WO2012132155A1 - マンガンニッケル複合酸化物粒子粉末およびその製造方法、非水電解質二次電池用正極活物質粒子粉末およびその製造方法、ならびに非水電解質二次電池 - Google Patents

マンガンニッケル複合酸化物粒子粉末およびその製造方法、非水電解質二次電池用正極活物質粒子粉末およびその製造方法、ならびに非水電解質二次電池 Download PDF

Info

Publication number
WO2012132155A1
WO2012132155A1 PCT/JP2011/080075 JP2011080075W WO2012132155A1 WO 2012132155 A1 WO2012132155 A1 WO 2012132155A1 JP 2011080075 W JP2011080075 W JP 2011080075W WO 2012132155 A1 WO2012132155 A1 WO 2012132155A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle powder
active material
electrode active
positive electrode
material particle
Prior art date
Application number
PCT/JP2011/080075
Other languages
English (en)
French (fr)
Inventor
渡邊浩康
森田大輔
山本学武
古賀一路
梶山亮尚
升國広明
貞村英昭
正木竜太
松本和順
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011151283A external-priority patent/JP5737513B2/ja
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to PL11862158.0T priority Critical patent/PL2693534T3/pl
Priority to CN201180069617.3A priority patent/CN103460455B/zh
Priority to EP11862158.0A priority patent/EP2693534B1/en
Priority to CA2831756A priority patent/CA2831756A1/en
Priority to KR1020137024867A priority patent/KR101948343B1/ko
Priority to US14/007,732 priority patent/US10161057B2/en
Publication of WO2012132155A1 publication Critical patent/WO2012132155A1/ja
Priority to US16/057,982 priority patent/US11072869B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/54Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]-, e.g. Li(CoxMn2-x)04, Li(MyCoxMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • Positive electrode active material particle powder for non-aqueous electrolyte secondary battery with high discharge voltage, high discharge capacity, reduced side reaction with electrolyte, and excellent cycle characteristics, and its production method and precursor A manganese nickel composite oxide particle powder, a method for producing the same, and a nonaqueous electrolyte secondary battery are provided.
  • lithium ion secondary batteries having a voltage of 4 V class
  • spinel type LiMn 2 O 4 zigzag layered structure LiMnO 2
  • layered rock salt type structure LiCoO 2 LiNiO 2, etc.
  • lithium ion secondary batteries using LiNiO 2 have attracted attention as batteries having a high discharge capacity.
  • LiNiO 2 has a low discharge voltage and is inferior in thermal stability, cycle characteristics, and rate characteristics during charging, further improvement in characteristics is required. There is also a problem that the structure is destroyed when high voltage charging is performed to obtain a high capacity.
  • LiMn 2 O 4 is excellent in rate characteristics and cycle characteristics, but has a low discharge voltage and discharge capacity, and is hardly a high-energy positive electrode active material.
  • LiNi 0.5 Mn 1.5 O 4 LiCoMnO 4 , Li 1.2 Cr 0.4 Mn 0.4 O 4 , Li 1.2 Cr 0.4 Ti 0.4 O 4 , LiCoPO 4 , LiFeMnO 4 , LiNiVO 4 and the like are known.
  • LiNi 0.5 Mn 1.5 O 4 has a high discharge voltage in which a discharge plateau region is present at 4.5 V or more, and is excellent in rate characteristics and cycle characteristics. Attention has been paid.
  • JP 2000-515672 A Japanese Patent Laid-Open No. 9-147867 Japanese Patent Laid-Open No. 2001-110421 JP 2001-185145 A JP 2002-158007 A JP 2003-81637 A JP 2004-349109 A
  • High energy positive electrode active materials for non-aqueous electrolyte secondary batteries with high discharge voltage, excellent discharge capacity, and good cycle characteristics are currently the most demanded, but still satisfy the necessary and sufficient requirements. Is not obtained.
  • Patent Document 1 it is reported that nickel-containing lithium manganate particles powder in which Ni is uniformly solid-solved is obtained by a sol-gel method in which manganese nitrate, nickel nitrate, and lithium nitrate are mixed with an ethanol solution using an ethanol solvent and carbon black.
  • the discharge capacity is less than 100 mAh / g, which is not practical.
  • Patent Document 2 reports that a positive electrode active material that can be operated at a high voltage by a solid layer method by mixing electrolytic manganese dioxide, nickel nitrate, and lithium hydroxide and has excellent cycle characteristics is obtained.
  • a plateau considered to be derived from Mn 3+ can be confirmed in the vicinity of 4 V, and the capacity due to the plateau exceeds 10 mAh / g. Therefore, it is unstable and not practical as a positive electrode material for high voltage. .
  • a positive electrode active material is produced by producing a gel precursor by ball mill mixing lithium carbonate, MnO 2 and nickel nitrate with an ethanol solvent, followed by firing.
  • the battery characteristics can be maintained by suppressing the reaction with the electrolyte in the battery at high voltage operation due to the effect of the element, but in this method, F, Cl, Si, and S are brought to the 16d site.
  • the molar concentration of Mn and Ni at the site is relatively reduced, and as a result, the positive electrode active material particles themselves become brittle with respect to charge and discharge. Therefore, it is unstable and not practical as a positive electrode material for high voltage. That is, F, Cl, Si, and S present on the surface become resistance components, and as a result, the charge / discharge capacity may be reduced as compared with unadded products.
  • Patent Document 4 when co-precipitating with a manganese compound, a nickel compound, and an ammonium compound to obtain a spherical precursor whose primary particles are acicular, Ni and Mn are mixed with a Li compound and fired. Although it has been reported that the residual Ni (NiO) that can become an impurity layer can be reduced, it has been reported that a high discharge capacity and a high discharge capacity have been obtained, but only a discussion on the initial discharge capacity has led to a cycle. No mention is made of stability such as properties, and further stability by suppressing side reactions with the electrolyte by improving the surface properties of the particles. Further, the positive electrode active material described in Patent Document 4 may contain a large amount of impurities during precursor generation, and the impurities may cause instability in battery operation.
  • Patent Document 6 reports that after mixing lithium nitrate, manganese nitrate, and nickel nitrate, PVA was dropped and granulated, and then a high-capacity positive electrode material was obtained by firing at a maximum of 500 ° C. Since the firing temperature is low, it is difficult to increase the crystallinity, and the low crystallinity tends to cause a side reaction with the electrolytic solution, and long-term characteristics such as cycle characteristics may not be obtained.
  • Patent Document 7 a mixture of manganese sulfate and nickel sulfate in a sodium hydroxide aqueous solution is pH-controlled and slowly dropped to produce spherical manganese nickel hydroxide with small primary particles without using a complexing material.
  • Ni was uniformly dissolved in the particles, and a nickel-manganese composite oxide having a high tap density was obtained, and a positive electrode active material reacted with a Li compound was reported.
  • the precursor according to the present invention does not use a complexing material, the shape of the aggregated secondary particles becomes distorted (from the SEM image), and a sufficient tap density can be obtained even if the precursor is heat-treated at a high temperature. Not.
  • Non-Patent Document 1 describes that it has the crystal structure described in this specification, but does not describe a specific manufacturing method or its shape.
  • Non-Patent Document 2 discusses heat generation / endotherm associated with low-temperature phase transition due to oxygen deficiency of lithium manganate, but influence of oxygen deficiency of nickel-containing lithium manganate and substitution of Mn sites with Ni. There is no discussion of the behavior at low temperatures when such factors are added.
  • Non-Patent Document 3 describes that the nickel-containing lithium manganate that gives good results is that the space group is Fd-3m. However, when the manganese nickel composite oxide particle powder according to the present invention is used, The nickel-containing lithium manganate particle powder is suitable for the material described in Non-Patent Document 3. Note that Non-Patent Document 3 does not consider at all the control of the characteristics of the manganese-nickel composite oxide particles used as the precursor of the nickel-containing lithium manganate.
  • a positive electrode active material particle powder comprising a nickel-containing lithium manganate particle powder having a high discharge voltage, excellent charge / discharge capacity, and good cycle characteristics, a method for producing the same, and the positive electrode active material particle powder
  • a non-aqueous electrolyte secondary battery comprising a positive electrode containing
  • a precursor suitable for the production of positive electrode active material particle powder comprising nickel-containing lithium manganate for a nonaqueous electrolyte secondary battery having a high discharge voltage, excellent charge / discharge capacity, and good cycle characteristics.
  • Manganese nickel composite oxide particle powder, method for producing the same, method for producing positive electrode active material particle powder produced using the precursor, and non-aqueous electrolyte secondary comprising the positive electrode containing the positive electrode active material particle powder Provide batteries.
  • the present invention relates to a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery having a spinel structure represented by the following chemical formula (1), wherein Fd-3m It is a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery characterized by having the following characteristics (A) and / or (B) when indexed with (Invention 1).
  • Chemical formula (1) Li 1 + x Mn 2-yz Ni y M z O 4 ⁇ 0.05 ⁇ x ⁇ 0.15, 0.4 ⁇ y ⁇ 0.6, 0 ⁇ z ⁇ 0.20 (M: one or more selected from Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W, Bi)
  • the present invention is the positive electrode active material particle powder for a nonaqueous electrolyte secondary battery according to the present invention 1, wherein the average secondary particle diameter (D50) is 4 to 30 ⁇ m in (A) and / or (B). (Invention 2).
  • the present invention provides the nonaqueous electrolyte secondary battery according to the present invention 1 or 2, wherein the specific surface area by the BET method is in the range of 0.05 to 1.00 m 2 / g in (A) and / or (B). Positive electrode active material particle powder (Invention 3).
  • the present invention also provides a positive electrode active material powder for a non-aqueous electrolyte secondary battery having a spinel structure represented by the following chemical formula (1), wherein the average primary particle size is 1.0 to 4.0 ⁇ m, the average The secondary particle size (D50) is 4 to 30 ⁇ m, the BET specific surface area is 0.3 to 1.0 m 2 / g, and the average secondary particle size (D50) and BET specific surface area of the composite oxide powder
  • y A positive electrode active material particle powder for a non-aqueous electrolyte secondary battery, wherein y ⁇ 10.0 ⁇ 10 ⁇ 6 m 3 / g, where y is a product of (Aspect 4) (Invention 4).
  • Chemical formula (1) Li 1 + x Mn 2-yz Ni y M z O 4 ⁇ 0.05 ⁇ x ⁇ 0.15, 0.4 ⁇ y ⁇ 0.6, 0 ⁇ z ⁇ 0.20 (M: one or more selected from Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W, Bi)
  • the present invention provides a book in which z ⁇ 0.230 degree when the half width of the peak of the (400) plane in the X-ray diffraction of the positive electrode active material particle powder for a nonaqueous electrolyte secondary battery is z. It is a positive electrode active material particle powder for nonaqueous electrolyte secondary batteries according to Invention 4 (Invention 5).
  • the present invention is the positive electrode active material particle powder for a nonaqueous electrolyte secondary battery according to any one of the present inventions 1 to 5 having a tap density (500 times) of 1.7 g / ml or more (Invention 6). ).
  • the present invention provides the positive electrode active material particle powder according to any one of the present inventions 1 to 6, wherein the sodium content is 30 to 2000 ppm, the sulfur content is 10 to 600 ppm, and the total amount of impurities is 5000 ppm or less. It is a positive electrode active material particle powder for nonaqueous electrolyte secondary batteries (Invention 7).
  • the endothermic amount is in the range of 0.3 to 0.8 J / mg when the temperature of the positive electrode active material particle powder is raised from ⁇ 40 ° C. to 70 ° C. by differential scanning calorimetry.
  • the present invention provides a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the first or second aspect of the present invention, wherein when the positive electrode active material particle powder is used to form a non-aqueous electrolyte secondary battery, lithium metal
  • the capacity of 3.0 V or higher is 130 mAh / g or higher
  • the capacity of 4.5 V or higher is 120 mAh / g or higher
  • the counter electrode is artificial graphite
  • the cycle maintenance rate at 200 cycles is 55% or higher.
  • the present invention also provides a secondary battery in which the counter electrode is Li in the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the first or second aspect of the present invention, and is subjected to 30 cycles in a cycle test at 25 ° C.
  • the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the first or second aspect of the present invention having a (3.5V-3.0V) capacity of 2 mAh / g or less in a later discharge capacity (Invention 10) ).
  • the present invention provides a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention 4 or 5, wherein when the positive electrode active material particle powder is used to form a non-aqueous electrolyte secondary battery, initial charging is performed.
  • the ratio indicated by (ba) / b is less than 10%.
  • 4 is a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery described in (Invention 11).
  • the present invention provides an initial charge when the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention 4 or 5 is used as a non-aqueous electrolyte secondary battery using the positive electrode active material particle powder. It is the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries according to the present invention 4 or 5 having a discharge efficiency of 90% or more (the present invention 12).
  • the present invention provides a method for producing a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention 4 or 5, wherein a composite compound containing Mn and Ni as main components and a Li compound are mixed and oxidized.
  • the present invention is a non-aqueous electrolyte secondary battery using the positive electrode active material particle powder according to any one of the present inventions 1 to 12 (present invention 14).
  • the present invention also relates to a composite oxide mainly composed of Mn and Ni, which is a cubic spinel having a space group of Fd-3m, and is substantially single-phase and has an average primary particle size of 1.0 to 8. It is a manganese nickel composite oxide particle powder characterized by being in the range of 0 ⁇ m (Invention 15).
  • the present invention provides the composite oxide particle powder according to the present invention 15, wherein the tap density is 1.8 g / ml or more, and the half-value width of the strongest peak by X-ray diffraction is in the range of 0.15 to 0.25. It is a manganese nickel composite oxide particle powder having the composition formula represented by the following chemical formula (1) (Invention 16).
  • the sodium content is 100 to 2000 ppm
  • the sulfur content is 10 to 1000 ppm
  • the total of impurities is 4000 ppm or less.
  • This is a manganese-nickel composite oxide particle powder (Invention 17).
  • the present invention also provides an aqueous suspension containing manganese hydroxide by neutralizing an aqueous manganese salt solution with an alkaline aqueous solution in excess of the equivalent of manganese, and then at 60 to 100 ° C.
  • a primary reaction to obtain trimanganese tetroxide core particles by performing an oxidation reaction in a temperature range, adding a manganese raw material and a nickel raw material to the reaction solution after the primary reaction, and then performing a secondary reaction in which an oxidation reaction is performed,
  • a manganese nickel composite compound having trimanganese tetroxide particles as core particles is obtained, and then the manganese nickel composite compound having trimanganese tetroxide particles as core particles is fired in an oxidizing atmosphere at a temperature range of 900 to 1100 ° C.
  • the present invention also relates to a method for producing manganese nickel composite oxide particle powder according to the present invention 18 wherein the alkali concentration of the excess amount of the alkaline aqueous solution is 0.1 to 5.0 mol / L (the present invention 19).
  • the present invention provides the method for producing manganese nickel composite oxide particles according to the present invention 18 or 19, wherein the reaction solution after the primary reaction is switched to a non-oxidizing atmosphere, and then the non-oxidizing atmosphere is maintained. It is a manufacturing method of the manganese nickel compound oxide particle powder which adds the manganese raw material and nickel raw material aqueous solution in a next reaction (this invention 20).
  • the manganese nickel composite oxide particle powder according to any one of the present inventions 15 to 17 is mixed with a lithium compound, calcined at 680 to 1050 ° C. in an oxidizing atmosphere, and subsequently 500 to 700 ° C. It is a manufacturing method of the positive electrode active material particle powder for non-aqueous electrolyte secondary batteries which has a cubic spinel structure baked by (Invention 21).
  • the positive electrode active material particle powder for nonaqueous electrolyte secondary battery obtained by the method for producing the positive electrode active material particle powder for nonaqueous electrolyte secondary battery according to the present invention 21 is any of the present invention 1 to 12. It is a manufacturing method of the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries which is the positive electrode active material particle powder as described in (Invention 22).
  • the present invention is a non-aqueous electrolyte secondary battery using the positive electrode active material particle powder obtained by the method for producing positive electrode active material particle powder according to the present invention 21 or 22 (Invention 23).
  • the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention has excellent discharge characteristics with a high discharge voltage, a high discharge capacity, and good cycle characteristics with reduced side reactions with the electrolyte. It is a positive electrode active material particle powder for electrolyte secondary batteries.
  • the manganese nickel composite oxide particle powder according to the present invention is a positive electrode active material particle powder obtained by synthesizing with a Li compound, the discharge voltage is high, the discharge capacity is large, and the cycle characteristics are good. Since a water electrolyte secondary battery is obtained, it is suitable as a precursor of positive electrode active material particle powder for non-aqueous electrolyte secondary batteries.
  • the positive electrode active material particle powder obtained by synthesizing with the Li compound using the manganese nickel composite oxide particle powder according to the present invention has good battery characteristics as described in Non-Patent Document 3. Since the nickel-containing lithium manganate particles having a space group of Fd-3m are obtained, the manganese nickel composite oxide particles according to the present invention are suitable as a precursor.
  • FIG. 3 is an X-ray diffraction pattern of a positive electrode active material particle powder for a lithium ion battery obtained in Example 1-1.
  • FIG. 3 is an X-ray diffraction pattern of a positive electrode active material particle powder for a lithium ion battery obtained in Comparative Example 1-1.
  • 2 is a SEM image of a positive electrode active material particle powder for a lithium ion battery obtained in Example 1-1.
  • 2 is a SEM image of a positive electrode active material particle powder for a lithium ion battery obtained in Comparative Example 1-1.
  • FIG. 3 is an X-ray diffraction pattern of a positive electrode active material particle powder for a lithium ion battery obtained in Example 2-1.
  • FIG. 3 is an X-ray diffraction pattern of a positive electrode active material particle powder for a lithium ion battery obtained in Comparative Example 2-1.
  • 2 is a SEM image of positive electrode active material particle powder for lithium ion battery obtained in Example 2-1.
  • 4 is a SEM image of a positive electrode active material particle powder for a lithium ion battery obtained in Comparative Example 2-1.
  • FIG. 3 is an X-ray diffraction pattern of a positive electrode active material particle powder for a nonaqueous electrolyte secondary battery obtained in Example 3-1.
  • 3 is a charge / discharge curve of a positive electrode active material particle powder for a nonaqueous electrolyte secondary battery obtained in Example 3-1.
  • FIG. 3 is a SEM image of positive electrode active material particles for a nonaqueous electrolyte secondary battery obtained in Example 3-1.
  • 3 is an SEM image of a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery obtained in Comparative Example 3-1.
  • FIG. 4 is an X-ray diffraction pattern of manganese nickel composite oxide particle powder obtained in Example 4-1.
  • FIG. 4 is an X-ray diffraction pattern of nickel-containing manganese carbonate particle powder obtained in Comparative Example 4-1.
  • 4 is a SEM image of the manganese nickel composite oxide particle powder obtained in Example 4-1.
  • 4 is a SEM image of nickel-containing manganese carbonate particle powder obtained in Comparative Example 4-1.
  • the manganese nickel composite oxide particle powder which is a precursor of the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery of the present invention 15, will be described.
  • the manganese nickel composite oxide particle powder according to the present invention 15 is optimized as a precursor of the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery.
  • the manganese nickel composite oxide particle powder according to the present invention 15 has a crystal structure of cubic spinel having a space group of Fd-3m. When the other crystal structure is the main component, it becomes difficult for the positive electrode active material produced using the manganese nickel composite oxide particle powder to have a desired crystal structure.
  • manganese nickel composite oxide particle powder according to the present invention As the manganese nickel composite oxide particle powder according to the present invention 15, (Mn 1-yz Ni y M z ) 3 O 4 (y range is 0.2 ⁇ y ⁇ 0.3, z range is 0) ⁇ z ⁇ 0.1), and as the M element, generally known additive elements such as Mg, Al, Si, Ca, Ti, Co, Zn, Y, Zr, Sb, Ba, W, Bi, etc. More preferable additive elements may be Mg, Al, Si, Ti, Co, Zn, Y, Zr, Sb, and W. The content of the additive element is preferably 10 mol% or less with respect to the composite oxide.
  • the Ni content is preferably 20 to 30 mol% with respect to the total amount of Me (total amount of Mn, Ni and substitution element M).
  • the Ni content is less than 20 mol%, the positive electrode active material particle powder obtained using the precursor has a discharge plateau region of 4.5 V or more that is too low to obtain a high discharge capacity, and the structure is unstable. It becomes.
  • the Ni content exceeds 30 mol%, a large amount of impurity phase such as nickel oxide is generated in addition to the spinel structure in the positive electrode active material particle powder obtained using the precursor, and the discharge capacity is reduced.
  • the Ni content is more preferably 22 to 28 mol%, and even more preferably 23 to 27 mol%.
  • the manganese nickel composite oxide particle powder according to the present invention 15 is attributed to the cubic manganese nickel composite oxide by X-ray diffraction.
  • nickel is uniformly dispersed in trimanganese tetroxide which is a base material.
  • the manganese nickel composite oxide particle powder according to the present invention preferably has a half width of the strongest peak ((311) plane) in the range of 0.15 to 0.25 in X-ray diffraction.
  • An impurity phase may be present when the half width of the peak is smaller than 0.15.
  • nickel may not be uniformly dispersed in the manganese oxide particles.
  • the half width of the strongest peak is more preferably in the range of 0.15 to 0.22.
  • the average primary particle diameter of the manganese nickel composite oxide particle powder according to the present invention 15 is in the range of 1.0 to 8.0 ⁇ m, and is preferably a secondary particle body in which primary particles are aggregated.
  • the average primary particle size is less than 1.0 ⁇ m, the metal content such as Ni and Mn tends to elute into the electrolyte when the battery is made, and the crystal structure may become unstable.
  • the average primary particle diameter exceeds 8.0 ⁇ m, the diffusion of Li into the precursor becomes insufficient in the mixed firing with the Li compound, resulting in an unstable structure.
  • the average primary particle size is preferably 1.5 to 7.5 ⁇ m, more preferably 1.5 to 7.0 ⁇ m.
  • the tap density (500 times tapping) of the manganese nickel composite oxide particles according to the present invention 15 is preferably 1.8 g / ml or more, and more preferably 1.9 g / ml or more.
  • the manganese nickel composite oxide particle powder according to the present invention 15 preferably has a Na content of 100 to 2000 ppm.
  • the Na content is less than 100 ppm, the positive electrode active material particle powder obtained by using the oxide particle powder tends to have a weak force to retain the spinel structure.
  • the content exceeds 2000 ppm, the oxide particle powder In the positive electrode active material particle powder obtained by using lithium, lithium migration is hindered and the discharge capacity tends to decrease.
  • a more preferable Na content in the oxide particle powder is 100 to 1800 ppm, and still more preferably 100 to 1700 ppm.
  • the manganese nickel composite oxide particle powder according to the present invention 15 preferably has an S content of 10 to 1000 ppm.
  • S content is less than 10 ppm, in the positive electrode active material particle powder obtained using the oxide particle powder, there is a tendency that S does not have an electrical effect on the movement of lithium, and when it exceeds 1000 ppm, Causes of micro short-circuits when a positive electrode active material particle powder obtained using the oxide particle powder is used as a battery to form FeSO 4 and a compound locally and form FeSO 4 and the like locally. End up.
  • a more preferable S content is 10 to 800 ppm, and even more preferably 10 to 700 ppm.
  • the manganese nickel composite oxide particle powder according to the present invention 15 has a total of impurities of 4000 ppm or less.
  • the total amount of impurities is preferably 3500 ppm or less, and more preferably 3000 ppm or less.
  • the manganese nickel composite oxide particle powder according to the present invention 15 is a water suspension containing manganese hydroxide by neutralizing an aqueous manganese salt solution with an excess amount of an alkaline aqueous solution relative to the equivalent of manganese.
  • a primary reaction is performed to obtain trimanganese tetroxide core particles by performing an oxidation reaction in a temperature range of 60 to 100 ° C., and a predetermined amount of manganese raw material and nickel raw material are added to the reaction solution after the primary reaction
  • a secondary reaction in which an M element raw material dissolved in an aqueous solution is added to perform an oxidation reaction, and then washed and dried by a conventional method to obtain the intermediate product of the manganese nickel composite oxide according to the present invention.
  • a manganese nickel composite compound using the resulting trimanganese tetraoxide particles as a base material is obtained by firing the manganese nickel composite compound in an oxidizing atmosphere at a temperature range of 900 to 1100 ° C. Door can be.
  • the manganese compound and nickel compound used in the synthesis of the manganese nickel composite oxide particle powder are not particularly limited, and various oxides, hydroxides, chlorides, sulfates, nitrates, carbonates, acetates, etc. are used. In particular, it is preferable to use a sulfate.
  • the manganese salt aqueous solution is neutralized with an alkaline aqueous solution in excess of the equivalent of manganese and contains manganese hydroxide Then, an oxidation reaction is performed in a temperature range of 60 to 100 ° C. to obtain trimanganese tetroxide core particles.
  • the method for synthesizing the core particles can be obtained according to the production method described in Japanese Patent No. 4305629.
  • the manganese raw material and the nickel raw material aqueous solution in the secondary reaction with the non-oxidizing atmosphere were added.
  • the non-oxidizing atmosphere includes Ar, CO, CO 2 , N 2 , H 2, etc., but N 2 is preferable.
  • trimanganese tetroxide core particles that are the base material in the reaction vessel
  • manganese, a manganese raw material aqueous solution and a nickel raw material aqueous solution, and if necessary, an M element raw material aqueous solution are added to the reaction solution in a non-oxidizing atmosphere. Fine particles of nickel, M-element hydroxide or hydrated oxide are produced, and then the reaction solution is switched to an oxidizing atmosphere, whereby the hydroxide or hydrated oxide becomes an oxide and trimanganese tetraoxide.
  • an intermediate product precipitate can be obtained without impairing the crystallinity of the core particles.
  • Nickel raw materials are oxides, nitrates, sulfates, chlorides, carbonates, acetates, etc., but it is preferable to use sulfates.
  • M element raw materials include Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W, Bi oxides, nitrates, sulfates, chlorides, carbonates, acetates, etc. It is preferred to use a salt.
  • an excessive amount of an alkaline aqueous solution in the primary reaction and the secondary reaction is 0.1 to 5.0 mol / L.
  • concentration of the aqueous alkaline solution is preferably 0.5 to 4.0 mol / L.
  • the alkaline aqueous solution is not particularly limited, and various basic materials can be used.
  • sodium carbonate, sodium hydroxide, lithium hydroxide, potassium carbonate, potassium hydroxide and the like are used, but it is preferable to use sodium hydroxide.
  • the slurry containing the intermediate product obtained after the reaction is washed and dried according to a conventional method.
  • impurities such as excess sodium and sulfur adhering to the intermediate product without losing the nickel compound and M element compound deposited by the secondary reaction. .
  • the obtained intermediate product is fired in an oxidizing atmosphere at a temperature range of 900 to 1100 ° C., whereby the manganese nickel composite oxide particle powder according to the present invention can be obtained.
  • the firing temperature is lower than 900 ° C., not only Ni is not uniformly incorporated into the Mn oxide, but also a cubic nickel-nickel composite oxide having a spinel structure cannot be obtained.
  • the firing temperature exceeds 1100 ° C., Ni is deposited as an impurity such as NiO.
  • a preferable baking temperature is 900 to 1000 ° C.
  • a more preferable baking temperature is 900 to 980 ° C., and still more preferably 900 to 960 ° C.
  • the particle diameter can also be adjusted by pulverizing the manganese nickel composite oxide particle powder after the firing step. In that case, it is necessary only to adjust the secondary particle diameter (D50) and to have an effect on the average primary particle diameter.
  • the nickel-containing positive electrode active material particle powder according to the present invention 1 is optimized as an active material powder for a high-voltage nonaqueous electrolyte secondary battery.
  • the positive electrode active material particle powder according to the present invention 1 has at least a cubic spinel structure, can be indexed with Fd-3m by X-ray diffraction, has Mn as a main component, and is oxidized in combination with at least Ni. It is a compound containing Li, Ni and Mn.
  • the positive electrode active material particle powder according to the first aspect of the present invention has a chemical formula: Li 1 + x Mn 2 -yz Ni y M z O 4 (the range of x is ⁇ 0.05 ⁇ x ⁇ 0.15, the range of y is 0.00. 4 ⁇ y ⁇ 0.6, and the range of z is 0 ⁇ z ⁇ 0.20).
  • the different element M one or more selected from Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W and Bi may be substituted, and more preferable additive elements are Mg, Al, Si, Ti, Co, Zn, Y, Zr, Sb, W.
  • the content z of the different element M is preferably 0.20 or less in the chemical formula of the compound having the spinel structure. Since the positive electrode active material particle powder according to the first aspect of the present invention has a spinel structure, even when charged at a high voltage of 5 V, the structure does not collapse and a charge / discharge cycle can be performed. Moreover, oxygen may be accompanied by oxygen deficiency within the range of common sense. The description in the chemical formula is omitted.
  • the Ni content is 20 to 30 mol% with respect to the total amount of Me (the total amount of Mn, Ni and the substitution element M).
  • the discharge plateau region of 4.5 V or more becomes too small to obtain a high discharge capacity, and the structure becomes unstable.
  • the Ni content exceeds 30 mol%, a large amount of impurity phase such as nickel oxide is generated in addition to the spinel structure, and the discharge capacity is reduced.
  • the Ni content is more preferably 22 to 29 mol%, still more preferably 23 to 27 mol%.
  • (Li / (Ni + Mn + M)) is in a molar ratio of 0.475 to 0.575.
  • (Li / (Ni + Mn + M)) is less than 0.475, the amount of lithium that can contribute to charging is reduced and the charge capacity is lowered.
  • (Li / (Ni + Mn + M)) is preferably 0.48 to 0.55, more preferably 0.49 to 0.53.
  • the positive electrode active material particle powder according to the present invention it is necessary to belong to a cubic spinel structure by X-ray diffraction.
  • Ni needs to diffuse uniformly with respect to the positive electrode active material particles.
  • a peak (shoulder) of NiO is observed by X-ray diffraction.
  • the peak of NiO becomes large, it becomes structurally unstable and the battery characteristics are considered to deteriorate.
  • the average secondary particle diameter (D50) of the positive electrode active material particle powder according to the present invention 1 is preferably 4 to 30 ⁇ m.
  • the average secondary particle diameter is more preferably 4 to 20 ⁇ m, still more preferably 4 to 15 ⁇ m.
  • the specific surface area (BET method) of the positive electrode active material particles according to the present invention 1 is preferably 0.05 to 1.00 m 2 / g. If the specific surface area is too small, the contact area with the electrolytic solution becomes too small and the discharge capacity is lowered. If it is too large, the reaction is excessively caused and the discharge capacity is lowered.
  • the specific surface area is more preferably 0.10 to 0.90 m 2 / g, and still more preferably 0.20 to 0.80 m 2 / g.
  • the tap density (500 times tapping) of the positive electrode active material particle powder according to the present invention 1 is preferably 1.70 g / ml or more.
  • the tap density is more preferably 1.80 g / ml or more, and still more preferably 1.85 g / ml or more.
  • the positive electrode active material particle powder according to the present invention 1 preferably has a Na content of 30 to 2000 ppm.
  • the Na content is less than 30 ppm, the force for retaining the spinel structure is weakened.
  • the Na content is more than 2000 ppm, lithium migration is inhibited, and the discharge capacity may be reduced.
  • the Na content is more preferably 35 to 1800 ppm, and even more preferably 40 to 1700 ppm.
  • the positive electrode active material particle powder according to the present invention 1 preferably has an S content of 10 to 600 ppm.
  • S content is less than 10 ppm, an electric effect on the movement of lithium cannot be obtained.
  • S content is more than 600 ppm, FeSO 4 or the like is locally deposited when the positive electrode active material is used to form a battery. May cause micro-shorts.
  • a more preferable S content is 15 to 500 ppm.
  • the total amount of impurities is 5000 ppm or less.
  • the total amount of impurities is preferably 4000 ppm or less, more preferably 3500 ppm or less.
  • the calorific value of the positive electrode active material particle powder according to the present invention 1 is large is not clear, but in the present invention 1, when the temperature is raised from ⁇ 40 ° C. to 70 ° C. in the differential scanning calorimetry of the positive electrode active material particle powder. It has been found that when the endothermic amount is in the range of 0.3 to 0.8 J / mg, a sufficient discharge capacity is obtained and the cycle characteristics are also good.
  • the positive electrode active material particle powder according to the first aspect of the present invention has a large amount of heat due to the phase transition reaction in the low temperature region is not yet clear, but it depends on not only the information due to oxygen deficiency but also the time of synthesis of the positive electrode active material particle powder.
  • the present inventors consider that information including the existence state of Mn and Ni may be obtained.
  • the structure of the positive electrode active material particle powder according to the present invention 1 is that the peak intensity (I (311)) on the (311) plane and the peak intensity on the (111) plane when indexed with Fd-3m by X-ray diffraction.
  • the ratio (I (311) / I (111)) to (I (111)) is in the range of 35 to 43%.
  • the peak intensity ratio is preferably in the range of 36 to 42%.
  • the peak intensity ratio is less than 35%, the spinel structure itself cannot be maintained in the positive electrode active material particle powder.
  • the peak intensity ratio exceeds 43%, sufficient discharge capacity and cycle characteristics cannot be obtained.
  • the ratio between the peak intensity of the (311) plane and the peak intensity of the (111) plane was simulated by Rietveld analysis. As a result, the transition metal to the 8a site occupied by Li in the spinel structure in the positive electrode active material, etc. It was found that there was a correlation with the amount of substitution. When the peak intensity ratio was large, the amount of Ni dissolved in the 8a site in the positive electrode active material particle powder increased.
  • the tetrahedral structure of the 8a site When Ni is dissolved in the 8a site, the tetrahedral structure of the 8a site also expands and contracts due to the expansion and contraction due to the change in the valence of Ni by charge / discharge, resulting in a cubic crystal. It is considered that the stability of the structure is deteriorated, and therefore the cycle characteristics are also deteriorated.
  • Characteristic (B) The structure of the positive electrode active material particle powder according to the present invention 1 has a half-value width for each peak position 2 ⁇ (10 to 90 degrees) when indexed with Fd-3m by X-ray diffraction.
  • the slope of the straight line according to the least square method in the graph in which the horizontal axis is sin ⁇ and the vertical axis is ⁇ cos ⁇ is in the range of (3.0 ⁇ 10 ⁇ 4 to 20.0 ⁇ 10 ⁇ 4 ).
  • the discharge capacity is high and the cycle characteristics are good by controlling within the above range.
  • the crystal structure in the positive electrode active material particle powder cannot be stably maintained, and the cycle characteristics are deteriorated.
  • the graph described in the present invention 1 is called a Williamson-hall plot, and has the following formula.
  • wavelength of X-ray
  • D crystallite diameter
  • the inclination is generally said to be a parameter including information such as compositional strain and crystal strain. Although the details are not clear, it has been found that when the inclination is within the range of the present invention 1, the positive electrode active material particle powder has a large discharge capacity and excellent cycle characteristics.
  • the positive electrode active material particle powder for non-aqueous electrolyte secondary battery according to the present invention 4 (hereinafter referred to as “positive electrode active material particle powder”) has at least a cubic spinel structure, and Mn and Ni which are main components are combined. It is a compound that is oxidized and contains Li, Ni and Mn.
  • the positive electrode active material particle powder according to the present invention 4 has an average primary particle diameter of 1.0 to 4.0 ⁇ m, an average secondary particle diameter (D50) of 4.0 to 30 ⁇ m, and a BET specific surface area of The range y is 0.3 to 1.0 m 2 / g, and the product y of the average secondary particle diameter (D50) and the BET specific surface area is 10.0 ⁇ 10 ⁇ 6 m 3 / g or less (y ⁇ 10.0 ⁇ 10 ⁇ 6 m 3 / g).
  • the average primary particle diameter of the positive electrode active material particle powder according to the present invention 4 is out of the range of the present invention, the reactivity with the electrolytic solution is improved and becomes unstable.
  • the average secondary particle diameter (D50) of the positive electrode active material particle powder according to the present invention 4 is less than 4.0 ⁇ m, the reactivity with the electrolytic solution is increased by increasing the contact area with the electrolytic solution, Stability during charging may be reduced.
  • the average secondary particle diameter (D50) exceeds 30 ⁇ m, the resistance in the electrode increases, and the charge / discharge rate characteristics may be deteriorated.
  • the average secondary particle diameter is more preferably 4.0 to 20 ⁇ m, and still more preferably 5.0 to 15 ⁇ m.
  • the specific surface area (BET specific surface area method) of the positive electrode active material particle powder according to the present invention 4 is preferably 0.3 to 1.00 m 2 / g. If the specific surface area is too small, the contact area with the electrolytic solution becomes too small and the discharge capacity decreases, and if it is too large, the positive electrode active material particle powder reacts with the electrolytic solution and gas generation and initial efficiency decrease.
  • the specific surface area is preferably 0.35 to 0.80 m 2 / g, more preferably 0.43 to 0.75 m 2 / g.
  • the product y of the average secondary particle diameter (D50) and the BET specific surface area is 10.0 ⁇ 10 ⁇ 6 m 3 / g or less.
  • the value of the product is greater than 10.0 ⁇ 10 ⁇ 6 m 3 / g, the secondary particles are in a state in which a number of irregularities are formed on the surface properties, and a secondary battery using the positive electrode active material particle powder is used. In this case, it may be considered that the gas reacts with the electrolytic solution and gas generation and battery characteristics deteriorate.
  • the product y of the average secondary particle diameter (D50) and the BET specific surface area is preferably 9.5 ⁇ 10 ⁇ 6 m 3 / g or less, more preferably 1.0 ⁇ 10 ⁇ 6 to 9.0 ⁇ 10 ⁇ 6. m 3 / g, still more preferably 2.0 ⁇ 10 ⁇ 6 to 8.8 ⁇ 10 ⁇ 6 m 3 / g.
  • the y which is the product of the average secondary particle size and the BET specific surface area, is m 3 / g (reciprocal of density) in units, which is considered to indicate the volume of secondary particles per unit weight.
  • the minimum surface area can be found from the diameter (secondary particle diameter) and shape.
  • y is a parameter resulting from the surface condition.
  • this number is considered to be a parameter indicating the surface property of the particles.
  • the number increases, the surface of the particle has a lot of unevenness, and when it becomes smaller, the unevenness of the particle surface is reduced and it is considered that the particle surface is approaching a smooth state.
  • y is within the range of the present invention, it is considered that the particle surface properties are good and side reactions with the electrolyte can be reduced.
  • the full width at half maximum (FWMH (400)) of the (400) plane is z
  • the half width z of the peak of the (400) plane exceeds 0.230 °, the crystal becomes unstable, and as a result, the battery characteristics may deteriorate.
  • a more preferable range is z ⁇ 0.220 °, and further preferably 0.044 ° ⁇ z ⁇ 0.180 °.
  • the half width of the peak of the (111) plane in the X-ray diffraction of the positive electrode active material particle powder according to the present invention 4 is preferably 0.15 ° or less, more preferably 0.053 ° to 0.12 °
  • the full width at half maximum of the (311) plane peak is preferably 0.18 ° or less, more preferably 0.044 ° to 0.14 °
  • the full width at half maximum of the (440) plane is preferably 0.25 ° or less. More preferably, the angle is 0.045 ° to 0.20 °.
  • the positive electrode active material particle powder according to the present invention 4 has a chemical formula: Li 1 + x Mn 2 -yz Ni y M z O 4 (x range is ⁇ 0.05 ⁇ x ⁇ 0.15, y range is 0.00. 4 ⁇ y ⁇ 0.6, and the range of z is 0 ⁇ z ⁇ 0.20).
  • the different element M one or more selected from Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W and Bi may be substituted, and a more preferable additive element is Mg. , Al, Si, Ti, Co, Zn, Y, Zr, Sb, W.
  • the content z of the different element M is preferably 0.20 or less in the chemical formula of the compound having the spinel structure. Since the positive electrode active material particle powder according to the present invention has a spinel structure, even if it is charged at a high voltage of 5 V, the structure does not collapse and a charge / discharge cycle can be performed. Moreover, oxygen may be accompanied by oxygen deficiency within the range of common sense (the description in the chemical formula is omitted).
  • the positive electrode active material particle powder according to the present inventions 1 and 4 is a composite oxide mainly composed of manganese and nickel having a cubic spinel structure, and the manganese nickel composite oxide particle powder according to the present invention 15 Is preferably used.
  • the positive electrode active material particles for nonaqueous electrolyte secondary batteries according to the present inventions 1 and 4 are produced by the method for producing the positive electrode active material particles for nonaqueous electrolyte secondary batteries of the present invention 21. It becomes particle powder.
  • the positive electrode active material particle powder according to the present invention 21 uses the manganese nickel composite oxide particle powder according to the present invention 15 as a precursor.
  • the positive electrode active material particle powder using the manganese nickel composite oxide particle powder according to the present invention 15 as a precursor is a nickel-containing lithium manganate particle powder having a spinel structure containing at least Li, Ni, and Mn. It is suitable as a positive electrode active material particle powder of a water electrolyte secondary battery.
  • the nickel-containing positive electrode active material particle powder has high crystallinity and can be charged at a high voltage of 5 V without causing the structure to collapse, and can perform a high discharge capacity and a stable charge / discharge cycle.
  • the precursor and the lithium compound are mixed at a predetermined molar ratio, and then fired at 680 ° C. to 1050 ° C. in an oxidizing atmosphere (1), and subsequently fired at 500 to 700 ° C. (2).
  • the manganese nickel composite oxide as a precursor used in the present inventions 1 and 4 includes a hydroxide, an oxide organic compound, and the like, and is preferably a composite oxide of Mn and Ni having a cubic spinel structure.
  • the composite oxide is an oxide having a spinel structure belonging to the space group of Fd-3m, in which manganese and nickel as main components are uniformly distributed at 8a site and / or 16d site.
  • the precursor may be a composite oxide in which an element other than manganese and nickel is introduced.
  • the manganese nickel composite oxide which is the precursor used in the present inventions 1 and 4, is preferably a single phase in a composite oxide mainly composed of Mn and Ni.
  • the manganese nickel composite oxide which is a precursor used in the present inventions 1 and 4 has an average primary particle diameter of 1.0 to 8.0 ⁇ m, preferably 1.0 to 4.0 ⁇ m.
  • the tap density is preferably 1.8 g / ml or more, and the half-width of the strongest peak by X-ray diffraction is preferably in the range of 0.15 to 0.25.
  • the composition of the manganese nickel composite oxide which is a precursor used in the present inventions 1 and 4, is represented by the chemical formula (2).
  • the manganese nickel composite oxide which is a precursor used in the present inventions 1 and 4 preferably has a sodium content of 100 to 2000 ppm, a sulfur content of 10 to 1000 ppm, and a total of impurities of 4000 ppm or less. preferable.
  • the manufacturing method of the manganese nickel composite oxide particle powder in the present invention 1 and 4 is a solid reaction or various raw materials in an aqueous solution in which various raw materials are mixed and fired if a manganese nickel composite oxide particle powder satisfying the above characteristics can be produced.
  • Any manufacturing method such as a wet reaction of co-precipitating and then firing may be used, but is not particularly limited. For example, it can be obtained by the following manufacturing method.
  • the manganese nickel composite oxide particles in the present inventions 1 and 4 are neutralized with an aqueous manganese salt solution using an excess amount of an alkaline aqueous solution with respect to the equivalent of manganese and containing manganese hydroxide. Then, a primary reaction is performed to obtain trimanganese tetroxide core particles by performing an oxidation reaction in a temperature range of 60 to 100 ° C., and a predetermined amount of manganese raw material and nickel are added to the reaction solution after the primary reaction.
  • This manganese nickel composite compound can be washed and dried, and then fired in an oxidizing atmosphere at a temperature range of 900 to 1100 ° C.
  • the lithium compound used in the present invention is not particularly limited, and various lithium salts can be used.
  • lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, chloride examples thereof include lithium, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide, with lithium carbonate being particularly preferable.
  • the lithium compound used preferably has an average particle size of 50 ⁇ m or less. More preferably, it is 30 ⁇ m or less. When the average particle diameter of the lithium compound exceeds 50 ⁇ m, mixing with the precursor particle powder becomes non-uniform, and it becomes difficult to obtain composite oxide particles having good crystallinity.
  • an additive element may be introduced into the positive electrode active material particle powder by mixing an oxide, carbonate, or the like.
  • the mixing process of the manganese nickel composite oxide particles and the lithium compound may be either dry or wet as long as they can be mixed uniformly.
  • firing step in the present invention it is preferable to perform firing at 680 ° C. to 1050 ° C. as firing (1) in an oxidizing atmosphere.
  • firing (1) the manganese-nickel composite compound and the Li compound react to obtain nickel-containing lithium manganate in an oxygen-deficient state.
  • the temperature is lower than 680 ° C., the reactivity between the precursor and Li is poor, and the compound is not sufficiently combined.
  • the temperature exceeds 1050 ° C., sintering proceeds too much, or Ni comes out of the lattice and precipitates as Ni oxide.
  • a preferred main calcination temperature is 700 to 1000, and even more preferably 730 to 950 ° C.
  • the firing time is preferably 2 to 50 hours.
  • a heat treatment is performed to form a firing (2) at 500 ° C. to 700 ° C. in the same oxidizing atmosphere.
  • firing (2) oxygen deficiency can be compensated, and a nickel-containing positive electrode active material particle powder having a stable crystal structure can be obtained.
  • the positive electrode active material particle powder obtained by the production method according to the present invention 21, like the positive electrode active material particle powder according to the present inventions 1 and 4, is a nickel-containing lithium manganate particle powder having a spinel structure, Li 1 + x Mn 2 ⁇ yz Ni y M z O 4 (x range is ⁇ 0.05 ⁇ x ⁇ 0.15, y range is 0.4 ⁇ y ⁇ 0.6, z range is 0 ⁇ z ⁇ 0.20), and M element may be replaced with Mn by one or more of Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W, Bi and the like. More preferable additive elements are Mg, Al, Si, Ti, Co, Zn, Y, Zr, Sb, and W. Further, in the present invention, oxygen deficiency or oxygen excess may exist within a known range.
  • the average secondary particle diameter (D50) of the positive electrode active material particles in the present invention is preferably 4 to 30 ⁇ m, the specific surface area by the BET method is preferably 0.05 to 1.00 m 2 / g, and the tap density (500 times ) Is preferably 1.7 g / ml or more.
  • the sodium content of the positive electrode active material particles in the present invention is preferably 30 to 2000 ppm, the sulfur content is preferably 10 to 600 ppm, and the total of impurities is preferably 5000 ppm or less.
  • a conductive agent When producing a positive electrode containing the positive electrode active material particle powder according to the positive electrode active material particle powder obtained by the production method of the present invention 1 and 4 or the present invention 21, according to a conventional method, a conductive agent, a binder, Add and mix.
  • a conductive agent acetylene black, carbon black, graphite and the like are preferable
  • the binder polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
  • the secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the positive electrode active material particle powder obtained by the manufacturing method of the present invention 1 and 4 or the present invention 21 comprises the positive electrode, the negative electrode and the electrolyte. Composed.
  • lithium metal lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite or the like can be used.
  • an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
  • At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
  • the non-aqueous electrolyte secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention 1 and the positive electrode active material particle powder obtained by the production method of the present invention 21 is evaluated by the evaluation method described later.
  • the capacity of 0 V or more is 130 mAh / g or more, preferably 135 mAh / g or more
  • the capacity of 4.5 V or more is 120 mAh / g or more, more preferably 125 mAh / g or more
  • the cycle maintenance ratio Is 55% or more preferably 60% or more.
  • the rate maintenance rate which took the ratio of 10C / 0.1C is 80% or more.
  • the amount of Ni substitution at the 8a site is small (Ni is preferentially diffused into the 16d site), so that it is less affected by the expansion and contraction of the crystal lattice due to the valence change of Ni during charge and discharge, It is considered that the bulk resistance when diffusing into the electrolytic solution from the 8a site serving as the Li ion diffusion path through the 16c site is reduced. As a result, it is considered that the result was excellent in the rate maintenance rate and cycle maintenance rate while maintaining a high discharge capacity.
  • the battery capacity of (3.5V-3.0V) at the time of discharge after 30 cycles is 2 mAh / g or less. If it is greater than 2 mAh / g, the crystal of the positive electrode active material becomes unstable, and the battery is deteriorated quickly. Preferably, it is 1.5 mAh / g or less.
  • a positive electrode active material particle powder having a spinel structure containing at least Ni and Mn often has a plateau around 4 V due to a change in valence of Mn trivalent or tetravalent in a discharge curve when a battery is formed. .
  • Ni vacancies or oxygen vacancies are generated in the lattice.
  • a part of Mn changes from tetravalent to trivalent. Therefore, it is thought that it occurs.
  • a small plateau in the vicinity of 4 V in the discharge capacity is considered to be important with respect to the stability of various battery characteristics of the positive electrode active material.
  • the positive electrode active material particle powder As a judgment index of the structural stability of the positive electrode active material particle powder, attention was paid to a plateau around 3.3 V in the discharge curve of the last charge / discharge in the cycle test of 30 cycles.
  • the positive electrode active material particle powder having inferior cycle characteristics has a significantly large plateau near 3.3 V as well as a plateau around 4.0 V. I found.
  • the method according to the production method of the positive electrode active material particle powder in the present invention is taken.
  • the crystallinity in the spinel structure of the positive electrode active material particle powder also increases, and as a result, the 16d site where Mn, Ni and M elements are coordinated is less expanded and contracted by charging and discharging, so that the Li is 8a site. It is considered that the number of ion diffusion resistance elements that move to the interface through the 16c site decreases.
  • Ni is removed from the structure and becomes a NiO component, and since oxygen deficiency is reduced, the capacity of 3.0 V to 4.5 V where the plateau due to Mn 3+ / Mn 4+ is seen is reduced, and the cycle characteristics are improved. It is thought that.
  • the non-aqueous electrolyte secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention 4 has a discharge capacity of 3.0 V or higher by an evaluation method described later of 130 mAh / g or more, more preferably 135 mAh. / G or more.
  • the nonaqueous electrolyte secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention 4 has a charge capacity of 4.8 V at the time of initial charge when lithium metal is used for the counter electrode. Is a and the charge capacity of 5.0 V is b, the ratio of (ba) / b is smaller than 10%.
  • the electrolytic solution When charging at 4.5 V or higher, the electrolytic solution is generally decomposed, so that the apparent charge capacity due to this decomposition reaction is added by charging at 4.8 V or higher.
  • the inventor has found that by optimizing the surface properties of the positive electrode active material particles, the decomposition of the electrolytic solution is reduced, so that the apparent charge capacity due to the decomposition of the electrolytic solution is reduced. .
  • the positive electrode active material particle powder according to the present invention it is considered that the decomposition of the electrolytic solution can be suppressed, and the ratio of (ba) / b described above can be made smaller than 10%.
  • the secondary battery using the positive electrode active material particle powder according to the present invention since the decomposition reaction of the electrolytic solution by the positive electrode active material is suppressed, for example, gas generation due to deterioration of the electrolytic solution or decomposition of the electrolytic solution, It is also considered that the deterioration of the positive electrode itself can be suppressed. As a result, the secondary battery using the positive electrode active material particle powder according to the present invention is considered to have excellent long-term stability.
  • Ni in the positive electrode active material particles generally moves to the 8a site where Li exists. It was found that the substitution amount of was reduced. From this result, it was found that a large amount of Ni exists in the 16d site where Mn is mainly present in the present invention. For this reason, most of the 8a site contains only Li that contributes to charge and discharge, and it is assumed that the discharge capacity can be increased and that favorable rate characteristics can be obtained for crystal stabilization.
  • the half value for each peak position 2 ⁇ (10 to 90 degrees)
  • the slope of the straight line according to the least square method in the graph is in the range of 3.0 ⁇ 10 ⁇ 4 to 20.0 ⁇ 10 ⁇ 4. It was found that the cycle characteristics were high and the cycle characteristics were good.
  • the positive electrode active material particle powder when entering the range of the slope in the present invention, the positive electrode active material particle powder It was inferred that some parameters such as crystallinity and composition were optimized. As a result of optimization, it is considered that the material has a large discharge capacity and excellent cycle characteristics.
  • the expansion and contraction of Ni due to the change in Ni valence and tetravalence due to charge / discharge is mainly mitigated by the association with tetravalent Mn. It is thought that it can be done. As a result, the expansion and contraction of the entire lattice in charge / discharge is reduced, so that the ion diffusion resistance in the insertion / desorption of Li is reduced, and the cycle characteristics are considered to be favorable.
  • the endothermic amount is in the range of 0.3 to 0.8 J / mg, so that the discharge capacity is high, and The cycle characteristics are considered to be good results.
  • Non-Patent Document 2 lithium manganate having a spinel structure similar to that of the positive electrode active material is said to undergo a phase transition from cubic to tetragonal, but nickel as in the present invention is substituted in a large amount by Mn sites.
  • the positive electrode active material has heat generation / absorption due to the phase transition as described above, at least in this study, a different result could be found.
  • Non-Patent Document 2 can be achieved by reducing the trivalent thermal motion of Mn, which is a Yanterer ion.
  • Mn basically exists in a tetravalent state, and the trivalent Mn occurs when oxygen deficiency is large, and the capacity in the 4V region increases in the discharge curve in the battery characteristics ( (Mn trivalent / tetravalent reaction).
  • the evaluation according to the present invention it is considered that not only the trivalent behavior of Mn due to oxygen vacancies but also the results including parameters such as crystal balance appear. Therefore, in the range according to the present invention 1, it is considered that the discharge capacity is high and the cycle characteristics are good.
  • the manganese nickel composite oxide particle powder according to the present invention 15 is characterized by a spinel structure, cubic crystals, and high crystallinity.
  • a manganese raw material solution, a nickel raw material solution, and M are added to a reaction solution in which excess alkali content remains under nitrogen flow after generating highly crystalline trimanganese tetroxide core particles (seed particles) in advance.
  • hydroxide fine particles of the added metal can be generated.
  • the hydroxide is a core particle. It is thought that it precipitates at the interface of trimanganese tetroxide particles.
  • fine particles of Mn, Ni, and M element hydroxides are precipitated as uniformly entangled oxides, so that no new particles are locally generated in the reaction solution, and they are core particles.
  • a substitution element such as Ni can be disposed in the vicinity of the interface of the trimanganese tetroxide particles.
  • the average primary particle diameter after the secondary reaction can be controlled by variously changing the conditions of the primary reaction.
  • the average primary particle diameter of the manganese nickel composite oxide particle powder according to the present invention is controlled.
  • the manganese nickel composite oxide particle powder according to the present invention is a wet and simple synthesis, it is possible to reduce impurities Na and S by controlling pH.
  • impurities contained in the raw material and the like can be further washed away in the water washing step.
  • the intermediate product after the reaction is washed with water to wash out the impurities, and the intermediate product is baked at 900 to 1100 ° C., so that nickel oxide and M element oxide are core particles. It can be uniformly dissolved in trimanganese tetroxide.
  • the surface properties of the primary particles can be smoothed, strong secondary particles can be formed, and the crystallinity of the particle powder can be increased. ing.
  • the manganese-nickel composite oxide particle powder according to the present invention 15 is capable of uniformly solid-dissolving nickel oxide and optionally added M element oxide by firing, and obtaining a composite oxide having a spinel structure that is cubic. be able to.
  • the manganese nickel composite oxide particle powder according to the present invention 15 has high crystallinity and can be fired at a temperature equal to or lower than the firing temperature when the manganese nickel composite oxide is obtained after mixing with the Li compound, the precursor As a result, the powder physical properties resulting from the high crystallinity of the manganese nickel composite oxide particle powder can be inherited, and a positive electrode active material particle powder made of nickel-containing lithium manganate having a strong spinel crystal skeleton can be obtained. it is conceivable that.
  • the oxygen deficiency and the precipitation of the NiO composite oxide which are increased by setting the firing temperature to around 900 ° C., can be suppressed, and therefore Mn 3+ Therefore, it is considered that the cycle characteristics can be improved.
  • Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-3 are Examples and Comparative Examples in the case of having the characteristic (A) in the present invention
  • Examples 2-1 to 2-4 and Comparative examples 2-1 to 2-3 are examples and comparative examples in the case of having the characteristic (B) in the present invention
  • Comparative Examples 3-1 to 3-3 are Examples and Comparative Examples of the Invention 4
  • Examples 4-1 to 4-7 and Comparative Examples 4-1 to 4-8 are Inventions 15 and 18, respectively.
  • And 21 are examples and comparative examples.
  • Each of the above comparative examples is a comparative example in the corresponding invention, and is not intended for comparison with other inventions. The evaluation method used in the present invention is described below.
  • the average primary particle diameter was observed using a scanning electron microscope SEM-EDX (manufactured by Hitachi High-Technologies Corporation) with an energy dispersive X-ray analyzer, and the average value was read from the SEM image.
  • the average secondary particle diameter (D50) is a volume-based average particle diameter measured by a wet laser method using a laser type particle size distribution measuring apparatus Microtrac HRA [manufactured by Nikkiso Co., Ltd.].
  • the BET specific surface area was measured using MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes.
  • composition and the amount of impurities were as follows: 0.2 g sample was heated and dissolved in 25 ml of 20% hydrochloric acid solution, and after cooling, pure water was added to a 100 ml volumetric flask to prepare an adjustment solution.
  • ICAP SPS-4000 Seiko Electronics Each element was quantified and determined using Kogyo Co., Ltd.].
  • the packing density of the positive electrode active material particle powder was weighed 40 g, put into a 50 ml measuring cylinder, and the volume when tapped 500 times with a tap denser (manufactured by Seishin Enterprise Co., Ltd.) was read and the packing density (TD 500 times) was calculated. did.
  • X-ray diffraction of the sample was measured using RAD-IIA and SmartLab manufactured by Rigaku Corporation. Measurement conditions were 10 to 90 degrees at 2 ⁇ / ⁇ and 0.02 degree step scan (0.6 second hold).
  • the endothermic amount in the low temperature region was measured using a differential scanning calorimetry (DSC) “Seiko Instruments EXSTAR6000 (DSC6200)”.
  • DSC differential scanning calorimetry
  • 20 mg of a sample was packed in an aluminum pan, alumina powder was used as a reference, and the aluminum pan was set on a sample stage. Thereafter, the inside of the chamber with the sample stage was cooled to ⁇ 40 ° C. with dry ice, then the dry ice was removed and the temperature was raised to 70 ° C. at a temperature increase rate of 5 ° C./min, and the endotherm at that time was measured. .
  • the positive electrode active material particle powder according to the present invention was subjected to battery evaluation using a 2032 type coin cell.
  • the negative electrode was made of metallic lithium having a thickness of 500 ⁇ m punched to 16 mm ⁇ , and the electrolyte was a 2032 type coin cell using a solution in which EC and DMC in which 1 mol / L LiPF 6 was dissolved were mixed at a volume ratio of 1: 2. .
  • artificial graphite was used as the negative electrode active material, 94% by weight of the artificial graphite was mixed with 6% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder, and then Cu metal was mixed.
  • the coin cell was prepared in the same manner as when the counter electrode was a Li metal foil, except that it was applied to a foil, dried at 120 ° C., punched out to 16 mm ⁇ and used as a negative electrode.
  • Charging / discharging characteristics are as follows. After carrying out at a current density of 0.1 C up to 5.0 V (CC-CC operation), discharging was carried out at a current density of 0.1 C up to 3.0 V (CC-CC operation). In order to enhance the measurement reliability, the charge capacity (2nd-CH) and discharge capacity (2nd-DCH) of the second operation (second cycle) of this operation were measured as aging in the first cycle.
  • Charging / discharging characteristics (each series of Examples 3- and 3-) were charged at a current density of 0.1 C up to 5.0 V in a constant temperature bath at 25 ° C. (CC-CV operation, completed) After condition 1/100 C), discharging was performed at a current density of 0.1 C up to 3.0 V (CC operation).
  • the charging capacity at 4.8V was a
  • the charging capacity at 5.0V was b.
  • the battery After completing the initial charge up to 5.0 V and obtaining the initial charge capacity b, the battery was discharged at a current density of 0.1 C up to 3.0 V (CC operation). At this time, it was set as the discharge capacity c when it was set to 3.0V.
  • the initial charge / discharge efficiency was calculated by the equation c / b ⁇ 100.
  • the rate maintenance rate was 25 ° C in a thermostatic chamber. Charging was performed at a current density of 0.1 C up to 5.0 V (CC-CC operation), and then discharging was performed at a current of 0.1 C up to 3.0 V. Performed at density (CC-CC operation). In order to enhance the measurement reliability, the charge capacity (2nd-CH) and discharge capacity (2nd-DCH) of the second operation (second cycle) of this operation were measured as aging in the first cycle. At this time, the second discharge capacity is a. Next, charging was performed at a current density of 0.1 C up to 5.0 V (CC-CC operation), and discharging was performed at a current density of 10 C up to 3.0 V (CC-CC operation). When the discharge capacity at this time is b, the rate maintenance rate is (b / a ⁇ 100 (%)).
  • Cycle characteristics using artificial graphite as a counter electrode were evaluated using a 2032 type coin cell.
  • 200 cycles of charge and discharge were performed from 3.0 V to 4.8 V (CC-CC operation) at a current density of 1 C in an environment of 25 ° C.
  • the cycle retention rate was (d / c ⁇ 100 (%)).
  • Example 1-1 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by adding the oxide to the reaction vessel to make the total amount 600 L and neutralizing. The aqueous suspension containing the obtained manganese hydroxide particles was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the obtained manganese nickel composite oxide particle powder was confirmed to have a cubic spinel structure by X-ray diffraction. Its composition was (Mn 0.75 Ni 0.25) 3 O 4. The average primary particle size is 2.6 ⁇ m, the tap density (500 times) is 2.12 g / ml, the half-width of the strongest peak in X-ray diffraction is 0.20 degrees, and the Na content is 252 ppm, The S content was 88 ppm and the total amount of impurities was 1589 ppm.
  • the obtained positive electrode active material particle powder was confirmed to have a cubic spinel structure by X-ray diffraction (RAD-IIA manufactured by Rigaku).
  • the ratio of the peak intensity between the (311) plane and the (111) plane was 38%.
  • the BET specific surface area was 0.41 m 2 / g, D50 was 14.8 ⁇ m, and the tap density was 1.98 g / ml.
  • the S content was 21 ppm, the Na content was 98 ppm, and the total amount of impurities was 529 ppm.
  • the coin-type battery manufactured using the positive electrode active material particle powder has a discharge capacity of up to 3.0 V of 142 mAh / g, a discharge capacity of up to 4.5 V is 134 mAh / g, and the rate maintenance rate is At 87%, the cycle retention was 65%.
  • Example 1-2 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by adding the oxide to the reaction vessel to make the total amount 600 L and neutralizing. The aqueous suspension containing the obtained manganese hydroxide particles was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the resulting solution was switched from nitrogen aeration to air aeration and an oxidation reaction was performed at 60 ° C. (secondary reaction). After completion of the secondary reaction, washing with water and drying were performed to obtain a manganese nickel composite compound precursor using spinel-structured Mn 3 O 4 particles as a base material. The precursor was baked at 950 ° C. in the atmosphere for 20 hours to obtain manganese nickel composite oxide particle powder as a precursor.
  • the obtained manganese nickel composite oxide particle powder was confirmed to have a cubic spinel structure by X-ray diffraction. Its composition was (Mn 0.72 Ni 0.25 Mg 0.015 Ti 0.015 ) 3 O 4 .
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 1-1 to 1-3.
  • Example 1-3 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.0 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by adding the oxide to the reaction vessel to make the total amount 600 L and neutralizing. The aqueous suspension containing the obtained manganese hydroxide particles was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the obtained manganese nickel composite oxide particle powder was confirmed to have a cubic spinel structure by X-ray diffraction. Its composition was (Mn 0.70 Ni 0.25 Ti 0.05 ) 3 O 4 .
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 1-1 to 1-3.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 1-1 to 1-3.
  • Example 1-5 Based on Example 1-1, the production conditions were changed to obtain positive electrode active material particle powder.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 1-1 to 1-3.
  • the mixture was baked in an electric furnace at 1000 ° C. for 8 hours in the atmosphere, and then baked at 600 ° C. for 6 hours to obtain positive electrode active material particle powder.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 1-1 to 1-3.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 1-1 to 1-3.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 1-1 to 1-3.
  • the positive electrode active material particle powder according to the present invention was effective as a positive electrode active material for a non-aqueous electrolyte secondary battery having a large charge / discharge capacity.
  • Examples and comparative example of the present invention 1 has a characteristic (B):
  • Example 2-1 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by adding the oxide to the reaction vessel to make the total amount 600 L and neutralizing. The aqueous suspension containing the obtained manganese hydroxide particles was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the obtained manganese nickel composite oxide particle powder was confirmed to have a cubic spinel structure by X-ray diffraction. Its composition was (Mn 0.75 Ni 0.25 ) 3 O 4 . (The average primary particle size is 2.6 ⁇ m, the tap density (500 times) is 2.12 g / ml, the half-width of the strongest peak in X-ray diffraction is 0.20 degrees, and the Na content is 252 ppm. The S content was 88 ppm and the total amount of impurities was 1589 ppm.)
  • the obtained positive electrode active material particle powder was confirmed to have a cubic spinel structure by X-ray diffraction (RAD-IIA manufactured by Rigaku).
  • the slope according to the Williamson-hall plot was 8.0 ⁇ 10 ⁇ 4 .
  • the BET specific surface area was 0.43 m 2 / g, D50 was 15.1 ⁇ m, and the tap density was 1.95 g / ml.
  • the S content was 18 ppm, the Na content was 95 ppm, and the total amount of impurities was 513 ppm.
  • the coin-type battery produced using the positive electrode active material particle powder has a discharge capacity of up to 3.0 V of 140 mAh / g, a discharge capacity of up to 4.5 V is 132 mAh / g, and the rate maintenance rate is At 88%, the cycle retention was 63%.
  • Example 2-2 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by adding the oxide to the reaction vessel to make the total amount 600 L and neutralizing. The aqueous suspension containing the obtained manganese hydroxide particles was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the obtained manganese nickel composite oxide particle powder was confirmed to have a cubic spinel structure by X-ray diffraction. Its composition was (Mn 0.72 Ni 0.25 Mg 0.015 Ti 0.015 ) 3 O 4 .
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 2-1 to 2-3.
  • Example 2-3 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.0 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by adding the oxide to the reaction vessel to make the total amount 600 L and neutralizing. The aqueous suspension containing the obtained manganese hydroxide particles was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the obtained manganese nickel composite oxide particle powder was confirmed to have a cubic spinel structure by X-ray diffraction. Its composition was (Mn 0.72 Ni 0.25 Ti 0.05 ) 3 O 4 .
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 2-1 to 2-3.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 2-1 to 2-3.
  • Example 2-5 Based on Example 2-1, production conditions were changed to obtain positive electrode active material particle powder.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 2-1 to 2-3.
  • the mixture was baked in an electric furnace at 1000 ° C. for 8 hours in the atmosphere, and then baked at 600 ° C. for 6 hours to obtain positive electrode active material particle powder.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 2-1 to 2-3.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 2-1 to 2-3.
  • the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder are shown in Tables 2-1 to 2-3.
  • the positive electrode active material particle powder according to the present invention was effective as a positive electrode active material for a non-aqueous electrolyte secondary battery having a large charge / discharge capacity.
  • Example 3-1 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by adding the oxide to the reaction vessel to make the total amount 600 L and neutralizing. The aqueous suspension containing the obtained manganese hydroxide particles was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the resultant was washed with water and dried to obtain a manganese nickel composite compound using spinel-structured Mn 3 O 4 particles as a base material.
  • the manganese nickel composite compound was fired at 950 ° C. in the atmosphere for 20 hours to obtain manganese nickel composite oxide particle powder.
  • the obtained manganese nickel composite oxide particle powder had a cubic spinel structure belonging to the space group of Fd-3m. Its composition was (Mn 0.75 Ni 0.25) 3 O 4. The average primary particle size is 2.6 ⁇ m, the tap density (500 times) is 2.12 g / ml, the half-width of the strongest peak in X-ray diffraction is 0.20 °, and the Na content is 252 ppm, The S content was 88 ppm and the total amount of impurities was 1589 ppm.
  • the obtained positive electrode active material particle powder was confirmed to have a cubic spinel structure by X-ray diffraction (SmartLab manufactured by Rigaku).
  • the X-ray diffraction pattern of the obtained positive electrode active material particle powder is shown in FIG. 3-1.
  • the composition is Li 1.0 (Mn 0.75 Ni 0.25 ) 2 O 4 , the average primary particle diameter is 3.5 ⁇ m, the average secondary particle diameter (D50) is 11.6 ⁇ m, and the BET specific surface area is 0. .74m a 2 / g, a product of BET specific surface area and average secondary particle size (D50) of was 8.6 ⁇ 10 -6 m 3 / g . Further, the half value width of (400) was 0.171 °.
  • a 2032 coin-type battery manufactured using lithium metal as a counter electrode and using the positive electrode active material particle powder has a charge capacity a up to 4.8 V at initial charge of 140.2 mAh / g and 5.0 V
  • the charge capacity “b” was 155.2 mAh / g, and the ratio of (ba) / b was 9.6% as shown in FIG.
  • the initial charge / discharge efficiency was 92.8%.
  • Example 3-2 to Example 3-7 A positive electrode active material particle powder was obtained in the same manner as in Example 3-1, except that the firing temperature of firing (1) was variously changed.
  • Comparative Example 3-1 A positive electrode active material particle powder was obtained by the same operation as in Example 3-1, except that the firing temperature of firing (1) was 650 ° C.
  • the mixture was baked in an electric furnace at 850 ° C. for 8 hours in the atmosphere, and then baked at 600 ° C. for 6 hours to obtain positive electrode active material particle powder.
  • FIG. 3-3 A scanning electron micrograph of the positive electrode active material particle powder obtained in Example 3-1 is shown in FIG. 3-3, and a scanning electron micrograph of the positive electrode active material particle powder obtained in Comparative Example 3-1 is shown in FIG. -4.
  • the positive electrode active material particles of Example 3-1 have less irregularities on the particle surface of the secondary particles than the positive electrode active material particles of Comparative Example 3-1. It was confirmed that
  • the positive electrode active material particle powder according to the present invention is effective as a positive electrode active material for a non-aqueous electrolyte secondary battery having a small side reaction with the electrolyte and excellent long-term stability.
  • Example 4-1 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by charging the total amount of oxide to 600 L and neutralizing the oxide. The resulting aqueous suspension containing manganese hydroxide particles was switched from nitrogen ventilation to air ventilation, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the resultant was washed with water and dried to obtain a manganese nickel composite compound (intermediate product) using Mn 3 O 4 particles having a spinel structure as a base material.
  • the intermediate product was fired at 950 ° C. in the air for 20 hours to obtain manganese nickel composite oxide particle powder.
  • the obtained manganese nickel composite oxide particle powder was confirmed to be a cubic type (spinel structure) by X-ray diffraction (FIG. 4-1). Its composition was (Mn 0.75 Ni 0.25) 3 O 4. The average primary particle size is 2.6 ⁇ m, the tap density (500 times) is 2.12 g / ml, the half-width of the strongest peak in X-ray diffraction is 0.20 degrees, and the Na content is 252 ppm, The S content was 88 ppm and the total amount of impurities was 1589 ppm.
  • FIG. 4-3 shows an electron micrograph (SEM) of the obtained manganese nickel composite oxide particle powder.
  • Example 4-2 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by charging the total amount of oxide to 600 L and neutralizing the oxide. The resulting aqueous suspension containing manganese hydroxide particles was switched from nitrogen ventilation to air ventilation, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the obtained reaction solution was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 60 ° C. (secondary reaction). After completion of the secondary reaction, the resultant was washed with water and dried to obtain a manganese nickel composite compound (intermediate product) using Mn 3 O 4 particles having a spinel structure as a base material.
  • the intermediate product was baked at 950 ° C. in the air for 20 hours to obtain manganese nickel composite oxide particle powder. It was confirmed by X-ray diffraction that the obtained manganese nickel composite oxide particle powder was a cubic type (spinel structure).
  • Example 4-3 A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.0 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L.
  • An aqueous suspension containing manganese hydroxide particles was obtained by charging the total amount of oxide to 600 L and neutralizing the oxide. The resulting aqueous suspension containing manganese hydroxide particles was switched from nitrogen ventilation to air ventilation, and an oxidation reaction was performed at 90 ° C. (primary reaction).
  • the resultant was washed with water and dried to obtain a manganese nickel composite compound (intermediate product) using Mn 3 O 4 particles having a spinel structure as a base material.
  • the intermediate product was baked at 950 ° C. in the air for 20 hours to obtain manganese nickel composite oxide particle powder. It was confirmed by X-ray diffraction that the obtained manganese nickel composite oxide particle powder was a cubic type (spinel structure).
  • Examples 4-4, 4-5 Manganese nickel composite oxide particles were obtained by changing the production conditions based on Example 4-1.
  • Comparative Example 4-2 In the same manner as in Example 4-1, a manganese nickel composite compound (intermediate product) was obtained, and the dried powder after drying was fired at 880 ° C. in the atmosphere for 20 hours to obtain manganese nickel composite oxide particle powder. As a result of X-ray diffraction, a peak of Mn 2 O 3 was observed in addition to the peak of the manganese nickel composite oxide having a spinel structure as the main structure.
  • the positive electrode active material particle powder was confirmed to have a cubic spinel structure by X-ray diffraction (RAD-IIA manufactured by Rigaku).
  • the BET specific surface area was 0.43 m 2 / g
  • D50 was 15.1 ⁇ m
  • the tap density was 1.95 g / ml.
  • the S content was 18 ppm
  • the Na content was 95 ppm
  • the total amount of impurities was 513 ppm.
  • the coin-type battery produced using the positive electrode active material particle powder has a discharge capacity of up to 3.0 V of 140 mAh / g, a discharge capacity of up to 4.5 V is 132 mAh / g, and the rate maintenance rate is At 88%, the cycle retention was 63%.
  • Examples 4-7, 4-8 A positive electrode active material particle powder was obtained in the same manner as in Example 4-6 except that the kind of manganese nickel composite oxide particle powder, the mixing ratio with lithium carbonate, and the firing temperature were variously changed. As a result of X-ray diffraction, the obtained positive electrode active material particle powder was confirmed to have a spinel structure that is a cubic crystal.
  • Example 4-9 The mixture of the manganese nickel composite oxide particle powder obtained in Example 4-1 and lithium carbonate was fired at 900 ° C. for 15 hours under air flow, followed by firing at 600 ° C. for 10 hours, whereby positive electrode active material particle powder Got. As a result of X-ray diffraction, the obtained positive electrode active material particle powder was confirmed to have a spinel structure that is a cubic crystal.
  • Example 4-10 The mixture of manganese nickel composite oxide particle powder and lithium carbonate obtained in Example 4-5 was calcined at 750 ° C. for 15 hours under air flow, and then calcined at 600 ° C. for 10 hr, whereby positive electrode active material particle powder Got. As a result of X-ray diffraction, the obtained positive electrode active material particle powder was confirmed to have a spinel structure that is a cubic crystal.
  • Comparative Example 4-7 The composite oxide obtained in Comparative Example 4-2 was used as a precursor and mixed with a Li compound and fired in the same manner as in Example 4-6 to obtain positive electrode active material particle powder.
  • the obtained positive electrode active material particle powder confirmed the peak of nickel-containing lithium manganate, nickel oxide, and Mn 2 O 3 -derived lithium manganate particles by X-ray diffraction. This is presumably because the amount of Ni was relatively increased due to the decrease in the amount of Mn in the manganese nickel composite oxide due to the occurrence of heterogeneous phases.
  • Comparative Example 4-8 Except that the composite oxide obtained in Comparative Example 4-3 was used as a precursor, it was mixed with a Li compound and fired in the same manner as in Example 4-9 to obtain positive electrode active material particle powder.
  • the obtained positive electrode active material particle powder confirmed the peak of nickel-containing lithium manganate, nickel oxide, and Mn 2 O 3 -derived lithium manganate particles by X-ray diffraction. This is presumably because the amount of Ni was relatively increased due to the decrease in the amount of Mn in the manganese nickel composite oxide due to the occurrence of heterogeneous phases.
  • the positive electrode active material particle powder made of nickel-containing lithium manganate obtained when the manganese nickel composite oxide particle powder according to the present invention is used is excellent in non-aqueous electrolyte secondary batteries having a large charge / discharge capacity. It was confirmed to be effective as a positive electrode active material.
  • the positive electrode active material particle powder according to the present invention 1 and 4 has a large discharge capacity and excellent cycle characteristics and a small side reaction with the electrolytic solution, it has excellent long-term stability, so that the non-aqueous electrolyte secondary battery It is suitable as a positive electrode active material particle powder for use.
  • the manganese nickel composite oxide particle powder according to the present invention has a high discharge capacity and excellent cycle characteristics when made into a positive electrode active material particle powder comprising nickel-containing lithium manganate synthesized using the oxide as a precursor. Since a positive electrode active material for a non-aqueous electrolyte secondary battery is obtained, it is suitable as a precursor of the positive electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 組成が化学式(1)で示されるスピネル構造を有する非水電解質二次電池用正極活物質粒子粉末であって、該正極活物質粒子粉末のX線回折についてFd-3mで指数付けした際、以下の(A)及び/又は(B)の特性を有することを特徴とする非水電解質二次電池用正極活物質粒子粉末である。 (A)I(311)とI(111)との割合(I(311)/I(111))が35~43%の範囲である。 (B)各ピーク位置2θ(10~90度)に対する半値幅Bとしたとき、横軸にsinθ、縦軸にBcosθとしたグラフにおける最小二乗法による直線の傾きが3.0×10-4~20.0×10-4 の範囲である。

Description

マンガンニッケル複合酸化物粒子粉末およびその製造方法、非水電解質二次電池用正極活物質粒子粉末およびその製造方法、ならびに非水電解質二次電池
 高い放電電圧を持ち、放電容量が高く、且つ、電解液との副反応を低減させ、サイクル特性に優れた非水電解質二次電池用正極活物質粒子粉末及びその製造法、その前駆体となるマンガンニッケル複合酸化物粒子粉末及びその製造方法、ならびに非水電解質二次電池を提供する。
 近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として保存特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、放電電圧が高い、または放電容量が大きいという長所を有する高いエネルギーを持ったリチウムイオン二次電池が注目されており、特に、リチウムイオン二次電池を、素早い充放電が求められる電動工具や電気自動車に用いるには優れたレート特性が求められている。
 従来、4V級の電圧をもつリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiNiO等が一般的に知られており、なかでもLiNiOを用いたリチウムイオン二次電池は高い放電容量を有する電池として注目されてきた。
 しかし、LiNiOは、放電電圧が低く、充電時の熱安定性及びサイクル特性、レート特性にも劣るため、更なる特性改善が求められている。また、高い容量を得ようと高電圧充電を行うと構造が破壊されてしまうという問題もある。
 また、LiMnは、レート特性及びサイクル特性には優れるものの、放電電圧及び放電容量が低く、高エネルギー正極活物質とは言い難いものである。
 そこで近年、放電電圧の高い正極活物質が注目されている。代表的な例として、LiNi0.5Mn1.5、LiCoMnO、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiCoPO、LiFeMnO、LiNiVO等が知られている。
 中でも、LiNi0.5Mn1.5は、4.5V以上に放電プラトー領域が存在する高い放電電圧を持ち、且つレート特性及びサイクル特性にも優れているので次世代正極活物質として特に注目されている。
 エネルギー密度の観点から、高電圧でより高い容量を持ち、且つ、サイクル特性をも満足させる正極活物質は、過去から続く尽きない要求となっている。
 従来、組成:LiNi0.5Mn1.5を有する正極活物質粒子粉末に対して、種々の改良が行われている(特許文献1~7、非特許文献1、2)。
特表2000-515672号公報 特開平9-147867号公報 特開2001-110421号公報 特開2001-185145号公報 特開2002-158007号公報 特開2003-81637号公報 特開2004-349109号公報
第48回電池討論会予稿(2007)2A16 J.Electrochem.Society,148(7)A723-A729(2001) Chem.Mater.,16,906-914(2004)
 放電電圧が高く、放電容量に優れ且つ、サイクル特性が良好である非水電解質二次電池用の高エネルギー正極活物質は、現在最も要求されているところであるが、未だ必要十分な要求を満たす材料は得られていない。
 即ち、前記特許文献1~7、非特許文献1の技術をもってしても高電圧による作動であり放電容量に優れ、さらにサイクル特性といった長期安定性に対する改善は十分ではなかった。
 特許文献1では、硝酸マンガン、硝酸ニッケル、硝酸リチウムをエタノール溶媒しカーボンブラックを添加してアンモニア溶液と混合するゾルゲル法でNiが均一に固溶したニッケル含有マンガン酸リチウム粒子粉末を得たとの報告があるが、工業的な観点から製造法上多数量を製造することが難しい上に、放電容量が100mAh/gを下回っていて実用的ではない。
 特許文献2では、電解二酸化マンガンと硝酸ニッケルと水酸化リチウムを混合し固層法により高電圧作動可能で、サイクル特性に優れた正極活物質が得られたことを報告しているが、電池の放電カーブにおいて、4V付近にMn3+由来であると考えられるプラトーが確認でき、そのプラトーによる容量も10mAh/gを超えていることから、高電圧用正極材料としては不安定であり実用的ではない。
 特許文献3では、炭酸リチウムとMnOと硝酸ニッケルをエタノール溶媒によりボールミル混合することでゲル状前駆体生成し、焼成することにより正極活物質を作製したのちに、同様の手法で前記正極活物質に対してF,Cl,Si,Sといった化合物を表面処理し焼成することで正極活物質粒子に対してF,Cl,Si,Sといった元素が粒子外部に向けて濃度勾配を持った正極活物質を提案し、前記元素の効果により高電圧作動における電池内の電解液との反応を抑えることで電池特性を維持できるといった報告があるが、この手法ではF,Cl,Si,Sが16dサイトに置換されるため、該サイトにおけるMnとNiのモル濃度が相対的に減ってしまい、結果として正極活物質粒子そのものが充放電に対してもろくなってしまうため、高電圧用正極材料としては不安定であり実用的ではない。すなわち、表面に存在しているF,Cl,Si,Sが抵抗成分になり、結果として未添加品と比べ、充放電容量が低下する可能性がある。
 特許文献4では、マンガン化合物とニッケル化合物及び、アンモニウム化合物を用いて共沈させることで一次粒子が針状である球状の前駆体を得ることでLi化合物と混合して焼成する際にNiとMnが反応し易くなり、不純物層になりうる残留Ni(NiO)を減らすことができると報告があるが、高電圧作動で且つ大きい放電容量は得られているが、初期放電容量に関する議論のみでサイクル特性といった安定性について、更に粒子の表面性の改良による電解液との副反応抑制による安定性については言及されていない。また、特許文献4記載の正極活物質は前駆体生成の際に不純物を多量に含んでしまう可能性があり、その不純物により電池作動において不安定となりうる可能性がある。
 特許文献5では、水酸化ナトリウム溶液中に、硫酸マンガンと硫酸ニッケルと錯化材としてアンモニアを混合した溶液を徐滴下することで前駆体である球状のマンガンニッケル前駆体を得た後、該前駆体とLi化合物との混合物を850℃以上の温度範囲で本焼成を行い、次いで、アニール工程を行うことで高電圧用正極活物質を得ているが、前駆体の結晶性が低いためにLi化合物との混合後の本焼成にて1000℃近い温度で焼成する必要があり、その結果、充放電カーブの形状から酸素欠損による価数補償のためにMn3+が生成している。また、この製造法では球状粒子内にナトリウム分も硫黄分も多く残留してしまい、電池としたときに不安定となりうる可能性がある。
 特許文献6では、硝酸リチウムと硝酸マンガンと硝酸ニッケルを混合後、PVAを滴下して造粒してから最大でも500℃で焼成を行うことで高容量の正極材料を得たと報告があるが、焼成温度が低いので結晶性を上げることが困難であり、結晶性の低さから電解液との副反応が起こり易くなり、サイクル特性といった長期特性が得られない可能性がある。 
 特許文献7では、水酸化ナトリウム水溶液中に硫酸マンガンと硫酸ニッケルの混合物をpHコントロールし徐滴下することで錯化材を使用することなく、一次粒子が小さい球状のマンガンニッケル水酸化物を生成し、該水酸化物を900℃で熱処理を行うことでNiが均一に粒子内に固溶し、且つタップ密度が高いニッケルマンガン複合酸化物を得、Li化合物と反応した正極活物質について報告しているが、該発明による前駆体は錯化材を使用しないため凝集二次粒子の形状がいびつになってしまい(SEM像より)、前駆体を高温で熱処理しても十分なタップ密度は得られていない。
 非特許文献1では、本明細書に記載してある結晶構造を有していることを記載しているが、具体的な製造方法やその形状といった記載がされていない。
 また、非特許文献2では、マンガン酸リチウムの酸素欠損による低温時の相転移に伴う発熱/吸熱について論じているが、ニッケル含有マンガン酸リチウムの酸素欠損やMnサイトにNiが置換したことによる影響等が加わったときの低温時の挙動については論じられていない。
 非特許文献3では、良好な結果をもたらすニッケル含有マンガン酸リチウムは空間群はFd-3mであることが記載されているが、本発明に係るよるマンガンニッケル複合酸化物粒子粉末を用いた場合のニッケル含有マンガン酸リチウム粒子粉末は非特許文献3に記載の材料となるのに好適である。なお、非特許文献3には、ニッケル含有マンガン酸リチウムの前駆体となるマンガンニッケル複合酸化物粒子粉末の特性を制御することは、一切、考慮されていない。
 そこで、本発明では、放電電圧が高く、充放電容量に優れ、且つサイクル特性が良好であるニッケル含有マンガン酸リチウム粒子粉末からなる正極活物質粒子粉末及びその製造方法、ならびに該正極活物質粒子粉末を含有する正極からなる非水電解質二次電池を提供する。
 更に、本発明では、高い放電電圧を持ち、放電容量が高く、且つ、電解液との副反応を低減させた優れた非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池を提供する。
 更に、本発明では、放電電圧が高く、充放電容量に優れ、且つサイクル特性が良好である非水電解質二次電池のニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末の製造に好適な前駆体であるマンガンニッケル複合酸化物粒子粉末及びその製造方法、並びに該前駆体を用いて製造する正極活物質粒子粉末の製造方法、及び該正極活物質粒子粉末を含有する正極からなる非水電解質二次電池を提供する。
 即ち、本発明は、組成が下記化学式(1)で示されるスピネル構造を有する非水電解質二次電池用正極活物質粒子粉末であって、該正極活物質粒子粉末のX線回折についてFd-3mで指数付けした際、以下の(A)及び/又は(B)の特性を有することを特徴とする非水電解質二次電池用正極活物質粒子粉末である(本発明1)。
(A)該正極活物質粒子粉末のX線回折についてFd-3mで指数付けした際、I(311)とI(111)との割合(I(311)/I(111))が35~43%の範囲である及び/又は
(B)該正極活物質粒子粉末のX線回折についてFd-3mで指数付けした際、各ピーク位置2θ(10~90度)に対する半価幅Bとしたとき、横軸にsinθ、縦軸にBcosθとしたグラフにおける最小二乗法による直線の傾きが3.0×10-4~20.0×10-4の範囲である。
化学式(1)
Li1+xMn2-y-zNi
-0.05≦x≦0.15、0.4≦y≦0.6、0≦z≦0.20
(M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biから選ばれる1種または2種以上)
 また、本発明は、(A)及び/又は(B)において、平均二次粒子径(D50)が4~30μmである本発明1記載の非水電解質二次電池用正極活物質粒子粉末である(本発明2)。
 また、本発明は、(A)及び/又は(B)において、BET法による比表面積が0.05~1.00m/gの範囲である本発明1又は2記載の非水電解質二次電池用正極活物質粒子粉末である(本発明3)。
 また、本発明は、組成が下記化学式(1)で示されるスピネル構造を有する非水電解質二次電池用正極活物質粒子粉末であって、平均一次粒子径が1.0~4.0μm、平均二次粒子径(D50)が4~30μm、BET比表面積が0.3~1.0m/gであり、且つ、該複合酸化物子粉末の平均二次粒子径(D50)とBET比表面積との積をyとしたときに、y≦10.0×10-6/gであることを特徴とする非水電解質二次電池用正極活物質粒子粉末である(本発明4)。
化学式(1)
Li1+xMn2-y-zNi
-0.05≦x≦0.15、0.4≦y≦0.6、0≦z≦0.20
(M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biから選ばれる1種または2種以上)
 また、本発明は、前記非水電解質二次電池用正極活物質粒子粉末のX線回折について(400)面のピークの半値幅をzとしたときに、z≦0.230degreeの範囲である本発明4記載の非水電解質二次電池用正極活物質粒子粉末である(本発明5)。
 また、本発明は、タップ密度(500回)が1.7g/ml以上である本発明1~5のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末である(本発明6)。
 また、本発明は、該正極活物質粒子粉末におけるナトリウム含有量が30~2000ppmで、硫黄含有量が10~600ppm、且つ不純物の総和が5000ppm以下である本発明1~6のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末である(本発明7)。
 また、本発明は、該正極活物質粒子粉末の示差走査熱量測定にて-40℃から70℃まで昇温したときに吸熱量が0.3~0.8J/mgの範囲である本発明1~7のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末である(本発明8)。
 また、本発明は、本発明1又は2に記載の非水電解質二次電池用正極活物質粒子粉末において、該正極活物質粒子粉末を用いて非水電解質二次電池としたときに、リチウム金属対比で3.0V以上の容量が130mAh/g以上であって4.5V以上の容量が120mAh/g以上であり、且つ、対極が人造黒鉛として200サイクルにおけるサイクル維持率が55%以上である本発明1又は2に記載の非水電解質二次電池用正極活物質粒子粉末である(本発明9)。
 また、本発明は、本発明1又は2に記載の非水電解質二次電池用正極活物質粒子粉末において、対極がLiである二次電池を作製し、25℃でのサイクル試験にて30サイクル後における放電容量において、(3.5V-3.0V)の容量が2mAh/g以下である本発明1又は2に記載の非水電解質二次電池用正極活物質粒子粉末である(本発明10)。
 また、本発明は、本発明4又は5に記載の非水電解質二次電池用正極活物質粒子粉末において、該正極活物質粒子粉末を用いて非水電解質二次電池としたときに、初期充電時において、4.8V充電時の電池容量をa、5.0V充電時の電池容量をbとしたときに、(b-a)/bで示される割合が10%より小さい本発明4又は5に記載の非水電解質二次電池用正極活物質粒子粉末である(本発明11)。
 また、本発明は、本発明4又は5に記載の非水電解質二次電池用正極活物質粒子粉末において、該正極活物質粒子粉末を用いて非水電解質二次電池としたときに、初期充放電効率が90%以上である本発明4又は5に記載の非水電解質二次電池用正極活物質粒子粉末である(本発明12)。
 また、本発明は、本発明4又は5に記載の非水電解質二次電池用正極活物質粒子粉末の製造方法において、MnとNiが主成分である複合化合物とLi化合物を混合し、酸化性雰囲気で680℃~1050℃で焼成(1)を行い、引き続き500~700℃で焼成(2)を行うことを特徴とする本発明4又は5に記載の正極活物質粒子粉末の製造方法である(本発明13)。
 また、本発明は、本発明1~12のいずれかに記載の正極活物質粒子粉末を使用した非水電解質二次電池である(本発明14)。
 また、本発明は、Fd-3mの空間群を有する立方晶スピネルであるMnとNiが主成分の複合酸化物において、実質的に単相であり、平均一次粒子径が1.0~8.0μmの範囲であることを特徴とするマンガンニッケル複合酸化物粒子粉末である(本発明15)。
 また、本発明は、本発明15記載の複合酸化物粒子粉末において、タップ密度が1.8g/ml以上であり、X線回折による最強ピークの半価幅が0.15~0.25の範囲であり、下記化学式(1)で表される組成式を有するマンガンニッケル複合酸化物粒子粉末である(本発明16)。
化学式(1)
 (Mn1-y-z Ni
  0.2≦y≦0.3、 0≦z≦0.10
  M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biより1種または1種以上
 また、本発明は、本発明15又は16に記載の複合酸化物粒子粉末において、ナトリウム含有量が100~2000ppmであり、硫黄含有量が10~1000ppmであって、不純物の総和が4000ppm以下であるマンガンニッケル複合酸化物粒子粉末である(本発明17)。
 また、本発明は、マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60~100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液に対してマンガン原料とニッケル原料を添加した後、酸化反応を行う二次反応によって、四酸化三マンガン粒子を核粒子としたマンガンニッケル複合化合物を得、次いで、当該四酸化三マンガン粒子を核粒子としたマンガンニッケル複合化合物を酸化性雰囲気で900~1100℃の温度範囲で焼成する本発明15~17のいずれかに記載のマンガンニッケル複合酸化物粒子粉末の製造方法である(本発明18)。
 また、本発明は、過剰量のアルカリ水溶液のアルカリ濃度が0.1~5.0mol/Lであるマンガンニッケル複合酸化物粒子粉末の本発明18記載の製造方法である(本発明19)。
 また、本発明は、本発明18又は19記載のマンガンニッケル複合酸化物粒子粉末の製造法において、一次反応後の反応溶液を非酸化雰囲気に切り替えた後に、該非酸化雰囲気を保持した状態で、二次反応におけるマンガン原料及びニッケル原料水溶液を添加するマンガンニッケル複合酸化物粒子粉末の製造方法である(本発明20)。
 また、本発明は、本発明15~17のいずれかに記載のマンガンニッケル複合酸化物粒子粉末とリチウム化合物とを混合し、酸化性雰囲気中で680~1050℃で焼成し、引き続き500~700℃で焼成する立方晶スピネル構造を有する非水電解質二次電池用正極活物質粒子粉末の製造方法である(本発明21)。
 また、本発明は、本発明21記載の非水電解質二次電池用正極活物質粒子粉末の製造方法によって得られた非水電解質二次電池用正極活物質粒子粉末が本発明1~12のいずれかに記載の正極活物質粒子粉末である非水電解質二次電池用正極活物質粒子粉末の製造方法である(本発明22)。
 また、本発明は、本発明21又は22記載の正極活物質粒子粉末の製造方法によって得られた正極活物質粒子粉末を用いた非水電解質二次電池である(本発明23)。
 本発明に係る非水電解質二次電池用正極活物質粒子粉末は高い放電電圧を持ち、放電容量が高く、且つ、電解液との副反応を低減させたサイクル特性が良好である優れた非水電解質二次電池用正極活物質粒子粉末である。
 本発明に係るマンガンニッケル複合酸化物粒子粉末は、Li化合物と合成させることで得られる正極活物質粒子粉末としたときに、放電電圧が高く放電容量が大きく、且つ、サイクル特性が良好である非水電解質二次電池が得られるので、非水電解質二次電池用の正極活物質粒子粉末の前駆体として好適である。
 また、本発明に係るマンガンニッケル複合酸化物粒子粉末を用いてLi化合物と合成させることで得られる正極活物質粒子粉末は、非特許文献3に記載されているような電池特性で良好であると言われている空間群がFd-3mであるニッケル含有マンガン酸リチウム粒子粉末が得られるので、本発明に係るマンガンニッケル複合酸化物粒子粉末は前駆体として好適である。
実施例1-1で得られたリチウムイオン電池用正極活物質粒子粉末のX線回折図である。 比較例1-1で得られたリチウムイオン電池用正極活物質粒子粉末のX線回折図である。 実施例1-1で得られたリチウムイオン電池用正極活物質粒子粉末のSEM像である。 比較例1-1で得られたリチウムイオン電池用正極活物質粒子粉末のSEM像である。 実施例2-1で得られたリチウムイオン電池用正極活物質粒子粉末のX線回折図である。 比較例2-1で得られたリチウムイオン電池用正極活物質粒子粉末のX線回折図である。 実施例2-1で得られたリチウムイオン電池用正極活物質粒子粉末のSEM像である。 比較例2-1で得られたリチウムイオン電池用正極活物質粒子粉末のSEM像である。 実施例3-1で得られた非水電解質二次電池用正極活物質粒子粉末のX線回折図である。 実施例3-1で得られた非水電解質二次電池用正極活物質粒子粉末の充放電曲線である。 実施例3-1で得られた非水電解質二次電池用正極活物質粒子粉末のSEM像である。 比較例3-1で得られた非水電解質二次電池用正極活物質粒子粉末のSEM像である。 実施例4-1で得られたマンガンニッケル複合酸化物粒子粉末のX線回折図である。 比較例4-1で得られたニッケル含有炭酸マンガン粒子粉末のX線回折図である。 実施例4-1で得られたマンガンニッケル複合酸化物粒子粉末のSEM像である。 比較例4-1で得られたニッケル含有炭酸マンガン粒子粉末のSEM像である。
 本発明の構成をより詳しく説明すれば次のとおりである。
 先ず、本発明15の非水電解質二次電池用正極活物質粒子粉末の前駆体である、マンガンニッケル複合酸化物粒子粉末について説明する。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は、非水電解質二次電池用正極活物質粒子粉末の前駆体として、最適化されたものである。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は、Fd-3mの空間群を有する立方晶スピネルの結晶構造を有する。他の結晶構造が主成分となる場合には、当該マンガンニッケル複合酸化物粒子粉末を用いて製造した正極活物質が所望の結晶構造を有することが困難となる。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末としては、(Mn1-y-zNi(yの範囲が0.2≦y≦0.3,zの範囲が0≦z≦0.1)が好ましく、M元素としては、Mg,Al,Si,Ca,Ti,Co,Zn,Y,Zr,Sb,Ba,W,Bi等の一般的に知られる添加元素を導入させてもよく、より好ましい添加元素はMg,Al,Si,Ti,Co,Zn,Y,Zr,Sb,Wである。前記添加元素の含有量は、該複合酸化物に対して10mol%以下が好ましい。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は、Ni含有量がMe分総量(Mn、Ni及び置換元素Mの総量)に対して20~30mol%が好ましい。Ni含有量が20mol%未満の場合、当該前駆体を用いて得られた正極活物質粒子粉末において4.5V以上の放電プラトー領域が少なくなり過ぎ高い放電容量が得られず、また構造が不安定となる。Ni含有量が30mol%を超える場合、当該前駆体を用いて得られた正極活物質粒子粉末においてスピネル型構造以外に酸化ニッケルなどの不純物相が大量に生成し、放電容量が低下する。Ni含有量について、より好ましくは22~28mol%であり、さらにより好ましくは23~27mol%である。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は、X線回折により、立方晶マンガンニッケル複合酸化物に帰属されるものである。そのためには、ニッケルが母材である四酸化三マンガン内に均一に分散していることが好ましい。本発明に係るマンガンニッケル複合酸化物粒子粉末は、X線回折における最強ピーク((311)面)の半価幅が0.15~0.25の範囲であることが好ましい。前記ピークの半価幅が0.15より小さいとき不純物相が存在する場合がある。また、ピークの半価幅が0.25を超える場合、ニッケルがマンガン酸化物粒子内に均一分散できていないことがある。最強ピークの半価幅はより好ましくは、0.15~0.22の範囲である。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末の平均一次粒子径は1.0~8.0μmの範囲であり、且つ、一次粒子が凝集した二次粒子体であることが好ましい。平均一次粒子径が1.0μm未満の場合には、電池にしたときNiやMnといった含有金属分が電解液に溶出し易くなり、結晶構造が不安定となってしまう恐れがある。また、平均一次粒子径が8.0μmを超える場合には、Li化合物と混合焼成において該前駆体中へのLiの拡散が不十分となってしまい、結果として構造が不安定となってしまう。好ましい平均一次粒子径は1.5~7.5μmであり、より好ましくは1.5~7.0μmである。
 また、本発明15に係るマンガンニッケル複合酸化物粒子粉末のタップ密度(500回タッピング)が1.8g/ml以上が好ましく、より好ましくは、1.9g/ml以上である。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は、Na含有量が100~2000ppmであることが好ましい。Na含有量が100ppm未満の場合、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末においてスピネル型構造を保持する力が弱くなる傾向にあり、2000ppmを超える場合、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末においてリチウムの移動が阻害され、放電容量が低下する傾向にある。当該酸化物粒子粉末におけるより好ましいNa含有量は100~1800ppmであり、更により好ましくは100~1700ppmである。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は、S含有量が10~1000ppmであることが好ましい。S含有量が10ppm未満の場合、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末においてSがリチウムの移動に与える電気的な作用が得られない傾向にあり、1000ppmを超える場合、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末において電池としたときに、原料に由来して存在するFeと化合物を形成して局部的にFeSOなどが生成しマイクロショートの原因となってしまう。より好ましいS含有量は10~800ppmであり、更により好ましくは10~700ppmである。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は、不純物の総和が4000ppm以下である。不純物の総和が4000ppmより大きいとき、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末は仕込み組成に対して最終物の組成がずれてしまい、結果として放電容量が低下する。不純物の総和は、好ましくは3500ppm以下であり、より好ましくは3000ppm以下である。
 次に、本発明15に係るマンガンニッケル複合酸化物粒子粉末の製造方法(本発明18)について述べる。
 即ち、本発明15に係るマンガンニッケル複合酸化物粒子粉末は、マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60~100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液に対して、所定量のマンガン原料とニッケル原料と必要によってM元素原料を溶解した水溶液を添加して酸化反応を行う二次反応を行った後、常法によって、洗浄、乾燥して、本発明に係るマンガンニッケル複合酸化物の中間生成物となる四酸化三マンガン粒子を母材としたマンガンニッケル複合化合物を得、当該マンガンニッケル複合化合物を酸化性雰囲気で900~1100℃の温度範囲で焼成して得ることができる。
 マンガンニッケル複合酸化物粒子粉末の合成時に用いるマンガン化合物、ニッケル化合物としては特に限定されることなく、各種の酸化物、水酸化物、塩化物、硫酸塩、硝酸塩、炭酸塩、酢酸塩などを用いることが出来るが、特に、硫酸塩を使用することが好ましい。
 マンガンニッケル複合酸化物粒子粉末の中間生成物を得る湿式工程における一次反応において、マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60~100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得ることができる。本核粒子の合成方法については、特許第4305629号に記載の製造方法に準じて得ることができる。
 一次反応により四酸化三マンガン核粒子を合成後に、反応溶液を非酸化性雰囲気に切り替えた後に、該非酸化性雰囲気を保持した状態で、二次反応におけるマンガン原料及びニッケル原料水溶液、必要により、M元素原料水溶液を添加する。非酸化雰囲気は、Ar、CO、CO、N、Hなどがあるが、Nであることが好ましい。
 また、非酸化性雰囲気でマンガン原料及びニッケル原料水溶液、必要により、M元素原料水溶液を反応溶液に添加することで、反応槽中に母材である四酸化三マンガン核粒子のほかに、マンガン、ニッケル、M元素の水酸化物又は含水酸化物の微細な粒子が生成され、次いで、反応溶液を酸化性雰囲気に切り替えることで前記水酸化物又は含水酸化物が酸化物となるとともに四酸化三マンガン核粒子に対して何らかの反応をすることで、核粒子の結晶性を損なうことなく、中間生成物の沈殿物を得ることができる。
 ニッケル原料については、酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、酢酸塩などであるが、硫酸塩を使用することが好ましい。
 M元素原料については、Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biの酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、酢酸塩などであるが、硫酸塩を使用することが好ましい。
 また、一次反応、二次反応において、過剰量のアルカリ水溶液を添加することが好ましい。その濃度は、0.1~5.0mol/Lである。過剰量のアルカリ溶液と反応させることで、酸性物質の塩が反応後に取り込まれ難くなり、結果として不純物量を少なくすることが出来る。アルカリ水溶液の濃度は好ましくは、0.5~4.0mol/Lである。
 アルカリ水溶液は特に限定されることなく各種の塩基性原料を用いることができる。例えば、炭酸ナトリウム、水酸化ナトリウム、水酸化リチウム、炭酸カリウム、水酸化カリウムなどがあるが、水酸化ナトリウムを使用することが好ましい。
 上記反応後に得られる中間生成物を含有するスラリーは常法に従って、中間体を洗浄し乾燥を行う。本発明における製造方法における洗浄工程では、二次反応により析出したニッケル化合物やM元素化合物を流失することなく、中間生成物に付着した過剰のナトリウム分や硫黄分などの不純物質を洗い流すことができる。
 得られた中間生成物は、酸化性雰囲気下で900~1100℃の温度範囲で焼成することによって、本発明に係るマンガンニッケル複合酸化物粒子粉末を得ることができる。焼成温度が900℃より低いときは、NiがMn酸化物内に均一に取り込まれないだけでなく、立方晶であるスピネル構造のマンガンニッケル複合酸化物が得られない。焼成温度が1100℃を超える場合、NiはNiOといった不純物として析出してしまう。好ましい焼成温度は900~1000℃、より好ましい焼成温度は900~980℃で、更により好ましくは900~960℃である。
 該マンガンニッケル複合酸化物粒子粉末において焼成工程の後に、粉砕することで粒径を調整することもできる。その際は、二次粒子径(D50)の調整を行うのみで、平均一次粒子径には影響がない範囲で行う必要がある。
 次に、本発明1に係る非水電解質二次電池用正極活物質粒子粉末について説明する。本発明1に係るニッケル含有正極活物質粒子粉末は、高電圧非水電解質二次電池用活物質粉末として、最適化されたものである。
 本発明1に係る正極活物質粒子粉末は、少なくとも立方晶スピネル構造であり、X線回折にてFd-3mで指数付けでき、Mnを主成分とし、少なくともNiと複合的に酸化しており、LiとNi及びMnを含有する化合物である。
 本発明1に係る正極活物質粒子粉末は、化学式:Li1+xMn2-y-zNi(xの範囲が-0.05≦x≦0.15,yの範囲が0.4≦y≦0.6,zの範囲が0≦z≦0.20)で表すことができる。
 また、異種元素Mとしては、Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W及びBiから選ばれる1種または2種以上を置換させてもよく、より好ましい添加元素はMg,Al,Si,Ti,Co,Zn,Y,Zr,Sb,Wである。その前記異種元素Mの含有量zは該スピネル型構造を有する化合物の化学式において0.20以下が好ましい。本発明1に係る正極活物質粒子粉末は、スピネル型構造を有することで5Vという高い電圧で充電を行っても構造が崩壊することなく、充放電サイクルが行える。また、酸素は常識の範囲で酸素欠損を伴っていてもよい。化学式への記載は省いてある。
 本発明1に係る正極活物質粒子粉末は、Ni含有量がMe分総量(Mn、Ni及び置換元素Mの総量)に対して20~30mol%である。Ni含有量が20mol%未満の場合、4.5V以上の放電プラトー領域が少なくなり過ぎ高い放電容量が得られず、また構造が不安定となる。Ni含有量が30mol%を超える場合、スピネル型構造以外に酸化ニッケルなどの不純物相が大量に生成し、放電容量が低下する。Ni含有量はより好ましくは22~29mol%、さらに好ましくは23~27mol%である。
 本発明1に係る正極活物質粒子粉末は、(Li/(Ni+Mn+M))がモル比で0.475~0.575である。(Li/(Ni+Mn+M))が0.475未満では充電に寄与できるリチウムが少なくなって充電容量が低くなり、0.575を超えると逆にリチウムが多くなりすぎてLiイオンの移動が妨げられ、放電容量が低くなる。(Li/(Ni+Mn+M))は、好ましくは0.48~0.55、より好ましくは0.49~0.53である。
 本発明1に係る正極活物質粒子粉末において、X線回折により立方晶系のスピネル構造に帰属されることが必要である。そのためには、Niが正極活物質粒子に対し均一に拡散している必要がある。均一拡散していない場合、X線回折にてNiOのピーク(ショルダー)がみられる。NiOのピークが大きくなると構造的に不安定となり、電池特性が悪化すると考えられる。
 本発明1に係る正極活物質粒子粉末の平均二次粒子径(D50)は4~30μmが好ましい。平均二次粒子径が4μm未満の場合、電解液との接触面積が上がりすぎることによって電解液との反応性が高くなり、充電時の安定性が低下する可能性がある。平均二次粒子径が30μmを超えると、電極内の抵抗が上昇して、充放電レート特性が低下する可能性がある。平均二次粒子径は4~20μmがより好ましく、更により好ましくは4~15μmである。
 本発明1に係る正極活物質粒子粉末の比表面積(BET法)は0.05~1.00m/gが好ましい。比表面積が小さすぎると電解液との接触面積が小さくなりすぎて放電容量が低下し、大きすぎると過剰に反応しすぎてしまい放電容量が低下する。比表面積は0.10~0.90m/gがより好ましく、さらにより好ましくは0.20~0.80m/gである。
 本発明1に係る正極活物質粒子粉末のタップ密度(500回タッピング)は1.70g/ml以上であることが好ましい。タップ密度が1.70g/mlより小さいとき、該粉末の充填性が悪く電池特性、特に出力特性とサイクル特性が悪化してしまう。タップ密度は1.80g/ml以上がより好ましく、さらにより好ましくは1.85g/ml以上である。
 本発明1に係る正極活物質粒子粉末は、Na含有量が30~2000ppmであることが好ましい。Na含有量が30ppm未満のとき、スピネル型構造を保持する力が弱くなり、2000ppmより多いとリチウムの移動が阻害され、放電容量が低下する場合がある。Na含有量は35~1800ppmがより好ましく、さらにより好ましくは40~1700ppmである。
 本発明1に係る正極活物質粒子粉末は、S含有量が10~600ppmであることが好ましい。S含有量が10ppm未満のとき、リチウムの移動に与える電気的な作用が得られず、600ppmより多いと、該正極活物質を使用して電池としたときに局部的にFeSOなどが析出されマイクロショートの原因となってしまう場合がある。より好ましいS含有量は15~500ppmである。
 本発明1に係る正極活物質粒子粉末は、不純物の総和が5000ppm以下である。不純物の総和が5000ppmを超える場合、所望の組成に対して組成ずれが生じた状態となり、結果として放電容量が低下する。不純物の総和は、好ましくは4000ppm以下であり、より好ましくは3500ppm以下である。
 一般的にはニッケルマンガンスピネル構造を有する正極活物質粒子粉末にて酸素欠損が多い場合、低温領域における示差走査熱量測定でスピネル構造の立方晶と正方晶(若しくは斜方晶)の相転移における吸発熱反応が見られる。非特許文献2ではマンガン酸リチウムで酸素欠損による相転移による反応について論じられているが、本発明1では、後述する電池測定による4V領域の3価Mnによるプラトーが小さい=酸素欠損が少ないにも関わらず、本発明1に係る正極活物質粒子粉末は相転移により大きい吸発熱反応が行われている。これは、スピネル構造における16dサイトのMnとNiの存在状態に依存していると考えられる。本発明1に係る正極活物質粒子粉末の発熱量が大きい理由は明らかではないが、本発明1では、正極活物質粒子粉末の示差走査熱量測定において-40℃から70℃まで昇温したときに吸熱量が0.3~0.8J/mgの範囲であると十分な放電容量が得られ、また、サイクル特性も良好であることを見出した。
 低温領域での相転移による反応で、本発明1に係る正極活物質粒子粉末が大きな熱量を有する理由は未だ明らかではないが、酸素欠損による情報だけではなく、正極活物質粒子粉末の合成時によるMnとNiの存在状態も含めた情報が得られているのではないかと本発明者らは考えている。
 本発明1に係る非水電解質二次電池用正極活物質粒子粉末のX線回折についてFd-3mで指数付けした際、以下の(A)及び/又は(B)の特性を有する。
 特性(A):
 本発明1に係る正極活物質粒子粉末の構造は、X線回折にてFd-3mで指数付けしたときに、(311)面のピーク強度(I(311))と(111)面のピーク強度(I(111))との割合(I(311)/I(111))が、35~43%の範囲となる。ピーク強度比の割合が前記範囲内となることによって、放電容量が高く且つ、サイクル特性が良好である。前記ピーク強度比は好ましくは36~42%の範囲である。前記ピーク強度比が35%未満の場合には、正極活物質粒子粉末においてスピネル構造そのものを維持できなくなってしまう。前記ピーク強度比が43%を超える場合、十分な放電容量とサイクル特性が得られない。
 (311)面のピーク強度と(111)面のピーク強度との割合は、リートベルト解析にてシミュレーションした結果、正極活物質におけるスピネル構造中のLiが占有している8aサイトへの遷移金属などの置換量と相関があることが分かった。前記ピーク強度比が大きいとき、正極活物質粒子粉末中で8aサイトに固溶しているNi量が大きくなる結果となった。
 8aサイトにNiが固溶している場合、充放電によるNiの2価/4価の価数変化による膨張収縮のために8aサイトの四面体構造も膨張収縮してしまい、結果として立方晶として構造の安定性が悪化し、そのためにサイクル特性も悪化してしまうと考えられる。
 また、8aサイトで膨張収縮するNiの存在のために、8aサイトから16cサイトを通り界面に拡散される(電解液中に拡散される)Liイオンの拡散抵抗となるので、結果的には8aサイトにLiが戻れなくなることで、電池容量が低下してしまうと考えられ、そのためにサイクル特性が悪化してしまうと考えられる。
 特性(B):
 本発明1に係る正極活物質粒子粉末の構造は、X線回折にてFd-3mで指数付けしたときに、各ピーク位置2θ(10~90度)に対しする半価幅Βとしたとき、横軸にsinθ、縦軸にΒcosθとしたグラフにおける最小二乗法による直線の傾きが(3.0×10-4~20.0×10-4)の範囲である。本発明1では前記範囲内に制御することによって、放電容量が高く、且つサイクル特性が良好であることが分かった。好ましくは(3.5×10-4~15.0×10-4)の範囲である。本発明1の範囲外となる場合には、正極活物質粒子粉末における結晶構造を安定的に維持できなくなってしまい、サイクル特性が悪化してしまう。
 本発明1に記されるグラフは、Williamson-hallプロットと呼ばれ、下記に記す式である。
Βcosθ=ηsinθ+λ/D
η=本発明1における傾きパラメータ,λ=X線の波長,D=結晶子径 
 尚、該傾きは一般的には組成的な歪みや結晶に関する歪みといった情報などを含んだパラメータであるといわれている。詳細は明らかではないが、本発明1における傾きの範囲内である場合に、正極活物質粒子粉末は放電容量が大きくサイクル特性に優れた結果となることを見出した。
 次に、本発明4に係る非水電解質二次電池用正極活物質粒子粉末について説明する。
 本発明4に係る非水電解質二次電池用正極活物質粒子粉末(以下、「正極活物質粒子粉末」とする。)は、少なくとも立方晶スピネル構造であり、主成分であるMnとNiが複合的に酸化しており、且つLi、Ni及びMnを含有する化合物である。
 本発明4に係る正極活物質粒子粉末は、平均一次粒子径が1.0~4.0μmであって、平均二次粒子径(D50)が4.0~30μmであって、BET比表面積は0.3~1.0m/gの範囲であり、且つ、平均二次粒子径(D50)とBET比表面積との積yが10.0×10-6/g以下である(y≦10.0×10-6/g)。
 本発明4に係る正極活物質粒子粉末の平均一次粒子径が前記本発明の範囲から外れるとき、電解液との反応性が向上してしまい不安定となってしまう。
 また、本発明4に係る正極活物質粒子粉末の平均二次粒子径(D50)が4.0μm未満の場合、電解液との接触面積が上がりすぎることによって電解液との反応性が高くなり、充電時の安定性が低下する可能性がある。平均二次粒子径(D50)が30μmを超えると、電極内の抵抗が上昇して、充放電レート特性が低下する可能性がある。平均二次粒子径は4.0~20μmがより好ましく、更により好ましくは5.0~15μmである。
 本発明4に係る正極活物質粒子粉末の比表面積(BET比表面積法)は0.3~1.00m/gが好ましい。比表面積が小さすぎると電解液との接触面積が小さくなりすぎて放電容量が低下し、大きすぎると正極活物質粒子粉末が電解液と反応してしまいガス発生や初期効率が低下する。比表面積は0.35~0.80m/gが好ましく、より好ましくは0.43~0.75m/gである。
 本発明4に係る正極活物質粒子粉末は、平均二次粒子径(D50)とBET比表面積との積yが10.0×10-6/g以下である。前記積の値が10.0×10-6/gより大きい場合、二次粒子の表面性状に多数の凹凸が形成された状態であり、該正極活物質粒子粉末を用いて二次電池としたときに、電解液と反応してしまいガス発生や、電池特性が悪化してしまうことが考えられる。平均二次粒子径(D50)とBET比表面積との積yは9.5×10-6/g以下が好ましく、より好ましくは1.0×10-6~9.0×10-6/gであり、更により好ましくは2.0×10-6~8.8×10-6/gである。
 平均二次粒子径とBET比表面積との積であるyとは、単位で示すとm/g(密度の逆数)となり、これは単位重量当たりの二次粒子の体積を示すと考えられる。言い換えると、直径(二次粒子径)と形状から最小の表面積がわかる。通常、その値以上の表面積を持ち、その値yは表面状態に起因するパラメータとなる。結果、この数字は粒子の表面性を示すパラメータになりうると考えられる。数字が大きくなると粒子表面に凹凸などが多く存在し、小さくなると粒子表面の凹凸が低減され平滑な状態に近づいていると考えられる。yが本発明の範囲である場合、粒子表面性状が良好となり電解液との副反応を低減することができると考えられる。
 本発明4に係る正極活物質粒子粉末のX線回折における(400)面のピークの半値幅(FWMH(400))をzとしたときに、z≦0.230°の範囲となることが好ましい。(400)面のピークの半値幅zが0.230°を超える場合には、結晶として不安定となり、結果として電池特性が悪化する場合がある。より好ましい範囲はz≦0.220°であり、更に好ましくは0.044°≦z≦0.180°である。
 また、本発明4に係る正極活物質粒子粉末のX線回折における(111)面のピークの半値幅は0.15°以下が好ましく、より好ましくは0.053°~0.12°であり、(311)面のピークの半値幅は0.18°以下が好ましく、より好ましくは0.044°~0.14°であり、(440)面のピークの半値幅は0.25°以下が好ましく、より好ましくは0.045°~0.20°である。
 本発明4に係る正極活物質粒子粉末は、化学式:Li1+xMn2-y-zNi(xの範囲が-0.05≦x≦0.15、yの範囲が0.4≦y≦0.6、zの範囲が0≦z≦0.20)で表すことができる。
 また、異種元素Mとして、Mg、Al、Si、Ca、Ti、Co、Zn、Sb、Ba、W及びBiから選ばれる1種または2種以上を置換させてもよく、より好ましい添加元素はMg,Al,Si,Ti,Co,Zn,Y,Zr,Sb,Wである。その前記異種元素Mの含有量zは該スピネル型構造を有する化合物の化学式において0.20以下が好ましい。本発明に係る正極活物質粒子粉末は、スピネル型構造を有することで5Vという高い電圧で充電を行っても構造が崩壊することなく、充放電サイクルが行える。また、酸素は常識の範囲で酸素欠損を伴っていてもよい(化学式への記載は省いてある)。
 次に、本発明1及び4に係る正極活物質粒子粉末の製造方法および本発明21に係る正極活物質粒子粉末の製造方法について述べる。
 即ち、本発明1及び4に係る正極活物質粒子粉末は、立方晶スピネル構造を有するマンガンとニッケルが主成分である複合酸化物を前駆体とし、本発明15に係るマンガンニッケル複合酸化物粒子粉末を用いることが好ましい。この場合、本発明1及び4に係る非水電解質二次電池用正極活物質粒子粉末は、本発明21の非水電解質二次電池用正極活物質粒子粉末の製造方法によって製造された正極活物質粒子粉末となる。
 本発明21に係る正極活物質粒子粉末は、本発明15に係るマンガンニッケル複合酸化物粒子粉末を前駆体とする。本発明15に係るマンガンニッケル複合酸化物粒子粉末を前駆体として用いた正極活物質粒子粉末は、少なくともLi及びNi、Mnを含有するスピネル型構造を有するニッケル含有マンガン酸リチウム粒子粉末であり、非水電解質二次電池の正極活物質粒子粉末として好適である。該ニッケル含有正極活物質粒子粉末は、結晶性が高く5Vという高い電圧で充電を行っても構造が崩壊することなく、高い放電容量と安定した充放電サイクルが行える。
 上記前駆体とリチウム化合物とを所定のモル比で混合した後、酸化性雰囲気で680℃~1050℃で焼成し(1)、引き続き、500~700℃で焼成する(2)ことで得られる。
 本発明1及び4に用いる前駆体であるマンガンニッケル複合酸化物は、水酸化物、酸化物有機化合物等があるが、好ましくは立方晶スピネル構造であるMnとNiの複合酸化物である。前記複合酸化物は、Fd-3mの空間群に帰属するスピネル構造で、主成分であるマンガンとニッケルが8aサイト及び/又は16dサイトに均一に分布している酸化物である。また、該前駆体について、マンガンとニッケル以外の元素を導入した複合酸化物であってもよい。
 本発明1及び4に用いる前記前駆体であるマンガンニッケル複合酸化物は、MnとNiが主成分の複合酸化物において、実質的に単相であることが好ましい。
 また、本発明1及び4に用いる前駆体であるマンガンニッケル複合酸化物は、平均一次粒子径が1.0~8.0μm、好ましくは1.0~4.0μmであることが好ましい。また、タップ密度が1.8g/ml以上が好ましく、X線回折による最強ピークの半価幅が0.15~0.25の範囲が好ましい。
 また、本発明1及び4に用いる前駆体であるマンガンニッケル複合酸化物の組成は、化学式(2)で表される。
化学式(2)
 (Mn1-y-zNi
  0.2≦y≦0.3、0≦z≦0.10
  M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biから選ばれる1種又は2種以上
 また、本発明1及び4に用いる前駆体であるマンガンニッケル複合酸化物は、ナトリウム含有量が100~2000ppmが好ましく、硫黄含有量が10~1000ppmが好ましく、不純物の総和が4000ppm以下であることが好ましい。
 本発明1及び4におけるマンガンニッケル複合酸化物粒子粉末の製造方法は、上記特性を満たすマンガンニッケル複合酸化物粒子粉末が作製できれば、各種原料を混合して焼成する固相反応又は水溶液中で各種原料を共沈させた後、焼成する湿式反応など、いずれの製造法を用いてもよく特に限定されるものではないが、例えば、以下の製造方法によって得ることができる。
 即ち、本発明1及び4におけるマンガンニッケル複合酸化物粒子粉末は、マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60~100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液に対して、所定量のマンガン原料とニッケル原料と、必要によりM元素原料を溶解した水溶液を用いて酸化反応を行う二次反応によって、四酸化三マンガン粒子を母材としたマンガンニッケル複合化合物を得る湿式反応工程と、該湿式反応工程後のマンガンニッケル複合化合物を洗浄、乾燥し、次いで、酸化性雰囲気下で900~1100℃の温度範囲で焼成して得ることができる。
 本発明に用いるリチウム化合物としては特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウムなどが挙げられるが、特に炭酸リチウムが好ましい。
 用いるリチウム化合物は平均粒子径が50μm以下であることが好ましい。より好ましくは30μm以下である。リチウム化合物の平均粒子径が50μmを超える場合には、前駆体粒子粉末との混合が不均一となり、結晶性の良い複合酸化物粒子を得るのが困難となる。
 また、本発明における正極活物質粒子粉末合成時において当該前駆体粒子粉末とリチウム化合物と共にMg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biの硝酸塩、酸化物、水酸化物、炭酸塩等を混合して、該正極活物質粒子粉末に添加元素を導入させてもよい。
 マンガンニッケル複合酸化物粒子粉末及びリチウム化合物の混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。
 本発明における焼成工程において、酸化性雰囲気で焼成(1)として680℃~1050℃の焼成を行うことが好ましい。焼成(1)によりマンガンニッケル複合化合物とLi化合物が反応して酸素欠損状態のニッケル含有マンガン酸リチウムが得られる。680℃未満の場合には前駆体とLiとの反応性が悪く、十分に複合化されない。1050℃を超える場合には焼結が進みすぎてしまうことや、Niが格子から出てNi酸化物として析出してしまう。好ましい本焼成温度は700~1000、更により好ましくは730~950℃である。また、焼成時間は2~50時間が好ましい。
 焼成(1)に続き同酸化性雰囲気で500℃~700℃で焼成(2)となる熱処理を行う。焼成(2)により酸素欠損を補い、結晶構造が安定したニッケル含有正極活物質粒子粉末を得ることができる。
 本発明21に係る製造方法によって得られた正極活物質粒子粉末は、本発明1及び4に係る正極活物質粒子粉末と同じく、ニッケル含有マンガン酸リチウム粒子粉末でありスピネル型構造を有し、Li1+xMn2-y-zNi(xの範囲が-0.05≦x≦0.15,yの範囲が0.4≦y≦0.6,zの範囲が0≦z≦0.20)が好ましく、M元素として、Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Bi等の1種または1種以上をMnに対して置換させてもよく、より好ましい添加元素はMg,Al,Si,Ti,Co,Zn,Y,Zr,Sb,Wである。また、公知な範囲において本発明においても酸素欠損若しくは酸素過剰があってもよい。
 本発明における正極活物質粒子粉末の平均二次粒子径(D50)は4~30μmが好ましく、また、BET法による比表面積は0.05~1.00m/gが好ましく、タップ密度(500回)は1.7g/ml以上が好ましい。
 本発明における正極活物質粒子粉末のナトリウム分含有量は30~2000ppmが好ましく、硫黄分の含有量は10~600ppmが好ましく、不純物の総和は5000ppm以下が好ましい。
 次に、本発明1及び4に係る正極活物質粒子粉末または本発明21の製造方法で得られた正極活物質粒子粉末を含有する正極について述べる。
 本発明1及び4または本発明21の製造方法で得られた正極活物質粒子粉末に係る正極活物質粒子粉末を含有する正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。
 本発明1及び4または本発明21の製造方法で得られた正極活物質粒子粉末に係る正極活物質粒子粉末を含有する正極を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。
 負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。
 また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。
 さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。
 本発明1に係る正極活物質粒子粉末および本発明21の製造方法で得られた正極活物質粒子粉末を含有する正極を用いて製造した非水電解質二次電池は、後述する評価法で3.0V以上の容量が130mAh/g以上であり、好ましく135mAh/g以上であって、4.5V以上の容量が120mAh/g以上であり、より好ましく125mAh/g以上であって、且つ、サイクル維持率は55%以上であり、好ましくは60%以上である。また、10C/0.1Cの比をとったレート維持率は80%以上である。
 本発明により、8aサイトでのNi置換量が少ないこと(Niが16dサイトに優先的に拡散していること)で、充放電におけるNiの価数変化による結晶格子の膨張収縮に影響されにくく、Liのイオン拡散パスとなる8aサイトから16cサイトを経て電解液中に拡散する際のバルクの抵抗が小さくなると考えられる。その結果、高い放電容量を維持しつつ、レート維持率やサイクル維持率に優れた結果となったと考えられる。
 また、本発明1に係る正極活物質粒子粉末および本発明21の製造方法で得られた正極活物質粒子粉末を用いた電池で、対極をLi金属としたときに25℃でのサイクル試験を行って、その30サイクル後における放電時に(3.5V-3.0V)の電池容量が2mAh/g以下である。2mAh/gより大きいと該正極活物質の結晶が不安定となり電池の劣化が早くなってしまう。好ましくは、1.5mAh/g以下である。
 一般的に、少なくともNiとMnを含むスピネル構造の正極活物質粒子粉末は、電池としたときの放電カーブでMnの3価/4価の価数変化による4V付近のプラトーが見られることが多い。これは、格子中のNi欠損や酸素欠損が生じているためで、詳しくは該正極活物質の結晶内の価数バランスをとるためにMnの一部が4価から3価に価数が変わるため発生すると考えられる。放電容量において4V付近のプラトーが小さいことは、正極活物質の種々の電池特性の安定性に関して重要であると考えられる。
 本発明1では、正極活物質粒子粉末の構造安定性の判断指標として、30サイクルのサイクル試験における最後の充放電の放電カーブで3.3V付近のプラトーに着目した。正極活物質粒子粉末を使用して30サイクルの充放電を実施すると、サイクル特性に劣る正極活物質粒子粉末は、4.0V付近のプラトーのみならず3.3V付近のプラトーも顕著に大きくなることを見出した。
 本発明21の製造方法で得られた正極活物質粒子粉末を使用したとき、前駆体由来の特性である、結晶性が高いことから、本発明における正極活物質粒子粉末の製造方法による手法をとることにより、該正極活物質粒子粉末のスピネル構造における結晶性も高くなり、その結果MnやNi及びM元素が配位されている16dサイトが充放電による膨張収縮が小さくなることによりLiが8aサイトから16cサイトを通り界面に移動するイオン拡散抵抗要素が減ると考えられる。その結果、Niが構造から出てNiO成分となることや、酸素欠損が小さくなるためにMn3+/Mn4+によるプラトーが見られる3.0V~4.5Vの容量が小さくなり、サイクル特性が向上すると考えられる。
 本発明4に係る正極活物質粒子粉末を含有する正極を用いて製造した非水電解質二次電池は、後述する評価法で3.0V以上の放電容量が130mAh/g以上であり、より好ましく135mAh/g以上である。
 また、本発明4に係る正極活物質粒子粉末を含有する正極を用いて製造した非水電解質二次電池は、対極にリチウム金属を使用したときに初期の充電時における4.8V時の充電容量をaとし、5.0Vの充電容量をbとしたときに、(b-a)/bの割合が10%より小さくなる。
 4.5V以上の充電を行うと一般的には電解液の分解が発生することにより、4.8V以上の充電にてこの分解反応による見掛けの充電容量が加算されてしまう。発明者は鋭意、研究を行った結果、正極活物質粒子の表面性状を最適化することで電解液の分解が少なくなり、そのために電解液の分解による見掛けの充電容量が小さくなることを見出した。本発明に係る正極活物質粒子粉末を用いることで、電解液の分解を抑制することができ、上述した(b-a)/bの割合が10%より小さくすることができたと考えている。
 本発明4に係る正極活物質粒子粉末を用いて正極とし、対極をリチウム金属とした二次電池を組み立ててカットオフ電圧を3.0V-5.0Vで充放電試験を行ったとき、初期充放電効率は90%以上となる。上述したとおり、電解液の分解が少なくなることで余分に発生する見掛け充電容量が小さくなり、結果として充放電効率が向上することになると考えられる。
 本発明4に係る正極活物質粒子粉末を使用した二次電池は、正極活物質による電解液の分解反応が抑制されていることから、例えば、電解液の劣化や電解液の分解によるガス発生、また、正極の劣化そのものも抑制することができると考えられる。その結果、本発明に係る正極活物質粒子粉末を使用した二次電池は長期安定性に優れると考えられる。
 <作用>
 本発明1における正極活物質粒子粉末のX線回折にて、Fd-3mで指数付けしたときに、特性(A)を有する場合は、X線回折における(311)面のピーク強度と(111)面のピーク強度との割合が35~43%の範囲に入ることで、放電容量が高く、且つ、サイクル特性が良好な結果となったと考えている。
 リートベルト解析におけるシミュレーションの結果、(311)面のピーク強度と(111)面のピーク強度との割合比が小さいと、正極活物質粒子内のNiが、一般的にLiが存在する8aサイトへの置換量が少なくなることが分かった。この結果より、本発明ではNiは主にMnが存在する16dサイトに多く存在することが分かった。そのため、8aサイトにはほとんどが充放電に寄与するLiのみが存在しており、放電容量を大きくすることが出来、結晶の安定化のために良好なレート特性を得られると推察した。
 本発明1における正極活物質粒子粉末のX線回折にて、Fd-3mで指数付けしたときに、特性(B)を有する場合は、各ピーク位置2θ(10~90度)に対しする半価幅Bとしたとき、横軸にsinθ、縦軸にBcosθとしたグラフにおける最小二乗法による直線の傾きが3.0×10-4~20.0×10-4の範囲であるとき、放電容量が高く、且つサイクル特性が良好であることがわかった。
 本発明1によるWilliamson-hallプロットの最小二乗法による傾きと該正極活物質粒子粉末の電池特性との整合性について詳しくはわからないが、本発明における傾きの範囲に入るとき、該正極活物質粒子粉末の結晶性や組成といった何らかのパラメータにおいて最適化されていると推察した。最適化された結果、放電容量が大きく、且つサイクル特性に優れた材料となったと考えられる。
 また、本発明1において、16dサイトにNiが存在することで、充放電にともなうNiの2価と4価の価数変化によるNiの膨張収縮は、主に4価のMnとの結びつきで緩和することが出来ると考えられる。結果的に充放電のおける格子全体の膨張収縮は小さくなるので、Liの挿入・脱離におけるイオン拡散抵抗が小さくなり、サイクル特性が良好な結果となると考えられる。
 また、本発明1において、示差走査熱量測定にて-40℃から70℃まで昇温したときに吸熱量が0.3~0.8J/mgの範囲に入ることで、放電容量が高く、且つ、サイクル特性が良好な結果となったと考えている。
 非特許文献2によると、該正極活物質と同様のスピネル構造を有すマンガン酸リチウムでは立方晶から正方晶に相転移するといわれているが、本発明のようなニッケルがMnサイトに多量に置換されている該正極活物質では上記のような相転移による熱の発生/吸収があるということについては分かっていないが、少なくとも本研究においては差異のある結果を見出すことができた。
 非特許文献2における相転移とは、ヤンテラーイオンであるMnの3価の熱運動を低減することで達成できるとある。しかしながら、該正極活物質では、基本的にはMnは4価で存在しており、Mnの3価は酸素欠損が大きいときに発生し、電池特性における放電カーブでは4V領域の容量が大きくなる(Mnの3価/4価の反応)ことが考えられる。しかしながら、本発明による評価では酸素欠損によるMnの3価の挙動のみならず、結晶のバランスといったパラメータも含んだ結果が現れていると考えられる。そのために、本発明1に係る範囲では、放電容量が高く、且つ、サイクル特性が良好な結果となったと考えている。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は、スピネル構造で立方晶であり、且つ結晶性が高いという特徴がある。本発明においては、あらかじめ、結晶性の高い四酸化三マンガンの核粒子(種粒子)を生成した後に、窒素流通下で過剰のアルカリ分が残る反応溶液に、マンガン原料溶液とニッケル原料溶液及びM元素原料溶液を投入することで、前記添加金属の水酸化物微粒子を生成させることができ、反応溶液の雰囲気を酸化性雰囲気とし酸化反応を開始したときに、この水酸化物が核粒子である四酸化三マンガン粒子界面に析出すると考えられる。この析出に関しても微粒子のMn、Ni、M元素の水酸化物が均等に絡まりあった酸化物として析出するために、反応溶液内に局部的に新しい粒子が発生せず、且つ、核粒子である四酸化三マンガン粒子の界面近傍にNi等の置換元素を配置することができる。
 また、本発明15では一次反応の条件を種々変えることにより、二次反応後の平均一次粒子径を制御することができ、結果として本発明に係るマンガンニッケル複合酸化物粒子粉末の平均一次粒子径のサイズを自由に設計することができる。加えて、本発明に係るマンガンニッケル複合酸化物粒子粉末は、湿式で簡易な手法での合成であるため、pHを制御することで、不純物であるNa分やS分を低減させることが可能であり、また水洗工程にて更に原料等に含まれている不純物も洗い落とすことが出来る。
 次に、反応後の中間生成物を水洗することによって、不純物となるボウショウを洗い流し、当該中間生成物を900~1100℃で焼成することで、ニッケル酸化物、M元素酸化物を核粒子である四酸化三マンガン中に均一に固溶させることができる。また、焼成温度が高いことによる効果としては一次粒子の表面性状を滑らかにするとともに、強固な二次粒子を形成させることができ、且つ、該粒子粉末の結晶度を高めることができるものと考えている。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は、焼成によりニッケル酸化物と必要により添加したM元素酸化物とが均一固溶することができ、立方晶であるスピネル構造の複合酸化物を得ることができる。
 本発明15に係るマンガンニッケル複合酸化物粒子粉末は結晶性が高く、Li化合物と混合した後、マンガンニッケル複合酸化物を得るときに焼成する温度よりも同等以下の温度で焼成できるため、前駆体であるマンガンニッケル複合酸化物粒子粉末の高結晶性に起因する粉体物性をひき継ぐことができるとともに、スピネル構造の結晶の骨格が強いニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末が得られると考えられる。
 また、該ニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末の製造において、焼成温度を900℃前後とすることで大きくなる酸素欠損やNiO複合酸化物の析出を抑えることができ、そのためにMn3+の発生を抑制することができると考えられるので、サイクル特性を向上させることが出来ると考えられる。
 以下に、実施例を用いて本発明を更に詳しく説明するが、以下の実施例は本発明の例示であり、本発明は以下の実施例に限定されるわけではない。
 以下の実施例、比較例において、実施例1-1~1-4及び比較例1-1~1-3は、本発明1において特性(A)を有する場合の実施例および比較例であり、実施例2-1~2-4及び比較例2-1~2-3は、本発明1において特性(B)を有する場合の実施例および比較例であり、実施例3-1~3-6及び比較例3-1~3-3は、本発明4における実施例および比較例であり、実施例4-1~4-7及び比較例4-1~4-8は、本発明15、18及び21における実施例および比較例である。なお、上記のそれぞれの比較例は、対応する発明における比較例であって、他の発明に対しての比較を意図していない。以下に本発明で使用した評価方法について記載する。
 平均一次粒子径は、エネルギー分散型X線分析装置付き走査電子顕微鏡SEM-EDX[(株)日立ハイテクノロジーズ製]を用いて観察し、そのSEM像から平均値を読み取った。
 平均二次粒子径(D50)はレーザー式粒度分布測定装置マイクロトラックHRA[日機装(株)製]を用いて湿式レーザー法で測定した体積基準の平均粒子径である。
 BET比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、MONOSORB[ユアサアイオニックス(株)製]を用いて測定した。
 組成や不純物量は、0.2gの試料を20%塩酸溶液25mlの溶液で加熱溶解させ、冷却後100mlメスフラスコに純水を入れ調整液を作製し、測定にはICAP[SPS-4000 セイコー電子工業(株)製]を用いて各元素を定量して決定した。
 正極活物質粒子粉末の充填密度は、40g秤量し、50mlのメスシリンダーに投入し、タップデンサー((株)セイシン企業製)で500回タッピングした時の体積を読み取り充填密度(TD500回)を計算した。
 試料のX線回折は、株式会社リガク製 RAD-IIA及びSmartLabを用いて測定した。測定条件は、2θ/θで10~90度を0.02度ステップスキャン(0.6秒ホールド)で行った。
 S含有量は、「HORIBA CARBON/SULFUR ANALYZER EMIA-320V(HORIBA Scientific)」を用いて測定した。
 低温領域における吸熱量の測定には、示差走査熱量測定(DSC)「セイコーインストゥルメンツ EXSTAR6000(DSC6200)」を用いて測定した。まず、試料をアルミパンに20mg詰めかしめて、リファレンスにアルミナ粉末を使用し該アルミパンを試料台にセットした。その後、ドライアイスにて試料台のあるチャンバー内を-40℃まで冷却し、その後ドライアイスを取り除いて5℃/minの昇温速度で70℃まで昇温させ、そのときの吸熱量を測定した。
 本発明に係る正極活物質粒子粉末については、2032型コインセルを用いて電池評価を行った。
 電池評価に係るコインセルについては、正極活物質粒子粉末として複合酸化物を85重量%、導電材としてアセチレンブラックを5重量%、グラファイトを5重量%、バインダーとしてN-メチルピロリドンに溶解したポリフッ化ビニリデン5重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥した。このシートを14mmΦに打ち抜いた後、1.5t/cmで圧着したものを正極に用いた。負極は16mmΦに打ち抜いた厚さが500μmの金属リチウムとし、電解液は1mol/LのLiPFを溶解したECとDMCを体積比で1:2で混合した溶液を用いて2032型コインセルを作製した。
 また、サイクル維持率評価には、負極活物質に人造黒鉛を使用し、該人造黒鉛を94重量%、バインダーとしてN-メチルピロリドンに溶解したポリフッ化ビニリデン6重量%とを混合した後、Cu金属箔に塗布し120℃にて乾燥し、16mmΦに打ち抜いて負極として使用した以外は、コインセルは対極がLi金属箔のときと同様の方法で作製した。
 充放電特性(実施例1-、実施例2-及び実施例4-、比較例1-比較例2-及び比較例4-の各シリーズ)は、恒温槽で25℃とした環境下で充電は5.0Vまで0.1Cの電流密度にて行った(CC-CC操作)後、放電を3.0Vまで0.1Cの電流密度にて行った(CC-CC操作)。測定の信頼性を高めるために、1サイクル目はエージングとして、本操作の2回目(2サイクル目)の充電容量(2nd-CH)、放電容量(2nd-DCH)を測定した。
 充放電特性(実施例3-及び3-の各シリーズ)は、恒温槽で25℃とした環境下で充電は5.0Vまで0.1Cの電流密度にて行った(CC-CV操作、終了条件1/100C)後、放電を3.0Vまで0.1Cの電流密度にて行った(CC操作)。初期の充電で、4.8Vのときの充電容量をa、5.0Vのときの充電容量をbとした。
 5.0Vまでの初期充電を終えて初期充電容量bを得た後に、3.0Vまで0.1Cの電流密度で放電を行った(CC操作)。このとき、3.0Vとなったときの放電容量cとした。また初期充放電効率はc/b×100の式で算出した。
 レート維持率は、恒温槽で25℃とした環境下で充電は5.0Vまで0.1Cの電流密度にて行った(CC-CC操作)後、放電を3.0Vまで0.1Cの電流密度にて行った(CC-CC操作)。測定の信頼性を高めるために、1サイクル目はエージングとして、本操作の2回目(2サイクル目)の充電容量(2nd-CH)、放電容量(2nd-DCH)を測定した。このとき2回目の放電容量をaとする。次に、充電は5.0Vまで0.1Cの電流密度にて行った(CC-CC操作)後、放電を3.0Vまで10Cの電流密度にて行った(CC-CC操作)。このときの放電容量をbとするとき、レート維持率を(b/a×100(%))とした。
 2032型コインセルを用いて、対極に人造黒鉛を使用したサイクル特性の評価を行った。サイクル特性試験では、25℃の環境で、1Cの電流密度で3.0Vから4.8V(CC-CC操作)とした充放電を200サイクル行った。このとき、1サイクル目の放電容量c、200サイクル目の放電容量dとしたとき、サイクル維持率を(d/c×100(%))とした。
 本発明1において特性(A)を有する場合の実施例および比較例:
 実施例1-1:
 窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水懸濁液を得た。得られた水酸化マンガン粒子を含む水懸濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。一次反応終了後、窒素通気に切替え同反応槽にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lを加えることで、一次反応にて生成されたマンガン酸化物とマンガン化合物及びニッケル化合物(水酸化マンガン及び水酸化ニッケルなど)を含有する水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物前駆体を得た。該前駆体を950℃で20hr大気中にて焼成することで前駆体となるマンガンニッケル複合酸化物粒子粉末を得た。
 得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶スピネル構造であることが確認できた。その組成は、(Mn0.75Ni0.25であった。平均一次粒子径は2.6μmで、タップ密度(500回)は2.12g/mlで、X線回折における最強ピークの半価幅は0.20度であり、また、Na含有量は252ppm、S含有量は88ppmで不純物の総量は1589ppmであった。
 得られたマンガンニッケル複合酸化物粒子粉末を前駆体として、炭酸リチウムとLi:(Mn+Ni)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下750℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
 得られた正極活物質粒子粉末はX線回折(リガク製 RAD-IIA)により立方晶であるスピネル構造を有することを確認した。(311)面と(111)面とのピーク強度の割合は38%であった。また、BET比表面積は0.41m/g、D50は14.8μm、タップ密度は1.98g/mlであった。また、S含有量は21ppmで、Na含有量は98ppmで、不純物の総量は529ppmであった。
 また、該正極活物質粒子粉末を用いて作製したコイン型電池は、3.0Vまでの放電容量が142mAh/gであり、4.5Vまでの放電容量は134mAh/gであり、レート維持率は87%で、サイクル維持率は65%であった。
 実施例1-2:
 窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水懸濁液を得た。得られた水酸化マンガン粒子を含む水懸濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。一次反応終了後、窒素通気に切替え同反応槽にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lと1.5mol/Lの硫酸チタニル溶液20.0Lと1.5mol/Lの硫酸マグネシウム溶液を10.0Lを加えることで、一次反応にて生成されたマンガン酸化物とマンガン化合物、ニッケル化合物、マグネシウム化合物及びチタン化合物(水酸化マンガン、水酸化ニッケル、水酸化マグネシウム及び水酸化チタンなど)を含有する水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物前駆体を得た。該前駆体を950℃で20hr大気中にて焼成することで前駆体であるマンガンニッケル複合酸化物粒子粉末を得た。
 得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶スピネル構造であることが確認できた。その組成は、(Mn0.72Ni0.25Mg0.015Ti0.015であった。
 得られたマンガンニッケル複合酸化物粒子粉末は前駆体として、炭酸リチウムとLi:(Mn+Ni+Mg+Ti)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下750℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1-1~1-3に示す。
 実施例1-3:
 窒素通気のもと反応後の過剰アルカリ濃度が2.0mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水懸濁液を得た。得られた水酸化マンガン粒子を含む水懸濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。一次反応終了後、窒素通気に切替え同反応槽にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lと1.5mol/Lの硫酸チタニル溶液30.2Lを加えることで、一次反応にて生成されたマンガン酸化物とマンガン化合物、ニッケル化合物及びチタン化合物(水酸化マンガン、水酸化ニッケル及び水酸化チタン)を含有する水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物前駆体を得た。該前駆体を950℃で20hr大気中にて焼成することで前駆体であるマンガンニッケル複合酸化物粒子粉末を得た。
 得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶スピネル構造であることが確認できた。その組成は、(Mn0.70Ni0.25Ti0.05であった。
 得られたマンガンニッケル複合酸化物粒子粉末を前駆体として、炭酸リチウムとLi:(Mn+Ni+Ti)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下850℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1-1~1-3に示す。
 実施例1-4:
 実施例1-1で得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムをLi:(Mn+Ni)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下900℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1-1~1-3に示す。
 実施例1-5:
 実施例1-1に基づいて製造条件を変化させて、正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1-1~1-3に示す。
 比較例1-1:
 密閉型反応槽に水を14L入れ、窒素ガスを流通させながら50℃に保持した。さらに、pH=8.2(±0.2)となるよう、強攪拌しながら連続的に1.5mol/LのNi、Mnの混合硫酸塩水溶液と0.8mol/L炭酸ナトリウム水溶液と2mol/Lアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら、40時間反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過した後、純水で水洗を行った。その後105℃で一晩乾燥させ、前駆体粒子粉末を得た。X線回折測定の結果、得られた前駆体粒子粉末は、炭酸塩を主成分としていた。
得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:(Mn+Ni)=0.48:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1-1~1-3に示す。
 比較例1-2:
 比較例1-1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.50:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1-1~1-3に示す。
 比較例1-3:
 比較例1-1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.51:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1-1~1-3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上の結果から本発明に係る正極活物質粒子粉末は充放電容量が大きく優れた非水電解質二次電池用正極活物質として有効であることが確認された。
 本発明1において特性(B)を有する場合の実施例および比較例:
 実施例2-1:
 窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水懸濁液を得た。得られた水酸化マンガン粒子を含む水懸濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。一次反応終了後、窒素通気に切替え同反応槽にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lを加えることで、一次反応にて生成されたマンガン酸化物と水酸化マンガン及び水酸化ニッケルの水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物前駆体を得た。該前駆体を950℃で20hr大気中にて焼成することで前駆体となるマンガンニッケル複合酸化物粒子粉末を得た。
 得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶スピネル構造であることが確認できた。その組成は、(Mn0.75Ni0.25であった。(平均一次粒子径は2.6μmで、タップ密度(500回)は2.12g/mlで、X線回折における最強ピークの半価幅は0.20度であり、また、Na含有量は252ppm、S含有量は88ppmで不純物の総量は1589ppmであった。)
 得られたマンガンニッケル複合酸化物粒子粉末を前駆体として、炭酸リチウムとLi:(Mn+Ni)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下750℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
 得られた正極活物質粒子粉末はX線回折(リガク製 RAD-IIA)により立方晶であるスピネル構造を有することを確認した。Williamson-hallプロットによる傾きは、8.0×10-4であった。また、BET比表面積は0.43m/g、D50は15.1μm、タップ密度は1.95g/mlであった。また、S含有量は18ppmで、Na含有量は95ppmで、不純物の総量は513ppmであった。
 また、該正極活物質粒子粉末を用いて作製したコイン型電池は、3.0Vまでの放電容量が140mAh/gであり、4.5Vまでの放電容量は132mAh/gであり、レート維持率は88%で、サイクル維持率は63%であった。
 実施例2-2:
 窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水懸濁液を得た。得られた水酸化マンガン粒子を含む水懸濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。一次反応終了後、窒素通気に切替え同反応槽にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lと1.5mol/Lの硫酸チタニル溶液20.0Lと1.5mol/Lの硫酸マグネシウム溶液を10.0Lを加えることで、一次反応にて生成されたマンガン酸化物と水酸化マンガン、水酸化ニッケル、水酸化マグネシウム及び水酸化チタンの水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物前駆体を得た。該前駆体を950℃で20hr大気中にて焼成することで前駆体であるマンガンニッケル複合酸化物粒子粉末を得た。
 得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶スピネル構造であることが確認できた。その組成は、(Mn0.72Ni0.25Mg0.015Ti0.015であった。
 得られたマンガンニッケル複合酸化物粒子粉末は前駆体として、炭酸リチウムとLi:(Mn+Ni+Mg+Ti)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下750℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表2-1~2-3に示す。
 実施例2-3:
 窒素通気のもと反応後の過剰アルカリ濃度が2.0mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水懸濁液を得た。得られた水酸化マンガン粒子を含む水懸濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。一次反応終了後、窒素通気に切替え同反応槽にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lと1.5mol/Lの硫酸チタニル溶液30.2Lを加えることで、一次反応にて生成されたマンガン酸化物と水酸化マンガン、水酸化ニッケル及び水酸化チタンの水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物前駆体を得た。該前駆体を950℃で20hr大気中にて焼成することで前駆体であるマンガンニッケル複合酸化物粒子粉末を得た。
 得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶スピネル構造であることが確認できた。その組成は、(Mn0.72Ni0.25Ti0.05であった。
 得られたマンガンニッケル複合酸化物粒子粉末を前駆体として、炭酸リチウムとLi:(Mn+Ni+Ti)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下850℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表2-1~2-3に示す。
 実施例2-4:
 実施例2-1で得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムをLi:(Mn+Ni)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下900℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表2-1~2-3に示す。
 実施例2-5:
 実施例2-1に基づいて製造条件を変化させて、正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表2-1~2-3に示す。
 比較例2-1:
 密閉型反応槽に水を14L入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=8.2(±0.2)となるよう、強攪拌しながら連続的に1.5mol/LのNi、Mnの混合硫酸塩水溶液と0.8mol/L炭酸ナトリウム水溶液と2mol/Lアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら、40時間反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過した後、純水で水洗を行った。その後105℃で一晩乾燥させ、前駆体粒子粉末を得た。X線回折測定の結果、得られた前駆体粒子粉末は、炭酸塩を主成分としていた。
 得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:(Mn+Ni)=0.48:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表2-1~2-3に示す。
 比較例2-2:
 比較例2-1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.50:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表2-1~2-3に示す。
 比較例2-3:
 比較例2-1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.51:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表2-1~2-3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上の結果から本発明に係る正極活物質粒子粉末は充放電容量が大きく優れた非水電解質二次電池用正極活物質として有効であることが確認された。
 本発明4における実施例および比較例:
 実施例3-1:
 窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水懸濁液を得た。得られた水酸化マンガン粒子を含む水懸濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。一次反応終了後、窒素通気に切替え同反応槽にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lを加えることで、一次反応にて生成されたマンガン酸化物とマンガン化合物及びニッケル化合物(水酸化マンガン及び水酸化ニッケルなど)を含有する水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物を得た。該マンガンニッケル複合化合物を950℃で20hr大気中にて焼成して、マンガンニッケル複合酸化物粒子粉末を得た。
 得られたマンガンニッケル複合酸化物粒子粉末はX線回折よりFd―3mの空間群に帰属する立方晶スピネル構造であることが確認できた。その組成は、(Mn0.75Ni0.25であった。平均一次粒子径は2.6μmで、タップ密度(500回)は2.12g/mlで、X線回折における最強ピークの半価幅は0.20°であり、また、Na含有量は252ppm、S含有量は88ppmで不純物の総量は1589ppmであった。
 得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムとを、Li:(Mn+Ni)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、大気中にて750℃で15hr焼成し(焼成(1))、続けて600℃で10hr焼成することで(焼成(2))、正極活物質粒子粉末を得た。
 得られた正極活物質粒子粉末はX線回折(リガク製 SmartLab)により立方晶であるスピネル構造を有することを確認した。得られた正極活物質粒子粉末のX線回折パターンを図3-1に示す。組成は、Li1.0(Mn0.75Ni0.25であり、平均一次粒子径は3.5μm、平均二次粒子径(D50)は11.6μm、BET比表面積は0.74m/gであり、平均二次粒子径(D50)とBET比表面積の積は8.6×10-6/gであった。また、(400)の半値幅は0.171°であった。
 また、対極にリチウム金属を使用し、該正極活物質粒子粉末を用いて作製した2032コイン型電池は、初期充電において4.8Vまでの充電容量aが140.2mAh/gであり、5.0Vまでの充電容量bは155.2mAh/gであり、(b-a)/bの割合は、図3-2に示すとおり、9.6%であった。また、初期充放電効率は92.8%であった。
 実施例3-2~実施例3-7:
 焼成(1)の焼成温度を種々変えた以外は、実施例3-1と同様の操作により正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表3-1に示す。
 比較例3-1:
 焼成(1)の焼成温度を650℃とした以外は実施例3-1と同様の操作により正極活物質粒子粉末を得た。
 比較例3-2:
 密閉型反応槽に水を14L入れ、窒素ガスを流通させながら50℃に保持した。さらに、pH=8.2(±0.2)となるよう、強攪拌しながら連続的に1.5mol/LのNi、Mnの混合硫酸塩水溶液と0.8mol/L炭酸ナトリウム水溶液と2mol/Lアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら、40時間反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過した後、純水で水洗を行った。その後105℃で一晩乾燥させ、前駆体粒子粉末を得た。X線回折測定の結果、得られた前駆体粒子粉末は、炭酸塩を主成分としていた。
 得られた前駆体粒子粉末と水酸化リチウムとをLi:(Mn+Ni)=0.50:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中850℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表3-1に示す。
 比較例3-3:
 比較例3-2で得られた前駆体粒子粉末と水酸化リチウムとをLi:Me=0.50:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表3-1に示す。
Figure JPOXMLDOC01-appb-T000007
 実施例3-1で得られた正極活物質粒子粉末の走査型電子顕微鏡写真を図3-3に、比較例3-1で得られた正極活物質粒子粉末の走査型電子顕微鏡写真を図3-4に示す。図3-3及び図3-4から明らかなとおり、実施例3-1の正極活物質粒子は、二次粒子の粒子表面の凹凸が比較例3-1の正極活物質粒子に対して低減していることが確認できた。
 以上の結果から本発明に係る正極活物質粒子粉末は電解液との副反応が小さく長期安定性に優れた非水電解質二次電池用正極活物質として有効であることが確認された。
 本発明15、18及び21における実施例および比較例:
 実施例4-1:
 窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水縣濁液を得た。得られた水酸化マンガン粒子を含む水縣濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。
 一次反応終了後、窒素通気に切替え、反応溶液に0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lとを添加し、一次反応にて生成されたマンガン酸化物と添加金属の化合物(水酸化マンガン、水酸化ニッケルなど)とを含有する水懸濁液を得た。得られた反応溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物(中間生成物)を得た。該中間生成物を950℃で20hr大気中にて焼成することでマンガンニッケル複合酸化物粒子粉末を得た。
 得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶型(スピネル構造)であることが確認できた(図4-1)。その組成は、(Mn0.75Ni0.25であった。平均一次粒子径は2.6μmで、タップ密度(500回)は2.12g/mlで、X線回折における最強ピークの半価幅は0.20度であり、また、Na含有量は252ppm、S含有量は88ppmで不純物の総量は1589ppmであった。得られたマンガンニッケル複合酸化物粒子粉末の電子顕微鏡写真(SEM)を図4-3に示す。
 実施例4-2:
 窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水縣濁液を得た。得られた水酸化マンガン粒子を含む水縣濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。
 一次反応終了後、窒素通気に切替え同反応溶液に、0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lと1.5mol/Lの硫酸チタニル溶液10.0Lと1.5mol/Lの硫酸マグネシウム溶液10.0Lを添加して、一次反応にて生成されたマンガン酸化物と添加金属の化合物(水酸化マンガン、水酸化ニッケル、水酸化マグネシウム及び水酸化チタンなど)を含有する水懸濁液を得た。得られた反応溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物(中間生成物)を得た。
 該中間生成物を950℃で20hr大気中にて焼成することでマンガンニッケル複合酸化物粒子粉末を得た。得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶型(スピネル構造)であることが確認できた。
 得られたマンガンニッケル複合酸化物粒子粉末の諸特性を表4-1に示す。
 実施例4-3:
 窒素通気のもと反応後の過剰アルカリ濃度が2.0mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水縣濁液を得た。得られた水酸化マンガン粒子を含む水縣濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。
 一次反応終了後、窒素通気に切替え同反応溶液にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lと1.5mol/Lの硫酸チタニル溶液50.2Lを加えることで、一次反応にて生成されたマンガン酸化物と添加金属の化合物(水酸化マンガン、水酸化ニッケル及び水酸化チタンなど)の水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。
 二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物(中間生成物)を得た。
 該中間生成物を950℃で20hr大気中にて焼成することでマンガンニッケル複合酸化物粒子粉末を得た。得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶型(スピネル構造)であることが確認できた。
 得られたマンガンニッケル複合酸化物粒子粉末の諸特性を表4-1に示す。
 実施例4-4、4-5:
 実施例4-1に基づいて製造条件を変化させてマンガンニッケル複合酸化物粒子粉末を得た。
 得られたマンガンニッケル複合酸化物粒子粉末の諸特性を表4-1に示す。
 比較例4-1:
 密閉型反応槽に水を14L入れ、窒素ガスを流通させながら50℃に保持した。さらに、pH=8.2(±0.2)となるよう、強攪拌しながら連続的に1.5mol/LのNi、Mnの混合硫酸塩水溶液と0.8mol/L炭酸ナトリウム水溶液と2mol/Lアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら、40時間反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過した後、純水で水洗を行った。その後105℃で一晩乾燥させ、前駆体粒子粉末を得た。X線回折測定の結果、得られた前駆体粒子粉末は、炭酸塩を主成分としていた(図4-2)。得られた前駆体粒子粉末の電子顕微鏡写真(SEM)を図4-4に示す。
 比較例4-2:
 実施例4-1と同様にしてマンガンニッケル複合化合物(中間生成物)を得、乾燥後の乾燥粉を880℃で20hr大気中にて焼成し、マンガンニッケル複合酸化物粒子粉末を得た。X線回折の結果、主構造であるスピネル構造のマンガンニッケル複合酸化物のピーク以外に、Mnのピークが見られた。
 得られたマンガンニッケル複合酸化物粒子粉末の諸特性を表4-1に示す。
 比較例4-3:
 密閉型反応槽に水を14L入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=8.2(±0.2)となるよう、強攪拌しながら連続的に1.5mol/LのNi、Mnの混合硫酸塩水溶液と0.8mol/L水酸化ナトリウム水溶液と2mol/Lアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら、40時間反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過した後、純水で水洗を行った。その後105℃で一晩乾燥させ、前駆体粒子粉末を得た。X線回折測定の結果、得られた前駆体粒子粉末は、水酸化物(乾燥により酸化物に一部変化)を主成分としていた。
 得られたマンガンニッケル化合物の諸特性を表4-1に示す。
 実施例4-6:
 実施例4-1で得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムをLi:(Mn+Ni)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下750℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
 該正極活物質粒子粉末はX線回折(リガク製 RAD-IIA)により立方晶であるスピネル構造を有することを確認した。BET比表面積は0.43m/g、D50は15.1μm、タップ密度は1.95g/mlであった。また、S含有量は18ppmで、Na含有量は95ppmで、不純物の総量は513ppmであった。
 また、該正極活物質粒子粉末を用いて作製したコイン型電池は、3.0Vまでの放電容量が140mAh/gであり、4.5Vまでの放電容量は132mAh/gであり、レート維持率は88%で、サイクル維持率は63%であった。
 実施例4-7、4-8:
 マンガンニッケル複合酸化物粒子粉末の種類、炭酸リチウムとの混合割合、焼成温度を種々変化させた以外は、実施例4-6と同様にして正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折の結果、いずれも、立方晶であるスピネル構造を有することを確認した。
 得られた正極活物質粒子粉末の分析結果を表4-2に示す。
 実施例4-9:
 実施例4-1で得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムとの混合物を、空気流通下900℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折の結果、いずれも、立方晶であるスピネル構造を有することを確認した。
 得られた正極活物質粒子粉末の分析結果を表4-2に示す。
 実施例4-10:
 実施例4-5で得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムとの混合物を、空気流通下750℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折の結果、いずれも、立方晶であるスピネル構造を有することを確認した。
 得られた正極活物質粒子粉末の分析結果を表4-2に示す。
 比較例4-4:
 比較例4-1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.48:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 得られた正極活物質粒子粉末の分析結果を表4-2に示す。
 比較例4-5:
 比較例4-1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.50:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 得られた正極活物質粒子粉末の分析結果を表4-2に示す。
 比較例4-6:
 比較例4-1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.51:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
 得られた正極活物質粒子粉末の分析結果を表4-2に示す。
 比較例4-7:
 比較例4-2で得られた複合酸化物を前駆体とし実施例4-6と同様にしてLi化合物と混合、焼成して正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折より、ニッケル含有マンガン酸リチウムと酸化ニッケルとMn由来のマンガン酸リチウム粒子粉末のピークが確認できた。これは、異相の発生によりマンガンニッケル複合酸化物中のMn量が減るために相対的にNi量が増えたためだと考えられる。
 得られた正極活物質粒子粉末の分析結果を表4-2に示す。
 比較例4-8:
 比較例4-3で得られた複合酸化物を前駆体とした以外は、実施例4-9と同様にしてLi化合物と混合、焼成して正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折より、ニッケル含有マンガン酸リチウムと酸化ニッケルとMn由来のマンガン酸リチウム粒子粉末のピークが確認できた。これは、異相の発生によりマンガンニッケル複合酸化物中のMn量が減るために相対的にNi量が増えたためだと考えられる。
 得られた正極活物質粒子粉末の分析結果を表4-2に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 以上の結果から本発明に係るマンガンニッケル複合酸化物粒子粉末を使用した場合に得られるニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末は、充放電容量が大きく優れた非水電解質二次電池用正極活物質として有効であることが確認された。
 本発明1及び4に係る正極活物質粒子粉末は、放電容量が大きくサイクル特性に優れており、電解液との副反応が小さいことから長期安定性に優れているので、非水電解質二次電池用の正極活物質粒子粉末として好適である。
 本発明に係るマンガンニッケル複合酸化物粒子粉末は、該酸化物を前駆体として合成したニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末としたとき、放電容量が高く、且つ、サイクル特性に優れた非水電解質二次電池用正極活物質が得られるので、正極活物質の前駆体として好適である。

Claims (23)

  1.  組成が下記化学式(1)で示されるスピネル構造を有する非水電解質二次電池用正極活物質粒子粉末であって、該正極活物質粒子粉末のX線回折についてFd-3mで指数付けした際、以下の(A)及び/又は(B)の特性を有することを特徴とする非水電解質二次電池用正極活物質粒子粉末。
    (A)該正極活物質粒子粉末のX線回折についてFd-3mで指数付けした際、I(311)とI(111)との割合(I(311)/I(111))が35~43%の範囲である及び/又は
    (B)該正極活物質粒子粉末のX線回折についてFd-3mで指数付けした際、各ピーク位置2θ(10~90度)に対する半価幅Bとしたとき、横軸にsinθ、縦軸にBcosθとしたグラフにおける最小二乗法による直線の傾きが3.0×10-4~20.0×10-4の範囲である。
    化学式(1)
    Li1+xMn2-y-zNi
    -0.05≦x≦0.15、0.4≦y≦0.6、0≦z≦0.20
    (M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biから選ばれる1種または2種以上)
  2.  (A)及び/又は(B)において、平均二次粒子径(D50)が4~30μmである請求項1記載の非水電解質二次電池用正極活物質粒子粉末。
  3.  (A)及び/又は(B)において、BET法による比表面積が0.05~1.00m/gの範囲である請求項1又は2記載の非水電解質二次電池用正極活物質粒子粉末。
  4.  組成が下記化学式(1)で示されるスピネル構造を有する非水電解質二次電池用正極活物質粒子粉末であって、平均一次粒子径が1.0~4.0μm、平均二次粒子径(D50)が4~30μm、BET比表面積が0.3~1.0m/gであり、且つ、該複合酸化物子粉末の平均二次粒子径(D50)とBET比表面積との積をyとしたときに、y≦10.0×10-6/gであることを特徴とする非水電解質二次電池用正極活物質粒子粉末。
    化学式(1)
    Li1+xMn2-y-zNi
    -0.05≦x≦0.15、0.4≦y≦0.6、0≦z≦0.20
    (M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biから選ばれる1種または2種以上)
  5.  前記非水電解質二次電池用正極活物質粒子粉末のX線回折について(400)面のピークの半値幅をzとしたときに、z≦0.230degreeの範囲である請求項4記載の非水電解質二次電池用正極活物質粒子粉末。
  6.  タップ密度(500回)が1.7g/ml以上である請求項1~5のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末。
  7.  該正極活物質粒子粉末におけるナトリウム含有量が30~2000ppmで、硫黄含有量が10~600ppm、且つ不純物の総和が5000ppm以下である請求項1~6のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末。
  8.  該正極活物質粒子粉末の示差走査熱量測定にて-40℃から70℃まで昇温したときに吸熱量が0.3~0.8J/mgの範囲である請求項1~7のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末。
  9.  請求項1又は2に記載の非水電解質二次電池用正極活物質粒子粉末において、該正極活物質粒子粉末を用いて非水電解質二次電池としたときに、リチウム金属対比で3.0V以上の容量が130mAh/g以上であって4.5V以上の容量が120mAh/g以上であり、且つ、対極が人造黒鉛として200サイクルにおけるサイクル維持率が55%以上である請求項1又は2に記載の非水電解質二次電池用正極活物質粒子粉末。
  10.  請求項1又は2に記載の非水電解質二次電池用正極活物質粒子粉末において、対極がLiである二次電池を作製し、25℃でのサイクル試験にて30サイクル後における放電容量において、(3.5V-3.0V)の容量が2mAh/g以下である請求項1又は2に記載の非水電解質二次電池用正極活物質粒子粉末。
  11.  請求項4又は5に記載の非水電解質二次電池用正極活物質粒子粉末において、該正極活物質粒子粉末を用いて非水電解質二次電池としたときに、初期充電時において、4.8V充電時の電池容量をa、5.0V充電時の電池容量をbとしたときに、(b-a)/bで示される割合が10%より小さい請求項4又は5に記載の非水電解質二次電池用正極活物質粒子粉末。
  12.  請求項4又は5に記載の非水電解質二次電池用正極活物質粒子粉末において、該正極活物質粒子粉末を用いて非水電解質二次電池としたときに、初期充放電効率が90%以上である請求項4又は5に記載の非水電解質二次電池用正極活物質粒子粉末。
  13.  請求項4又は5に記載の非水電解質二次電池用正極活物質粒子粉末の製造方法において、MnとNiが主成分である複合化合物とLi化合物を混合し、酸化性雰囲気で680℃~1050℃で焼成(1)を行い、引き続き500~700℃で焼成(2)を行うことを特徴とする請求項4又は5に記載の正極活物質粒子粉末の製造方法。
  14.  請求項1~12のいずれかに記載の正極活物質粒子粉末を使用した非水電解質二次電池。
  15.  Fd-3mの空間群を有する立方晶スピネルであるMnとNiが主成分の複合酸化物において、実質的に単相であり、平均一次粒子径が1.0~8.0μmの範囲であることを特徴とするマンガンニッケル複合酸化物粒子粉末。
  16.  請求項15記載の複合酸化物粒子粉末において、タップ密度が1.8g/ml以上であり、X線回折による最強ピークの半価幅が0.15~0.25の範囲であり、下記化学式(1)で表される組成式を有するマンガンニッケル複合酸化物粒子粉末。
    化学式(1)
     (Mn1-y-z Ni
      0.2≦y≦0.3、 0≦z≦0.10
      M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biより1種または1種以上
  17.  請求項15又は16に記載の複合酸化物粒子粉末において、ナトリウム含有量が100~2000ppmであり、硫黄含有量が10~1000ppmであって、不純物の総和が4000ppm以下であるマンガンニッケル複合酸化物粒子粉末。
  18.  マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60~100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液に対してマンガン原料とニッケル原料を添加した後、酸化反応を行う二次反応によって、四酸化三マンガン粒子を核粒子としたマンガンニッケル複合化合物を得、次いで、当該四酸化三マンガン粒子を核粒子としたマンガンニッケル複合化合物を酸化性雰囲気で900~1100℃の温度範囲で焼成する請求項15~17のいずれかに記載のマンガンニッケル複合酸化物粒子粉末の製造方法。
  19.  過剰量のアルカリ水溶液のアルカリ濃度が0.1~5.0mol/Lであるマンガンニッケル複合酸化物粒子粉末の請求項18記載の製造方法。
  20.  請求項18又は19記載のマンガンニッケル複合酸化物粒子粉末の製造法において、一次反応後の反応溶液を非酸化雰囲気に切り替えた後に、該非酸化雰囲気を保持した状態で、二次反応におけるマンガン原料及びニッケル原料水溶液を添加するマンガンニッケル複合酸化物粒子粉末の製造方法。
  21.  請求項15~17のいずれかに記載のマンガンニッケル複合酸化物粒子粉末とリチウム化合物とを混合し、酸化性雰囲気中で680~1050℃で焼成し、引き続き500~700℃で焼成する立方晶スピネル構造を有する非水電解質二次電池用正極活物質粒子粉末の製造方法。
  22.  請求項21記載の非水電解質二次電池用正極活物質粒子粉末の製造方法によって得られた非水電解質二次電池用正極活物質粒子粉末が請求項1~12のいずれかに記載の正極活物質粒子粉末である非水電解質二次電池用正極活物質粒子粉末の製造方法。
  23.  請求項21又は22記載の正極活物質粒子粉末の製造方法によって得られた正極活物質粒子粉末を用いた非水電解質二次電池。
PCT/JP2011/080075 2011-03-31 2011-12-26 マンガンニッケル複合酸化物粒子粉末およびその製造方法、非水電解質二次電池用正極活物質粒子粉末およびその製造方法、ならびに非水電解質二次電池 WO2012132155A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL11862158.0T PL2693534T3 (pl) 2011-03-31 2011-12-26 Proszek kompozytu tlenku manganu i niklu, jego sposób wytwarzania, proszek cząstek materiału aktywnego elektrody dodatniej do akumulatorów z elektrolitem niewodnym, sposób jego wytwarzania i akumulator z elektrolitem niewodnym
CN201180069617.3A CN103460455B (zh) 2011-03-31 2011-12-26 锰镍复合氧化物颗粒粉末及其制造方法、非水电解质二次电池用正极活性物质颗粒粉末及其制造方法以及非水电解质二次电池
EP11862158.0A EP2693534B1 (en) 2011-03-31 2011-12-26 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
CA2831756A CA2831756A1 (en) 2011-03-31 2011-12-26 Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process of production thereof
KR1020137024867A KR101948343B1 (ko) 2011-03-31 2011-12-26 망간 니켈 복합 산화물 입자 분말 및 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
US14/007,732 US10161057B2 (en) 2011-03-31 2011-12-26 Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
US16/057,982 US11072869B2 (en) 2011-03-31 2018-08-08 Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011080116 2011-03-31
JP2011-080118 2011-03-31
JP2011-080116 2011-03-31
JP2011080118 2011-03-31
JP2011080117 2011-03-31
JP2011-080117 2011-03-31
JP2011151283A JP5737513B2 (ja) 2011-07-07 2011-07-07 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2011-151283 2011-07-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/007,732 A-371-Of-International US10161057B2 (en) 2011-03-31 2011-12-26 Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
US16/057,982 Division US11072869B2 (en) 2011-03-31 2018-08-08 Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2012132155A1 true WO2012132155A1 (ja) 2012-10-04

Family

ID=46929952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080075 WO2012132155A1 (ja) 2011-03-31 2011-12-26 マンガンニッケル複合酸化物粒子粉末およびその製造方法、非水電解質二次電池用正極活物質粒子粉末およびその製造方法、ならびに非水電解質二次電池

Country Status (8)

Country Link
US (2) US10161057B2 (ja)
EP (1) EP2693534B1 (ja)
KR (1) KR101948343B1 (ja)
CN (1) CN103460455B (ja)
CA (1) CA2831756A1 (ja)
PL (1) PL2693534T3 (ja)
TW (1) TWI568068B (ja)
WO (1) WO2012132155A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199237A (zh) * 2013-04-11 2013-07-10 武汉市弘阳科技发展有限公司 一种提高锂离子电池正极材料可逆比容量的方法
JP2015000845A (ja) * 2013-06-18 2015-01-05 株式会社田中化学研究所 リチウム金属複合酸化物の前駆体の製造方法
WO2015004985A1 (ja) * 2013-07-11 2015-01-15 トヨタ自動車株式会社 リチウムイオン二次電池用正極活物質の製造方法
JP2015140292A (ja) * 2014-01-29 2015-08-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および、非水系電解質二次電池
CN105340121A (zh) * 2013-07-02 2016-02-17 丰田自动车株式会社 非水电解液二次电池及其制造方法
EP2993719A4 (en) * 2013-04-29 2016-10-12 Iucf Hyu ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY
WO2016175310A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物の製造方法
WO2016175312A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物
WO2016175313A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物
WO2016175311A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物
WO2024157907A1 (ja) * 2023-01-26 2024-08-02 パナソニックエナジー株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220378B (zh) 2012-04-05 2017-07-18 东曹株式会社 含有金属的四氧化三锰复合化颗粒及其制造方法
CN103151514B (zh) * 2013-03-19 2015-07-15 南通瑞翔新材料有限公司 一种锂电池正极的锰基材料的制备方法
KR101785262B1 (ko) * 2013-07-08 2017-10-16 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지
CN106795008B (zh) 2014-10-08 2018-11-27 尤米科尔公司 具有优选形态的含杂质阴极材料及自含杂质金属碳酸盐的制备方法
JP6308307B2 (ja) 2014-11-18 2018-04-11 株式会社村田製作所 リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池
JP6428192B2 (ja) * 2014-11-20 2018-11-28 戸田工業株式会社 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池
JP6609413B2 (ja) * 2015-02-19 2019-11-20 株式会社エンビジョンAescジャパン リチウムイオン二次電池
PL3341991T3 (pl) 2015-08-27 2020-11-30 Haldor Topsøe A/S Materiał aktywny litowej elektrody dodatniej o wysokiej gęstości nasypowej z usadem, półprodukt i sposób wytwarzania
JP2018527281A (ja) * 2015-09-11 2018-09-20 ユミコア リチウム金属酸化物材料、二次電池の正極での該リチウム金属酸化物材料の使用及びかかるリチウム金属酸化物材料の調製方法
CN108025927B (zh) 2015-09-17 2020-09-22 三井金属矿业株式会社 尖晶石型含锂镍锰的复合氧化物
DE102015115691B4 (de) * 2015-09-17 2020-10-01 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Lithium-Nickel-Mangan-basierte Übergangsmetalloxidpartikel, deren Herstellung sowie deren Verwendung als Elektrodenmaterial
CN105322157A (zh) * 2015-10-31 2016-02-10 芜湖迈特电子科技有限公司 充电宝用锂聚合物电池的掺锰的锂钴氧化物的制备方法
US10615414B2 (en) 2016-01-15 2020-04-07 Toda Kogyo Corp. Lithium nickelate-based positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP6391857B2 (ja) 2016-02-29 2018-09-19 三井金属鉱業株式会社 スピネル型リチウムマンガン含有複合酸化物
JP6754891B2 (ja) * 2017-03-14 2020-09-16 三井金属鉱業株式会社 スピネル型リチウムニッケルマンガン含有複合酸化物
JP7131056B2 (ja) * 2017-04-28 2022-09-06 住友金属鉱山株式会社 非水系電解液二次電池用正極活物質、非水系電解液二次電池
EP3633773A4 (en) * 2017-05-29 2020-05-27 Panasonic Intellectual Property Management Co., Ltd. ACTIVE POSITIVE ELECTRODE SUBSTANCE AND BATTERY
JP6614202B2 (ja) * 2017-06-01 2019-12-04 日亜化学工業株式会社 非水系電解質二次電池用正極活物質及びその製造方法
KR102324996B1 (ko) 2017-08-14 2021-11-12 미쓰이금속광업주식회사 전고체형 리튬 이차전지용 양극 활물질
JP7219756B2 (ja) * 2017-08-23 2023-02-08 トプソー・アクチエゼルスカベット 固体材料へのチタンの均一導入
US11623875B2 (en) * 2017-10-03 2023-04-11 The Government Of The United States, As Represented By The Secretary Of The Army Stabilized lithium, manganese AB2O4 spinel for rechargeable lithium electrochemical systems through A and B site doping, method of preparing the same, and Li electrochemical cell containing the same
KR102313091B1 (ko) 2018-01-19 2021-10-18 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020044653A1 (ja) * 2018-08-31 2020-03-05 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
CN112490436B (zh) * 2020-12-02 2023-02-03 湖北文理学院 锂离子电池正极材料镍掺杂尖晶石锰酸锂的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147867A (ja) 1995-09-13 1997-06-06 Moli Energy 1990 Ltd リチウム電池用高電圧挿入化合物
JP2000515672A (ja) 1996-07-22 2000-11-21 日本電池株式会社 リチウムバッテリ用正極
JP2001110421A (ja) 1999-10-14 2001-04-20 Hitachi Ltd リチウム二次電池用正極活物質およびリチウム二次電池
JP2001146425A (ja) * 1999-11-12 2001-05-29 Nippon Chem Ind Co Ltd リチウムマンガン複合酸化物、その製造方法及びリチウム二次電池
JP2001185145A (ja) 1999-12-27 2001-07-06 Nikko Materials Co Ltd リチウム二次電池用正極材料の製造方法
JP2002158007A (ja) 2000-11-16 2002-05-31 Tanaka Chemical Corp リチウムマンガンニッケル複合酸化物およびその製造方法
JP2003081637A (ja) 2001-09-05 2003-03-19 Japan Metals & Chem Co Ltd 二次電池用リチウムマンガン複合酸化物およびその製造方法、ならびに非水電解液二次電池
JP2004303710A (ja) * 2003-04-01 2004-10-28 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2004349109A (ja) 2003-05-22 2004-12-09 Sumitomo Metal Mining Co Ltd リチウムマンガンニッケル複合酸化物とその製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP2005108448A (ja) * 2003-09-26 2005-04-21 Nichia Chem Ind Ltd 非水電解質二次電池用正極副活物質、非水電解質二次電池用正極活物質、非水電解質二次電池および非水電解質二次電池の製造方法
JP2005322480A (ja) * 2004-05-07 2005-11-17 Nec Corp リチウム二次電池用正極活物質およびそれを使用したリチウム二次電池
JP4305629B2 (ja) 2003-03-27 2009-07-29 戸田工業株式会社 四酸化三マンガン粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法、並びに非水電解質二次電池
JP2011198759A (ja) * 2010-02-23 2011-10-06 Toda Kogyo Corp 正極活物質前駆体粒子粉末及び正極活物質粒子粉末、並びに非水電解質二次電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2240805C (en) * 1997-06-19 2005-07-26 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
US6267943B1 (en) * 1998-10-15 2001-07-31 Fmc Corporation Lithium manganese oxide spinel compound and method of preparing same
JP2002151070A (ja) * 2000-11-06 2002-05-24 Japan Storage Battery Co Ltd 非水電解質二次電池
JP3922040B2 (ja) 2001-02-16 2007-05-30 東ソー株式会社 リチウムマンガン複合酸化物とその製造方法並びにその用途
JP4813450B2 (ja) 2001-11-22 2011-11-09 日立マクセルエナジー株式会社 リチウム含有複合酸化物およびそれを用いた非水二次電池
JP4070585B2 (ja) 2001-11-22 2008-04-02 日立マクセル株式会社 リチウム含有複合酸化物およびそれを用いた非水二次電池
TWI279019B (en) * 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
JP4475941B2 (ja) * 2003-12-12 2010-06-09 日本化学工業株式会社 リチウムマンガンニッケル複合酸化物の製造方法
JP2005336004A (ja) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP4836415B2 (ja) 2004-06-18 2011-12-14 株式会社東芝 非水電解質二次電池
JP5076307B2 (ja) 2005-11-25 2012-11-21 パナソニック株式会社 リチウムイオン二次電池およびそのリチウム複合酸化物の製造方法
WO2008126370A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 非水電解質二次電池用活物質およびその製造法
JP5169850B2 (ja) 2009-01-13 2013-03-27 日本電気株式会社 非水電解液二次電池
JP5656012B2 (ja) 2009-11-27 2015-01-21 戸田工業株式会社 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2011089697A1 (ja) * 2010-01-20 2011-07-28 株式会社 東芝 非水電解質電池、これに用いる正極活物質及びその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147867A (ja) 1995-09-13 1997-06-06 Moli Energy 1990 Ltd リチウム電池用高電圧挿入化合物
JP2000515672A (ja) 1996-07-22 2000-11-21 日本電池株式会社 リチウムバッテリ用正極
JP2001110421A (ja) 1999-10-14 2001-04-20 Hitachi Ltd リチウム二次電池用正極活物質およびリチウム二次電池
JP2001146425A (ja) * 1999-11-12 2001-05-29 Nippon Chem Ind Co Ltd リチウムマンガン複合酸化物、その製造方法及びリチウム二次電池
JP2001185145A (ja) 1999-12-27 2001-07-06 Nikko Materials Co Ltd リチウム二次電池用正極材料の製造方法
JP2002158007A (ja) 2000-11-16 2002-05-31 Tanaka Chemical Corp リチウムマンガンニッケル複合酸化物およびその製造方法
JP2003081637A (ja) 2001-09-05 2003-03-19 Japan Metals & Chem Co Ltd 二次電池用リチウムマンガン複合酸化物およびその製造方法、ならびに非水電解液二次電池
JP4305629B2 (ja) 2003-03-27 2009-07-29 戸田工業株式会社 四酸化三マンガン粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法、並びに非水電解質二次電池
JP2004303710A (ja) * 2003-04-01 2004-10-28 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2004349109A (ja) 2003-05-22 2004-12-09 Sumitomo Metal Mining Co Ltd リチウムマンガンニッケル複合酸化物とその製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP2005108448A (ja) * 2003-09-26 2005-04-21 Nichia Chem Ind Ltd 非水電解質二次電池用正極副活物質、非水電解質二次電池用正極活物質、非水電解質二次電池および非水電解質二次電池の製造方法
JP2005322480A (ja) * 2004-05-07 2005-11-17 Nec Corp リチウム二次電池用正極活物質およびそれを使用したリチウム二次電池
JP2011198759A (ja) * 2010-02-23 2011-10-06 Toda Kogyo Corp 正極活物質前駆体粒子粉末及び正極活物質粒子粉末、並びに非水電解質二次電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEM. MATER., vol. 16, 2004, pages 906 - 914
J. ELECTROCHEM. SOCIETY, vol. 148, no. 7, 2001, pages A723 - A729
PRELIMINARY REPORT OF 48TH BATTERY SYMPOSIUM, 2007, pages 2A16
See also references of EP2693534A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199237A (zh) * 2013-04-11 2013-07-10 武汉市弘阳科技发展有限公司 一种提高锂离子电池正极材料可逆比容量的方法
EP2993719A4 (en) * 2013-04-29 2016-10-12 Iucf Hyu ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY
JP2015000845A (ja) * 2013-06-18 2015-01-05 株式会社田中化学研究所 リチウム金属複合酸化物の前駆体の製造方法
CN105340121A (zh) * 2013-07-02 2016-02-17 丰田自动车株式会社 非水电解液二次电池及其制造方法
WO2015004985A1 (ja) * 2013-07-11 2015-01-15 トヨタ自動車株式会社 リチウムイオン二次電池用正極活物質の製造方法
JP2015140292A (ja) * 2014-01-29 2015-08-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および、非水系電解質二次電池
WO2016175313A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物
WO2016175312A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物
WO2016175310A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物の製造方法
WO2016175311A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物
JPWO2016175310A1 (ja) * 2015-04-30 2018-02-22 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物の製造方法
JPWO2016175311A1 (ja) * 2015-04-30 2018-02-22 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物
JPWO2016175313A1 (ja) * 2015-04-30 2018-02-22 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物
JPWO2016175312A1 (ja) * 2015-04-30 2018-02-22 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物
US10276867B2 (en) 2015-04-30 2019-04-30 Mitsui Mining & Smelting Co., Ltd. 5V-class spinel-type lithium-manganese-containing composite oxide
US10446842B2 (en) 2015-04-30 2019-10-15 Mitsui Mining & Smelting Co., Ltd. 5V-class spinel-type lithium-manganese-containing composite oxide
WO2024157907A1 (ja) * 2023-01-26 2024-08-02 パナソニックエナジー株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池

Also Published As

Publication number Publication date
US20180347068A1 (en) 2018-12-06
EP2693534B1 (en) 2022-06-22
EP2693534A4 (en) 2015-01-14
CN103460455A (zh) 2013-12-18
EP2693534A1 (en) 2014-02-05
CA2831756A1 (en) 2012-10-04
PL2693534T3 (pl) 2022-10-31
KR20140008408A (ko) 2014-01-21
US11072869B2 (en) 2021-07-27
CN103460455B (zh) 2016-03-16
US10161057B2 (en) 2018-12-25
TWI568068B (zh) 2017-01-21
KR101948343B1 (ko) 2019-02-14
TW201240200A (en) 2012-10-01
US20140034872A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2012132155A1 (ja) マンガンニッケル複合酸化物粒子粉末およびその製造方法、非水電解質二次電池用正極活物質粒子粉末およびその製造方法、ならびに非水電解質二次電池
JP5716923B2 (ja) 非水電解質二次電池用活物質粉末、並びに非水電解質二次電池
JP5720899B2 (ja) マンガンニッケル複合酸化物粒子粉末及びその製造方法、非水電解質二次電池用正極活物質粒子粉末の製造方法及び非水電解質二次電池
KR101989760B1 (ko) 정극 활성 물질 전구체 입자 분말 및 정극 활성 물질 입자 분말, 및 비수전해질 이차 전지
JP5229472B2 (ja) 非水電解液二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池
JP5263761B2 (ja) 陽イオン規則構造を有する単斜晶系リチウムマンガン系複合酸化物およびその製造方法
JP5737513B2 (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2021520333A (ja) O3/p2混合相ナトリウム含有ドープ層状酸化物材料
JP5720900B2 (ja) 非水電解質二次電池用活物質粉末及び非水電解質二次電池
JPWO2005028371A1 (ja) リチウム−ニッケル−コバルト−マンガン−フッ素含有複合酸化物ならびにその製造方法およびそれを用いたリチウム二次電池
JP4578790B2 (ja) リチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法
US12051804B2 (en) Positive electrode active material particles for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery
JP5673932B2 (ja) 立方晶岩塩型構造を有するリチウムマンガン系複合酸化物およびその製造方法
JP6967215B2 (ja) リチウムマンガン系複合酸化物及びその製造方法
JP7128475B2 (ja) リチウムマンガン系複合酸化物及びその製造方法
JP6109399B1 (ja) 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池
WO2018066633A1 (ja) チタン及び/又はゲルマニウム置換リチウムマンガン系複合酸化物及びその製造方法
JP2001126731A (ja) リチウム二次電池用正極材料及びリチウム二次電池用正極、並びにリチウム二次電池
JP2020184534A (ja) リチウム二次電池用陽極活物質、その製造方法およびそれを含むリチウム二次電池
JP6395051B2 (ja) リチウム複合酸化物、リチウム複合酸化物の製造方法、リチウム二次電池用正極活物質、及び、リチウム二次電池
JP7133215B2 (ja) ニッケルマンガン系複合酸化物及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180069617.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137024867

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2831756

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011862158

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14007732

Country of ref document: US