 张上述的预浸料相叠合, 上下各压覆一张铜箔, 放进压机进行热 压制得所述高频电路基板, 固化温度为 177°C , 固化压力为 50Kg/cm2, 固 化时间为 90 分钟。 测试该制得的高频电路基板, 介电常数为 3.54 ( 10GHZ ) , 介质损耗角正切为 0.008 ( 10GHZ ) 。 比较例 2
将用二酐和二胺合成的聚酰亚胺树脂溶解在二甲基甲酰胺中, 并加入 适量的三苯基膦作为固化促进剂, 制作成胶液。
用以上胶液浸渍厚度为 40微米、 孔隙率为 92%的 ePTFE薄膜, 然后 送入烘箱于 155°C烘烤, 除去溶剂二甲基甲酰胺, 制作成厚度为 50微米的 预浸料。
取 5 张上述的预浸料相叠合, 上下各压覆一张铜箔, 放进压机进行热 压制得所述高频电路基板, 固化温度为 260°C , 固化压力为 50Kg/cm2, 固 化时间为 120 分钟。 测试该制得的高频电路基板, 介电常数为 3.32 ( 10GHZ ) , 介质损耗角正切为 0.006 ( 10GHZ ) 。
以上实施例和比较例皆参照 IPC4101 标准对覆铜板进行检测, 介电性 能的检测方法采用 SPDR ( splite post dielectric resonator ) 法进行测试, 测 试条件为 A态, 10GHz。
从以上实施例 1、 2、 3 可以看出, 所制作的预浸料厚度可以调节, 且 没有裂纹, 制得的高频电路基板材料介电常数和介质损耗角低, 高频性能 好。 另外, 因没有采用编织纤维做增强材料, 基板内部的均匀性很好, 在 X/Y 方向介电常数不存在差异。 从比较例可以看出, 因为使用了介质损耗 角正切大的热固性树脂和多孔隙的 ePTFE薄膜配合使用, 制成的电路基板 的介质损耗角正切比采用热塑性的氟聚合物树脂和多孔隙的 ePTFE薄膜配 合使用的电路基板的介电常数大很多。 因此热塑性的氟聚合物树脂和多孔 隙的 ePTFE薄膜配合使用的电路基板具有更加优异的高频性能, 在高频电 路的信号传输中效果更好。
如上所述, 与一般的铜箔基板相比, 本发明的电路基板拥有更加优异 的介电性能, 即具有较低的介电常数和介质损耗角正切, 高频性能很好。
以上实施例, 并非对本发明的组合物的含量作任何限制, 凡是依据本 发明的技术实质或组合物成重量份或含量对以上实施例所作的任何细微修 改、 等同变化与修饰, 均仍属于本发明技术方案的范围内。

Claims

权 利 要 求
1、 一种复合材料, 其组成物包括:
( 1 )具有低介电损耗的氟聚合物分散乳液;
( 2 ) 多孔隙的膨胀聚四氟乙烯薄膜; 及
( 3 )粉末填料。
2、 如权利要求 1 所述的复合材料, 其中, 所述具有低介电损耗的氟 聚合物为聚四氟乙烯、 四氟乙烯-全氟烷氧基乙婦基醚共聚物、 及全氟乙烯 丙烯共聚物中的一种或多种。
3、 如权利要求 1 所述的复合材料, 其中, 所述多孔隙的膨胀聚四氟 乙烯薄膜由聚四氟乙烯树脂制成, 该聚四氟乙烯树脂不添加或添加有陶瓷 填料。
4、 如权利要求 1 所述的复合材料, 其中, 所述多孔隙的膨胀聚四氟 乙烯薄膜是通过膨胀拉伸方法制作而成, 其孔径为 1~100 μ ιη, 孔隙率为 30~98%, 厚度为 0.5~300 μ ιη。
5、 如权利要求 1 所述的复合材料, 其中, 所述粉末填料含量占具有 低介电损耗的氟聚合物分散乳液和粉末填料总量的 0~70体积%; 粉末填料 的粒径中度值为 0.01-15 μ ιη, 最大粒径不超过 100 μ m。
6、 如权利要求 1 或 5 所述的复合材料, 其中, 所述粉末填料选自结 晶型二氧化硅、 熔融型的二氧化硅、 球型二氧化硅、 氧化铝、 钛酸锶、 钛 酸钡、 钛酸锶钡、 氮化硼、 氮化铝、 碳化硅、 二氧化钛、 玻璃粉、 玻璃短 切纤维、 滑石粉、 云母粉、 碳黑、 碳纳米管、 金属粉、 及聚苯硫醚中的一 种或多种。
7、 如权利要求 1 所述的复合材料, 其中, 还包括(4 )助剂, 该助剂 包括有乳化剂及分散剂。
8、 一种使用如权利要求 1 所述的复合材料制作的高频电路基板, 包 括: 数张相互叠合的预浸料及分别压覆于其两侧的金属箔, 其中, 该数张 预浸料均由所述复合材料制作。
9、 一种制作如权利要求 8 所述的高频电路基板的方法, 包括下述步 骤:
步骤 1、 称取复合材料的组成物: (1 )具有低介电损耗的氟聚合物分 散乳液; ( 2 ) 多孔隙的膨胀聚四氟乙烯薄膜; ( 3 )粉末填料;
步骤 2、 将具有低介电损耗的氟聚合物分散乳液, 用水稀释至适当的 粘度, 然后用氨水调节 PH值至 8-12, 将粉末填料和助剂混合, 加入到上 述调节好的分散乳液中, 搅拌混合, 使粉末填料均一的分散在其中, 制得 胶液;
步骤 3、 用上述胶液浸渍多孔隙的膨胀聚四氟乙烯薄膜, 并控制到合 适的厚度, 然后于 80~300°C烘烤去除水分及助剂, 形成预浸料;
步骤 4、 将上述的预浸料数张相叠合, 上下各压覆一张金属箔, 放进 压机进行热压制得所述高频电路基板, 热压温度为 350~400°C , 热压压力 为 25~100 Kg/cm2
10、 如权利要求 9所述的高频电路基板的制作方法, 其中, 所述胶液 的固体含量为 30~80%; 所述胶液在多孔隙的膨胀聚四氟乙烯薄膜表面上 形成氟聚合物树脂层, 其厚度控制在 20微米以下。
PCT/CN2011/079650 2011-05-06 2011-09-14 复合材料、用其制作的高频电路基板及其制作方法 WO2012151820A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20110865413 EP2706088A4 (en) 2011-05-06 2011-09-14 COMPOSITE MATERIAL, HIGH FREQUENCY CIRCUIT SUPPORT CARD CONSISTING OF SAID MATERIAL AND PRODUCTION METHOD THEREOF
US14/115,748 US10194528B2 (en) 2011-05-06 2011-09-14 Composite material, high-frequency circuit baseboard made therefrom and production method thereof
KR1020137029305A KR101575944B1 (ko) 2011-05-06 2011-09-14 복합재료, 이를 이용하여 제조된 고주파 회로기판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110117172.3 2011-05-06
CN2011101171723A CN102260378B (zh) 2011-05-06 2011-05-06 复合材料、用其制作的高频电路基板及其制作方法

Publications (1)

Publication Number Publication Date
WO2012151820A1 true WO2012151820A1 (zh) 2012-11-15

Family

ID=45007233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079650 WO2012151820A1 (zh) 2011-05-06 2011-09-14 复合材料、用其制作的高频电路基板及其制作方法

Country Status (5)

Country Link
US (1) US10194528B2 (zh)
EP (1) EP2706088A4 (zh)
KR (1) KR101575944B1 (zh)
CN (1) CN102260378B (zh)
WO (1) WO2012151820A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114900964A (zh) * 2022-05-13 2022-08-12 泰州市博泰电子有限公司 一种ptfe高频金属复合电路板生产加工方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102490413B (zh) * 2011-12-16 2014-07-16 广东生益科技股份有限公司 Ptfe覆铜板的制作方法
CN103102627B (zh) * 2013-01-23 2015-09-16 广东生益科技股份有限公司 一种高填料含量ptfe基材、制备方法及其用途
CN104300227A (zh) * 2014-09-25 2015-01-21 东南大学 多波束馈电结构
CN105347788B (zh) * 2015-11-13 2018-09-21 南京工业大学 低介电损耗的微波复合介质材料及制备方法
CN106928599B (zh) * 2015-12-30 2019-07-26 广东生益科技股份有限公司 一种含填料的聚四氟乙烯复合材料、片材以及含有它的电路基板
CN105898984A (zh) * 2016-05-04 2016-08-24 江苏富仕德科技发展有限公司 一种聚四氟乙烯玻璃纤维复合材料基板的生产工艺
CN105904806B (zh) * 2016-05-04 2018-05-04 江苏富仕德科技发展有限公司 覆铜板用改性ptfe玻璃纤维布及其制备方法
CN105820481A (zh) * 2016-05-04 2016-08-03 江苏富仕德科技发展有限公司 一种氟化硅酸盐纤维电子毡及其制备方法
CN106188998A (zh) * 2016-07-12 2016-12-07 刘世超 一种ptfe介质基板高频覆铜板
CN106313840B (zh) * 2016-08-16 2018-04-13 中国电子科技集团公司第三十八研究所 同时使三轴保持低热膨胀系数的微波覆铜板的制备方法
KR102346037B1 (ko) * 2017-04-04 2021-12-31 더블유.엘.고어 앤드 어소시에이츠 게엠베하 강화된 엘라스토머 및 통합된 전극을 갖는 유전체 복합재
JP7234921B2 (ja) * 2017-05-18 2023-03-08 Agc株式会社 熱プレス積層体、および、熱プレス積層体の製造方法
CN107172821A (zh) * 2017-06-22 2017-09-15 庐江县典扬电子材料有限公司 一种2.2≤Dk<6.5覆铜板制作方法
CN107172820A (zh) * 2017-06-22 2017-09-15 庐江县典扬电子材料有限公司 采用离子注入电镀方式制作2.2≤Dk<6.5覆铜板的方法
CN107278061A (zh) * 2017-06-22 2017-10-20 庐江县典扬电子材料有限公司 一种2.2≤Dk<6.5的HDI板制作方法
CN107382291A (zh) * 2017-06-22 2017-11-24 庐江县典扬电子材料有限公司 2.2≤Dk<6.5覆铜板基材的制作方法
CN107172819A (zh) * 2017-06-22 2017-09-15 庐江县典扬电子材料有限公司 采用离子注入和电镀方式制作高频柔性印刷线路板的方法
CN107379678A (zh) * 2017-06-29 2017-11-24 安徽升鸿电子有限公司 采用真空热压方式制作高频挠性覆铜板
CN107493653A (zh) * 2017-06-29 2017-12-19 安徽升鸿电子有限公司 采用车削离子注入电镀方式制作Dk>10高频FPC
CN107311517A (zh) * 2017-06-29 2017-11-03 安徽升鸿电子有限公司 采用车削方式制作Dk>10的覆铜板基材的方法
CN107415118B (zh) * 2017-09-11 2019-07-16 苏州大学 一种三层结构树脂基复合材料及其制备方法
CN109677059A (zh) * 2017-10-18 2019-04-26 泰州市旺灵绝缘材料厂 一种宽介电常数新型聚四氟乙烯玻璃布覆铜箔板及其制备方法
CN109677060A (zh) * 2017-10-18 2019-04-26 泰州市旺灵绝缘材料厂 一种宽介电常数绝缘介质层覆铜箔板及其制备方法
US20210198158A1 (en) * 2017-10-27 2021-07-01 Corning Incorporated Polymer and porous inorganic composite article and methods thereof
CN109912908B (zh) * 2017-12-13 2021-05-18 财团法人工业技术研究院 基板组合物及由其所制备的基板
CN110228239B (zh) * 2019-05-22 2020-08-18 华南理工大学 一种低介电聚全氟乙丙烯覆铜板及其制备方法
US11258078B2 (en) * 2019-08-09 2022-02-22 Hamilton Sundstrand Corporation Conductor assembly
CN110978687A (zh) * 2019-11-26 2020-04-10 南京大学 一种ptfe基高频微波覆铜板的制备方法
CN111154206A (zh) * 2020-02-17 2020-05-15 武汉理工大学 改性ptfe复合介质材料、制备方法及其用途
KR20220162146A (ko) * 2020-03-27 2022-12-07 로저스코포레이션 이축-배향된 폴리테트라플루오로에틸렌 강화층을 포함하는 가요성 유전체 물질
CN111548589A (zh) * 2020-06-11 2020-08-18 四川大学 一种高填充量聚四氟乙烯复合薄膜及其制备方法
TW202206286A (zh) 2020-07-28 2022-02-16 美商聖高拜塑膠製品公司 介電基板及其形成方法
CN112157975B (zh) * 2020-09-18 2023-03-24 江苏中际信通讯材料有限公司 一种用于超低吸水率覆铜板的聚四氟乙烯层的制备方法
CN112143145B (zh) * 2020-09-28 2022-04-26 深圳市德诚旺科技有限公司 一种低介电损耗型聚四氟乙烯微波板材及其制备方法
CN112551945A (zh) * 2020-12-09 2021-03-26 武汉理工大学 一种改性ptfe高热导率低介电常数复合介质材料及其制备方法
TWI823206B (zh) 2020-12-16 2023-11-21 美商聖高拜塑膠製品公司 介電基板及其製造方法
CN112677617B (zh) * 2020-12-18 2022-04-01 浙江巨化新材料研究院有限公司 一种挠性覆铜板的制备方法
CN115594512B (zh) * 2021-07-08 2023-05-30 清华大学 一种高频微波用ptfe-陶瓷浆料及其烧结膜及它们的制备方法与应用
CN113799419A (zh) * 2021-09-13 2021-12-17 贵溪奥泰铜业有限公司 一种覆铜板的生产方法
CN114015092A (zh) * 2021-11-18 2022-02-08 佛山(华南)新材料研究院 一种复合介质薄膜的制备方法及其应用
CN114434901B (zh) * 2021-12-13 2023-04-04 华为技术有限公司 一种覆铜板及其制备方法
CN114479324A (zh) * 2022-03-08 2022-05-13 山东森荣新材料股份有限公司 一种高频覆铜板用ptfe保护膜及其制备工艺
CN114591580B (zh) * 2022-03-30 2023-05-05 常州中英科技股份有限公司 一种含氟树脂混合物,半固化片,高导热高频覆铜板
CN115302897A (zh) * 2022-07-21 2022-11-08 郑州大学 一种低介电常数和低介电损耗的柔性覆铜板及其制备方法和应用
CN115433419B (zh) * 2022-09-30 2023-12-15 浙江华正新材料股份有限公司 树脂胶液、半固化片、电路基板以及印制电路板
CN115784744A (zh) * 2022-11-29 2023-03-14 天津氟膜新材料有限公司 一种高频通讯用高介电合金复合膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85102225A (zh) * 1985-04-01 1986-09-24 中国科学院长春应用化学研究所 薄型防水气体扩散电极的制造方法
US4772509A (en) 1987-04-13 1988-09-20 Japan Gore-Tex, Inc. Printed circuit board base material
US5652055A (en) 1994-07-20 1997-07-29 W. L. Gore & Associates, Inc. Matched low dielectric constant, dimensionally stable adhesive sheet
CN1203610A (zh) * 1995-12-01 1998-12-30 W·L·戈尔有限公司 含填料的微孔性聚四氟乙烯制品
US6218015B1 (en) 1998-02-13 2001-04-17 World Properties, Inc. Casting mixtures comprising granular and dispersion fluoropolymers
CN101039546A (zh) * 2007-03-16 2007-09-19 广东生益科技股份有限公司 无铅兼容高频覆铜板及其制备方法
US20080234811A1 (en) * 2006-04-28 2008-09-25 Kitching Kathryn J WETTABLE ePTFE MEDICAL DEVICES

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127479A (en) * 1976-04-20 1977-10-26 Agency Of Ind Science & Technol Chemical resistant diaphragm and its preparation
JPS54141156A (en) * 1978-04-25 1979-11-02 Sumitomo Electric Ind Ltd Electrochromic display device
US4210697A (en) * 1978-09-15 1980-07-01 Pall Corporation Process for preparing hydrophobic porous fibrous sheet material of high strength and porosity and product
US4716074A (en) * 1986-02-10 1987-12-29 Pall Corporation Porous fibrous fluorocarbon structures
JPH0246061Y2 (zh) * 1986-03-17 1990-12-05
DE3785487T2 (de) * 1986-06-02 1993-07-29 Japan Gore Tex Inc Verfahren zur herstellung von traegern fuer gedruckte schaltungen.
JPH01225539A (ja) * 1988-03-04 1989-09-08 Junkosha Co Ltd 積層板
US4847146A (en) * 1988-03-21 1989-07-11 Hughes Aircraft Company Process for fabricating compliant layer board with selectively isolated solder pads
JPH0254602A (ja) * 1988-08-19 1990-02-23 Junkosha Co Ltd 高周波伝送回路
US4996097A (en) * 1989-03-16 1991-02-26 W. L. Gore & Associates, Inc. High capacitance laminates
JPH0391544A (ja) * 1989-09-01 1991-04-17 Junkosha Co Ltd 四フッ化エチレン樹脂多孔質体
GB2262101B (en) * 1990-04-27 1995-01-11 Gore & Ass Electrical insulating material
US5264276A (en) * 1992-04-06 1993-11-23 W. L. Gore & Associates, Inc. Chemically protective laminate
JPH0722741A (ja) * 1993-07-01 1995-01-24 Japan Gore Tex Inc カバーレイフィルム及びカバーレイフィルム被覆回路基板
US5449427A (en) * 1994-05-23 1995-09-12 General Electric Company Processing low dielectric constant materials for high speed electronics
US5753358A (en) * 1994-08-25 1998-05-19 W. L. Gore & Associates, Inc. Adhisive-filler polymer film composite
US5879794A (en) * 1994-08-25 1999-03-09 W. L. Gore & Associates, Inc. Adhesive-filler film composite
US5538756A (en) * 1994-09-23 1996-07-23 W. L. Gore & Associates High capacitance sheet adhesives and process for making the same
USRE37701E1 (en) * 1994-11-14 2002-05-14 W. L. Gore & Associates, Inc. Integral composite membrane
AU2437297A (en) 1996-04-12 1997-11-07 W.L. Gore & Associates, Inc. Method of fabricating an interconnect structure comprising lamination of a porous dielectric membrane
US5847327A (en) * 1996-11-08 1998-12-08 W.L. Gore & Associates, Inc. Dimensionally stable core for use in high density chip packages
WO1998020528A1 (en) * 1996-11-08 1998-05-14 W.L. Gore & Associates, Inc. METHOD FOR IMPROVING RELIABILITY OF THIN CIRCUIT SUBSTRATES BY INCREASING THE Tg OF THE SUBSTRATE
US5977241A (en) * 1997-02-26 1999-11-02 Integument Technologies, Inc. Polymer and inorganic-organic hybrid composites and methods for making same
CA2234317C (en) * 1997-04-08 2008-06-17 Sumitomo Chemical Co., Ltd. Composite film comprising low-dielectric resin and para-oriented aromatic polyamide
EP1059333B1 (en) * 1998-02-24 2006-10-11 Asahi Glass Company, Limited Aqueous polytetrafluoroethylene dispersion composition
US6676993B2 (en) * 1999-02-12 2004-01-13 Bha Technologies, Inc. Porous membrane structure and method
US6254972B1 (en) * 1999-06-29 2001-07-03 International Business Machines Corporation Semiconductor device having a thermoset-containing dielectric material and methods for fabricating the same
EP1194020A3 (en) * 2000-09-27 2004-03-31 Matsushita Electric Industrial Co., Ltd. Resin board, manufacturing process for resin board, connection medium body, circuit board and manufacturing process for circuit board
JP2002160316A (ja) * 2000-11-27 2002-06-04 Daikin Ind Ltd 電気絶縁板、プリプレグ積層体及びこれらの製造方法
ITMI20011745A1 (it) * 2001-08-09 2003-02-09 Ausimont Spa Processo per impregnare supporti
US6783841B2 (en) * 2001-09-14 2004-08-31 Tonoga, Inc. Low signal loss bonding ply for multilayer circuit boards
TW545092B (en) * 2001-10-25 2003-08-01 Matsushita Electric Ind Co Ltd Prepreg and circuit board and method for manufacturing the same
US20030211264A1 (en) * 2002-05-09 2003-11-13 Farnsworth Ted Ray Expanded polytetrafluoroethylene (ePTFE)-reinforced perfluoroelastomers (FFKM)
JP4455327B2 (ja) * 2002-06-19 2010-04-21 株式会社ササクラ 含フッ素乳化剤の回収方法
US7145221B2 (en) * 2004-03-31 2006-12-05 Endicott Interconnect Technologies, Inc. Low moisture absorptive circuitized substrate, method of making same, electrical assembly utilizing same, and information handling system utilizing same
JP4774675B2 (ja) * 2004-04-07 2011-09-14 ダイキン工業株式会社 変性ポリテトラフルオロエチレン粉末及びテトラフルオロエチレン重合体の製造方法
US8012555B2 (en) * 2004-07-21 2011-09-06 Maztech, Inc. Fluoroplastic composite elastomer
US7648660B2 (en) * 2005-03-24 2010-01-19 E.I. Du Pont De Nemours And Company Continuous coating process for composite membranes
US20080009211A1 (en) * 2006-07-07 2008-01-10 Matthew Raymond Himes Assemblies useful for the preparation of electronic components and methods for making same
US20100272941A1 (en) * 2007-11-15 2010-10-28 Entek Membranes Llc Durable water- and oil- resistant, breathable microporous membrane
DE112009001730T5 (de) * 2008-07-18 2012-11-22 World Properties, Inc. Schaltungsmaterialien, Schaltungslaminate und Herstellungsverfahren hiervon
JP5449739B2 (ja) * 2008-10-17 2014-03-19 日本ゴア株式会社 通気性複合シートの製造方法
CN102227838B (zh) * 2008-11-28 2014-03-12 日产自动车株式会社 固体高分子型燃料电池
TWI410550B (zh) * 2008-12-22 2013-10-01 Saint Gobain Performance Plast 改性的全氟聚合物片材料以及製造它之方法
EP3207953B1 (en) * 2009-10-29 2019-06-12 W.L. Gore & Associates, Inc Syringe stopper coated with expanded ptfe
JP5475625B2 (ja) * 2009-11-26 2014-04-16 日東電工株式会社 Led実装用基板
US20110209812A1 (en) * 2010-03-01 2011-09-01 General Electric Company Method of manufacturing composite article
JP5528250B2 (ja) * 2010-07-30 2014-06-25 日東電工株式会社 配線回路基板の製造方法
CN101973145B (zh) * 2010-08-20 2013-03-20 广东生益科技股份有限公司 埋容材料的制作方法及其制得的埋容材料
JP5878033B2 (ja) * 2012-02-07 2016-03-08 住友電気工業株式会社 フッ素樹脂フィルム製圧電素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85102225A (zh) * 1985-04-01 1986-09-24 中国科学院长春应用化学研究所 薄型防水气体扩散电极的制造方法
US4772509A (en) 1987-04-13 1988-09-20 Japan Gore-Tex, Inc. Printed circuit board base material
US5652055A (en) 1994-07-20 1997-07-29 W. L. Gore & Associates, Inc. Matched low dielectric constant, dimensionally stable adhesive sheet
CN1203610A (zh) * 1995-12-01 1998-12-30 W·L·戈尔有限公司 含填料的微孔性聚四氟乙烯制品
US6218015B1 (en) 1998-02-13 2001-04-17 World Properties, Inc. Casting mixtures comprising granular and dispersion fluoropolymers
US20080234811A1 (en) * 2006-04-28 2008-09-25 Kitching Kathryn J WETTABLE ePTFE MEDICAL DEVICES
CN101039546A (zh) * 2007-03-16 2007-09-19 广东生益科技股份有限公司 无铅兼容高频覆铜板及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2706088A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114900964A (zh) * 2022-05-13 2022-08-12 泰州市博泰电子有限公司 一种ptfe高频金属复合电路板生产加工方法
CN114900964B (zh) * 2022-05-13 2023-10-24 泰州市博泰电子有限公司 一种ptfe高频金属复合电路板生产加工方法

Also Published As

Publication number Publication date
KR20130141690A (ko) 2013-12-26
KR101575944B1 (ko) 2015-12-08
US10194528B2 (en) 2019-01-29
EP2706088A1 (en) 2014-03-12
EP2706088A4 (en) 2015-04-22
CN102260378A (zh) 2011-11-30
US20140057094A1 (en) 2014-02-27
CN102260378B (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2012151820A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
KR102055107B1 (ko) 개선된 열 전도율을 갖는 유전체층
JP6865793B2 (ja) フッ素樹脂組成物及びこれを使用するプリプレグと銅張基板
TWI636885B (zh) 金屬箔積層板的製造方法及其應用
US10889741B2 (en) Fluorocarbon resin composition and prepreg and copper foil substrate using the same
TWI615276B (zh) 可撓性金屬疊層板及彼之製備方法
WO2015180206A1 (zh) 一种热固性树脂夹心预浸体、制备方法及覆铜板
CN109517305B (zh) 一种氟树脂组合物及使用该组合物的预浸体及铜箔基板
TWI766401B (zh) 氟素樹脂預浸材及應用其的電路基板
TWI686293B (zh) 金屬箔積層板及其製法
CN114621543B (zh) 高频半固化片、高频覆铜板及其制备方法
CN115610044B (zh) 一种低损耗ptfe基微波复合介质基板及制备方法
WO2018043682A1 (ja) 配線基板およびその製造方法
CN109467858B (zh) 一种氟树脂组合物及包含其的预浸体
CN114437479B (zh) 一种高频半固化片、高频覆铜板及其制备方法
CN113754974B (zh) 氟树脂组成物、使用该氟树脂组成物所制得的树脂片、积层板及印刷电路板
WO2022259981A1 (ja) 組成物、並びに、金属張積層体及びその製造方法
TWI696666B (zh) 樹脂組合物、印刷電路用預浸片及覆金屬層壓板
CN114536923B (zh) 一种高介电常数的含氟树脂基高导热高频覆铜板
CN116285169A (zh) 一种含氟树脂基树脂组合物及其应用
US20240101485A1 (en) Powder composition and manufacturing method thereof
WO2024128221A1 (ja) 組成物、シート及びその製造方法
WO2024075758A1 (ja) 組成物、フッ素樹脂シート及びその製造方法
CN118240315A (zh) 一种含氟树脂基介电层及其制备方法和应用
JP2024084724A (ja) 組成物、シート及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137029305

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14115748

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011865413

Country of ref document: EP