WO2018163518A1 - 正極活物質、および、電池 - Google Patents

正極活物質、および、電池 Download PDF

Info

Publication number
WO2018163518A1
WO2018163518A1 PCT/JP2017/041590 JP2017041590W WO2018163518A1 WO 2018163518 A1 WO2018163518 A1 WO 2018163518A1 JP 2017041590 W JP2017041590 W JP 2017041590W WO 2018163518 A1 WO2018163518 A1 WO 2018163518A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
positive electrode
battery
composite oxide
Prior art date
Application number
PCT/JP2017/041590
Other languages
English (en)
French (fr)
Inventor
一成 池内
竜一 夏井
名倉 健祐
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019504321A priority Critical patent/JP6979594B2/ja
Priority to EP17900203.5A priority patent/EP3595059A1/en
Priority to CN201780084633.7A priority patent/CN110214390A/zh
Publication of WO2018163518A1 publication Critical patent/WO2018163518A1/ja
Priority to US16/558,332 priority patent/US20200006749A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material for a battery and a battery.
  • Patent Document 1 discloses a lithium-containing composite oxide containing Li, Ni, Co, and Mn as essential components.
  • the space group R-3m has a c-axis lattice constant of 14.208 to 14.22814, an a-axis lattice constant of It has a crystal structure in which the c-axis lattice constant satisfies the relationship of 3a + 5.615 ⁇ c ⁇ 3a + 5.655, and the integrated intensity ratio (I 003 / I 104 ) between the peak of (003) and the peak of (104) in the XRD pattern Lithium-containing composite oxides characterized in that is 1.21 to 1.39 are disclosed.
  • a positive electrode active material includes a lithium composite oxide containing at least one selected from the group consisting of F, Cl, N, S, Br, and I, and the crystal of the lithium composite oxide
  • the structure belongs to the space group R-3m, and the integrated intensity ratio I (003) / I (104) of the (003) plane peak to the (104) plane peak in the XRD pattern of the lithium composite oxide is 0. 62 ⁇ I (003) / I (104) ⁇ 0.90 is satisfied.
  • the comprehensive or specific aspect of the present disclosure may be realized by a positive electrode active material for a battery, a battery, a method, or any combination thereof.
  • a battery having a high energy density can be realized.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 10 which is an example of the battery in the second embodiment.
  • 2 is a powder X-ray diffraction chart of the positive electrode active material of Example 1.
  • the positive electrode active material in Embodiment 1 is a positive electrode active material containing a lithium composite oxide, and the lithium composite oxide is one or two selected from the group consisting of F, Cl, N, S, Br, and I. Contains more than seed elements. Further, the lithium composite oxide has a crystal structure belonging to the space group R-3m, and an integrated intensity ratio I (003) / I (the peak of the (003) plane and the peak of the (104) plane in the XRD pattern. 104) satisfies 0.62 ⁇ I (003) / I (104) ⁇ 0.90.
  • the lithium ion battery when a lithium ion battery is configured using the above positive electrode active material, the lithium ion battery has an oxidation-reduction potential (Li / Li + standard) of about 3.6V.
  • the lithium composite oxide described above contains one or more elements selected from the group consisting of F, Cl, N, S, Br, and I. It is considered that the crystal structure is stabilized by substituting part of oxygen by these electrochemically inactive anions. For this reason, it is considered that the discharge capacity or operating voltage of the battery is improved and the energy density is increased.
  • the above-described lithium composite oxide has an integrated intensity ratio I (003) / I (104) of the peak of the (003) plane and the (104) plane in the X-ray diffraction (XRD) pattern of 0.62 ⁇ I (003) / I (104) ⁇ 0.90 is satisfied.
  • I (003) / I (104) is a parameter that can be an indicator of cation mixing in a lithium composite oxide having a crystal structure belonging to the space group R-3m.
  • “Cation mixing” in the present disclosure refers to a state in which a lithium atom and a cation atom such as a transition metal are substituted in the crystal structure of the lithium composite oxide.
  • I (003) / I (104) increases.
  • I (003) / I (104) decreases.
  • I (003) / I (104) satisfies 0.62 ⁇ I (003) / I (104) ⁇ 0.90, so that a cation such as a lithium atom and a transition metal It is considered that the atoms are sufficiently cation mixed. For this reason, it is considered that the lithium composite oxide of Embodiment 1 has an increased three-dimensional lithium diffusion path. For this reason, the lithium composite oxide of Embodiment 1 can insert and desorb more Li than the conventional positive electrode active material.
  • the lithium composite oxide in Embodiment 1 has a crystal structure belonging to the space group R-3m and satisfies 0.62 ⁇ I (003) / I (104) ⁇ 0.90, Even when a large amount of Li is extracted, the transition metal-anion octahedron that forms pillars forms a three-dimensional network, so that the crystal structure can be stably maintained. For this reason, the positive electrode active material in Embodiment 1 is suitable for realizing a high-capacity battery. Furthermore, for the same reason, it is considered suitable for realizing a battery having excellent cycle characteristics.
  • Patent Document 1 discloses a positive electrode active material including a lithium composite oxide having a crystal structure belonging to space group R-3m and in which a lithium atom and a cation atom such as a transition metal are not sufficiently cation-mixed. Yes. Conventionally, as in Patent Document 1, it was considered that cation mixing should be suppressed in a lithium composite oxide.
  • the positive electrode active material in Embodiment 1 is a positive electrode active material containing a lithium composite oxide, and the lithium composite oxide is one or two selected from the group consisting of F, Cl, N, S, Br, and I. Contains more than seed elements. Further, the lithium composite oxide has a crystal structure belonging to the space group R-3m, and an integrated intensity ratio I (003) / I (the peak of the (003) plane and the peak of the (104) plane in the XRD pattern. 104) satisfies 0.62 ⁇ I (003) / I (104) ⁇ 0.90. As a result, the present inventors have realized a battery having a high energy density, far exceeding conventional expectations.
  • the lithium composite oxide in Embodiment 1 may satisfy 0.67 ⁇ I (003) / I (104) ⁇ 0.85.
  • the peaks on the (003) plane and the (104) plane in the XRD pattern using CuK ⁇ rays exist in the ranges where the diffraction angle 2 ⁇ is 18 to 20 ° and 44 to 46 °, respectively.
  • the integrated intensity of each diffraction peak can be calculated using, for example, software attached to the XRD apparatus (for example, PDXL attached to the powder X-ray diffractometer manufactured by Rigaku Corporation).
  • the integrated intensity of each diffraction peak can be obtained, for example, by calculating an area in a range of ⁇ 3 ° with respect to the angle of the vertex of each diffraction peak.
  • the lithium composite oxide in Embodiment 1 may contain one or more elements selected from the group consisting of F, Cl, N, and S.
  • the lithium composite oxide in Embodiment 1 may contain F.
  • the lithium composite oxide in Embodiment 1 is, for example, Mn, Co, Ni, Fe, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au , Ag, Ru, W, B, Si, P, Al, or one or more elements selected from the group consisting of Al may be included.
  • the lithium composite oxide in Embodiment 1 is at least one selected from the group consisting of Mn, Co, Ni, Fe, Cu, V, Ti, Cr, and Zn, that is, at least one 3d transition metal element. May be included.
  • the lithium composite oxide in Embodiment 1 may contain one or more elements selected from the group consisting of Mn, Co, and Ni.
  • the lithium composite oxide in Embodiment 1 may contain Mn.
  • the lithium composite oxide in the first embodiment includes Co, Ni, Fe, Al, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, and Ag. , Ru, W, B, Si, P, or one or more elements selected from the group consisting of P and Mn.
  • the lithium composite oxide in Embodiment 1 may contain one or two elements selected from the group consisting of Co and Ni, and Mn.
  • the lithium composite oxide in Embodiment 1 may be a compound represented by the following composition formula (1).
  • Me is Mn, Co, Ni, Fe, Al, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W,
  • One or two or more elements selected from the group consisting of B, Si, and P may be used.
  • Me may contain at least one selected from the group consisting of Mn, Co, Ni, Fe, Cu, V, Ti, Cr, and Zn, that is, at least one 3d transition metal element.
  • X may be one or more elements selected from the group consisting of F, Cl, N, S, Br, and I.
  • composition formula (1) the following conditions, 0.5 ⁇ x ⁇ 1.5, 0.5 ⁇ y ⁇ 1.0, 1 ⁇ ⁇ ⁇ 2, 0 ⁇ ⁇ 1, May be satisfied.
  • the compound represented by the composition formula (1) increases the amount of Li that can be used when x is 0.5 or more. For this reason, energy density improves.
  • the compound represented by the composition formula (1) increases the available Me redox reaction when x is 1.5 or less. As a result, it becomes unnecessary to use a large amount of oxygen redox reaction. Thereby, the crystal structure is stabilized. For this reason, energy density improves.
  • the compound represented by the composition formula (1) increases the available Me redox reaction when y is 0.5 or more. As a result, it becomes unnecessary to use a large amount of oxygen redox reaction. Thereby, the crystal structure is stabilized. For this reason, energy density improves.
  • the amount of Li that can be used in the compound represented by the composition formula (1) increases when y is 1.0 or less. For this reason, energy density improves.
  • the compound represented by the composition formula (1) can prevent a decrease in charge compensation amount due to oxygen oxidation-reduction. For this reason, energy density improves.
  • the compound represented by the composition formula (1) can prevent excessive capacity due to oxidation and reduction of oxygen, and the structure is stabilized when Li is desorbed. To do. For this reason, energy density improves.
  • the compound represented by the composition formula (1) can prevent the influence of electrochemically inactive X from increasing, so that the electron conductivity is improved. For this reason, energy density improves.
  • the compound represented by the composition formula (1) may satisfy 1.67 ⁇ ⁇ ⁇ 1.95.
  • the compound represented by the composition formula (1) may satisfy 0.05 ⁇ ⁇ ⁇ 0.33.
  • the compound represented by the composition formula (1) may satisfy 0.5 ⁇ x / y ⁇ 3.0.
  • the compound represented by the composition formula (1) may satisfy 1.5 ⁇ x / y ⁇ 2.0.
  • the ratio of the number of Li atoms at the site where Li is located is higher than that of the conventional positive electrode active material (for example, LiMnO 2 ). For this reason, it becomes possible to insert and detach more Li, and a battery having a higher energy density can be realized.
  • the conventional positive electrode active material for example, LiMnO 2
  • the compound represented by the composition formula (1) may satisfy 5 ⁇ ⁇ / ⁇ ⁇ 39.
  • the compound represented by the composition formula (1) may satisfy 9 ⁇ ⁇ / ⁇ ⁇ 19.
  • the compound represented by the composition formula (1) may satisfy 0.75 ⁇ (x + y) / ( ⁇ + ⁇ ) ⁇ 1.15.
  • X may contain one or more elements selected from the group consisting of F, Cl, N, and S.
  • X may contain F.
  • X may be F.
  • X may contain one or more elements selected from the group consisting of Cl, N, S, Br, and I, and F.
  • Me may include one or more elements selected from the group consisting of Mn, Co, and Ni.
  • Me may contain Mn.
  • Me may be Mn.
  • Me is Co, Ni, Fe, Al, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W, B, Si. , P or one or more elements selected from the group consisting of P and Mn.
  • Me may include one or two elements selected from the group consisting of Co and Ni, and Mn.
  • Me may contain 40 mol% or more of Mn with respect to Me. That is, the molar ratio of Mn (Mn / Me ratio) to the entire Me including Mn may satisfy the relationship of 0.4 to 1.0.
  • a part of Li may be substituted with an alkali metal such as Na or K.
  • the positive electrode active material in Embodiment 1 may include the above-described lithium composite oxide as a main component (that is, 50% or more (50% by mass or more) in terms of a mass ratio with respect to the entire positive electrode active material).
  • the positive electrode active material in Embodiment 1 may include the above-described lithium composite oxide in a mass ratio of 70% or more (70% by mass or more) with respect to the entire positive electrode active material.
  • the positive electrode active material in Embodiment 1 may include 90% or more (90% by mass or more) of the above-described lithium composite oxide in a mass ratio with respect to the whole positive electrode active material.
  • the positive electrode active material in Embodiment 1 may further contain unavoidable impurities while containing the above-described lithium composite oxide.
  • the positive electrode active material in Embodiment 1 is selected from the group consisting of starting materials, by-products, and decomposition products used when synthesizing the positive electrode active material while containing the above-described lithium composite oxide. At least one of them may be included.
  • the positive electrode active material in Embodiment 1 may contain only the above-mentioned lithium composite oxide, for example, except for impurities that are unavoidable to be mixed.
  • the lithium composite oxide in Embodiment 1 can be manufactured by the following method, for example.
  • a raw material containing Li, a raw material containing Me, and a raw material containing X are prepared.
  • Examples of the raw material containing Li include oxides such as Li 2 O and Li 2 O 2 , salts such as Li 2 CO 3 and LiOH, and lithium composite oxides such as LiMeO 2 and LiMe 2 O 4. It is done.
  • Examples of the raw material containing Me include oxides in various oxidation states such as Me 2 O 3 , salts such as MeCO 3 and MeNO 3 , hydroxides such as Me (OH) 2 and MeOOH, LiMeO 2 , And lithium composite oxides such as LiMe 2 O 4 .
  • examples of the raw material containing Mn include manganese oxides in various oxidation states such as MnO 2 and Mn 2 O 3 , salts such as MnCO 3 and MnNO 3 , and Mn (OH) 2. , Hydroxides such as MnOOH, and lithium composite oxides such as LiMnO 2 and LiMn 2 O 4 .
  • examples of the raw material containing X include lithium halide, transition metal halide, transition metal sulfide, and transition metal nitride.
  • examples of the raw material containing F include LiF and transition metal fluorides.
  • the raw materials are weighed so that these raw materials have, for example, the molar ratio shown in the above composition formula (1).
  • composition formula (1) can be changed within the range represented by the composition formula (1).
  • the compound is obtained by mixing the weighed raw materials by, for example, a dry method or a wet method and reacting with mechanochemical for 10 hours or more.
  • a mixing device such as a ball mill can be used.
  • the obtained compound is further fired in the air, whereby the lithium composite oxide in Embodiment 1 can be obtained.
  • the heat treatment conditions at this time are appropriately set so that the lithium composite oxide in Embodiment 1 can be obtained.
  • the optimum conditions for the heat treatment differ depending on other production conditions and the target composition. However, the present inventors have found that the higher the temperature of the heat treatment and the longer the time required for the heat treatment, the more the I (003) / I (104) is found to increase. Therefore, the manufacturer can define the conditions for the heat treatment with this tendency as a guideline.
  • the heat treatment temperature and time may be selected, for example, from a range of 300 to 700 ° C. and a range of 1 to 5 hours, respectively.
  • the lithium composite oxide in Embodiment 1 can be substantially obtained by adjusting the raw materials used, and the mixing conditions and firing conditions of the raw materials.
  • the mixing energy of various elements can be further reduced.
  • the lithium composite oxide in Embodiment 1 with higher purity is obtained.
  • composition of the obtained lithium composite oxide can be determined by, for example, ICP emission spectroscopy, inert gas melting-infrared absorption, ion chromatography, or a combination thereof.
  • the space group of the crystal structure in the obtained lithium composite oxide can be determined by powder X-ray analysis.
  • the positive electrode active material manufacturing method of Embodiment 1 obtains the positive electrode active material by preparing the raw material (a), reacting the raw material with mechanochemical, and further firing in air. Step (b).
  • the above-described step (a) includes a step of adjusting the mixed raw material by mixing the above-described raw material at a ratio of Li to 0.5 to 3.0 in molar ratio with respect to Me. May be.
  • the above-described step (a) may include a step of producing a lithium composite oxide as a raw material by a known method.
  • the above-described step (a) includes a step of adjusting the mixed raw material by mixing the above-described raw material at a ratio of Li to 1.5 to 2.0 in molar ratio with respect to Me. May be.
  • step (b) may include a step of reacting the raw material with mechanochemical using a ball mill.
  • a precursor for example, Li 2 O, an oxide transition metal, a lithium composite oxide, or the like
  • a mechanochemical reaction using a planetary ball mill. And then calcined in air.
  • the battery in the second embodiment includes a positive electrode including the positive electrode active material in the above-described first embodiment, a negative electrode, and an electrolyte.
  • the positive electrode may include a positive electrode active material layer.
  • the positive electrode active material layer may include the positive electrode active material in Embodiment 1 described above as a main component (that is, 50% or more (50% by mass or more) in terms of a mass ratio with respect to the entire positive electrode active material layer). Good.
  • the positive electrode active material layer may include the positive electrode active material in Embodiment 1 described above in a mass ratio of 70% or more (70% by mass or more) with respect to the entire positive electrode active material layer. Good.
  • the positive electrode active material layer may include the positive electrode active material in Embodiment 1 described above in a mass ratio of 90% or more (90% by mass or more) with respect to the entire positive electrode active material layer. Good.
  • the battery in Embodiment 2 can be configured as, for example, a lithium ion secondary battery, a non-aqueous electrolyte secondary battery, an all-solid battery, or the like.
  • the negative electrode may include, for example, a negative electrode active material that can occlude and release lithium ions.
  • the negative electrode may include, for example, a material that can dissolve and precipitate lithium metal as a negative electrode active material.
  • the electrolyte may be, for example, a non-aqueous electrolyte (for example, a non-aqueous electrolyte).
  • the electrolyte may be, for example, a solid electrolyte.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 10 which is an example of the battery according to the second embodiment.
  • the battery 10 includes a positive electrode 21, a negative electrode 22, a separator 14, a case 11, a sealing plate 15, and a gasket 18.
  • the separator 14 is disposed between the positive electrode 21 and the negative electrode 22.
  • the positive electrode 21, the negative electrode 22, and the separator 14 are impregnated with, for example, a nonaqueous electrolyte (for example, a nonaqueous electrolyte).
  • a nonaqueous electrolyte for example, a nonaqueous electrolyte
  • An electrode group is formed by the positive electrode 21, the negative electrode 22, and the separator 14.
  • the electrode group is housed in the case 11.
  • the case 11 is closed by the gasket 18 and the sealing plate 15.
  • the positive electrode 21 includes a positive electrode current collector 12 and a positive electrode active material layer 13 disposed on the positive electrode current collector 12.
  • the positive electrode current collector 12 is made of, for example, a metal material (aluminum, stainless steel, aluminum alloy, etc.).
  • the positive electrode current collector 12 can be omitted, and the case 11 can be used as the positive electrode current collector.
  • the positive electrode active material layer 13 includes the positive electrode active material in the first embodiment.
  • the positive electrode active material layer 13 may contain, for example, an additive (a conductive agent, an ion conduction auxiliary agent, a binder, etc.) as necessary.
  • an additive a conductive agent, an ion conduction auxiliary agent, a binder, etc.
  • the negative electrode 22 includes a negative electrode current collector 16 and a negative electrode active material layer 17 disposed on the negative electrode current collector 16.
  • the negative electrode current collector 16 is made of, for example, a metal material (aluminum, stainless steel, aluminum alloy, etc.).
  • the negative electrode active material layer 17 contains a negative electrode active material.
  • the negative electrode active material layer 17 may contain, for example, an additive (a conductive agent, an ion conduction auxiliary agent, a binder, etc.) as necessary.
  • an additive a conductive agent, an ion conduction auxiliary agent, a binder, etc.
  • the negative electrode active material a metal material, a carbon material, an oxide, a nitride, a tin compound, a silicon compound, or the like can be used.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • Examples of the metal material include lithium metal and lithium alloy.
  • Examples of carbon materials include natural graphite, coke, graphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon.
  • silicon (Si), tin (Sn), a silicon compound, and a tin compound can be used as the negative electrode active material.
  • silicon compound and the tin compound may be an alloy or a solid solution.
  • Examples of the silicon compound include SiO x (where 0.05 ⁇ x ⁇ 1.95). Further, a compound (alloy or solid solution) obtained by substituting a part of silicon in SiO x with another element can also be used.
  • the other elements are selected from the group consisting of boron, magnesium, nickel, titanium, molybdenum, cobalt, calcium, chromium, copper, iron, manganese, niobium, tantalum, vanadium, tungsten, zinc, carbon, nitrogen, and tin. At least one selected.
  • tin compounds include Ni 2 Sn 4 , Mg 2 Sn, SnO x (where 0 ⁇ x ⁇ 2), SnO 2 , SnSiO 3 , and the like.
  • One kind of tin compound selected from these may be used alone. Or the combination of 2 or more types of tin compounds selected from these may be used.
  • the shape of the negative electrode active material is not particularly limited.
  • a negative electrode active material having a known shape can be used.
  • the method for filling (occluding) lithium in the negative electrode active material layer 17 is not particularly limited. Specifically, this method includes (a) a method of depositing lithium on the negative electrode active material layer 17 by a vapor phase method such as a vacuum evaporation method, and (b) a contact between the lithium metal foil and the negative electrode active material layer 17. There is a method of heating both. In any method, lithium can be diffused into the negative electrode active material layer 17 by heat. There is also a method of electrochemically occluding lithium in the negative electrode active material layer 17. Specifically, a battery is assembled using the negative electrode 22 and lithium metal foil (positive electrode) that do not have lithium. Thereafter, the battery is charged such that lithium is occluded in the negative electrode 22.
  • binder for the positive electrode 21 and the negative electrode 22 examples include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, poly Acrylic acid ethyl ester, polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoro Polypropylene, styrene butadiene rubber, carboxymethyl cellulose, and the like can be used.
  • binder tetrafluoroethylene, hexafluoroethane, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, hexadiene, Copolymers of two or more materials selected from the group consisting of may be used. Furthermore, a mixture of two or more materials selected from the above materials may be used as the binder.
  • graphite As the conductive agent for the positive electrode 21 and the negative electrode 22, graphite, carbon black, conductive fiber, graphite fluoride, metal powder, conductive whisker, conductive metal oxide, organic conductive material, and the like can be used.
  • graphite include natural graphite and artificial graphite.
  • carbon black include acetylene black, ketjen black (registered trademark), channel black, furnace black, lamp black, and thermal black.
  • An example of the metal powder is aluminum powder.
  • conductive whiskers include zinc oxide whiskers and potassium titanate whiskers.
  • An example of the conductive metal oxide is titanium oxide.
  • organic conductive material include phenylene derivatives.
  • the surface of the binder described above may be coated with carbon black. Thereby, the capacity
  • the separator 14 a material having a large ion permeability and sufficient mechanical strength can be used. Examples of such materials include microporous thin films, woven fabrics, and non-woven fabrics.
  • the separator 14 is preferably made of a polyolefin such as polypropylene or polyethylene.
  • the separator 14 made of polyolefin not only has excellent durability, but can also exhibit a shutdown function when heated excessively.
  • the thickness of the separator 14 is, for example, in the range of 10 to 300 ⁇ m (or 10 to 40 ⁇ m).
  • the separator 14 may be a single layer film composed of one kind of material. Alternatively, the separator 14 may be a composite film (or multilayer film) composed of two or more materials.
  • the porosity of the separator 14 is, for example, in the range of 30 to 70% (or 35 to 60%). “Porosity” means the ratio of the volume of the voids to the total volume of the separator 14. “Porosity” is measured, for example, by a mercury intrusion method.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • a cyclic carbonate solvent a chain carbonate solvent, a cyclic ether solvent, a chain ether solvent, a cyclic ester solvent, a chain ester solvent, a fluorine solvent, and the like can be used.
  • cyclic carbonate solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.
  • chain carbonate solvent examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and the like.
  • cyclic ether solvents examples include tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, and the like.
  • chain ether solvent examples include 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like.
  • Examples of the cyclic ester solvent include ⁇ -butyrolactone.
  • chain ester solvents examples include methyl acetate and the like.
  • fluorine solvent examples include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, fluorodimethylene carbonate, and the like.
  • non-aqueous solvent one type of non-aqueous solvent selected from these can be used alone. Alternatively, a combination of two or more non-aqueous solvents selected from these can be used as the non-aqueous solvent.
  • the nonaqueous electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
  • fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
  • the battery 10 can be stably operated.
  • the electrolyte may be a solid electrolyte.
  • solid electrolyte organic polymer solid electrolyte, oxide solid electrolyte, sulfide solid electrolyte, etc. are used.
  • organic polymer solid electrolyte for example, a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure.
  • ethylene oxide structure By having an ethylene oxide structure, a large amount of lithium salt can be contained, and the ionic conductivity can be further increased.
  • oxide solid electrolyte examples include a NASICON type solid electrolyte typified by LiTi 2 (PO 4 ) 3 and its element substitution, a (LaLi) TiO 3 perovskite type solid electrolyte, Li 14 ZnGe 4 O 16 , Li 4 LISICON solid electrolyte typified by SiO 4 , LiGeO 4 and element substitution thereof, garnet type solid electrolyte typified by Li 7 La 3 Zr 2 O 12 and element substitution thereof, Li 3 N and H substitution thereof Li 3 PO 4 and its N-substituted product, and the like can be used.
  • NASICON type solid electrolyte typified by LiTi 2 (PO 4 ) 3 and its element substitution
  • LaLi) TiO 3 perovskite type solid electrolyte Li 14 ZnGe 4 O 16
  • Li 4 LISICON solid electrolyte typified by SiO 4
  • LiGeO 4 and element substitution thereof garnet type solid electrolyte
  • Examples of the sulfide solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , and Li 3.25 Ge 0.25 P. 0.75 S 4 , Li 10 GeP 2 S 12 , etc. can be used.
  • LiX (X: F, Cl, Br, I), MO y , Li x MO y (M: any of P, Si, Ge, B, Al, Ga, In) (x, y: Natural number) and the like may be added.
  • the sulfide solid electrolyte is rich in moldability and has high ion conductivity. For this reason, a battery having a higher energy density can be realized by using a sulfide solid electrolyte as the solid electrolyte.
  • Li 2 S—P 2 S 5 has high electrochemical stability and higher ionic conductivity. Therefore, if Li 2 S—P 2 S 5 is used as the solid electrolyte, a battery having a higher energy density can be realized.
  • the solid electrolyte layer may contain the above-described non-aqueous electrolyte.
  • the solid electrolyte layer contains a non-aqueous electrolyte, it is easy to exchange lithium ions between the active material and the solid electrolyte. As a result, a battery with a higher energy density can be realized.
  • the solid electrolyte layer may include a gel electrolyte, an ionic liquid, and the like in addition to the solid electrolyte.
  • a polymer material containing a non-aqueous electrolyte can be used.
  • the polymer material polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, and polymethyl methacrylate, or a polymer having an ethylene oxide bond may be used.
  • the cation constituting the ionic liquid includes aliphatic chain quaternary salts such as tetraalkylammonium and tetraalkylphosphonium, pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, piperidiniums and the like. It may be a nitrogen-containing heterocyclic aromatic cation such as an aromatic group ammonium, pyridiniums, imidazoliums and the like.
  • the anions constituting the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , and N (SO 2 C 2 F 5 ) 2. - , N (SO 2 CF 3 ) (SO 2 C 4 F 9 ) - , C (SO 2 CF 3 ) 3-, and the like.
  • the ionic liquid may contain a lithium salt.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , etc. can be used.
  • the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
  • the concentration of the lithium salt is, for example, in the range of 0.5 to 2 mol / liter.
  • the battery in the second embodiment can be configured as a battery having various shapes such as a coin type, a cylindrical type, a square type, a sheet type, a button type, a flat type, and a laminated type.
  • Lithium composite manganese oxide (Li 2 MnO 3 , LiMnO 2 ) and lithium cobaltate (LiCoO 2 ) were obtained by a known method.
  • the obtained raw material was placed in a 45 cc zirconia container together with an appropriate amount of ⁇ 5 mm zirconia balls and sealed in an argon glove box.
  • the obtained compound was calcined at 700 ° C. for 1 hour in the air.
  • Powder X-ray diffraction measurement was performed on the obtained positive electrode active material. The result of the measurement is shown in FIG.
  • the space group of the obtained positive electrode active material was R-3m.
  • the integrated intensity ratio I (003) / I (104) between the peak of the (003) plane and the peak of the (104) plane in the obtained positive electrode active material was 0.75.
  • composition of the obtained positive electrode active material was determined by ICP emission spectroscopic analysis, inert gas melting-infrared absorption method, and ion chromatography.
  • the composition of the obtained positive electrode active material was Li 1.2 Mn 0.4 Co 0.4 O 1.9 F 0.1 .
  • a positive electrode mixture slurry was applied to one side of a positive electrode current collector formed of an aluminum foil having a thickness of 20 ⁇ m.
  • the positive electrode mixture slurry was dried and rolled to obtain a positive electrode plate having a thickness of 60 ⁇ m provided with a positive electrode active material layer.
  • the obtained positive electrode plate was punched into a circular shape having a diameter of 12.5 mm to obtain a positive electrode.
  • a negative electrode was obtained by punching out a lithium metal foil having a thickness of 300 ⁇ m into a circular shape having a diameter of 14.0 mm.
  • FEC fluoroethylene carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 was dissolved in this non-aqueous solvent at a concentration of 1.0 mol / liter to obtain a non-aqueous electrolyte.
  • the obtained nonaqueous electrolytic solution was soaked in a separator (Celgard, product number 2320, thickness 25 ⁇ m).
  • the separator is a three-layer separator formed of a polypropylene layer, a polyethylene layer, and a polypropylene layer.
  • a CR2032 standard coin-type battery was produced in a dry box in which the dew point was controlled at ⁇ 50 ° C. using the positive electrode, negative electrode, and separator described above.
  • Example 2 to 19 From Example 1 above, the precursor and mixing ratio were each changed.
  • Table 1 shows the compositions of the positive electrode active materials of Examples 2 to 19.
  • Example 1 the firing conditions were changed within the range of 300 to 700 ° C. and 1 to 5 hours, respectively.
  • Example 2 The precursors of Examples 2 to 19 were weighed in a stoichiometric ratio and mixed in the same manner as in Example 1.
  • the space groups of the compounds obtained as the positive electrode active materials of Examples 2 to 19 were all R-3m.
  • Lithium cobaltate (LiCoO 2 ) was obtained using a known method.
  • Powder X-ray diffraction measurement was performed on the obtained lithium cobaltate.
  • the space group of the obtained lithium cobaltate was R-3m.
  • the integrated intensity ratio I (003) / I (104) between the (003) plane peak and the (104) plane peak in the obtained lithium cobaltate was 1.20.
  • a coin-type battery was produced in the same manner as in Example 1 described above.
  • the obtained raw material was placed in a 45 cc zirconia container together with an appropriate amount of ⁇ 5 mm zirconia balls and sealed in an argon glove box.
  • Powder X-ray diffraction measurement was performed on the obtained compound.
  • the space group of the obtained compound was R-3m.
  • the integrated intensity ratio I (003) / I (104) of the (003) plane peak and the (104) plane peak in the obtained compound was 0.92.
  • composition of the obtained compound was determined by ICP emission spectroscopic analysis, inert gas melting-infrared absorption method and ion chromatography.
  • the composition of the obtained compound was Li 1.2 Mn 0.4 Co 0.4 O 1.9 F 0.1 .
  • the obtained raw material was placed in a 45 cc zirconia container together with an appropriate amount of ⁇ 5 mm zirconia balls and sealed in an argon glove box.
  • the obtained compound was calcined at 700 ° C. for 1 hour in the air.
  • Powder X-ray diffraction measurement was performed on the obtained compound.
  • the space group of the obtained compound was R-3m.
  • the integrated intensity ratio I (003) / I (104) of the (003) plane peak and the (104) plane peak in the obtained compound was 0.75.
  • composition of the obtained compound was determined by ICP emission spectroscopic analysis, inert gas melting-infrared absorption method and ion chromatography.
  • the composition of the obtained compound was Li 1.2 Mn 0.4 Co 0.4 O 2 .
  • the end-of-discharge voltage was set to 2.5 V, and the battery of Example 1 was discharged at a current density of 0.5 mA / cm 2 .
  • the initial energy density of the battery of Example 1 was 4000 Wh / L.
  • the current density with respect to the positive electrode was set to 0.5 mA / cm 2, and the battery of Comparative Example 1 was charged until a voltage of 4.3 V was reached.
  • the discharge end voltage was set to 3.0 V, and the battery of Comparative Example 1 was discharged at a current density of 0.5 mA / cm 2 .
  • the initial energy density of the battery of Comparative Example 1 was 2500 Wh / L.
  • the initial energy densities of the batteries of Examples 1 to 19 are extremely higher than the initial energy densities of the batteries of Comparative Examples 1 and 2 and Reference Example 1.
  • the lithium composite oxide in the positive electrode active material contains one or more elements selected from the group consisting of F, Cl, N, S, Br, and I.
  • the integrated intensity ratio I (003) / I (104) between the (003) plane peak and the (104) plane peak in the XRD pattern has a crystal structure belonging to the space group R-3m, and 0.62 ⁇ I It is conceivable that (003) / I (104) ⁇ 0.90 is satisfied. Thereby, it is considered that the energy density is improved.
  • the initial energy density of the batteries of Examples 2 to 3 is lower than the initial energy density of the battery of Example 1.
  • I (003) / I (104) is smaller in the second embodiment than in the first embodiment. That is, it is considered that the ratio of cation mixing is large and the crystal structure becomes relatively unstable. For this reason, it is considered that the energy density has decreased.
  • I (003) / I (104) is larger than that in Example 1. That is, it is considered that the amount of cation mixing was insufficient, and the three-dimensional diffusion path of Li was inhibited. For this reason, it is considered that the energy density has decreased.
  • the initial energy density of the batteries of Examples 5 to 6 is lower than the initial energy density of the battery of Example 1.
  • Example 6 compared with Example 1, it is possible that the value of (alpha) / (beta) is small. That is, it is conceivable that the amount of charge compensation due to oxygen oxidation-reduction is reduced, the influence of electrochemically inactive anions is increased, and the electron conductivity is reduced. For this reason, it is considered that the energy density has decreased.
  • the initial energy density of the battery of Example 7 is lower than the initial energy density of the battery of Example 6.
  • the initial energy density of the batteries of Examples 8 to 9 is lower than the initial energy density of the battery of Example 1.
  • Example 8 the only cation element other than Li is Mn, so that the desorption of oxygen tends to proceed and the crystal structure is destabilized. For this reason, it is considered that the energy density has decreased.
  • Example 9 Ni was used as the cation element instead of Co, which had less orbital overlap with oxygen than Co. Therefore, it was considered that sufficient capacity due to oxygen redox reaction could not be obtained. . For this reason, it is considered that the energy density has decreased.
  • the initial energy densities of the batteries of Examples 10 to 13 are lower than the initial energy density of the battery of Example 5.
  • the initial energy density of the battery of Example 14 is lower than the initial energy density of the battery of Example 1.
  • the initial energy density of the battery of Example 15 is lower than the initial energy density of the battery of Example 1.
  • the initial energy density of the battery of Example 16 is lower than the initial energy density of the battery of Example 1.
  • the initial energy density of the battery of Example 17 is lower than the initial energy density of the battery of Example 1.
  • the initial energy density of the battery of Example 18 is lower than the initial energy density of the battery of Example 1.
  • the initial energy density of the battery of Example 19 is lower than the initial energy density of the battery of Example 1.
  • I (003) / I (104) is smaller than that in Example 1. That is, it is considered that the ratio of cation mixing is large and the crystal structure becomes relatively unstable. For this reason, it is considered that the energy density has decreased.
  • the positive electrode active material of the present disclosure can be used as a positive electrode active material for a battery such as a secondary battery.

Abstract

正極活物質は、F、Cl、N、S、Br、及びIからなる群より選択される少なくとも1種を含有するリチウム複合酸化物を含む。リチウム複合酸化物の結晶構造は空間群R-3mに属する。リチウム複合酸化物のXRDパターンにおける、(104)面のピークに対する(003)面のピークの積分強度比I(003)/I(104)が、0.62≦I(003)/I(104)≦0.90、を満たす。

Description

正極活物質、および、電池
 本開示は、電池用の正極活物質、および、電池に関する。
 特許文献1には、Li、Ni、CoおよびMnを必須として含むリチウム含有複合酸化物であり、空間群R-3mで、c軸格子定数が14.208~14.228Å、a軸格子定数とc軸格子定数が3a+5.615≦c≦3a+5.655の関係を満たす結晶構造を有し、XRDパターンにおける(003)のピークと(104)のピークとの積分強度比(I003/I104)が1.21~1.39であることを特徴とするリチウム含有複合酸化物が、開示されている。
特開2016-26981号公報
 従来技術においては、高いエネルギー密度を有する電池の実現が望まれる。
 本開示の一様態における正極活物質は、F、Cl、N、S、Br、及びIからなる群より選択される少なくとも1種を含有するリチウム複合酸化物を含み、前記リチウム複合酸化物の結晶構造は空間群R-3mに属し、前記リチウム複合酸化物のXRDパターンにおける、(104)面のピークに対する(003)面のピークの積分強度比I(003)/I(104)が、0.62≦I(003)/I(104)≦0.90、を満たす。
 本開示の包括的または具体的な態様は、電池用正極活物質、電池、方法、または、これらの任意な組み合わせで実現されてもよい。
 本開示によれば、高いエネルギー密度を有する電池を実現できる。
図1は、実施の形態2における電池の一例である電池10の概略構成を示す断面図である。 図2は、実施例1の正極活物質の粉末X線回折チャートを示す図である。
 以下、本開示の実施の形態が、説明される。
 (実施の形態1)
 実施の形態1における正極活物質は、リチウム複合酸化物を含む正極活物質であって、リチウム複合酸化物は、F、Cl、N、S、Br、Iからなる群より選択される一種または二種以上の元素を含む。また、当該リチウム複合酸化物は、空間群R-3mに属する結晶構造を有し、XRDパターンにおける(003)面のピークと(104)面のピークとの積分強度比I(003)/I(104)が、0.62≦I(003)/I(104)≦0.90、を満たす。
 以上の構成によれば、高いエネルギー密度を有する電池を実現できる。
 上述の正極活物質を用いて、例えばリチウムイオン電池を構成する場合、当該リチウムイオン電池は3.6V程度の酸化還元電位(Li/Li基準)を有する。
 上述のリチウム複合酸化物は、F、Cl、N、S、Br、Iからなる群より選択される一種または二種以上の元素を含む。これらの電気化学的に不活性なアニオンによって酸素の一部を置換することで、結晶構造が安定化すると考えられる。このため、電池の放電容量または作動電圧が向上し、エネルギー密度が高くなると考えられる。
 上述のリチウム複合酸化物は、X線回折(X-ray diffraction:XRD)パターンにおける(003)面と(104)面のピークの積分強度比I(003)/I(104)が、0.62≦I(003)/I(104)≦0.90、を満たす。
 ここで、I(003)/I(104)は、空間群R-3mに属する結晶構造を有するリチウム複合酸化物における、カチオンミキシングの指標となり得るパラメータである。本開示における「カチオンミキシング」とは、リチウム複合酸化物の結晶構造において、リチウム原子と遷移金属等のカチオン原子とが置換されている状態を示す。カチオンミキシングが少なくなると、I(003)/I(104)が大きくなる。また、カチオンミキシングが多くなると、I(003)/I(104)が小さくなる。
 実施の形態1におけるリチウム複合酸化物において、I(003)/I(104)が0.90よりも大きい場合、カチオンミキシングが抑制されることにより、リチウムの三次元的な拡散経路が減少する。このため、リチウムの拡散が阻害され、エネルギー密度が減少する。
 また、I(003)/I(104)が0.62よりも小さい場合、結晶構造が不安定となる。このため、充電時のLi脱離に伴い、結晶構造が崩壊し、エネルギー密度が減少する。
 実施の形態1におけるリチウム複合酸化物は、I(003)/I(104)が0.62≦I(003)/I(104)≦0.90を満たすため、リチウム原子と遷移金属等のカチオン原子とが、十分にカチオンミキシングしていると考えられる。このため、実施の形態1のリチウム複合酸化物は、リチウムの三次元的な拡散経路が増大していると考えられる。このため、実施の形態1のリチウム複合酸化物は、従来の正極活物質よりも、より多くのLiを挿入および脱離させることが可能である。
 また、実施の形態1におけるリチウム複合酸化物は、空間群R-3mに属する結晶構造を有し、かつ、0.62≦I(003)/I(104)≦0.90、を満たすため、Liを多く引き抜いた際にも、ピラーとなる遷移金属-アニオン八面体が三次元的にネットワークを形成するため、結晶構造を安定に維持できる。このため、実施の形態1における正極活物質は、高容量の電池を実現するのに適している。さらに、同様の理由で、サイクル特性に優れた電池を実現するのにも適していると考えられる。
 ここで、比較例として、例えば特許文献1が挙げられる。特許文献1は、空間群R-3mに属する結晶構造を有し、リチウム原子と遷移金属等のカチオン原子とが十分にカチオンミキシングしていないリチウム複合酸化物を含む正極活物質を、開示している。従来は、特許文献1のように、リチウム複合酸化物においてカチオンミキシングは抑制するべきであると考えられていた。
 実施の形態1における正極活物質は、リチウム複合酸化物を含む正極活物質であって、リチウム複合酸化物は、F、Cl、N、S、Br、Iからなる群より選択される一種または二種以上の元素を含む。また、当該リチウム複合酸化物は、空間群R-3mに属する結晶構造を有し、XRDパターンにおける(003)面のピークと(104)面のピークとの積分強度比I(003)/I(104)が、0.62≦I(003)/I(104)≦0.90、を満たす。これにより、本発明者等は、従来の予想を遥かに超えて、高いエネルギー密度を有する電池を実現した。
 また、実施の形態1におけるリチウム複合酸化物は、0.67≦I(003)/I(104)≦0.85、を満たしてもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 なお、一般的には、CuKα線を使用したXRDパターンにおける(003)面および(104)面のピークは、それぞれ回折角2θが18~20°および44~46°である範囲内に存在する。
 また、各回折ピークの積分強度は、例えば、XRD装置に付属のソフトウエア(例えば、株式会社リガク社製、粉末X線回折装置に付属のPDXL)を用いて算出することができる。その場合、各回折ピークの積分強度は、例えば、各回折ピークの頂点の角度に対して±3°の範囲の面積を算出することで得られる。
 また、実施の形態1におけるリチウム複合酸化物は、F、Cl、N、Sからなる群より選択される一種または二種以上の元素を含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1におけるリチウム複合酸化物は、Fを含んでもよい。
 以上の構成によれば、電気陰性度が高いFによって酸素の一部を置換することで、カチオン-アニオンの相互作用が増加し、電池の放電容量または作動電圧が向上する。また、イオン半径の大きなFによって酸素の一部を置換することで、結晶格子が広がり、構造が安定化する。このため、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1におけるリチウム複合酸化物は、例えば、Mn、Co、Ni、Fe、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、P、Alからなる群より選択される一種または二種以上の元素を含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1におけるリチウム複合酸化物は、Mn、Co、Ni、Fe、Cu、V、Ti、Cr、及びZnからなる群より選択される少なくとも一種、すなわち、少なくとも一種の3d遷移金属元素を含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1におけるリチウム複合酸化物は、Mn、Co、Niからなる群より選択される一種または二種以上の元素を含んでもよい。
 以上の構成によれば、酸素と軌道混成しやすい遷移金属を用いることで、充電時における酸素脱離が抑制される。このため、結晶構造が安定化し、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1におけるリチウム複合酸化物は、Mnを含んでもよい。
 以上の構成によれば、酸素と軌道混成しやすいMnを用いることで、充電時における酸素脱離が抑制される。このため、結晶構造が安定化し、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1におけるリチウム複合酸化物は、Co、Ni、Fe、Al、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、Pからなる群より選択される一種または二種以上の元素と、Mnとを、含んでもよい。
 以上の構成によれば、Li以外のカチオン元素としてMnのみを用いた場合と比べ、充電時における酸素脱離が抑制される。このため、結晶構造が安定化し、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1におけるリチウム複合酸化物は、CoおよびNiからなる群より選択される一種または二種の元素と、Mnとを、含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 次に、実施の形態1におけるリチウム複合酸化物の化学組成の一例を説明する。
 実施の形態1におけるリチウム複合酸化物は、下記の組成式(1)で表される化合物であってもよい。
 LiMeαβ ・・・式(1)
 ここで、Meは、Mn、Co、Ni、Fe、Al、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、Pからなる群より選択される一種または二種以上の元素であってもよい。
 また、Meは、Mn、Co、Ni、Fe、Cu、V、Ti、Cr、及びZnからなる群より選択される少なくとも一種、すなわち、少なくとも一種の3d遷移金属元素を含んでもよい。
 また、Xは、F、Cl、N、S、Br、Iからなる群より選択される一種または二種以上の元素であってもよい。
 かつ、組成式(1)において、下記の条件、
0.5≦x≦1.5、
0.5≦y≦1.0、
1≦α<2、
0<β≦1、
を満たしてもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 なお、実施の形態1においては、Meが二種以上の元素(例えば、Me’、Me”)からなり、かつ、組成比が「Me’y1Me”y2」である場合には、「y=y1+y2」である。例えば、Meが二種の元素(MnおよびCo)からなり、かつ、組成比が「Mn0.4Co0.4」である場合には、「y=0.4+0.4=0.8」である。また、Xが二種以上の元素からなる場合についても、Meと同様に計算される。
 なお、組成式(1)で表される化合物は、xが0.5以上の場合、利用できるLi量が多くなる。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、xが1.5以下の場合、利用できるMeの酸化還元反応が多くなる。この結果、酸素の酸化還元反応を多く利用する必要がなくなる。これにより、結晶構造が安定化する。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、yが0.5以上の場合、利用できるMeの酸化還元反応が多くなる。この結果、酸素の酸化還元反応を多く利用する必要がなくなる。これにより、結晶構造が安定化する。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、yが1.0以下の場合、利用できるLi量が多くなる。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、αが1以上の場合、酸素の酸化還元による電荷補償量が低下することを防ぐことができる。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、αが2よりも小さい場合、酸素の酸化還元による容量が過剰となることを防ぐことができ、Liが脱離した際に構造が安定化する。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、βが0よりも大きい場合、電気化学的に不活性なXの影響により、Liが脱離した際に構造が安定化する。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、βが1以下の場合、電気化学的に不活性なXの影響が大きくなることを防ぐことができるため、電子伝導性が向上する。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、1.67≦α≦1.95、を満たしてもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、組成式(1)で表される化合物は、0.05≦β≦0.33、を満たしてもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、組成式(1)で表される化合物は、0.5≦x/y≦3.0、を満たしてもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 なお、x/yが0.5以上の場合、利用できるLi量が多くなる。また、Liの拡散パスが阻害されることを防ぐことができる。このため、エネルギー密度が向上する。また、x/yが3.0以下の場合、利用できるMeの酸化還元反応が多くなる。この結果、酸素の酸化還元反応を多く利用する必要がなくなる。また、充電時におけるLi脱離時に結晶構造が安定化し、放電時のLi挿入効率が向上する。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、1.5≦x/y≦2.0、を満たしてもよい。
 以上の構成によれば、従来の正極活物質(例えば、LiMnO)以上に、Liが位置するサイトにおけるLi原子数の割合が高い。このため、より多くのLiを挿入および脱離させることが可能となり、より高いエネルギー密度を有する電池を実現できる。
 また、組成式(1)で表される化合物は、5≦α/β≦39、を満たしてもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 なお、α/βが5以上の場合、酸素の酸化還元による電荷補償量が向上する。また、電気化学的に不活性なXの影響が大きくなることを防ぐことができ、電子伝導性が向上する。このため、エネルギー密度が向上する。また、α/βが39以下の場合、酸素の酸化還元による容量が過剰となることを防ぐことができ、Liが脱離した際に構造が安定化する。また、電気化学的に不活性なXの影響により、Liが脱離した際に構造が安定化する。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物は、9≦α/β≦19、を満たしてもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、組成式(1)で表される化合物は、0.75≦(x+y)/(α+β)≦1.15、を満たしてもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 なお、(x+y)/(α+β)が0.75以上の場合、合成時に分相し、不純物が多く生成することを防ぐことができる。このため、エネルギー密度が向上する。また、(x+y)/(α+β)が1.15以下の場合、アニオンの欠損量が少ない構造となり、充電時におけるLi脱離時に結晶構造が安定化し、放電時のLi挿入効率が向上する。このため、エネルギー密度が向上する。
 また、組成式(1)で表される化合物において、Xは、F、Cl、N、Sからなる群より選択される一種または二種以上の元素を含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、組成式(1)で表される化合物において、Xは、Fを含んでもよい。
 すなわち、Xは、Fであってもよい。
 もしくは、Xは、Cl、N、S、Br、Iからなる群より選択される一種または二種以上の元素と、Fとを、含んでもよい。
 以上の構成によれば、電気陰性度が高いFによって酸素の一部を置換することで、カチオン-アニオンの相互作用が増加し、電池の放電容量または作動電圧が向上する。また、イオン半径の大きなFによって酸素の一部を置換することで、結晶格子が広がり、構造が安定化する。このため、より高いエネルギー密度を有する電池を実現できる。
 また、組成式(1)で表される化合物において、Meは、Mn、Co、Niからなる群より選択される一種または二種以上の元素を含んでもよい。
 以上の構成によれば、酸素と軌道混成しやすい遷移金属を用いることで、充電時における酸素脱離が抑制される。このため、結晶構造が安定化し、より高いエネルギー密度を有する電池を実現できる。
 また、組成式(1)で表される化合物において、Meは、Mnを含んでもよい。
 すなわち、Meは、Mnであってもよい。
 以上の構成によれば、酸素と軌道混成しやすいMnを用いることで、充電時における酸素脱離が抑制される。このため、結晶構造が安定化し、より高いエネルギー密度を有する電池を実現できる。
 もしくは、Meは、Co、Ni、Fe、Al、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、Pからなる群より選択される一種または二種以上の元素と、Mnとを、含んでもよい。
 以上の構成によれば、Li以外のカチオン元素としてMnのみを用いた場合と比べ、充電時における酸素脱離がさらに抑制される。このため、結晶構造が安定化し、より高いエネルギー密度を有する電池を実現できる。
 また、Meは、CoおよびNiからなる群より選択される一種または二種の元素と、Mnとを、含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、Meは、Mnを、Meに対して40モル%以上含んでもよい。すなわち、Mnを含むMe全体に対する、Mnのmol比(Mn/Me比)が、0.4~1.0の関係を満たしてもよい。
 以上の構成によれば、酸素と軌道混成しやすいMnを十分に含むことで、充電時における酸素脱離が抑制される。このため、結晶構造が安定化し、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1におけるリチウム複合酸化物は、Liの一部が、NaあるいはKなどのアルカリ金属で置換されていてもよい。
 また、実施の形態1における正極活物質は、上述のリチウム複合酸化物を、主成分として(すなわち、正極活物質の全体に対する質量割合で50%以上(50質量%以上))、含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1における正極活物質は、上述のリチウム複合酸化物を、正極活物質の全体に対する質量割合で70%以上(70質量%以上)、含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 また、実施の形態1における正極活物質は、上述のリチウム複合酸化物を、正極活物質の全体に対する質量割合で90%以上(90質量%以上)、含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 なお、実施の形態1における正極活物質は、上述のリチウム複合酸化物を含みながら、さらに、不可避的な不純物を含んでもよい。
 また、実施の形態1における正極活物質は、上述のリチウム複合酸化物を含みながら、さらに、正極活物質を合成する際に用いられる出発原料および副生成物および分解生成物からなる群より選択される少なくとも一つを含んでもよい。
 また、実施の形態1における正極活物質は、例えば、混入が不可避的な不純物を除いて、上述のリチウム複合酸化物のみを、含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 <化合物の作製方法>
 以下に、実施の形態1の正極活物質に含まれるリチウム複合酸化物の製造方法の一例が、説明される。
 実施の形態1におけるリチウム複合酸化物は、例えば、次の方法により、作製されうる。
 Liを含む原料、Meを含む原料、および、Xを含む原料を用意する。
 Liを含む原料としては、例えば、LiO、Li等の酸化物、LiCO、LiOH等の塩類、LiMeO、LiMe等のリチウム複合酸化物、など、が挙げられる。
 また、Meを含む原料としては、例えば、Me等の各種の酸化状態の酸化物、MeCO、MeNO等の塩類、Me(OH)、MeOOH等の水酸化物、LiMeO、LiMe等のリチウム複合酸化物、など、が挙げられる。
 例えば、MeがMnの場合には、Mnを含む原料としては、例えば、MnO、Mn等の各種の酸化状態の酸化マンガン、MnCO、MnNO等の塩類、Mn(OH)、MnOOH等の水酸化物、LiMnO、LiMn等のリチウム複合酸化物、など、が挙げられる。
 また、Xを含む原料としては、例えば、ハロゲン化リチウム、遷移金属ハロゲン化物、遷移金属硫化物、遷移金属窒化物など、が挙げられる。
 例えば、XがFの場合には、Fを含む原料としては、例えば、LiF、遷移金属フッ化物、など、が挙げられる。
 これらの原料を、例えば、上述の組成式(1)に示したモル比となるように、原料を秤量する。
 これにより、組成式(1)における「x、y、α、および、β」を、組成式(1)で示す範囲において、変化させることができる。
 秤量した原料を、例えば、乾式法または湿式法で混合し、10時間以上メカノケミカルに反応させることで、化合物が得られる。例えば、ボールミルなどの混合装置を使用することができる。
 その後、得られた化合物を、さらに空気中で焼成することで、実施の形態1におけるリチウム複合酸化物を得ることができる。
 このときの熱処理の条件は、実施の形態1におけるリチウム複合酸化物が得られるように適宜設定される。熱処理の最適な条件は、他の製造条件および目標とする組成に依存して異なるが、本発明者らは、熱処理の温度が高いほど、また、熱処理に要する時間が長いほど、I(003)/I(104)が大きくなる傾向を見出している。そのため、製造者は、この傾向を指針として、熱処理の条件を定めることができる。熱処理の温度および時間は、例えば、300~700℃の範囲、及び、1~5時間の範囲からそれぞれ選択されてもよい。
 以上のように、用いる原料、および、原料の混合条件および焼成条件を調整することにより、実質的に、実施の形態1におけるリチウム複合酸化物を得ることができる。
 例えば、前駆体にリチウム遷移金属複合酸化物を用いることで、各種元素のミキシングのエネルギーを、より低下させることができる。これにより、より純度の高い、実施の形態1におけるリチウム複合酸化物が、得られる。
 得られたリチウム複合酸化物の組成は、例えば、ICP発光分光分析法、不活性ガス溶融-赤外線吸収法、イオンクロマトグラフィー、またはそれらの組み合わせにより、決定することができる。
 また、得られたリチウム複合酸化物における結晶構造の空間群は、粉末X線分析により、決定することができる。
 以上のように、実施の形態1の正極活物質の製造方法は、原料を用意する工程(a)と、原料をメカノケミカルに反応させ、さらに空気中で焼成することにより、正極活物質を得る工程(b)と、を包含する。
 また、上述の工程(a)は、上述の原料を、Meに対して、Liが0.5以上3.0以下のモル比となる割合で混合し、混合原料を調整する工程を、包含してもよい。
 このとき、上述の工程(a)は、原料となるリチウム複合酸化物を、公知の方法で作製する工程を、包含してもよい。
 また、上述の工程(a)は、上述の原料を、Meに対して、Liが1.5以上2.0以下のモル比となる割合で混合し、混合原料を調整する工程を、包含してもよい。
 また、上述の工程(b)は、ボールミルを用いてメカノケミカルに原料を反応させる工程を、包含してもよい。
 以上のように、実施の形態1におけるリチウム複合酸化物は、前駆体(例えば、LiO、酸化遷移金属、リチウム複合酸化物、など)を、遊星型ボールミルを用いて、メカノケミカルの反応をさせ、その後空気中で焼成することによって、合成され得る。
 (実施の形態2)
 以下、実施の形態2が説明される。なお、上述の実施の形態1と重複する説明は、適宜、省略される。
 実施の形態2における電池は、上述の実施の形態1における正極活物質を含む正極と、負極と、電解質と、を備える。
 以上の構成によれば、高いエネルギー密度を有する電池を実現できる。
 また、実施の形態2における電池において、正極は、正極活物質層を備えてもよい。このとき、正極活物質層は、上述の実施の形態1における正極活物質を、主成分として(すなわち、正極活物質層の全体に対する質量割合で50%以上(50質量%以上))、含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 もしくは、実施の形態2における電池において、正極活物質層は、上述の実施の形態1における正極活物質を、正極活物質層の全体に対する質量割合で70%以上(70質量%以上)、含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 もしくは、実施の形態2における電池において、正極活物質層は、上述の実施の形態1における正極活物質を、正極活物質層の全体に対する質量割合で90%以上(90質量%以上)、含んでもよい。
 以上の構成によれば、より高いエネルギー密度を有する電池を実現できる。
 実施の形態2における電池は、例えば、リチウムイオン二次電池、非水電解質二次電池、全固体電池、など、として、構成されうる。
 実施の形態2における電池において、負極は、例えば、リチウムイオンを吸蔵および放出しうる負極活物質を含んでもよい。あるいは、負極は、例えば、リチウム金属を負極活物質として溶解および析出させうる材料を含んでもよい。
 また、実施の形態2における電池において、電解質は、例えば、非水電解質(例えば、非水電解液)であってもよい。
 また、実施の形態2における電池において、電解質は、例えば、固体電解質であってもよい。
 図1は、実施の形態2における電池の一例である電池10の概略構成を示す断面図である。
 図1に示されるように、電池10は、正極21と、負極22と、セパレータ14と、ケース11と、封口板15と、ガスケット18と、を備えている。
 セパレータ14は、正極21と負極22との間に、配置されている。
 正極21と負極22とセパレータ14とには、例えば、非水電解質(例えば、非水電解液)が含浸されている。
 正極21と負極22とセパレータ14とによって、電極群が形成されている。
 電極群は、ケース11の中に収められている。
 ガスケット18と封口板15とにより、ケース11が閉じられている。
 正極21は、正極集電体12と、正極集電体12の上に配置された正極活物質層13と、を備えている。
 正極集電体12は、例えば、金属材料(アルミニウム、ステンレス、アルミニウム合金、など)で作られている。
 なお、正極集電体12を省略し、ケース11を正極集電体として使用することも可能である。
 正極活物質層13は、上述の実施の形態1における正極活物質を含む。
 正極活物質層13は、必要に応じて、例えば、添加剤(導電剤、イオン伝導補助剤、結着剤、など)を含んでいてもよい。
 負極22は、負極集電体16と、負極集電体16の上に配置された負極活物質層17と、を備えている。
 負極集電体16は、例えば、金属材料(アルミニウム、ステンレス、アルミニウム合金、など)で作られている。
 なお、負極集電体16を省略し、封口板15を負極集電体として使用することも可能である。
 負極活物質層17は、負極活物質を含んでいる。
 負極活物質層17は、必要に応じて、例えば、添加剤(導電剤、イオン伝導補助剤、結着剤、など)を含んでいてもよい。
 負極活物質として、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、など、が使用されうる。
 金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。
 炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。
 容量密度の観点から、負極活物質として、珪素(Si)、錫(Sn)、珪素化合物、錫化合物、を使用できる。珪素化合物および錫化合物は、それぞれ、合金または固溶体であってもよい。
 珪素化合物の例として、SiO(ここで、0.05<x<1.95)が挙げられる。また、SiOの一部の珪素を他の元素で置換することによって得られた化合物(合金又は固溶体)も使用できる。ここで、他の元素とは、ホウ素、マグネシウム、ニッケル、チタン、モリブデン、コバルト、カルシウム、クロム、銅、鉄、マンガン、ニオブ、タンタル、バナジウム、タングステン、亜鉛、炭素、窒素及び錫からなる群より選択される少なくとも1種である。
 錫化合物の例として、NiSn、MgSn、SnO(ここで、0<x<2)、SnO、SnSiO、など、が挙げられる。これらから選択される1種の錫化合物が、単独で使用されてもよい。もしくは、これらから選択される2種以上の錫化合物の組み合わせが、使用されてもよい。
 また、負極活物質の形状は特に限定されない。負極活物質としては、公知の形状(粒子状、繊維状、など)を有する負極活物質が使用されうる。
 また、リチウムを負極活物質層17に補填する(吸蔵させる)ための方法は、特に限定されない。この方法としては、具体的には、(a)真空蒸着法などの気相法によってリチウムを負極活物質層17に堆積させる方法、(b)リチウム金属箔と負極活物質層17とを接触させて両者を加熱する方法がある。いずれの方法においても、熱によってリチウムを負極活物質層17に拡散させることができる。また、リチウムを電気化学的に負極活物質層17に吸蔵させる方法もある。具体的には、リチウムを有さない負極22およびリチウム金属箔(正極)を用いて電池を組み立てる。その後、負極22にリチウムが吸蔵されるように、その電池を充電する。
 正極21および負極22の結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が使用されうる。または、結着剤として、テトラフルオロエチレン、ヘキサフルオロエタン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエン、からなる群より選択される2種以上の材料の共重合体が、使用されてもよい。さらに、上述の材料から選択される2種以上の材料の混合物が、結着剤として、使用されてもよい。
 正極21および負極22の導電剤としては、グラファイト、カーボンブラック、導電性繊維、フッ化黒鉛、金属粉末、導電性ウィスカー、導電性金属酸化物、有機導電性材料、など、が使用されうる。グラファイトの例としては、天然黒鉛および人造黒鉛が挙げられる。カーボンブラックの例としては、アセチレンブラック、ケッチェンブラック(登録商標)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックが挙げられる。金属粉末の例としては、アルミニウム粉末が挙げられる。導電性ウィスカーの例としては、酸化亜鉛ウィスカーおよびチタン酸カリウムウィスカーが挙げられる。導電性金属酸化物の例としては、酸化チタンが挙げられる。有機導電性材料の例としては、フェニレン誘導体が挙げられる。
 なお、上述の導電剤として使用されうる材料を用いて、上述の結着剤の表面の少なくとも一部を被覆してもよい。例えば、上述の結着剤は、カーボンブラックにより表面を被覆されてもよい。これにより、電池の容量を向上させることができる。
 セパレータ14としては、大きいイオン透過度および十分な機械的強度を有する材料が使用されうる。このような材料の例としては、微多孔性薄膜、織布、不織布、など、が挙げられる。具体的に、セパレータ14は、ポリプロピレン、ポリエチレンなどのポリオレフィンで作られていることが望ましい。ポリオレフィンで作られたセパレータ14は、優れた耐久性を有するだけでなく、過度に加熱されたときにシャットダウン機能を発揮できる。セパレータ14の厚さは、例えば、10~300μm(又は10~40μm)の範囲にある。セパレータ14は、1種の材料で構成された単層膜であってもよい。もしくは、セパレータ14は、2種以上の材料で構成された複合膜(または、多層膜)であってもよい。セパレータ14の空孔率は、例えば、30~70%(又は35~60%)の範囲にある。「空孔率」とは、セパレータ14の全体の体積に占める空孔の体積の割合を意味する。「空孔率」は、例えば、水銀圧入法によって測定される。
 非水電解液は、非水溶媒と、非水溶媒に溶けたリチウム塩と、を含む。
 非水溶媒としては、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、フッ素溶媒、など、が使用されうる。
 環状炭酸エステル溶媒の例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、など、が挙げられる。
 鎖状炭酸エステル溶媒の例としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、など、が挙げられる。
 環状エーテル溶媒の例としては、テトラヒドロフラン、1、4-ジオキサン、1、3-ジオキソラン、など、が挙げられる。
 鎖状エーテル溶媒としては、1、2-ジメトキシエタン、1、2-ジエトキシエタン、など、が挙げられる。
 環状エステル溶媒の例としては、γ-ブチロラクトン、など、が挙げられる。
 鎖状エステル溶媒の例としては、酢酸メチル、など、が挙げられる。
 フッ素溶媒の例としては、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネート、など、が挙げられる。
 非水溶媒として、これらから選択される1種の非水溶媒が、単独で、使用されうる。もしくは、非水溶媒として、これらから選択される2種以上の非水溶媒の組み合わせが、使用されうる。
 非水電解液には、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネートからなる群より選択される少なくとも1種のフッ素溶媒が含まれていてもよい。
 これらのフッ素溶媒が非水電解液に含まれていると、非水電解液の耐酸化性が向上する。
 その結果、高い電圧で電池10を充電する場合にも、電池10を安定して動作させることが可能となる。
 また、実施の形態2における電池において、電解質は、固体電解質であってもよい。
 固体電解質としては、有機ポリマー固体電解質、酸化物固体電解質、硫化物固体電解質、など、が用いられる。
 有機ポリマー固体電解質としては、例えば高分子化合物と、リチウム塩との化合物が用いられうる。
 高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有することで、リチウム塩を多く含有することができ、イオン導電率をより高めることができる。
 酸化物固体電解質としては、例えば、LiTi(POおよびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO系のペロブスカイト型固体電解質、Li14ZnGe16、LiSiO、LiGeOおよびその元素置換体を代表とするLISICON型固体電解質、LiLaZr12およびその元素置換体を代表とするガーネット型固体電解質、LiNおよびそのH置換体、LiPOおよびそのN置換体、など、が用いられうる。
 硫化物固体電解質としては、例えば、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、Li10GeP12、など、が用いられうる。また、これらに、LiX(X:F、Cl、Br、I)、MO、LiMO(M:P、Si、Ge、B、Al、Ga、Inのいずれか)(x、y:自然数)などが、添加されてもよい。
 これらの中でも、特に、硫化物固体電解質は、成形性に富み、イオン伝導性が高い。このため、固体電解質として、硫化物固体電解質を用いることで、より高エネルギー密度の電池を実現できる。
 また、硫化物固体電解質の中でも、LiS-Pは、電気化学的安定性が高く、よりイオン伝導性が高い。このため、固体電解質として、LiS-Pを用いれば、より高エネルギー密度の電池を実現できる。
 なお、固体電解質層は、上述の非水電解液を含んでもよい。
 固体電解質層が非水電解液を含むことで、活物質と固体電解質との間でのリチウムイオン授受が容易になる。その結果、より高エネルギー密度の電池を実現できる。
 なお、固体電解質層は、固体電解質に加えて、ゲル電解質、イオン液体、など、を含んでもよい。
 ゲル電解質は、ポリマー材料に非水電解液を含ませたものを用いることができる。ポリマー材料として、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、およびポリメチルメタクリレート、もしくはエチレンオキシド結合を有するポリマーが用いられてもよい。
 イオン液体を構成するカチオンは、テトラアルキルアンモニウム、テトラアルキルホスホニウムなどの脂肪族鎖状4級塩類、ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、ピペリジニウム類などの脂肪族環状アンモニウム、ピリジニウム類、イミダゾリウム類などの含窒ヘテロ環芳香族カチオンなどであってもよい。イオン液体を構成するアニオンは、PF 、BF 、SbF 、AsF 、SOCF 、N(SOCF 、N(SO 、N(SOCF)(SO、C(SOCF などであってもよい。また、イオン液体はリチウム塩を含有してもよい。
 リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。リチウム塩の濃度は、例えば、0.5~2mol/リットルの範囲にある。
 なお、実施の形態2における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成されうる。
 <実施例1>
 [正極活物質の作製]
 公知の方法でリチウム複合マンガン酸化物(LiMnO、LiMnO)及びコバルト酸リチウム(LiCoO)を得た。得られたLiMnO、LiMnO、LiCoO、及びLiFを、LiMnO/LiMnO/LiCoO/LiF=3/1/4/1のモル比でそれぞれ秤量した。
 得られた原料を、適量のφ5mmのジルコニア製ボールと共に、45ccジルコニア製容器に入れ、アルゴングローブボックス内で密閉した。
 次に、上述の原料をアルゴングローブボックスから取り出し、遊星型ボールミルで、600rpmで35時間処理した。
 次に、得られた化合物を、空気中において700℃で1時間、焼成した。
 得られた正極活物質に対して、粉末X線回折測定を実施した。測定の結果が、図2に示される。
 得られた正極活物質の空間群は、R-3mであった。
 また、得られた正極活物質における(003)面のピークと(104)面のピークとの積分強度比I(003)/I(104)は、0.75であった。
 また、得られた正極活物質の組成を、ICP発光分光分析法および不活性ガス溶融-赤外線吸収法およびイオンクロマトグラフィーにより求めた。
 その結果、得られた正極活物質の組成は、Li1.2Mn0.4Co0.41.90.1であった。
 [電池の作製]
 次に、70質量部の上述の正極活物質と、20質量部の導電剤と、10質量部のポリフッ化ビニリデン(PVDF)と、適量の2-メチルピロリドン(NMP)とを、混合した。これにより、正極合剤スラリーを得た。
 20μmの厚さのアルミニウム箔で形成された正極集電体の片面に、正極合剤スラリーを塗布した。
 正極合剤スラリーを乾燥および圧延することによって、正極活物質層を備えた厚さ60μmの正極板を得た。
 得られた正極板を、直径12.5mmの円形状に打ち抜くことによって、正極を得た。
 また、厚さ300μmのリチウム金属箔を、直径14.0mmの円形状に打ち抜くことによって、負極を得た。
 また、フルオロエチレンカーボネート(FEC)とエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、1:1:6の体積比で混合して、非水溶媒を得た。
 この非水溶媒に、LiPFを、1.0mol/リットルの濃度で、溶解させることによって、非水電解液を得た。
 得られた非水電解液を、セパレータ(セルガード社製、品番2320、厚さ25μm)に、染み込ませた。当該セパレータは、ポリプロピレン層とポリエチレン層とポリプロピレン層とで形成された、3層セパレータである。
 上述の正極と負極とセパレータとを用いて、露点が-50℃に管理されたドライボックスの中で、CR2032規格のコイン型電池を、作製した。
 <実施例2~19>
 上述の実施例1から、前駆体および混合比率を、それぞれ変えた。
 表1に、実施例2~19の正極活物質の組成が示される。
 また、上述の実施例1から、焼成の条件を、300~700℃かつ1~5時間の範囲内で、それぞれ変えた。
 これ以外は、上述の実施例1と同様にして、実施例2~19の正極活物質を合成した。
 なお、実施例2~19の各前駆体は、実施例1と同様に、化学量論比で秤量して混合した。
 例えば、実施例9であれば、各前駆体をLiMnO/LiMnO/LiNiO/LiF=3/1/4/1のモル比でそれぞれ秤量して混合した。
 また、実施例2~19の正極活物質として得られた化合物の空間群は、いずれも、R-3mであった。
 実施例2~19のそれぞれの正極活物質を用いて、上述の実施例1と同様にして、コイン型電池を作製した。
 <比較例1>
 公知の手法を用いてコバルト酸リチウム(LiCoO)を得た。
 得られたコバルト酸リチウムに対して、粉末X線回折測定を実施した。
 得られたコバルト酸リチウムの空間群は、R-3mであった。
 また、得られたコバルト酸リチウムにおける(003)面のピークと(104)面のピークとの積分強度比I(003)/I(104)は、1.20であった。
 得られたコバルト酸リチウムを正極活物質として用いて、上述の実施例1と同様にして、コイン型電池を作製した。
 <比較例2>
 LiMnO、LiMnO、LiCoO、及びLiFを、LiMnO/LiMnO/LiCoO/LiF=3/1/4/1のモル比でそれぞれ秤量した。
 得られた原料を、適量のφ5mmのジルコニア製ボールと共に、45ccジルコニア製容器に入れ、アルゴングローブボックス内で密閉した。
 次に、上述の原料をアルゴングローブボックスから取り出し、遊星型ボールミルで、600rpmで35時間処理した。
 次に、得られた化合物を、空気中において800℃で1時間、焼成した。
 得られた化合物に対して、粉末X線回折測定を実施した。
 得られた化合物の空間群は、R-3mであった。
 また、得られた化合物における(003)面のピークと(104)面のピークとの積分強度比I(003)/I(104)は、0.92であった。
 また、得られた化合物の組成を、ICP発光分光分析法および不活性ガス溶融-赤外線吸収法およびイオンクロマトグラフィーにより求めた。
 その結果、得られた化合物の組成は、Li1.2Mn0.4Co0.41.90.1であった。
 得られた化合物を正極活物質として用いて、上述の実施例1と同様にして、コイン型電池を作製した。
 <参考例1>
 LiMnOとLiCoOを、LiMnO/LiCoO=1/1のモル比でそれぞれ秤量した。
 得られた原料を、適量のφ5mmのジルコニア製ボールと共に、45ccジルコニア製容器に入れ、アルゴングローブボックス内で密閉した。
 次に、上述の原料をアルゴングローブボックスから取り出し、遊星型ボールミルで、600rpmで35時間処理した。
 次に、得られた化合物を、空気中において700℃で1時間、焼成した。
 得られた化合物に対して、粉末X線回折測定を実施した。
 得られた化合物の空間群は、R-3mであった。
 また、得られた化合物における(003)面のピークと(104)面のピークとの積分強度比I(003)/I(104)は、0.75であった。
 また、得られた化合物の組成を、ICP発光分光分析法および不活性ガス溶融-赤外線吸収法およびイオンクロマトグラフィーにより求めた。
 その結果、得られた化合物の組成は、Li1.2Mn0.4Co0.4であった。
 得られた化合物を正極活物質として用いて、上述の実施例1と同様にして、コイン型電池を作製した。
 <電池の評価>
 正極に対する電流密度を0.5mA/cmに設定し、4.5Vの電圧に達するまで、実施例1の電池を充電した。
 その後、放電終止電圧を2.5Vに設定し、0.5mA/cmの電流密度で、実施例1の電池を放電させた。
 実施例1の電池の初回エネルギー密度は、4000Wh/Lであった。
 また、正極に対する電流密度を0.5mA/cmに設定し、4.3Vの電圧に達するまで、比較例1の電池を充電した。
 その後、放電終止電圧を3.0Vに設定し、0.5mA/cmの電流密度で、比較例1の電池を放電させた。
 比較例1の電池の初回エネルギー密度は、2500Wh/Lであった。
 また、同様にして、実施例2~19および比較例2および参考例1のコイン型電池の初回エネルギー密度を測定した。
 以上の結果が、表1に示される。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~19の電池の初回エネルギー密度は、比較例1~2および参考例1の電池の初回エネルギー密度よりも、極めて高い値を有する。
 この理由としては、実施例1~19では、正極活物質におけるリチウム複合酸化物が、F、Cl、N、S、Br、Iからなる群より選択される一種または二種以上の元素を含み、空間群R-3mに属する結晶構造を有し、XRDパターンにおける(003)面のピークと(104)面のピークとの積分強度比I(003)/I(104)が、0.62≦I(003)/I(104)≦0.90、を満たすことが考えられる。これにより、エネルギー密度が向上したと考えられる。
 なお、比較例2では、I(003)/I(104)が0.92である。このため、カチオンミキシングが抑制されることにより、リチウムの三次元的な拡散経路が減少したと考えられる。このため、リチウムの拡散が阻害され、エネルギー密度が低下したと考えられる。
 また、参考例1では、F、Cl、N、Sなどの電気化学的に不活性なアニオンを含まないため、結晶構造が不安定化したと考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例2~3の電池の初回エネルギー密度は、実施例1の電池の初回エネルギー密度よりも、低い。この理由としては、実施例2では、実施例1と比較して、I(003)/I(104)が小さいことが考えられる。すなわち、カチオンミキシングの割合が多く、結晶構造が比較的不安定になったことが考えられる。このため、エネルギー密度が低下したと考えられる。また、実施例3では、実施例1と比較して、I(003)/I(104)が大きいことが考えられる。すなわち、カチオンミキシング量が不十分であり、Liの三次元的な拡散経路が阻害されたことが考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例5~6の電池の初回エネルギー密度は、実施例1の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例5では、実施例1と比較して、α/βの値が大きいことが考えられる。すなわち、酸素の酸化還元による容量が過剰となることや、電気化学的に不活性なアニオンの影響が小さくなり、Liが脱離した際に構造が不安定化したことが考えられる。このため、エネルギー密度が低下したと考えられる。また、実施例6では、実施例1と比較して、α/βの値が小さいことが考えられる。すなわち、酸素の酸化還元による電荷補償量が低下することや、電気化学的に不活性なアニオンの影響が大きくなり、電子伝導性が低下したことが考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例7の電池の初回エネルギー密度は、実施例6の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例7では、実施例6と比較して、α/βの値がさらに小さいことが考えられる。すなわち、酸素の酸化還元による電荷補償量が低下することや、電気化学的に不活性なアニオンの影響が大きくなり、電子伝導性が低下したことが考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例8~9の電池の初回エネルギー密度は、実施例1の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例8では、Li以外のカチオン元素がMnのみであるため、酸素の脱離が進行しやすく、結晶構造が不安定化したことが考えられる。このため、エネルギー密度が低下したと考えられる。また、実施例9では、カチオン元素として、Coの代わりに、Coよりも酸素との軌道の重なりが少ないNiを用いたため、酸素の酸化還元反応による容量が十分に得られなかったことが考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例10~13の電池の初回エネルギー密度は、実施例5の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例10~13では、Fの代わりに、Fよりも電気陰性度の低いアニオンを用いたため、カチオン-アニオンの相互作用が弱くなったことが考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例14の電池の初回エネルギー密度は、実施例1の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例14では、実施例1と比較して、x/yの値が小さい(x/y=1)ため、Liのパーコレーションパスが適切に確保されず、Liイオンの拡散性が低下したことが考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例15の電池の初回エネルギー密度は、実施例1の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例15では、実施例1と比較して、x/yの値が大きい(x/y=3)ことが考えられる。このため、電池の初回充電において、結晶構造内のLiが過剰に引き抜かれ、結晶構造が不安定化したことが考えられる。このため、放電で挿入されるLi量が低下したと考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例16の電池の初回エネルギー密度は、実施例1の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例16では、実施例1と比較して、x/yの値が小さく(x/y=0.5)、(x+y)/(α+β)の値が小さい((x+y)/(α+β)=0.75)ことが考えられる。すなわち、合成時のLi欠損により、Mn及びCoが規則配列することで、Liイオンのパーコレーションパスが十分に確保できず、Liイオンの拡散性が低下したことが考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例17の電池の初回エネルギー密度は、実施例1の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例17では、実施例1と比較して、(x+y)/(α+β)の値が大きい((x+y)/(α+β)=1.15)ことが考えられる。すなわち、初期構造のアニオン欠損により、充電時における酸素脱離が進行し、結晶構造が不安定化したことが考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例18の電池の初回エネルギー密度は、実施例1の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例18では、実施例1と比較して、x/yの値が大きい(x/y=1.99)ことが考えられる。このため、電池の初回充電において、結晶構造内のLiが過剰に引き抜かれ、結晶構造が不安定化したことにより、放電で挿入されるLi量が低下したことが考えられる。このため、エネルギー密度が低下したと考えられる。
 また、表1に示されるように、実施例19の電池の初回エネルギー密度は、実施例1の電池の初回エネルギー密度よりも、低い。
 この理由としては、実施例19では、実施例1と比較して、(x+y)/(α+β)の値が小さい((x+y)/(α+β)=0.95)ことが考えられる。このため、合成時のわずかなLi欠損により、Mn及びCoが規則配列することで、Liイオンのパーコレーションパスが十分に確保できず、Liイオンの拡散性が低下したことが考えられる。また、実施例19では、実施例1と比較して、I(003)/I(104)が小さいことが考えられる。すなわち、カチオンミキシングの割合が多く、結晶構造が比較的不安定になったことが考えられる。このため、エネルギー密度が低下したと考えられる。
 本開示の正極活物質は、二次電池などの電池の正極活物質として、利用されうる。
 10 電池
 11 ケース
 12 正極集電体
 13 正極活物質層
 14 セパレータ
 15 封口板
 16 負極集電体
 17 負極活物質層
 18 ガスケット
 21 正極
 22 負極

Claims (22)

  1.  F、Cl、N、S、Br、及びIからなる群より選択される少なくとも1種を含有するリチウム複合酸化物を含み、
     前記リチウム複合酸化物の結晶構造は空間群R-3mに属し、
     前記リチウム複合酸化物のXRDパターンにおける、(104)面のピークに対する(003)面のピークの積分強度比I(003)/I(104)が、0.62≦I(003)/I(104)≦0.90、を満たす、
    正極活物質。
  2.  0.67≦I(003)/I(104)≦0.85、を満たす、
    請求項1に記載の正極活物質。
  3.  前記リチウム複合酸化物は、Mnをさらに含有する、
    請求項1または2に記載の正極活物質。
  4.  前記リチウム複合酸化物は、F、Cl、N、及びSからなる群より選択される少なくとも1種を含有する、
    請求項1から3のいずれか1項に記載の正極活物質。
  5.  前記リチウム複合酸化物は、Fを含有する、
    請求項4に記載の正極活物質。
  6.  前記リチウム複合酸化物は、組成式LiMeαβ(ここで、前記Meは、Mn、Co、Ni、Fe、Al、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、及びPからなる群より選択される少なくとも1種であり、前記Xは、F、Cl、N、S、Br、及びIからなる群より選択される少なくとも1種であり、0.5≦x≦1.5、 0.5≦y≦1.0、 1≦α<2、かつ、0<β≦1)で表される、
    請求項1または2に記載の正極活物質。
  7.  前記Meは、Mn、Co、及びNiからなる群より選択される少なくとも1種を含む、
    請求項6に記載の正極活物質。
  8.  前記Meは、Mnを含む、
    請求項7に記載の正極活物質。
  9.  前記Meに対する前記Mnの割合が、40モル%以上である、
    請求項8に記載の正極活物質。
  10.  前記Xは、F、Cl、N、及びSからなる群より選択される少なくとも1種を含む、
    請求項6から9のいずれか一項に記載の正極活物質。
  11.  前記Xは、Fを含む、
    請求項10に記載の正極活物質。
  12.  1.67≦α≦1.95、を満たす、
    請求項6から11のいずれか一項に記載の正極活物質。
  13.  0.05≦β≦0.33、を満たす、
    請求項6から12のいずれか一項に記載の正極活物質。
  14.  0.5≦x/y≦3.0、を満たす、
    請求項6から13のいずれか一項に記載の正極活物質。
  15.  1.5≦x/y≦2.0、を満たす、
    請求項14に記載の正極活物質。
  16.  5≦α/β≦39、を満たす、
    請求項6から15のいずれか一項に記載の正極活物質。
  17.  9≦α/β≦19、を満たす、
    請求項16に記載の正極活物質。
  18.  0.75≦(x+y)/(α+β)≦1.15、を満たす、
    請求項6から17のいずれか一項に記載の正極活物質。
  19.  前記リチウム複合酸化物を、主成分として含む、
    請求項1から18のいずれか一項に記載の正極活物質。
  20.  請求項1から19のいずれか一項に記載の正極活物質を含む正極と、
     負極と、
     電解質と、を備える、
    電池。
  21.  前記負極は、リチウムイオンを吸蔵および放出しうる負極活物質、または、リチウム金属を負極活物質として溶解および析出させうる材料を含み、
     前記電解質は、非水電解液である、
    請求項20に記載の電池。
  22.  前記負極は、リチウムイオンを吸蔵および放出しうる負極活物質、または、リチウム金属を負極活物質として溶解および析出させうる材料を含み、
     前記電解質は、固体電解質である、
    請求項20に記載の電池。
PCT/JP2017/041590 2017-03-06 2017-11-20 正極活物質、および、電池 WO2018163518A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019504321A JP6979594B2 (ja) 2017-03-06 2017-11-20 正極活物質、および、電池
EP17900203.5A EP3595059A1 (en) 2017-03-06 2017-11-20 Positive electrode active material, and cell
CN201780084633.7A CN110214390A (zh) 2017-03-06 2017-11-20 正极活性物质以及电池
US16/558,332 US20200006749A1 (en) 2017-03-06 2019-09-03 Positive-electrode active material containing lithium composite oxide, and battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017041776 2017-03-06
JP2017-041776 2017-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/558,332 Continuation US20200006749A1 (en) 2017-03-06 2019-09-03 Positive-electrode active material containing lithium composite oxide, and battery including the same

Publications (1)

Publication Number Publication Date
WO2018163518A1 true WO2018163518A1 (ja) 2018-09-13

Family

ID=63447462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041590 WO2018163518A1 (ja) 2017-03-06 2017-11-20 正極活物質、および、電池

Country Status (5)

Country Link
US (1) US20200006749A1 (ja)
EP (1) EP3595059A1 (ja)
JP (1) JP6979594B2 (ja)
CN (1) CN110214390A (ja)
WO (1) WO2018163518A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049803A1 (ja) * 2018-09-05 2020-03-12 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
US20200395628A1 (en) * 2019-05-27 2020-12-17 International Business Machines Corporation 3D Textured Composite Silicon Anode & Fluorinated Lithium Compound Electrochemical Cell
WO2021033852A1 (ko) * 2019-08-16 2021-02-25 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
US11171327B2 (en) 2018-01-17 2021-11-09 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and covering material and battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163519A1 (ja) * 2017-03-06 2018-09-13 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2018198410A1 (ja) 2017-04-24 2018-11-01 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP6990855B2 (ja) 2017-05-29 2022-01-12 パナソニックIpマネジメント株式会社 正極活物質、および、電池
CN114709413A (zh) * 2022-04-14 2022-07-05 远景动力技术(江苏)有限公司 三元材料及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195514A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 非水溶媒二次電池の製造方法
WO2002040404A1 (fr) * 2000-11-16 2002-05-23 Hitachi Maxell, Ltd. Oxyde composite a teneur en lithium et cellule secondaire non aqueuse utilisant cet oxyde, et procede de fabrication associe
JP2004087487A (ja) * 2002-08-05 2004-03-18 Matsushita Electric Ind Co Ltd 正極活物質およびこれを含む非水電解質二次電池
WO2008126370A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 非水電解質二次電池用活物質およびその製造法
JP2011129269A (ja) * 2009-12-15 2011-06-30 Toyota Central R&D Labs Inc 非水系二次電池用負極活物質、非水系二次電池及び使用方法
JP2016026981A (ja) 2014-06-27 2016-02-18 旭硝子株式会社 リチウム含有複合酸化物およびその製造方法
JP2016110889A (ja) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質、およびリチウムイオン二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69819395T2 (de) * 1997-04-15 2004-09-09 Sanyo Electric Co., Ltd., Moriguchi Positivelektrodenmaterialf für Verwendung nichtwässriger Elektrolyt enthaltender Batterie und Verfahren zur seiner Herstellung und nichtwässriger Elektrolyt enthaltende Batterie
US7435402B2 (en) * 2002-11-01 2008-10-14 U Chicago Argonne Llc Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries
CN102368547B (zh) * 2011-09-05 2016-05-25 东莞新能源科技有限公司 一种锂离子电池及其正极活性材料
JP5962429B2 (ja) * 2012-10-22 2016-08-03 ソニー株式会社 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN103094523A (zh) * 2013-01-17 2013-05-08 东莞新能源科技有限公司 一种锂离子电池正极材料及其制备方法
EP3054508A4 (en) * 2013-10-03 2017-08-16 GS Yuasa International Ltd. Positive electrode active material for lithium secondary battery, method for manufacturing same, lithium secondary battery electrode, lithium secondary battery, and electric storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195514A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 非水溶媒二次電池の製造方法
WO2002040404A1 (fr) * 2000-11-16 2002-05-23 Hitachi Maxell, Ltd. Oxyde composite a teneur en lithium et cellule secondaire non aqueuse utilisant cet oxyde, et procede de fabrication associe
JP2004087487A (ja) * 2002-08-05 2004-03-18 Matsushita Electric Ind Co Ltd 正極活物質およびこれを含む非水電解質二次電池
WO2008126370A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 非水電解質二次電池用活物質およびその製造法
JP2011129269A (ja) * 2009-12-15 2011-06-30 Toyota Central R&D Labs Inc 非水系二次電池用負極活物質、非水系二次電池及び使用方法
JP2016026981A (ja) 2014-06-27 2016-02-18 旭硝子株式会社 リチウム含有複合酸化物およびその製造方法
JP2016110889A (ja) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質、およびリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595059A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171327B2 (en) 2018-01-17 2021-11-09 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and covering material and battery
WO2020049803A1 (ja) * 2018-09-05 2020-03-12 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
US20200395628A1 (en) * 2019-05-27 2020-12-17 International Business Machines Corporation 3D Textured Composite Silicon Anode & Fluorinated Lithium Compound Electrochemical Cell
US11961958B2 (en) * 2019-05-27 2024-04-16 International Business Machines Corporation 3D textured composite silicon anode and fluorinated lithium compound electrochemical cell
WO2021033852A1 (ko) * 2019-08-16 2021-02-25 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지

Also Published As

Publication number Publication date
EP3595059A4 (en) 2020-01-15
JPWO2018163518A1 (ja) 2020-01-16
US20200006749A1 (en) 2020-01-02
CN110214390A (zh) 2019-09-06
JP6979594B2 (ja) 2021-12-15
EP3595059A1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
US11271200B2 (en) Positive-electrode active material containing lithium composite oxide, and battery including the same
JP6952247B2 (ja) 正極活物質、および、電池
JP6979594B2 (ja) 正極活物質、および、電池
US11557760B2 (en) Positive-electrode active material containing lithium composite oxide, and battery including the same
JP6979586B2 (ja) 電池用正極活物質、および、電池用正極活物質を用いた電池
JP6952251B2 (ja) 電池用正極活物質、および、電池
US11605814B2 (en) Positive-electrode active material containing lithium composite oxide, and battery including the same
JP6964246B2 (ja) 正極活物質、および、正極活物質を用いた電池
JP2019029343A (ja) 正極活物質、および、電池
JP2019029344A (ja) 正極活物質、および、電池
JP6876955B2 (ja) 正極活物質、および、電池
JP6941811B2 (ja) 電池用正極活物質、および、電池
JP6876956B2 (ja) 正極活物質、および、電池
US20210143424A1 (en) Positive electrode active material and battery including the same
JP7142302B2 (ja) 正極活物質およびそれを備えた電池
JP7142301B2 (ja) 正極活物質およびそれを備えた電池
WO2019230149A1 (ja) 正極活物質およびそれを備えた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017900203

Country of ref document: EP

Effective date: 20191007