WO2024157907A1 - 非水電解質二次電池用正極活物質および非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質および非水電解質二次電池 Download PDF

Info

Publication number
WO2024157907A1
WO2024157907A1 PCT/JP2024/001565 JP2024001565W WO2024157907A1 WO 2024157907 A1 WO2024157907 A1 WO 2024157907A1 JP 2024001565 W JP2024001565 W JP 2024001565W WO 2024157907 A1 WO2024157907 A1 WO 2024157907A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
electrolyte secondary
aqueous electrolyte
Prior art date
Application number
PCT/JP2024/001565
Other languages
English (en)
French (fr)
Inventor
一成 池内
光宏 日比野
Original Assignee
パナソニックエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックエナジー株式会社 filed Critical パナソニックエナジー株式会社
Publication of WO2024157907A1 publication Critical patent/WO2024157907A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Definitions

  • This disclosure relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the positive electrode active material.
  • the positive electrode active material has a significant effect on battery performance such as input/output characteristics, capacity, and durability, and therefore has been the subject of much research.
  • lithium transition metal composite oxides containing transition metal elements such as Ni and Mn are used as positive electrode active materials.
  • the type and amount of elements contained in the lithium transition metal composite oxide, as well as the crystal structure of the composite oxide, have a significant effect on battery performance, and even slight changes in these physical properties may make it impossible to achieve the desired performance.
  • Patent Documents 1 to 3 disclose that, in order to improve battery performance such as charge/discharge cycle characteristics, attention is focused on the lattice distortion of the crystal structure of the positive electrode active material, and the distortion is controlled within a specific range.
  • Patent Documents 1 to 3 still have a lot of room for improvement in terms of increasing capacity.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present disclosure is a positive electrode active material for a non-aqueous electrolyte secondary battery having a crystal structure belonging to space group R-3m, and is represented by a composition formula Li 1+a Ni b Mn c X d O e , in which X is at least one selected from the group consisting of transition metal elements and typical elements other than Li, Ni, and Mn, a ⁇ 1.15, 0.35 ⁇ b ⁇ 0.70, 0.30 ⁇ c ⁇ 0.65, 0 ⁇ d ⁇ 0.07, and e are values that satisfy electrical neutrality, and the value ( ⁇ ) obtained by multiplying the Ni mixing rate ⁇ determined by Rietveld analysis and the strain ⁇ determined by the Williamson-Hall method is 0.090 or less.
  • the nonaqueous electrolyte secondary battery according to the present disclosure comprises a positive electrode containing the above-mentioned positive electrode active material, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode active material disclosed herein can achieve high capacity non-aqueous electrolyte secondary batteries.
  • FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention
  • the inventors have discovered that in a positive electrode active material having a crystal structure belonging to the space group R-3m, the charge/discharge capacity of the battery is significantly increased when the value ( ⁇ ) obtained by multiplying the mixing rate ⁇ , which represents the proportion of Ni that occupies the Li site of the crystal structure, and the distortion ⁇ , which indicates the non-uniformity of the spacing of the crystal lattice planes, is 0.090 or less.
  • the inventors have discovered that in a layered rock salt structure belonging to the space group R-3m, the mixing rate ⁇ and distortion ⁇ have a significant effect on the discharge capacity, and that controlling the value of ⁇ to 0.090 or less results in a specific improvement in the discharge capacity.
  • the influence of the mixing rate ⁇ and distortion ⁇ on the discharge capacity becomes large, and the effect of controlling the value of ⁇ to 0.090 or less becomes significant.
  • the material cost of batteries it is required to reduce the Ni content of the positive electrode active material, but if the Ni content is reduced, it becomes difficult to increase the capacity of the battery.
  • the positive electrode active material according to the present disclosure is extremely useful in achieving both low cost and high capacity of batteries. Note that the value of ⁇ varies greatly depending on the synthesis conditions of the positive electrode active material, so adjusting the value of ⁇ to the desired value cannot be achieved unless the synthesis conditions are strictly controlled with attention to this value.
  • a nonaqueous electrolyte secondary battery 10 is exemplified, which is a cylindrical battery in which a wound electrode body 14 is housed in a cylindrical exterior can 16 with a bottom, but the exterior body of the battery is not limited to a cylindrical exterior can.
  • Other embodiments of the nonaqueous electrolyte secondary battery according to the present disclosure include, for example, a prismatic battery with a prismatic exterior can, a coin-shaped battery with a coin-shaped exterior can, and a pouch-type battery with an exterior body composed of a laminate sheet including a metal layer and a resin layer.
  • the electrode body is not limited to a wound type, and may be a laminated type electrode body in which multiple positive electrodes and multiple negative electrodes are alternately stacked with separators between them.
  • the nonaqueous electrolyte secondary battery 10 includes a wound electrode assembly 14, a nonaqueous electrolyte, and an outer can 16 that contains the electrode assembly 14 and the nonaqueous electrolyte.
  • the nonaqueous electrolyte secondary battery 10 is, for example, a lithium ion secondary battery.
  • the electrode assembly 14 includes a positive electrode 11, a negative electrode 12, and a separator 13, and has a wound structure in which the positive electrode 11 and the negative electrode 12 are wound in a spiral shape with the separator 13 interposed therebetween.
  • the outer can 16 is a cylindrical metal container with a bottom that is open at one axial end, and the opening of the outer can 16 is closed by a sealing body 17.
  • the sealing body 17 side of the battery is referred to as the top
  • the bottom side of the outer can 16 is referred to as the bottom.
  • the non-aqueous electrolyte has lithium ion conductivity.
  • the non-aqueous electrolyte may be a liquid electrolyte (electrolytic solution) or a solid electrolyte.
  • the liquid electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • a non-aqueous solvent for example, esters, ethers, nitriles, amides, and mixed solvents of two or more of these are used as the non-aqueous solvent.
  • the non-aqueous solvent include ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and mixed solvents of these.
  • the non-aqueous solvent may contain a halogen-substituted product (e.g., fluoroethylene carbonate, etc.) in which at least a part of the hydrogen of these solvents is replaced with a halogen atom such as fluorine.
  • a halogen-substituted product e.g., fluoroethylene carbonate, etc.
  • a lithium salt such as LiPF6 is used as the electrolyte salt.
  • the solid electrolyte for example, a solid or gel-like polymer electrolyte, an inorganic solid electrolyte, etc. can be used.
  • the inorganic solid electrolyte a material known in all-solid-state lithium ion secondary batteries, etc. (for example, an oxide-based solid electrolyte, a sulfide-based solid electrolyte, a halogen-based solid electrolyte, etc.) can be used.
  • the polymer electrolyte includes, for example, a lithium salt and a matrix polymer, or a non-aqueous solvent, a lithium salt, and a matrix polymer.
  • the matrix polymer for example, a polymer material that absorbs a non-aqueous solvent and gels is used.
  • the polymer material for example, a fluororesin, an acrylic resin, a polyether resin, etc. can be used.
  • the positive electrode 11, negative electrode 12, and separator 13 that make up the electrode body 14 are all long, strip-like bodies that are wound in a spiral shape and stacked alternately in the radial direction of the electrode body 14.
  • the negative electrode 12 is formed to be slightly larger than the positive electrode 11 in order to prevent lithium precipitation. That is, the negative electrode 12 is formed to be longer in the length direction and width direction than the positive electrode 11.
  • the separator 13 is formed to be at least slightly larger than the positive electrode 11, and for example, two separators 13 are arranged to sandwich the positive electrode 11.
  • the electrode body 14 has a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • Insulating plates 18, 19 are arranged above and below the electrode body 14.
  • the positive electrode lead 20 passes through a through hole in the insulating plate 18 and extends toward the sealing body 17, and the negative electrode lead 21 passes outside the insulating plate 19 and extends toward the bottom side of the outer can 16.
  • the positive electrode lead 20 is connected to the underside of the internal terminal plate 23 of the sealing body 17 by welding or the like, and the cap 27, which is the top plate of the sealing body 17 and is electrically connected to the internal terminal plate 23, serves as the positive electrode terminal.
  • the negative electrode lead 21 is connected to the inner bottom inner surface of the outer can 16 by welding or the like, and the outer can 16 serves as the negative electrode terminal.
  • a gasket 28 is provided between the exterior can 16 and the sealing body 17 to ensure airtightness inside the battery.
  • the exterior can 16 has a grooved portion 22 formed with a portion of the side surface that protrudes inward to support the sealing body 17.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the exterior can 16, and supports the sealing body 17 on its upper surface.
  • the sealing body 17 is fixed to the top of the exterior can 16 by the grooved portion 22 and the open end of the exterior can 16 that is crimped against the sealing body 17.
  • the sealing body 17 has a structure in which, in order from the electrode body 14 side, an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are stacked.
  • Each member constituting the sealing body 17 has, for example, a disk or ring shape, and each member except for the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at their respective centers, and the insulating member 25 is interposed between their respective peripheral edges.
  • the positive electrode 11 has a positive electrode core and a positive electrode mixture layer disposed on the positive electrode core.
  • a foil of a metal stable in the potential range of the positive electrode 11, such as aluminum, an aluminum alloy, stainless steel, or titanium, or a film having the metal disposed on the surface layer can be used.
  • the positive electrode mixture layer contains a positive electrode active material, a conductive agent, and a binder, and is preferably provided on both sides of the positive electrode core.
  • the positive electrode 11 can be produced, for example, by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, and a binder onto the positive electrode core, drying the coating, and then compressing it to form a positive electrode mixture layer on both sides of the positive electrode core.
  • Examples of the conductive agent contained in the positive electrode mixture layer include carbon black such as acetylene black and ketjen black, graphite, carbon nanotubes (CNT), carbon nanofibers, graphene, metal fibers, metal powders, conductive whiskers, etc.
  • carbon black such as acetylene black and ketjen black
  • graphite carbon nanotubes (CNT)
  • carbon nanofibers carbon nanofibers
  • graphene carbon nanofibers
  • metal fibers graphene
  • metal powders metal powders
  • conductive whiskers etc.
  • One type of conductive agent may be used alone, or multiple types may be used in combination.
  • the content of the conductive agent is, for example, 0.1% by mass or more and 5% by mass or less with respect to the mass of the positive electrode mixture layer.
  • binder contained in the positive electrode mixture layer examples include fluorine-containing resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), olefin resins such as polyethylene, polypropylene, ethylene-propylene-isoprene copolymer, and ethylene-propylene-butadiene copolymer, and acrylic resins such as polyacrylonitrile (PAN), polyimide, polyamide, and ethylene-acrylic acid copolymer. These resins may also be used in combination with carboxymethylcellulose (CMC) or a salt thereof, polyethylene oxide (PEO), and the like.
  • CMC carboxymethylcellulose
  • PEO polyethylene oxide
  • One type of binder may be used alone, or multiple types may be used in combination.
  • the content of the binder is, for example, 0.1% by mass or more and 5% by mass or less with respect to the mass of the positive electrode mixture layer.
  • the positive electrode active material has a crystal structure belonging to the space group R-3m and is a lithium transition metal composite oxide represented by the composition formula Li 1 + a Ni b Mn c X d O e .
  • X is at least one selected from the group consisting of transition metal elements and typical elements other than Li, Ni, and Mn, and a ⁇ 1.15, 0.35 ⁇ b ⁇ 0.70, 0.30 ⁇ c ⁇ 0.65, 0 ⁇ d ⁇ 0.07, and e are values that satisfy electrical neutrality.
  • the composite oxide constituting the positive electrode active material contains Li, Ni, and Mn as essential elements.
  • the composition of the positive electrode active material can be measured using an ICP emission spectrometer (for example, iCAP6300 manufactured by Thermo Fisher Scientific).
  • the positive electrode active material has a layered rock salt structure belonging to the space group R-3m, has a composition that satisfies the above composition formula, and is characterized in that the product ( ⁇ ) of the mixing ratio ⁇ , which indicates the proportion of Ni that enters the Li site of the crystal structure as determined by Rietveld analysis, and the distortion ⁇ , which indicates the non-uniformity of the spacing of the crystal lattice planes as determined by the Williamson-Hall method, is 0.090 or less. When the value of ⁇ is 0.090 or less, the charge/discharge capacity is significantly improved.
  • the molar ratio (b) of Ni is 0.35 or more and 0.70 or less (0.35 ⁇ b ⁇ 0.70).
  • the molar ratio (c) of Mn is 0.30 or more and 0.65 or less (0.30 ⁇ c ⁇ 0.65).
  • the content of Ni is preferably 35 mol% or more and 70 mol% or less with respect to the total number of moles of metal elements excluding Li, and is equal to or greater than the content of Mn.
  • the Ni molar ratio (b) is preferably 0.40 or more, more preferably 0.45 or more, and particularly preferably 0.50 or more. From the viewpoint of reducing material costs, the Ni molar ratio (b) is preferably 0.65 or less, and more preferably 0.60 or less. An example of a suitable range for the Ni molar ratio (b) is 0.45 ⁇ b ⁇ 0.65, or 0.50 ⁇ b ⁇ 0.60. In this case, it is possible to achieve both low cost and high capacity to a higher degree.
  • the molar ratio (c) of Mn is preferably 0.35 or more, and more preferably 0.40 or more.
  • the molar ratio (c) of Mn is preferably 0.60 or less.
  • An example of a suitable range for the molar ratio (c) of Mn is 0.35 ⁇ b ⁇ 0.60, or 0.40 ⁇ b ⁇ 0.60. In this case, it is possible to achieve both low cost and high capacity to a higher degree.
  • X is, for example, at least one element selected from Mg, Ca, Sr, Ba, Sn, Ti, Si, V, Cr, Fe, Cu, Zn, Bi, Sb, B, Ga, In, P, Zr, Hf, Nb, Ta, Mo, W, Co, and Al.
  • the molar ratio (d) of X is preferably 0.07 or less (0 ⁇ d ⁇ 0.07), more preferably 0.05 or less, and particularly preferably 0.03 or less.
  • the molar ratio (e) of O is a value that satisfies electrical neutrality. In other words, it is a value that satisfies the valence of O in the positive electrode active material.
  • the molar ratio (e) of O is, for example, 2.00 or more and 2.15 or less (2.00 ⁇ e ⁇ 2.15).
  • the positive electrode active material has a composition represented by the above composition formula, and is mainly composed of a complex oxide (hereinafter referred to as "Li-Ni-Mn complex oxide") in which the above value of ⁇ is 0.090 or less.
  • the main component means the component that has the highest mass ratio among the components of the positive electrode active material.
  • a complex oxide other than the Li-Ni-Mn complex oxide may be used as the positive electrode active material, but the content of the Li-Ni-Mn complex oxide is preferably 50 mass% or more, and may be substantially 100 mass%.
  • the Li-Ni-Mn composite oxide is, for example, a secondary particle formed by agglomeration of a plurality of primary particles.
  • An example of the volume-based median diameter (D50) of the Li-Ni-Mn composite oxide is 1 ⁇ m or more and 30 ⁇ m or less, or 3 ⁇ m or more and 20 ⁇ m or less.
  • the D50 of the composite oxide is a particle size at which the volume integrated value is 50% in the particle size distribution measured by the laser diffraction scattering method.
  • the BET specific surface area of the Li-Ni-Mn composite oxide is, for example, 0.1 m 2 /g or more and 10 m 2 /g or less, or 0.5 m 2 /g or more and 5 m 2 /g or less.
  • the BET specific surface area of the composite oxide is measured according to the BET method (nitrogen adsorption method) described in JIS R1626. If the D50 and the BET specific surface area are within the range, it is easy to
  • the Li-Ni-Mn composite oxide has a layered rock-salt structure belonging to the space group R-3m, and the product of the Ni mixing ratio ⁇ and the strain ⁇ ( ⁇ x ⁇ ) is 0.090 or less.
  • the Ni mixing ratio ⁇ is the ratio of the amount of Ni occupying the Li layer of the layered rock-salt structure to the total amount of Ni, and is determined by Rietveld analysis.
  • the strain ⁇ indicates the non-uniformity of the lattice spacing of the crystal, and is determined by the Williamson-Hall method.
  • the powder X-ray diffraction pattern of the Li-Ni-Mn composite oxide is obtained using a desktop X-ray diffractometer (manufactured by Rigaku Corporation, product name "MiniFlex600”), and the diffracted X-rays are detected by a high-speed one-dimensional detector (D/teX Ultra 2).
  • the measurement conditions using the above X-ray diffraction device are as follows.
  • X-ray source CuK ⁇ ray Tube voltage: 40 kV Tube current: 15mA
  • the mixing ratio ⁇ in the crystal structure of Li-Ni-Mn composite oxide is calculated by dividing the amount of Ni in the Li site refined by Rietveld analysis using Rigaku's analysis software "Smartlab Studio 2" by the total amount of Ni in the structure.
  • the Li site in the Rietveld analysis is the 3b site (0,0,0.5) in the layered rock salt structure (R-3m), and the transition metal site is the 3a site (0,0,0).
  • the distortion ⁇ in the crystal structure of Li-Ni-Mn composite oxide is calculated by the Williamson-Hall method using the 003, 101, 104, 015, and 113 diffraction lines in Smartlab Studio 2.
  • the value obtained by multiplying the mixing rate ⁇ and the strain ⁇ ( ⁇ ) may be 0.090 or less, but is preferably 0.072 or less, and more preferably 0.055 or less.
  • there is no particular lower limit to the value of ⁇ , but it is preferably 0.002 or more, and more preferably 0.005 or more.
  • An example of a suitable range for the value of ⁇ is 0.002 or more and 0.072 or less, or 0.005 or more and 0.055 or less. In this case, it is possible to achieve both low cost and high capacity to a higher degree.
  • the suitable value of ⁇ also changes slightly.
  • the value of ⁇ is, for example, 0.035 or more and 0.090 or less, or 0.040 or more and 0.055 or less.
  • the value of ⁇ is, for example, 0.002 or more and 0.040 or less, or 0.005 or more and 0.035 or less.
  • the mixing ratio ⁇ is preferably 0.05 or more and 0.20 or less.
  • the distortion ⁇ is preferably 0.02 or more and 0.50 or less, and more preferably 0.05 or more and 0.30 or less.
  • the Li-Ni-Mn composite oxide can be synthesized, for example, by mixing a composite hydroxide or composite oxide containing Ni, Mn, etc. with a lithium raw material and calcining the mixture.
  • the composite hydroxide containing Ni, Mn, etc. can be obtained by dropping an alkaline solution such as sodium hydroxide into a stirred solution of a metal salt containing Ni, Mn, etc., and adjusting the pH to the alkaline side (for example, 8.5 to 12.5) to cause precipitation (coprecipitation).
  • the composite hydroxide can be calcined to obtain a composite oxide containing Ni, Mn, etc.
  • lithium raw material examples include Li2CO3 , LiOH , Li2O2 , Li2O , LiNO3 , LiNO2 , Li2SO4 , LiOH.H2O , LiH, LiF, etc.
  • the composite hydroxide or composite oxide containing Ni, Mn, etc. and the lithium raw material are preferably mixed in such a ratio that the molar ratio of the total amount of metal elements such as Ni, Mn, etc. to Li is 1:1.01 to 1:1.12.
  • the sintering conditions are important. That is, in the synthesis process of Li-Ni-Mn composite oxide, it is necessary to sinter the mixture of the raw materials so that the value of ⁇ is 0.090 or less.
  • the mixture of raw materials is sintered in the air or in an oxygen stream using a sintering furnace.
  • the sintering temperature is preferably a high temperature of 800°C or higher when the Ni content is about 50 mol% relative to the total number of moles of metal elements in the composite oxide.
  • the required sintering temperature changes depending on the composition of the raw materials, such as the Ni content. For example, if the Ni content is high, the sintering temperature may be lowered. For this reason, the value of ⁇ cannot be adjusted to the desired value unless the conditions are strictly controlled with attention to this value.
  • the firing temperature is preferably 800°C or higher and 1100°C or lower.
  • the heating rate is, for example, 0.3°C/min or higher and 3.0°C/min or lower, or 0.5°C/min or higher and 2.0°C/min or lower.
  • the firing time may be 3 hours or higher and 10 hours or lower.
  • the firing time means the time from when the temperature of the firing furnace reaches the maximum temperature of the firing process to when the firing ends and cooling begins.
  • the fired product may be rapidly cooled in the air by being removed from the firing furnace.
  • the Li-Ni-Mn composite oxide can be obtained, for example, by rapidly cooling the fired product in the air, washing with water and drying as necessary, and pulverizing it by a known method.
  • the sintering temperature is preferably 900°C or more and 1000°C or less. In this case, for example, if the sintering temperature is 850°C, the value of ⁇ cannot be made 0.090 or less, and high capacity cannot be achieved.
  • the negative electrode 12 has a negative electrode core and a negative electrode mixture layer disposed on the negative electrode core.
  • a foil of a metal stable in the potential range of the negative electrode 12, such as copper, copper alloy, stainless steel, nickel, or nickel alloy, or a film having the metal disposed on the surface can be used.
  • the negative electrode mixture layer contains a negative electrode active material and a binder, and is preferably provided on both sides of the negative electrode core.
  • the negative electrode 12 can be produced, for example, by applying a negative electrode mixture slurry containing a negative electrode active material and a binder onto the negative electrode core, drying the coating, and then compressing it to form a negative electrode mixture layer on both sides of the negative electrode core.
  • the negative electrode mixture layer may contain a conductive agent such as CNT.
  • a carbon material that reversibly absorbs and releases lithium ions is generally used as the negative electrode active material.
  • elements that alloy with Li, such as Si and Sn, and materials containing these elements may also be used as the negative electrode active material.
  • silicon-containing materials that contain Si are preferable.
  • lithium titanate which has a higher charge/discharge potential with respect to metallic lithium than carbon materials, may also be used as the negative electrode active material.
  • One type of negative electrode active material may be used alone, or multiple types may be used in combination.
  • the carbon material functioning as the negative electrode active material is, for example, at least one selected from the group consisting of natural graphite, artificial graphite, soft carbon, and hard carbon.
  • artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB), natural graphite such as flake graphite, massive graphite, and earthy graphite, or a mixture of these.
  • silicon-containing materials functioning as the negative electrode active material include silicon alloys, silicon compounds, and composite materials containing Si.
  • a suitable silicon-containing material is a composite particle containing an ion-conducting phase and a Si phase dispersed in the ion-conducting phase.
  • the binder contained in the negative electrode mixture layer may be fluororesin, olefin resin, PAN, polyimide, polyamide, acrylic resin, etc., but polyvinyl acetate, styrene-butadiene rubber (SBR), etc. may also be used. Of these, it is preferable to use SBR.
  • SBR styrene-butadiene rubber
  • One type of binder may be used alone, or multiple types may be used in combination.
  • the negative electrode mixture layer contains CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA), etc. These function as thickeners in the negative electrode mixture slurry.
  • the content of the binder is, for example, 0.1% by mass or more and 5% by mass or less with respect to the mass of the negative electrode mixture layer.
  • a porous sheet having ion permeability and insulating properties is used for the separator 13.
  • the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • the material of the separator 13 is preferably a polyolefin such as polyethylene or polypropylene, or cellulose.
  • the separator 13 may have a single layer structure or a multi-layer structure.
  • a highly heat-resistant resin layer such as an aramid resin may be formed on the surface of the separator 13.
  • a filler layer containing an inorganic filler may be formed at the interface between the separator 13 and at least one of the positive electrode 11 and the negative electrode 12.
  • inorganic fillers include oxides and phosphate compounds containing metal elements such as Ti, Al, Si, and Mg.
  • the filler layer can be formed by applying a slurry containing the filler to the surface of the positive electrode 11, the negative electrode 12, or the separator 13.
  • the Li-Ni-Mn composite oxide was used as the positive electrode active material.
  • the positive electrode active material, acetylene black, and polyvinylidene fluoride were mixed in a solid content mass ratio of 92:5:3, and a positive electrode mixture slurry was prepared using N-methyl-2-pyrrolidone (NMP) as a dispersion medium.
  • NMP N-methyl-2-pyrrolidone
  • a non-aqueous electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent prepared by mixing fluoroethylene carbonate (FEC) and methyl propionate (FMP) in a volume ratio of 1:3 to a concentration of 1 mol/L.
  • LiPF 6 lithium hexafluorophosphate
  • FEC fluoroethylene carbonate
  • FMP methyl propionate
  • test cell A lithium metal foil was used as the negative electrode, and the positive and negative electrodes were arranged to face each other with a separator interposed therebetween to form an electrode assembly.
  • This electrode assembly and the nonaqueous electrolyte were placed in a coin-shaped outer can, and the opening of the outer can was sealed with a gasket and a sealer to prepare a test cell (nonaqueous electrolyte secondary battery).
  • Example 3 A positive electrode active material and a test cell were prepared in the same manner as in Example 2, except that in the synthesis step of the Li-Ni-Mn composite oxide, the baking temperature was changed to 1000° C. and the baking time was changed to 10 hours.
  • the resulting mixture was heated at a temperature increase rate of 1
  • Example 1 A positive electrode active material and a test cell were prepared in the same manner as in Example 1, except that in the synthesis step of the Li-Ni-Mn composite oxide, the baking temperature was changed to 850° C. and the baking time was changed to 5 hours.
  • Example 2 A positive electrode active material and a test cell were prepared in the same manner as in Example 2, except that in the synthesis step of the Li-Ni-Mn composite oxide, the baking temperature was changed to 850° C. and the baking time was changed to 10 hours.
  • Example 3 A positive electrode active material and a test cell were prepared in the same manner as in Example 2, except that in the synthesis step of the Li-Ni-Mn composite oxide, the baking temperature was changed to 850° C. and the baking time was changed to 3 hours.
  • Ni mixing rate ⁇ and distortion ⁇ were determined for each Li-Ni-Mn composite oxide in the examples and comparative examples using the above method, and these values and the value of ⁇ are shown in Table 1.
  • test cells of the examples have a higher capacity than the test cells of the comparative examples. That is, in the layered rock salt structure of Li-Ni-Mn composite oxide, when the value obtained by multiplying the mixing rate ⁇ and the strain ⁇ ( ⁇ ) is 0.090 or less, the battery capacity can be greatly improved. When the value of ⁇ exceeds 0.090, as in the case of the positive electrode active material of the comparative example, it is not possible to achieve a high capacity like that achieved when the positive electrode active material of the examples is used.
  • the value of ⁇ of Li-Ni-Mn composite oxide varies greatly depending on the synthesis conditions of the composite oxide.
  • the value of ⁇ varies greatly (Example 2: 0.0872, Comparative Example 3: 0.1100).
  • the discharge capacity also differs greatly (Example 2: 174.0 mAh/g, Comparative Example 3: 153.9 mAh/g).
  • the sintering temperature is increased to 1000°C and the sintering time is extended, the value of ⁇ becomes 0.0423 and the discharge capacity becomes 189.9 mAh/g (see Example 3).
  • Configuration 1 A positive electrode active material for a non-aqueous electrolyte secondary battery having a crystal structure belonging to space group R-3m, the positive electrode active material being represented by a composition formula Li1 + aNibMncXdOe , in which X is at least one selected from the group consisting of transition metal elements and typical elements other than Li, Ni, and Mn, a ⁇ 1.15, 0.35 ⁇ b ⁇ 0.70, 0.30 ⁇ c ⁇ 0.65, 0 ⁇ d ⁇ 0.07, and e are values that satisfy electrical neutrality, and a value ( ⁇ ) obtained by multiplying a Ni mixing rate ⁇ determined by Rietveld analysis by a strain ⁇ determined by the Williamson-Hall method is 0.090 or less.
  • Configuration 2 The positive electrode active material for a nonaqueous electrolyte secondary battery according to configuration 1, wherein a value ( ⁇ ) obtained by multiplying the mixing rate ⁇ and the strain ⁇ is 0.002 or more and 0.072 or less.
  • Configuration 3 The positive electrode active material for a non-aqueous electrolyte secondary battery according to configuration 1 or 2, wherein the mixing ratio ⁇ is 0.05 or more and 0.20 or less.
  • Configuration 4 A positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of configurations 1 to 3, wherein in the composition formula Li 1+a Ni b Mn c X d O e , the molar ratio (b) of Ni is 0.50 ⁇ b ⁇ 0.60.
  • Configuration 5 A positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of Configurations 1 to 4 , wherein in the composition formula Li1 + aNibMncXdOe , X is at least one selected from Mg, Ca, Sr, Ba, Sn, Ti, Si, V, Cr, Fe, Cu, Zn, Bi, Sb, B, Ga, In, P, Zr, Hf, Nb, Ta, Mo, W, Co, and Al.
  • Configuration 6 The positive electrode active material for a non-aqueous electrolyte secondary battery according to Configuration 5, wherein X is at least one selected from Al and Co in the composition formula Li1 + aNibMncXdOe .
  • Configuration 7 A non-aqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material according to any one of configurations 1 to 6, a negative electrode, and a non-aqueous electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

正極活物質は、空間群R-3mに属する結晶構造を有し、組成式Li1+aNibMncXdOeで表される複合酸化物であって、式中、XはLi、Ni、Mn以外の遷移金属元素および典型元素からなる群より選択される少なくとも1種であり、a≦1.15、0.35≦b≦0.70、0.30≦c≦0.65、0≦d≦0.07、eは電気的中性を満足する値である。正極活物質は、Rietveld解析により求められるNiのミキシング率αと、Williamson-Hall法により求められる歪βとを掛け合わせた値(α×β)が0.090以下である。

Description

非水電解質二次電池用正極活物質および非水電解質二次電池
 本開示は、非水電解質二次電池用正極活物質、および当該正極活物質を用いた非水電解質二次電池に関する。
 リチウムイオン二次電池等の非水電解質二次電池において、正極活物質は入出力特性、容量、耐久性等の電池性能に大きく影響することから、正極活物質について多くの検討が行われてきた。正極活物質には、一般的に、Ni、Mn等の遷移金属元素を含有するリチウム遷移金属複合酸化物が用いられる。リチウム遷移金属複合酸化物に含有される元素の種類および添加量、また複合酸化物の結晶構造などは、電池性能に大きく影響し、これらの物性が僅かに変化するだけで目的とする性能を実現できないことがある。
 例えば、特許文献1~3には、充放電サイクル特性等の電池性能の向上を目的として、正極活物質の結晶構造の格子歪に着目し、当該歪を特定の範囲に制御することが開示されている。
特開2004-253169号公報 特開2013-091581号公報 特開2016-188168号公報
 近年、リチウムイオン二次電池等の非水電解質二次電池は、車両駆動用電源として使用されており、さらなる高容量化が求められている。特許文献1~3の正極活物質は、高容量化の観点から未だ改良の余地が大きい。
 本開示に係る非水電解質二次電池用正極活物質は、空間群R-3mに属する結晶構造を有する非水電解質二次電池用正極活物質であって、組成式Li1+aNiMnで表され、式中、XはLi、Ni、Mn以外の遷移金属元素および典型元素からなる群より選択される少なくとも1種であり、a≦1.15、0.35≦b≦0.70、0.30≦c≦0.65、0≦d≦0.07、eは電気的中性を満足する値であり、Rietveld解析により求められるNiのミキシング率αと、Williamson-Hall法により求められる歪βとを掛け合わせた値(α×β)が0.090以下であることを特徴とする。
 本開示に係る非水電解質二次電池は、上記の正極活物質を含む正極と、負極と、非水電解質とを備える。
 本開示に係る正極活物質によれば、非水電解質二次電池の高容量化を実現できる。
実施形態の一例である非水電解質二次電池の縦方向断面図である。
 本発明者らは、非水電解質二次電池の高容量化に向けて鋭意検討した結果、空間群R-3mに属する結晶構造を有する正極活物質において、結晶構造のLiサイトに入るNiの割合を表すミキシング率αと、結晶格子面の間隔の不均一さを示す歪βとを掛け合わせた値(α×β)が0.090以下である場合に、電池の充放電容量が大幅に増加することを見出した。本発明者らは、空間群R-3mに属する層状岩塩構造において、ミキシング率αと歪βが放電容量に大きく影響し、α×βの値を0.090以下に制御することで特異的に放電容量が向上することを突き止めた。
 特に、Niの含有率がLiを除く金属元素の総モル数の70モル%以下である場合に、放電容量に対するミキシング率αと歪βの影響が大きくなり、α×βの値を0.090以下に制御することによる効果が顕著になる。電池の材料コスト削減等の観点から、正極活物質のNi含有率を低くすることが求められているが、Ni含有率を低くすると、電池の高容量化が難しくなる。本開示に係る正極活物質は、電池の低コスト化と高容量化の両立において極めて有用である。なお、α×βの値は正極活物質の合成条件によって大きく変化するため、α×βの値を目的とする値に調整することは、この値に着目して合成条件を厳格に制御しなければ実現できない。
 以下、図面を参照しながら、本開示に係る非水電解質二次電池用正極活物質、および当該正極活物質を用いた非水電解質二次電池の実施形態の一例について詳細に説明する。なお、以下で説明する複数の実施形態、変形例の各構成要素を選択的に組み合わせてなる構成は本開示の範囲に含まれている。
 以下で説明する実施形態では、巻回型の電極体14が有底円筒形状の外装缶16に収容された円筒形電池である非水電解質二次電池10を例示するが、電池の外装体は円筒形の外装缶に限定されない。本開示に係る非水電解質二次電池の他の実施形態としては、例えば、角形の外装缶を備えた角形電池、コイン形の外装缶を備えたコイン形電池、金属層および樹脂層を含むラミネートシートで構成された外装体を備えたパウチ型電池が挙げられる。また、電極体は巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の断面図である。図1に示すように、非水電解質二次電池10は、巻回型の電極体14と、非水電解質と、電極体14および非水電解質を収容する外装缶16とを備える。非水電解質二次電池10は、例えば、リチウムイオン二次電池である。電極体14は、正極11、負極12、およびセパレータ13を有し、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装缶16は、軸方向一端側が開口した有底円筒形状の金属製容器であって、外装缶16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装缶16の底部側を下とする。
 非水電解質は、リチウムイオン伝導性を有する。非水電解質は、液状の電解質(電解液)であってもよく、固体電解質であってもよい。
 液状の電解質(電解液)は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えば、エステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等が用いられる。非水溶媒の一例としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびこれらの混合溶媒等が挙げられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体(例えば、フルオロエチレンカーボネート等)を含有していてもよい。電解質塩には、例えば、LiPF等のリチウム塩が使用される。
 固体電解質としては、例えば、固体状もしくはゲル状のポリマー電解質、無機固体電解質等を用いることができる。無機固体電解質としては、全固体リチウムイオン二次電池等で公知の材料(例えば、酸化物系固体電解質、硫化物系固体電解質、ハロゲン系固体電解質等)を用いることができる。ポリマー電解質は、例えば、リチウム塩とマトリックスポリマー、あるいは非水溶媒とリチウム塩とマトリックスポリマーとを含む。マトリックスポリマーとしては、例えば、非水溶媒を吸収してゲル化するポリマー材料が使用される。ポリマー材料としては、フッ素樹脂、アクリル樹脂、ポリエーテル樹脂等が挙げられる。
 電極体14を構成する正極11、負極12、およびセパレータ13は、いずれも帯状の長尺体であって、渦巻状に巻回されることで電極体14の径方向に交互に積層される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11よりも長さ方向および幅方向に長く形成される。セパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば、正極11を挟むように2枚配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを有する。
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性が確保される。外装缶16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対して加締められた外装缶16の開口端部とにより、外装缶16の上部に固定される。
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、およびキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、電極体14を構成する正極11、負極12、およびセパレータ13について、特に正極11について詳説する。
 [正極]
 正極11は、正極芯体と、正極芯体上に配置された正極合剤層とを有する。正極芯体には、アルミニウム、アルミニウム合金、ステンレス鋼、チタンなど正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、正極活物質、導電剤、および結着剤を含み、正極芯体の両面に設けられることが好ましい。正極11は、例えば、正極芯体上に、正極活物質、導電剤、および結着剤を含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合剤層を正極芯体の両面に形成することにより作製できる。
 正極合剤層に含まれる導電剤としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、カーボンナノチューブ(CNT)、カーボンナノファイバー、グラフェン、金属繊維、金属粉末、導電性ウィスカーなどが例示できる。導電剤は、1種類を単独で用いてもよいし、複数種を併用してもよい。導電剤の含有率は、正極合剤層の質量に対して、例えば、0.1質量%以上5質量%以下である。
 正極合剤層に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の含フッ素樹脂、ポリエチレン、ポリプロピレン、エチレン-プロピレン-イソプレン共重合体、エチレン-プロピレン-ブタジエン共重合体等のオレフィン系樹脂、ポリアクリロニトリル(PAN)、ポリイミド、ポリアミド、エチレン-アクリル酸共重合体等のアクリル樹脂などが例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。結着剤は、1種類を単独で用いてもよいし、複数種を併用してもよい。結着剤の含有率は、正極合剤層の質量に対して、例えば、0.1質量%以上5質量%以下である。
 正極活物質は、空間群R-3mに属する結晶構造を有し、組成式Li1+aNiMnで表されるリチウム遷移金属複合酸化物である。当該組成式中、XはLi、Ni、Mn以外の遷移金属元素および典型元素からなる群より選択される少なくとも1種であり、a≦1.15、0.35≦b≦0.70、0.30≦c≦0.65、0≦d≦0.07、eは電気的中性を満足する値である。正極活物質を構成する複合酸化物は、Li、Ni、Mnを必須元素として含有する。なお、正極活物質の組成は、ICP発光分光分析装置(例えば、Thermo Fisher Scientific製のiCAP6300)を用いて測定できる。
 正極活物質は、空間群R-3mに属する層状岩塩構造を有し、かつ上記組成式を満たす組成を有すると共に、Rietveld解析により求められる、結晶構造のLiサイトに入るNiの割合を表すミキシング率αと、Williamson-Hall法により求められる、結晶格子面の間隔の不均一さを示す歪βとを掛け合わせた値(α×β)が0.090以下であることを特徴とする。α×βの値が0.090以下である場合に、充放電容量が特異的に向上する。
 組成式Li1+aNiMnにおいて、Niのモル比(b)は、0.35以上0.70以下(0.35≦b≦0.70)である。また、Mnのモル比(c)は、0.30以上0.65以下(0.30≦c≦0.65)である。この場合、電池の低コスト化と高容量化を両立でき、α×βの値を0.090以下に制御することによる放電容量の改善効果が得られる。Niの含有率は、Liを除く金属元素の総モル数に対して35モル%以上70モル%以下であり、Mnの含有率以上であることが好ましい。
 Niのモル比(b)は、さらなる高容量化等の観点から、0.40以上が好ましく、0.45以上がより好ましく、0.50以上が特に好ましい。また、Niのモル比(b)は、材料コスト削減等の観点から、0.65以下が好ましく、0.60以下がより好ましい。Niのモル比(b)の好適な範囲の一例は、0.45≦b≦0.65、又は0.50≦b≦0.60である。この場合、低コスト化と高容量化をより高度に両立できる。
 Mnのモル比(c)は、0.35以上が好ましく、0.40以上がより好ましい。また、Mnのモル比(c)は、0.60以下が好ましい。Mnのモル比(c)の好適な範囲の一例は、0.35≦b≦0.60、又は0.40≦b≦0.60である。この場合、低コスト化と高容量化をより高度に両立できる。
 組成式Li1+aNiMnにおいて、Xは、例えば、Mg、Ca、Sr、Ba、Sn、Ti、Si、V、Cr、Fe、Cu、Zn、Bi、Sb、B、Ga、In、P、Zr、Hf、Nb、Ta、Mo、W、Co、およびAlから選択される少なくとも1種類の元素である。Xを少量添加した場合、充放電容量の改善効果がより顕著になる。中でも、AlおよびCoから選択される少なくとも1種が好ましい。Xのモル比(d)は、0.07以下(0≦d≦0.07)が好ましく、0.05以下がより好ましく、0.03以下が特に好ましい。
 組成式Li1+aNiMnにおいて、Oのモル比(e)は、電気的中性を満足する値である。換言すると、正極活物質中のOの原子価を満足する値である。Oのモル比(e)は、例えば、2.00以上2.15以下(2.00≦e≦2.15)である。
 正極活物質は、上記組成式で表される組成を有し、かつ上記α×βの値が0.090以下である複合酸化物(以下、「Li-Ni-Mn複合酸化物」とする)を主成分とする。ここで、主成分とは、正極活物質の構成成分のうち最も質量比率が高い成分を意味する。正極11の合剤層には、正極活物質として、Li-Ni-Mn複合酸化物以外の複合酸化物が併用されてもよいが、Li-Ni-Mn複合酸化物の含有量は50質量%以上であることが好ましく、実質的に100質量%であってもよい。
 Li-Ni-Mn複合酸化物は、例えば、複数の一次粒子が凝集してなる二次粒子である。Li-Ni-Mn複合酸化物の体積基準のメジアン径(D50)の一例は、1μm以上30μm以下、又は3μm以上20μm以下である。複合酸化物のD50は、レーザー回折散乱法で測定される粒度分布において体積積算値が50%となる粒径である。Li-Ni-Mn複合酸化物のBET比表面積は、例えば、0.1m/g以上10m/g以下、又は0.5m/g以上5m/g以下である。複合酸化物のBET比表面積は、JIS R1626記載のBET法(窒素吸着法)に従って測定される。D50およびBET比表面積が当該範囲内であれば、高容量化が容易になる。
 Li-Ni-Mn複合酸化物は、上記の通り、空間群R-3mに属する層状岩塩構造を有し、Niのミキシング率αと、歪βとを掛け合わせた値(α×β)が0.090以下である。Niのミキシング率αは、全Ni量に対する、層状岩塩構造のLi層を占めるNi量の比率であって、Rietveld解析により求められる。歪βは、結晶の格子面間隔の不均一さを示し、Williamson-Hall法により求められる。
 Li-Ni-Mn複合酸化物の粉末X線回折パターンは、デスクトップX線回折装置(株式会社リガク製、商品名「MiniFlex600」)を用いて得られる。回折X線は、高速1次元検出器(D/teX Ultra 2)にて検出される。
 上記X線回折装置による測定条件は、下記の通りである。
  X線源:CuKα線
  管電圧:40kV
  管電流:15mA
  発散スリット(DS): 1/4°
  散乱スリット(SS):13mm(開放)
  受光スリット(RS):8mm
  スキャン軸:2θ/θ
  スキャン方法:連続方式
  2θスキャン範囲:10-80°
  スキャン速度:10°/min
  ステップ幅:0.02°
 Li-Ni-Mn複合酸化物の結晶構造におけるミキシング率αは、リガク製の解析ソフトウェア「Smartlab Studio 2」を用いたリートベルト解析により精密化したLiサイト中のNi量を構造中の全Ni量で除して算出する。本明細書において、リートベルト解析におけるLiサイトは、層状岩塩構造(R-3m)における3bサイト(0,0,0.5)とし、遷移金属サイトは3aサイト(0,0,0)とする。また、Li-Ni-Mn複合酸化物の結晶構造の歪みβは、Smartlab Studio 2において、003,101,104,015,113回折線を用い、Williamson-Hall法により算出する。
 Li-Ni-Mn複合酸化物において、ミキシング率αと歪βとを掛け合わせた値(α×β)は、0.090以下であればよいが、好ましくは0.072以下、より好ましくは0.055以下である。α×βの値の下限は、特に限定されないが、好ましくは0.002以上、より好ましくは0.005以上である。α×βの値の好適な範囲の一例は、0.002以上0.072以下、又は0.005以上0.055以下である。この場合、低コスト化と高容量化をより高度に両立できる。
 Li-Ni-Mn複合酸化物におけるNi含有率が変化すると、好適なα×βの値も多少変化する。組成式Li1+aNiMnにおいて、Niのモル比(b)が0.35以上0.55以下の場合、α×βの値は、例えば、0.035以上0.090以下、又は0.040以上0.055以下である。Niのモル比(b)が0.55超過0.70以下の場合、α×βの値は、例えば、0.002以上0.040以下、又は0.005以上0.035以下である。
 ミキシング率αは、0.05以上0.20以下が好ましい。歪βは、0.02以上0.50以下が好ましく、0.05以上0.30以下がより好ましい。α×βの値が上記範囲内であり、かつミキシング率αおよび歪βの各々の値が当該範囲内である場合、充放電容量の改善効果がより顕著になる。
 Li-Ni-Mn複合酸化物は、例えば、Ni、Mn等を含有する複合水酸化物又は複合酸化物と、リチウム原料とを混合して焼成することにより合成できる。Ni、Mn等を含有する複合水酸化物は、Ni、Mn等を含有する金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば、8.5以上12.5以下)に調整することで析出(共沈)させて得られる。なお、当該複合水酸化物を焼成することにより、Ni、Mn等を含有する複合酸化物が得られる。
 リチウム原料の一例としては、LiCO、LiOH、Li、LiO、LiNO、LiNO、LiSO、LiOH・HO、LiH、LiF等が挙げられる。Ni、Mn等を含有する複合水酸化物又は複合酸化物と、リチウム原料とは、例えば、Ni、Mn等の金属元素の総量と、Liとのモル比が、1:1.01~1:1.12となる比率で混合されることが好ましい。
 上記α×βの値の制御においては、例えば、焼成条件が重要である。即ち、Li-Ni-Mn複合酸化物の合成工程では、α×βの値が0.090以下となるように、上記原料の混合物を焼成する必要がある。原料の混合物は、焼成炉を用いて大気中又は酸素気流中で焼成される。焼成温度は、複合酸化物中の金属元素の総モル数に対してNiの含有率が50モル%程度である場合、800℃以上の高温であることが好ましい。但し、Niの含有率など、原料の組成によって必要な焼成温度は変化する。例えば、Niの含有率が高くなると、焼成温度を下げてもよい。このため、α×βの値を目的の値に調整することは、この値に着目して条件を厳格に制御しなければ実現できない。
 焼成温度は、Niの含有率が50モル%程度である場合、800℃以上1100℃以下が好ましい。また、昇温速度は、例えば、0.3℃/分以上3.0℃/分以下、又は0.5℃/分以上2.0℃/分以下である。焼成時間は、3時間以上10時間以下であってもよい。ここで、焼成時間とは、焼成炉の温度が焼成工程の最高温度に達してから、焼成が終了して冷却を開始するまでの時間を意味する。焼成物は、焼成炉から取り出されることにより、大気中で急冷されてもよい。Li-Ni-Mn複合酸化物は、例えば、焼成物を大気中で急冷後、必要に応じて水洗・乾燥し、公知の方法で粉砕することにより得られる。
 Ni、Mn等を含有する複合水酸化物又は複合酸化物におけるNiの含有率が35モル%以上55モル%以下である場合、焼成温度は、900℃以上1000℃以下が好ましい。この場合、例えば、焼成温度が850℃であると、α×βの値を0.090以下とすることができず、高容量化を図ることができない。
 [負極]
 負極12は、負極芯体と、負極芯体上に配置された負極合剤層とを有する。負極芯体には、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金などの負極12の電位範囲で安定な金属の箔、当該金属を表面に配置したフィルム等を用いることができる。負極合剤層は、負極活物質および結着剤を含み、負極芯体の両面に設けられることが好ましい。負極12は、例えば、負極芯体上に、負極活物質および結着剤を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合剤層を負極芯体の両面に形成することにより作製できる。なお、負極合剤層にはCNT等の導電剤が含まれていてもよい。
 負極活物質には、一般的に、リチウムイオンを可逆的に吸蔵、放出する炭素材料が用いられる。また、負極活物質には、Si、Sn等のLiと合金化する元素、当該元素を含有する材料などを用いてもよい。中でも、Siを含有するケイ素含有材料が好ましい。また、負極活物質として、金属リチウムに対する充放電の電位が炭素材料等より高いチタン酸リチウムなどを用いることもできる。負極活物質は、1種類を単独で用いてもよいし、複数種を併用してもよい。
 負極活物質として機能する炭素材料は、例えば、天然黒鉛、人造黒鉛、ソフトカーボン、およびハードカーボンからなる群より選択される少なくとも1種である。中でも、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、又はこれらの混合物を用いることが好ましい。負極活物質として機能するケイ素含有材料は、例えば、ケイ素合金、ケイ素化合物、およびSiを含有する複合材料が挙げられる。好適なケイ素含有材料は、イオン伝導相と、イオン伝導相中に分散したSi相とを含む複合粒子である。
 負極合剤層に含まれる結着剤には、正極11の場合と同様に、フッ素樹脂、オレフィン系樹脂、PAN、ポリイミド、ポリアミド、アクリル樹脂等を用いることもできるが、ポリ酢酸ビニル、スチレン-ブタジエンゴム(SBR)等を用いてもよい。中でも、SBRを用いることが好ましい。結着剤は、1種類を単独で用いてもよいし、複数種を併用してもよい。また、負極合剤層は、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などを含むことが好ましい。これらは、負極合剤スラリー中において増粘剤として機能する。結着剤の含有率は、負極合剤層の質量に対して、例えば、0.1質量%以上5質量%以下である。
 [セパレータ]
 セパレータ13には、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、複層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層が形成されていてもよい。
 セパレータ13と正極11および負極12の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されていてもよい。無機物のフィラーとしては、例えばTi、Al、Si、Mg等の金属元素を含有する酸化物、リン酸化合物などが挙げられる。フィラー層は、当該フィラーを含有するスラリーを正極11、負極12、又はセパレータ13の表面に塗布して形成することができる。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極活物質の作製]
 Ni、Mnを1:1のモル比で含有する水酸化物と、水酸化リチウムとを、Ni:Mn:Li=0.5:0.5:1.05のモル比で混合し、得られた混合物を昇温速度1℃/分で加熱し、950℃で10時間、空気中で焼成した。続いて、焼成物を空気中で急冷し、Li-Ni-Mn複合酸化物を得た。得られたLi-Ni-Mn複合酸化物について、ICP発光分光分析装置(Thermo Fisher Scientific製のiCAP6300)を用いて組成分析を行った。
 [正極の作製]
 正極活物質として、上記Li-Ni-Mn複合酸化物を用いた。正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンとを、92:5:3の固形分質量比で混合し、分散媒としてN-メチル-2-ピロリドン(NMP)を用いて、正極合剤スラリーを調製した。この正極スラリーをアルミニウム箔からなる正極芯体上に塗布し、塗膜を乾燥した後、圧延ローラにより塗膜を圧延して、正極芯体上に正極合剤層が形成された正極を得た。
 [非水電解液の調製]
 フルオロエチレンカーボネート(FEC)と、プロピオン酸メチル(FMP)とを、1:3の体積比で混合した混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度になるように溶解して、非水電解液を調製した。
 [試験セルの作製]
 負極としてリチウム金属箔を用い、セパレータを介して上記正極と負極を互いに対向するように配置して電極体とした。この電極体と上記非水電解液をコイン形の外装缶に収容し、ガスケットおよび封口体により外装缶の開口部を封口して、試験セル(非水電解質二次電池)を作製した。
 <実施例2>
 Li-Ni-Mn複合酸化物の合成工程において、Ni、Mnを1:1のモル比で含有する水酸化物と、水酸化リチウムとを、Ni:Mn:Li=0.5:0.5:1.11のモル比で混合し、得られた混合物を昇温速度1℃/分で加熱し、900℃で3時間、空気中で焼成したこと以外は、実施例1と同様にして正極活物質および試験セルを作製した。
 <実施例3>
 Li-Ni-Mn複合酸化物の合成工程において、焼成温度を1000℃に、焼成時間を10時間に変更したこと以外は、実施例2と同様にして正極活物質および試験セルを作製した。
 <実施例4>
 Li-Ni-Mn複合酸化物の合成工程において、Ni、Mnを6:4のモル比で含有する水酸化物と、水酸化リチウムとを、Ni:Mn:Li=0.6:0.4:1.00のモル比で混合し、得られた混合物を昇温速度1℃/分で加熱し、900℃で10時間、空気中で焼成したこと、および焼成物を十分な量の水で洗浄した後、真空中、180℃で2時間加熱処理したこと以外は、実施例1と同様にして正極活物質および試験セルを作製した。
 <実施例5>
 Li-Ni-Mn複合酸化物の合成工程において、Ni、Mnを7:3のモル比で含有する水酸化物と、水酸化リチウムとを、Ni:Mn:Li=0.7:0.3:1.05のモル比で混合し、得られた混合物を昇温速度1℃/分で加熱し、800℃で3時間、空気中で焼成したこと、および焼成物を十分な量の水で洗浄した後、真空中、180℃で2時間加熱処理したこと以外は、実施例1と同様にして正極活物質および試験セルを作製した。
 <実施例6>
 Li-Ni-Mn複合酸化物の合成工程において、Ni、Mnを7:3のモル比で含有する水酸化物と、水酸化リチウムとを、Ni:Mn:Li=0.7:0.3:1.09のモル比で混合し、得られた混合物を昇温速度1℃/分で加熱し、900℃で3時間、空気中で焼成したこと、および焼成物を十分な量の水で洗浄した後、真空中、180℃で2時間加熱処理したこと以外は、実施例1と同様にして正極活物質および試験セルを作製した。
 <実施例7>
 Li-Ni-Mn複合酸化物の合成工程において、Ni、Mn、Coを60:35:5のモル比で含有する水酸化物と、水酸化リチウムとを、Ni:Mn:Co:Li=0.60:0.35:0.05:1.05のモル比で混合し、得られた混合物を昇温速度1℃/分で加熱し、850℃で3時間、空気中で焼成したこと、および焼成物を十分な量の水で洗浄した後、真空中、180℃で2時間加熱処理したこと以外は、実施例1と同様にして正極活物質および試験セルを作製した。
 <比較例1>
 Li-Ni-Mn複合酸化物の合成工程において、焼成温度を850℃に、焼成時間を5時間に変更したこと以外は、実施例1と同様にして正極活物質および試験セルを作製した。
 <比較例2>
 Li-Ni-Mn複合酸化物の合成工程において、焼成温度を850℃に、焼成時間を10時間に変更したこと以外は、実施例2と同様にして正極活物質および試験セルを作製した。
 <比較例3>
 Li-Ni-Mn複合酸化物の合成工程において、焼成温度を850℃に、焼成時間を3時間に変更したこと以外は、実施例2と同様にして正極活物質および試験セルを作製した。
 実施例および比較例の各Li-Ni-Mn複合酸化物について、上記の方法により、Niのミキシング率αおよび歪βを求め、その値およびα×βの値を表1に示す。
 [放電容量の評価]
 実施例および比較例の各試験セルを、25℃の条件下で、0.2Cの定電流で電池電圧が4.5Vになるまで定電流充電した後、4.65Vの電圧で電流値が0.02Cになるまで定電圧充電した。20分休止後、0.2Cの定電流で電池電圧が2.5Vになるまで定電流放電し、放電容量を求めた。放電容量の測定結果は、正極活物質の組成、ミキシング率α、歪βと共に、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の試験セルはいずれも、比較例の試験セルと比べて高容量である。即ち、Li-Ni-Mn複合酸化物の層状岩塩構造において、ミキシング率αと歪βとを掛け合わせた値(α×β)を0.090以下とした場合に、電池容量を大きく向上させることができる。比較例の正極活物質のようにα×βの値が0.090を超える場合、実施例の正極活物質を用いた場合のような高容量化を実現できない。
 また、Li-Ni-Mn複合酸化物のα×βの値は、当該複合酸化物の合成条件によって大きく変化する。例えば、実施例2と比較例3から理解されるように、同一組成のLi-Ni-Mn複合酸化物において、焼成温度が50℃変化すると、α×βの値が大きく変動する(実施例2:0.0872、比較例3:0.1100)。結果として、放電容量も大きく異なる(実施例2:174.0mAh/g、比較例3:153.9mAh/g)。さらに、焼成温度を1000℃まで上げて焼成時間を延ばすと、α×βの値は0.0423となり、放電容量は189.9mAh/gとなる(実施例3参照)。
 本開示は、以下の実施形態によりさらに説明される。
 構成1:空間群R-3mに属する結晶構造を有する非水電解質二次電池用正極活物質であって、組成式Li1+aNiMnで表され、式中、XはLi、Ni、Mn以外の遷移金属元素および典型元素からなる群より選択される少なくとも1種であり、a≦1.15、0.35≦b≦0.70、0.30≦c≦0.65、0≦d≦0.07、eは電気的中性を満足する値であり、Rietveld解析により求められるNiのミキシング率αと、Williamson-Hall法により求められる歪βとを掛け合わせた値(α×β)が0.090以下である、非水電解質二次電池用正極活物質。
 構成2:前記ミキシング率αと前記歪βとを掛け合わせた値(α×β)が、0.002以上0.072以下である、構成1に記載の非水電解質二次電池用正極活物質。
 構成3:前記ミキシング率αが0.05以上0.20以下である、構成1又は2に記載の非水電解質二次電池用正極活物質。
 構成4:組成式Li1+aNiMnにおいて、Niのモル比(b)は、0.50≦b≦0.60である、構成1~3のいずれか1つに記載の非水電解質二次電池用正極活物質。
 構成5:組成式Li1+aNiMnにおいて、XはMg、Ca、Sr、Ba、Sn、Ti、Si、V、Cr、Fe、Cu、Zn、Bi、Sb、B、Ga、In、P、Zr、Hf、Nb、Ta、Mo、W、Co、およびAlから選択される少なくとも1種である、構成1~4のいずれか1つに記載の非水電解質二次電池用正極活物質。
 構成6:組成式Li1+aNiMnにおいて、XはAlおよびCoから選択される少なくとも1種である、構成5に記載の非水電解質二次電池用正極活物質。
 構成7:構成1~6のいずれか1つに記載の正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装缶、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子版、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット

Claims (7)

  1.  空間群R-3mに属する結晶構造を有する非水電解質二次電池用正極活物質であって、
     組成式Li1+aNiMnで表され、
     式中、XはLi、Ni、Mn以外の遷移金属元素および典型元素からなる群より選択される少なくとも1種であり、a≦1.15、0.35≦b≦0.70、0.30≦c≦0.65、0≦d≦0.07、eは電気的中性を満足する値であり、
     Rietveld解析により求められるNiのミキシング率αと、Williamson-Hall法により求められる歪βとを掛け合わせた値(α×β)が0.090以下である、非水電解質二次電池用正極活物質。
  2.  前記ミキシング率αと前記歪βとを掛け合わせた値(α×β)が、0.002以上0.072以下である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記ミキシング率αが0.05以上0.20以下である、請求項2に記載の非水電解質二次電池用正極活物質。
  4.  組成式Li1+aNiMnにおいて、Niのモル比(b)は、0.50≦b≦0.60である、請求項3に記載の非水電解質二次電池用正極活物質。
  5.  組成式Li1+aNiMnにおいて、XはMg、Ca、Sr、Ba、Sn、Ti、Si、V、Cr、Fe、Cu、Zn、Bi、Sb、B、Ga、In、P、Zr、Hf、Nb、Ta、Mo、W、Co、およびAlから選択される少なくとも1種である、請求項3に記載の非水電解質二次電池用正極活物質。
  6.  組成式Li1+aNiMnにおいて、XはAlおよびCoから選択される少なくとも1種である、請求項5に記載の非水電解質二次電池用正極活物質。
  7.  請求項1~6のいずれか一項に記載の正極活物質を含む正極と、
     負極と、
     非水電解質と、
     を備える、非水電解質二次電池。
PCT/JP2024/001565 2023-01-26 2024-01-22 非水電解質二次電池用正極活物質および非水電解質二次電池 WO2024157907A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023010070 2023-01-26
JP2023-010070 2023-01-26

Publications (1)

Publication Number Publication Date
WO2024157907A1 true WO2024157907A1 (ja) 2024-08-02

Family

ID=91970661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001565 WO2024157907A1 (ja) 2023-01-26 2024-01-22 非水電解質二次電池用正極活物質および非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2024157907A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132155A1 (ja) * 2011-03-31 2012-10-04 戸田工業株式会社 マンガンニッケル複合酸化物粒子粉末およびその製造方法、非水電解質二次電池用正極活物質粒子粉末およびその製造方法、ならびに非水電解質二次電池
WO2015076376A1 (ja) * 2013-11-22 2015-05-28 三井金属鉱業株式会社 スピネル型リチウム金属複合酸化物
WO2015115088A1 (ja) * 2014-01-31 2015-08-06 三洋電機株式会社 非水電解質二次電池用正極活物質及びこれを用いた非水電解質二次電池、非水電解質二次電池用正極活物質の製造方法
WO2018163518A1 (ja) * 2017-03-06 2018-09-13 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP2018529195A (ja) * 2015-09-08 2018-10-04 ユミコア 再充電可能バッテリー用のNi系Li遷移金属酸化物カソードを調製するための前駆体及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132155A1 (ja) * 2011-03-31 2012-10-04 戸田工業株式会社 マンガンニッケル複合酸化物粒子粉末およびその製造方法、非水電解質二次電池用正極活物質粒子粉末およびその製造方法、ならびに非水電解質二次電池
WO2015076376A1 (ja) * 2013-11-22 2015-05-28 三井金属鉱業株式会社 スピネル型リチウム金属複合酸化物
WO2015115088A1 (ja) * 2014-01-31 2015-08-06 三洋電機株式会社 非水電解質二次電池用正極活物質及びこれを用いた非水電解質二次電池、非水電解質二次電池用正極活物質の製造方法
JP2018529195A (ja) * 2015-09-08 2018-10-04 ユミコア 再充電可能バッテリー用のNi系Li遷移金属酸化物カソードを調製するための前駆体及び方法
WO2018163518A1 (ja) * 2017-03-06 2018-09-13 パナソニックIpマネジメント株式会社 正極活物質、および、電池

Similar Documents

Publication Publication Date Title
KR101668974B1 (ko) 활물질 입자 및 그 이용
WO2020003642A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2011161755A1 (ja) リチウム二次電池
JP7336736B2 (ja) 非水電解質二次電池
US9979012B2 (en) Lithium ion secondary battery and method for manufacturing the same
WO2021171843A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP7324120B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7324119B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7325050B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2023054041A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2022209894A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2022070898A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021220875A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021241027A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021153527A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024157907A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024162051A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024162121A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024162132A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024161962A1 (ja) 非水電解質二次電池用正極および非水電解質二次電池
WO2024070659A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2024070385A1 (ja) 非水電解質二次電池
WO2023204077A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023189507A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024142695A1 (ja) 非水電解質二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24747235

Country of ref document: EP

Kind code of ref document: A1