WO2012132691A1 - 多層樹脂シート、樹脂シート積層体、多層樹脂シート硬化物及びその製造方法、金属箔付き多層樹脂シート、並びに半導体装置 - Google Patents
多層樹脂シート、樹脂シート積層体、多層樹脂シート硬化物及びその製造方法、金属箔付き多層樹脂シート、並びに半導体装置 Download PDFInfo
- Publication number
- WO2012132691A1 WO2012132691A1 PCT/JP2012/054646 JP2012054646W WO2012132691A1 WO 2012132691 A1 WO2012132691 A1 WO 2012132691A1 JP 2012054646 W JP2012054646 W JP 2012054646W WO 2012132691 A1 WO2012132691 A1 WO 2012132691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin sheet
- resin
- filler
- multilayer
- resin composition
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/092—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/06—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J179/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
- C09J179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09J179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/14—Semiconductor wafers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/312—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/078—Adhesive characteristics other than chemical
- H01L2924/07802—Adhesive characteristics other than chemical not being an ohmic electrical conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24372—Particulate matter
- Y10T428/24413—Metal or metal compound
Definitions
- the present invention relates to a multilayer resin sheet, a resin sheet laminate, a cured multilayer resin sheet and a method for producing the same, a multilayer resin sheet with a metal foil, and a semiconductor device.
- heat sinks and heat dissipation fins are indispensable for heat dissipation for stable operation of semiconductor devices used for central processing units of personal computers and motors of electric vehicles.
- materials that can achieve both insulation and thermal conductivity.
- organic materials are widely used for insulating materials such as printed boards on which semiconductor devices are mounted. Although these organic materials have high insulating properties, their thermal conductivity is low and their contribution to heat dissipation from semiconductor devices and the like has not been significant.
- inorganic materials such as inorganic ceramics are sometimes used for heat dissipation of semiconductor devices and the like. Although these inorganic materials have high thermal conductivity, their insulating properties are not sufficient compared to organic materials, and materials that can achieve both high insulating properties and thermal conductivity are required.
- an inorganic filler called a filler having a high thermal conductivity is combined with a resin.
- a cured product composed of a composite system of a general bisphenol A type epoxy resin and an alumina filler is known.
- the conductivity can be achieved (see, for example, JP-A-2008-13759).
- a cured product composed of a composite system of a special epoxy resin, an amine-based curing agent and an alumina filler is known, 9.4 W / mK in the xenon flash method and 10.4 W / m in the temperature wave thermal analysis method. It is supposed that a thermal conductivity of mK can be achieved (see, for example, JP-A-2008-13759).
- thermosetting resin cured product having excellent thermal conductivity
- a thermal conductivity of 6 to 11 W / mK by wave thermal analysis (see, for example, Japanese Patent Application Laid-Open No. 2008-189818).
- the adhesive strength is maintained by providing the second adhesive layer substantially consisting of only the adhesive on at least one surface of the first adhesive layer containing the filler.
- JP 2009-21530 A does not describe the physical properties and evaluation methods of the adhesive layer
- the adhesive layer does not contain a filler, so that the thermal conductivity in the thickness direction of the sheet may be significantly reduced. It is assumed that there is. Further, since a thermoplastic resin is used for the second adhesive layer, it is assumed that the adhesive strength is lowered because the second adhesive layer is not chemically bonded to the metal.
- the present invention provides a multilayer resin sheet, a resin sheet laminate, a multilayer resin sheet cured product, a method for producing the same, and a metal that can form a cured multilayer resin sheet that is excellent in all of thermal conductivity, adhesive strength, and insulation.
- a multilayer resin sheet with a foil and a semiconductor device are provided.
- a resin composition layer including a thermosetting resin and a filler, and an arithmetic average surface roughness Ra of a surface that is disposed on at least one surface of the resin composition layer and does not face the resin composition layer.
- a multilayer resin sheet having an adhesive layer of 1.5 ⁇ m or less.
- the adhesive layer is provided on the surface of the resin composition layer having an arithmetic average surface roughness Ra of 1.5 ⁇ m to 4 ⁇ m, and an average thickness of 6 ⁇ m to 15 ⁇ m.
- ⁇ 4> The multilayer resin sheet according to any one of ⁇ 1> to ⁇ 3>, wherein the resin composition layer contains a filler in an amount of 40% by volume to 85% by volume in the total solid content in the resin composition layer. .
- ⁇ 5> The multilayer resin sheet according to any one of ⁇ 1> to ⁇ 4>, wherein the filler includes a boron nitride filler.
- the multilayer resin sheet according to ⁇ 5> including a boron nitride filler having a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less as the boron nitride filler.
- ⁇ 8> The multilayer resin sheet according to any one of ⁇ 1> to ⁇ 7>, wherein a compression ratio of the multilayer resin sheet is 10% or more.
- the adhesive layer includes at least one resin selected from the group consisting of an epoxy resin containing an acrylic-modified rubber, a modified polyimide resin, and a modified polyamideimide resin, and an alumina filler.
- the multilayer resin sheet according to any one of ⁇ 8>.
- a cured multilayer resin sheet which is a heat-treated product of the multilayer resin sheet according to any one of ⁇ 1> to ⁇ 9>.
- thermosetting resin forms a cured resin having a higher order structure.
- a resin sheet laminate comprising the multilayer resin sheet according to any one of ⁇ 1> to ⁇ 9>, and a metal plate or a heat radiating plate disposed on an adhesive layer of the multilayer resin sheet.
- a cured resin sheet laminate which is a heat-treated product of the resin sheet laminate according to ⁇ 12>.
- ⁇ 14> A step of obtaining a resin sheet laminate by arranging a metal plate or a heat sink on the adhesive layer of the multilayer resin sheet according to any one of ⁇ 1> to ⁇ 9>, and the resin sheet lamination
- a multilayer resin sheet with metal foil comprising the multilayer resin sheet according to any one of ⁇ 1> to ⁇ 9>, and a metal foil disposed on the adhesive layer of the multilayer resin sheet.
- a semiconductor device comprising a semiconductor element and the cured multilayer resin sheet according to ⁇ 10> or ⁇ 11>, which is disposed on the semiconductor element.
- the multilayer resin sheet which can form the multilayer resin sheet hardened
- the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
- a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- the amount of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
- the multilayer resin sheet of the present invention is a resin composition layer containing a thermosetting resin and a filler, and is disposed on at least one surface of the resin composition layer and does not face the resin composition layer (hereinafter referred to as “the resin composition layer”). And an adhesive layer having an arithmetic average surface roughness Ra of 1.5 ⁇ m or less.
- the multilayer resin sheet may have other layers as necessary.
- a multilayer resin sheet in which an adhesive layer having a specific arithmetic average surface roughness is provided on a resin composition layer is superior in adhesion and insulation as compared with a resin sheet having a resin composition layer alone.
- the multilayer resin sheet cured product obtained by curing the resin composition layer of the multilayer resin sheet is excellent in all of thermal conductivity, adhesive strength, and insulation.
- the multilayer resin sheet can be made into a cured product by heat treatment, for example.
- the above can be considered as follows, for example.
- the adhesive layer on the resin composition layer to form a multilayer resin sheet, it is possible to design the resin with more importance on the adhesive strength in the resin design of the adhesive layer. That is, it can be considered that a resin having high adhesive strength can be used for the adhesive layer, and it is not necessary to make a resin design that places importance on thermal conductivity like the resin used for the resin composition layer.
- a resin composition layer is arrange
- the adhesive strength between a resin composition layer and an adhesive material layer improves more. This can be considered to be due to an increase in adhesion due to an anchor effect or an increase in the bonding area.
- the multilayer resin sheet of the present invention has an adhesive layer on at least one surface of the resin composition layer, but may have an adhesive layer on both surfaces of the resin composition layer.
- the adhesive layer may further have a support such as a plastic film on the surface that does not face the resin composition layer.
- you may use the support body which functions as a protective film for the said support body.
- the multilayer resin sheet of the present invention has an adhesive layer whose arithmetic average surface roughness is in a specific range. It can be considered that the adhesive strength between the adhesive layer and the adherend is further improved when the arithmetic average surface roughness is in a specific range.
- the adhesive layer in the multilayer resin sheet of the present invention has a surface arithmetic average surface roughness Ra of 1.5 ⁇ m or less. From the viewpoint of adhesive strength and thermal conductivity, the arithmetic average surface roughness Ra of the surface is preferably 1.3 ⁇ m or less, and more preferably 1.1 ⁇ m or less.
- the arithmetic average surface roughness of the surface of the adhesive layer on the side in contact with the adherend it is possible to form strong adhesion between the adherend and the void dress.
- the arithmetic average surface roughness Ra of the surface of the adhesive layer exceeds 1.5 ⁇ m, the adhesive strength and thermal conductivity may be lowered. This is presumably because if the surface roughness of the adhesive layer is large, voids are likely to enter between the adhesive layer and the adherend, and it is difficult to develop an adhesive force.
- the arithmetic average surface roughness of the surface of the adhesive layer is preferably 0.2 ⁇ m or more, and more preferably 0.4 ⁇ m or more. If the surface roughness becomes too small, the swelling of the surface that occurs during heating may increase.
- the arithmetic average surface roughness Ra of the surface of the adhesive layer is measured using a surface roughness measuring device (for example, a surface roughness measuring machine manufactured by Kosaka Laboratory) at 1 mm / s and a scanning distance of 50 mm. Measured. Specifically, when a protective film is attached to the multilayer resin sheet, the film is removed to expose the surface of the multilayer resin sheet. An arithmetic average surface roughness can be measured by fixing a multilayer resin sheet on a measuring table and dropping a measuring needle thereon.
- a surface roughness measuring device for example, a surface roughness measuring machine manufactured by Kosaka Laboratory
- the average thickness of the adhesive layer provided on the resin composition layer is preferably 6 ⁇ m or more and 15 ⁇ m or less. From the viewpoint of the balance between thermal conductivity and adhesive strength, it is more preferably 6 ⁇ m or more and 13 ⁇ m or less, and particularly preferably 6 ⁇ m or more and 12 ⁇ m or less.
- the arithmetic average surface roughness on the surface of the resin composition layer constituting the multilayer resin sheet on which the adhesive layer is provided is preferably 1.5 ⁇ m or more and 4.0 ⁇ m or less. From the viewpoint of adhesive strength, it is more preferably from 1.7 ⁇ m to 3.5 ⁇ m, and particularly preferably from 2.0 ⁇ m to 3.0 ⁇ m.
- the adhesive strength between the resin composition layer and the adhesive layer is further improved. This can be considered to be due to, for example, an increase in adhesion due to an anchor effect or an increase in the bonding area.
- the arithmetic average surface roughness Ra of the surface of the resin composition layer before the adhesive layer is provided is determined by using a surface roughness measuring device (for example, a surface roughness measuring machine manufactured by Kosaka Laboratory) on the surface of the resin composition layer.
- the measurement condition is 1 mm / s.
- the arithmetic average surface roughness Ra of the surface of the resin composition layer after the adhesive layer is provided is resin-embedded to protect the resin composition layer and polish it to give a cross section. This can be measured by observing this with a scanning electron microscope and performing manual calculations.
- the following method may be mentioned as a method of setting the arithmetic average surface roughness of the surface of the resin composition layer within a predetermined range.
- a method of reducing the roughness a method of smoothing by mechanical pressurization such as a flat press, a roll press, a laminator method, a method of increasing the dispersibility of resins, fillers, etc. and reducing large particles during coating Etc.
- Examples of a method for increasing the dispersibility of resins, fillers, and the like include selecting a solvent having high affinity for the resins, fillers, and the like.
- Examples of the method for increasing the roughness include a method for coarsening the filler of the resin composition raw material, a method for increasing the filling amount, and a method for adding a small amount of a solvent having poor wettability with the filler.
- the arithmetic average surface roughness Ra on the surface on which the adhesive layer of the resin composition layer is provided is 1.5 ⁇ m to 4 ⁇ m, and the thickness of the adhesive layer is 6 ⁇ m to 15 ⁇ m.
- the effect described above tends to occur. For example, this can be considered as follows.
- unevenness on the surface of the resin composition layer (for example, unevenness caused by the filler) can be filled.
- unevenness of the resin composition layer is filled with the adhesive layer.
- Dielectric breakdown is likely to occur at the thinnest part of the resin composition layer where electric field concentration is likely to occur. Since the applied electric field decreases in inverse proportion to the thickness, it can be considered that the thinnest portion becomes thicker due to the resin of the adhesive layer, thereby making it difficult for dielectric breakdown to occur. In addition, the effect of improving the adhesive force and the withstand voltage is exhibited without change even before and after the multilayer resin sheet is cured.
- the resin composition layer includes at least one kind of thermosetting resin and at least one kind of filler, and includes other components as necessary.
- a thermosetting resin and a filler By including a thermosetting resin and a filler, a cured resin layer (thermal conductive layer) excellent in thermal conductivity can be formed by heat-treating and curing the resin composition layer. Moreover, it becomes easy to make arithmetic mean surface roughness of the surface of a resin composition layer into a desired range by including a filler.
- the resin composition layer includes a filler to improve thermal conductivity.
- the filler content in the resin composition layer is not particularly limited, and is preferably 40% by volume to 85% by volume in the total solid content of the resin composition layer from the viewpoint of thermal conductivity and adhesiveness. From the viewpoint of conductivity, it is more preferably 50% by volume to 80% by volume. Further, by setting the content of the filler in the resin composition layer to 40% by volume to 85% by volume in the total solid content, the arithmetic average surface roughness of the resin composition layer becomes 1.5 to 4.0 ⁇ m. Unevenness can be provided.
- the total solid content of the resin composition layer means the total amount of non-volatile components among the components constituting the resin composition layer.
- the thermal conductivity is drastically improved.
- this can be considered as follows.
- Boron nitride has a Mohs hardness of 2, which is lower and softer than other insulating ceramics such as alumina and aluminum nitride (for example, hardness 8).
- boron nitride having a spherical shape or round shape has a shape in which primary particles are aggregated, voids exist inside the particles. For this reason, the particles themselves are easily deformed while being harder than the molten resin.
- the filler contains boron nitride particles
- a technique of directly observing the resin composition or the structure of the sheet with a microscope is effective. For example, by observing the cross section of the resin sheet or its cured product with an SEM (scanning electron microscope), the crystal form of the filler in the resin composition is confirmed, and further, SEM-EDX (energy dispersive X-ray) This can be confirmed by qualitating the filler element using a spectroscope.
- the volume average particle diameter is preferably 10 ⁇ m or more and 100 ⁇ m or less from the viewpoint of thermal conductivity, and more preferably 20 ⁇ m or more and 90 ⁇ m or less from the viewpoint of insulation. From the viewpoint of adhesiveness, it is more preferably 30 ⁇ m or more and 80 ⁇ m or less.
- the content is preferably 10% by volume or more and 60% by volume or less in the total solid content of the resin composition layer, from the viewpoint of adhesiveness, and from the viewpoint of thermal conductivity. It is more preferably 15% by volume or more and 55% by volume or less, and further preferably 20% by volume or more and 50% by volume or less from the viewpoint of insulation.
- the content of the boron nitride filler having a volume average particle size of 10 ⁇ m or more and 100 ⁇ m or less is preferably 10% by volume or more and 60% by volume or less in the total solid content of the resin composition layer.
- the content of the boron nitride filler having a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less is preferably in the above range from the viewpoint of thermal conductivity.
- the volume average particle diameter of the boron nitride filler is more preferably 20 ⁇ m or more and 90 ⁇ m or less, and further preferably 30 ⁇ m or more and 80 ⁇ m or less.
- the content rate of the said boron nitride filler it is more preferable that they are 15 volume% or more and 55 volume% or less in the total solid of a resin composition layer, and it is further more preferable that they are 20 volume% or more and 50 volume% or less.
- the resin composition layer contains a boron nitride filler
- it may further contain other insulating inorganic compounds in addition to the boron nitride filler.
- the content of boron nitride contained in the filler is not particularly limited. From the viewpoint of thermal conductivity, the content of boron nitride contained in the filler is preferably 12% by volume or more and 90% by volume or less, and 20% by volume or more and 85% by volume when the total volume of the filler is 100% by volume. % Or less is more preferable.
- the resin composition layer may contain fillers having different volume average particle diameters. Specifically, in addition to the boron nitride filler having a volume average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less, other filler having a particle diameter in the above range or a filler having a particle diameter smaller than the above range may be included. . Further, it is also preferable to fill the fillers in combination with fillers having a large difference in particle diameter so that these can be packed most closely. Further, close packing may be attempted by mixing three kinds of particles having large, medium and small sizes.
- the volume average particle size is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 20 ⁇ m or more and 90 ⁇ m or less from the viewpoint of insulation. In view of the above, it is particularly preferably 30 ⁇ m or more and 80 ⁇ m or less.
- the medium particle size filler preferably has a volume average particle size of 1 ⁇ m or more and 10 ⁇ m or less, more preferably 1.5 ⁇ m or more and 8 ⁇ m or less from the viewpoint of resin melt viscosity, and 2 ⁇ m or more from the viewpoint of filling properties. Particularly preferably, it is 6 ⁇ m or less.
- the filler having a small particle diameter preferably has a volume average particle diameter of 0.01 ⁇ m or more and 1 ⁇ m or less, more preferably 0.05 ⁇ m or more and 0.8 ⁇ m or less from the viewpoint of dispersibility, and from the viewpoint of filling properties.
- the thickness is 0.1 ⁇ m or more and 0.6 ⁇ m or less.
- the fillers are sufficiently filled and the thermal conductivity tends to be improved. Furthermore, when the filler having a large particle diameter contains a boron nitride filler, the thermal conductivity tends to be further improved.
- the volume average particle diameter of the filler is measured by direct measurement using a laser diffraction method or cross-sectional observation of the resin composition layer.
- a laser diffraction scattering particle size distribution measuring device for example, LS230 manufactured by Beckman Coulter, Inc.
- the filler component is extracted from the resin composition using an organic solvent or the like, nitric acid, aqua regia, or the like, and sufficiently dispersed with an ultrasonic disperser or the like.
- the volume average particle size of the filler can be measured.
- the volume average particle diameter of the filler can also be measured by observing a cross section of the resin composition layer, the multilayer resin sheet or a cured product thereof with a scanning electron microscope and actually measuring it. Specifically, these resin composition layers and the like are embedded in a transparent epoxy resin and polished with a polisher or slurry to expose a cross section of the resin composition layer or the like. By directly observing this cross section, the filler particle size can be quantified. In addition, it is preferable to perform two-dimensional cross-sectional observation continuously using a FIB apparatus (focused ion beam SEM) or the like to perform a three-dimensional structural analysis.
- FIB apparatus focused ion beam SEM
- FIG. 1 and FIG. 2 show an example of filler particle size distribution when the resin composition layer of the multilayer resin sheet contains a filler having a large particle size, a filler having a medium particle size, and a filler having a small particle size.
- the particle size distribution is in a range where the particle size is 0.01 ⁇ m or more and less than 1 ⁇ m, a particle size is 1 ⁇ m or more and less than 10 ⁇ m, and a particle size is 10 ⁇ m or more and 100 ⁇ m or less. There is a peak.
- the multilayer resin sheet tends to sufficiently exhibit functions such as heat conduction and insulation.
- the volume average of the small particle size filler is preferably 5 to 50, and the filling property From the viewpoint of thermal conductivity, 8 to 20 is more preferable.
- the ratio of the volume average particle size of the large particle size filler to the volume average particle size of the medium particle size filler is preferably 3 to 40, and more preferably 5 to 30 from the viewpoint of thermal conductivity.
- the filler when the filler includes a filler having a large particle size, a filler having a medium particle size, and a filler having a small particle size, the filler preferably has a broad volume average particle size distribution as a whole. Not limited. That is, it may be a wide particle size distribution or a narrow particle size distribution. From the viewpoint of thermal conductivity, it is preferable to have a wide particle size distribution that can increase the filling rate.
- the filler may contain the filler having a large particle size, a filler having a medium particle size, and a filler having a small particle size as a whole filler. That is, when the particle size distribution of the whole filler is measured, a peak corresponding to a filler having a small particle diameter of 0.01 ⁇ m or more and less than 1 ⁇ m, and a medium particle diameter of 1 ⁇ m or more and less than 10 ⁇ m. At least three peaks may be observed: a peak corresponding to this filler and a peak corresponding to a filler having a volume average particle diameter of 10 ⁇ m to 100 ⁇ m.
- the filler of such an embodiment may be composed of, for example, a mixture of a large particle size filler, a medium particle size filler, and a small particle size filler each having a single peak in the particle size distribution,
- the filler may have a particle size distribution using a filler having two or more peaks.
- the total volume of the small particle size filler, the medium particle size filler, and the large particle size filler is such that the content of the small particle size filler is 1 to 15% by volume, and the content of the medium particle size filler is 10 to 40% by volume,
- the content of the large particle size filler is preferably 45% by volume to 80% by volume, and the content of the small particle size filler is 6% by volume to 15% by volume from the viewpoint of filling properties and thermal conductivity. More preferably, the content of the medium particle size filler is 18 to 35% by volume, and the content of the large particle size filler is 50 to 70% by volume.
- the content of the large particle size filler is as high as possible (for example, about 60 to 70% by volume relative to the total amount of the filler), and then the content of the medium particle size filler is as high as possible (for example, 15% by volume) (About 30% by volume) can improve the thermal conductivity more effectively.
- thermal conductivity improves more effectively by containing the filler from which a volume average particle diameter differs.
- the combination of the volume average particle size and the content ratio of the filler is such that the volume average particle size of the small particle size filler is 0.01 ⁇ m or more and less than 1 ⁇ m, and the volume average particle size of the medium particle size filler is 1 ⁇ m or more and 10 ⁇ m or less.
- the volume average particle size of the large particle size is 10 ⁇ m or more and 100 ⁇ m or less, and the content ratio of the large particle size filler, the medium particle size filler, and the small particle size filler is 1% to 15% on a volume basis, It is preferably 10% to 40% and 45% to 80%.
- the volume average particle diameter of the small particle diameter filler is 0.01 ⁇ m or more and 0.6 ⁇ m or less
- the volume average particle diameter of the medium particle diameter filler is 2 ⁇ m or more and 6 ⁇ m or less
- the volume average of the large particle diameter filler is 20 ⁇ m or more and 90 ⁇ m or less
- the content ratio of the large particle size filler, the medium particle size filler, and the small particle size filler is 6% to 15%, 18% to More preferably, it is 35% or 45% to 80%.
- the volume-based mixing ratio of the small particle size filler and the medium particle size filler is preferably 1: 0.5 to 1:40 from the viewpoint of filler filling property and thermal conductivity, and 1: 1 to 1: 7. It is more preferable that The volume-based mixing ratio of the small particle size filler and the large particle size filler is preferably 1: 3 to 1:80, and preferably 1: 4 to 1:15, from the viewpoint of filler filling property and thermal conductivity. It is more preferable.
- the large particle size filler includes boron nitride
- other inorganic compounds having insulating properties other than boron nitride included in the large particle size filler include aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, talc. , Mica, aluminum hydroxide, barium sulfate and the like.
- aluminum oxide, boron nitride, and aluminum nitride are preferable from the viewpoint of thermal conductivity.
- 1 type may be individual, or 2 or more types may be used together.
- the filler having a small particle diameter and the filler having a medium particle diameter are not particularly limited as long as they are insulating inorganic compounds, but preferably have a high thermal conductivity.
- Specific examples of the small particle size filler and the medium particle size filler include aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, talc, mica, aluminum hydroxide, barium sulfate and the like. Of these, aluminum oxide, boron nitride, and aluminum nitride are preferable from the viewpoint of thermal conductivity.
- the particle shape of the filler is not particularly limited, and examples thereof include spherical shapes, round shapes, crushed shapes, flake shapes, and aggregated particles. Of these, spherical and round shapes are preferable from the viewpoint of filling properties and thermal conductivity.
- thermosetting resin There is no restriction
- the thermosetting resin preferably contains at least one epoxy resin monomer from the viewpoint of thermal conductivity and adhesive strength, and more preferably contains at least one epoxy resin monomer and at least one curing agent. .
- the resin composition in the present invention contains at least one epoxy resin monomer (hereinafter sometimes simply referred to as “epoxy resin”).
- epoxy resin a commonly used general epoxy resin can be used without particular limitation. Especially, it is preferable that it is low viscosity before hardening, is excellent in filler filling property and moldability, and has high heat conductivity in addition to high heat resistance and adhesiveness after thermosetting.
- the epoxy resin monomer forms a cured resin together with a novolak resin having a specific structure, it is possible to form a structure with a high crosslinking density derived from covalent bonds and intermolecular forces in the cured resin. For this reason, it is thought that scattering of the phonon which is a heat conductive medium in the insulating resin can be suppressed, and thereby high heat conductivity can be achieved.
- Specific examples of general epoxy resins include glycidyl ethers such as bisphenol A type, F type, S type and AD type, hydrogenated bisphenol A type glycidyl ether, phenol novolac type glycidyl ether, cresol novolac type glycidyl.
- Ether bisphenol A type novolac type glycidyl ether, naphthalene type glycidyl ether, biphenol type glycidyl ether, dihydroxypentadiene type glycidyl ether, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, etc. Is mentioned.
- the epoxy resin monomer preferably has a low viscosity before curing, is excellent in filler filling properties and moldability, and has a high thermal conductivity in addition to high heat resistance and adhesiveness after thermal curing.
- an epoxy resin monomer that is liquid at 25 ° C. thereby, the flexibility at the time of forming into a sheet and the fluidity at the time of lamination are easily developed.
- Examples of such epoxy resin monomers that are liquid at 25 ° C. include bisphenol A type and AD type, these hydrogenated resins and naphthalene types, and one end called a reactive diluent having an epoxy group. Resin etc. are mentioned.
- bisphenol A-type, AD-type, and naphthalene-type epoxy resin monomers are preferable from the viewpoints of changes in elastic modulus with respect to temperature after curing and thermal properties.
- the molecular weight of the epoxy resin monomer that is liquid at 25 ° C. is not particularly limited. For example, it is preferably 100 or more and 100,000 or less, and preferably 200 or more and 50,000 or less from the viewpoint of fluidity during lamination. More preferably, it is 300 or more and 10,000 or less. In particular, when it contains at least one liquid epoxy resin selected from the group consisting of bisphenol A type glycidyl ether and bisphenol F type glycidyl ether having a molecular weight of 5000 or less, The fluidity at the time of lamination can be further improved.
- the epoxy resin monomer may contain a polyfunctional epoxy resin. This makes it possible to achieve higher Tg (glass transition temperature) and higher thermal conductivity more effectively.
- a polyfunctional epoxy resin a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a triphenylmethane type epoxy resin, or the like is preferably used.
- an epoxy resin having a mesogenic group can be used from the viewpoint of thermal conductivity. Thereby, higher thermal conductivity can be expressed.
- the mesogenic group herein is not particularly limited as long as it can form a higher-order structure derived from the mesogenic group in the cured resin when the epoxy resin monomer forms a cured resin together with the curing agent. Absent.
- the higher order structure here means a state in which molecules are oriented and aligned after the resin composition is cured.
- a crystal structure or a liquid crystal structure is present in the resin cured product.
- the presence of such a crystal structure or liquid crystal structure can be directly confirmed by, for example, observation with a polarizing microscope under crossed Nicols or X-ray scattering.
- the presence of the elastic modulus of storage can be confirmed indirectly by a small change in temperature.
- the mesogenic group examples include a biphenyl group, a terphenyl group, a terphenyl analog, an anthracene group, and a group in which these are connected by an azomethine group or an ester group.
- High thermal conductivity can be achieved by using an epoxy resin monomer having a mesogenic group as an epoxy resin monomer and forming a cured resin together with a curing agent.
- an epoxy resin monomer having a mesogenic group in the molecule forms a cured resin together with a curing agent (preferably, a novolak resin described later), so that the highly regularity derived from the mesogenic group in the cured resin is high.
- a curing agent preferably, a novolak resin described later
- epoxy resin monomer having a mesogenic group examples include 4,4′-biphenol glycidyl ether, 1- ⁇ (3-methyl-4-oxiranylmethoxy) phenyl ⁇ -4- (4-oxira Nylmethoxyphenyl) -1-cyclohexene, 4- (oxiranylmethoxy) benzoic acid-1,8-octanediylbis (oxy-1,4-phenylene) ester, 2,6-bis [4- [4- [ 2- (oxiranylmethoxy) ethoxy] phenyl] phenoxy] pyridine and the like.
- 1- ⁇ (3-methyl-4-oxiranylmethoxy) phenyl ⁇ -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene is particularly preferable from the viewpoint of improving thermal conductivity.
- the epoxy resin may contain a liquid epoxy resin, which makes it possible to lower the resin softening point during the A stage and B stage described later. Specifically, the handleability of the sheet can be improved.
- the liquid epoxy resin may have low Tg and thermal conductivity, the content of the liquid epoxy resin can be appropriately selected in consideration of the physical properties of the cured resin.
- the content of the epoxy resin monomer in the resin composition layer is not particularly limited, but from the viewpoint of thermal conductivity and adhesiveness, 3% by mass to 30% by mass in the total solid content constituting the resin composition layer. From the viewpoint of thermal conductivity, it is more preferably 4% by mass to 25% by mass, and further preferably 5% by mass to 20% by mass.
- the resin composition layer preferably contains at least one curing agent.
- the curing agent is not particularly limited as long as it is a compound that can react with the epoxy resin monomer to form a cured resin.
- a novolak resin an aromatic amine curing agent, an aliphatic amine curing agent, a mercaptan curing agent, a polyaddition curing agent such as an acid anhydride curing agent, or the like can be used.
- imidazole, triphenylphosphine, or a curing catalyst such as a substituted product having a side chain on these curing agents can be used.
- the resin composition layer preferably contains at least one novolac resin as a curing agent from the viewpoints of thermal conductivity and insulation.
- the novolak resin is not particularly limited as long as it is a novolak resin usually used as a curing agent for epoxy resins.
- the novolac resin is preferably at least one compound having a structural unit represented by the following general formula (I) from the viewpoint of thermal conductivity and insulation.
- R 1 represents an alkyl group, an aryl group, or an aralkyl group.
- the alkyl group, aryl group and aralkyl group represented by R 1 may further have a substituent if possible, and examples of the substituent include an alkyl group, an aryl group, a halogen atom, and a hydroxyl group. be able to.
- m represents an integer of 0 to 2, and when m is 2, two R 1 s may be the same or different.
- m is preferably 0 or 1 from the viewpoint of fluidity, and m is more preferably 0 from the viewpoint of thermal conductivity.
- the novolak resin contains at least one compound having a structural unit represented by the above general formula (I). It is also preferable that it contains two or more compounds having a structural unit represented by the above general formula (I).
- the novolak resin preferably includes a partial structure derived from resorcinol as the phenolic compound, but may further include at least one partial structure derived from a phenolic compound other than resorcinol.
- phenolic compounds other than resorcinol include phenol, cresol, catechol, hydroquinone, 1,2,4-trihydroxybenzene, 1,3,5-trihydroxybenzene, and the like.
- the novolak resin may contain a single partial structure or a combination of two or more thereof.
- the partial structure derived from the phenolic compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the benzene ring portion of the phenolic compound. The position where the hydrogen atom is removed is not particularly limited.
- Examples of the partial structure derived from a phenolic compound other than the resorcinol include phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2 from the viewpoint of thermal conductivity, adhesiveness, and storage stability. It is preferably a partial structure derived from at least one selected from the group consisting of 1,4-trihydroxybenzene and 1,3,5-trihydroxybenzene, and at least one selected from the group consisting of catechol and hydroquinone
- the partial structure derived from is more preferable, and a catechol resorcinol novolak resin or a hydroquinone resorcinol novolak resin is more preferable.
- the content ratio is not particularly limited, but from the viewpoint of thermal conductivity, the content ratio of the partial structure derived from resorcinol to the total mass of the novolak resin is 55 mass. % From the viewpoint of realizing higher thermal conductivity, more preferably 80% by mass or more.
- R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, a phenyl group, or an aralkyl group.
- the alkyl group, phenyl group, aryl group and aralkyl group represented by R 2 and R 3 may further have a substituent if possible, and examples of the substituent include an alkyl group, an aryl group, a halogen atom, An atom, a hydroxyl group, etc. can be mentioned.
- the number average molecular weight of the novolak resin is preferably 800 or less from the viewpoint of thermal conductivity, more preferably 300 or more and 700 or less from the viewpoint of resin viscosity, thermal conductivity, and glass transition temperature. From the viewpoint of high thermal conductivity, it is more preferably from 350 to 550.
- the novolak resin containing the compound having the structural unit represented by the general formula (I) may contain a monomer that is a phenolic compound constituting the novolak resin.
- content rate herein a "monomer content rate"
- the content is more preferably 20% by mass to 50% by mass.
- the novolak resin contains a monomer of a phenolic compound
- the monomer content is 5% by mass or more
- the viscosity increase of the novolak resin is suppressed, and the adhesion of the filler tends to be further improved.
- the content is 80% by mass or less, a higher-order higher-order structure is formed by a crosslinking reaction during curing, and excellent thermal conductivity and heat resistance tend to be achieved.
- Examples of the monomer of the phenolic compound constituting the novolak resin include resorcinol, catechol, and hydroquinone. From the viewpoint of low melt viscosity before curing, high thermal conductivity after curing, and high crosslink density, resorcinol may be included as a monomer. preferable.
- the content of the curing agent in the resin composition layer is not particularly limited, but is preferably 1 to 10% by mass based on the total solid content of the resin composition layer from the viewpoint of thermal conductivity and adhesiveness. % Is more preferable. Further, the content of the curing agent in the resin composition layer is preferably 0.8 to 1.2, and preferably 0.9 to 1.1, based on the equivalent of the epoxy resin monomer. More preferred.
- the resin composition layer may further contain at least one silane coupling agent.
- silane coupling agent By including a silane coupling agent, the bondability between the resin component including the epoxy resin and the novolac resin and the filler is further improved, and higher thermal conductivity and stronger adhesiveness can be achieved.
- the silane coupling agent is not particularly limited as long as it is a compound having a functional group that binds to a resin component and a functional group that binds to a filler, and a commonly used silane coupling agent can be used.
- the functional group bonded to the filler include trialkoxysilyl groups such as a trimethoxysilyl group and a triethoxysilyl group.
- the functional group bonded to the resin component include an epoxy group, an amino group, a mercapto group, a ureido group, and an aminophenyl group.
- silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl).
- a silane coupling agent oligomer represented by SC-6000KS2 manufactured by Hitachi Chemical Coated Sands Co., Ltd.
- These silane coupling agents can be used alone or in combination of two or more.
- the content of the silane coupling agent in the resin composition layer is not particularly limited, but from the viewpoint of thermal conductivity, 0.02% by mass to 0.83% by mass in the total solid content of the resin composition layer. It is preferably 0.04% by mass to 0.42% by mass.
- the content ratio of the silane coupling agent to the filler is preferably 0.02% by mass to 1% by mass from the viewpoints of thermal conductivity, insulation, and moldability, and 0.05% by mass from the viewpoint of high thermal conductivity. % To 0.5% by mass is more preferable.
- the resin composition layer may contain other components as necessary in addition to the above components.
- examples of other components include organic solvents, curing accelerators, and dispersants.
- thermosetting resin preferably an epoxy resin monomer
- curing agent preferably a novolak resin
- filler other components included as necessary
- organic solvent preferably an organic solvent
- the resin composition layer is prepared by preparing a resin composition, molding the resin composition into a sheet, and removing at least part of the organic solvent.
- organic solvent is removed in the drying process at the time of preparing the resin composition layer, and if it remains in a large amount, it may affect the thermal conductivity and insulation performance. A low is desirable. Further, if it is completely removed at the time of drying, the resin composition layer becomes hard and the adhesiveness may be lowered. Therefore, it is necessary to adapt to the drying method and drying conditions.
- the kind of organic solvent can also be suitably selected according to the kind of resin to be used, the kind of filler, the drying property at the time of preparation of the resin composition layer, and the like.
- organic solvent examples include alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-propanol and cyclohexanol; ketone solvents such as methyl ethyl ketone, cyclohexanone and cyclopentanone; dimethyl Amide solvents such as formamide and dimethylacetamide can be preferably used.
- alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-propanol and cyclohexanol
- ketone solvents such as methyl ethyl ketone, cyclohexanone and cyclopentanone
- dimethyl Amide solvents such as formamide and dimethylacetamide can be preferably used.
- a method of mixing and dispersing the components constituting the resin composition it can be carried out by appropriately combining dispersers such as a normal stirrer, a raking machine, a triple roll, a ball mill and the like.
- the resin composition layer is formed into a sheet by, for example, applying a resin composition containing the filler on a support to form a coating layer, and removing (drying) at least a part of the organic solvent from the coating layer. It can be prepared by molding. Moreover, you may provide a support body in the single side
- the average film thickness of the resin composition layer can be appropriately selected according to the purpose.
- the average film thickness of the resin composition layer is preferably thinner from the viewpoint of thermal resistance, but thicker from the viewpoint of insulation.
- the average film thickness of the resin composition layer may be 50 ⁇ m to 400 ⁇ m, preferably 100 ⁇ m to 250 ⁇ m, and more preferably 80 ⁇ m to 230 ⁇ m.
- the film thickness of the resin composition layer can be measured using a micrometer, a stylus film thickness meter, a needle film thickness meter, or the like.
- the support examples include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. These films may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, etching treatment, mold release treatment and the like as necessary. Further, a metal such as a copper foil or an aluminum plate can be used as the support. Among these, polyethylene terephthalate film and polyimide film are preferable from the viewpoint of workability and availability.
- the film thickness is not particularly limited, and is appropriately determined based on the knowledge of those skilled in the art depending on the film thickness of the resin composition layer to be formed and the use of the multilayer resin sheet. From the viewpoint of good economic efficiency and good handleability, it is preferably 10 ⁇ m to 150 ⁇ m, more preferably 20 ⁇ m to 120 ⁇ m, still more preferably 30 ⁇ m to 100 ⁇ m, and even more preferably 40 ⁇ m to 80 ⁇ m.
- the application method and the drying method of the resin composition are not particularly limited, and a commonly used method can be appropriately selected.
- a comma coater, a die coater, dip coating, etc. are mentioned as a coating method, and a drying method includes heat drying under normal pressure or reduced pressure, natural drying, freeze drying, and the like.
- the resin composition layer may be composed of a single coating layer formed on a support, or two or more layers may be overcoated. Alternatively, it may be configured by laminating two coating layers formed on a support.
- a multilayer resin sheet having a resin composition layer formed by drying a coating layer is an A stage sheet
- a multilayer resin sheet obtained by further heating and pressing the resin composition layer is a B stage sheet
- a cured multilayer resin sheet obtained by curing the resin composition layer by heat treatment may be referred to as a C stage sheet.
- the B-stage sheet is preferably in a semi-cured state of the resin composition. This improves the handleability. This is because the elastic modulus is increased and the strength is improved by the progress of curing as compared with the A stage sheet. On the other hand, it is necessary to suppress the degree of curing of the resin to such an extent that it can be handled flexibly.
- the resin composition layer may be in a semi-cured (B stage) state before providing the adhesive layer, or the resin composition layer may be in the B stage state after providing the adhesive layer.
- the B stage sheet is preferably in a semi-cured state of the resin composition.
- the B-stage sheet is a resin sheet having a viscosity of 10 4 Pa ⁇ s to 10 7 Pa ⁇ s at room temperature (25 ° C.), whereas it is 10 2 Pa ⁇ s to 10 6 at 100 ° C.
- the viscosity is decreased by 0.01 to 30% at Pa ⁇ s.
- the cured resin sheet to be described later is not melted by heating.
- the viscosity can be measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
- the resin composition layer is preferably cured (C-stage) by heat treatment.
- the cured resin sheet after curing does not melt even by heating. The conditions for the heat treatment will be described later.
- the resin composition layer is preferably obtained by removing at least part of the organic solvent from the coating layer. Furthermore, it is more preferable that the resin composition layer be in a semi-cured (B stage) state by subjecting the coating layer from which at least a part of the organic solvent has been removed to heat and pressure treatment.
- the method of heat-pressing a resin composition layer can be heated and pressurized using a hot press or a laminator.
- the heat-pressing conditions which make a resin composition layer a semi-hardened state can be suitably selected according to the composition of the resin composition which forms a resin composition layer.
- the heat and pressure treatment can be performed under the conditions of a heating temperature of 60 ° C. to 180 ° C., a pressure of 0.1 MPa to 100 MPa, and a time of 0.1 minutes to 30 minutes.
- thermosetting resin contained in the resin composition is an epoxy
- heat and pressure treatment is performed under the conditions of a heating temperature of 60 ° C. to 180 ° C., a pressure of 0.1 MPa to 50 MPa, and a time of 0.1 minutes to 30 minutes. It is preferable.
- the multilayer resin sheet of the present invention includes an adhesive layer on at least one surface of the resin composition layer.
- the adhesive layer includes at least one resin having adhesiveness, and further includes other components such as a filler as necessary.
- the adhesive layer is provided on at least one surface of the resin composition layer, but is preferably provided on both surfaces of the resin composition layer.
- the resin having adhesiveness is not particularly limited as long as it is an insulating, adhesive, and flexible resin.
- polyimide resin and modified polyimide resin examples include Iupicoat FS-100L (manufactured by Ube Industries), Semicofine SP-300, SP-400, SP-800 (manufactured by Toray Industries, Inc.), Uimide series (Unitika Co., Ltd.) The product etc. which are represented by the company etc. can be mentioned.
- polyamide-imide resin and the modified polyamide-imide resin examples include Viromax series (manufactured by Toyobo Co., Ltd.) and Torlon (manufactured by Solvay Advanced Polymers).
- Viromax series manufactured by Toyobo Co., Ltd.
- Torlon manufactured by Solvay Advanced Polymers
- the polyimide resin, polyamideimide resin, and modified polyamideimide resin that are suitably used for the adhesive layer may be used singly or in combination of two or more. These resins are usually in a varnish state in which the resin is dissolved in a solvent, and can be used as an adhesive layer by forming a film by directly applying to a support such as a PET film and drying the solvent.
- an epoxy resin which is a typical thermosetting adhesive resin may be used as the adhesive resin.
- an epoxy resin composition containing an epoxy resin, its curing agent, glycidyl acrylate, and a curing agent accelerator may be used as the adhesive layer.
- an epoxy resin composition containing an epoxy resin, its curing agent, glycidyl acrylate, and a curing agent accelerator may be used as the adhesive layer.
- the epoxy resin used for the adhesive layer is not particularly limited as long as it is cured and exhibits an adhesive action.
- a bisphenol A type or bisphenol F type liquid resin having a molecular weight of 500 or less because the fluidity during lamination can be improved.
- a polyfunctional epoxy resin may be added for the purpose of increasing the Tg (glass transition temperature), and examples of the polyfunctional epoxy resin include phenol novolac type epoxy resins and cresol novolac type epoxy resins.
- the epoxy resin curing agent can be appropriately selected from those usually used as epoxy resin curing agents.
- examples thereof include polyamide, polyamine, acid anhydride, phenol novolac resin, polysulfide, boron trifluoride, or a compound having two or more phenolic hydroxyl groups in one molecule, bisphenol A, bisphenol F, bisphenol S, and the like.
- a phenol novolak resin, a bisphenol novolak resin, a cresol novolak resin, or the like that is a phenol resin.
- imidazole is preferably used.
- imidazole include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate and the like.
- Imidazoles are commercially available from Shikoku Kasei Kogyo Co., Ltd. under the trade names 2E4MZ, 2PZ-CN and 2PZ-CNS, for example.
- the epoxy resin used for the adhesive layer is preferably a high molecular weight epoxy resin containing a high molecular weight resin compatible with the epoxy resin.
- the high molecular weight resin compatible with the epoxy resin include a high molecular weight epoxy resin, a highly polar functional group-containing rubber, and a highly polar functional group-containing reactive rubber.
- the functional group-containing reactive rubber having a large polarity include an acrylic-modified rubber obtained by adding a functional group having a large polarity such as a carboxyl group to an acrylic rubber.
- having compatibility with the epoxy resin means a property of forming a homogeneous mixture without separating from the epoxy resin after curing and separating into two or more phases.
- the weight average molecular weight of the high molecular weight resin is not particularly limited. From the viewpoint of reducing the tackiness of the adhesive in the B stage and improving the flexibility at the time of curing, the weight average molecular weight is preferably 30,000 or more.
- the high molecular weight epoxy resin includes a high molecular weight epoxy resin having a molecular weight of 30,000 to 80,000, and an ultra high molecular weight epoxy resin having a molecular weight exceeding 80,000 (Japanese Patent Publication No. 7-59617, Japanese Patent Publication No. 7-59618, Japanese Patent Publication No. 7-59619, Japanese Patent Publication No. 7-59620, Japanese Patent Publication No. 7-64911, and Japanese Patent Publication No. 7-68327), all of which are manufactured by Hitachi Chemical Co., Ltd.
- a functional group-containing reactive rubber having a large polarity a carboxyl group-containing acrylic rubber is commercially available from Nagase ChemteX Corporation under the trade name HTR-860P.
- the addition amount is 10 parts by mass or more when the resin constituting the adhesive layer is 100 parts by mass. It is preferable that the amount is 40 parts by weight or less.
- the amount is 10 parts by mass or more, it is possible to prevent insufficient flexibility of a phase containing epoxy resin as a main component (hereinafter referred to as epoxy resin phase), reduction in tackiness, and deterioration in insulation due to cracks or the like. The fall of Tg of an epoxy resin phase can be prevented as it is 40 weight part or less.
- the weight average molecular weight of the high molecular weight epoxy resin is preferably 20,000 or more and 500,000 or less. In this range, the strength and flexibility in sheet form and film form can be suppressed from decreasing, and tackiness can be suppressed from increasing.
- Polyamideimide resin, modified polyamideimide resin, and epoxy resin that are preferably used for the adhesive layer may be used singly or in combination of two or more. These resins are usually in a varnish state in which the resin is dissolved in a solvent, and can be directly applied to a support such as a PET film and dried to form a film, which can be used as an adhesive layer.
- silane coupling agent can also be mix
- ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -ureidopropyltriethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyl Examples include trimethoxysilane.
- the adhesive layer contains a silane coupling agent
- the blending amount is 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin constituting the adhesive layer from the viewpoint of the effect of addition and heat resistance. It is preferable to do this.
- the adhesive layer further preferably contains at least one filler, and more preferably contains at least one inorganic filler.
- the filler By including the filler, the handleability and thermal conductivity of the adhesive layer are improved. It also becomes possible to impart flame retardancy, adjust melt viscosity, impart thixotropic properties, improve surface hardness, and the like.
- the content is not particularly limited. In particular, it is preferably 20 to 50 parts by volume with respect to 100 parts by volume of the resin component contained in the adhesive layer. From the viewpoint of blending effect, the blending amount is more preferably 30 parts by volume or more. Moreover, it is also preferable that it is 50 volume parts or less from a viewpoint of suppressing the raise of the storage elastic modulus of an adhesive material, adhesive fall, the insulation fall by void remaining, etc.
- the inorganic filler examples include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina powder, aluminum nitride powder, aluminum borate whisker, boron nitride powder, Examples thereof include crystalline silica, amorphous silica, silicon nitride, talc, mica, and barium sulfate.
- alumina, boron nitride, and aluminum nitride are preferable in that they have high heat conductivity, good heat dissipation, few impurities, and good heat resistance and insulation.
- These fillers may be used alone or in combination of two or more.
- the volume average particle diameter of the filler contained in the adhesive layer is not particularly limited.
- the thickness is preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 5 ⁇ m.
- the filler content in the adhesive layer is preferably 50% by volume or less from the viewpoint of balancing the adhesiveness and the thermal conductivity. Further, from the viewpoint of thermal conductivity, it is preferably 20% by volume or more and 50% by volume or less.
- the adhesive layer contains at least one selected from the group consisting of an epoxy resin containing acrylic-modified rubber and a modified polyamideimide resin as the resin having adhesiveness
- the filler is selected from the group consisting of alumina oxide and silicon oxide
- the filler content is at least 25 parts by volume and not more than 100 parts by volume with respect to 100 parts by volume of the resin component, and the filler has a volume average particle size of 0.5 ⁇ m to 5 ⁇ m. And particularly preferable from the viewpoint of thermal conductivity.
- the average thickness of the adhesive layer is preferably 3 ⁇ m to 16 ⁇ m, more preferably 4 ⁇ m to 15 ⁇ m, still more preferably 5 ⁇ m to 14 ⁇ m, and more preferably 6 ⁇ m to 12 ⁇ m from the viewpoint of thermal conductivity and adhesiveness. Even more preferably.
- the average thickness of the adhesive layer can be measured using a micrometer, a stylus thickness meter, a needle thickness meter, or the like.
- the method for producing a multilayer resin sheet of the present invention includes a step of obtaining a resin composition layer containing a thermosetting resin and a filler, and the resin composition layer is not opposed to at least one surface of the resin composition layer. Placing an adhesive layer having an arithmetic average surface roughness Ra of 1.5 ⁇ m or less.
- Examples of the method for forming the adhesive layer on the resin composition layer include a method of bonding the resin composition layer and an adhesive layer prepared in a film shape, and a varnish for the adhesive layer on the surface of the resin composition layer. And a method of forming an adhesive layer by drying the solvent after directly applying the coating.
- the film-like adhesive layer is formed by, for example, dissolving or dispersing each component constituting the adhesive layer in a solvent to form an adhesive layer varnish, and coating the varnish on a support to form an application layer. Is heated to remove at least a part of the solvent to obtain an adhesive layer formed on the support.
- the support can also serve to protect the surface of the adhesive layer.
- a plastic film such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a release-treated polyethylene terephthalate film, or a polyimide film can be used as the support.
- Examples of a method of providing an adhesive layer on the resin composition layer using a film-like adhesive layer include a method of heating and pressing by a plane press method or a roll press method. Specifically, for example, a method in which a film-like adhesive layer is laminated on the resin composition layer using a hot press, a laminator, or the like can be used.
- the conditions for heating and pressurizing are preferably, for example, a heating temperature of 60 to 220 ° C., a pressure of 0.1 MPa to 100 MPa, and a treatment time of 0.1 to 60 minutes. More preferably, the temperature is 80 ° C. to 180 ° C., the pressure is 0.2 MPa to 80 MPa, and the treatment time is 0.15 minutes to 30 minutes.
- the step of obtaining the multilayer resin sheet can be performed at atmospheric pressure (under normal pressure), but is preferably performed under reduced pressure.
- pressure reduction conditions it is preferable that it is 30000 Pa or less, and it is more preferable that it is 5000 Pa or less. If it is the said conditions, the sheet
- the method for producing a multilayer resin sheet of the present invention may include a step in which the resin composition layer includes a filler having a large particle diameter and at least a part of the filler having a large particle diameter enters the adhesive layer.
- the multilayer resin sheet obtained by this means that at least a part of the large particle diameter filler in the resin composition layer has entered the adhesive layer before being bonded to the adherend, and the resin flow during bonding The deformation of the adherend can be prevented by suppressing the pressure and reducing the pressure of the pressure bonding.
- heating and pressing treatment may be performed after forming the adhesive layer on the resin composition layer.
- a vacuum heating press a laminator, a rubber heating roll, a metal heating roll, or the like can be used.
- FIG. 3A As described above, the resin composition layer 10 containing the thermosetting resin and the filler 1 containing the filler having a large particle diameter of 10 ⁇ m or more and 100 ⁇ m or less in volume average particle diameter is obtained. .
- the adhesive layer 3 is disposed on both surfaces of the resin composition layer 10. The method for forming the adhesive layer 3 is as described above.
- the resin sheet 40 in which the adhesive layer 3 is disposed on both surfaces of the resin composition layer 10 is heated and pressurized using a vacuum heating press or a metal heating roll, and the resin composition layer 3 is placed in the adhesive layer 3. Part of the filler in 10 is allowed to enter. Thereby, as shown in FIG.3 (c), the multilayer resin sheet 40A in which the filler 4 which has penetrated into the adhesive material layer 3 exists can be manufactured.
- a step of arranging an adhesive layer on at least one surface of the resin composition layer, and a step of allowing at least a part of a large particle size filler to enter the adhesive layer May be performed simultaneously.
- the heating and pressurizing conditions for providing the adhesive layer on the resin composition layer are as follows: the heating temperature is 80 ° C. to 220 ° C., the pressure is 1 MPa to 100 MPa, and the treatment time is 0.1 minutes to 60 minutes. By doing so, at least a part of the filler having a large particle diameter may enter the adhesive layer.
- the heating and pressing conditions are more preferably a temperature of 100 ° C. to 200 ° C., a pressure of 1.5 MPa to 80 MPa, and a treatment time of 0.3 minutes to 40 minutes. Further, it is more desirable that this condition is appropriately determined taking into account the press process described later.
- the heating and pressurization can be performed at atmospheric pressure (under normal pressure), but is preferably performed under reduced pressure.
- the decompression condition is preferably 30000 Pa or less, more preferably 10,000 Pa or less.
- a step of arranging an adhesive layer on at least one surface of the resin composition layer and a step of allowing at least a part of a filler having a large particle diameter to enter the adhesive layer are performed simultaneously.
- FIG. 4A as described above, the resin composition layer 10 containing the filler 1 containing the thermoplastic resin and the filler having a large particle diameter of 10 ⁇ m or more and 100 ⁇ m or less in volume average particle diameter is obtained.
- the adhesive layer 3 is formed on both surfaces of the resin composition layer 10 by controlling the heating and pressurizing conditions when the adhesive layer is provided as described above, and the resin composition is formed in the adhesive layer 3. Part of the filler in the physical layer 10 is allowed to enter.
- FIG.4 (b) the multilayer resin sheet 40A in which the filler 4 which has entered in the adhesive material layer 3 exists can be manufactured.
- the multilayer resin sheet of the present invention can be used as follows.
- the multilayer resin sheet in which an adhesive layer is formed on one surface of the resin composition layer, the multilayer resin sheet is disposed such that the adhesive layer surface of the multilayer resin sheet faces an adherend such as a metal plate and heated.
- a laminated body can be obtained by performing pressure treatment (laminated body forming step).
- the laminate may be obtained by using a multilayer resin sheet in which the resin composition layer contains a filler having a large particle diameter of 10 ⁇ m or more and 100 ⁇ m or less.
- the laminate can be cured by performing a heat and pressure treatment (curing step).
- the conditions for the heat and pressure treatment in the curing step are not particularly limited as long as the resin composition layer is cured.
- the heating temperature is preferably 80 to 250 ° C.
- the pressure is 1 to 100 MPa
- the treatment time is preferably 0.1 to 360 minutes. More preferably, the temperature is 100 ° C. to 220 ° C., the pressure is 1.5 MPa to 80 MPa, and the treatment time is 10 minutes to 240 minutes.
- the curing step can be performed at atmospheric pressure (under normal pressure), but is preferably performed under reduced pressure.
- the decompression condition is preferably 30000 Pa or less, more preferably 10,000 Pa or less.
- the heat conductivity and heat resistance of the laminate can be further improved by performing a heat treatment after the curing step.
- the heat treatment can be performed at 100 ° C. to 250 ° C. for 10 minutes to 300 minutes.
- the thermosetting resin preferably contains an epoxy resin having a mesogen skeleton, and the heat treatment is preferably performed at a temperature at which the epoxy resin having a mesogen skeleton is easily oriented.
- the heating and pressing conditions in the laminate forming step are particularly Although not limited, it can be performed as follows.
- the heating temperature is 60 ° C. to 200 ° C.
- the pressure is 0.5 MPa to 100 MPa
- the treatment time is 0.1 minutes to 360 minutes.
- the temperature is 80 ° C. to 180 ° C.
- the pressure is 1 MPa to 30 MPa
- the treatment time is 0.5 minutes to 240 minutes.
- the large particle diameter filler in the resin composition layer It is preferable to perform a heat and pressure treatment for allowing at least a part of the material to enter the adhesive layer.
- the heating and pressing conditions in this case are as follows.
- the heating temperature is 60 ° C. to 200 ° C.
- the pressure is 0.5 MPa to 200 MPa
- the treatment time is 0.1 minutes to 360 minutes.
- the temperature is 80 ° C. to 180 ° C.
- the pressure is 1 MPa to 100 MPa
- the treatment time is 0.5 minutes to 240 minutes.
- the heating and pressing conditions in the laminate forming step are not particularly limited, but can be performed as follows.
- the heating temperature is 60 ° C. to 240 ° C.
- the pressure is 0.5 MPa to 200 MPa
- the treatment time is 0.1 minutes to 360 minutes. More preferably, the temperature is 70 to 220 ° C., the pressure is 1 to 100 MPa, and the treatment time is 0.5 to 240 minutes.
- the heating and pressing conditions in this case are as follows.
- the heating temperature is 60 ° C. to 200 ° C.
- the pressure is 1.5 MPa to 100 MPa
- the treatment time is 0.1 minutes to 360 minutes.
- the temperature is 80 to 180 ° C.
- the pressure is 2 to 80 MPa
- the treatment time is 0.5 to 240 minutes. From the viewpoint of reducing the number of steps, a method in which at least a part of the large particle size filler in the resin composition layer enters the adhesive layer together with the laminate forming step is preferable.
- the adherend may be arranged on both sides. Moreover, even when the adhesive layer is formed on both surfaces of the multilayer resin sheet, the adherend can be disposed on both surfaces.
- An example of the laminated body formation process in these cases will be described with reference to the drawings.
- the first adherend 72, the multilayer resin sheet 70, and the second adherend 73 are laminated in this order, and the first adherend 72 and the second adherend 73 are laminated. Is heated and pressed so as to sandwich the multilayer resin sheet 70, whereby the first adherend 72, the multilayer resin sheet 80, and the second adherend 73 as shown in FIG. A laminated body can be obtained.
- the adherend is not particularly limited.
- metals such as copper, aluminum, chromium copper, and nickel-plated metal plates, resins such as polyimide, epoxy, triazine, melanin, nylon, and ABS, alumina, and nitride
- resins such as polyimide, epoxy, triazine, melanin, nylon, and ABS, alumina, and nitride
- ceramics such as boron, magnesium oxide, silicon nitride, and aluminum nitride, and composite materials that are mixtures thereof.
- the multilayer resin sheet of the present invention has a high thermal conductivity, and can form a cured product of a highly thermally conductive multilayer resin sheet that can withstand severe thermal shock during mounting and actual driving. Expansion to heat radiation materials for hybrid vehicle inverters, which are expected to increase in demand, heat radiation materials for industrial equipment inverters, or heat radiation materials for LEDs is expected.
- the multilayer resin sheet cured product of the present invention is a resin composition layer containing a thermosetting resin and a filler, and is disposed on at least one surface of the resin composition layer, and has a surface not facing the resin composition layer.
- the thermosetting resin preferably forms a cured resin having a higher order structure.
- the thermal conductivity of the cured product of the multilayer resin sheet of the present invention has a small change before and after curing despite the presence of the adhesive layer resin on the surface.
- This can be considered as follows, for example. That is, when the multilayer resin sheet is attached to the adherend so that the adhesive layer is on the adherend side, the adhesive layer is deformed, and the resin of the adhesive layer enters the unevenness of the resin composition layer, thereby causing the adhesive It is believed that the layer thickness is reduced. Thereby, it can be considered that this is because the distance between the resin composition layer and the adherend is shortened and a heat conduction path is easily formed. It can be considered that the thermal conductivity is improved by curing the multilayer resin sheet in this state.
- FIG. 6 is a schematic cross-sectional view showing an example of the configuration of the cured multilayer resin sheet 10 in the present invention.
- the multilayer resin sheet cured product 10 includes a cured resin layer 2 in which a resin composition layer containing the filler 5 is cured, and an adhesive layer 1 disposed on both surfaces of the cured resin layer 2.
- the adhesive layer 1 enters the unevenness caused by the filler 5 in the cured resin layer 2, and the filler 5 exists at the interface between the cured resin layer 2 and the adhesive layer 1.
- FIG.8 and FIG.10 is an example of the cross-sectional observation photograph of the multilayer resin sheet hardened
- the area of the adhesive interface is small, and the anchor effect is difficult to be generated.
- Adhesive strength tends to be inferior.
- the resin of the adhesive layer having low thermal conductivity is not taken in unevenness after curing, the thickness of the adhesive layer tends to remain thick, and the distance between the adherend and the resin composition layer remains long. Therefore, thermal conductivity may be inferior.
- FIG. 7 is a schematic cross-sectional view showing an example of a configuration of a cured multilayer resin sheet 20 obtained by curing a multilayer resin sheet having a resin composition layer having a flat surface.
- the multilayer resin sheet cured product 20 includes a cured resin layer 4 in which a resin composition layer including the filler 6 is cured, and an adhesive layer 3 disposed on both surfaces of the cured resin layer 4.
- the cured resin layer 4 does not have irregularities due to the filler 5, and therefore the filler 5 does not exist at the interface between the cured resin layer 4 and the adhesive layer 1.
- FIGS. 9 and 11 are examples of cross-sectional observation photographs of the cured resin sheet obtained by curing a multilayer resin sheet having a resin composition layer having a flat surface. As shown in FIGS. 9 and 11, in the cured multilayer resin sheet in which the surface of the conventional resin composition layer is flat, the filler is not present at the interface between the cured resin layer and the adhesive layer.
- the multilayer resin sheet cured product of the present invention exhibits high thermal conductivity because fillers having a large volume average particle diameter contact each other in the cured resin composition layer.
- the distance between the filler and the filler having a high thermal conductivity be as close as possible to form a path in the direction of passing heat. For example, when a filler having a large volume average particle diameter, or between fillers having a small particle size filling between fillers having a large particle size or between fillers having a large particle size are in contact with each other without interposing a resin, heat conduction occurs. Since an easy path can be formed, high thermal conductivity is likely to occur.
- the resin of the adhesive layer is deformed to the surface shape of the resin composition layer by pressing.
- the adhesive layer itself may be thinned.
- the filler contained in the resin composition layer may be pushed into the adhesive layer, and it is considered that a heat conduction path is easily formed in the thickness direction.
- the thermal conductivity of the adhesive layer is significantly smaller than that of the resin composition layer, so that the thermal conductivity is greatly reduced. There is. In that case, the thermal resistance can be reduced and the thermal conductivity can be improved by reducing the resin thickness of the adhesive layer, but there is a physical limit to making the adhesive layer thin.
- a method to increase the thermal conductivity by filling the adhesive layer with a filler can be considered, but there are problems such as deterioration of the adhesive strength if it is added excessively, and it is difficult to balance the adhesive strength and thermal conductivity. Become.
- the adhesive layer since the resin of the adhesive layer enters the unevenness of the resin composition layer by pressing, the adhesive layer itself is thinned.
- the filler that was near the surface of the resin composition layer before the press treatment is pushed into the adhesive layer by the press treatment, it is considered that the filler exists near the surface of the multilayer resin sheet. From these effects, since the distance between the cured resin layer obtained by curing the resin composition layer and the adherend approaches, the thermal conductivity becomes very good. Furthermore, it is considered that the filler particles having a large particle diameter come into contact with each other even inside the cured resin layer, so that a continuous structure of boron nitride is easily formed, and the thermal conductivity inside the cured resin layer is greatly improved. it can.
- the state in which at least a part of the filler (preferably a filler having a large particle diameter) contained in the resin composition layer is in the adhesive layer is, for example, a cured resin layer and an adhesive of a cured multilayer resin sheet.
- the cross section perpendicular to the boundary surface with the layer is observed using a scanning electron microscope (SEM) and an electron beam X-ray microanalyzer (XMA), and the distribution state of the filler, the cured resin layer and the adhesive layer It can be judged from the boundary and its structure. Further, if necessary, it may be determined by combining chemical analysis such as IR or elemental analysis.
- the method for producing a cured multilayer resin sheet of the present invention includes a step of heat-treating and curing the multilayer resin sheet.
- the heat treatment conditions for curing the multilayer resin sheet can be appropriately selected according to the configuration of the multilayer resin sheet.
- the heat treatment can be performed at 120 ° C. to 250 ° C. for 10 minutes to 300 minutes.
- the heat treatment for curing the multilayer resin sheet is preferably performed by applying a pressure of 0.1 MPa to 100 MPa.
- the heat treatment is performed in two stages, it is preferable that the heat treatment is performed under conditions of 100 ° C. to 160 ° C. and 0.1 MPa to 100 MPa, and further, heat treatment is performed under conditions of 150 ° C. to 250 ° C.
- the heat treatment can be performed at atmospheric pressure (under normal pressure), but may be performed under reduced pressure.
- the decompression condition is preferably 30000 Pa or less, more preferably 10,000 Pa or less.
- the compression ratio of the multilayer resin sheet is preferably 10% or more, more preferably 12% or more, and further preferably 14%.
- the thickness of the multilayer resin sheet in the B stage state was obtained by heat-treating the multilayer resin sheet in the B stage state at a temperature of 165 ° C., a pressure of 10 MPa, a degree of vacuum ⁇ 1 kPa, and a treatment time of 3 minutes.
- the percentage of the value obtained by subtracting the value obtained by dividing the thickness of the cured multilayer resin sheet from 1 is defined as the compression rate.
- the resin sheet laminated body of this invention has the said multilayer resin sheet and the metal plate or heat sink arrange
- the thermal conductivity and the insulation are excellent, the adhesive strength between the multilayer resin sheet and the metal plate or the heat radiating plate is good, and the thermal shock resistance is also excellent.
- the multilayer resin sheet are as described above.
- the metal plate or the heat radiating plate include a copper plate, an aluminum plate, and a ceramic plate.
- the thickness of a metal plate or a heat sink is not specifically limited.
- a metal plate or a heat sink is arrange
- the manufacturing method of the resin sheet laminated body of this invention includes the process of arrange
- a method for disposing a metal plate or a heat radiating plate on the adhesive layer of the multilayer resin sheet a commonly used method can be used without particular limitation.
- the method etc. which a metal plate or a heat sink is bonded together on the adhesive material layer of a multilayer resin sheet can be mentioned.
- the bonding method include a pressing method and a laminating method. The conditions for the pressing method and the laminating method can be appropriately selected according to the configuration of the multilayer resin sheet.
- the resin sheet laminate has a metal plate or a heat sink on one adhesive layer of a multilayer resin sheet provided with an adhesive layer on both sides of the resin composition layer, and is deposited on the other adhesive layer. You may have a body.
- Such a resin sheet laminate can form a cured resin sheet laminate excellent in thermal conductivity between the adherend and the metal plate or the heat sink by curing the resin sheet by heat treatment.
- the adherend is not particularly limited.
- Examples of the material of the adherend include metal, resin, ceramics, and a composite material that is a mixture thereof.
- the cured resin sheet laminate of the present invention is disposed on at least one surface of a resin composition layer containing a thermosetting resin and a filler, and the resin composition layer, the cured resin layer and the resin composition layer, Is a heat-treated product of a resin sheet laminate having an adhesive layer having an arithmetic average surface roughness Ra of 1.5 ⁇ m or less on a non-opposing surface, and a metal plate or a heat radiating plate disposed on the adhesive layer.
- the method for producing a cured product of a resin sheet laminate of the present invention includes a step of obtaining a resin sheet laminate by placing a metal plate or a heat sink on an adhesive layer of the multilayer resin sheet, and heating the resin sheet laminate. And curing the resin composition layer.
- the method for producing a cured resin sheet laminate may include other steps as necessary.
- the method for arranging the metal plate or the heat sink on the multilayer resin sheet is as described above.
- heat treatment is performed to cure the resin composition layer of the resin sheet laminate.
- the heat treatment can be performed, for example, under conditions of 120 ° C. to 250 ° C. and 10 minutes to 300 minutes.
- the heat treatment conditions preferably include a temperature at which a higher-order structure is easily formed from the viewpoint of thermal conductivity, and in particular, heating at least in two stages of 100 ° C. to 160 ° C. and 150 ° C. to 250 ° C. is performed. More preferred. Furthermore, it is more preferable to perform a heat treatment of two or more steps in the above temperature range.
- the method for producing a cured resin sheet laminate of the present invention may further include a step of arranging an adherend on the surface of the resin sheet laminate that is opposite to the surface on which the metal plate or the heat sink is disposed.
- the adherend is not particularly limited. Examples of the material of the adherend include metal, resin, ceramics, and a composite material that is a mixture thereof.
- the method for arranging the adherend on the surface of the resin sheet laminate is the same as the method for arranging the metal plate or the heat radiating plate described above.
- the step of placing the adherend on the surface of the resin sheet laminate may be performed before the step of curing the resin sheet laminate, either before or after the step of obtaining the resin sheet laminate.
- a resin sheet laminate cured product obtained by curing a resin composition layer of a resin sheet laminate having a metal plate or a heat sink on one surface and an adherend on the other surface is a metal plate or It exhibits a particularly excellent effect on the thermal conductivity between the heat sink and the adherend.
- the manufacturing method of the resin sheet laminated body cured product of the present invention includes a first step of obtaining a resin composition layer comprising a resin composition containing a thermosetting resin monomer, a curing agent and a filler, and the resin composition layer.
- a second step of adhering an adhesive layer on at least one surface to obtain a multilayer resin sheet; and adhering a metal plate or the like to the multilayer resin sheet and adhering at least a part of the filler contained in the resin composition layer A third step of getting into the material layer to obtain the resin sheet laminate, and a fourth step of curing the resin composition layer by heat-treating the obtained resin sheet laminate, necessary It is also preferable to include other steps according to the above.
- a commonly used method for producing a multilayer resin sheet can be used without particular limitation.
- a thermosetting resin monomer, a curing agent, a filler, other components included as necessary, and an organic solvent are mixed to prepare a resin composition, which is applied to a support or the like.
- a resin composition layer can be formed by forming a coating layer and removing (drying) at least part of the organic solvent from the coating layer. The details of the method for forming the resin composition layer are the same as the method for preparing the resin composition layer described above.
- the resin composition layer is obtained by removing (drying) at least a part of the organic solvent from the coating layer.
- the coating layer from which at least a part of the organic solvent has been removed may be further subjected to heat and pressure treatment so that the resin composition constituting the resin composition layer is in a semi-cured state (B stage).
- the method of heat-pressing the resin composition layer can be heated and pressurized using a hot press or a laminator.
- the heating and pressing conditions for making the resin composition constituting the resin composition layer in a semi-cured state can be appropriately selected according to the configuration of the resin composition. Heating and pressing can be performed under conditions of 1 to 100 MPa and 0.3 to 30 minutes.
- a 2nd process also includes the process of entering at least one part of the said filler in the said adhesive material layer.
- a method for attaching the adhesive layer on at least one surface of the resin composition layer for example, using a press device, a laminating device, a metal roller press device, a vacuum press device, etc., the resin composition layer and the film shape
- a method of heating and pressing a laminate of the adhesive layers can be mentioned.
- the heating and pressing conditions are appropriately selected according to the configuration of the multilayer resin sheet, but the heating temperature is 60 to 220 ° C., the pressure is 0.1 to 100 MPa, and the treatment time is 0.1 to 60 minutes. Is preferred. More preferably, the temperature is 80 ° C. to 180 ° C., the pressure is 0.2 MPa to 80 MPa, and the treatment time is 0.2 minutes to 20 minutes. In addition, it is more desirable that these conditions be determined in consideration of the third step described later.
- the heating and pressurization can be performed at atmospheric pressure (under normal pressure), but is preferably performed under reduced pressure.
- the decompression condition is preferably 30000 Pa or less, more preferably 10,000 Pa or less.
- a copper, aluminum, chrome copper, nickel plated metal plate or the like is placed on and adhered to the adhesive layer of the multilayer resin sheet, and the filler in the resin composition layer in the adhesive layer At least a part of (preferably a filler having a large particle diameter) is introduced.
- the above process is preferably performed by heat and pressure treatment, and specifically includes press treatment.
- the press treatment is not particularly limited as long as at least part of the filler in the resin composition layer can follow the interface with the adhesive layer and can be adhered to the metal plate or the like.
- a pressing method by heating and pressing using a pressing device, a laminating device, a metal roller pressing device, a vacuum pressing device, or the like can be given.
- the conditions for the heat and pressure treatment are appropriately selected according to the configuration of the multilayer resin sheet.
- the temperature can be 80 ° C. to 200 ° C., the pressure 1 MPa to 100 MPa, the time 0.1 minutes to 60 minutes, the temperature 100 ° C. to 200 ° C., the pressure 1.5 MPa to 80 MPa, and the time 0 3 to 40 minutes is preferable.
- the heat and pressure treatment can be performed at atmospheric pressure (under normal pressure), but is preferably performed under reduced pressure.
- the decompression condition is preferably 30000 Pa or less, more preferably 10,000 Pa or less.
- the resin composition layer is cured by heat treatment after the third step.
- the heat treatment can be performed, for example, at 80 ° C. to 250 ° C. for 0.1 minute to 360 minutes.
- the cured resin sheet laminate may be obtained by curing only the resin sheet laminate, or may be cured in a state where the resin sheet laminate and the adherend are further bonded. .
- the cured resin sheet laminate adhered to the adherend is excellent in thermal conductivity between the metal plate and the adherend, and excellent in adhesive strength and insulation. Further, since the filler (preferably a filler having a large particle diameter) can be deformed along the surface shape of the adherend, it exhibits particularly excellent effects on the thermal conductivity between the metal plate and the adherend. .
- the adherend is not particularly limited.
- Examples of the material of the adherend include metal, resin, ceramics, and a composite material that is a mixture thereof.
- the metal foil is not particularly limited, such as a gold foil, a copper foil, and an aluminum foil, but a copper foil is generally used.
- the multilayer resin sheet with a metal foil of the present invention includes the multilayer resin sheet and a metal foil disposed on the adhesive layer of the multilayer resin sheet.
- the thickness of the metal foil is not particularly limited as long as it is 1 ⁇ m to 400 ⁇ m, but the flexibility is further improved by using a metal foil of 105 ⁇ m or less.
- nickel, nickel-phosphorous, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as the intermediate layers for the metal foil, and a 0.5-15 ⁇ m copper layer and 10-300 ⁇ m on both sides.
- a composite foil having a three-layer structure provided with a copper layer or a two-layer structure composite foil in which aluminum and copper foil are combined can also be used.
- a multilayer resin sheet with a metal foil can be produced, for example, by sticking an adhesive layer of the multilayer resin sheet on the metal foil, or by directly coating the metal foil on the metal foil.
- FIGS. 12 to 14 show a power semiconductor device configuration using the cured semiconductor device multilayer resin sheet
- FIGS. 15 to 18 show the semiconductor device multilayer resin sheet cured product. The structure of an LED device is shown.
- FIG. 12 shows a structure in which a copper plate 104 in which a power semiconductor element 110 is disposed via a solder layer 112, a cured multilayer resin sheet 102 of the present invention, a heat dissipation base 106, and a case 114 containing them are laminated.
- 2 is a schematic cross-sectional view showing a configuration example of a power semiconductor device 100 configured on a water cooling jacket 120 via a layer 108.
- the heat dissipating base 106 can be configured using copper or aluminum having thermal conductivity. Examples of power semiconductor elements include IGBTs and thyristors.
- FIG. 13 is a schematic cross-sectional view illustrating a configuration example of a power semiconductor device 150 configured by disposing cooling members on both surfaces of the power semiconductor element 110.
- the cooling member disposed on the upper surface of the power semiconductor element 110 includes a two-layered copper plate 104 that is laminated via a solder layer 112. With such a configuration, generation of chip cracks and solder cracks can be more effectively suppressed.
- the copper plate 104 disposed on the side far from the semiconductor element 110 is connected to the water cooling jacket 120 via the resin sheet cured product 102 and the grease layer 108.
- one layer of the copper plate 104 is connected to the water cooling jacket 120 via the resin sheet cured product 102 and the grease layer 108.
- the cured resin sheet 102 and the water cooling jacket 120 are disposed via the grease layer 108, but the cured resin sheet 102 and the water cooling jacket 120 may be disposed so as to be in direct contact with each other.
- FIG. 14 is a schematic cross-sectional view showing a configuration example of a power semiconductor device 200 configured by disposing cooling members on both surfaces of the power semiconductor element 110.
- the cooling members disposed on both surfaces of the power semiconductor element 110 are each configured to include one layer of copper plate 104.
- the multilayer resin sheet cured product 102 and the water cooling jacket 120 are disposed via the grease layer 108, but the multilayer resin sheet cured product 102 and the water cooling jacket 120 may be disposed so as to be in direct contact with each other. Good.
- FIG. 15 is a schematic cross-sectional view showing an example of the configuration of the LED light bar 300 configured using the cured multilayer resin sheet of the present invention.
- the LED light bar 300 includes a housing 138, a grease layer 136, an aluminum substrate 134, a cured resin sheet 132, and an LED chip 130 arranged in this order and fixed with screws 140.
- the LED chip 130 By disposing the LED chip 130 as a heating element on the aluminum substrate 134 through the cured resin sheet 132, it is possible to efficiently dissipate heat.
- FIG. 16 is a schematic cross-sectional view showing a configuration example of the light emitting unit 350 of the LED bulb.
- a housing 138, a grease layer 136, an aluminum substrate 134, a cured multilayer resin sheet 132, a circuit layer 142, and an LED chip 130 are arranged in this order and fixed with screws 140. Configured.
- FIG. 17 is a schematic cross-sectional view showing an example of the overall configuration of the LED bulb 450.
- a light emitting housing 138 of the LED bulb is disposed on a sealing resin 146 that encloses a power supply member 148.
- FIG. 18 is a schematic cross-sectional view showing an example of the configuration of the LED substrate 400.
- the LED substrate 400 includes an aluminum substrate 134, a cured multilayer resin sheet 132 of the present invention, a circuit layer 142, a solder layer 143, and an LED chip 130 arranged in this order.
- the LED chip 130 By disposing the LED chip 130 as a heating element on the aluminum substrate 134 via the circuit layer 142 and the cured resin sheet 132, heat can be efficiently radiated.
- ⁇ Resin composition layer> (Filler) AA-18 [Aluminum oxide, manufactured by Sumitomo Chemical Co., Ltd .; volume average particle size 18 ⁇ m] AA-3 [Aluminum oxide, manufactured by Sumitomo Chemical Co., Ltd .; volume average particle size 3 ⁇ m] AA-04 [Aluminum oxide, manufactured by Sumitomo Chemical Co., Ltd .; volume average particle size 0.4 ⁇ m] FS-3 [boron nitride, manufactured by Mizushima Alloy Iron Co., Ltd .; volume average particle size 76 ⁇ m] HP-40 [Boron nitride, manufactured by Mizushima Alloy Iron Co., Ltd .; volume average particle size 45 ⁇ m]
- CRN catechol resorcinol novolak resin (solid content 50%, cyclohexanone solution)
- the method for producing the catechol resorcinol novolak resin was referred to Japanese Patent Application Laid-Open No. 2006-131852, Japanese Patent Application Publication No. 2010-518183, and the like.
- PNAP (phenol novolak + phenyl aldehyde) type glycidyl ether (EPPN-502H, Epoxy equivalent 170 g / eq manufactured by Nippon Kayaku Co., Ltd.)
- BIS-AD glycidyl ether of bisphenol AD mixture (ZX-1059, manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 168 g / eq)
- MOPOC 1- ⁇ (3-methyl-4-oxiranylmethoxy) phenyl ⁇ -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene (epoxy equivalent 202 g / eq)
- MOPOC was prepared with reference to Japanese Patent Application Laid-Open Nos. 2005-206814 and 2005-29778.
- TPP Triphenylphosphine (Wako Pure Chemical Industries, Ltd.)
- PAM 3-phenylaminopropyltrimethoxysilane (silane coupling agent; manufactured by Shin-Etsu Chemical Co., Ltd .; KBM-573)
- Example 1> Preparation of resin composition layer 42.91 parts of aluminum oxide mixture (AA-3: AA-04; volume-based mixing ratio 2.4: 1) and 46.04 parts of boron nitride (HP-40) (volume-based mixing ratio with respect to AA-04: 6. 6: 1), 0.09 part of silane coupling agent (PAM), 7.23 parts of CRN CHN solution (solid content 50%) as a curing agent for epoxy resin, and 46.02 parts of CHN, It was confirmed that it became uniform. Thereafter, 11.73 parts of MOPOC and 0.13 parts of TPP were further added and mixed as an epoxy resin monomer. Thereafter, ball milling was performed for 20 to 40 hours to obtain a resin composition layer forming coating solution.
- PAM silane coupling agent
- CRN CHN solution solid content 50%
- the obtained coating composition for forming a resin composition layer was applied onto a release surface of a PET (polyethylene terephthalate) film using a comma coater (manufactured by Hiranotech Sheet Co., Ltd.), and 5 minutes in a box oven at 100 ° C. Dried. As a result, an A stage sheet 1 having an A stage resin composition layer formed on a PET film was obtained.
- A-stage sheets each having a resin composition layer formed on the PET film obtained as described above were stacked so that the resin composition layers face each other, and a hot press device (hot plate 150 ° C., pressure 15 MPa, Then, the PET film was peeled off to obtain a B-stage resin composition layer having a thickness of 184 ⁇ m.
- the surface roughness of the resin composition layer in the B-stage state was measured with a surface roughness measuring device by Kosaka Laboratories at a measurement condition of 1 mm / s.
- Adhesive Layer Film 1 Epoxy Adhesive Layer As epoxy resin, 24.2 parts YD-8170C, 13.5 parts YDCN-703, 30.67 parts LF-2882 as a curing agent, 0.083 part 2PZ-CN as a curing accelerator, acrylic modified Mixing 196.53 parts of HTR-860P-3 as rubber, 0.21 part of A-189, 0.83 part of A-1160 and 231.58 parts of AO802 as filler was mixed for 1 hour to obtain an adhesive layer coating solution.
- epoxy resin 24.2 parts YD-8170C, 13.5 parts YDCN-703, 30.67 parts LF-2882 as a curing agent, 0.083 part 2PZ-CN as a curing accelerator, acrylic modified Mixing 196.53 parts of HTR-860P-3 as rubber, 0.21 part of A-189, 0.83 part of A-1160 and 231.58 parts of AO802 as filler was mixed for 1 hour to obtain an adhesive layer coating solution.
- an adhesive layer film 1 was formed to obtain an adhesive layer film 1.
- the film thickness of the adhesive layer was set to 10 ⁇ m.
- Adhesive layer film 2 (PET film on which a polyamideimide resin adhesive layer is formed) is provided on both sides of the B-stage resin composition layer, and the adhesive layer faces the B-stage resin composition layer. And using a laminator (MVLP-600 / 700, manufactured by Meiki Seisakusho) on both sides of the resin composition layer under conditions of a temperature of 120 ° C., a pressure of 0.7 MPa, a vacuum degree of ⁇ 1 kPa, and a time of 15 seconds. An insulative adhesive layer was affixed to a multilayer resin sheet (hereinafter also referred to as “B stage sheet”).
- B stage sheet a multilayer resin sheet
- Example 2 a multilayer resin sheet was used in the same manner as in Example 1 except that the adhesive layer film 1 (PET film on which an epoxy resin adhesive layer was formed) was used instead of the adhesive layer film 2. And the resin sheet laminated body cured
- the adhesive layer film 1 PET film on which an epoxy resin adhesive layer was formed
- Example 3 In Example 1, in the same manner as in Example 1 except that the adhesive layer film 3 (PET film on which polyamideimide-based adhesive layer has filler) was used instead of the adhesive layer film 2, a multilayer was formed. A cured resin sheet laminate 3 in which copper foil was provided on both surfaces of the resin sheet and the multilayer resin sheet was obtained.
- the adhesive layer film 3 PET film on which polyamideimide-based adhesive layer has filler
- Example 4 A multilayer resin sheet and a multilayer resin sheet were obtained in the same manner as in Example 1 except that a mixture of FS-3 and HP-40 (volume-based mixing ratio 1: 1) was used instead of HP-40 in Example 1. Resin sheet laminate cured product 4 having copper foil provided on both sides was obtained.
- Example 5 a multilayer resin sheet was used in the same manner as in Example 4 except that the adhesive layer film 1 (PET film on which an epoxy resin adhesive layer was formed) was used instead of the adhesive layer film 2. And the resin sheet laminated body hardened
- the adhesive layer film 1 PET film on which an epoxy resin adhesive layer was formed
- Example 6 In Example 4, instead of the adhesive layer film 2, an adhesive layer film 3 (PET film on which a polyamideimide-based adhesive layer (with filler) was formed) was used in the same manner as in Example 4, A cured resin sheet laminate 6 in which copper foil was provided on both surfaces of the multilayer resin sheet and the multilayer resin sheet was obtained.
- an adhesive layer film 3 PET film on which a polyamideimide-based adhesive layer (with filler) was formed
- Example 7 In Example 1, both sides of the multilayer resin sheet and the multilayer resin sheet were prepared in the same manner as in Example 1 except that a 1: 1 mixture of PNAP and BIS-AD was used instead of MOPOC as the resin composition layer. A cured resin sheet laminate 7 having a copper foil provided thereon was obtained.
- the obtained coating composition for forming a resin composition layer was applied onto a release surface of a PET (polyethylene terephthalate) film using a comma coater (manufactured by Hiranotech Sheet Co., Ltd.), and 5 minutes in a box oven at 100 ° C. It dried and the A stage sheet
- the subsequent sheet manufacturing conditions were the same as in Example 1.
- Example 8 a multilayer resin sheet was used in the same manner as in Example 7 except that the adhesive layer film 1 (PET film on which an epoxy resin adhesive layer was formed) was used instead of the adhesive layer film 2. And the resin sheet laminated body hardened
- the adhesive layer film 1 PET film on which an epoxy resin adhesive layer was formed
- Example 9 In Example 7, in place of the adhesive layer film 2, an adhesive layer film 3 (polyamideimide adhesive layer (with filler) formed PET film) was used in the same manner as in Example 1, except that a multilayer A cured resin sheet laminate 9 in which copper foil was provided on both surfaces of the resin sheet and the multilayer resin sheet was obtained.
- an adhesive layer film 3 polyamideimide adhesive layer (with filler) formed PET film
- Example 10 In Example 1, except that 46.04 parts of FS-3 was used in place of HP-40, a resin sheet in which copper foil was provided on both surfaces of the multilayer resin sheet and the multilayer resin sheet in the same manner as in Example 1. A laminate cured product 10 was obtained.
- Example 11 a multilayer resin sheet was used in the same manner as in Example 10 except that the adhesive layer film 1 (PET film on which an epoxy resin adhesive layer was formed) was used instead of the adhesive layer film 2. And the resin sheet laminated body cured
- the adhesive layer film 1 PET film on which an epoxy resin adhesive layer was formed
- Example 12 In Example 10, instead of the adhesive layer film 2, an adhesive layer film 3 (PET film on which a polyamideimide-based adhesive layer (with filler) was formed) was used in the same manner as in Example 10, A resin sheet laminate cured product 12 in which copper foil was provided on both surfaces of the multilayer resin sheet and the multilayer resin sheet was obtained.
- PET film on which a polyamideimide-based adhesive layer (with filler) was formed PET film on which a polyamideimide-based adhesive layer (with filler) was formed
- Example 13 42.91 parts of aluminum oxide mixture (AA-3: AA-04; volume-based mixing ratio 2.4: 1) and 46.02 parts of boron nitride (HP-40) (volume-based mixing ratio with respect to AA-04: 6. 6: 1), 0.09 part of silane coupling agent (PAM), 10.93 parts of CRN CHN solution (solid content 50%) as a curing agent for epoxy resin, and 31.33 parts of CHN, It was confirmed that it became uniform. As the epoxy resin monomer, 7.41 parts of PNAP and BIS-AD, respectively, and 0.16 part of TPP were further added and mixed. Ball milling was performed for 20 to 40 hours to prepare a resin composition layer forming coating solution.
- PAM silane coupling agent
- CRN CHN solution solid content 50%
- Example 14 42.91 parts of aluminum oxide mixture (AA-3: AA-04; volume-based mixing ratio 2.4: 1) and 46.02 parts of boron nitride (HP-40) (volume-based mixing ratio with respect to AA-04: 6. 6: 1), 0.09 part of silane coupling agent (PAM), 13.50 parts (solid content 50%) of CHN in CRN as a curing agent for epoxy resin, and 38.8 parts of CHN, It was confirmed that it became uniform.
- epoxy resin monomers 9.17 parts of PNAP and BIS-AD and 0.20 parts of TPP were further added and mixed. Ball milling was performed for 20 to 40 hours to prepare a resin composition layer forming coating solution.
- Example 15 75.55 parts of aluminum oxide mixture (AA-18: AA-3: AA-04; volume-based mixing ratio 2.6: 2.4: 1) and 27.84 parts of boron nitride (HP-40) (AA- Volume-based mixing ratio with respect to 04, 6.6: 1), 0.10 parts of silane coupling agent (PAM), 8.68 parts of CRN CHN solution (solid content 50%) as a curing agent for epoxy resin, CHN24 .89 parts were mixed and confirmed to be uniform.
- PAM silane coupling agent
- CRN CHN solution solid content 50%
- As epoxy resin monomers 5.88 parts of PNAP and BIS-AD, respectively, and 0.13 part of TPP were further added and mixed. Ball milling was performed for 20 to 40 hours to prepare a resin composition layer forming coating solution.
- Example 16 100.94 parts of aluminum oxide mixture (AA-18: AA-3: AA-04; volume-based mixing ratio 2.6: 2.4: 1) and 13.95 parts of boron nitride (HP-40) (AA- Volume-based mixing ratio of 6.6: 1 to 04, 0.11 part of silane coupling agent (PAM), 8.70 parts of CHN solution of CRN as a curing agent for epoxy resin (solid content 50%), CHN24 .94 parts were mixed and confirmed to be uniform.
- PAM silane coupling agent
- CHN solution of CRN solid content 50%
- CHN24 .94 parts were mixed and confirmed to be uniform.
- epoxy resin monomers 5.90 parts of PNAP and BIS-AD, respectively, and 0.13 part of TPP were further added and mixed. Ball milling was performed for 20 to 40 hours to prepare a resin composition layer forming coating solution.
- Example 17 (Production of multilayer resin sheet)
- One A-stage sheet 1 obtained in Example 1 and one adhesive layer film 1 (epoxy resin-based adhesive layer) are overlapped so that the resin composition layer and the adhesive layer are in contact with each other. Then, using a hot press apparatus (hot plate 150 ° C., pressure 10 MPa, treatment time 1 minute), the layers were bonded by heating and pressing.
- a multilayer resin sheet was obtained in which an adhesive layer was provided on one side of a B-stage resin composition layer having a thickness of 112 ⁇ m.
- Example 18 Both surfaces of the multilayer resin sheet and the multilayer resin sheet were obtained in the same manner as in Example 10 except that the A-stage sheet 1 produced in Example 1 was used and the adhesive layer film 3 was used instead of the adhesive layer film 1. A cured resin sheet laminate 11 having a copper foil provided thereon was obtained.
- Example 19 Copper foil is provided on both surfaces of the multilayer resin sheet and the multilayer resin sheet in the same manner as in Example 10 except that the A stage sheet 3 (PNAP sheet) prepared in Example 7 was used instead of the A stage sheet 1. Thus obtained resin sheet laminate cured product 12 was obtained.
- a stage sheet 3 PNAP sheet
- Example 20 Both sides of the multilayer resin sheet and the multilayer resin sheet were obtained in the same manner as in Example 12 except that the A-stage sheet 3 produced in Example 7 was used instead of the adhesive layer film 2. A cured resin sheet laminate 11 having a copper foil provided thereon was obtained.
- the obtained resin composition-forming coating solution was applied onto the release surface of a PET (polyethylene terephthalate) film using a comma coater (manufactured by Hirano Tech Sheet Co., Ltd.) and dried in a box oven at 100 ° C. for 15 minutes. Then, an A stage sheet 4 in which an A stage resin composition layer was formed on a PET film was formed.
- the PET film (adhesive layer film 2) in which the adhesive layer of the polyamideimide resin obtained above is formed on both surfaces of the resin composition layer in the B-stage state obtained above, and the adhesive layer is B Insulating on both sides of the resin composition layer under the conditions of temperature 110 ° C., pressure 0.7 MPa, vacuum degree ⁇ 1 kPa, time 15 seconds, using a laminator to overlap the resin composition layer in the stage state.
- a multilayer resin sheet was obtained by pasting the adhesive layer.
- Comparative Example 2 a multilayer resin sheet was used in the same manner as in Comparative Example 1 except that the adhesive layer film 1 (PET film on which an epoxy resin adhesive layer was formed) was used instead of the adhesive layer film 2. And the resin sheet laminated body hardened
- the adhesive layer film 1 PET film on which an epoxy resin adhesive layer was formed
- Example 3 As in Example 7, except that 46.04 parts of FS-3 (volume-based mixture ratio 6.6 to AA-04) was used instead of HP-40 as the boron nitride filler, the multilayer resin sheet and both surfaces A cured resin sheet laminate 11 provided with a copper foil was obtained.
- FS-3 volume-based mixture ratio 6.6 to AA-04
- ⁇ Comparative Example 5> Using one of the A stage sheets 4 obtained in Comparative Example 1, a heat press treatment (hot plate 180 ° C., pressure 10 MPa, treatment time 10 minutes) was performed by heating and pressurizing, and a flattened resin A sheet was obtained. Next, the adhesive layer film 1 (PET film on which an epoxy resin adhesive layer is formed) and the flattened sheet obtained above using a vacuum laminator, a temperature of 120 ° C. and a pressure of 0.7 MPa The laminate was pasted under the conditions of a degree of vacuum ⁇ 1 kPa and a time of 15 seconds to obtain a multilayer resin sheet having a thickness of 113 ⁇ m.
- a heat press treatment hot plate 180 ° C., pressure 10 MPa, treatment time 10 minutes
- C stage sheet Copper was removed by etching from the cured resin sheet laminate obtained above using a sodium persulfate solution to obtain a cured multilayer resin sheet (C stage sheet). This was cut into 10 mm squares, blackened with graphite spray, and the thermal diffusivity was measured using a Nanoflash LFA447 model manufactured by NETZSCH. As measurement conditions, measurement temperature is 25 ⁇ 1 ° C., measurement voltage is 270 V, Amplitude 5000, and pulse width is 0.06 ms.
- B stage sheet dielectric strength The B stage sheet was sandwiched between a 20 mm ⁇ aluminum electrode and a 50 mm square aluminum plate, and the withstand voltage under alternating current was measured using a YST-243-100RHO manufactured by Yamayo Tester.
- the measurement conditions were a pressure increase rate of 1 kV / sec, a measurement temperature of 23 ° C. ⁇ 2 ° C., and measurement was performed in the atmosphere.
- C stage sheet dielectric strength Copper was etched away from the obtained cured resin sheet using a sodium persulfate solution to obtain a cured multilayer resin sheet (C stage sheet).
- the dielectric strength of the obtained cured multilayer resin sheet under alternating current was measured using YST-243-100RHO manufactured by Yamayo Tester. The measurement conditions were a measurement temperature of 23 ° C. ⁇ 2 ° C., a pressure increase rate of 1 kV / sec, and a measurement temperature of 23 ° C. ⁇ 2 ° C. was measured in the atmosphere.
- Measurement of the surface roughness of the adhesive layer constituting the multilayer resin sheet in the B-stage state was performed at 1 mm / s using a surface roughness measuring machine manufactured by Kosaka Laboratory. The surface roughness was evaluated using the arithmetic average roughness. At the time of measurement, the support is peeled off and the roughness on the bonded surface is measured.
- compression rate Percentage of a value obtained by subtracting 1 from the value obtained by dividing the thickness of the cured multilayer resin sheet by the sum of the thickness of the resin composition layer at the time of the B-stage sheet and the thickness of the adhesive layer before being attached to the resin composition layer was the compression rate.
- the state of the filler entering the adhesive layer was evaluated as follows. For the two types of samples before and after the press treatment of the multilayer resin sheet, the cross section perpendicular to the boundary surface between the resin composition layer and the adhesive layer was examined with a scanning electron microscope (SEM, Oxford Instruments, INCA Energy 350) and attached electron beam X-ray microanalyzer (XMA, acceleration voltage 20 kV, vapor deposition material Pt-Pd) are used for cross-sectional observation, filler distribution and resin composition layer From the boundary and the structure of the adhesive layer, the presence or absence of filler entry into the adhesive layer was determined.
- SEM scanning electron microscope
- XMA acceleration voltage 20 kV
- Pt-Pd vapor deposition material
- the cured resin sheet laminate formed using the multilayer resin sheet of the present invention is excellent in all of thermal conductivity, adhesive strength and insulation.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Laminated Bodies (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Die Bonding (AREA)
Abstract
Description
また本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
さらに本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
本発明の多層樹脂シートは、熱硬化性樹脂及びフィラーを含む樹脂組成物層と、前記樹脂組成物層の少なくとも一方の面上に配置され、前記樹脂組成物層とは対向しない面(以下、「表面」ともいう)の算術平均表面粗さRaが1.5μm以下である接着材層とを有する。多層樹脂シートは、必要に応じてその他の層を有していてもよい。
これは例えば、以下のように考えることができる。
樹脂組成物層は、熱硬化性樹脂の少なくとも1種と、フィラーの少なくとも1種とを含み、必要に応じてその他の成分を含んで構成される。
熱硬化性樹脂とフィラーを含むことで、樹脂組成物層を熱処理して硬化することにより熱伝導性に優れた樹脂硬化物層(熱伝導層)を形成することができる。またフィラーを含むことで、樹脂組成物層の表面の算術平均表面粗さを所望の範囲とすることが容易になる。
前記樹脂組成物層は、フィラーを含むことで熱伝導性を向上させている。前記樹脂組成物層中のフィラーの含有率は特に制限されず、熱伝導性と接着性の観点から、樹脂組成物層の全固形分中40体積%~85体積%であることが好ましく、熱伝導性の観点から、50体積%~80体積%であることがより好ましい。また、樹脂組成物層のフィラーの含有量を全固形分中40体積%~85体積%とすることにより、樹脂組成物層の算術平均表面粗さが1.5~4.0μmとなるような凸凹を設けることができる。
なお、樹脂組成物層の全固形分とは、樹脂組成物層を構成する成分のうち、非揮発性成分の総量を意味する。
上記窒化ホウ素フィラーの含有率は、樹脂組成物層の全固形分中に15体積%以上55体積%以下であることがより好ましく、20体積%以上50体積%以下であることがさらに好ましい。
中粒子径のフィラーは、体積平均粒子径が1μm以上10μm以下であることが好ましく、樹脂溶融粘度の観点から、1.5μm以上8μm以下であることがより好ましく、充填性の観点から、2μm以上6μm以下であることが特に好ましい。
小粒子径のフィラーは、体積平均粒子径が0.01μm以上1μm以下であることが好ましく、分散性の観点から、0.05μm以上0.8μm以下であることがより好ましく、充填性の観点から、0.1μm以上0.6μm以下であることが特に好ましい。
小粒子径のフィラーと大粒子径のフィラーの体積基準混合比は、フィラー充填性と熱伝導性の観点から1:3~1:80であることが好ましく、1:4~1:15であることがより好ましい。
樹脂組成物層を構成する熱硬化性樹脂としては特に制限はなく、通常用いられる熱硬化性樹脂から適宜選択して用いることができる。中でも熱硬化性樹脂は、熱伝導性と接着強度の観点から、エポキシ樹脂モノマーの少なくとも1種を含むことが好ましく、エポキシ樹脂モノマーの少なくとも1種と硬化剤の少なくとも1種を含むことがより好ましい。
本発明における樹脂組成物は、エポキシ樹脂モノマー(以下、単に「エポキシ樹脂」ということがある)の少なくとも1種を含む。前記エポキシ樹脂としては通常用いられる一般的なエポキシ樹脂を特に制限なく用いることができる。なかでも硬化前では低粘度であり、フィラー充填性や成形性に優れ、熱硬化後には高い耐熱性や接着性に加えて高い熱伝導性を有するものであることが好ましい。
特に、分子量が5000以下のビスフェノールA型のグリシジルエーテル及びビスフェノールF型のグリシジルエーテルからなる群より選ばれる少なくとも1種の液状エポキシ樹脂を含むときは、樹脂組成物をシート化した時の柔軟性や積層時の流動性をより向上することができる。
前記樹脂組成物層は、硬化剤の少なくとも1種を含むことが好ましい。硬化剤は、エポキシ樹脂モノマーと反応して樹脂硬化物を形成可能な化合物であれば特に制限はない。具体的には例えば、ノボラック樹脂、芳香族アミン系硬化剤、脂肪族アミン系硬化剤、メルカプタン系硬化剤、酸無水物硬化剤などの重付加型硬化剤などを用いることができる。また、これらの硬化剤にイミダゾール、トリフェニルホスフィン、またこれらに側鎖を持たせた置換体などの硬化触媒などを用いることができる。
樹脂組成物層は、熱伝導性と絶縁性の観点から、ノボラック樹脂の少なくとも1種を硬化剤として含むことが好ましい。
mは0~2の整数を表し、mが2の場合、2つのR1は同一であっても異なってもよい。本発明において、流動性の観点からmは0又は1であることが好ましく、熱伝導性の観点からmは0であることがより好ましい。
ここでフェノール性化合物に由来する部分構造とは、フェノール性化合物のベンゼン環部分から水素原子を1個又は2個取り除いて構成される1価又は2価の基を意味する。なお、水素原子が取り除かれる位置は特に限定されない。
また樹脂組成物層中の硬化剤の含有量は、前記エポキシ樹脂モノマーに対して当量基準で、0.8~1.2であることもまた好ましく、0.9~1.1であることがより好ましい。
前記樹脂組成物層は、シランカップリング剤の少なくとも1種をさらに含有してもよい。シランカップリング剤を含むことで、エポキシ樹脂及びノボラック樹脂を含む樹脂成分とフィラーの結合性がより向上し、より高い熱伝導率とより強い接着性を達成することができる。
前記フィラーと結合する官能基としては、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基を挙げることができる。また前記樹脂成分と結合する官能基としては、エポキシ基、アミノ基、メルカプト基、ウレイド基、アミノフェニル基等を挙げることができる。
またSC-6000KS2に代表されるシランカップリング剤オリゴマ(日立化成コーテットサンド社製)を使用することもできる。
これらのシランカップリング剤は1種単独で用いても、又は2種類以上を併用することもできる。
フィラーに対するシランカップリング剤の含有比率は、熱伝導性、絶縁性、成形性の観点から、0.02質量%~1質量%であることが好ましく、高い熱伝導性の観点から0.05質量%~0.5質量%であることがより好ましい。
前記樹脂組成物層は、上記成分に加えて必要に応じてその他の成分を含むことができる。その他の成分としては、有機溶剤、硬化促進剤、分散剤等を挙げることができる。
前記樹脂組成物層の調製方法としては、通常用いられる樹脂シートの製造方法を特に制限なく用いることができる。
例えば、前記熱硬化性樹脂(好ましくは、エポキシ樹脂モノマー)と、前記硬化剤(好ましくは、ノボラック樹脂)と、前記フィラーと、必要に応じて含まれるその他の成分と、有機溶剤とを混合して樹脂組成物を調製し、これをシート状に成形し、有機溶剤の少なくとも一部を除去することで、樹脂組成物層を調製することができる。
さらに、用いる樹脂の種類やフィラーの種類、樹脂組成物層の調製時の乾燥性等により有機溶剤の種類を適宜選択することもできる。
前記樹脂組成物層の膜厚は、マイクロメータ、触針式膜厚計、針式膜厚計等を用いて測定することができる。
本発明においては、接着材層を設ける前に樹脂組成物層を半硬化(Bステージ)状態にしても、接着剤層を設けた後に樹脂組成物層をBステージ状態にしてもよい。
また、樹脂組成物層を半硬化状態とする加熱加圧条件は、樹脂組成物層を形成する樹脂組成物の組成に応じて適宜選択できる。例えば、加熱温度60℃~180℃、圧力0.1MPa~100MPa、0.1分間~30分間の条件で加熱加圧処理することができる。
本発明の多層樹脂シートは、前記樹脂組成物層の少なくとも一方の面上に接着材層を備える。接着材層は接着性を有する樹脂の少なくとも1種を含み、必要に応じてフィラー等のその他の成分を更に含んで構成される。
接着材層は樹脂組成物層の少なくとも一方の面上に設けられるが、樹脂組成物層の両面に設けられることが好ましい。
エポキシ樹脂と相溶性がある高分子量樹脂としては、高分子量エポキシ樹脂、極性の大きい官能基含有ゴム、極性の大きい官能基含有反応性ゴムなどが挙げられる。
前記極性の大きい官能基含有反応性ゴムとしては、アクリルゴムにカルボキシル基のような極性が大きい官能基を付加したアクリル変性ゴムが挙げられる。
前記高分子量樹脂の重量平均分子量は特に制限されない。Bステージにおける接着材のタック性の低減や硬化時の可撓性を向上させる観点から、重量平均分子量が3万以上であることが好ましい。
10質量部以上であると、エポキシ樹脂を主成分とする相(以下エポキシ樹脂相という)の可撓性の不足、タック性の低減やクラック等による絶縁性の低下を防止することができる。40重量部以下であると、エポキシ樹脂相のTgの低下を防止することができる。
またこれらの樹脂は、通常、樹脂が溶剤に溶解したワニス状態であり、PETフィルム等の支持体に直接塗布し、溶剤を乾燥させることによりフィルム化して接着材層として用いることができる。
接着材層には、異種材料間の界面結合をよくするために、シランカップリング剤を配合することもできる。具体的には、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン等が挙げられる。中でも、接着強度の観点から、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランであることが好ましい。接着材層がシランカップリング剤を含む場合、その配合量は、添加による効果や耐熱性の観点から、接着材層を構成する樹脂100質量部に対し0.1質量部~10質量部を添加するのが好ましい。
接着材層はさらに、フィラーの少なくとも1種を含むことが好ましく、無機フィラーの少なくとも1種を含むことがより好ましい。フィラーを含むことで、接着材層の取扱い性や熱伝導性が向上する。また難燃性を与えること、溶融粘度を調整すること、チクソトロピック性を付与すること、表面硬度を向上すること等が可能になる。
接着材層の平均厚さは、マイクロメータ、触針式膜厚計、針式膜厚計等を用いて測定することができる。
本発明の多層樹脂シートの製造方法は、熱硬化性樹脂及びフィラーを含む樹脂組成物層を得る工程と、前記樹脂組成物層の少なくとも一方の面上に、前記樹脂組成物層とは対向しない面の算術平均表面粗さRaが1.5μm以下である接着材層を配置する工程と、を含む。
本発明においては、作業性などの点から、予めフィルム状の接着材層を調製し、これを樹脂組成物層に貼り合わせる方法であることが好ましい。
支持体として具体的には、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、離型処理したポリエチレンテレフタレートフィルム、ポリイミドフィルムなどのプラスチックフィルムが使用できる。
本発明の多層樹脂シートは、次のように使用することができる。例えば、樹脂組成物層の一方の面に接着材層が形成された多層樹脂シートの場合、金属板などの被着体に前記多層樹脂シートの接着材層面が対向するように配置し、加熱加圧処理を行うことにより積層体を得ることができる(積層体形成工程)。前記積層体は、樹脂組成物層が体積平均粒子径が10μm以上100μm以下である大粒子径のフィラーを含んでいる多層樹脂シートを使用して得てもよい。
本発明の多層樹脂シート硬化物は、熱硬化性樹脂及びフィラーを含む樹脂組成物層と、前記樹脂組成物層の少なくとも一方の面上に配置され、前記樹脂組成物層とは対向しない面の算術平均表面粗さRaが1.5μm以下である接着材層とを有する多層樹脂シートの熱処理物である。
前記熱硬化性樹脂は、高次構造を有する樹脂硬化物を形成していることが好ましい。
また、図8及び図10は本実施例にかかる多層樹脂シート硬化物の断面観察写真の一例である。図8及び図10に示すように、本実施例にかかる多層樹脂シート硬化物においては、フィラーが硬化樹脂層と接着材層の界面に存在している。
また、図9及び図11は、平坦な表面を持つ樹脂組成物層を有する多層樹脂シートを硬化して得られる樹脂シート硬化物の断面観察写真の一例である。図9及び図11に示すように、従来の樹脂組成物層の表面が平坦である多層樹脂シート硬化物においては、フィラーが硬化樹脂層と接着材層の界面に存在していない。
また、必要があればIRや元素分析などの化学分析を組み合わせて判断してもよい。
本発明の多層樹脂シート硬化物の製造方法は、前記多層樹脂シートを熱処理して硬化させる工程を含む。
多層樹脂シートを硬化させる際の熱処理条件は、多層樹脂シートの構成に応じて適宜選択することができる。例えば、120℃~250℃、10分間~300分間で加熱処理することができる。また、熱伝導性の観点から、高次構造を形成したり、高架橋密度になり易い温度を含むことが好ましく、例えば100℃~160℃と150℃~250℃の少なくとも2段階の加熱を行うことがより好ましい。更に、上記の温度範囲にて、2段階以上の多段階の加熱処理を行うことがより好ましい。
本発明においては、Bステージ状態の多層樹脂シートの厚さで、温度165℃、圧力10MPa、真空度≦1kPa、処理時間3分の条件で前記Bステージ状態の多層樹脂シートを熱処理して得た多層樹脂シート硬化物の厚さを割った数値を1から引いた数値の百分率を圧縮率と定義する。
本発明の樹脂シート積層体は、前記多層樹脂シートと、前記多層樹脂シートの接着材層上に配置された金属板又は放熱板とを有する。かかる構成であることで、熱伝導性と絶縁性に優れ、さらに多層樹脂シートと金属板又は放熱板との接着強度が良好で、さらに熱衝撃耐性にも優れる。
多層樹脂シートの詳細については既述の通りである。金属板又は放熱板としては、銅板、アルミ板、セラミック板などが挙げられる。なお、金属板又は放熱板の厚さは特に限定されない。また、金属板又は放熱板として、銅箔やアルミニウム箔などの金属箔を使用してもよい。
本発明においては、多層樹脂シート硬化物の少なくとも一方の面上に金属板又は放熱板が配置されるが、両方の面上に配置されてもよい。
本発明の樹脂シート積層体の製造方法は、前記多層樹脂シートの接着材層上に、金属板又は放熱板を配置する工程を含む。
プレス法及びラミネート法の条件は多層樹脂シートの構成に応じて適宜選択することができる。
本発明の樹脂シート積層体硬化物は、熱硬化性樹脂及びフィラーを含む樹脂組成物層と、前記樹脂組成物層の少なくとも一方の面上に配置され、前記硬化樹脂層と樹脂組成物層とは対向しない面の算術平均表面粗さRaが1.5μm以下である接着材層と、前記接着材層上に配置された金属板又は放熱板と、を有する樹脂シート積層体の熱処理物である。
本発明の樹脂シート積層体硬化物の製造方法は、前記多層樹脂シートの接着材層上に金属板又は放熱板を配置して前記樹脂シート積層体を得る工程と、前記樹脂シート積層体に熱を与えて前記樹脂組成物層を硬化させる工程とを含む。樹脂シート積層体硬化物の製造方法は、必要に応じてその他の工程を含んでもよい。多層樹脂シート上に金属板又は放熱板を配置する方法は、上述の通りである。
前記被着体としては特に制限されない。被着体の材質としては、例えば、金属、樹脂、セラミックス及びそれらの混合物である複合材料等を挙げることができる。
樹脂シート積層体の面上に被着体を配置する工程は、樹脂シート積層体を硬化させる工程の前に行なえばよく、樹脂シート積層体を得る工程の前であっても後であってもよい。
一方の面上に金属板又は放熱板を有し、他方の面上に被着体を有する樹脂シート積層体の樹脂組成物層を硬化させて得られる樹脂シート積層体硬化物は、金属板又は放熱板と被着体との熱伝導性に特に優れた効果を発揮する。
第一の工程には、通常用いられる多層樹脂シートの製造方法を特に制限なく用いることができる。
例えば、熱硬化性樹脂モノマーと、硬化剤と、フィラーと、必要に応じて含まれるその他の成分と、有機溶剤とを混合して樹脂組成物を調製し、これを支持体等に塗布して塗布層を形成し、塗布層から有機溶剤の少なくとも一部を除去(乾燥)することで、樹脂組成物層を形成することができる。樹脂組成物層の形成方法の詳細については既述の樹脂組成物層の調製方法と同様である。
第二の工程においては、前記樹脂組成物層の少なくとも一方の面上に接着材層を貼り付ける。また第二の工程は、前記接着材層中に前記フィラーの少なくとも一部を入り込ませる工程も含むことが好ましい。前記樹脂組成物層の少なくとも一方の面上に接着材層を貼り付ける方法としては、例えば、プレス装置、ラミネート装置、金属ローラプレス装置、真空プレス装置等を用いて、樹脂組成物層及びフィルム状の接着材層を積層したものを加熱加圧する方法を挙げることができる。
また加熱加圧は、大気圧(常圧下)でも行うことが可能であるが、減圧下に行うことが好ましい。減圧条件としては30000Pa以下であることが好ましく、10000Pa以下であることがより好ましい。
第三の工程においては、多層樹脂シートの接着材層上に銅、アルミニウム、クロム銅及びニッケルメッキされた金属板等を配置し、接着すると共に、接着材層中に樹脂組成物層中のフィラー(好ましくは、大粒子径のフィラー)の少なくとも一部を入り込ませる。
また加熱加圧処理は、大気圧(常圧下)でも行うことが可能であるが、減圧下に行うことが好ましい。減圧条件としては30000Pa以下であることが好ましく、10000Pa以下であることがより好ましい。
かかる条件で加熱加圧処理することで、樹脂組成物層に含まれるフィラー(好ましくは、大粒子径のフィラー)の少なくとも一部を、接着材層中に、効率的に入り込ませることができる。
第四の工程においては、第三の工程後に加熱処理して、前記樹脂組成物層を硬化させる。加熱処理を行うことにより、熱伝導性がより向上する。加熱処理は、例えば、80℃~250℃、0.1分間~360分間行うことができる。また、熱伝導性の観点からエポキシ樹脂の配向し易い温度を含むことが好ましく、特に、100℃~160℃と160℃~250℃の少なくとも2段階の加熱を行うことがより好ましい。更に、上記の温度範囲にて、2段階以上の多段階の加熱処理を行うことがより一層好ましい。
さらに、前記フィラー(好ましくは、大粒子径のフィラー)が被着材の表面形状に沿って変形可能であるため、金属板等と被着体との熱伝導性に特に優れた効果を発揮する。
本発明の金属箔付き多層樹脂シートは、前記多層樹脂シートと、前記多層樹脂シートの前記接着材層上に配置される金属箔と、を含む。
前記金属箔の厚みとしては、1μm~400μmであれば特に制限されないが、105μm以下の金属箔を用いることで可とう性がより向上する。
金属箔付き多層樹脂シートは、例えば、金属箔上に多層樹脂シートの接着材層を貼り付けること、もしくは金属箔上に直接塗工することによって製造することができる。
本発明の半導体装置は、半導体素子と、前記多層樹脂シート硬化物とを備える。
具体例として、図12~図14に前記半導体装置多層樹脂シート硬化物を用いて構成されるパワー半導体装置の構成を、図15~18に前記半導体装置多層樹脂シート硬化物を用いて構成されるLED装置の構成を示す。
<樹脂組成物層>
(フィラー)
・AA-18[酸化アルミニウム、住友化学株式会社製;体積平均粒子径18μm]
・AA-3[酸化アルミニウム、住友化学株式会社製;体積平均粒子径3μm]
・AA-04[酸化アルミニウム、住友化学株式会社製;体積平均粒子径0.4μm]
・FS-3[窒化ホウ素、水島合金鉄株式会社製;体積平均粒径76μm]
・HP-40[窒化ホウ素、水島合金鉄株式会社製;体積平均粒径45μm]
・CRN:カテコールレゾルシノールノボラック樹脂(固形分量50%、シクロヘキサノン溶液)
なお、カテコールレゾルシノールノボラック樹脂の製造方法は、特開2006-131852号公報、特表2010-518183号公報等を参考にした。
・PNAP:(フェノールノボラック+フェニルアルデヒド)型グリシジルエーテル(EPPN-502H、日本化薬株式会社製 エポキシ当量170g/eq)
・BIS-AD:ビスフェノールAD混合物のグリシジルエーテル(ZX-1059、新日鐵化学株式会社製 エポキシ当量168g/eq)
・MOPOC:1-{(3-メチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン(エポキシ当量202g/eq)
なお、MOPOCは、特開2005-206814号公報及び特開2005-29778号公報等を参考にして調製した。
・TPP:トリフェニルホスフィン(和光純薬工業株式会社製)
・PAM:3-フェニルアミノプロピルトリメトキシシラン(シランカップリング剤;信越化学工業製;KBM-573)
・MEK:メチルエチルケトン(和光純薬工業株式会社製、1級)
・CHN:シクロヘキサノン(和光純薬工業株式会社製、1級)
・PETフィルム (帝人デュポンフィルム株式会社製、A31、厚み50μm)
・銅箔:古河電工株式会社製、厚さ80μm、GTSグレード
(フィラー)
・AO802[酸化アルミニウム、東洋インキ製造株式会社製;体積平均粒子径0.7μm](固形分量76%)
・A-189 メルカプト末端シランカップリング剤 日本ユニカー株式会社製
・A-1160 ウレイド末端シランカップリング剤 日本ユニカー株式会社製(固形分量50%)
・YD-8170C ビスフェノールF型エポキシ樹脂 東都化成株式会社製(エポキシ当量170g/eq)
・YDCN-703 クレゾールノボラック型エポキシ樹脂 東都化成株式会社製(固形分量60%,エポキシ当量205g/eq)
・KS-7003 変性ポリアミドイミドワニス 日立化成工業株式会社製(固形分量40%)
・フェノールノボラック LF-2882 大日本インキ株式会社(固形分量60%、エポキシ当量108g/eq)
・2-フェニル-4-シアノイミダゾール 2PZ-CN 四国化成工業株式会社
・アクリルゴム HTR-860P-3 ナガセケムテックス株式会社製(固形分量12%)
・CHN:シクロヘキサノン(和光純薬工業株式会社製、1級)
・PETフィルム (帝人デュポンフィルム株式会社製、A31)
(樹脂組成物層の調製)
酸化アルミニウム混合物(AA-3:AA-04;体積基準混合比2.4:1)42.91部と、窒化ホウ素(HP-40)46.04部(AA-04に対する体積基準混合比6.6:1)と、シランカップリング剤(PAM)0.09部と、エポキシ樹脂の硬化剤としてCRNのCHN溶液7.23部(固形分50%)と、CHN46.02部とを混合し、均一になったことを確認した。その後、エポキシ樹脂モノマーとしてMOPOC11.73部と、TPP0.13部と、をさらに加えて混合した。その後、20~40時間ボールミル粉砕を行って、樹脂組成物層形成用塗工液を得た。
次に、Bステージ状態の樹脂組成物層の表面粗さを小坂研究所表面粗さ測定器により、測定条件は1mm/sにて測定した。
エポキシ樹脂として、YD-8170Cを24.2部、YDCN-703を13.5部、硬化剤としてLF-2882を30.67部、硬化促進剤として、2PZ-CNを0.083部、アクリル変性ゴムとしてHTR-860P-3を196.53部、カップリング剤として、A-189を0.21部、A-1160を0.83部、フィラーとしてAO802を231.58部を混合して、ミキサにて1時間混合して、接着材層用塗工液を得た。次に、コンマコータ(ヒラノテクシード株式会社製)を用いて、離形処理を施したPETフィルムA31上に塗布し、100℃に設定したコンベヤ式乾燥炉で約6分間乾燥を行い、PETフィルム上に接着材層を形成して接着材層フィルム1を得た。尚、接着材層の膜厚は10μmとなるようにした。
変性ポリアミドイミド樹脂ワニス(日立化成工業株式会社製、品名:KS7003、固形分40質量%)を、コンマコータ(ヒラノテクシード株式会社製)を用いて、離形処理を施したPETフィルム上に塗布した。130~140℃に設定したコンベヤ式乾燥炉で約8分間乾燥を行い、PETフィルム上に接着材層を形成して接着材層フィルム2を得た。接着材層の膜厚は6μmとなるようにした。
変性ポリアミドイミド樹脂ワニス(日立化成工業株式会社製、品名:KS7003、固形分40質量%)10部にAO802を12.9部投入し混合してワニスを作製し、コンマコータ(ヒラノテクシード株式会社製)を用いて、離形処理を施したPETフィルム上に塗布した。130~140℃に設定したコンベヤ式乾燥炉で約8分間乾燥を行い、PETフィルム上に接着材層を形成して接着材層フィルム3を得た。接着材層の膜厚は8μmとなるようにした。
Bステージ状態の樹脂組成物層の両面に、接着材層フィルム2(ポリアミドイミド系樹脂の接着材層が形成されたPETフィルム)を、接着材層が、Bステージ状態の樹脂組成物層に対向するようにそれぞれ重ね、ラミネータ(名機製作所製、MVLP-600/700)を用いて、温度120℃、圧力0.7MPa、真空度≦1kPa、時間15秒間の条件で、樹脂組成物層の両面に絶縁性の接着材層を貼り付けて、多層樹脂シート(以下、「Bステージシート」ともいう)を得た。
上記で得られた多層樹脂シートの両面からPETフィルムを剥がし、その両面に80μm厚の銅箔(古河電工株式会社製、厚さ80μm、GTSグレード)を重ねた後、プレス処理を行った(プレス工程条件:熱板温度165℃、真空度≦1kPa、圧力10MPa、処理時間3分)。その後ボックス型オーブン中で、140℃で2時間、165℃で2時間、190℃で2時間、加熱処理することにより、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられたCステージ状態の樹脂シート積層体硬化物1を得た。
実施例1において、接着材層フィルム2の代わりに接着材層フィルム1(エポキシ系樹脂の接着材層が形成されたPETフィルム)を用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物2を得た。
実施例1において、接着材層フィルム2の代わりに接着材層フィルム3(ポリアミドイミド系接着材層 フィラー有)が形成されたPETフィルム)を用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物3を得た。
実施例1において、HP-40の代わりにFS-3とHP-40の混合物(体積基準混合比1:1)を用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物4を得た。
実施例4において、接着材層フィルム2の代わりに接着材層フィルム1(エポキシ系樹脂の接着材層が形成されたPETフィルム)を用いたこと以外は実施例4と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物5を得た。
実施例4において、接着材層フィルム2の代わりに接着材層フィルム3(ポリアミドイミド系接着材層(フィラー有)が形成されたPETフィルム)を用いたこと以外は実施例4と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物6を得た。
実施例1において、樹脂組成物層の配合として、MOPOCの代わりにPNAPとBIS-ADの1:1混合物を用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物7を得た。
この後のシート製造条件などは、実施例1と同様にした。
実施例7において、接着材層フィルム2の代わりに接着材層フィルム1(エポキシ系樹脂の接着材層が形成されたPETフィルム)を用いたこと以外は実施例7と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物8を得た。
実施例7において、接着材層フィルム2の代わりに接着材層フィルム3(ポリアミドイミド系接着材層(フィラー有)が形成されたPETフィルムを用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物9を得た。
実施例1において、HP-40の代わりにFS-3を46.04部用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物10を得た。
実施例10において、接着材層フィルム2の代わりに接着材層フィルム1(エポキシ系樹脂の接着材層が形成されたPETフィルム)を用いたこと以外は実施例10と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物11を得た。
実施例10において、接着材層フィルム2の代わりに接着材層フィルム3(ポリアミドイミド系接着材層(フィラー有)が形成されたPETフィルム)を用いたこと以外は実施例10と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物12を得た。
酸化アルミニウム混合物(AA-3:AA-04;体積基準混合比2.4:1)42.91部と、窒化ホウ素(HP-40)46.02部(AA-04に対する体積基準混合比6.6:1)と、シランカップリング剤(PAM)0.09部と、エポキシ樹脂の硬化剤としてCRNのCHN溶液10.93部(固形分50%)と、CHN31.33部とを混合し、均一になったことを確認した。エポキシ樹脂モノマーとしてPNAPとBIS-ADをそれぞれ7.41部と、TPP0.16部とを更に加えて混合した。20~40時間ボールミル粉砕を行って、樹脂組成物層形成用塗工液を調製した。
その後、接着材層フィルム3(ポリアミドイミド系接着材層(フィラー有))が形成されたPETフィルムを用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物13を得た。
酸化アルミニウム混合物(AA-3:AA-04;体積基準混合比2.4:1)42.91部と、窒化ホウ素(HP-40)46.02部(AA-04に対する体積基準混合比6.6:1)と、シランカップリング剤(PAM)0.09部と、エポキシ樹脂の硬化剤としてCRNのCHN溶液13.50部(固形分50%)と、CHN38.8部とを混合し、均一になったことを確認した。エポキシ樹脂モノマーとしてPNAPとBIS-ADをそれぞれ9.17部と、TPP0.20部とを更に加えて混合した。20~40時間ボールミル粉砕を行って、樹脂組成物層形成用塗工液を調製した。
その後、接着材層フィルム3(ポリアミドイミド系接着材層(フィラー有))が形成されたPETフィルムを用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物14を得た。
酸化アルミニウム混合物(AA-18:AA-3:AA-04;体積基準混合比2.6:2.4:1)75.55部と、窒化ホウ素(HP-40)27.84部(AA-04に対する体積基準混合比6.6:1)と、シランカップリング剤(PAM)0.10部と、エポキシ樹脂の硬化剤としてCRNのCHN溶液8.68部(固形分50%)と、CHN24.89部とを混合し、均一になったことを確認した。エポキシ樹脂モノマーとしてPNAPとBIS-ADをそれぞれ5.88部と、TPP0.13部とを更に加えて混合した。20~40時間ボールミル粉砕を行って、樹脂組成物層形成用塗工液を調製した。
その後、接着材層フィルム3(ポリアミドイミド系接着材層(フィラー有))が形成されたPETフィルムを用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物15を得た。
酸化アルミニウム混合物(AA-18:AA-3:AA-04;体積基準混合比2.6:2.4:1)100.94部と、窒化ホウ素(HP-40)13.95部(AA-04に対する体積基準混合比6.6:1)と、シランカップリング剤(PAM)0.11部と、エポキシ樹脂の硬化剤としてCRNのCHN溶液8.70部(固形分50%)と、CHN24.94部とを混合し、均一になったことを確認した。エポキシ樹脂モノマーとしてPNAPとBIS-ADをそれぞれ5.90部と、TPP0.13部とを更に加えて混合した。20~40時間ボールミル粉砕を行って、樹脂組成物層形成用塗工液を調製した。
その後、接着材層フィルム3(ポリアミドイミド系接着材層(フィラー有))が形成されたPETフィルムを用いたこと以外は実施例1と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物16を得た。
(多層樹脂シートの作製)
実施例1において得られたAステージシート1の1枚と、接着材層フィルム1(エポキシ樹脂系の接着材層)の1枚を、樹脂組成物層と接着材層とが接するように重ね合わせ、熱プレス装置(熱板150℃、圧力10MPa、処理時間1分)を用いて、加熱加圧処理して貼り合わせた。厚さが112μmであるBステージ状態の樹脂組成物層の片面に接着材層が設けられた多層樹脂シートを得た。
上記で得られた多層樹脂シートの両面からPETフィルムを剥がし、その両面に80μm厚の銅箔(古河電工株式会社製、厚さ80μm、GTSグレード)を重ねた後、プレス処理を行った(プレス工程条件:熱板温度165℃、真空度≦1kPa、圧力10MPa、処理時間3分)。その後ボックス型オーブン中で、140℃で2時間、165℃で2時間、190℃で2時間、加熱することにより、両面に銅箔が設けられた樹脂シート積層体硬化物10を得た。
実施例1で作製したAステージシート1を用いて、接着材層フィルム1の代わりに接着材層フィルム3を用いたこと以外は実施例10と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物11を得た。
Aステージシート1の代わりに、実施例7で作製したAステージシート3(PNAPシート)を用いたこと以外は実施例10と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物12を得た。
実施例7で作製したAステージシート3を用いて、接着材層フィルム2の代わりに接着材層フィルム3を用いたこと以外は実施例12と同様にして、多層樹脂シート及び多層樹脂シートの両面に銅箔が設けられた樹脂シート積層体硬化物11を得た。
(樹脂組成物層の調製)
酸化アルミニウム混合物(AA-18:AA-3:AA-04;体積基準混合比 6.6:2.4:1)126.2部と、シランカップリング剤(PAM;KBM-573)0.13部と、エポキシ樹脂の硬化剤としてCRNのCHN溶液11.96部(固形分50%)と、MEK44.77部と、CHN9.29部とを混合し、均一になったことを確認した後に、エポキシ樹脂モノマーとしてMOPOC19.39部と、TPP0.20部と、をさらに加えて混合した後、20~40時間ボールミル粉砕を行って、樹脂組成物層形成用塗工液を得た。
次に、Bステージ状態の樹脂組成物層の算術平均表面粗さRaを小坂研究所表面粗さ測定器により測定条件は1mm/sにて測定した。
上記で得られたBステージ状態の樹脂組成物層の両面に、上記で得られたポリアミドイミド系樹脂の接着材層が形成されたPETフィルム(接着材層フィルム2)を、接着材層がBステージ状態の樹脂組成物層に対向するようにそれぞれ重ね、ラミネータを用いて、温度110℃、圧力0.7MPa、真空度≦1kPa、時間15秒間の条件で、樹脂組成物層の両面に絶縁性の接着材層を貼り付けて、多層樹脂シートを得た。
上記で得られた多層樹脂シートの両面からPETフィルムを剥がし、その両面に80μm厚の銅箔(古河電工株式会社製、厚さ80μm、GTSグレード)を重ねた後、プレス処理を行った(プレス工程条件:熱板温度165℃、真空度≦1kPa、圧力10MPa、処理時間3分)。その後、ボックス型オーブン中で、140℃で2時間、165℃で2時間、190℃で2時間、加熱することにより、両面に銅箔が設けられた樹脂シート積層体硬化物9を得た。
比較例1において、接着材層フィルム2の代わりに接着材層フィルム1(エポキシ系樹脂の接着材層が形成されたPETフィルム)を用いたこと以外は比較例1と同様にして、多層樹脂シート及び両面に銅箔が設けられた樹脂シート積層体硬化物10を得た。
窒化ホウ素フィラーとして、HP-40の代わりにFS-3を46.04部(AA-04に対する体積基準混合比6.6)用いた以外は実施例7と同様にして、多層樹脂シート及び両面に銅箔が設けられた樹脂シート積層体硬化物11を得た。
接着材層フィルム2の代わりに接着材層フィルム1(エポキシ系樹脂の接着材層が形成されたPETフィルム)を用いたこと以外は比較例3と同様にして、多層樹脂シート及び両面に銅箔が設けられた樹脂シート積層体硬化物12を得た。
比較例1において得られたAステージシート4の1枚を用いて、熱プレス装置(熱板180℃、圧力10MPa、処理時間10分)を用いて加熱加圧処理を行い、平坦化処理した樹脂シートを得た。
次に、接着材層フィルム1(エポキシ系樹脂の接着材層が形成されたPETフィルム)と、上記で得られた平坦化処理したシートを真空ラミネータを用いて、温度120℃、圧力0.7MPa、真空度≦1kPa、時間15秒間の条件で貼り付け、厚さ113μmの多層樹脂シートを得た。また、比較例1と同様にして、多層樹脂シートの両面に銅箔を貼りつけた。その後ボックス型オーブン中で、140℃で2時間、165℃で2時間、190℃で2時間、加熱することにより、両面に銅箔が設けられた樹脂シート積層体硬化物13を得た。
Aステージシート4の代わりに比較例3で得られたAステージシートを用いて平坦化処理した樹脂シートを得たこと以外は比較例5と同様にして、多層樹脂シート及び両面に銅箔が設けられた樹脂シート積層体硬化物14を得た。
上記で得られた両面に銅箔が設けられた樹脂シート積層体硬化物から銅箔をエッチング除去して得た多層樹脂シート硬化物(Cステージシート)及びBステージ状態の多層樹脂シート(Bステージシート)について、以下の評価を行った。評価結果を表1~表3に示す。
上記で得られた樹脂シート積層体硬化物から、過硫酸ナトリウム溶液を用いて銅をエッチング除去し、多層樹脂シート硬化物(Cステージシート)を得た。これを10mm角に切断し、グラファイトスプレーにより黒化処理し、熱拡散率をNETZSCH社製Nanoflash LFA447型を用いて測定した。
測定条件としては、測定温度は25±1℃、測定電圧270V、Amplitude5000、パルス幅0.06msである。
Bステージシートを20mmΦのアルミ電極と50mm角のアルミ板で挟み込み、交流下での絶縁耐圧をヤマヨ試験機製YST-243-100RHOを用いて測定した。測定条件としては、昇圧速度1kV/秒であり、測定温度23℃±2℃、大気中にて測定を行った。
得られた樹脂シート硬化物から、過硫酸ナトリウム溶液を用いて銅をエッチング除去し、多層樹脂シート硬化物(Cステージシート)を得た。得られた多層樹脂シート硬化物の交流下での絶縁耐圧をヤマヨ試験機製YST-243-100RHOを用いて測定した。測定条件としては、測定温度23℃±2℃、昇圧速度1kV/秒であり、測定温度23℃±2℃、大気中にて測定を行った。
Bステージシートの両面からPETフィルムを剥がし、金属板を貼り合わせ、JIS K6850に準拠して、引っ張りせん断接強さの測定を行った。具体的には100mm×25mm×3mm幅の銅板2枚を12.5mm×25mm×0.2mmのBステージシートに互い違いに重ねて接着、硬化した。これを試験速度1mm/分、測定温度23℃にて、(株)島津製作所 AGC-100型で引っ張ることで測定を行った。尚、接着は真空熱プレス(熱板温度165℃、真空度≦1kPa、圧力4MPa、処理時間3分)を用いて行った
Bステージシートの両面からPETフィルムを剥がし、金属板を貼り合わせ、JIS K6850に準拠して、引っ張りせん断接強さの測定を行った。具体的には100mm×25mm×3mm幅の銅板2枚を12.5mm×25mm×0.2mmのBステージシートに互い違いに重ねて接着、硬化して多層樹脂シート硬化物を得た。これを試験速度1mm/分、測定温度23℃と175℃、(株)島津製作所 AGC-100型で引っ張ることで測定を行った。
尚、接着、硬化は以下のようにして行った。真空熱プレス(熱板温度165℃、真空度≦1kPa、圧力4MPa、処理時間3分)を行った後、ボックス型オーブン中で、140℃で2時間、165℃で2時間、190℃で2時間のステップキュアにより行った。
Bステージ状態の多層樹脂シートを構成する接着材層の表面粗さの測定を小坂研究所製表面粗さ測定機を用いて、測定条件は1mm/sにて行った。表面粗さは、算術平均粗さを用いて評価した。なお、測定時には支持体を剥離して接着面上の粗さを測定している。
上記で得られた両面に銅箔が設けられた樹脂シート積層体硬化物から、過硫酸ナトリウム溶液を用いて銅をエッチング除去し、多層樹脂シート硬化物(Cステージシート)を得た。得られた多層樹脂シート硬化物から、シート状の樹脂硬化物を100mm角に切り出た。これをミツトヨ製マイクロメータIP65を用いて、9点の厚さを測定して、その算術平均値をシート全体の厚さとした。
Bステージシート時の樹脂組成物層の厚さと樹脂組成物層に貼り付ける前の接着層の厚さとの和で、多層樹脂シート硬化物の厚さを割った数値を1から引いた数値の百分率を圧縮率とした。
接着材層中へのフィラーの入り込み状態を以下のようにして評価した。
多層樹脂シートのプレス処理をする前とプレス処理した後の2種のサンプルについて、樹脂組成物層と接着材層との境界面に対して垂直な断面について、走査型電子顕微鏡(SEM、オックスフォード・インストゥルメンツ(株)製、INCA Energy 350)と付属の電子線X線マイクロアナライザ(XMA、加速電圧20kV、蒸着物質Pt-Pd)を用いて断面観察し、フィラーの分布状態や樹脂組成物層と接着材層の境界及びその構造から、接着材層へのフィラー入り込みの有無を判断した。
Claims (16)
- 熱硬化性樹脂及びフィラーを含む樹脂組成物層と、前記樹脂組成物層の少なくとも一方の面上に配置され、前記樹脂組成物層とは対向しない面の算術平均表面粗さRaが1.5μm以下である接着材層と、を有する多層樹脂シート。
- 前記接着材層は、算術平均表面粗さRaが1.5μm以上4.0μm以下である前記樹脂組成物層の面上に設けられ、平均厚さが6μm以上15μm以下である、請求項1に記載の多層樹脂シート。
- 前記樹脂組成物層は、熱硬化性樹脂としてエポキシ樹脂モノマー及び硬化剤を含む、請求項1又は請求項2に記載の多層樹脂シート。
- 前記樹脂組成物層は、樹脂組成物層中の全固形分中40~85体積%のフィラーを含む、請求項1~請求項3のいずれか一項に記載の多層樹脂シート。
- 前記フィラーが窒化ホウ素フィラーを含む、請求項1~請求項4のいずれか一項に記載の多層樹脂シート。
- 前記窒化ホウ素フィラーとして体積平均粒子径が10μm以上100μm以下の窒化ホウ素フィラーを含む、請求項5に記載の多層樹脂シート。
- 前記体積平均粒子径が10μm以上100μm以下の窒化ホウ素フィラーの含有率が樹脂組成物層の全固形分中に10体積%~60体積%である請求項6に記載の多層樹脂シート。
- 前記多層樹脂シートの圧縮率が10%以上である、請求項1~請求項7に記載の多層樹脂シート。
- 前記接着材層は、アクリル変性ゴムを含有するエポキシ樹脂、変性ポリイミド樹脂、及び変性ポリアミドイミド樹脂からなる群より選ばれる少なくとも1種の樹脂と、アルミナフィラーとを含む、請求項1~請求項8のいずれか1項に記載の多層樹脂シート。
- 請求項1~請求項9のいずれか1項に記載の多層樹脂シートの熱処理物である多層樹脂シート硬化物。
- 前記熱硬化性樹脂が高次構造を有する樹脂硬化物を形成している請求項10に記載の多層樹脂シート硬化物。
- 請求項1~請求項9のいずれか1項に記載の多層樹脂シートと、前記多層樹脂シートの接着材層上に配置された金属板又は放熱板と、を含む樹脂シート積層体。
- 請求項12に記載の樹脂シート積層体の熱処理物である樹脂シート積層体硬化物。
- 請求項1~請求項9のいずれか1項に記載の多層樹脂シートの接着材層上に、金属板又は放熱板を配置して樹脂シート積層体を得る工程と、前記樹脂シート積層体に熱を与えて前記樹脂組成物層を硬化させる工程と、を含む請求項13に記載の樹脂シート積層体硬化物の製造方法。
- 請求項1~請求項9のいずれか1項に記載の多層樹脂シートと、前記多層樹脂シートの前記接着材層上に配置される金属箔と、を含む金属箔付き多層樹脂シート。
- 半導体素子と、前記半導体素子上に配置される請求項10又は請求項11に記載の多層樹脂シート硬化物と、を含む半導体装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187026343A KR102051272B1 (ko) | 2011-03-28 | 2012-02-24 | 다층 수지 시트, 수지 시트 적층체, 다층 수지 시트 경화물 및 그 제조 방법, 금속박이 형성된 다층 수지 시트, 그리고 반도체 장치 |
US14/008,331 US20140079913A1 (en) | 2011-03-28 | 2012-02-24 | Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device |
CN201280015798.6A CN103459149B (zh) | 2011-03-28 | 2012-02-24 | 多层树脂片、树脂片叠层体、多层树脂片固化物及其制造方法、带有金属箔的多层树脂片、以及半导体装置 |
EP12762807.1A EP2692526B1 (en) | 2011-03-28 | 2012-02-24 | Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device |
JP2012541275A JP5141853B2 (ja) | 2011-03-28 | 2012-02-24 | 多層樹脂シート、樹脂シート積層体、多層樹脂シート硬化物及びその製造方法、金属箔付き多層樹脂シート、並びに半導体装置 |
KR1020137028143A KR101936449B1 (ko) | 2011-03-28 | 2012-02-24 | 다층 수지 시트, 수지 시트 적층체, 다층 수지 시트 경화물 및 그 제조 방법, 금속박이 형성된 다층 수지 시트, 그리고 반도체 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-071252 | 2011-03-28 | ||
JP2011071252 | 2011-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012132691A1 true WO2012132691A1 (ja) | 2012-10-04 |
Family
ID=46930449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054646 WO2012132691A1 (ja) | 2011-03-28 | 2012-02-24 | 多層樹脂シート、樹脂シート積層体、多層樹脂シート硬化物及びその製造方法、金属箔付き多層樹脂シート、並びに半導体装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140079913A1 (ja) |
EP (1) | EP2692526B1 (ja) |
JP (4) | JP5141853B2 (ja) |
KR (2) | KR101936449B1 (ja) |
CN (1) | CN103459149B (ja) |
TW (1) | TWI462836B (ja) |
WO (1) | WO2012132691A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013032496A (ja) * | 2011-06-27 | 2013-02-14 | Nitto Shinko Kk | 熱硬化性樹脂組成物、熱伝導性シート、及び、半導体モジュール |
JP2015170606A (ja) * | 2014-03-04 | 2015-09-28 | デクセリアルズ株式会社 | 多層型熱伝導性シート、多層型熱伝導性シートの製造方法 |
CN105190370A (zh) * | 2013-04-05 | 2015-12-23 | 三菱丽阳株式会社 | 光学膜和面发光体 |
CN105659711A (zh) * | 2013-10-17 | 2016-06-08 | 住友电木株式会社 | 环氧树脂组合物、带有树脂层的载体材料、金属基电路基板和电子装置 |
JP2017057340A (ja) * | 2015-09-18 | 2017-03-23 | 日本化薬株式会社 | ポリイミド樹脂組成物、及びそれを用いた接着フィルム |
JP2017168825A (ja) * | 2016-03-09 | 2017-09-21 | 東洋インキScホールディングス株式会社 | 複合部材 |
WO2018043683A1 (ja) * | 2016-09-01 | 2018-03-08 | 旭硝子株式会社 | 金属積層板およびその製造方法、ならびにプリント基板の製造方法 |
JP6399176B1 (ja) * | 2017-09-15 | 2018-10-03 | 東洋インキScホールディングス株式会社 | 熱伝導性絶縁シートおよび複合部材 |
WO2019065150A1 (ja) * | 2017-09-28 | 2019-04-04 | 富士フイルム株式会社 | 放熱シートおよび放熱シート付きデバイス |
JP2019178300A (ja) * | 2018-03-30 | 2019-10-17 | Tdk株式会社 | 樹脂組成物、樹脂板、コア材及び放熱基板 |
JP2021103783A (ja) * | 2016-10-19 | 2021-07-15 | 日東シンコー株式会社 | 半導体モジュール及び半導体モジュールの製造方法 |
JPWO2021206087A1 (ja) * | 2020-04-10 | 2021-10-14 | ||
WO2022137994A1 (ja) * | 2020-12-23 | 2022-06-30 | 富士フイルム株式会社 | 熱伝導層形成用シート、熱伝導層形成用シートの製造方法 |
WO2022168729A1 (ja) * | 2021-02-03 | 2022-08-11 | デクセリアルズ株式会社 | 熱伝導性シート積層体及びこれを用いた電子機器 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101397797B1 (ko) * | 2009-09-29 | 2014-05-20 | 히타치가세이가부시끼가이샤 | 수지 조성물, 수지 시트, 그리고 수지 경화물 및 그 제조 방법 |
EP2692526B1 (en) * | 2011-03-28 | 2020-10-28 | Hitachi Chemical Company, Ltd. | Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device |
US9693481B2 (en) * | 2013-06-25 | 2017-06-27 | Henkel IP & Holding GmbH | Thermally conductive dielectric interface |
JP6244128B2 (ja) * | 2013-07-17 | 2017-12-06 | 日東シンコー株式会社 | 熱伝導性シート及び剥離シート付熱伝導性シート |
CN105637599B (zh) | 2013-10-09 | 2017-06-27 | 日立化成株式会社 | 预浸云母带及使用其的线圈 |
EP3121210A4 (en) * | 2014-03-20 | 2017-12-06 | Hitachi Chemical Co., Ltd. | Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing same, semiconductor device, and led device. |
JP5895971B2 (ja) * | 2014-06-05 | 2016-03-30 | Tdk株式会社 | 太陽電池、及び太陽電池の製造方法 |
JP6300020B2 (ja) * | 2014-06-16 | 2018-03-28 | パナソニックIpマネジメント株式会社 | プリント配線板用樹脂組成物、プリント配線板用プリプレグ、積層板、金属張積層板、プリント配線板、及び酸化マグネシウム |
JP6538337B2 (ja) | 2014-12-08 | 2019-07-03 | 昭和電工株式会社 | 樹脂組成物及びその製造方法 |
WO2017006460A1 (ja) * | 2015-07-08 | 2017-01-12 | 日立化成株式会社 | 熱伝導部材及び電子部品 |
JP6279162B2 (ja) * | 2015-12-25 | 2018-02-14 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
JP2017135150A (ja) * | 2016-01-25 | 2017-08-03 | 日東シンコー株式会社 | 放熱部材及び半導体モジュール |
KR101962936B1 (ko) * | 2016-03-24 | 2019-03-28 | (주)유니드 | 유무기 복합소재의 박막기판 |
JP6710828B2 (ja) * | 2016-04-06 | 2020-06-17 | 北川工業株式会社 | 熱伝導シート、および、熱伝導シートの製造方法 |
KR20190008882A (ko) * | 2016-05-20 | 2019-01-25 | 히타치가세이가부시끼가이샤 | 반도체 콤프레션 성형용 이형 시트 및 이것을 사용하여 성형되는 반도체 패키지 |
KR102305674B1 (ko) * | 2016-07-05 | 2021-09-27 | 나믹스 가부시끼가이샤 | 필름용 수지 조성물, 필름, 기재 부착 필름, 금속/수지 적층체, 수지 경화물, 반도체 장치 및 필름 제조 방법 |
JP2018069708A (ja) * | 2016-11-04 | 2018-05-10 | Dic株式会社 | 積層体、電子部材及び熱伝導性部材 |
US11884039B2 (en) | 2017-05-10 | 2024-01-30 | Sekisui Chemical Co., Ltd. | Insulating sheet and laminate |
EP3624138A4 (en) | 2017-05-10 | 2021-01-20 | Sekisui Chemical Co., Ltd. | INSULATING LAYER AND LAMINATE |
US11383499B2 (en) | 2017-05-10 | 2022-07-12 | Sekisui Chemical Co., Ltd. | Insulating sheet and laminate |
CN107573564B (zh) * | 2017-08-31 | 2020-08-25 | 四川大学 | 一种高分子基绝缘导热复合材料 |
WO2019044398A1 (ja) * | 2017-08-31 | 2019-03-07 | リンテック株式会社 | 樹脂シート、半導体装置、および樹脂シートの使用方法 |
JP2019104157A (ja) * | 2017-12-12 | 2019-06-27 | 住友ベークライト株式会社 | 樹脂シート及び樹脂積層基板 |
KR102609888B1 (ko) * | 2018-01-04 | 2023-12-05 | 엘지이노텍 주식회사 | 방열 기판 |
JP7064710B2 (ja) * | 2018-02-28 | 2022-05-11 | 三菱マテリアル株式会社 | 絶縁回路基板、及び、絶縁回路基板の製造方法 |
JP7237478B2 (ja) * | 2018-06-28 | 2023-03-13 | 京セラ株式会社 | 積層未硬化シート |
CN109516787B (zh) * | 2018-11-05 | 2021-04-16 | 首钢集团有限公司 | 一种树脂型耐火材料的制样方法 |
WO2020194867A1 (ja) * | 2019-03-27 | 2020-10-01 | 富士フイルム株式会社 | 放熱シート前駆体、及び放熱シートの製造方法 |
KR102260732B1 (ko) | 2019-08-14 | 2021-06-07 | 에스케이씨 주식회사 | 폴리이미드계 복합 필름 및 이를 포함한 디스플레이 장치 |
US20230227370A1 (en) * | 2020-05-15 | 2023-07-20 | Denka Company Limited | Composite body and layered body |
CN111806016A (zh) * | 2020-07-21 | 2020-10-23 | 中国科学院深圳先进技术研究院 | 一种绝缘胶膜及其制备方法 |
JP6989721B1 (ja) | 2021-03-26 | 2022-01-05 | 古河電気工業株式会社 | ダイシングダイアタッチフィルム及びその製造方法、並びに半導体パッケージ及びその製造方法 |
WO2023181905A1 (ja) * | 2022-03-22 | 2023-09-28 | 日本発條株式会社 | 積層体の製造方法 |
WO2024143117A1 (ja) * | 2022-12-27 | 2024-07-04 | パナソニックIpマネジメント株式会社 | 積層体及び樹脂付き金属箔 |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0756917B2 (ja) | 1989-07-24 | 1995-06-14 | 松下電器産業株式会社 | 電気機器 |
JPH0759619B2 (ja) | 1990-09-10 | 1995-06-28 | 日立化成工業株式会社 | 高分子量エポキシ樹脂の製造方法 |
JPH0759620B2 (ja) | 1990-09-12 | 1995-06-28 | 日立化成工業株式会社 | 高分子量エポキシ樹脂の製造方法 |
JPH0759618B2 (ja) | 1990-09-10 | 1995-06-28 | 日立化成工業株式会社 | 高分子量エポキシ樹脂の製造方法 |
JPH0764911B2 (ja) | 1990-09-12 | 1995-07-12 | 日立化成工業株式会社 | 高分子量エポキシ樹脂の製造方法 |
JPH0768327B2 (ja) | 1990-09-11 | 1995-07-26 | 日立化成工業株式会社 | 超高分子量エポキシ樹脂の製造方法 |
JP2002134531A (ja) | 1996-10-08 | 2002-05-10 | Hitachi Chem Co Ltd | 半導体装置、半導体チップ搭載用基板、それらの製造法、接着剤、および、両面接着フィルム |
JP2002226796A (ja) | 2001-01-29 | 2002-08-14 | Hitachi Chem Co Ltd | ウェハ貼着用粘着シート及び半導体装置 |
JP2003221573A (ja) | 2001-11-12 | 2003-08-08 | Hitachi Chem Co Ltd | 接合材料及びこれを用いた半導体装置 |
JP2004083602A (ja) * | 2002-07-04 | 2004-03-18 | Hitachi Chem Co Ltd | 接着シート並びに半導体装置及びその製造方法 |
JP2005029778A (ja) | 2003-06-20 | 2005-02-03 | Pokka Corp | 抗酸化剤、抗菌剤、抗腫瘍剤及び飲食品 |
JP2005206814A (ja) | 2003-12-24 | 2005-08-04 | Sumitomo Chemical Co Ltd | エポキシ化合物および該エポキシ化合物を硬化せしめてなるエポキシ樹脂硬化物 |
JP2005281467A (ja) * | 2004-03-29 | 2005-10-13 | Toshiba Corp | 高熱伝導性樹脂、および部材、ならびにそれらを用いた電気機器および半導体装置 |
JP2006131852A (ja) | 2004-11-09 | 2006-05-25 | Kanazawa Univ | レゾルシノールノボラック誘導体 |
JP2007150224A (ja) * | 2005-10-24 | 2007-06-14 | Hitachi Chem Co Ltd | 金属ベース回路基板 |
JP2007262398A (ja) * | 2006-03-01 | 2007-10-11 | Hitachi Chem Co Ltd | エポキシ樹脂組成物及び電子部品装置 |
JP2008013759A (ja) | 2006-06-07 | 2008-01-24 | Sumitomo Chemical Co Ltd | エポキシ樹脂組成物及びエポキシ樹脂硬化物 |
JP2008153430A (ja) * | 2006-12-18 | 2008-07-03 | Mitsubishi Electric Corp | 放熱基板並びに熱伝導性シートおよびこれらを用いたパワーモジュール |
JP2008189818A (ja) | 2007-02-05 | 2008-08-21 | Nitto Denko Corp | 熱伝導性樹脂組成物および熱伝導性シートとその製造方法 |
JP2008266378A (ja) * | 2007-04-17 | 2008-11-06 | Denki Kagaku Kogyo Kk | 組成物、それを用いた金属ベース回路基板 |
JP2009021530A (ja) | 2007-07-13 | 2009-01-29 | Sumitomo Electric Ind Ltd | 絶縁性樹脂膜およびパワーモジュール |
WO2010024236A1 (ja) * | 2008-08-27 | 2010-03-04 | 日立化成工業株式会社 | 両面接着フィルム及びこれを用いた電子部品モジュール |
JP2010518183A (ja) | 2006-11-09 | 2010-05-27 | インドスペック ケミカル コーポレイション | レゾルシノール樹脂の安定化方法及びそれから製造されるゲル組成物 |
JP2010258430A (ja) * | 2009-03-30 | 2010-11-11 | Hitachi Chem Co Ltd | 接着フィルム、ダイシングテープ一体型接着フィルム及び半導体装置の製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU615730B2 (en) * | 1988-04-07 | 1991-10-10 | Kanegafuchi Chemical Industry Co. Ltd. | Pressure-sensitive adhesive material |
JP2002069392A (ja) * | 2000-08-31 | 2002-03-08 | Polymatech Co Ltd | 熱伝導性接着フィルムおよびその製造方法ならびに電子部品 |
JP2004189981A (ja) * | 2002-12-13 | 2004-07-08 | Kanegafuchi Chem Ind Co Ltd | 熱可塑性ポリイミド樹脂材料および積層体およびプリント配線板の製造方法 |
KR101210800B1 (ko) * | 2005-04-19 | 2012-12-10 | 가부시키가이샤 가네카 | 섬유-수지 복합체, 적층체 및 프린트 배선판, 및 프린트배선판의 제조 방법 |
EP2025695A4 (en) * | 2006-06-07 | 2012-02-29 | Sumitomo Chemical Co | EPOXY RESIN COMPOSITION AND CURED EPOXY RESIN |
JP5053696B2 (ja) * | 2007-04-26 | 2012-10-17 | 信越化学工業株式会社 | 静電チャック |
WO2009028068A1 (ja) * | 2007-08-30 | 2009-03-05 | Denki Kagaku Kogyo Kabushiki Kaisha | 粘着シート及び電子部品の製造方法 |
JP4717051B2 (ja) * | 2007-11-08 | 2011-07-06 | 日東電工株式会社 | ダイシング・ダイボンドフィルム |
JP4801127B2 (ja) * | 2008-09-01 | 2011-10-26 | 日東電工株式会社 | ダイシング・ダイボンドフィルムの製造方法 |
EP2692526B1 (en) * | 2011-03-28 | 2020-10-28 | Hitachi Chemical Company, Ltd. | Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device |
-
2012
- 2012-02-24 EP EP12762807.1A patent/EP2692526B1/en active Active
- 2012-02-24 KR KR1020137028143A patent/KR101936449B1/ko active IP Right Grant
- 2012-02-24 JP JP2012541275A patent/JP5141853B2/ja not_active Expired - Fee Related
- 2012-02-24 WO PCT/JP2012/054646 patent/WO2012132691A1/ja active Application Filing
- 2012-02-24 US US14/008,331 patent/US20140079913A1/en not_active Abandoned
- 2012-02-24 CN CN201280015798.6A patent/CN103459149B/zh active Active
- 2012-02-24 KR KR1020187026343A patent/KR102051272B1/ko active IP Right Grant
- 2012-02-29 TW TW101106552A patent/TWI462836B/zh active
- 2012-09-26 JP JP2012213224A patent/JP6348680B2/ja active Active
-
2016
- 2016-10-19 JP JP2016205005A patent/JP6402763B2/ja active Active
-
2018
- 2018-09-12 JP JP2018170885A patent/JP2019014261A/ja active Pending
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0756917B2 (ja) | 1989-07-24 | 1995-06-14 | 松下電器産業株式会社 | 電気機器 |
JPH0759619B2 (ja) | 1990-09-10 | 1995-06-28 | 日立化成工業株式会社 | 高分子量エポキシ樹脂の製造方法 |
JPH0759618B2 (ja) | 1990-09-10 | 1995-06-28 | 日立化成工業株式会社 | 高分子量エポキシ樹脂の製造方法 |
JPH0768327B2 (ja) | 1990-09-11 | 1995-07-26 | 日立化成工業株式会社 | 超高分子量エポキシ樹脂の製造方法 |
JPH0759620B2 (ja) | 1990-09-12 | 1995-06-28 | 日立化成工業株式会社 | 高分子量エポキシ樹脂の製造方法 |
JPH0764911B2 (ja) | 1990-09-12 | 1995-07-12 | 日立化成工業株式会社 | 高分子量エポキシ樹脂の製造方法 |
JP2002134531A (ja) | 1996-10-08 | 2002-05-10 | Hitachi Chem Co Ltd | 半導体装置、半導体チップ搭載用基板、それらの製造法、接着剤、および、両面接着フィルム |
JP2002226796A (ja) | 2001-01-29 | 2002-08-14 | Hitachi Chem Co Ltd | ウェハ貼着用粘着シート及び半導体装置 |
JP2003221573A (ja) | 2001-11-12 | 2003-08-08 | Hitachi Chem Co Ltd | 接合材料及びこれを用いた半導体装置 |
JP2004083602A (ja) * | 2002-07-04 | 2004-03-18 | Hitachi Chem Co Ltd | 接着シート並びに半導体装置及びその製造方法 |
JP2005029778A (ja) | 2003-06-20 | 2005-02-03 | Pokka Corp | 抗酸化剤、抗菌剤、抗腫瘍剤及び飲食品 |
JP2005206814A (ja) | 2003-12-24 | 2005-08-04 | Sumitomo Chemical Co Ltd | エポキシ化合物および該エポキシ化合物を硬化せしめてなるエポキシ樹脂硬化物 |
JP2005281467A (ja) * | 2004-03-29 | 2005-10-13 | Toshiba Corp | 高熱伝導性樹脂、および部材、ならびにそれらを用いた電気機器および半導体装置 |
JP2006131852A (ja) | 2004-11-09 | 2006-05-25 | Kanazawa Univ | レゾルシノールノボラック誘導体 |
JP2007150224A (ja) * | 2005-10-24 | 2007-06-14 | Hitachi Chem Co Ltd | 金属ベース回路基板 |
JP2007262398A (ja) * | 2006-03-01 | 2007-10-11 | Hitachi Chem Co Ltd | エポキシ樹脂組成物及び電子部品装置 |
JP2008013759A (ja) | 2006-06-07 | 2008-01-24 | Sumitomo Chemical Co Ltd | エポキシ樹脂組成物及びエポキシ樹脂硬化物 |
JP2010518183A (ja) | 2006-11-09 | 2010-05-27 | インドスペック ケミカル コーポレイション | レゾルシノール樹脂の安定化方法及びそれから製造されるゲル組成物 |
JP2008153430A (ja) * | 2006-12-18 | 2008-07-03 | Mitsubishi Electric Corp | 放熱基板並びに熱伝導性シートおよびこれらを用いたパワーモジュール |
JP2008189818A (ja) | 2007-02-05 | 2008-08-21 | Nitto Denko Corp | 熱伝導性樹脂組成物および熱伝導性シートとその製造方法 |
JP2008266378A (ja) * | 2007-04-17 | 2008-11-06 | Denki Kagaku Kogyo Kk | 組成物、それを用いた金属ベース回路基板 |
JP2009021530A (ja) | 2007-07-13 | 2009-01-29 | Sumitomo Electric Ind Ltd | 絶縁性樹脂膜およびパワーモジュール |
WO2010024236A1 (ja) * | 2008-08-27 | 2010-03-04 | 日立化成工業株式会社 | 両面接着フィルム及びこれを用いた電子部品モジュール |
JP2010258430A (ja) * | 2009-03-30 | 2010-11-11 | Hitachi Chem Co Ltd | 接着フィルム、ダイシングテープ一体型接着フィルム及び半導体装置の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2692526A4 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013032496A (ja) * | 2011-06-27 | 2013-02-14 | Nitto Shinko Kk | 熱硬化性樹脂組成物、熱伝導性シート、及び、半導体モジュール |
CN105190370A (zh) * | 2013-04-05 | 2015-12-23 | 三菱丽阳株式会社 | 光学膜和面发光体 |
EP2983018A4 (en) * | 2013-04-05 | 2016-04-20 | Mitsubishi Rayon Co | OPTICAL FILM AND BODY WITH SURFACE DELIVERY |
CN105659711A (zh) * | 2013-10-17 | 2016-06-08 | 住友电木株式会社 | 环氧树脂组合物、带有树脂层的载体材料、金属基电路基板和电子装置 |
JP2015170606A (ja) * | 2014-03-04 | 2015-09-28 | デクセリアルズ株式会社 | 多層型熱伝導性シート、多層型熱伝導性シートの製造方法 |
JP2017057340A (ja) * | 2015-09-18 | 2017-03-23 | 日本化薬株式会社 | ポリイミド樹脂組成物、及びそれを用いた接着フィルム |
JP2017168825A (ja) * | 2016-03-09 | 2017-09-21 | 東洋インキScホールディングス株式会社 | 複合部材 |
CN109661862A (zh) * | 2016-09-01 | 2019-04-19 | Agc株式会社 | 金属层叠板及其制造方法、以及印刷基板的制造方法 |
CN109661862B (zh) * | 2016-09-01 | 2021-08-31 | Agc株式会社 | 金属层叠板及其制造方法、以及印刷基板的制造方法 |
WO2018043683A1 (ja) * | 2016-09-01 | 2018-03-08 | 旭硝子株式会社 | 金属積層板およびその製造方法、ならびにプリント基板の製造方法 |
JPWO2018043683A1 (ja) * | 2016-09-01 | 2019-06-27 | Agc株式会社 | 金属積層板およびその製造方法、ならびにプリント基板の製造方法 |
JP7240432B2 (ja) | 2016-10-19 | 2023-03-15 | 日東シンコー株式会社 | 半導体モジュール及び半導体モジュールの製造方法 |
JP2021103783A (ja) * | 2016-10-19 | 2021-07-15 | 日東シンコー株式会社 | 半導体モジュール及び半導体モジュールの製造方法 |
WO2019054486A1 (ja) * | 2017-09-15 | 2019-03-21 | 東洋インキScホールディングス株式会社 | 熱伝導性絶縁シートおよび複合部材 |
US11825632B2 (en) | 2017-09-15 | 2023-11-21 | Toyo Ink Sc Holdings Co., Ltd. | Thermally conductive insulating sheet, and composite member |
JP2019052264A (ja) * | 2017-09-15 | 2019-04-04 | 東洋インキScホールディングス株式会社 | 熱伝導性絶縁シートおよび複合部材 |
KR20200054216A (ko) | 2017-09-15 | 2020-05-19 | 토요잉크Sc홀딩스주식회사 | 열 전도성 절연 시트 및 복합 부재 |
JP6399176B1 (ja) * | 2017-09-15 | 2018-10-03 | 東洋インキScホールディングス株式会社 | 熱伝導性絶縁シートおよび複合部材 |
JPWO2019065150A1 (ja) * | 2017-09-28 | 2020-09-17 | 富士フイルム株式会社 | 放熱シートおよび放熱シート付きデバイス |
JP7101693B2 (ja) | 2017-09-28 | 2022-07-15 | 富士フイルム株式会社 | 放熱シートおよび放熱シート付きデバイス |
WO2019065150A1 (ja) * | 2017-09-28 | 2019-04-04 | 富士フイルム株式会社 | 放熱シートおよび放熱シート付きデバイス |
JP2019178300A (ja) * | 2018-03-30 | 2019-10-17 | Tdk株式会社 | 樹脂組成物、樹脂板、コア材及び放熱基板 |
JPWO2021206087A1 (ja) * | 2020-04-10 | 2021-10-14 | ||
WO2021206087A1 (ja) * | 2020-04-10 | 2021-10-14 | 株式会社巴川製紙所 | 接着剤組成物 |
JP7477597B2 (ja) | 2020-04-10 | 2024-05-01 | 株式会社巴川コーポレーション | 接着剤組成物 |
WO2022137994A1 (ja) * | 2020-12-23 | 2022-06-30 | 富士フイルム株式会社 | 熱伝導層形成用シート、熱伝導層形成用シートの製造方法 |
WO2022168729A1 (ja) * | 2021-02-03 | 2022-08-11 | デクセリアルズ株式会社 | 熱伝導性シート積層体及びこれを用いた電子機器 |
Also Published As
Publication number | Publication date |
---|---|
CN103459149B (zh) | 2015-08-26 |
EP2692526B1 (en) | 2020-10-28 |
JP5141853B2 (ja) | 2013-02-13 |
EP2692526A4 (en) | 2014-10-22 |
JP6402763B2 (ja) | 2018-10-10 |
JP2017019291A (ja) | 2017-01-26 |
JP6348680B2 (ja) | 2018-06-27 |
JP2019014261A (ja) | 2019-01-31 |
TW201240825A (en) | 2012-10-16 |
EP2692526A1 (en) | 2014-02-05 |
KR20140011391A (ko) | 2014-01-28 |
JPWO2012132691A1 (ja) | 2014-07-24 |
JP2013039834A (ja) | 2013-02-28 |
KR102051272B1 (ko) | 2019-12-03 |
KR20180104772A (ko) | 2018-09-21 |
KR101936449B1 (ko) | 2019-01-08 |
US20140079913A1 (en) | 2014-03-20 |
TWI462836B (zh) | 2014-12-01 |
CN103459149A (zh) | 2013-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6402763B2 (ja) | 多層樹脂シート、樹脂シート積層体、多層樹脂シート硬化物及びその製造方法、金属箔付き多層樹脂シート、並びに半導体装置 | |
JP5348332B2 (ja) | 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置 | |
JP5431595B2 (ja) | 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置、並びにled装置 | |
JP5573842B2 (ja) | 多層樹脂シート及びその製造方法、多層樹脂シート硬化物の製造方法、並びに、高熱伝導樹脂シート積層体及びその製造方法 | |
JP5907171B2 (ja) | 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂付き金属箔及び放熱部材 | |
KR20140111302A (ko) | 경화성 방열 조성물 | |
JP2013216038A (ja) | 多層樹脂シート及びそれを用いた多層樹脂シート硬化物、樹脂シート積層体、半導体装置 | |
JP5821856B2 (ja) | 多層樹脂シート及び樹脂シート積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012541275 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12762807 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137028143 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012762807 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14008331 Country of ref document: US |