WO2012120563A1 - 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法 - Google Patents

薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法 Download PDF

Info

Publication number
WO2012120563A1
WO2012120563A1 PCT/JP2011/001358 JP2011001358W WO2012120563A1 WO 2012120563 A1 WO2012120563 A1 WO 2012120563A1 JP 2011001358 W JP2011001358 W JP 2011001358W WO 2012120563 A1 WO2012120563 A1 WO 2012120563A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor film
crystalline semiconductor
light intensity
transistor array
array device
Prior art date
Application number
PCT/JP2011/001358
Other languages
English (en)
French (fr)
Inventor
齋藤 徹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012522314A priority Critical patent/JP5891504B2/ja
Priority to PCT/JP2011/001358 priority patent/WO2012120563A1/ja
Priority to US13/476,460 priority patent/US8535994B2/en
Publication of WO2012120563A1 publication Critical patent/WO2012120563A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a thin film transistor array device, an organic EL display device, and a method for manufacturing the thin film transistor array device.
  • TFTs Thin film transistors
  • active matrix drive type display devices such as liquid crystal display devices or organic EL (Electro Luminescence) display devices.
  • thin film transistors are arranged in an array to form a thin film transistor array device.
  • a driving transistor for driving the pixel and a switching transistor for selecting the pixel are formed.
  • a self-luminous organic EL display device including an organic EL element has different performance requirements for a driving transistor and a switching transistor, and the driving transistor has excellent on characteristics for improving the driving performance of the organic EL element.
  • a switching transistor requires excellent off characteristics.
  • Patent Document 1 discloses an organic EL display device including two types of thin film transistors having different characteristics in one pixel.
  • two types of transistors having different characteristics are formed in the same pixel by making the crystallinity of the semiconductor film in the channel layer different between the driving transistor and the switching transistor.
  • Patent Document 1 a semiconductor film (channel layer) and a source / drain electrode in a switching transistor are formed after forming a crystallized semiconductor film (channel layer) and a source / drain electrode on a gate insulating film as a driving transistor. is doing. That is, after the driving transistor is completed, a switching layer is manufactured by separately forming a channel layer, a source / drain electrode, and the like.
  • Patent Document 1 since the driving transistor and the switching transistor are manufactured by separate processes, there is a problem that the number of steps for manufacturing a thin film transistor is significantly increased, and cost and tact are increased.
  • the present invention has been made in view of the above problems, and an object thereof is a thin film transistor array device including thin film transistors having different performance without increasing the number of steps, an organic EL display device, and a method for manufacturing the thin film transistor.
  • an aspect of the thin film transistor array device includes a base material, a first gate electrode disposed above the base material, the first gate electrode above the base material, and the first gate electrode.
  • a second gate electrode having the same material and thickness as the first gate electrode, and a gate insulating film disposed on the first gate electrode and the second gate electrode;
  • a first crystalline semiconductor film disposed above the first gate electrode and on the gate insulating film and configured by crystal grains having a first average crystal grain size; and on the first crystalline semiconductor film
  • the crystal grains of the second crystalline semiconductor film irradiate a common non-crystalline semiconductor film with a continuous wave laser having a continuous light intensity distribution having a convex shape in both the short axis and long axis directions.
  • the region in which the temperature of the amorphous semiconductor film by the laser irradiation is in a temperature range equal to or higher than the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film has a certain width.
  • the temperature of the amorphous semiconductor film by the laser irradiation is in a temperature range lower than the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film.
  • the crystal grains of the first crystalline semiconductor film are irradiated with the non-crystalline semiconductor film by using the inner region of the certain width, and the common
  • a second step of crystallizing the non-crystalline semiconductor film by cooling the non-crystalline semiconductor film, and the crystal grains of the second crystalline semiconductor film are formed in the same step as the first step.
  • the temperature of the common non-crystalline semiconductor film is changed between the first crystalline semiconductor film and the second crystalline semiconductor film by using the external region having the constant width by the laser irradiation used in the first step. Heat to below the melting point and It is formed by melt crystallization of a crystalline semiconductor film.
  • the thin film transistor array device includes two thin film transistors each having a channel layer formed of semiconductor films which are formed at the same time and have different crystal structures. Accordingly, a thin film transistor array device including a first thin film transistor having excellent on characteristics and a second thin film transistor having excellent off characteristics can be realized.
  • semiconductors having different crystal structures can be obtained by irradiating a common non-crystalline semiconductor film with a continuous wave laser having a desired continuous light intensity distribution.
  • the film can be formed by the same process.
  • two desired thin film transistors having different transistor characteristics can be formed without increasing the number of steps. For example, in each pixel of the display device, a driving transistor that requires on-performance and a switching transistor that requires off-performance can be collectively formed.
  • FIG. 1 is a diagram illustrating a configuration example of a CW laser beam crystallization apparatus according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing a long axis profile of CW laser light in the embodiment of the present invention.
  • FIG. 2B is a diagram showing a short-axis profile of CW laser light in the embodiment of the present invention.
  • FIG. 2C is a diagram showing a short-axis profile of CW laser light in the embodiment of the present invention (enlarged view of FIG. 2B).
  • FIG. 3 is a diagram showing the relationship between temperature and energy for silicon crystallization.
  • FIG. 4 is a diagram for explaining the growth mechanism of the Ex crystal structure.
  • FIG. 1 is a diagram illustrating a configuration example of a CW laser beam crystallization apparatus according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing a long axis profile of CW laser light in the embodiment of the present invention.
  • FIG. 2B is a diagram showing
  • FIG. 5A is a diagram showing the relationship between the energy density of CW laser light and the on-current (or silicon crystal structure) of the TFT.
  • FIG. 5B is a diagram showing a relationship between absorbed energy per unit volume of silicon and on-current (or silicon crystal structure).
  • FIG. 6 is a diagram showing a long axis profile of the CW laser light in the present embodiment.
  • FIG. 7 is a thin film transistor array substrate including the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 8 is a plan view showing a configuration of a pixel in the thin film transistor array substrate shown in FIG.
  • FIG. 9 is a circuit configuration diagram of a pixel of the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing the structure of the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of one pixel of the organic EL display device according to the embodiment of the present invention.
  • FIG. 12A is a flowchart of a method for manufacturing a thin film transistor array device according to an embodiment of the present invention.
  • FIG. 12B is a flowchart of the crystalline semiconductor film forming step in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13A is a plan view and a cross-sectional view schematically showing a base material preparation step in the method of manufacturing a thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13B is a plan view and a cross-sectional view schematically showing a gate metal film forming step in the method for manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13C is a plan view and a cross-sectional view schematically showing a gate electrode forming step in the method for manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13D is a plan view and a cross-sectional view schematically showing a gate insulating film forming step in the method for manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13E is a plan view and a cross-sectional view schematically showing the amorphous semiconductor film forming step in the method for manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13F is a plan view and a cross-sectional view schematically showing a crystalline semiconductor film forming step (laser irradiation step) in the method for manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13G is a plan view and a cross-sectional view schematically showing a crystalline semiconductor film forming step (crystallization step) in the method for manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13H is a plan view and a cross-sectional view schematically showing the amorphous semiconductor film forming step in the method for manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13I is a plan view and a cross-sectional view schematically showing a channel layer island formation step in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13J is a plan view and a cross-sectional view schematically showing an impurity-doped amorphous semiconductor film forming step in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13H is a plan view and a cross-sectional view schematically showing the amorphous semiconductor film forming step in the method for manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13I is a plan view and a cross-sectional view schematically showing a channel layer island formation step in the method of manufacturing the thin film transistor array device according to the embodiment
  • FIG. 13K is a plan view and a cross-sectional view schematically showing a source / drain metal film forming step in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13L is a plan view and a cross-sectional view schematically showing a source electrode and drain electrode formation step in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 13M is a plan view and a cross-sectional view schematically showing a channel layer etching step in the method for manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 14 is a diagram schematically showing how the entire display unit is beam-scanned in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 15 is a diagram showing a beam profile and a laser irradiation position in a pixel in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 16 is a diagram showing current characteristics with respect to crystal grain size in the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 17A is a diagram showing the relationship between the on-current of the driving TFT and the light emission luminance of the organic EL display device.
  • FIG. 17B is a diagram showing a relationship between the off-state current of the switching TFT and the gradation variation of the organic EL display device.
  • FIG. 18 is a diagram showing a beam profile and a laser irradiation position in the method for manufacturing the thin film transistor array device according to the first modification of the present invention.
  • FIG. 19 is a diagram showing a beam profile and a laser irradiation position in the method of manufacturing the thin film transistor array device according to the second modification of the present invention.
  • FIG. 20 is a diagram showing a beam profile and a laser irradiation position in the method for manufacturing the thin film transistor array device according to the third modification of the present invention.
  • FIG. 21 is a diagram showing a beam profile and a laser irradiation position in the method for manufacturing the thin film transistor array device according to the fourth modification of the present invention.
  • FIG. 22 is an external view of a display device incorporating a display panel device according to an embodiment of the present invention.
  • One aspect of the thin film transistor array device includes a base material, a first gate electrode disposed above the base material, and disposed in parallel with the first gate electrode above the base material.
  • a second gate electrode having the same material and thickness as the first gate electrode, a gate insulating film disposed on the first gate electrode and the second gate electrode, and above the first gate electrode.
  • Second crystalline semiconductor composed of grains And a second source electrode and a second drain electrode formed on the second crystalline semiconductor film, the crystal grains of the first crystalline semiconductor film and the crystal grains of the second crystalline semiconductor film Is formed by irradiating a common non-crystalline semiconductor film with a laser using a continuous wave laser having a continuous light intensity distribution having a convex shape in both the short axis and long axis directions.
  • the region where the temperature of the amorphous semiconductor film by irradiation is in a temperature range equal to or higher than the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film has a certain width, and the certain width A convex shape on the major axis so that the temperature of the amorphous semiconductor film by laser irradiation is in a temperature range below the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film Continuous light intensity of The crystal grains of the first crystalline semiconductor film irradiate the amorphous semiconductor film with a laser beam using the inner region of the constant width to control the temperature of the common amorphous semiconductor film.
  • a first step of melting the amorphous semiconductor film by heating to a temperature equal to or higher than a melting point of the first crystalline semiconductor film and the second crystalline semiconductor film; and cooling the melted amorphous semiconductor film.
  • the second step of crystallizing the non-crystalline semiconductor film wherein the crystal grains of the second crystalline semiconductor film are used in the first step in the same step as the first step.
  • the first crystalline semiconductor film having a large average crystal grain size and the second crystalline semiconductor film having a small average crystal grain size use a continuous wave laser having a convex continuous light intensity distribution.
  • the common amorphous semiconductor film is collectively formed by laser irradiation. That is, the first crystalline semiconductor film having a large average crystal grain size is irradiated with a laser beam on the common non-crystalline semiconductor film using an inner region having a certain width of the light intensity distribution, thereby the common non-crystalline semiconductor film.
  • the film is formed by heating to a temperature equal to or higher than the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film to cause melt crystallization.
  • the second crystalline semiconductor film having a small average crystal grain size is formed by using the external region having a certain width of the light intensity distribution by laser irradiation in the same process as the crystallization process of the first crystalline semiconductor film.
  • the amorphous semiconductor film is formed by melting and crystallizing by heating to a temperature lower than the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film.
  • the inner region of the constant width in the light intensity distribution has a light intensity of 77%. To 100% of the region.
  • the inner portion of the constant width in the light intensity distribution is preferably a region having an energy density in the range of 7.4 [J / cm 2 ] to 9.6 [J / cm 2 ].
  • the internal region having the constant width is a region having an absorption energy per unit volume in a range of 4.1 ⁇ 10 5 [J / cm 3 ] to 5.3 ⁇ 10 5 [J / cm 3 ]. preferable.
  • the first crystallinity having a desired crystal grain size is obtained by crystallizing a common amorphous semiconductor film in a temperature range (melting range in the case of silicon) of the amorphous semiconductor film or higher.
  • a semiconductor film can be formed. Accordingly, a high on-current can be realized in a TFT having the first crystalline semiconductor film as a channel layer.
  • the first average crystal grain size is preferably 60 nm to 1 ⁇ m.
  • the first average crystal grain size in the first crystalline semiconductor film is in the range of 60 nm to 1 ⁇ m.
  • the external region having the certain width in the light intensity distribution has a light intensity of 61%. To 77% is preferable.
  • the external of the constant width in the light intensity distribution is preferably a region having an energy density in the range of 5.8 [J / cm 2 ] to 7.4 [J / cm 2 ].
  • the external region having the constant width may be a region having an absorption energy per unit volume ranging from 3.2 ⁇ 10 5 [J / cm 3 ] to 4.1 ⁇ 10 5 [J / cm 3 ]. preferable.
  • a film can be formed. Therefore, it is possible to realize a thin film transistor array device including a TFT with excellent on characteristics using the first crystalline semiconductor film as a channel layer and a TFT with excellent off characteristics using the second crystalline semiconductor film as a channel layer.
  • the temperature range below the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film is the first crystalline semiconductor film and the second crystalline property. It is preferable that the temperature is lower than the melting point of the semiconductor film and a temperature range equal to or higher than the melting point of the amorphous semiconductor film, and the second average crystal grain size is 40 nm to 60 nm.
  • the second average crystal grain size in the second crystalline semiconductor film is in the range of 40 nm to 60 nm.
  • the material constituting the first crystalline semiconductor film, the second crystalline semiconductor film, and the amorphous semiconductor film is silicon, and the first crystalline semiconductor film
  • the temperature range below the melting point of the semiconductor film and the second crystalline semiconductor film and above the melting point of the non-crystalline semiconductor film is 1100 ° C. to 1414 ° C.
  • the crystal grains of the second crystalline semiconductor film are
  • the amorphous semiconductor film is formed by crystallization through a supercooled liquid state.
  • the crystal grains of the second crystalline semiconductor film made of silicon can be formed by crystallizing the common amorphous semiconductor film in the Ex range. That is, the second crystalline semiconductor film can be formed by crystallization through a supercooled liquid state in a temperature range (1100 ° C. to 1414 ° C.) between the melting point of amorphous silicon and the melting point of silicon.
  • the external region having the certain width in the light intensity distribution has a light intensity of 44%. To 61% of the region.
  • the external of the constant width in the light intensity distribution is preferably a region having an energy density in the range of 4.3 [J / cm 2 ] to 5.8 [J / cm 2 ].
  • the external region having the constant width is a region having an absorption energy per unit volume in a range of 2.4 ⁇ 10 5 [J / cm 3 ] to 3.2 ⁇ 10 5 [J / cm 3 ]. preferable.
  • the second crystal having a desired crystal grain size is obtained by crystallizing the common amorphous semiconductor film in a temperature range lower than the melting point of the amorphous semiconductor film, for example, in the SPC range in the case of silicon.
  • a conductive semiconductor film can be formed. Therefore, it is possible to realize a thin film transistor array device including a TFT with excellent on characteristics using the first crystalline semiconductor film as a channel layer and a TFT with excellent off characteristics using the second crystalline semiconductor film as a channel layer. .
  • the temperature range below the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film is less than or equal to the melting point of the amorphous semiconductor film.
  • the second average crystal grain size is preferably in the range of 25 nm to 35 nm.
  • the second average crystal grain size in the second crystalline semiconductor film is in the range of 25 nm to 35 nm.
  • the material constituting the first crystalline semiconductor film, the second crystalline semiconductor film, and the amorphous semiconductor film is silicon, and the amorphous semiconductor
  • the temperature range below the melting point of the film and above the crystal growth temperature of the amorphous semiconductor film is 600 ° C. to 1100 ° C.
  • the crystal grains of the second crystalline semiconductor film are crystallized in the amorphous semiconductor film. It is preferable to form by solid phase growth.
  • the crystal grains of the second crystalline semiconductor film made of silicon can be formed by crystallizing the common amorphous semiconductor film in the SPC range. That is, the second crystalline semiconductor film can be formed by solid-phase growth and crystallization in a temperature range (600 ° C. to 1100 ° C.) below the melting point of amorphous silicon.
  • the first crystalline semiconductor film preferably includes a mixed crystal of an amorphous structure and a crystalline structure.
  • the second crystalline semiconductor film includes a mixed crystal of an amorphous structure and a crystalline structure.
  • the first crystalline semiconductor film (or the second crystalline semiconductor film) is a crystalline semiconductor containing a mixed crystal of an amorphous structure and a crystalline structure.
  • the average crystal grain size is 25 nm to 1 ⁇ m. And a region of an amorphous structure existing around the crystal grain. Thereby, surface roughness can be reduced.
  • the second source electrode or the second drain electrode is electrically connected to the first gate electrode.
  • the first thin film transistor having the first crystalline semiconductor film as the channel layer and the separate second thin film transistor having the second crystalline semiconductor film as the channel layer can be connected with the shortest wiring length.
  • the electrical resistance between the first thin film transistor and the second thin film transistor can be minimized. Therefore, a thin film transistor array device that can operate at high speed and has low power loss can be realized.
  • an aspect of the organic EL display device is an organic EL display device including any one aspect of the thin film transistor array device described above, wherein the thin film transistor array device is provided in units of a plurality of pixels.
  • the thin film transistor array substrate disposed, the interlayer insulating film disposed above the thin film transistor array substrate, the lower electrode disposed on the pixel unit above the interlayer insulating film, the thin film transistor array device, and the lower electrode A contact, and a bank disposed above the interlayer insulating film and having an opening, an organic light emitting layer formed in the opening of the bank, and an upper electrode disposed above the organic light emitting layer
  • the first crystalline semiconductor film included in the thin film transistor array device controls light emission of the pixels.
  • the second crystalline semiconductor film included in the thin film transistor array device and constitutes a channel layer of the switching transistor in the driving circuit.
  • the first crystalline semiconductor film constitutes the channel layer of the driving transistor
  • the second crystalline semiconductor film constitutes the channel layer of the switching transistor.
  • Another aspect of the organic EL display device is an organic EL display device including any of the thin film transistor array devices described above, wherein the thin film transistor array device is arranged in a pixel unit of a plurality of pixels.
  • the first crystalline semiconductor film included in the thin film transistor array device controls light emission of the pixel.
  • the second crystalline semiconductor film constitutes the channel layer of the driving transistor
  • the first crystalline semiconductor film constitutes the channel layer of the switching transistor. Also good.
  • a first step of preparing a base material, a second step of forming a first gate electrode above the base material, and an upper side of the base material A third step of forming a second gate electrode of the same material and thickness as the first gate electrode in parallel with the first gate electrode; and on the first gate electrode and the second gate electrode.
  • the crystal grains of the crystalline semiconductor film and the crystal grains of the second crystalline semiconductor film are formed by using a continuous wave laser having a continuous light intensity distribution having a convex shape in both the minor axis and the major axis.
  • the non-crystalline semiconductor film is irradiated with laser and the temperature of the common non-crystalline semiconductor film is heated to the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film or higher.
  • the crystal grains of the second crystalline semiconductor film are formed in the same step as the first step using the external region having the constant width by the laser irradiation used in the first step.
  • Common amorphous semiconductor The film is formed by heating the temperature of the film below the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film to melt and crystallize the crystals in the amorphous semiconductor film.
  • the first crystalline semiconductor film and the second crystalline semiconductor film having different average crystal grain sizes are a non-crystalline semiconductor film that uses a continuous wave laser having a convex continuous light intensity distribution as a common amorphous semiconductor film. Can be formed simultaneously. That is, the first crystalline semiconductor film having a large average crystal grain size is irradiated with a laser beam on the common non-crystalline semiconductor film using an inner region having a certain width of the light intensity distribution, thereby the common non-crystalline semiconductor film. The film is formed by heating to a temperature equal to or higher than the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film to cause melt crystallization.
  • the second crystalline semiconductor film having a small average crystal grain size is formed by using the external region having a certain width of the light intensity distribution by laser irradiation in the same process as the crystallization process of the first crystalline semiconductor film.
  • the amorphous semiconductor film is formed by melting and crystallizing by heating to a temperature lower than the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film.
  • the inner region having the certain width in the light intensity distribution is light intensity. Is preferably in the range of 77% to 100%.
  • the maximum value of the energy density in the light intensity distribution is 9.6 [J / cm 2 ]
  • the constant width in the light intensity distribution is preferably a region having an energy density in the range of 7.4 [J / cm 2 ] to 9.6 [J / cm 2 ].
  • the light intensity distribution when the maximum value of absorbed energy per unit volume in the light intensity distribution is 5.3 ⁇ 10 5 [J / cm 3 ], the light
  • the inner region having the constant width in the intensity distribution is a region having an absorption energy per unit volume in a range of 4.1 ⁇ 10 5 [J / cm 3 ] to 5.3 ⁇ 10 5 [J / cm 3 ].
  • the first crystallinity having a desired crystal grain size is obtained by crystallizing a common amorphous semiconductor film in a temperature range (melting range in the case of silicon) of the amorphous semiconductor film or higher.
  • a semiconductor film can be formed. Accordingly, a high on-current can be realized in a TFT having the first crystalline semiconductor film as a channel layer.
  • the first average crystal grain size is preferably 60 nm to 1 ⁇ m.
  • the first average crystal grain size in the first crystalline semiconductor film is in the range of 60 nm to 1 ⁇ m.
  • the external region having the certain width in the light intensity distribution is light intensity. Is preferably in the range of 61% to 77%.
  • the maximum value of the energy density in the light intensity distribution is 9.6 [J / cm 2 ]
  • the constant width in the light intensity distribution is preferably a region having an energy density in the range of 5.8 [J / cm 2 ] to 7.4 [J / cm 2 ].
  • the light intensity distribution when the maximum value of absorbed energy per unit volume in the light intensity distribution is 5.3 ⁇ 10 5 [J / cm 3 ], the light
  • the external region having the constant width in the intensity distribution is a region having an absorption energy per unit volume ranging from 3.2 ⁇ 10 5 [J / cm 3 ] to 4.1 ⁇ 10 5 [J / cm 3 ]. Preferably there is.
  • the second crystal having a desired crystal grain size is obtained by crystallizing the common amorphous semiconductor film in a temperature range lower than the melting point of the amorphous semiconductor film, for example, in the Ex range if silicon.
  • a conductive semiconductor film can be formed. Therefore, it is possible to realize a thin film transistor array device including a TFT with excellent on characteristics using the first crystalline semiconductor film as a channel layer and a TFT with excellent off characteristics using the second crystalline semiconductor film as a channel layer. .
  • the temperature range below the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film is the first crystalline semiconductor film and the first crystalline semiconductor film. It is preferable that the temperature is lower than the melting point of the two-crystalline semiconductor film and a temperature range equal to or higher than the melting point of the non-crystalline semiconductor film, and the second average crystal grain size is 40 nm to 60 nm.
  • the second average crystal grain size in the second crystalline semiconductor film is in the range of 40 nm to 60 nm.
  • the material constituting the first crystalline semiconductor film, the second crystalline semiconductor film, and the amorphous semiconductor film is silicon
  • the temperature range below the melting point of the one crystalline semiconductor film and the second crystalline semiconductor film and above the melting point of the non-crystalline semiconductor film is 1100 ° C. to 1414 ° C.
  • the crystal grains are preferably formed by crystallizing the amorphous semiconductor film through a supercooled liquid state.
  • the crystal grains of the second crystalline semiconductor film made of silicon can be formed by crystallizing the common amorphous semiconductor film in the Ex range. That is, the second crystalline semiconductor film can be formed by crystallization through a supercooled liquid state in a temperature range (1100 ° C. to 1414 ° C.) between the melting point of amorphous silicon and the melting point of silicon.
  • the external region having the certain width in the light intensity distribution is light intensity. Is preferably in the range of 44% to 61%.
  • the maximum value of the energy density in the light intensity distribution is 9.6 [J / cm 2 ]
  • the constant width in the light intensity distribution is preferably a region having an energy density in the range of 4.3 [J / cm 2 ] to 5.8 [J / cm 2 ].
  • the light intensity distribution when the maximum value of absorbed energy per unit volume in the light intensity distribution is 5.3 ⁇ 10 5 [J / cm 3 ], the light
  • the external region having the constant width in the intensity distribution is a region having an absorption energy per unit volume ranging from 2.4 ⁇ 10 5 [J / cm 3 ] to 3.2 ⁇ 10 5 [J / cm 3 ]. Preferably there is.
  • the second crystal having a desired crystal grain size is obtained by crystallizing the common amorphous semiconductor film in a temperature range lower than the melting point of the amorphous semiconductor film, for example, in the SPC range in the case of silicon.
  • a conductive semiconductor film can be formed. Therefore, it is possible to realize a thin film transistor array device including a TFT with excellent on characteristics using the first crystalline semiconductor film as a channel layer and a TFT with excellent off characteristics using the second crystalline semiconductor film as a channel layer. .
  • a temperature range below the melting point of the first crystalline semiconductor film and the second crystalline semiconductor film is equal to or lower than the melting point of the amorphous semiconductor film. It is preferable that the temperature range is equal to or higher than the crystal growth temperature of the amorphous semiconductor film, and the second average crystal grain size is 25 nm to 35 nm.
  • the second average crystal grain size in the second crystalline semiconductor film is in the range of 25 nm to 35 nm.
  • the material constituting the first crystalline semiconductor film, the second crystalline semiconductor film, and the amorphous semiconductor film is silicon
  • the temperature range below the melting point of the crystalline semiconductor film and above the crystal growth temperature of the non-crystalline semiconductor film is 600 ° C. to 1100 ° C.
  • the crystal grains of the second crystalline semiconductor film are the non-crystalline semiconductor film It is preferably formed by solid-phase growth of crystals inside.
  • the crystal grains of the second crystalline semiconductor film made of silicon can be formed by crystallizing the common amorphous semiconductor film in the SPC range. That is, the second crystalline semiconductor film can be formed by solid-phase growth and crystallization in a temperature range (600 ° C. to 1100 ° C.) below the melting point of amorphous silicon.
  • the first crystalline semiconductor film and the second crystalline semiconductor film are separated between the fifth step and the sixth step. It is preferable to include a process.
  • the first thin film transistor having the first crystalline semiconductor film as a channel layer and the second thin film transistor having the second crystalline semiconductor film as a channel layer can be operated without being affected by each other.
  • the first crystalline semiconductor film and the second crystalline semiconductor film are separated. It is preferable to remove the boundary region with the crystalline semiconductor film by patterning.
  • the boundary region between the first crystalline semiconductor film and the second crystalline semiconductor film is removed by patterning to separate the first crystalline semiconductor film and the second crystalline semiconductor film.
  • the convex continuous light intensity distribution is a Gaussian distribution.
  • the first crystalline semiconductor film is composed of crystal grains having the first average crystal grain size, and the second average crystal grain size is smaller than the first average crystal grain size.
  • Each of the second crystalline semiconductor films can be formed with a desired average crystal grain size.
  • the amorphous semiconductor film is irradiated with laser in a microsecond order.
  • the irradiation time for irradiating the non-crystalline semiconductor film with the continuous wave laser beam can be extended, so the atomic structure is crystallized from the amorphous state in the non-crystalline semiconductor film, and the amorphous semiconductor film is further amorphous. Sufficient time can be secured for the atoms to rearrange from the (amorphous) state.
  • a time for laser irradiation on the amorphous semiconductor film is 10 to 100 microseconds.
  • the irradiation time for irradiating the non-crystalline semiconductor film with the continuous wave laser beam can be extended. Therefore, in the non-crystalline semiconductor film, the atomic structure is rearranged from an amorphous state and crystallized. It is possible to secure a sufficient time for conversion.
  • a base material a first gate electrode disposed above the base material, and above the base material and in parallel with the first gate electrode.
  • a second gate electrode having the same material and thickness as the first gate electrode, a gate insulating film disposed on the first gate electrode and the second gate electrode, and the first gate electrode.
  • These crystal grains are formed by irradiating a common amorphous semiconductor film with a laser using a continuous wave laser having a continuous light intensity distribution that is convex in both the short axis and long axis directions.
  • the region where the temperature of the non-crystalline semiconductor film by the laser irradiation is in a temperature range of 1414 ° C. or higher has a certain width, and the non-crystal by the laser irradiation is in the outer region having the certain width.
  • a convex continuous light intensity distribution in the major axis is defined so that the temperature of the crystalline semiconductor film falls within a temperature range of less than 1414 ° C., and the crystal grains of the first crystalline semiconductor film.
  • a second step of crystallizing the non-crystalline semiconductor film by cooling the non-crystalline semiconductor film, and crystal grains of the second crystalline semiconductor film are formed in the same step as the first step.
  • the temperature of the common non-crystalline semiconductor film is heated to less than 1414 ° C. by using the external region having a certain width, and crystals are formed in the non-crystalline semiconductor film.
  • the material that is formed by solid phase growth and forms the first crystalline semiconductor film, the second crystalline semiconductor film, and the amorphous semiconductor film is silicon.
  • a first step of preparing a base material, a second step of forming a first gate electrode above the base material, and an upper side of the base material A third step of forming a second gate electrode of the same material and thickness as the first gate electrode in parallel with the first gate electrode; and on the first gate electrode and the second gate electrode.
  • the crystal grains of the crystalline semiconductor film and the crystal grains of the second crystalline semiconductor film are formed by using a continuous wave laser having a continuous light intensity distribution having a convex shape in both the minor axis and the major axis.
  • a region formed by performing laser irradiation on the crystalline semiconductor film so that the temperature of the amorphous semiconductor film by the laser irradiation is in a temperature range of 1414 ° C. or higher has a certain width, and In the outer region of a certain width, a convex continuous light intensity distribution on the major axis is defined so that the temperature of the amorphous semiconductor film by the laser irradiation falls within a temperature range of less than 1414 ° C.
  • the crystal grains of the second crystalline semiconductor film are formed in the same step as the first step in the fifth step by the laser irradiation used in the first step.
  • the first crystalline semiconductor film is formed by heating the temperature of the common amorphous semiconductor film to less than 1414 ° C. using an external region and solid-phase-growing crystals in the amorphous semiconductor film.
  • the second result The material constituting the crystalline semiconductor film and the amorphous semiconductor film is silicon.
  • the first crystal made of silicon having different average crystal grain diameters is obtained by irradiating a common non-crystalline semiconductor film with a continuous wave laser having a convex continuous light intensity distribution.
  • the conductive semiconductor film and the second crystalline semiconductor film can be formed simultaneously. That is, the first crystalline semiconductor film having a large average crystal grain size is irradiated with a laser beam on the common non-crystalline semiconductor film using an inner region having a certain width of the light intensity distribution, thereby the common non-crystalline semiconductor film.
  • the film is formed by heating to 1414 ° C. or higher to cause melt crystallization.
  • the second crystalline semiconductor film having a small average crystal grain size is formed by using the external region having a certain width of the light intensity distribution by laser irradiation in the same process as the crystallization process of the first crystalline semiconductor film.
  • the crystalline semiconductor film is formed by heating to below 1414 ° C. to cause solid phase growth of crystals in the amorphous semiconductor film.
  • a base material a first gate electrode disposed above the base material, and the first gate electrode above the base material and arranged in parallel.
  • a second gate electrode having the same material and thickness as the first gate electrode, a gate insulating film disposed on the first gate electrode and the second gate electrode, and the first gate electrode.
  • the crystalline grains of the crystalline semiconductor film should be irradiated to the common amorphous semiconductor film by using a continuous wave laser having a continuous light intensity distribution that is convex in both the short axis and long axis directions.
  • the region where the temperature of the common non-crystalline semiconductor film formed by the laser irradiation is in a temperature range equal to or higher than the melting point of the crystalline semiconductor film has a constant width, and the outside of the constant width In the region, the continuous light intensity distribution having a convex shape on the long axis so that the temperature of the common non-crystalline semiconductor film by the laser irradiation falls within the temperature range below the crystal growth temperature of the non-crystalline semiconductor film.
  • the crystal grains of the crystalline semiconductor film are irradiated with a laser beam to the common non-crystalline semiconductor film using the inner region of the constant width, and the temperature of the common non-crystalline semiconductor film is set.
  • Crystalline semiconductor A first step of melting the common non-crystalline semiconductor film by heating to a melting point of or higher, and cooling the common non-crystalline semiconductor film by cooling the common non-crystalline semiconductor film.
  • a second step of crystallizing, and the non-crystalline semiconductor film is formed in the same step as the first step using the external region having the constant width by laser irradiation used in the first step. Irradiation is performed in a temperature range below the crystal growth temperature of the common amorphous semiconductor film.
  • the crystalline semiconductor film and the amorphous semiconductor film are formed by irradiating the common amorphous semiconductor film with a continuous wave laser having a continuous light intensity distribution that is convex upward.
  • a thin film transistor array device can be realized. That is, the crystalline semiconductor film is formed by irradiating the common non-crystalline semiconductor film with a laser beam using an inner region having a certain width of the light intensity distribution, and the common non-crystalline semiconductor film is melted by the melting point of the crystalline semiconductor film. It is formed by heating and melting and crystallizing as described above.
  • the non-crystalline semiconductor film is obtained by irradiating the common non-crystalline semiconductor film with the non-crystalline semiconductor using an external region having a certain width of the light intensity distribution by laser irradiation in the same process as the crystallization process of the crystalline semiconductor film. It is formed by heating in a temperature range below the crystal growth temperature of the film.
  • the inner region of the constant width in the light intensity distribution has a light intensity of 77%. It is preferable that the external region having the constant width in the light intensity distribution is a region having a light intensity of 44% or less.
  • the inner portion of the constant width in the light intensity distribution is a region having an energy density in the range of 7.4 [J / cm 2 ] to 9.6 [J / cm 2 ], and the external region having the constant width in the light intensity distribution has an energy density of It is preferable that it is the area
  • the internal region having the constant width is a region having an absorption energy per unit volume in a range of 4.1 ⁇ 10 5 [J / cm 3 ] to 5.3 ⁇ 10 5 [J / cm 3 ]
  • the external region having the constant width in the light intensity distribution is preferably a region having an absorbed energy per unit volume of 2.4 ⁇ 10 5 [J / cm 3 ] or less.
  • the desired non-crystalline semiconductor film is crystallized in a temperature range (melting range in the case of silicon) above the melting point of the non-crystalline semiconductor film by laser irradiation with an internal region in the light intensity distribution.
  • a crystalline semiconductor film having a crystal grain size of can be formed.
  • an amorphous semiconductor film can be obtained by laser irradiation from an external region in the light intensity distribution. Accordingly, an on-current can be improved in a TFT using a crystalline semiconductor film as a channel layer, and an off-current can be reduced in a TFT using an amorphous semiconductor film as a channel layer.
  • the predetermined average crystal grain size is preferably 60 nm to 1 ⁇ m.
  • the average crystal grain size in the crystalline semiconductor film is in the range of 60 nm to 1 ⁇ m.
  • a TFT using a crystalline semiconductor film as a channel layer can obtain a higher on-state current than a TFT using an amorphous semiconductor film such as an amorphous silicon film as a channel layer.
  • the non-crystalline semiconductor film is amorphous, and the temperature range below the crystal growth temperature of the common non-crystalline semiconductor film is a temperature range of 600 ° C. or less. Preferably there is.
  • the crystalline semiconductor film preferably includes a mixed crystal of an amorphous structure and a crystalline structure.
  • the crystalline semiconductor film is a crystalline semiconductor including a mixed crystal of an amorphous structure and a crystalline structure.
  • the second source electrode or the second drain electrode is electrically connected to the first gate electrode.
  • the first thin film transistor having the crystalline semiconductor film as the channel layer and the separate second thin film transistor having the amorphous semiconductor film as the channel layer can be connected with the shortest wiring length.
  • the electrical resistance between the first thin film transistor and the second thin film transistor can be minimized. Therefore, a thin film transistor array device that can operate at high speed and has low power loss can be realized.
  • another aspect of the organic EL display device is an organic EL display device including any one of the thin film transistor array devices described above, wherein the thin film transistor array device is arranged in a pixel unit of a plurality of pixels.
  • the crystalline semiconductor film included in the thin film transistor array device controls light emission of the pixel.
  • the crystalline semiconductor film constitutes the channel layer of the drive transistor, and the amorphous semiconductor film constitutes the channel layer of the switching transistor.
  • the average crystal grain size of the crystalline semiconductor film in the driving transistor can be increased from, for example, about 60 nm to 1 ⁇ m, so that the current flowing in the channel layer in the driving transistor can be increased.
  • the light emission current of the pixel can be increased, so that the light emission luminance of the organic EL display device can be increased.
  • another aspect of the method for manufacturing a thin film transistor according to the present invention includes a first step of preparing a base material, a second step of forming a first gate electrode above the base material, and an upper side of the base material.
  • a continuous light intensity distribution having a convex shape on the major axis is defined so that the crystal grains of the crystalline semiconductor film use the inner region of the constant width in the fifth step.
  • the common non- A step 5-1 for melting the common amorphous semiconductor film by irradiating the crystalline semiconductor film with a laser and heating the temperature of the common amorphous semiconductor film to a melting point or higher of the crystalline semiconductor film; A step 5-2 of crystallizing the common non-crystalline semiconductor film by cooling the melted common non-crystalline semiconductor film, and the non-crystalline semiconductor film is formed by the first step.
  • the laser irradiation used in the first step is performed in a temperature range equal to or lower than the crystal growth temperature of the common non-crystalline semiconductor film using the outer region having the constant width. .
  • the crystalline semiconductor film and the amorphous semiconductor film are formed at the same time by irradiating the common amorphous semiconductor film with a continuous wave laser having a continuous upward light intensity distribution.
  • the crystalline semiconductor film is formed by irradiating the common non-crystalline semiconductor film with a laser beam using an inner region having a certain width of the light intensity distribution, and the common non-crystalline semiconductor film is melted by the melting point of the crystalline semiconductor film. It is formed by melt crystallization by heating as described above.
  • the amorphous semiconductor film has a temperature equal to or lower than the crystal growth temperature of the amorphous semiconductor film using an external region having a certain width of the light intensity distribution by laser irradiation in the same process as the crystallization process of the crystalline semiconductor film.
  • a non-crystalline semiconductor film common to the range is formed by heating.
  • CW laser photocrystallization equipment First, a CW laser beam crystallization apparatus 500 used when manufacturing a thin film transistor array apparatus according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a diagram showing a configuration example of a CW laser beam crystallization apparatus in the present embodiment.
  • FIG. 2A is a diagram showing a long axis profile of CW laser light in the present embodiment.
  • 2B and 2C are diagrams showing the short axis profile of the CW laser light in the present embodiment, and
  • FIG. 2C is a diagram (enlarged view) in which the position range of FIG. 2B is reduced.
  • a CW laser beam crystallization apparatus 500 in this embodiment is used for a sample 501 in which an amorphous semiconductor film (amorphous semiconductor film) such as an amorphous silicon film is formed on a glass substrate.
  • amorphous semiconductor film amorphous semiconductor film
  • This is an apparatus that irradiates a microsecond order using CW (Continuous Wave) laser light, which is continuous laser light.
  • the CW laser beam crystallization apparatus 500 includes a laser apparatus 510, a long-axis molded lens 520, a mirror 530, a short-axis molded lens 540, a condenser lens 550, a beam profiler 560, and a quartz glass 570.
  • the laser device 510 oscillates CW laser light which is continuous wave laser light.
  • the laser device 510 irradiates the substrate with, for example, green laser light or blue laser light in a relatively long time of 10 to 100 microseconds instead of a short time of 10 to 100 nanoseconds.
  • the CW laser beam oscillated by the laser apparatus 510 passes through the long-axis molded lens 520, and the irradiation direction is changed by the mirror 530.
  • the CW laser light whose irradiation direction has been changed by the mirror 530 passes through the short axis molding lens 540, is condensed by the condenser lens 550, and is irradiated onto the sample 501. Further, most of the CW laser light collected by the condenser lens 550 passes through the quartz glass 570 and is irradiated to the sample 501, but part of the CW laser light condensed by the condenser lens 550 is A beam profile is measured by entering the beam profiler 560.
  • the beam profile of the CW laser beam condensed by the condenser lens 550 that is, the beam profile of the CW laser beam irradiated onto the sample 501 by the CW laser beam crystallization apparatus 500 is as shown in FIGS. 2A to 2C.
  • the light intensity distribution has a convex shape which is a Gaussian distribution on both the long axis and the short axis.
  • the light intensity distribution on the long axis is a Gaussian distribution in a wide range with respect to the short axis when the position is 0 to 6000 ⁇ m. As shown in FIGS.
  • the light intensity distribution along the short axis is a Gaussian distribution in a narrow range of positions of 0 to 60 ⁇ m.
  • the vertical axis represents the relative intensity when the laser light intensity at the position where the laser light intensity of the profile of the CW laser light is maximum is 100%.
  • the beam profile of the CW laser beam condensed by the condenser lens 550 is a light intensity distribution having a Gaussian distribution having a convex shape on the short axis and the long axis.
  • This light intensity distribution is shaped by passing the CW laser light oscillated by the laser device 510 through the short axis molded lens 540 and the long axis molded lens 520. Further, based on the beam profile measured by the beam profiler 560, the long-axis molded lens 520 and the short-axis molded lens 540 are set so that the beam profile of the CW laser light has a Gaussian distribution light intensity distribution in the short axis and the long axis. Can be adjusted.
  • the beam profile of the CW laser light that is condensed by the condenser lens 550 and applied to the sample 501 typically has a Gaussian distribution of light intensity, but is not limited thereto.
  • the CW laser light irradiated onto the sample 501 may be a continuous light intensity distribution that is a hanging-shaped and convex.
  • the beam profile of the CW laser beam condensed by the condenser lens 550 typically has a Gaussian light intensity distribution on both the short axis and the long axis.
  • the light intensity distribution of the CW laser light oscillated by the device that oscillates the CW laser light is originally a Gaussian distribution or an equivalent thereof. For this reason, it is not necessary to introduce a special additional device or component into the optical system of the CW laser beam crystallization apparatus 500. Therefore, the CW laser beam crystallization apparatus 500 uses a Gaussian type light beam with a short axis and a long axis. CW laser light having an intensity distribution can be irradiated relatively easily.
  • Crystal structure of non-crystalline semiconductor film By using the CW laser beam crystallization apparatus 500 configured as described above to irradiate the amorphous semiconductor film with the CW laser beam, crystalline semiconductor films having different crystal structures can be obtained.
  • amorphous silicon thin film (amorphous silicon film) is used as an amorphous semiconductor film and annealed by irradiating CW laser light, crystallization occurs in the SPC range, Ex range, or melting range depending on the beam profile of the CW laser light.
  • a silicon thin film having a crystal structure can be obtained.
  • the SPC (Solid Phase Crystallization) range is a temperature range where the amorphous silicon thin film is crystallized in a range below the melting point of amorphous silicon, that is, in a temperature range of 600 ° C. to 1100 ° C. That is, SPC is a phenomenon that crystallizes by solid phase growth in a temperature range below the melting point of amorphous silicon, that is, in a temperature range of 600 ° C. to 1100 ° C.
  • the crystal structure of silicon by SPC has an average crystal grain size of about 25 nm to 35 nm, for example.
  • the Ex (Explosive Nucleation) range is a temperature range in which the amorphous silicon thin film is crystallized at a temperature not lower than the melting point of amorphous silicon and not higher than the melting point of silicon, that is, in a temperature range of 1100 ° C. to 1414 ° C.
  • Ex is a phenomenon that crystallizes through a supercooled liquid state in a temperature range not lower than the melting point of amorphous silicon and not higher than the melting point of silicon, that is, a temperature range of 1100 ° C. to 1414 ° C.
  • the crystal structure of silicon by Ex has, for example, an average crystal grain size of about 40 nm to 60 nm.
  • the melting range is a temperature range above the melting point of silicon, that is, a temperature range above 1414 ° C. Note that, when amorphous silicon is crystallized by melting in the melting range and cooling, the average crystal grain size becomes p-Si (polycrystalline silicon) of about 60 nm to 1 ⁇ m.
  • FIG. 3 is a diagram showing the relationship between temperature and energy for silicon crystallization.
  • the horizontal axis indicates temperature
  • the vertical axis indicates energy (heat).
  • the amorphous silicon is heated by, for example, laser light irradiation and is in the SPC range, that is, the temperature range of 600 ° C. to 1100 ° C.
  • the amorphous silicon is solid-phase grown and microcrystallized. Note that silicon crystallized through this SPC range becomes SPC crystalline silicon having an average crystal grain size of 25 nm to 35 nm.
  • the temperature in the Ex range ie, silicon
  • the melting point of silicon is in the range of 1414 ° C. or lower.
  • the crystal grain size of silicon slightly expands from the crystal obtained by solid phase growth (crystalline silicon of SPC). This is thought to be due to the fact that when the temperature of silicon is equal to or higher than the melting point of amorphous silicon, the silicon is partially melted to increase the particle size. Note that silicon crystallized through the Ex range becomes crystalline silicon in the Ex range with an average crystal grain size of 40 nm to 60 nm.
  • the melting range that is, the temperature range of 1414 ° C. or higher, which is the melting point of silicon
  • crystals obtained in the Ex range are given thermal energy as latent heat at the melting point of silicon and melt (become liquid phase).
  • silicon crystallized through the melting range is crystallized with volume expansion after melting and volume reduction, and becomes an average crystal grain size of p-Si (polycrystalline silicon) having a diameter of 60 nm or more.
  • FIG. 4 is a diagram for explaining the growth mechanism of the Ex crystal structure.
  • the crystallization mechanism differs between the case of crystallization in the SPC range, the case of crystallization through the Ex range exceeding the SPC range, and the case of crystallization through the melting range.
  • the particle size will be different.
  • the inventors of the present invention crystallize an amorphous semiconductor film with CW laser light to form a crystalline semiconductor film, produce a TFT using the crystalline semiconductor film as a channel layer, and obtain the energy density of the CW laser light.
  • the change in the on-current (Ion) of the TFT with respect to was investigated. As a result, a curve showing the relationship as shown in FIGS. 5A and 5B could be obtained.
  • FIG. 5A is a diagram showing the relationship between the energy density of CW laser light and the on-current (or silicon crystal structure) of the TFT.
  • FIG. 5B is a diagram showing the relationship between absorbed energy per unit volume of silicon and on-current (or silicon crystal structure).
  • an amorphous silicon film amorphous silicon film
  • the on-current of the TFT increases as the energy density increases. That is, it is understood that the carrier mobility is increased by increasing the particle size in the silicon crystal structure as the energy density is increased.
  • a plurality of singular points exist in the curve shown in FIG. 5A, and these singular points represent the boundaries of the crystal structure in silicon, that is, the boundaries of the amorphous, SPC range, Ex range, and melting range.
  • the crystal structure of silicon changes in this order: amorphous, SPC range, Ex range, and melting range.
  • the amorphous silicon film irradiated with the CW laser beam is an amorphous crystal having an average crystal grain size of less than 25 nm. It is an organization. That is, the amorphous silicon film irradiated with the laser is heated in a temperature range below the crystal growth temperature (600 ° C.) of the amorphous silicon.
  • the amorphous silicon film is crystallized in the SPC range, and the average crystal grain size is 25 nm.
  • a crystalline silicon film having a thickness of less than 35 nm can be obtained. That is, the amorphous silicon film irradiated with the laser is heated in a temperature range (600 ° C. to 1100 ° C.) above the crystal growth temperature of the amorphous silicon and below the melting point of the amorphous silicon, so that the crystal is solid-phase grown in the amorphous silicon film. To crystallize.
  • the amorphous silicon film is crystallized in the Ex range, and the average crystal grain size is 40 nm or more and 60 nm. Less crystalline silicon film can be obtained. That is, the amorphous silicon film irradiated with the laser is heated in a temperature range (1100 ° C. to 1414 ° C.) not lower than the melting point of amorphous silicon and not higher than the melting point of silicon, and crystallizes through a supercooled liquid state.
  • the amorphous silicon film is crystallized in the melting range, and the average crystal grain size is 60 nm or more and 1 ⁇ m. Less crystalline silicon film can be obtained. That is, the laser-irradiated amorphous silicon film is heated and crystallized in a temperature range equal to or higher than the melting point of silicon (1414 ° C.).
  • the amorphous silicon film is irradiated with laser by setting the energy density of the CW laser light to 9.6 [J / cm 2 ] or more, the silicon film is ablated and does not function as a channel layer of the TFT. Therefore, in the present embodiment, the maximum value of the energy density is 9.6 [J / cm 2 ].
  • FIG. 5B is obtained by converting FIG. 5A into a general formula of silicon, and the energy density (horizontal axis) shown in FIG. 5A is expressed as absorbed energy per unit volume of silicon.
  • this conversion will be described.
  • the laser irradiation power density is P [kW / cm 2 ]
  • the laser scanning speed is ss [mm / s]
  • the minor axis width of the beam profile in the laser light is S [ ⁇ m]
  • S 30 [ ⁇ m]
  • the energy density Eirr on the horizontal axis in FIG. 5A is converted into FIG. 5B.
  • the crystal structure crystallized in the SPC range is 25 nm or more and less than 35 nm.
  • the crystal structure crystallized in the Ex range is used.
  • the average crystal grain size is 40 nm or more and less than 60 nm.
  • the crystal structure is crystallized in the melting range,
  • the average crystal grain size is 60 nm or more and less than 1 ⁇ m.
  • the silicon thin film becomes ablated and does not function as a channel layer of the TFT.
  • FIG. 6 shows the long-axis profile of the CW laser beam in this embodiment, and shows the relationship between the laser intensity and the crystal structure of silicon.
  • CW laser light having a convex light intensity distribution As shown in FIG. 6, a CW laser light having a convex light intensity distribution, as shown in FIG. 6, a CW laser light having a long-axis beam profile of a Gaussian type (hereinafter referred to as “long-axis Gaussian type CW laser light”).
  • long-axis Gaussian type CW laser light When the amorphous semiconductor film is irradiated using, the amorphous semiconductor film is crystallized into a crystal structure corresponding to the light intensity of the CW laser beam. That is, the beam profile of the CW laser light is configured so that the light intensity varies depending on the position (region) of the light intensity distribution of the CW laser light, and therefore differs from the amorphous semiconductor film by one laser irradiation. Laser energy can be applied simultaneously.
  • a portion irradiated with a region having a high light intensity in the light intensity distribution has a relatively high temperature, and the light intensity in the light intensity distribution
  • the portion irradiated in the weak region has a relatively low temperature.
  • the heating temperature of the amorphous semiconductor film at the time of laser irradiation can be varied depending on the position of the light intensity distribution of the CW laser light, semiconductor films having different crystal structures can be formed simultaneously.
  • a non-crystalline silicon thin film is irradiated with a laser beam using a long-axis Gaussian CW laser beam, it becomes an amorphous, SPC range, Ex range, or melt range crystal structure depending on the light intensity in the light intensity distribution. be able to.
  • Such a beam profile of CW laser light can be set as desired using FIGS. 5A and 5B according to the crystal structure to be produced.
  • the maximum light intensity in the light intensity distribution of the long-axis Gaussian CW laser light is formed. Is set so that the light intensity is 77% to 100% and the inner region (laser light inner region) WIN having a certain width in the light intensity distribution is set to be 100%.
  • the outer region (laser beam outer region) W OUT outside the inner region having a certain width is set so that the light intensity is 61% to 77%.
  • the laser beam outer region also has a certain width different from the certain width of the laser beam inner region.
  • the output energy density of the CW laser light is an internal region in the light intensity distribution (laser light inner region) W iN may be set so that the energy density is in the range of the region of 7.4 [J / cm 2] from 9.6m [J / cm 2] for, also external in the light intensity distribution
  • the region W OUT may be set so that the energy density is in the range of 5.8 [J / cm 2 ] to 7.4 m [J / cm 2 ].
  • the light intensity distribution of the long-axis Gaussian CW laser beam is constant.
  • laser irradiated portion by the internal region W iN width indicates the temperature distribution in the melting range (1414 ° C. or higher), it is possible to obtain the first crystalline semiconductor film crystallized is cooled by melting in a melting range .
  • the portion of the light intensity distribution of the long-axis Gaussian CW laser beam irradiated by the external region W OUT exhibits a temperature distribution in the Ex range (1100 ° C. to 1414 ° C.), and is supercooled in the Ex range.
  • a second crystalline semiconductor film crystallized through the liquid state can be obtained.
  • the first crystalline semiconductor film having a crystal structure crystallized in the melting range and the second crystalline semiconductor film having a crystal structure crystallized in the Ex range are simultaneously formed using a common non-crystalline semiconductor film. Can be formed.
  • the crystal grains of the crystalline silicon film (first crystalline semiconductor film) in the region crystallized in the melting range have an average crystal grain size of 60 nm to 1 ⁇ nm while maintaining in-plane uniformity.
  • the crystal grains of the crystalline silicon film (second crystalline semiconductor film) in the region crystallized in the Ex range have an average crystal grain size of 40 nm to 60 nm while maintaining in-plane uniformity.
  • a crystalline semiconductor film having two regions having different crystal structures (crystal grain sizes).
  • the beam profile shown in FIG. 6 is an example, and a desired semiconductor film having two regions having different crystal structures can be obtained by setting the beam profile as desired.
  • irradiate the amorphous semiconductor film with a laser in a microsecond order such as 10 to 100 microseconds.
  • a laser in a microsecond order such as 10 to 100 microseconds.
  • irradiate the long-axis Gaussian CW laser beam with a laser beam in a microsecond order such as 10 to 100 microseconds.
  • the irradiation time of the long-axis Gaussian CW laser light can be increased by irradiating the long-axis Gaussian CW laser light with the microsecond order instead of the nanosecond order.
  • sufficient time from the amorphous state of the amorphous silicon film to the rearrangement and crystallization of the atoms from the amorphous state can be secured, so the crystallinity having a crystal structure with excellent in-plane uniformity.
  • a semiconductor film can be formed.
  • FIG. 7 shows a thin film transistor array substrate (TFT array substrate) 200 including the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 8 is a plan view showing a configuration of a pixel in the TFT array substrate of FIG.
  • the TFT array substrate 200 is an active matrix substrate, and includes a display unit 220 including a plurality of pixels 20 arranged in a matrix.
  • 7 shows the TFT array substrate 200 on which the two display portions 220 are formed. By cutting the TFT array substrate 200, two TFT array substrates can be obtained.
  • the pixels 20 are illustrated only at a part of the four corners of the display unit 220, and the pixels 20 are actually arranged in a matrix in the display unit 220.
  • the pixel 20 is partitioned by a source wiring 21, a power supply wiring 22, and a gate wiring 23.
  • One pixel 20 (unit pixel) includes a driving TFT 10a that is a first thin film transistor, and a first TFT.
  • a switching TFT 10b which is two thin film transistors, is formed.
  • the driving TFT (first thin film transistor) 10a is a driving transistor for driving an organic EL element (not shown), and a first gate electrode 3a and a first gate formed in an island shape on the first gate electrode 3a.
  • a channel layer 50a and a first source electrode 8a and a first drain electrode 9a formed on the first channel layer 50a are provided.
  • the switching TFT (second thin film transistor) 10b is a switching transistor for selecting supply of a video signal to the pixel, and is formed in an island shape on the second gate electrode 3b and the second gate electrode 3b.
  • a second channel layer 50b and a second source electrode 8b and a second drain electrode 9b formed on the second channel layer 50b are provided.
  • the first drain electrode 9a is electrically connected to the power supply wiring 22 through the contact 24, and the first gate electrode 3a is connected through the contact 25. It is electrically connected to the second drain electrode 9b of the switching TFT 10b.
  • the first source electrode 8a of the driving TFT 10a is electrically connected to the lower electrode of the organic EL element.
  • the second source electrode 8b is electrically connected to the source wiring 21 through the contact 26, and the second gate electrode 3b is electrically connected to the gate wiring 23 through the contact 27.
  • the second drain electrode 9b of the switching TFT 10b is electrically connected to the first gate electrode 3a of the driving TFT 10a.
  • the first gate electrode 3a of the driving TFT 10a and the power supply wiring 22 are configured to overlap with each other via an insulating film in the vertical direction of the substrate, and form a capacitor 29 (not shown).
  • the second drain electrode 9b and the first gate electrode 3a are electrically connected.
  • the driving TFT 10a and the switching TFT 10b can be connected with the shortest wiring length.
  • the electrical resistance between the driving TFT 10a and the switching TFT 10b can be minimized. Therefore, a thin film transistor array device that can operate at high speed and has low power loss can be realized.
  • the second drain electrode 9b instead of the second drain electrode 9b, the second source electrode 8b and the first gate electrode 3a may be electrically connected.
  • FIG. 9 is a circuit configuration diagram of a pixel of the thin film transistor array device according to the embodiment of the present invention.
  • the pixel 20 includes a driving TFT 10a, a switching TFT 10b, a capacitor 29, and an organic EL element 30.
  • the first drain electrode 9 a of the driving TFT 10 a is connected to the power supply wiring 22, and the first source electrode 8 a is connected to the anode of the organic EL element 30.
  • the second source electrode 8b of the switching TFT 10b is connected to the source wiring 21, the second gate electrode 3b is connected to the gate wiring 23, and the second drain electrode 9b is the capacitor 29 and the first gate electrode 3a of the driving TFT 10a. It is connected to the.
  • FIG. 10 is a cross-sectional view showing the structure of the thin film transistor array device according to the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along the line Y-Y ′ of FIG.
  • the thin film transistor array device 100 includes a driving TFT 10a and a switching TFT 10b.
  • the driving TFT 10a is a bottom gate type thin film transistor device, and is formed on the substrate 1 in sequence, the undercoat layer 2, the first gate electrode 3a, the gate insulating film 4, the first crystalline semiconductor film 5a, the first An amorphous semiconductor film 6a, a pair of first contact layers 7a, a first source electrode 8a, and a first drain electrode 9a are provided.
  • the first channel layer 50a of the driving TFT 10a is composed of the first crystalline semiconductor film 5a and the first amorphous semiconductor film 6a.
  • the switching TFT 10b is a bottom gate type thin film transistor device, and is formed on the substrate 1 in sequence, an undercoat layer 2, a second gate electrode 3b, a gate insulating film 4, a second crystalline semiconductor film 5b, A second amorphous semiconductor film 6b, a pair of second contact layers 7b, a second source electrode 8b, and a second drain electrode 9b are provided.
  • the second channel layer 50b of the switching TFT is composed of the second crystalline semiconductor film 5b and the second amorphous semiconductor film 6b.
  • the substrate 1 is common to the driving TFT 10a and the switching TFT 10b, and is a glass substrate made of a glass material such as quartz glass, non-alkali glass, or high heat resistance glass.
  • the undercoat layer 2 is used to prevent impurities contained in the substrate 1 from entering the upper semiconductor film or to reduce the influence of heat on the substrate 1 in a high-temperature heat treatment process such as laser annealing. , Formed on the substrate 1.
  • a silicon nitride film, silicon oxide, or silicon oxynitride film can be used as the undercoat layer 2.
  • the first gate electrode 3a and the second gate electrode 3b are patterned in a predetermined shape on the undercoat layer 2.
  • a single layer structure or a multilayer structure of molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), and chromium (Cr) For example, molybdenum tungsten (MoW) can be used.
  • the gate insulating film 4 is an insulating film common to the driving TFT 10a and the switching TFT 10b, and covers the first gate electrode 3a and the second gate electrode 3b on the first gate electrode 3a and the second gate electrode 3b. In this way, it is formed on the entire surface.
  • the gate insulating film 4 for example, silicon oxide, silicon nitride, silicon oxynitride film, aluminum oxide, tantalum oxide, or a laminated film thereof can be used.
  • the first crystalline semiconductor film 5a of the driving TFT 10a is formed on the gate insulating film 4, and is formed by crystallizing the amorphous semiconductor film with CW laser light.
  • the average crystal grain size (first average crystal grain size) of the first crystalline semiconductor film 5a is 60 nm to 1 ⁇ m.
  • the first crystalline semiconductor film 5a may be a silicon thin film containing a mixed crystal of amorphous silicon having an amorphous structure and a crystalline structure of crystalline silicon.
  • the second crystalline semiconductor film 5b of the switching TFT 10b is also formed on the gate insulating film 4, and is formed by crystallizing the amorphous semiconductor film with CW laser light.
  • the average crystal grain size (second average crystal grain size) of the second crystalline semiconductor film 5b is smaller than the average crystal grain size of the first crystalline semiconductor film 5a, and is 40 nm to 60 nm.
  • the second crystalline semiconductor film 5b may also be a silicon thin film containing a mixed crystal of amorphous silicon having an amorphous structure and a crystalline structure of crystalline silicon.
  • the first crystalline semiconductor film 5a and the second crystalline semiconductor film 5b having different crystal grain sizes are simultaneously formed by the same laser irradiation in the same manufacturing process as described later.
  • the first amorphous semiconductor film 6a of the driving TFT 10a and the second amorphous semiconductor film 6b of the switching TFT are formed on the first crystalline semiconductor film 5a and the second crystalline semiconductor film 5b, respectively.
  • Each of them is composed of, for example, an amorphous silicon film (amorphous silicon film) or the like.
  • the pair of first contact layers 7a and the pair of second contact layers 7b are formed on the first amorphous semiconductor film 6a and the second amorphous semiconductor film 6b, respectively.
  • the pair of first contact layers 7a and the pair of second contact layers 7b can be formed of an amorphous semiconductor film containing impurities at a high concentration.
  • the amorphous silicon film is doped with phosphorus (P) as an impurity.
  • N-type semiconductor layer is preferably configured to include a high concentration impurity of 1 ⁇ 10 19 (atm / cm 3 ) or more.
  • the first source electrode 8a and the first drain electrode 9a are formed on the first contact layer 7a.
  • the second source electrode 8b and the second drain electrode 9b are formed on the second contact layer 7b.
  • the first source electrode 8a, the first drain electrode 9a, the second source electrode 8b, and the second drain electrode 9b each have a single layer structure or a multilayer structure made of a conductive material or an alloy thereof, for example, aluminum (Al ), Molybdenum (Mo), tungsten (W), copper (Cu), titanium (Ti), and chromium (Cr).
  • the switching TFT 10b using the second crystalline semiconductor film 5b having relatively small crystal grains as a channel layer can be formed.
  • the ON current can be increased by the first crystalline semiconductor film 5a having large crystal grains. Therefore, the switching TFT 10b can have a higher on-current than a TFT having an amorphous semiconductor film as a channel layer, and can be compared with a TFT having a semiconductor film having a large crystal grain size as a channel layer. The off current can be suppressed. Accordingly, it is possible to realize a thin film transistor array device having the driving TFT 10a having excellent on characteristics and the switching TFT having excellent off characteristics and on characteristics.
  • the first crystalline semiconductor film 5a and the second crystalline semiconductor film 5b are separated from each other. Thereby, inflow of electrons or holes carriers does not occur between the first crystalline semiconductor film 5a and the second crystalline semiconductor film 5b. As a result, the driving TFT 10a using the first crystalline semiconductor film 5a as a channel layer and the switching TFT 10b using the second crystalline semiconductor film 5b as a channel layer can be operated without being affected by each other. .
  • FIG. 11 is a cross-sectional view of one pixel of the organic EL display device according to the embodiment of the present invention.
  • An organic EL display device 300 includes the thin film transistor array device 100 including the above-described driving TFT 10a and the switching TFT 10b, and includes a plurality of pixels in the TFT array substrate 200 shown in FIG. In FIG. 20, the thin film transistor array device 100 is arranged in units of pixels.
  • the organic EL display device 300 includes a first interlayer insulating film 310, a first TFT on a TFT array substrate 200 on which a driving TFT 10a and a switching TFT 10b (not shown) are formed.
  • a two-layer insulating film 320, a first contact portion 330, a second contact portion 340, a bank 350, a lower electrode 360, an organic EL layer 370, and an upper electrode 380 are provided.
  • the driving TFT 10a is illustrated, and the switching TFT 10b is not illustrated.
  • a first interlayer insulating film 310 is formed so as to cover the driving TFT 10a and the switching TFT 10b.
  • a source wiring 21 and a power supply wiring 22 are formed on the first interlayer insulating film 310, and the power supply wiring 22 and the first drain electrode 9 a of the driving TFT 10 a have a first contact penetrating the first interlayer insulating film 310. It is electrically connected via the part 330.
  • a second interlayer insulating film 320 is formed so as to cover the source wiring 21 and the power supply wiring 22.
  • a bank 350 is formed at a boundary portion between adjacent pixels. Therefore, a plurality of banks 350 are formed on the TFT array substrate 200, and an opening 351 is formed by the adjacent banks 350.
  • the organic EL element 30 including the lower electrode 360, the organic EL layer 370, and the upper electrode 380 is formed.
  • the lower electrode 360 is an anode (anode) arranged in pixel units, and is formed on the second interlayer insulating film 320.
  • the lower electrode 360 and the first source electrode 8a of the driving TFT 10a are electrically connected via a second contact portion 340 penetrating the first interlayer insulating film 310 and the second interlayer insulating film 320.
  • the organic EL layer (organic light emitting layer) 370 is formed in units of colors (subpixel columns) or subpixels, and is made of a predetermined organic light emitting material.
  • the upper electrode 380 is a cathode (cathode) that is disposed above the organic EL layer 370 and extends across a plurality of pixels, and is configured by a transparent electrode such as ITO.
  • the organic EL display device 300 since the average crystal grain size of the first crystalline semiconductor film 5a in the driving TFT 10a is 60 nm to 1 ⁇ m, the first channel layer of the driving TFT 10a. The current flowing through 50a can be increased. As a result, since the light emission current of the pixel 20 can be increased, the light emission luminance of the organic EL display device 300 can be increased.
  • the average crystal grain size of the second crystalline semiconductor film 5b in the switching TFT 10b is 40 nm to 60 nm, a TFT that operates at a higher speed than the switching TFT having an amorphous semiconductor film as a channel layer is formed.
  • an off-current can be suppressed as compared with a TFT using a semiconductor film having a large crystal grain size as a channel layer.
  • an organic EL display device having excellent moving image characteristics can be realized. Accordingly, it is possible to realize an organic EL display device that has high emission luminance and can perform high-speed display.
  • FIG. 12A is a flowchart of a method for manufacturing a thin film transistor array device according to an embodiment of the present invention.
  • FIG. 12B is a flowchart of the crystalline semiconductor film forming step in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • the method of manufacturing the thin film transistor array device 100 includes a base material preparation step (S10) as a first step and a first gate electrode formation step (S20) as a second step. ), The second gate electrode forming step (S30) as the third step, the gate insulating film forming step (S40) as the fourth step, and the crystalline semiconductor film forming step (S50) as the fifth step, A source / drain electrode formation step (S60) which is a sixth step is included in this order. Further, as shown in FIG.
  • the crystalline semiconductor film forming step (S50) as the fifth step includes the laser irradiation step (S51) onto the amorphous semiconductor film as the 5-1 step, A non-crystalline semiconductor film crystallization step (S52), which is a two-step process.
  • FIGS. 13A to 13M are a plan view and a cross-sectional view schematically showing each step in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • the left figure represents a plan view
  • the right figure represents a cross-sectional view taken along line Y-Y 'in the plan view.
  • a substrate 1 made of a glass substrate is prepared as a base material (S10). Thereafter, an undercoat layer 2 made of an insulating film such as a silicon nitride film is formed on the substrate 1 by plasma CVD or the like.
  • a gate metal film 3M is formed on the undercoat layer 2 to a thickness of about 50 nm, for example.
  • the gate metal film 3M made of molybdenum tungsten (MoW) is formed by sputtering.
  • the gate metal film 3M is patterned by performing photolithography and wet etching on the gate metal film 3M, and as shown in FIG. 13C, the first gate electrode 3a and the second gate electrode 3b having a predetermined shape are formed. Are formed (S20, S30).
  • the gate insulating film 4 made of silicon dioxide is formed on the first gate electrode 3a and the second gate electrode 3b so as to cover the first gate electrode 3a and the second gate electrode 3b.
  • the gate insulating film 4 can be formed by plasma CVD or the like.
  • an amorphous silicon film is formed on the gate insulating film 4 as an amorphous semiconductor film 5 ⁇ to a thickness of, for example, about 50 nm.
  • the amorphous semiconductor film 5 ⁇ can also be formed by plasma CVD or the like.
  • dehydrogenation is performed as a preparation for irradiating the amorphous semiconductor film 5 ⁇ with the long-axis Gaussian CW laser beam. Specifically, for example, annealing is performed at 400 ° C. to 500 ° C. for 30 minutes. This is because the amorphous semiconductor film 5 ⁇ made of an amorphous silicon film normally contains 5% to 15% of hydrogen as SiH. When the amorphous semiconductor film 5 ⁇ containing hydrogen is crystallized, the amorphous semiconductor film 5 ⁇ is crystallized. This is because hydrogen not only blocks the hands of silicon and inhibits crystallization, but also causes a phenomenon such as bumping.
  • the long-axis Gaussian CW laser beam having the light intensity distribution having the shape shown in FIG. 2A is converted into the amorphous semiconductor film 5 ⁇ .
  • S50 crystallize the amorphous semiconductor film 5 ⁇ (S50).
  • the amorphous semiconductor film 5 ⁇ is irradiated with a long-axis Gaussian CW laser beam set to a beam profile as shown in FIG. 6 (S51). Note that the long-axis Gaussian CW laser light is irradiated in a microsecond order.
  • the inner region W IN of constant width in the light intensity distribution in the long axis Gaussian CW laser beam Laser irradiation is performed so that irradiation is performed.
  • the amorphous semiconductor film 5 ⁇ positioned above the second gate electrode 3b is irradiated with a laser beam so as to be irradiated by the external region W OUT in the light intensity distribution of the long-axis Gaussian CW laser beam. .
  • the region of the non-crystalline semiconductor film 5 ⁇ irradiated by the external region W OUT is a crystalline semiconductor having a crystal structure crystallized in a temperature range (Ex range) of 1100 ° C. to 1414 ° C. It becomes the film Ex.
  • the hydrogen plasma treatment is performed by generating hydrogen plasma with high-frequency power using a gas containing hydrogen gas such as H 2 or H 2 / argon (Ar) as a raw material.
  • an amorphous semiconductor film 6 ⁇ is formed to a thickness of about 100 nm, for example.
  • the crystalline semiconductor film 5Me (first crystalline semiconductor film 5a) and the crystalline semiconductor film 5Ex (second crystalline semiconductor) including the non-laser-irradiated amorphous semiconductor film 5 ⁇ are formed by plasma CVD.
  • An amorphous semiconductor film 6 ⁇ made of an amorphous silicon film is formed on the film 5b).
  • the first crystalline semiconductor film is selectively patterned by selectively patterning the stacked crystalline semiconductor film 5Me and the amorphous semiconductor film 6 ⁇ by performing photolithography and wet etching.
  • 5a and the first amorphous semiconductor film 6a are formed in an island shape.
  • the laminated crystalline semiconductor film 5Ex and amorphous semiconductor film 6 ⁇ are also selectively patterned, and the second crystalline semiconductor film 5b and the second amorphous semiconductor film 6b are also island-shaped.
  • first crystalline semiconductor film 5a first amorphous semiconductor film 6a
  • second crystalline semiconductor film 5b second amorphous semiconductor film 6b
  • the formed second channel layer 50b can be formed.
  • an amorphous semiconductor film made of an amorphous silicon film is formed by plasma CVD or the like, and the amorphous semiconductor film is doped with an impurity to form the first contact layer 7a and An impurity-doped amorphous semiconductor film 7 ⁇ D to be the second contact layer 7b is formed.
  • the impurity for example, a pentavalent element such as phosphorus can be used. Further, doping is performed so that the impurity concentration becomes high.
  • a source / drain metal film 8M is formed on the impurity-doped amorphous semiconductor film 7 ⁇ D.
  • the material of the source / drain metal film 8M is a material constituting the first source electrode 8a, the first drain electrode 9a, the second source electrode 8b, and the second drain electrode 9b.
  • the source / drain metal film 8M having a three-layer structure of MoW / Al / MoW is formed by sputtering.
  • the source / drain metal film 8M and the impurity-doped amorphous semiconductor film 7 ⁇ D are patterned by performing photolithography and wet etching. Thereby, the first source electrode 8a and the first drain electrode 9a, and the second source electrode 8b and the second drain electrode 9b are formed (S60).
  • the thin film transistor array device 100 according to the embodiment of the present invention can be manufactured.
  • the organic EL display device can be manufactured by forming the organic EL layer 370, the upper electrode 380, the source wiring 21, the power supply wiring 22, and the gate wiring 23.
  • FIG. 14 is a diagram schematically illustrating how the entire display unit is beam-scanned in the method of manufacturing the thin film transistor array device according to the embodiment of the present invention.
  • the beam scanning method of the long-axis Gaussian CW laser beam in the above-described embodiment is applied to one row (one line) for a plurality of pixels 20 arranged in a matrix of a plurality of rows and a plurality of columns.
  • Laser irradiation is performed in units. At this time, as described with reference to FIG.
  • the non-crystalline semiconductor film 5 ⁇ is in part a first crystalline semiconductor film 5a of the driving TFT 10a, it is irradiated by an internal region W IN in the light intensity distribution of the CW laser beam so that the, also, for the non-crystalline semiconductor film 5 ⁇ at the portion to be the second crystalline semiconductor film 5b of the switching TFT 10b, is laser irradiated by the laser beam outside the area W oUT of the light intensity distribution of the CW laser beam In this way, a beam scan is performed.
  • FIG. 15 is an enlarged view showing the state of laser irradiation at this time.
  • laser irradiation is performed in units of rows by continuously scanning a plurality of pixels 20 arranged in the row direction.
  • components such as transistor electrodes that are not present at the time of laser irradiation are also illustrated so that the positional relationship between the driving TFT 10a and the switching TFT 10b with respect to the light intensity distribution of the laser light can be understood.
  • beam scanning is sequentially performed in one direction from the left side to the right side, but the first line is in the direction from the left side to the right side, and the next second line is in the direction from the right side to the left side.
  • beam scanning may be performed by alternately folding back each time.
  • FIG. 16 is a diagram showing current characteristics with respect to crystal grain size in the thin film transistor array device according to the embodiment of the present invention.
  • the average crystal grain size of the first crystalline semiconductor film 5a in the first channel layer 50a of the driving TFT 10a is relatively large, 60 nm to 1 ⁇ m. Therefore, the on-current of the driving TFT 10a can be increased. Further, since the average crystal grain size of the second crystalline semiconductor film 5b in the second channel layer 50b of the switching TFT 10b can be made relatively small as 40 to 60 nm, the off-current of the switching TFT 10b can be reduced. it can.
  • the driving TFT 10a having a high on-current and excellent on characteristics and the switching TFT 10b having a low off-current and excellent off characteristics are formed simultaneously. Can do.
  • FIG. 17A is a diagram showing the relationship between the on-current of the driving TFT and the light emission luminance of the organic EL display device.
  • FIG. 17B is a diagram showing the relationship between the off current of the switching TFT and the gradation variation of the organic EL display device.
  • the emission luminance of the organic EL display device increases as the on-current of the driving TFT 10a increases.
  • the gradation variation in the organic EL display device decreases as the off-current of the switching TFT 10b decreases.
  • the reason why the gradation variation is reduced is that the variation in the gate voltage of the driving TFT 10a is reduced as the off-current of the switching TFT 10b is reduced.
  • the on-current of the driving TFT 10a can be increased as described above, so that the light emission luminance of the organic EL display device 300 is increased. Can be made.
  • the off current of the switching TFT 10b can be reduced, the gradation variation in the organic EL display device 300 can be reduced. Thereby, the organic EL display device 300 capable of displaying a high-quality image can be obtained.
  • each beam profile can be changed using the CW laser beam crystallization apparatus shown in FIG.
  • the following modifications are the same as those in the above embodiment except for the crystal structure of the first crystalline semiconductor film 5a and the second crystalline semiconductor film 5b.
  • the laser beam scanning method can be performed by the same method as in the above embodiment.
  • FIG. 18 is a diagram showing a beam profile and a laser irradiation position in the method for manufacturing the thin film transistor array device according to the first modification of the present invention.
  • the channel layer of the driving TFT 10a is such that the amorphous semiconductor film becomes the first crystalline semiconductor film 5a crystallized in the melting range, and the switching TFT 10b.
  • the beam profile of the long-axis Gaussian CW laser beam is set so that the amorphous semiconductor film becomes the second crystalline semiconductor film 5b crystallized in the SPC range.
  • This modification is a case where a crystal structure crystallized in the melting range and a crystal structure crystallized in the SPC range are simultaneously formed.
  • the light of the long-axis Gaussian CW laser beam is formed.
  • the maximum light intensity in the intensity distribution is taken as 100%
  • the internal region W iN of constant width in the light intensity distribution, as well as the light intensity is set to be 77% to 100%
  • the outer area W OUT at is set so that the light intensity is 44% to 61%.
  • the output energy density of the CW laser light is an internal region in the light intensity distribution (laser an optical internal area) W iN may be set so that the energy density is in the range of area of 9.6m [J / cm 2] from 7.4 [J / cm 2], also in the light intensity distribution
  • the external region W OUT may be set so that the energy density is in the range of 4.3 [J / cm 2 ] to 5.8 m [J / cm 2 ].
  • the light intensity distribution of the long-axis Gaussian CW laser beam is constant.
  • laser irradiated portion by the internal region W iN of width heated and melted in a melting range (1414 ° C. or higher), then crystallized by being cooled the first crystalline semiconductor film.
  • the portion irradiated with the laser by the external region W OUT is solid-phase grown in the amorphous silicon film in the SPC range (600 ° C. to 1100 ° C.). As a result, the second crystal semiconductor film is crystallized.
  • the first crystalline semiconductor film having a crystal structure crystallized in the melting range and the second crystalline semiconductor film having a crystal structure crystallized in the SPC range are simultaneously formed using a common non-crystalline semiconductor film. Can be formed.
  • the crystal grains of the crystalline silicon film (first crystalline semiconductor film) in the region crystallized in the melting range have an average crystal grain size of 60 nm to 1 ⁇ nm while maintaining in-plane uniformity.
  • crystal grains of the crystalline silicon film (second crystalline semiconductor film) in the region crystallized in the SPC range have an average crystal grain size of 25 nm to 35 nm while maintaining in-plane uniformity.
  • FIG. 19 is a diagram showing a beam profile and a laser irradiation position in the method for manufacturing the thin film transistor array device according to the second modification of the present invention.
  • the channel layer of the driving TFT 10a is such that the amorphous semiconductor film becomes the first crystalline semiconductor film 5a crystallized in the melting range, and the switching TFT 10b.
  • the beam profile of the long-axis Gaussian CW laser beam is set so that the amorphous semiconductor film is irradiated with laser in a temperature range equal to or lower than the crystal growth temperature of the amorphous semiconductor film.
  • the channel layer of the switching TFT 10b is not a crystalline semiconductor film (second crystalline semiconductor film 5b) as in the above embodiment, but remains an amorphous semiconductor film.
  • This modification is a case where a crystal structure crystallized in the melting range and an amorphous crystal structure are formed at the same time.
  • the maximum light intensity is taken as 100%
  • the internal region W iN of constant width in the light intensity distribution, as well as the light intensity is set to be 77% to 100%
  • the external region in the light intensity distribution W OUT is set so that the light intensity is 44% or less.
  • the output energy density of the CW laser light is an internal region in the light intensity distribution (laser an optical internal area) W iN may be set so that the energy density is in the range of area of 9.6m [J / cm 2] from 7.4 [J / cm 2], also in the light intensity distribution
  • the external region W OUT may be set so that the energy density is in a range of 4.3 [J / cm 2 ] or less.
  • the light intensity distribution of the long-axis Gaussian CW laser beam is constant.
  • laser irradiated portion by the internal region W iN of width heated and melted in a melting range (1414 ° C. or higher), then is crystallized a crystalline semiconductor film by being cooled.
  • the portion of the light intensity distribution of the long-axis Gaussian CW laser beam irradiated with the laser beam by the external region W OUT becomes a temperature range below the crystal growth temperature of the amorphous semiconductor film and remains in an amorphous state.
  • the crystal grains of the crystalline silicon film (first crystalline semiconductor film) in the region crystallized in the melting range have an average crystal grain size of 60 nm to 1 ⁇ nm while maintaining in-plane uniformity.
  • the crystal grain of the amorphous semiconductor film that is irradiated with laser in the temperature range below the crystal growth temperature of the amorphous semiconductor film and remains in the amorphous state maintains the in-plane uniformity, and the average crystal grain size is 25 nm or less.
  • FIG. 20 is a diagram showing a beam profile and a laser irradiation position in the method for manufacturing the thin film transistor array device according to the third modification of the present invention.
  • the channel layer of the driving TFT 10a is such that the non-crystalline semiconductor film becomes the second crystalline semiconductor film 5b crystallized in the SPC range, and the switching TFT 10b.
  • the beam profile of the long-axis Gaussian CW laser beam is set so that the amorphous semiconductor film becomes the first crystalline semiconductor film 5a crystallized in the melting range.
  • the crystalline semiconductor film of the channel layer in the driving TFT 10a and the switching TFT 10b is replaced with the first modification. Therefore, the modification example 1 and modification example 1 have the same beam profile of the long-axis Gaussian CW laser beam, but differ in the beam scan position of the CW laser beam.
  • the internal region W IN of constant width in the light intensity distribution on the CW laser beam is used to form the second crystalline semiconductor film 5b of the switching TFT 10b, the light intensity distribution
  • the external region W OUT in is used for forming the first crystalline semiconductor film 5a of the driving TFT 10a.
  • FIG. 21 is a diagram showing a beam profile and a laser irradiation position in the method for manufacturing the thin film transistor array device according to the third modification of the present invention.
  • the channel layer of the driving TFT 10a is such that the non-crystalline semiconductor film becomes the second crystalline semiconductor film 5b crystallized in the SPC range, and the switching TFT 10b.
  • the beam profile of the long-axis Gaussian CW laser beam is set so that the amorphous semiconductor film becomes the first crystalline semiconductor film 5a crystallized in the melting range.
  • This modification is different from Modification 1 in the TFT layout, and the beam profile and beam scan position of the long-axis Gaussian CW laser beam are the same as in Modification 1.
  • the internal region W IN of constant width in the light intensity distribution on the CW laser beam is used to form the second crystalline semiconductor film 5b of the switching TFT 10b, the light intensity distribution
  • the external region W OUT in is used for forming the first crystalline semiconductor film 5a of the driving TFT 10a.
  • the thin film transistor array device according to these modification examples can be applied to the organic EL display device 300 described above.
  • the organic EL display device 300 can be used as a flat panel display or the like.
  • the present invention can be applied to a television set 400 as shown in FIG. 22 or any display device such as a mobile phone or a personal computer.
  • the thin film transistor array device As described above, the thin film transistor array device, the organic EL display device, and the method for manufacturing the thin film transistor array device according to the present invention have been described based on the embodiment and the modification. However, the present invention is limited to the above embodiment and the modification. is not.
  • each of the first channel layer 50a of the driving TFT 10a and the second channel layer 50b of the switching TFT 10b has a two-layer structure of a crystalline semiconductor film and an amorphous semiconductor film.
  • the first channel layer 50a and the second channel layer 50b may have a single-layer structure of a semiconductor film having a predetermined crystal structure.
  • the thin film transistor array device and the organic EL display device according to the present invention can be widely used in electric devices such as a display device such as a television set, a personal computer, and a mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

 第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜(5a)をチャネル層とする駆動用TFT(10a)と、第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜(5b)をチャネル層とするスイッチ用TFT(10b)とを具備する薄膜トランジスタアレイ装置(100)であって、第1結晶性半導体膜(5a)の結晶粒及び第2結晶性半導体膜(5b)の結晶粒は、凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成される。第1結晶性半導体膜(5a)の結晶粒は、光強度分布の一定の幅の内部領域WINを用いて形成され、第2結晶性半導体膜(5b)の結晶粒は、光強度分布の一定の幅の外部領域WOUTを用いて第1工程と同一工程で形成される。

Description

薄膜トランジスタアレイ装置、有機EL表示装置、及び、薄膜トランジスタアレイ装置の製造方法
 本発明は、薄膜トランジスタアレイ装置、有機EL表示装置、及び、薄膜トランジスタアレイ装置の製造方法に関する。
 液晶表示装置又は有機EL(Electro Luminescence)表示装置等のアクティブマトリクス駆動型の表示装置では、TFT(Thin Film Transistor)と呼ばれる薄膜トランジスタが用いられている。
 この種の表示装置では、薄膜トランジスタがアレイ状に配置されて薄膜トランジスタアレイ装置を構成しており、各画素には、画素を駆動する駆動トランジスタ及び画素を選択するスイッチングトランジスタが形成されている。
 中でも、有機EL素子を備える自発光型の有機EL表示装置では、駆動トランジスタとスイッチングトランジスタとに要求される性能が異なり、駆動トランジスタでは有機EL素子の駆動性能を向上させるために優れたオン特性が要求され、一方、スイッチングトランジスタでは優れたオフ特性が要求される。
 このような技術として、例えば特許文献1には、1つの画素に異なる特性を有する2種類の薄膜トランジスタを備えてなる有機EL表示装置が開示されている。特許文献1では、駆動トランジスタとスイッチングトランジスタとでチャネル層における半導体膜の結晶性を異ならせることにより、同一画素内において異なる特性を有する2種類のトランジスタを形成している。
特開2007-219517号公報
 しかしながら、上記特許文献1では、駆動トランジスタとしてゲート絶縁膜上に結晶化した半導体膜(チャネル層)及びソースドレイン電極を形成した後に、スイッチングトランジスタにおける半導体膜(チャネル層)及びソースドレイン電極等を形成している。すなわち、駆動トランジスタを完成させた後に、チャネル層及びソースドレイン電極等を別途形成してスイッチングトランジスタを作製している。
 このように、特許文献1では、駆動トランジスタとスイッチングトランジスタとが別々のプロセスによって作製されているので、薄膜トランジスタを作製する工程数が大幅に増大し、コスト及びタクトが増加するという問題がある。
 本発明は、上記の問題点を鑑みてなされたものであり、工程数を増加させることなく異なる性能を有する薄膜トランジスタを備える薄膜トランジスタアレイ装置、有機EL表示装置及び薄膜トランジスタの製造方法を目的とする。
 上記問題を解決するために、本発明に係る薄膜トランジスタアレイ装置の一態様は、基材と、前記基材の上方に配置された第1ゲート電極と、前記基材の上方であって前記第1ゲート電極と並設して配置され、前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極と、前記第1ゲート電極及び前記第2ゲート電極の上に配置されたゲート絶縁膜と、前記第1ゲート電極の上方であって前記ゲート絶縁膜上に配置され、第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜と、前記第1結晶性半導体膜上に形成された第1ソース電極及び第1ドレイン電極と、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に配置され、前記第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜と、前記第2結晶性半導体膜上に形成された第2ソース電極及び第2ドレイン電極と、を具備し、前記第1結晶性半導体膜の結晶粒及び前記第2結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、前記第1結晶性半導体膜の結晶粒は、前記一定の幅の内部領域を用いて、前記非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上に加熱することにより前記非結晶性半導体膜を溶融する第1工程と、前記溶融させた前記非結晶性半導体膜を冷却することで前記非結晶性半導体膜を結晶化する第2工程と、により形成され、前記第2結晶性半導体膜の結晶粒は、前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって、前記一定の幅の外部領域を用いて、前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満に加熱し、前記非結晶性半導体膜を溶融結晶化させることにより形成されるものである。
 本発明に係る薄膜トランジスタアレイ装置によれば、同時に形成されるとともに結晶組織が異なる半導体膜のそれぞれをチャネル層とする2つの薄膜トランジスタを有する。これにより、オン特性に優れた第1薄膜トランジスタとオフ特性に優れた第2薄膜トランジスタとを具備する薄膜トランジスタアレイ装置を実現することができる。
 また、本発明に係る薄膜トランジスタアレイ装置の製造方法によれば、所望の連続的な光強度分布を有する連続発振型のレーザを共通の非結晶性半導体膜に照射することによって、結晶組織が異なる半導体膜を同一工程により形成することができる。これにより、工程数を増大させることなくトランジスタ特性の異なる所望の2つの薄膜トランジスタを形成することができる。例えば、表示装置の各画素において、オン性能が要求される駆動トランジスタと、オフ性能が要求されるスイッチングトランジスタとを、一括して形成することができる。
図1は、本発明の実施形態におけるCWレーザ光結晶化装置の構成例を示す図である。 図2Aは、本発明の実施形態におけるCWレーザ光の長軸プロファイルを示す図である。 図2Bは、本発明の実施形態におけるCWレーザ光の短軸プロファイルを示す図である。 図2Cは、本発明の実施形態におけるCWレーザ光の短軸プロファイルを示す図である(図2Bの拡大図)。 図3は、シリコンの結晶化に対する温度とエネルギーとの関係を示す図である。 図4は、Ex結晶組織の成長メカニズムを説明するための図である。 図5Aは、CWレーザ光のエネルギー密度とTFTのオン電流(又はシリコン結晶組織)との関係を示す図である。 図5Bは、シリコン単位体積あたりの吸収エネルギーとオン電流(又はシリコン結晶組織)との関係を示す図である。 図6は、本実施形態におけるCWレーザ光の長軸プロファイルを示す図である。 図7は、本発明の実施形態に係る薄膜トランジスタアレイ装置を備える薄膜トランジスタアレイ基板である。 図8は、図7に示す薄膜トランジスタアレイ基板における画素の構成を示す平面図である。 図9は、本発明の実施形態に係る薄膜トランジスタアレイ装置の画素の回路構成図である。 図10は、本発明の実施形態に係る薄膜トランジスタアレイ装置の構造を示す断面図である。 図11は、本発明の実施形態に係る有機EL表示装置の一画素における断面図である。 図12Aは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法のフローチャートである。 図12Bは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法における結晶性半導体膜形成工程のフローチャートである。 図13Aは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法における基材準備工程を模式的に示した平面図及び断面図である。 図13Bは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法におけるゲート金属膜形成工程を模式的に示した平面図及び断面図である。 図13Cは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法におけるゲート電極形成工程を模式的に示した平面図及び断面図である。 図13Dは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法におけるゲート絶縁膜形成工程を模式的に示した平面図及び断面図である。 図13Eは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法における非結晶性半導体膜形成工程を模式的に示した平面図及び断面図である。 図13Fは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法における結晶性半導体膜形成工程(レーザ照射工程)を模式的に示した平面図及び断面図である。 図13Gは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法における結晶性半導体膜形成工程(結晶化工程)を模式的に示した平面図及び断面図である。 図13Hは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法における非結晶性半導体膜形成工程を模式的に示した平面図及び断面図である。 図13Iは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法におけるチャネル層島化工程を模式的に示した平面図及び断面図である。 図13Jは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法における不純物ドープの非結晶性半導体膜形成工程を模式的に示した平面図及び断面図である。 図13Kは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法におけるソースドレイン金属膜形成工程を模式的に示した平面図及び断面図である。 図13Lは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法におけるソース電極及びドレイン電極形成工程を模式的に示した平面図及び断面図である。 図13Mは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法におけるチャネル層エッチング工程を模式的に示した平面図及び断面図である。 図14は、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法において、表示部全体をビームスキャンする様子を模式的に示す図である。 図15は、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法におけるビームプロファイル及び画素内のレーザ照射位置を示す図である。 図16は、本発明の実施形態に係る薄膜トランジスタアレイ装置における結晶粒径に対する電流特性を示す図である。 図17Aは、駆動用TFTのオン電流と有機EL表示装置の発光輝度との関係を示す図である。 図17Bは、スイッチ用TFTのオフ電流と有機EL表示装置の階調変動との関係を示す図である。 図18は、本発明の変形例1に係る薄膜トランジスタアレイ装置の製造方法におけるビームプロファイル及びレーザ照射位置を示す図である。 図19は、本発明の変形例2に係る薄膜トランジスタアレイ装置の製造方法におけるビームプロファイル及びレーザ照射位置を示す図である。 図20は、本発明の変形例3に係る薄膜トランジスタアレイ装置の製造方法におけるビームプロファイル及びレーザ照射位置を示す図である。 図21は、本発明の変形例4に係る薄膜トランジスタアレイ装置の製造方法におけるビームプロファイル及びレーザ照射位置を示す図である。 図22は、本発明の実施態様に係る表示パネル装置を内蔵した表示装置の外観図である。
 本発明に係る薄膜トランジスタアレイ装置の一態様は、基材と、前記基材の上方に配置された第1ゲート電極と、前記基材の上方であって前記第1ゲート電極と並設して配置され、前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極と、前記第1ゲート電極及び前記第2ゲート電極の上に配置されたゲート絶縁膜と、前記第1ゲート電極の上方であって前記ゲート絶縁膜上に配置され、第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜と、前記第1結晶性半導体膜上に形成された第1ソース電極及び第1ドレイン電極と、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に配置され、前記第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜と、前記第2結晶性半導体膜上に形成された第2ソース電極及び第2ドレイン電極と、を具備し、前記第1結晶性半導体膜の結晶粒及び前記第2結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、前記第1結晶性半導体膜の結晶粒は、前記一定の幅の内部領域を用いて、前記非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上に加熱することにより前記非結晶性半導体膜を溶融する第1工程と、前記溶融させた前記非結晶性半導体膜を冷却することで前記非結晶性半導体膜を結晶化する第2工程と、により形成され、前記第2結晶性半導体膜の結晶粒は、前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって、前記一定の幅の外部領域を用いて、前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満に加熱し、前記非結晶性半導体膜を溶融結晶化させることにより形成されるものである。
 本態様において、平均結晶粒径が大きい第1結晶性半導体膜と平均結晶粒径が小さい第2結晶性半導体膜とは、凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて、共通の非結晶性半導体膜にレーザ照射することによって一括形成される。すなわち、平均結晶粒径が大きい第1結晶性半導体膜は、当該光強度分布の一定の幅の内部領域を用いて共通の非結晶性半導体膜をレーザ照射して、当該共通の非結晶性半導体膜を第1結晶性半導体膜及び第2結晶性半導体膜の融点以上の温度に加熱して溶融結晶化させることによって形成される。また、平均結晶粒径が小さい第2結晶性半導体膜は、第1結晶性半導体膜の結晶化工程と同一工程におけるレーザ照射によって前記光強度分布の一定の幅の外部領域を用いて前記共通の非結晶性半導体膜を第1結晶性半導体膜及び第2結晶性半導体膜の融点未満の温度に加熱して溶融結晶化させることにより形成される。
 これにより、第1結晶性半導体膜をチャネル層として有するオン特性に優れたTFTと、第2結晶性半導体膜をチャネル層として有するオフ特性に優れたTFTとを有する薄膜トランジスタアレイ装置を実現することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布における最大光強度を100%としたときに、前記光強度分布における前記一定の幅の前記内部領域は、光強度が77%から100%の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、エネルギー密度が7.4[J/cm]から9.6[J/cm]の範囲の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、単位体積あたりの吸収エネルギーが4.1×10[J/cm]から5.3×10[J/cm]の範囲の領域であることが好ましい。
 本態様によれば、非結晶性半導体膜の融点以上の温度範囲(シリコンであれば、溶融範囲)で共通の非結晶性半導体膜を結晶化させて所望の結晶粒径を有する第1結晶性半導体膜を形成することができる。従って、第1結晶性半導体膜をチャネル層とするTFTにおいて、高いオン電流を実現することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記第1の平均結晶粒径は、60nmから1μmであることが好ましい。
 本態様は、第1結晶性半導体膜における第1の平均結晶粒径を60nmから1μmの範囲とするものである。これにより、第1結晶性半導体膜をチャネル層とするTFTは、アモルファスシリコン膜等の非結晶性半導体膜をチャネル層とするTFTに比べて、高いオン電流を得ることができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布における最大光強度を100%としたときに、前記光強度分布における前記一定の幅の前記外部領域は、光強度が61%から77%の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が5.8[J/cm]から7.4[J/cm]の範囲の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが3.2×10[J/cm]から4.1×10[J/cm]の範囲の領域であることが好ましい。
 本態様によれば、非結晶性半導体膜の融点よりも低い温度範囲、例えば、シリコンであればEx範囲で非結晶性半導体膜を結晶化させて所望の結晶粒径を有する第2結晶性半導体膜を形成することができる。従って、第1結晶性半導体膜をチャネル層とするオン特性に優れたTFTと、第2結晶性半導体膜をチャネル層とするオフ特性に優れたTFTとを備える薄膜トランジスタアレイ装置を実現することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲は、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度で且つ前記非結晶性半導体膜の融点以上の温度範囲であり、前記第2の平均結晶粒径は、40nmから60nmであることが好ましい。
 本態様は、第2結晶性半導体膜における第2の平均結晶粒径を40nmから60nmの範囲とするものである。これにより、第2結晶性半導体膜をチャネル層とするTFTは、アモルファスシリコン膜等の非結晶性半導体膜をチャネル層とするTFTに比べて、高いオン電流を得ることができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンであり、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度で且つ前記非結晶性半導体膜の融点以上の温度範囲は、1100℃~1414℃であり、前記第2結晶性半導体膜の結晶粒は、前記非結晶性半導体膜を、過冷却液体状態を経て結晶化させることにより形成されることが好ましい。
 本態様によれば、シリコンからなる第2結晶性半導体膜の結晶粒を、共通の非結晶性半導体膜をEx範囲で結晶化させて形成することができる。すなわち、アモルファスシリコンの融点以上シリコンの融点以下の温度範囲(1100℃~1414℃)で過冷却液体状態を経て結晶化させることによって、第2結晶性半導体膜を形成することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布における最大光強度を100%としたときに、前記光強度分布における前記一定の幅の前記外部領域は、光強度が44%から61%の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が4.3[J/cm]から5.8[J/cm]の範囲の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが2.4×10[J/cm]から3.2×10[J/cm]の範囲の領域であることが好ましい。
 本態様によれば、非結晶性半導体膜の融点よりも低い温度範囲、例えば、シリコンであればSPC範囲で共通の非結晶性半導体膜を結晶化させて所望の結晶粒径を有する第2結晶性半導体膜を形成することができる。従って、第1結晶性半導体膜をチャネル層とするオン特性に優れたTFTと、第2結晶性半導体膜をチャネル層とするオフ特性に優れたTFTとを備える薄膜トランジスタアレイ装置を実現することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲は、前記非結晶性半導体膜の融点以下で前記非結晶性半導体膜の結晶成長温度以上の温度範囲であり、前記第2の平均結晶粒径は、25nmから35nmであることが好ましい。
 本態様は、第2結晶性半導体膜における第2の平均結晶粒径を25nmから35nmの範囲とするものである。これにより、第2結晶性半導体膜をチャネル層とするTFTは、アモルファスシリコン膜等の非結晶性半導体膜をチャネル層とするTFTに比べて、高いオン電流を得ることができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンであり、前記非結晶性半導体膜の融点以下で前記非結晶性半導体膜の結晶成長温度以上の温度範囲は、600℃~1100℃であり、前記第2結晶性半導体膜の結晶粒は、前記非結晶性半導体膜内に結晶を固相成長させることにより形成されることが好ましい。
 本態様によれば、シリコンからなる第2結晶性半導体膜の結晶粒を、共通の非結晶性半導体膜をSPC範囲で結晶化させて形成することができる。すなわち、アモルファスシリコンの融点以下の温度範囲(600℃~1100℃)で固相成長させて結晶化することによって、第2結晶性半導体膜を形成することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記第1結晶性半導体膜は、非結晶性構造と結晶構造との混晶を含むことが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記第2結晶性半導体膜は、非結晶性構造と結晶構造との混晶を含むことが好ましい。
 本態様は、第1結晶性半導体膜(又は第2結晶性半導体膜)が、非結晶性構造と結晶構造との混晶を含む結晶性半導体であり、例えば、平均結晶粒径が25nmから1μmの結晶粒の領域と、当該結晶粒の周囲に存在するアモルファス構造の領域とを含んでいる。これにより、表面ラフネスを低減することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記第2ソース電極又は第2ドレイン電極は、前記第1ゲート電極と電気的に接続されていることが好ましい。
 これにより、第1結晶性半導体膜をチャネル層とする第1薄膜トランジスタと、第2結晶性半導体膜をチャネル層とする別体の第2薄膜トランジスタとを最短の配線長さで接続することができる。この結果、第1薄膜トランジスタと第2薄膜トランジスタとの間の電気抵抗を最小にすることができる。従って、高速動作ができ、電力損失も小さい、薄膜トランジスタアレイ装置を実現することができる。
 また、本発明に係る有機EL表示装置の一態様は、上記に記載の薄膜トランジスタアレイ装置の一態様のいずれかを備える有機EL表示装置であって、前記薄膜トランジスタアレイ装置が複数の画素の画素単位に配置された薄膜トランジスタアレイ基板と、前記薄膜トランジスタアレイ基板の上方に配置された層間絶縁膜と、前記層間絶縁膜の上方に、前記画素単位に配置された下部電極と、前記薄膜トランジスタアレイ装置と前記下部電極とを接続させるコンタクトと、前記層間絶縁膜の上方に配置され、開口部を有するバンクと、前記バンクの開口部内に形成された有機発光層と、前記有機発光層の上方に配置された上部電極と、を具備し、前記薄膜トランジスタアレイ装置に含まれる前記第1結晶性半導体膜は、前記画素の発光を制御する駆動回路における駆動トランジスタのチャネル層を構成し、前記薄膜トランジスタアレイ装置に含まれる前記第2結晶性半導体膜は、前記駆動回路におけるスイッチングトランジスタのチャネル層を構成するものである。
 本態様では、画素の発光を制御する駆動回路において、第1結晶性半導体膜が駆動トランジスタのチャネル層を構成し、第2結晶性半導体膜がスイッチングトランジスタのチャネル層を構成する。これにより、駆動トランジスタにおける第1結晶性半導体膜の平均結晶粒径を、例えば60nmから1μm程度に大きくすることができるので、駆動トランジスタにおけるチャネル層に流れる電流を大きくすることができる。その結果、画素の発光電流を大きくすることができるので、有機EL表示装置の発光輝度を大きくすることができる。
 また、本発明に係る有機EL表示装置の他の一態様は、上記に記載の薄膜トランジスタアレイ装置のいずれかを備える有機EL表示装置であって、前記薄膜トランジスタアレイ装置が複数の画素の画素単位に配置された薄膜トランジスタアレイ基板と、前記薄膜トランジスタアレイ基板の上方に配置された層間絶縁膜と、前記層間絶縁膜の上方に、前記画素単位に配置された下部電極と、前記薄膜トランジスタアレイ装置と前記下部電極とを接続させるコンタクトと、前記層間絶縁膜の上方に配置され、開口部を有するバンクと、前記バンクの開口部内に形成された有機発光層と、前記有機発光層の上方に配置された上部電極と、を具備し、前記薄膜トランジスタアレイ装置に含まれる前記第1結晶性半導体膜は、前記画素の発光を制御する駆動回路におけるスイッチングトランジスタのチャネル層を構成し、前記薄膜トランジスタアレイ装置に含まれる前記第2結晶性半導体膜は、前記駆動回路における駆動トランジスタのチャネル層を構成するものである。
 本態様のように、画素の発光を制御する駆動回路において、第2結晶性半導体膜が駆動トランジスタのチャネル層を構成し、第1結晶性半導体膜がスイッチングトランジスタのチャネル層を構成するようにしてもよい。
 また、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様は、基材を準備する第1工程と、前記基材の上方に第1ゲート電極を形成する第2工程と、前記基材の上方に前記第1ゲート電極と並設して前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極を形成する第3工程と、前記第1ゲート電極及び前記第2ゲート電極の上にゲート絶縁膜を形成する第4工程と、前記第1ゲート電極の上方であって前記ゲート絶縁膜上に第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜を形成し、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に前記第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜を形成する第5工程と、前記第1結晶性半導体膜上に第1ソース電極及び第1ドレイン電極を形成し、前記第2結晶性半導体膜上に第2ソース電極及び第2ドレイン電極を形成する第6工程と、を具備し、前記第1結晶性半導体膜の結晶粒及び前記第2結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、前記第1結晶性半導体膜の結晶粒は、前記第5工程において、前記一定の幅の内部領域を用いて、前記非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上に加熱することにより前記非結晶性半導体膜を溶融する第5-1工程と、前記溶融させた前記非結晶性半導体膜を冷却することで前記非結晶性半導体膜を結晶化する第5-2工程と、により形成され、前記第2結晶性半導体膜の結晶粒は、前記第5工程において、前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって、前記一定の幅の外部領域を用いて、前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満に加熱し、前記非結晶性半導体膜内に結晶を溶融結晶化させることにより形成されるものである。
 本態様において、平均結晶粒径の異なる第1結晶性半導体膜と第2結晶性半導体膜とは、凸形状の連続的な光強度分布を有する連続発振型のレーザを共通の非結晶性半導体膜に照射することによって同時に形成することができる。すなわち、平均結晶粒径が大きい第1結晶性半導体膜は、当該光強度分布の一定の幅の内部領域を用いて共通の非結晶性半導体膜をレーザ照射して、当該共通の非結晶性半導体膜を第1結晶性半導体膜及び第2結晶性半導体膜の融点以上の温度に加熱して溶融結晶化させることによって形成される。また、平均結晶粒径が小さい第2結晶性半導体膜は、第1結晶性半導体膜の結晶化工程と同一工程におけるレーザ照射によって前記光強度分布の一定の幅の外部領域を用いて前記共通の非結晶性半導体膜を第1結晶性半導体膜及び第2結晶性半導体膜の融点未満の温度に加熱して溶融結晶化させることにより形成される。
 これにより、第1結晶性半導体膜をチャネル層として有するオン特性に優れたTFTと、第2結晶性半導体膜をチャネル層として有するオフ特性に優れたTFTとを有する薄膜トランジスタアレイ装置を実現することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記光強度分布における最大光強度を100%としたときに、前記光強度分布における前記一定の幅の前記内部領域は、光強度が77%から100%の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、エネルギー密度が7.4[J/cm]から9.6[J/cm]の範囲の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、単位体積あたりの吸収エネルギーが4.1×10[J/cm]から5.3×10[J/cm]の範囲の領域であることが好ましい。
 本態様によれば、非結晶性半導体膜の融点以上の温度範囲(シリコンであれば、溶融範囲)で共通の非結晶性半導体膜を結晶化させて所望の結晶粒径を有する第1結晶性半導体膜を形成することができる。従って、第1結晶性半導体膜をチャネル層とするTFTにおいて、高いオン電流を実現することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記第1の平均結晶粒径は、60nmから1μmであることが好ましい。
 本態様は、第1結晶性半導体膜における第1の平均結晶粒径を60nmから1μmの範囲とするものである。これにより、第1結晶性半導体膜をチャネル層とするTFTは、アモルファスシリコン膜等の非結晶性半導体膜をチャネル層とするTFTに比べて、高いオン電流を得ることができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記光強度分布における最大光強度を100%としたときに、前記光強度分布における前記一定の幅の前記外部領域は、光強度が61%から77%の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が5.8[J/cm]から7.4[J/cm]の範囲の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが3.2×10[J/cm]から4.1×10[J/cm]の範囲の領域であることが好ましい。
 本態様によれば、非結晶性半導体膜の融点よりも低い温度範囲、例えば、シリコンであればEx範囲で共通の非結晶性半導体膜を結晶化させて所望の結晶粒径を有する第2結晶性半導体膜を形成することができる。従って、第1結晶性半導体膜をチャネル層とするオン特性に優れたTFTと、第2結晶性半導体膜をチャネル層とするオフ特性に優れたTFTとを備える薄膜トランジスタアレイ装置を実現することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲は、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度で且つ前記非結晶性半導体膜の融点以上の温度範囲であり、前記第2の平均結晶粒径は、40nmから60nmである、ことが好ましい。
 本態様は、第2結晶性半導体膜における第2の平均結晶粒径を40nmから60nmの範囲とするものである。これにより、第2結晶性半導体膜をチャネル層とするTFTは、アモルファスシリコン膜等の非結晶性半導体膜をチャネル層とするTFTに比べて、高いオン電流を得ることができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンであり、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度で且つ前記非結晶性半導体膜の融点以上の温度範囲は、1100℃~1414℃であり、前記第2結晶性半導体膜の結晶粒は、前記非結晶性半導体膜を、過冷却液体状態を経て結晶化させることにより形成されることが好ましい。
 本態様によれば、シリコンからなる第2結晶性半導体膜の結晶粒を、共通の非結晶性半導体膜をEx範囲で結晶化させて形成することができる。すなわち、アモルファスシリコンの融点以上シリコンの融点以下の温度範囲(1100℃~1414℃)で過冷却液体状態を経て結晶化させることによって、第2結晶性半導体膜を形成することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記光強度分布における最大光強度を100%としたときに、前記光強度分布における前記一定の幅の前記外部領域は、光強度が44%から61%の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が4.3[J/cm]から5.8[J/cm]の範囲の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが2.4×10[J/cm]から3.2×10[J/cm]の範囲の領域であることが好ましい。
 本態様によれば、非結晶性半導体膜の融点よりも低い温度範囲、例えば、シリコンであればSPC範囲で共通の非結晶性半導体膜を結晶化させて所望の結晶粒径を有する第2結晶性半導体膜を形成することができる。従って、第1結晶性半導体膜をチャネル層とするオン特性に優れたTFTと、第2結晶性半導体膜をチャネル層とするオフ特性に優れたTFTとを備える薄膜トランジスタアレイ装置を実現することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲は、前記非結晶性半導体膜の融点以下で前記非結晶性半導体膜の結晶成長温度以上の温度範囲であり、前記第2の平均結晶粒径は、25nmから35nmであることが好ましい。
 本態様は、第2結晶性半導体膜における第2の平均結晶粒径を25nmから35nmの範囲とするものである。これにより、第2結晶性半導体膜をチャネル層とするTFTは、アモルファスシリコン膜等の非結晶性半導体膜をチャネル層とするTFTに比べて、高いオン電流を得ることができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンであり、前記非結晶性半導体膜の融点以下で前記非結晶性半導体膜の結晶成長温度以上の温度範囲は、600℃~1100℃であり、前記第2結晶性半導体膜の結晶粒は、前記非結晶性半導体膜内に結晶を固相成長させることにより形成されることが好ましい。
 本態様によれば、シリコンからなる第2結晶性半導体膜の結晶粒を、共通の非結晶性半導体膜をSPC範囲で結晶化させて形成することができる。すなわち、アモルファスシリコンの融点以下の温度範囲(600℃~1100℃)で固相成長させて結晶化することによって、第2結晶性半導体膜を形成することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記第5工程と前記第6工程との間において、前記第1結晶性半導体膜と前記第2結晶性半導体膜とを離間させる工程を含むことが好ましい。
 これにより、第1結晶性半導体膜と第2結晶性半導体膜との間において、電子又はホールのキャリアの流入が生じない。この結果、第1結晶性半導体膜をチャネル層とする第1薄膜トランジスタと、第2結晶性半導体膜をチャネル層とする第2薄膜トランジスタとが相互に影響を受けることなく動作させることができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記第1結晶性半導体膜と前記第2結晶性半導体膜とを離間させる工程において、前記第1結晶性半導体膜と前記第2結晶性半導体膜との境界領域を、パターニングにより除去することが好ましい。
 本態様は、第1結晶性半導体膜と第2結晶性半導体膜との境界領域をパターニングにより除去することにより、第1結晶性半導体膜と第2結晶性半導体膜とを離間させるものである。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記凸形状の連続的な光強度分布は、ガウシアン分布であることが好ましい。
 これにより、ガウシアン分布の光強度分布における一定の幅の内部領域と外部領域とによって所望のレーザ照射を行うことができる。従って、第1の平均結晶粒径の結晶粒で構成された第1結晶性半導体膜と、第1の平均結晶粒径よりも小さい粒径である第2平均結晶粒径の結晶粒で構成された第2結晶性半導体膜とを、それぞれ所望の平均結晶粒径で形成することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記第5工程において、前記非結晶性半導体膜にマイクロセカンドオーダにてレーザ照射することが好ましい。
 これにより、連続発振型のレーザ光を非結晶性半導体膜に照射する照射時間を長くすることができるので、非結晶性半導体膜において、原子の構造がアモルファスの状態から結晶化し、さらに非晶質(アモルファス)の状態から原子が再配列するのに十分な時間を確保することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様において、前記第5工程において、前記非結晶性半導体膜上にレーザ照射する時間が10~100マイクロセカンドであることが好ましい。
 これにより、連続発振型のレーザ光を非結晶性半導体膜に対して照射する照射時間を長くすることができるので、非結晶性半導体膜において、原子の構造がアモルファスの状態から再配列して結晶化するのに十分な時間を確保することができる。
 また、本発明に係る薄膜トランジスタアレイ装置の他の一態様は、基材と、前記基材の上方に配置された第1ゲート電極と、前記基材の上方であって前記第1ゲート電極と並設して配置され、前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極と、前記第1ゲート電極及び前記第2ゲート電極の上に配置されたゲート絶縁膜と、前記第1ゲート電極の上方であって前記ゲート絶縁膜上に配置され、第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜と、前記第1結晶性半導体膜上に形成された第1ソース電極及び第1ドレイン電極と、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に配置され、前記第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜と、前記第2結晶性半導体膜上に形成された第2ソース電極及び第2ドレイン電極と、を具備し、前記第1結晶性半導体膜の結晶粒及び前記第2結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、前記レーザ照射による前記非結晶性半導体膜の温度が1414℃以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記非結晶性半導体膜の温度が1414℃未満の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、前記第1結晶性半導体膜の結晶粒は、前記一定の幅の内部領域を用いて、前記非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を1414℃以上に加熱することにより前記非結晶性半導体膜を溶融する第1工程と、前記溶融させた前記非結晶性半導体膜を冷却することで前記非結晶性半導体膜を結晶化する第2工程と、により形成され、前記第2結晶性半導体膜の結晶粒は、前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって、前記一定の幅の外部領域を用いて、前記共通の非結晶性半導体膜の温度を1414℃未満に加熱し、前記非結晶性半導体膜内に結晶を固相成長させることにより形成され、前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンである。
 また、本発明に係る薄膜トランジスタアレイ装置の製造方法の一態様は、基材を準備する第1工程と、前記基材の上方に第1ゲート電極を形成する第2工程と、前記基材の上方に前記第1ゲート電極と並設して前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極を形成する第3工程と、前記第1ゲート電極及び前記第2ゲート電極の上にゲート絶縁膜を形成する第4工程と、前記第1ゲート電極の上方であって前記ゲート絶縁膜上に第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜を形成し、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に前記第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜を形成する第5工程と、前記第1結晶性半導体膜上に第1ソース電極及び第1ドレイン電極を形成し、前記第2結晶性半導体膜上に第2ソース電極及び第2ドレイン電極を形成する第6工程と、を具備し、前記第1結晶性半導体膜の結晶粒及び前記第2結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、前記レーザ照射による前記非結晶性半導体膜の温度が1414℃以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記非結晶性半導体膜の温度が1414℃未満の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、前記第1結晶性半導体膜の結晶粒は、前記第5工程において、前記一定の幅の内部領域を用いて、前記非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を1414℃以上に加熱することにより前記非結晶性半導体膜を溶融する第5-1工程と、前記溶融させた前記非結晶性半導体膜を冷却することで前記非結晶性半導体膜を結晶化する第5-2工程と、により形成され、前記第2結晶性半導体膜の結晶粒は、前記第5工程において、前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって、前記一定の幅の外部領域を用いて、前記共通の非結晶性半導体膜の温度を1414℃未満に加熱し、前記非結晶性半導体膜内に結晶を固相成長させることにより形成され、前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンである。
 これらの態様によれば、凸形状の連続的な光強度分布を有する連続発振型のレーザを共通の非結晶性半導体膜にレーザ照射することによって、平均結晶粒径が異なるシリコンからなる第1結晶性半導体膜及び第2結晶性半導体膜を同時に形成することができる。すなわち、平均結晶粒径が大きい第1結晶性半導体膜は、当該光強度分布の一定の幅の内部領域を用いて共通の非結晶性半導体膜をレーザ照射して、当該共通の非結晶性半導体膜を1414℃以上に加熱して溶融結晶化させることによって形成される。また、平均結晶粒径が小さい第2結晶性半導体膜は、第1結晶性半導体膜の結晶化工程と同一工程におけるレーザ照射によって前記光強度分布の一定の幅の外部領域を用いて共通の非結晶性半導体膜を1414℃未満に加熱して非結晶性半導体膜内において結晶を固相成長させることにより形成される。
 また、本発明に係る薄膜トランジスタアレイ装置の一態様は、基材と、前記基材の上方に配置された第1ゲート電極と、前記基材の上方であって前記第1ゲート電極と並設して配置され、前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極と、前記第1ゲート電極及び前記第2ゲート電極の上に配置されたゲート絶縁膜と、前記第1ゲート電極の上方であって前記ゲート絶縁膜上に配置され、所定の平均結晶粒径の結晶粒によって構成された結晶性半導体膜と、前記結晶性半導体膜上に形成された第1ソース電極及び第1ドレイン電極と、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に配置された非結晶性半導体膜と、前記非結晶性半導体膜上に形成された第2ソース電極及び第2ドレイン電極と、を具備し、前記結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、前記レーザ照射による前記共通の非結晶性半導体膜の温度が前記結晶性半導体膜の融点以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記共通の非結晶性半導体膜の温度が前記非結晶性半導体膜の結晶成長温度以下の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、前記結晶性半導体膜の結晶粒は、前記一定の幅の内部領域を用いて、前記共通の非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を前記結晶性半導体膜の融点以上に加熱することにより前記共通の非結晶性半導体膜を溶融する第1工程と、前記溶融させた前記共通の非結晶性半導体膜を冷却することで前記共通の非結晶性半導体膜を結晶化する第2工程と、により形成され、前記非結晶性半導体膜は、前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって前記一定の幅の外部領域を用いて前記共通の非結晶性半導体膜の結晶成長温度以下の温度範囲で照射されるものである。
 本態様によれば、上に凸の連続的な光強度分布を有する連続発振型のレーザを共通の非結晶性半導体膜にレーザ照射することによって、結晶性半導体膜と非結晶性半導体膜とを具備する薄膜トランジスタアレイ装置を実現することができる。すなわち、結晶性半導体膜は、当該光強度分布の一定の幅の内部領域を用いて共通の非結晶性半導体膜をレーザ照射して、当該共通の非結晶性半導体膜を結晶性半導体膜の融点以上に加熱して溶融結晶化させることによって形成される。一方、非結晶性半導体膜は、結晶性半導体膜の結晶化工程と同一工程におけるレーザ照射によって前記光強度分布の一定の幅の外部領域を用いて共通の非結晶性半導体膜を非結晶性半導体膜の結晶成長温度以下の温度範囲で加熱されて形成される。
 これにより、結晶性半導体膜をチャネル層として有するオン特性に優れたTFTと、非結晶性半導体膜をチャネル層として有するオフ特性に優れたTFTとを有する薄膜トランジスタアレイ装置を実現することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布における最大光強度を100%としたときに、前記光強度分布における前記一定の幅の前記内部領域は、光強度が77%から100%の領域であり、前記光強度分布における前記一定の幅の前記外部領域は、光強度が44%以下の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、エネルギー密度が7.4[J/cm]から9.6[J/cm]の範囲の領域であり、前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が4.3[J/cm]以下の範囲の領域であることが好ましい。あるいは、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、単位体積あたりの吸収エネルギーが4.1×10[J/cm]から5.3×10[J/cm]の範囲の領域であり、前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが2.4×10[J/cm]以下の領域であることが好ましい。
 本態様によれば、光強度分布における内部領域によるレーザ照射によって非結晶性半導体膜の融点以上の温度範囲(シリコンであれば、溶融範囲)で共通の非結晶性半導体膜を結晶化させて所望の結晶粒径を有する結晶性半導体膜を形成することができる。また、光強度分布における外部領域によるレーザ照射によって非結晶性半導体膜を得ることができる。従って、結晶性半導体膜をチャネル層とするTFTにおいてオン電流を向上させることができるとともに、非結晶性半導体膜をチャネル層とするTFTにおいてオフ電流を低減することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記所定の平均結晶粒径は、60nmから1μmであることが好ましい。
 本態様は、結晶性半導体膜における平均結晶粒径を60nmから1μmの範囲とするものである。これにより、結晶性半導体膜をチャネル層とするTFTは、アモルファスシリコン膜等の非結晶性半導体膜をチャネル層とするTFTに比べて、高いオン電流を得ることができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記非結晶性半導体膜はアモルファスであり、前記共通の非結晶性半導体膜の結晶成長温度以下の温度範囲は、600℃以下の温度範囲であることが好ましい。
 これにより、アモルファスの非結晶性半導体膜を得ることができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記結晶性半導体膜は、非結晶性構造と結晶構造との混晶を含むことが好ましい。
 本態様は、結晶性半導体膜が、非結晶性構造と結晶構造との混晶を含む結晶性半導体であり、例えば、平均結晶粒径が60nmから1μmの結晶粒の領域と、当該結晶粒の周囲に存在するアモルファス構造の領域とを含んでいる。これにより、表面ラフネスを低減することができる。
 さらに、本発明に係る薄膜トランジスタアレイ装置の一態様において、前記第2ソース電極又は第2ドレイン電極は、前記第1ゲート電極と電気的に接続されていることが好ましい。
 これにより、結晶性半導体膜をチャネル層とする第1薄膜トランジスタと、非結晶性半導体膜をチャネル層とする別体の第2薄膜トランジスタとを最短の配線長さで接続することができる。この結果、第1薄膜トランジスタと第2薄膜トランジスタとの間の電気抵抗を最小にすることができる。従って、高速動作ができ、電力損失も小さい、薄膜トランジスタアレイ装置を実現することができる。
 さらに、本発明に係る有機EL表示装置の他の一態様は、上記に記載の薄膜トランジスタアレイ装置のいずれかを備える有機EL表示装置であって、前記薄膜トランジスタアレイ装置が複数の画素の画素単位に配置された薄膜トランジスタアレイ基板と、前記薄膜トランジスタアレイ基板の上方に配置された層間絶縁膜と、前記層間絶縁膜の上方に、前記画素単位に配置された下部電極と、前記薄膜トランジスタアレイ装置と前記下部電極とを接続させるコンタクトと、前記層間絶縁膜の上方に配置され、開口部を有するバンクと、前記バンクの開口部内に形成された有機発光層と、前記有機発光層の上方に配置された上部電極と、を具備し、前記薄膜トランジスタアレイ装置に含まれる前記結晶性半導体膜は、前記画素の発光を制御する駆動回路における駆動トランジスタのチャネル層を構成し、前記薄膜トランジスタアレイ装置に含まれる前記非結晶性半導体膜は、前記駆動回路におけるスイッチングトランジスタのチャネル層を構成するものである。
 本態様では、画素の発光を制御する駆動回路において、結晶性半導体膜が駆動トランジスタのチャネル層を構成し、非結晶性半導体膜がスイッチングトランジスタのチャネル層を構成する。これにより、駆動トランジスタにおける結晶性半導体膜の平均結晶粒径を、例えば60nmから1μm程度に大きくすることができるので、駆動トランジスタにおけるチャネル層に流れる電流を大きくすることができる。その結果、画素の発光電流を大きくすることができるので、有機EL表示装置の発光輝度を大きくすることができる。
 さらに、本発明に係る薄膜トランジスタの製造方法の他の一態様は、基材を準備する第1工程と、前記基材の上方に第1ゲート電極を形成する第2工程と、前記基材の上方に前記第1ゲート電極と並設して前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極を形成する第3工程と、前記第1ゲート電極及び前記第2ゲート電極の上にゲート絶縁膜を形成する第4工程と、前記第1ゲート電極の上方であって前記ゲート絶縁膜上に所定の平均結晶粒径の結晶粒によって構成された結晶性半導体膜を形成し、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に非結晶性半導体膜を形成する第5工程と、前記結晶性半導体膜上に第1ソース電極及び第1ドレイン電極を形成し、前記非結晶性半導体膜上に第2ソース電極及び第2ドレイン電極を形成する第6工程と、を具備し、前記結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、前記レーザ照射による前記共通の非結晶性半導体膜の温度が前記結晶性半導体膜の融点以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記共通の非結晶性半導体膜の温度が前記共通の非結晶性半導体膜の結晶成長温度以下の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、前記結晶性半導体膜の結晶粒は、前記第5工程において、前記一定の幅の内部領域を用いて、前記共通の非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を前記結晶性半導体膜の融点以上に加熱することにより前記共通の非結晶性半導体膜を溶融する第5-1工程と、前記溶融させた前記共通の非結晶性半導体膜を冷却することで前記共通の非結晶性半導体膜を結晶化する第5-2工程と、により形成され、前記非結晶性半導体膜は、前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって前記一定の幅の外部領域を用いて前記共通の非結晶性半導体膜の結晶成長温度以下の温度範囲で照射されるものである。
 本態様において、結晶性半導体膜と非結晶性半導体膜とは、上に凸の連続的な光強度分布を有する連続発振型のレーザを共通の非結晶性半導体膜に照射することによって同時に形成することができる。すなわち、結晶性半導体膜は、当該光強度分布の一定の幅の内部領域を用いて共通の非結晶性半導体膜をレーザ照射して、当該共通の非結晶性半導体膜を結晶性半導体膜の融点以上に加熱することにより溶融結晶化させることによって形成される。一方、非結晶性半導体膜は、結晶性半導体膜の結晶化工程と同一工程におけるレーザ照射によって前記光強度分布の一定の幅の外部領域を用いて非結晶性半導体膜の結晶成長温度以下の温度範囲で共通の非結晶性半導体膜を加熱して形成される。
 これにより、結晶性半導体膜をチャネル層として有するオン特性に優れたTFTと、非結晶性半導体膜をチャネル層として有するオフ特性に優れたTFTとを有する薄膜トランジスタアレイ装置を実現することができる。
 (実施形態)
 以下、本発明に係る薄膜トランジスタアレイ装置、有機EL表示装置、及び薄膜トランジスタアレイ装置の製造方法の実施形態について、図面を参照しながら説明する。なお、各図は、説明のための模式図であり、膜厚及び各部の大きさの比などは、必ずしも厳密に表したものではない。
 (CWレーザ光結晶化装置)
 まず、本発明の実施形態に係る薄膜トランジスタアレイ装置を製造する際に用いられるCWレーザ光結晶化装置500について、図面を参照しながら説明する。
 図1は、本実施形態におけるCWレーザ光結晶化装置の構成例を示す図である。図2Aは、本実施形態におけるCWレーザ光の長軸プロファイルを示す図である。図2B及び図2Cは、本実施形態におけるCWレーザ光の短軸プロファイルを示す図であり、図2Cは、図2Bのポジション範囲を小さくした図(拡大図)である。
 図1に示すように、本実施形態におけるCWレーザ光結晶化装置500は、アモルファスシリコン膜等の非晶質性半導体膜(非結晶性半導体膜)がガラス基板上に形成された試料501に対して、連続的なレーザ光であるCW(Continuous Wave)レーザ光を用いてマイクロセカンドオーダで照射する装置である。CWレーザ光結晶化装置500は、レーザ装置510と、長軸成形レンズ520と、ミラー530と、短軸成形レンズ540と、集光レンズ550と、ビームプロファイラー560と、石英ガラス570とを備える。
 レーザ装置510は、連続発振型のレーザ光であるCWレーザ光を発振する。また、本実施形態において、レーザ装置510は、例えば、グリーンレーザ光又はブルーレーザ光を、10~100ナノセカンドという短時間ではなく10~100マイクロセカンドという比較的長い時間で基板に照射する。
 CWレーザ光結晶化装置500において、レーザ装置510が発振したCWレーザ光は、長軸成形レンズ520を通過し、ミラー530によって照射方向が変更される。ミラー530で照射方向が変更されたCWレーザ光は、短軸成形レンズ540を通過し、集光レンズ550によって集光されて試料501に照射される。また、集光レンズ550で集光されたCWレーザ光の大半は、石英ガラス570を通過して試料501に照射されるが、集光レンズ550で集光されたCWレーザ光の一部は、ビームプロファイラー560に入射されて、ビームプロファイルが測定される。
 ここで、集光レンズ550により集光されたCWレーザ光のビームプロファイル、すなわち、CWレーザ光結晶化装置500によって試料501に照射するCWレーザ光のビームプロファイルは、図2A~図2Cに示すように、長軸にも短軸にもガウシアン分布である凸形状の光強度分布となっている。但し、図2A及び図2Bに示すように、長軸における光強度分布は、ポジションが0~6000μmにおいて、短軸に対して広い範囲でガウシアン分布となっている。また、図2B及び図2Cに示すように、短軸における光強度分布は、ポジションが0~60μmの狭い範囲においてガウシアン分布となっている。なお、図2A~図2Cにおいて、縦軸は、CWレーザ光のプロファイルのレーザ光強度が最大となる位置でのレーザ光強度を100%とした場合の相対強度を示している。
 このように、本実施形態において、集光レンズ550により集光されたCWレーザ光のビームプロファイルは、短軸及び長軸において凸形状のガウシアン分布の光強度分布である。この光強度分布は、レーザ装置510が発振するCWレーザ光が短軸成形レンズ540及び長軸成形レンズ520を通過することによって成形される。また、ビームプロファイラー560によって測定したビームプロファイルに基づいて、CWレーザ光のビームプロファイルが短軸及び長軸においてガウシアン分布の光強度分布となるように、長軸成形レンズ520及び短軸成形レンズ540を調整することができる。
 なお、集光レンズ550により集光されて試料501に照射されるCWレーザ光のビームプロファイルは、典型的には、ガウシアン分布の光強度分布を有するが、これに限るものではない。試料501に照射されるCWレーザ光としては、つりがね型である上に凸の連続的な光強度分布であればよい。
 ここで、集光レンズ550で集光されたCWレーザ光のビームプロファイルが短軸及び長軸ともにガウシアン型の光強度分布を有する場合が典型的である理由を説明する。CWレーザ光を発振する装置が発振するCWレーザ光の光強度分布は、元来ガウシアン分布かそれに相当するものである。そのため、CWレーザ光結晶化装置500の光学系に特別な付加装置や部品を導入しなくてもよいので、CWレーザ光結晶化装置500は、ビームプロファイルが短軸及び長軸ともにガウシアン型の光強度分布であるCWレーザ光を比較的簡便に照射することができる。
 (非結晶性半導体膜の結晶組織)
 以上のように構成されたCWレーザ光結晶化装置500を用いて、非結晶性半導体膜に対してCWレーザ光を照射することにより、異なる結晶組織を有する結晶性半導体膜を得ることができる。
 例えば、非結晶性半導体膜として非晶質シリコン薄膜(アモルファスシリコン膜)を用いてCWレーザ光を照射してアニールすると、CWレーザ光のビームプロファイルによって、SPC範囲、Ex範囲又は溶融範囲によって結晶化した結晶組織を有するシリコン薄膜を得ることができる。
 SPC(Solid Phase Crystallization)範囲とは、アモルファスシリコンの融点以下の範囲、すなわち600℃~1100℃の温度範囲において非結晶性シリコン薄膜が結晶化する温度範囲のことである。つまり、SPCは、アモルファスシリコンの融点以下の温度範囲、すなわち600℃~1100℃の温度範囲で、固相成長で結晶化する現象である。SPCによるシリコンの結晶組織は、例えば、平均結晶粒径が25nm~35nm程度である。
 Ex(Explosive Nucleation)範囲とは、アモルファスシリコンの融点以上で、かつ、シリコンの融点以下すなわち1100℃~1414℃の温度範囲において非結晶性シリコン薄膜が結晶化する温度の範囲のことである。つまり、Exは、アモルファスシリコンの融点以上かつシリコンの融点以下の温度範囲、すなわち1100℃~1414℃の温度範囲で、過冷却液体状態を経て結晶化する現象である。Exによるシリコンの結晶組織は、例えば、平均結晶粒径が40nm~60nm程度である。
 溶融範囲とは、シリコンの融点以上の温度範囲、すなわち1414℃以上の温度範囲である。なお、アモルファスシリコンを溶融範囲で溶融して冷却することで結晶化した場合には、平均結晶粒径は60nm~1μm程度のp-Si(多結晶シリコン)となる。
 ここで、シリコンの結晶化メカニズムについて、図3を用いて説明する。図3は、シリコンの結晶化に対する温度とエネルギーとの関係を示す図である。なお、図3において、横軸は、温度を示しており、縦軸はエネルギー(熱)を示している。
 図3に示すように、アモルファス状態のシリコンは、例えばレーザ光の照射などで熱せられ、SPC範囲、すなわち600℃~1100℃の温度範囲になるとする。この場合、アモルファス状態のシリコンは固相成長して微結晶化する。なお、このSPC範囲を経て結晶化したシリコンは、平均結晶粒径が25nmから35nmであるSPCの結晶性シリコンとなる。
 さらに、SPC範囲のシリコンに熱が加えられることにより、Ex範囲、すなわち、シリコン内の温度が、アモルファス状態のシリコンにおける原子のネットワーク構造が変化する融点として考えられる温度である1100℃を越え、かつ、シリコンの融点1414℃以下の範囲になるとする。この場合、シリコンの結晶粒径が、固相成長で得られる結晶(SPCの結晶性シリコン)からわずかに拡大する。これは、シリコンの温度が、アモルファスシリコンの融点以上の温度となることにより、シリコンが部分的に溶融することで粒径が大きくなると考えられる。なお、このEx範囲を経て結晶化したシリコンは、平均結晶粒径が40nm~60nmであるEx範囲の結晶性シリコンとなる。
 そして、さらに、Ex範囲のシリコンに熱を加えて、溶融範囲、すなわちシリコンの融点である1414℃以上の温度範囲になるとする。そこで、Ex範囲で得られる結晶(Exの結晶性シリコン)は、シリコンの融点において熱エネルギーが潜熱として与えられ、溶融する(液相となる)。なお、溶融範囲を経て結晶化したシリコンは、溶融して体積が縮小した後に体積膨張を伴って結晶化し、平均結晶粒径は60nm以上のp-Si(多結晶シリコン)となる。
 次に、Ex範囲のシリコンが溶融するメカニズムについて、図4を用いて説明する。図4は、Ex結晶組織の成長メカニズムを説明するための図である。
 SPC範囲にあるシリコンでは、確率的に原子が複数集まって、臨界粒径(~1nm)を越えると結晶核となり、結晶成長する。
 それに対し、Ex範囲にあるシリコンでは、アモルファスシリコンの融点以上の温度が加えられているため、原子の移動が促進され、図4(a)に示すように、結晶核の形成が促進される。そして、成長性の核が発生した核の周囲は、図4(b)に示すように、潜熱により溶融して結晶化する。
 以上のように、SPC範囲で結晶化した場合と、SPC範囲を超えてEx範囲を経て結晶化した場合と、溶融範囲を経て結晶化した場合とでは、結晶化するメカニズムが異なり結晶化後の粒径等が異なることになる。
 (非結晶性半導体膜の結晶組織とCWレーザ光との関係)
 本願発明者らは、CWレーザ光のエネルギー密度とシリコンの結晶組織との関係について鋭意検討した結果、CWレーザ光の出力エネルギー密度に応じて上記のように粒径が異なる結晶組織を形成できることを見出した。以下、具体的に説明する。
 本願発明者らは、CWレーザ光によって非結晶性半導体膜を結晶化させて結晶性半導体膜を形成して、当該結晶性半導体膜をチャネル層とするTFTを作製し、CWレーザ光のエネルギー密度に対するTFTのオン電流(Ion)の変化を調べた。その結果、図5A及び図5Bに示すような関係を示す曲線を得ることができた。図5Aは、CWレーザ光のエネルギー密度とTFTのオン電流(又はシリコン結晶組織)との関係を示す図である。また、図5Bは、シリコン単位体積あたりの吸収エネルギーとオン電流(又はシリコン結晶組織)との関係を示す図である。なお、本実験では、非結晶性半導体膜として、非晶質シリコン膜(アモルファスシリコン膜)を用いた。
 図5Aに示すように、CWレーザ光のエネルギー密度を変化させると、エネルギー密度の上昇とともにTFTのオン電流も上昇することが分かる。すなわち、エネルギー密度の上昇によってシリコンの結晶組織における粒径が拡大してキャリア移動度が大きくなっていることが分かる。また、図5Aに示される曲線には複数の特異点が存在し、この特異点が、シリコンにおける結晶組織の境界、すなわち、アモルファス、SPC範囲、Ex範囲及び溶融範囲の境界を表している。
 そして、CWレーザ光の出力エネルギー密度の上昇に伴って、シリコンの結晶組織が、アモルファス、SPC範囲、Ex範囲及び溶融範囲のこの順に変化している。
 具体的には、CWレーザ光のエネルギー密度が4.3[J/cm]未満の場合は、CWレーザ光が照射されたアモルファスシリコン膜は、平均結晶粒径が25nm未満のアモルファス状態の結晶組織となっている。すなわち、レーザ照射されたアモルファスシリコン膜は、アモルファスシリコンの結晶成長温度(600℃)以下の温度範囲で加熱される。
 また、CWレーザ光のエネルギー密度が4.3[J/cm]以上5.8[J/cm]未満の場合は、SPC範囲でアモルファスシリコン膜が結晶化され、平均結晶粒径が25nm以上35nm未満の結晶性シリコン膜が得られる。すなわち、レーザ照射されたアモルファスシリコン膜は、アモルファスシリコンの結晶成長温度以上かつアモルファスシリコンの融点以下の温度範囲(600℃~1100℃)で加熱され、アモルファスシリコン膜内に結晶を固相成長させることにより結晶化する。
 CWレーザ光のエネルギー密度が5.8[J/cm]以上7.4[J/cm]未満の場合は、Ex範囲でアモルファスシリコン膜が結晶化され、平均結晶粒径が40nm以上60nm未満の結晶性シリコン膜が得られる。すなわち、レーザ照射されたアモルファスシリコン膜は、アモルファスシリコンの融点以上かつシリコンの融点以下の温度範囲(1100℃~1414℃)で加熱されて、過冷却液体状態を経て結晶化する。
 CWレーザ光のエネルギー密度が7.4[J/cm]以上9.6[J/cm]未満の場合は、溶融範囲でアモルファスシリコン膜が結晶化され、平均結晶粒径が60nm以上1μm未満の結晶性シリコン膜が得られる。すなわち、レーザ照射されたアモルファスシリコン膜は、シリコンの融点(1414℃)以上の温度範囲で加熱されて溶融結晶化する。
 なお、CWレーザ光のエネルギー密度を9.6[J/cm]以上にしてアモルファスシリコン膜をレーザ照射すると、当該シリコン膜はアブレーション状態となりTFTのチャネル層として機能しなくなる。従って、本実施形態において、エネルギー密度の最大値は、9.6[J/cm]である。
 図5Bは、図5Aをシリコンの一般式に換算したものであり、図5Aに示すエネルギー密度(横軸)をシリコン単位体積あたりの吸収エネルギーとして表したものである。以下、この換算について説明する。
 まず、レーザ照射パワー密度をP[kW/cm]、レーザスキャン速度をss[mm/s]、レーザ光におけるビームプロファイルの短軸幅をS[μm]とすると、エネルギー密度Eirr[J/cm]は、Eirr=P×S/ssで表される。このとき、レーザ照射パワー密度P、レーザスキャン速度ss及びレーザ光におけるビームプロファイルの短軸幅Sの値を固定し、それぞれ、P=70[kW/cm]、ss=300[mm/s]、S=30[μm]とすると、Eirr=P×S/ss=7.0[J/cm]となる。
 ここで、シリコンの吸収率をAとすると、単位面積あたりのシリコンに吸収されるエネルギーEabs[J/cm]は、Eabs=A×Eirrで表される。また、アモルファスシリコンの膜厚をd[nm]とすると、単位体積あたりのシリコンに吸収されるエネルギーe_abs[J/cm]は、e_abs=Eabs/dで表される。従って、e_abs=(A/d)×Eirrとなる。このとき、アモルファスシリコンの膜厚dを45[nm]とし、シリコンの吸収率Aを25%とすると、e_abs=5.5×10×Eirrとなる。
 この変換式を用いて、図5Aの横軸のエネルギー密度Eirrを換算すると、図5Bになる。なお、他の膜厚構成(A’、d’)の場合における照射エネルギー密度Eirr’は、上記のe_absから、Eirr’=(d’/A’)×e_absの式から求めることができる。
 そして、図5Bに示すように、シリコン単位体積あたりの吸収エネルギーが2.4×10[J/cm]未満の場合は、平均結晶粒径が25nm未満のアモルファス状態の結晶組織である。
 また、シリコン単位体積あたりの吸収エネルギーが2.4×10[J/cm]以上3.2×10[J/cm]未満の場合は、SPC範囲で結晶化された結晶組織であって、平均結晶粒径が25nm以上35nm未満である。
 また、シリコン単位体積あたりの吸収エネルギーが3.2×10[J/cm]以上4.1×10[J/cm]未満の場合は、Ex範囲で結晶化された結晶組織であって、平均結晶粒径が40nm以上60nm未満である。
 そして、シリコン単位体積あたりの吸収エネルギーが4.1×10[J/cm]以上5.3[J/cm]未満の場合は、溶融範囲で結晶化された結晶組織であって、平均結晶粒径が60nm以上1μm未満である。
 なお、シリコン単位体積あたりの吸収エネルギーを5.3[J/cm]以上でアモルファスシリコン膜をレーザ照射すると、当該シリコン薄膜はアブレーション状態となりTFTのチャネル層として機能しなくなる。
 (CWレーザ光を用いた非結晶性半導体膜の結晶化)
 次に、CWレーザ光結晶化装置500を用いて非結晶性半導体膜にCWレーザ光を照射することにより、結晶組織が異なる2つの領域を有する半導体膜を同時に形成する方法について、図6を用いて説明する。図6は、本実施形態におけるCWレーザ光の長軸プロファイルを示したものであり、レーザ強度とシリコンの結晶組織との関係を表している。
 凸形状の光強度分布を有するCWレーザ光として、図6に示されるように、長軸のビームプロファイルがガウシアン型であるCWレーザ光(以下、「長軸ガウシアン型CWレーザ光」と記載する)を用いて非結晶性半導体膜を照射すると、非結晶性半導体膜はCWレーザ光の光強度に応じた結晶組織に結晶化される。すなわち、CWレーザ光のビームプロファイルは、光強度がCWレーザ光の光強度分布の位置(領域)によって異なるように構成されているので、1回のレーザ照射によって非結晶性半導体膜に対して異なるレーザエネルギーを同時に与えることができる。これにより、レーザ照射された非結晶性半導体膜において、光強度分布の中の光強度の強い領域で照射された部分については相対的に高い温度となり、また、光強度分布の中の光強度の弱い領域で照射された部分については相対的に低い温度となる。
 このように、CWレーザ光の光強度分布の位置によってレーザ照射時における非結晶性半導体膜の加熱温度を異ならせることができるので、結晶組織の異なる半導体膜を同時に形成することができる。例えば、非結晶性シリコン薄膜に対して長軸ガウシアン型CWレーザ光を用いてレーザ照射すると、光強度分布内の光強度に応じて、アモルファス、SPC範囲、Ex範囲又は溶融範囲の結晶組織とすることができる。
 これにより、CWレーザ光のビームプロファイルを所望に設定することによって、アモルファス、SPC範囲、Ex範囲又は溶融範囲の結晶組織のうち、複数の範囲の結晶組織を有する半導体膜、すなわち、結晶粒径が異なる所望の2つの領域を有する半導体膜を同時に得ることができる。このようなCWレーザ光のビームプロファイルについては、作製したい結晶組織に応じて、図5A及び図5Bを用いて所望に設定することができる。
 例えば、溶融範囲で結晶化させた結晶組織とEx範囲で結晶化させた結晶組織とを同時に形成する場合、図6に示すように、長軸ガウシアン型CWレーザ光の光強度分布における最大光強度を100%としたときに、当該光強度分布における一定の幅の内部領域(レーザ光内部領域)WINは、光強度が77%~100%となるように設定するとともに、当該光強度分布における一定の幅の内部領域の外側である外部領域(レーザ光外部領域)WOUTは、光強度が61%~77%となるように設定する。なお、レーザ光外部領域も、レーザ光内部領域の一定の幅とは異なる一定の幅を有する。
 この場合、CWレーザ光の出力エネルギー密度は、図5Aに示すように、光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、光強度分布における内部領域(レーザ光内部領域)WINについてはエネルギー密度が7.4[J/cm]から9.6m[J/cm]の範囲の領域となるように設定すればよく、また、光強度分布における外部領域WOUTについては、エネルギー密度が5.8[J/cm]から7.4m[J/cm]の範囲の領域となるように設定すればよい。
 長軸ガウシアン型CWレーザ光の出力エネルギー密度をこのように設定してアモルファスシリコン膜に対して所定のビームスキャン方向に連続して照射すると、長軸ガウシアン型CWレーザ光の光強度分布における一定の幅の内部領域WINによってレーザ照射された部分は、溶融範囲(1414℃以上)の温度分布を示し、溶融範囲で溶融して冷却されて結晶化した第1結晶性半導体膜を得ることができる。また、これと同時に、長軸ガウシアン型CWレーザ光の光強度分布における外部領域WOUTによってレーザ照射された部分は、Ex範囲(1100℃~1414℃)の温度分布を示し、Ex範囲で過冷却液体状態を経て結晶化された第2結晶性半導体膜を得ることができる。
 これにより、共通の非結晶性半導体膜を用いて、溶融範囲で結晶化させた結晶組織の第1結晶性半導体膜とEx範囲で結晶化させた結晶組織の第2結晶性半導体膜とを同時に形成することができる。このとき、溶融範囲で結晶化された領域における結晶性シリコン膜(第1結晶性半導体膜)の結晶粒は、面内均一性を保ちつつ、その平均結晶粒径は、60nm~1μnmとなる。また、Ex範囲で結晶化された領域における結晶性シリコン膜(第2結晶性半導体膜)の結晶粒は、面内均一性を保ちつつ、その平均結晶粒径は、40nm~60nmとなる。
 このように、本実施形態よれば、結晶組織(結晶粒径)の異なる2つの領域を有する結晶性半導体膜を一括形成することができる。なお、図6に示すビームプロファイルは一例であって、ビームプロファイルを所望に設定することにより、結晶組織の異なる2つの領域を有する所望の半導体膜を得ることができる。
 また、非結晶性半導体膜に対しては、10~100マイクロセカンドなどのマイクロセカンドオーダでレーザ照射することが好ましい。具体的には、長軸ガウシアン型CWレーザ光を、10~100マイクロセカンドなどのマイクロセカンドオーダにてレーザ照射することが好ましい。
 このように、長軸ガウシアン型CWレーザ光をナノセカンドオーダではなくマイクロセカンドオーダでレーザ照射することにより、長軸ガウシアン型CWレーザ光の照射時間を長くとることができる。これにより、アモルファスシリコン膜における原子の構造がアモルファスの状態から原子が再配列して結晶化するまでの十分な時間を確保することができるので、面内均一性に優れた結晶組織を有する結晶性半導体膜を形成することができる。
 (薄膜トランジスタアレイ装置の構成)
 次に、本発明の実施形態に係る薄膜トランジスタアレイ装置について、図面を参照しながら説明する。
 図7は、本発明の実施形態に係る薄膜トランジスタアレイ装置を備える薄膜トランジスタアレイ基板(TFTアレイ基板)200である。また、図8は、図7のTFTアレイ基板における画素の構成を示す平面図である。
 図7に示すように、TFTアレイ基板200は、アクティブマトリクス基板であって、マトリクス状に配置された複数の画素20で構成される表示部220を備える。なお、図7においては、2つの表示部220が形成されたTFTアレイ基板200を示しており、このTFTアレイ基板200を切断することによって、2つのTFTアレイ基板を得ることができる。また、図7においては、画素20は表示部220の4隅の一部にしか図示されておらず、実際には、画素20は表示部220内にマトリクス状に配列されている。
 画素20は、図8に示すように、ソース配線21、電源配線22及びゲート配線23によって区画されており、1つの画素20(単位画素)には、第1薄膜トランジスタである駆動用TFT10aと、第2薄膜トランジスタであるスイッチ用TFT10bとが形成されている。
 駆動用TFT(第1薄膜トランジスタ)10aは、有機EL素子(不図示)を駆動するための駆動トランジスタであり、第1ゲート電極3aと、第1ゲート電極3a上に島状に形成された第1チャネル層50aと、第1チャネル層50a上に形成された第1ソース電極8a及び第1ドレイン電極9aとを備える。
 スイッチ用TFT(第2薄膜トランジスタ)10bは、映像信号を当該画素に供給することを選択するためのスイッチングトランジスタであり、第2ゲート電極3bと、第2ゲート電極3b上に島状に形成された第2チャネル層50bと、第2チャネル層50b上に形成された第2ソース電極8b及び第2ドレイン電極9bとを備える。
 また、図8に示すように、駆動用TFT10aにおいて、第1ドレイン電極9aは、コンタクト24を介して電源配線22と電気的に接続されており、第1ゲート電極3aは、コンタクト25を介してスイッチ用TFT10bの第2ドレイン電極9bと電気的に接続されている。なお、図示しないが、駆動用TFT10aの第1ソース電極8aは、有機EL素子の下部電極に電気的に接続される。
 また、スイッチ用TFT10bにおいて、第2ソース電極8bは、コンタクト26を介してソース配線21と電気的に接続され、第2ゲート電極3bは、コンタクト27を介してゲート配線23と電気的に接続される。スイッチ用TFT10bの第2ドレイン電極9bは、上述のように、駆動用TFT10aの第1ゲート電極3aと電気的に接続される。
 なお、駆動用TFT10aの第1ゲート電極3aと電源配線22とは、基板垂直方向において絶縁膜を介して重なるように構成されており、コンデンサ29(不図示)を形成している。
 本発明の実施形態に係る薄膜トランジスタアレイ装置においては、第2ドレイン電極9bと第1ゲート電極3aとが電気的に接続されている。これにより、駆動用TFT10aとスイッチ用TFT10bとを最短の配線長さで接続することができる。この結果、駆動用TFT10aとスイッチ用TFT10bとの間の電気抵抗を最小にすることができる。従って、高速動作ができ、電力損失も小さい、薄膜トランジスタアレイ装置を実現することができる。なお、第2ドレイン電極9bではなく、第2ソース電極8bと第1ゲート電極3aとを電気的に接続するように構成しても構わない。
 次に、このように構成される画素の等価回路構成について、図9を用いて説明する。図9は、本発明の実施形態に係る薄膜トランジスタアレイ装置の画素の回路構成図である。
 図9に示すように、画素20は、駆動用TFT10aと、スイッチ用TFT10bと、コンデンサ29と、有機EL素子30とを備える。上述のとおり、駆動用TFT10aの第1ドレイン電極9aは電源配線22に接続され、第1ソース電極8aは有機EL素子30のアノードに接続されている。また、スイッチ用TFT10bの第2ソース電極8bはソース配線21に接続され、第2ゲート電極3bはゲート配線23に接続され、第2ドレイン電極9bはコンデンサ29及び駆動用TFT10aの第1ゲート電極3aに接続されている。
 この構成において、ゲート配線23にゲート信号が入力され、スイッチ用TFT10bをオン状態にすると、ソース配線21を介して供給された信号電圧がコンデンサ29に書き込まれる。そして、コンデンサ29に書き込まれた保持電圧は、1フレーム期間を通じて保持される。この保持電圧により、駆動用TFT10aのコンダクタンスがアナログ的に変化し、発光階調に対応した駆動電流が、有機EL素子30のアノードからカソードへと流れる。これにより、有機EL素子30が発光し、画像として表示される。
 次に、本発明の実施形態に係る薄膜トランジスタアレイ装置の構造について、図10を用いて説明する。図10は、本発明の実施形態に係る薄膜トランジスタアレイ装置の構造を示す断面図である。なお、図10は、図8のY-Y’線に沿って切断した断面図である。
 図10に示すように、本発明の実施形態に係る薄膜トランジスタアレイ装置100は、駆動用TFT10aとスイッチ用TFT10bとによって構成される。
 駆動用TFT10aは、ボトムゲート型の薄膜トランジスタ装置であって、基板1上に順次形成された、アンダーコート層2、第1ゲート電極3a、ゲート絶縁膜4、第1結晶性半導体膜5a、第1非結晶性半導体膜6a、一対の第1コンタクト層7a、第1ソース電極8a及び第1ドレイン電極9aを備える。なお、駆動用TFT10aの第1チャネル層50aは、第1結晶性半導体膜5aと第1非結晶性半導体膜6aとで構成されている。
 また、スイッチ用TFT10bは、ボトムゲート型の薄膜トランジスタ装置であって、基板1上に順次形成された、アンダーコート層2、第2ゲート電極3b、ゲート絶縁膜4、第2結晶性半導体膜5b、第2非結晶性半導体膜6b、一対の第2コンタクト層7b、第2ソース電極8b及び第2ドレイン電極9bを備える。なお、スイッチ用TFTの第2チャネル層50bは、第2結晶性半導体膜5bと第2非結晶性半導体膜6bとで構成されている。
 以下、駆動用TFT10aとスイッチ用TFT10bとの各構成について、さらに詳しく説明する。
 基板1は、駆動用TFT10aとスイッチ用TFT10bとに共通し、例えば、石英ガラス、無アルカリガラス、高耐熱性ガラス等のガラス材料からなるガラス基板である。
 アンダーコート層2は、基板1の中に含まれる不純物が上層の半導体膜に侵入することを防止したり、レーザアニールなどの高温熱処理プロセスにおいて基板1への熱の影響を緩和させたりするために、基板1上に形成される。アンダーコート層2としては、例えば、シリコン窒化膜、酸化シリコン又はシリコン酸窒化膜を用いることができる。
 第1ゲート電極3a及び第2ゲート電極3bは、アンダーコート層2上に所定形状でパターン形成される。第1ゲート電極3a及び第2ゲート電極3bとしては、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、タングステン(W)、チタン(Ti)及びクロム(Cr)の単層構造又は多層構造からなり、例えばモリブデンタングステン(MoW)を用いることができる。
 ゲート絶縁膜4は、駆動用TFT10aとスイッチ用TFT10bとに共通する絶縁膜であって、第1ゲート電極3a及び第2ゲート電極3b上に、第1ゲート電極3a及び第2ゲート電極3bを覆うようにして全面に形成される。ゲート絶縁膜4としては、例えば、酸化シリコン、窒化シリコン、シリコン酸窒化膜、酸化アルミニウム、酸化タンタル又はその積層膜を用いることができる。
 駆動用TFT10aの第1結晶性半導体膜5aは、ゲート絶縁膜4上に形成されており、CWレーザ光によって非結晶性半導体膜を結晶化することにより形成される。第1結晶性半導体膜5aの平均結晶粒径(第1の平均結晶粒径)は60nm~1μmである。本実施形態において、第1結晶性半導体膜5aは、非結晶構造のアモルファスシリコンと結晶性シリコンの結晶構造との混晶を含むシリコン薄膜であっても構わない。
 スイッチ用TFT10bの第2結晶性半導体膜5bもゲート絶縁膜4上に形成されており、CWレーザ光によって非結晶性半導体膜を結晶化することにより形成される。第2結晶性半導体膜5bの平均結晶粒径(第2の平均結晶粒径)は、第1結晶性半導体膜5aの平均結晶粒径よりも小さく、40nm~60nmである。本実施形態において、第2結晶性半導体膜5bも、非結晶構造のアモルファスシリコンと結晶性シリコンの結晶構造との混晶を含むシリコン薄膜であっても構わない。
 なお、上記の結晶粒径の異なる第1結晶性半導体膜5aと第2結晶性半導体膜5bとは、後述するように同一製造工程における同一レーザ照射によって同時に形成される。
 駆動用TFT10aの第1非結晶性半導体膜6aとスイッチ用TFTの第2非結晶性半導体膜6bとは、それぞれ第1結晶性半導体膜5a上と第2結晶性半導体膜5b上とに形成されており、いずれも、例えば、アモルファスシリコン膜(非晶質シリコン膜)等で構成されている。
 一対の第1コンタクト層7a及び一対の第2コンタクト層7bは、それぞれ第1非結晶性半導体膜6a上及び第2非結晶性半導体膜6b上に形成される。一対の第1コンタクト層7a及び一対の第2コンタクト層7bは、不純物を高濃度に含む非晶質性半導体膜で構成することができ、例えば、アモルファスシリコン膜に不純物としてリン(P)をドーピングしたn型半導体層とすることができる。また、一対の第1コンタクト層7a及び一対の第2コンタクト層7bは、1×1019(atm/cm)以上の高濃度の不純物を含むように構成することが好ましい。
 駆動用TFT10aにおいて、第1ソース電極8a及び第1ドレイン電極9aは、第1コンタクト層7a上に形成されている。また、スイッチ用TFT10bにおいて、第2ソース電極8b及び第2ドレイン電極9bは、第2コンタクト層7b上に形成されている。第1ソース電極8a、第1ドレイン電極9a、第2ソース電極8b及び第2ドレイン電極9bは、それぞれ導電性材料又はその合金で構成された単層構造又は多層構造であり、例えば、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)、銅(Cu)、チタン(Ti)及びクロム(Cr)等の材料で構成される。
 以上、本発明の実施形態に係る薄膜トランジスタアレイ装置100によれば、平均結晶粒径が相対的に大きい結晶粒の第1結晶性半導体膜5aをチャネル層とする駆動用TFT10aと、平均結晶粒径が相対的に小さい結晶粒の第2結晶性半導体膜5bをチャネル層とするスイッチ用TFT10bとを形成することができる。
 これにより、駆動用TFT10aについては、大きい結晶粒の第1結晶性半導体膜5aによってオン電流を増加させることができる。従って、また、スイッチ用TFT10bについては、アモルファス構造の半導体膜をチャネル層とするTFTに比べてオン電流を高くすることができるとともに、結晶粒径が大きい半導体膜をチャネル層とするTFTに比べてオフ電流を抑制することができる。従って、オン特性に優れた駆動用TFT10aと、オフ特性及びオン特性に優れたスイッチ用TFTとを有する薄膜トランジスタアレイ装置を実現することができる。
 なお、本実施形態において、第1結晶性半導体膜5aと第2結晶性半導体膜5bとは離間されている。これにより、第1結晶性半導体膜5aと第2結晶性半導体膜5bとの間において、電子又はホールのキャリアの流入が生じない。この結果、第1結晶性半導体膜5aをチャネル層とする駆動用TFT10aと、第2結晶性半導体膜5bをチャネル層とするスイッチ用TFT10bとにおいて、相互に影響を受けることなく動作させることができる。
 (有機EL表示装置の構成)
 次に、本発明の実施形態に係る有機EL表示装置300について、図11を用いて説明する。図11は、本発明の実施形態に係る有機EL表示装置の一画素における断面図である。
 本発明の実施形態に係る有機EL表示装置300は、上述の駆動用TFT10aとスイッチ用TFT10bとからなる薄膜トランジスタアレイ装置100を備えるものであり、上述の図7に示すTFTアレイ基板200における複数の画素20において、薄膜トランジスタアレイ装置100が画素単位で配置されている。
 図11に示すように、本実施形態に係る有機EL表示装置300は、駆動用TFT10aとスイッチ用TFT10b(不図示)とが形成されたTFTアレイ基板200上に、第1層間絶縁膜310、第2層間絶縁膜320、第1コンタクト部330、第2コンタクト部340、バンク350、下部電極360、有機EL層370及び上部電極380を備える。なお、図11においては、駆動用TFT10aが図示されており、スイッチ用TFT10bは図示されていない。
 図11に示すように、駆動用TFT10a及びスイッチ用TFT10bを覆うようにして、第1層間絶縁膜310が形成されている。第1層間絶縁膜310上にはソース配線21及び電源配線22が形成されており、電源配線22と駆動用TFT10aの第1ドレイン電極9aとは、第1層間絶縁膜310を貫通する第1コンタクト部330を介して電気的に接続されている。また、ソース配線21と電源配線22とを覆うようにして、第2層間絶縁膜320が形成されている。
 第2層間絶縁膜320上には、隣接する画素との境界部分にバンク350が形成されている。従って、バンク350はTFTアレイ基板200上に複数個形成されており、隣接するバンク350によって開口部351が形成される。バンク350の開口部351には、下部電極360と有機EL層370と上部電極380とで構成される有機EL素子30が形成されている。
 下部電極360は、画素単位で配置された陽極(アノード)であり、第2層間絶縁膜320上に形成されている。下部電極360と駆動用TFT10aの第1ソース電極8aとは、第1層間絶縁膜310と第2層間絶縁膜320とを貫通する第2コンタクト部340を介して電気的に接続されている。
 有機EL層(有機発光層)370は、色(サブ画素列)単位又はサブ画素単位で形成されており、所定の有機発光材料で構成されている。
 上部電極380は、有機EL層370の上方に配置され、複数の画素を跨ぐように形成された陰極(カソード)であり、ITO等の透明電極によって構成される。
 以上、本発明の実施形態に係る有機EL表示装置300によれば、駆動用TFT10aにおける第1結晶性半導体膜5aの平均結晶粒径が60nmから1μmであるので、駆動用TFT10aの第1チャネル層50aに流れる電流を大きくすることができる。その結果、画素20の発光電流を大きくすることができるので、有機EL表示装置300の発光輝度を大きくすることができる。
 また、スイッチ用TFT10bにおける第2結晶性半導体膜5bの平均結晶粒径が40nmから60nmであるので、アモルファス構造の半導体膜をチャネル層とするスイッチ用TFTに比べて高速動作のTFTを構成することができるとともに、結晶粒径が大きい半導体膜をチャネル層とするTFTに比べてオフ電流を抑制することができる。その結果、動画特性に優れた有機EL表示装置を実現することができる。従って、発光輝度が大きく、かつ、高速表示をすることができる有機EL表示装置を実現することができる。
 (薄膜トランジスタアレイ装置の製造方法)
 次に、本発明の実施形態に係る薄膜トランジスタアレイ装置100の製造方法について、図面を参照しながら説明する。
 図12Aは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法のフローチャートである。また、図12Bは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法における結晶性半導体膜形成工程のフローチャートである。
 図12Aに示すように、本発明の実施形態に係る薄膜トランジスタアレイ装置100の製造方法は、第1工程である基材準備工程(S10)と、第2工程である第1ゲート電極形成工程(S20)と、第3工程である第2ゲート電極形成工程(S30)と、第4工程であるゲート絶縁膜形成工程(S40)と、第5工程である結晶性半導体膜形成工程(S50)と、第6工程であるソースドレイン電極形成工程(S60)とを、この順に含む。さらに、図12Bに示すように、第5工程である結晶性半導体膜形成工程(S50)は、第5-1工程である非結晶性半導体膜へのレーザ照射工程(S51)と、第5-2工程である非結晶性半導体膜の結晶化工程(S52)とを含む。
 次に、本発明の実施形態に係る薄膜トランジスタアレイ装置100の具体的な製造方法について、図13A~図13Mを用いて説明する。図13A~図13Mは、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法における各工程を模式的に示した平面図及び断面図である。なお、各図において左側の図が平面図を表し、右側の図は当該平面図におけるY-Y’線に沿って切断した断面図を表している。
 まず、図13Aに示すように、基材として、ガラス基板からなる基板1を準備する(S10)。その後、基板1上に、シリコン窒化膜等の絶縁膜からなるアンダーコート層2をプラズマCVD等によって形成する。
 次に、純水等で洗浄した後に、図13Bに示すように、アンダーコート層2上にゲート金属膜3Mを例えば50nm程度の膜厚で成膜する。本実施形態では、モリブデンタングステン(MoW)からなるゲート金属膜3Mをスパッタによって成膜した。
 次に、ゲート金属膜3Mに対してフォトリソグラフィ及びウェットエッチングを施すことにより、ゲート金属膜3Mをパターニングして、図13Cに示すように、所定形状の第1ゲート電極3aと第2ゲート電極3bとを形成する(S20、S30)。
 次に、図13Dに示すように、第1ゲート電極3a及び第2ゲート電極3bを覆うようにして、第1ゲート電極3aと第2ゲート電極3bの上に、二酸化シリコンからなるゲート絶縁膜4を例えば100nm程度の膜厚で成膜する(S40)。なお、ゲート絶縁膜4は、プラズマCVD等によって成膜することができる。
 次に、図13Eに示すように、ゲート絶縁膜4上に、非結晶性半導体膜5αとしてアモルファスシリコン膜を例えば50nm程度の膜厚で成膜する。なお、非結晶性半導体膜5αも、プラズマCVD等によって成膜することができる。
 その後、非結晶性半導体膜5αに長軸ガウシアン型CWレーザ光を照射する前準備として、脱水素処理を行う。具体的には、例えば400℃~500℃で30分間のアニールを行う。これは、アモルファスシリコン膜からなる非結晶性半導体膜5αには、通常、5%~15%の水素がSiHとして含有されており、水素を含有したままの非結晶性半導体膜5αを結晶化すると、水素がシリコンの手を塞いでしまい結晶化を阻害してしまうだけでなく、突沸のような現象が起こりやすくなるからである。
 次に、図13Fに示すように、図1に示したCWレーザ光結晶化装置を用いて、図2Aに示す形状の光強度分布を有する長軸ガウシアン型CWレーザ光を非結晶性半導体膜5αに照射して、非結晶性半導体膜5αを結晶化する(S50)。
 具体的には、図6に示すようなビームプロファイルに設定された長軸ガウシアン型のCWレーザ光を非結晶性半導体膜5αに照射する(S51)。なお、長軸ガウシアン型のCWレーザ光は、マイクロセカンドオーダにて照射する。
 このとき、本実施形態では、第1ゲート電極3aの上方に位置する非結晶性半導体膜5αに対しては、長軸ガウシアン型CWレーザ光の光強度分布における一定の幅の内部領域WINによって照射されるようにレーザ照射を行う。また、第2ゲート電極3bの上方に位置する非結晶性半導体膜5αに対しては、当該長軸ガウシアン型CWレーザ光の光強度分布における外部領域WOUTによって照射されるようにレーザ照射を行う。
 これにより、図13Gに示すように、上記内部領域WINによって照射された非結晶性半導体膜5αの領域は、1414℃以上の温度範囲(溶融範囲)で加熱されて溶融する。その後、溶融させた非結晶性半導体膜5αを冷却することによって結晶化させて、溶融範囲で結晶化した結晶構造の結晶性半導体膜5Meを形成することができる(S52)。
 また、同図に示すように、上記外部領域WOUTによって照射された非結晶性半導体膜5αの領域は、1100℃~1414℃の温度範囲(Ex範囲)で結晶化した結晶構造の結晶性半導体膜Exとなる。
 その後、水素プラズマを用いた水素プラズマ処理を行う。水素プラズマ処理を行うことにより、レーザ未照射の非結晶性半導体膜5αを含めて、レーザ光が照射された非結晶性半導体膜5α(結晶性半導体膜5Me及び結晶性半導体膜5Ex)の水素終端化処理を行う。水素プラズマ処理は、例えばH、H/アルゴン(Ar)等の水素ガスを含むガスを原料として高周波電力により水素プラズマを発生させることにより行われる。
 次に、図13Hに示すように、非結晶性半導体膜6αを例えば100nm程度の膜厚で成膜する。具体的には、プラズマCVD法により、レーザ未照射の非結晶性半導体膜5αを含めて、結晶性半導体膜5Me(第1結晶性半導体膜5a)及び結晶性半導体膜5Ex(第2結晶性半導体膜5b)の上に、アモルファスシリコン膜からなる非結晶性半導体膜6αを成膜する。
 次に、図13Iに示すように、フォトリソグラフィ及びウェットエッチングを施すことにより、積層された結晶性半導体膜5Me及び非結晶性半導体膜6αを選択的にパターニングすることにより、第1結晶性半導体膜5a及び第1非結晶性半導体膜6aを島状に形成する。また、これと同時に、積層された結晶性半導体膜5Exと非結晶性半導体膜6αも選択的にパターニングして、第2結晶性半導体膜5b及び第2非結晶性半導体膜6bについても島状に形成する。
 このように、第1結晶性半導体膜5a(第1非結晶性半導体膜6a)と第2結晶性半導体膜5b(第2非結晶性半導体膜6b)との境界領域をパターニング除去することによって、第1結晶性半導体膜5a(第1非結晶性半導体膜6a)と第2結晶性半導体膜5b(第2非結晶性半導体膜6b)とを離間させて分離形成することができる。
 これにより、第1結晶性半導体膜5aと第1非結晶性半導体膜6aとが積層された第1チャネル層50aと、第2結晶性半導体膜5bと第2非結晶性半導体膜6bとが積層された第2チャネル層50bとを形成することができる。
 次に、図13Jに示すように、プラズマCVD等によってアモルファスシリコン膜からなる非晶質性半導体膜を成膜し、当該非晶質性半導体膜に不純物をドーピングして、第1コンタクト層7a及び第2コンタクト層7bとなる不純物ドープの非晶質性半導体膜7αDを形成する。不純物としては、例えば、リン等の5価元素を用いることができる。また、不純物濃度が高濃度となるようにドーピングする。
 次に、図13Kに示すように、不純物ドープの非晶質性半導体膜7αD上に、ソースドレイン金属膜8Mを成膜する。ソースドレイン金属膜8Mの材料は、第1ソース電極8a、第1ドレイン電極9a、第2ソース電極8b及び第2ドレイン電極9bを構成する材料である。本実施形態では、MoW/Al/MoWの三層構造のソースドレイン金属膜8Mをスパッタ法によって成膜した。
 次に、図13Lに示すように、フォトリソグラフィ及びウェットエッチングを施すことにより、ソースドレイン金属膜8Mと不純物ドープの非晶質性半導体膜7αDとをパターニングする。これにより、第1ソース電極8a及び第1ドレイン電極9aと、第2ソース電極8b及び第2ドレイン電極9bとを形成する(S60)。
 その後、ソースドレイン金属膜8Mをパターニングするときのレジスト(図示)を残したまま、ドライエッチングを施すことにより、図13Mに示すように、第1非結晶性半導体膜6a及び第2非結晶性半導体膜6bの上層一部をエッチングする。これにより、不純物ドープの非晶質性半導体膜7αDを分離して、n層である一対の第1コンタクト層7a及び一対の第2コンタクト層7bを形成することができる。また、非晶質性半導体膜7αDの上層をエッチングすることにより、所望の膜厚の第1チャネル層50a及び第2チャネル層50bを形成することができる。
 これにより、本発明の実施形態に係る薄膜トランジスタアレイ装置100を製造することができる。
 なお、製造方法は図示しないが、その後、図11に示すように、第1層間絶縁膜310、第2層間絶縁膜320、第1コンタクト部330、第2コンタクト部340、バンク350、下部電極360、有機EL層370及び上部電極380、並びに、ソース配線21、電源配線22及びゲート配線23を形成することにより、有機EL表示装置を製造することができる。
 また、以上の説明では一つの画素について説明したが、他の画素の薄膜トランジスタアレイ装置についても同様に形成することができる。以下、複数の画素を含む表示部全体におけるCWレーザのビームスキャン方法について、図14を用いて説明する。図14は、本発明の実施形態に係る薄膜トランジスタアレイ装置の製造方法に関し、表示部全体をビームスキャンする様子を模式的に示す図である。
 図14に示すように、上述した本実施形態における長軸ガウシアン型CWレーザ光のビームスキャン方法は、複数行及び複数列のマトリクス状に配置された複数の画素20に対して、一行(1ライン)単位でレーザ照射を行うものである。このとき、図13Gで説明したように、駆動用TFT10aの第1結晶性半導体膜5aとなる部分における非結晶性半導体膜5αについては、CWレーザ光の光強度分布における内部領域WINによって照射されるように、また、スイッチ用TFT10bの第2結晶性半導体膜5bとなる部分における非結晶性半導体膜5αについては、CWレーザ光の光強度分布のうちレーザ光外部領域WOUTによってレーザ照射されるようにしてビームスキャンを行う。
 図15は、このときのレーザ照射の様子を拡大して示した図である。図15に示すように、本実施形態において、レーザ照射は、行方向に配列された複数の画素20に対して連続してスキャンすることにより行単位で行う。なお、図15では、レーザ光の光強度分布に対する駆動用TFT10aとスイッチ用TFT10bとの位置関係が分かるように、レーザ照射時には存在しないトランジスタの電極等の構成要素も図示している。
 また、本実施形態では、左側から右側に向かう一方向で順次ビームスキャンしたが、1ライン目は左側から右側に向かう方向に、次の2ライン目は、右側から左側に向かう方向に、1ラインごとに交互に折り返すようにしてビームスキャンしても構わない。
 次に、本実施形態に製造方法によって製造した薄膜トランジスタアレイ装置100の電流特性について図16を用いて説明する。図16は、本発明の実施形態に係る薄膜トランジスタアレイ装置における結晶粒径に対する電流特性を示す図である。
 図16に示すように、本実施形態に係る薄膜トランジスタアレイ装置100において、駆動用TFT10aの第1チャネル層50aにおける第1結晶性半導体膜5aの平均結晶粒径が60nm~1μmと比較的に大きくすることができるので、駆動用TFT10aのオン電流を大きくすることができる。また、スイッチ用TFT10bの第2チャネル層50bにおける第2結晶性半導体膜5bの平均結晶粒径が40nm~60nmと比較的に小さくすることができるので、スイッチ用TFT10bのオフ電流を小さくすることができる。
 以上、本実施形態に係る薄膜トランジスタアレイ装置100の製造方法によれば、オン電流が高くオン特性に優れた駆動用TFT10aと、オフ電流が低くオフ特性に優れたスイッチ用TFT10bとを同時に形成することができる。
 次に、駆動用TFT10aのオン電流とスイッチ用TFT10bのオフ電流に対する有機EL表示装置の表示性能の関係について、図17A及び図17Bを用いて説明する。図17Aは、駆動用TFTのオン電流と有機EL表示装置の発光輝度との関係を示す図である。また、図17Bは、スイッチ用TFTのオフ電流と有機EL表示装置の階調変動との関係を示す図である。
 図17Aに示すように、駆動用TFT10aのオン電流が増加するに従って、有機EL表示装置の発光輝度は増加する。また、図17Bに示すように、スイッチ用TFT10bのオフ電流が低減するに従って、有機EL表示装置における階調変動が減少する。階調変動が減少するのは、スイッチ用TFT10bのオフ電流が小さくなることにより、駆動用TFT10aのゲート電圧の変動が小さくなるからである。
 従って、本実施形態に係る薄膜トランジスタアレイ装置100を備える有機EL表示装置300によれば、上述のとおり、駆動用TFT10aのオン電流を大きくすることができるので、有機EL表示装置300の発光輝度を増加させることができる。また、スイッチ用TFT10bのオフ電流を小さくすることができるので、有機EL表示装置300における階調変動を小さくすることができる。これにより、高画質の画像を表示することのできる有機EL表示装置300を得ることができる。
 (変形例)
 上記の実施形態では、図6に示すようなビームプロファイルの長軸ガウシアン型CWレーザ光によってレーザ照射したが、これに限らない。長軸ガウシアン型CWレーザ光のビームプロファイルパターンについては、形成すべき結晶組織に応じて、図5A及び図5Bを用いて所望に設定することができる。以下、長軸ガウシアン型CWレーザ光の他のビームプロファイルパターンについて、図18~図21を用いて説明する。
 なお、以下の変形例において、CWレーザ光結晶化装置としては上記の実施形態と同じものを用いることができる。すなわち、各ビームプロファイルは、図1に示されるCWレーザ光結晶化装置を用いて変更することができる。また、以下の変形例は、第1結晶性半導体膜5a及び第2結晶性半導体膜5bの結晶組織以外の構成については、上記の実施形態と同様である。さらに、レーザのビームスキャン方法も上記の実施形態と同様の方法によって行うことができる。
 (変形例1)
 図18は、本発明の変形例1に係る薄膜トランジスタアレイ装置の製造方法おけるビームプロファイル及びレーザ照射位置を示す図である。
 図18に示すように、本変形例では、駆動用TFT10aのチャネル層としては、非結晶性半導体膜が溶融範囲で結晶化した第1結晶性半導体膜5aとなるように、かつ、スイッチ用TFT10bのチャネル層としては、非結晶性半導体膜がSPC範囲で結晶化した第2結晶性半導体膜5bとなるように、長軸ガウシアン型CWレーザ光のビームプロファイルが設定されている。
 本変形例は、溶融範囲で結晶化させた結晶組織とSPC範囲で結晶化させた結晶組織とを同時に形成する場合であって、図18に示すように、長軸ガウシアン型CWレーザ光の光強度分布における最大光強度を100%としたときに、当該光強度分布における一定の幅の内部領域WINについては、光強度が77%~100%となるように設定するとともに、当該光強度分布における外部領域WOUTについては、光強度が44%~61%となるように設定する。
 この場合、CWレーザ光の出力エネルギー密度は、図5Aに示すように、光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、光強度分布における内部領域(レーザ光内部領域)WINについては、エネルギー密度が7.4[J/cm]から9.6m[J/cm]の範囲の領域となるように設定すればよく、また、光強度分布における外部領域WOUTについては、エネルギー密度が4.3[J/cm]から5.8m[J/cm]の範囲の領域となるように設定すればよい。
 なお、シリコン単位体積あたりの吸収エネルギーに換算すると、図5Bに示すように、光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、光強度分布における内部領域WINについては、単位体積あたりの吸収エネルギーが4.1×10[J/cm]から5.3×10[J/cm]の範囲の領域となるように設定すればよく、また、光強度分布における外部領域WINについては、単位あたりの吸収エネルギーが2.4×10[J/cm]から3.2×10[J/cm]の範囲の領域となるように設定すればよい。
 長軸ガウシアン型CWレーザ光の出力エネルギー密度をこのように設定してアモルファスシリコン膜に対して所定のビームスキャン方向に連続して照射すると、長軸ガウシアン型CWレーザ光の光強度分布における一定の幅の内部領域WINによってレーザ照射された部分は、溶融範囲(1414℃以上)で加熱溶融し、その後、冷却されることによって結晶化されて第1結晶性半導体膜となる。また、これと同時に、長軸ガウシアン型CWレーザ光の光強度分布における外部領域WOUTによってレーザ照射された部分は、SPC範囲(600℃~1100℃)でアモルファスシリコン膜内に結晶を固相成長させることによって結晶化されて第2結晶性半導体膜となる。
 これにより、共通の非結晶性半導体膜を用いて、溶融範囲で結晶化させた結晶組織の第1結晶性半導体膜とSPC範囲で結晶化させた結晶組織の第2結晶性半導体膜とを同時に形成することができる。このとき、溶融範囲で結晶化された領域における結晶性シリコン膜(第1結晶性半導体膜)の結晶粒は、面内均一性を保ちつつ、その平均結晶粒径は、60nm~1μnmとなる。また、SPC範囲で結晶化された領域における結晶性シリコン膜(第2結晶性半導体膜)の結晶粒は、面内均一性を保ちつつ、その平均結晶粒径は、25nm~35nmとなる。
 (変形例2)
 図19は、本発明の変形例2に係る薄膜トランジスタアレイ装置の製造方法おけるビームプロファイル及びレーザ照射位置を示す図である。
 図19に示すように、本変形例では、駆動用TFT10aのチャネル層としては、非結晶性半導体膜が溶融範囲で結晶化した第1結晶性半導体膜5aとなるように、かつ、スイッチ用TFT10bのチャネル層としては、非結晶性半導体膜が当該非結晶性半導体膜の結晶成長温度以下の温度範囲でレーザ照射されたとなるように、長軸ガウシアン型CWレーザ光のビームプロファイルが設定されている。すなわち、本変形例では、スイッチ用TFT10bのチャネル層が、上記の実施形態のような結晶性半導体膜(第2結晶性半導体膜5b)ではなく、非結晶性半導体膜のままの状態である。
 本変形例は、溶融範囲で結晶化させた結晶組織と非結晶性の結晶組織とを同時に形成する場合であって、図19に示すように、長軸ガウシアン型CWレーザ光の光強度分布における最大光強度を100%としたときに、当該光強度分布における一定の幅の内部領域WINについては、光強度が77%~100%となるように設定するとともに、当該光強度分布における外部領域WOUTについては、光強度が44%以下となるように設定する。
 この場合、CWレーザ光の出力エネルギー密度は、図5Aに示すように、光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、光強度分布における内部領域(レーザ光内部領域)WINについては、エネルギー密度が7.4[J/cm]から9.6m[J/cm]の範囲の領域となるように設定すればよく、また、光強度分布における外部領域WOUTについては、エネルギー密度が4.3[J/cm]以下の範囲の領域となるように設定すればよい。
 なお、シリコン単位体積あたりの吸収エネルギーに換算すると、図5Bに示すように、光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、光強度分布における内部領域WINについては、単位体積あたりの吸収エネルギーが4.1×10[J/cm]から5.3×10[J/cm]の範囲の領域となるように設定すればよく、また、光強度分布における外部領域WINについては、単位あたりの吸収エネルギーが2.4×10[J/cm]以下の範囲の領域となるように設定すればよい。
 長軸ガウシアン型CWレーザ光の出力エネルギー密度をこのように設定してアモルファスシリコン膜に対して所定のビームスキャン方向に連続して照射すると、長軸ガウシアン型CWレーザ光の光強度分布における一定の幅の内部領域WINによってレーザ照射された部分は、溶融範囲(1414℃以上)で加熱溶融し、その後、冷却されることによって結晶化されて結晶性半導体膜となる。また、これと同時に、長軸ガウシアン型CWレーザ光の光強度分布における外部領域WOUTによってレーザ照射された部分は、非結晶性半導体膜の結晶成長温度以下の温度範囲となりアモルファス状態のままとなる。
 これにより、共通の非結晶性半導体膜を用いて、溶融範囲で結晶化させた結晶組織の結晶性半導体膜とアモルファス状態の非結晶性半導体膜とを同時に形成することができる。このとき、溶融範囲で結晶化された領域における結晶性シリコン膜(第1結晶性半導体膜)の結晶粒は、面内均一性を保ちつつ、その平均結晶粒径は、60nm~1μnmとなる。また、非結晶性半導体膜の結晶成長温度以下の温度範囲でレーザ照射され、アモルファス状態のままの非結晶性半導体膜の結晶粒は、面内均一性を保ちつつ、その平均結晶粒径は、25nm以下となる。
 (変形例3)
 図20は、本発明の変形例3に係る薄膜トランジスタアレイ装置の製造方法おけるビームプロファイル及びレーザ照射位置を示す図である。
 図20に示すように、本変形例では、駆動用TFT10aのチャネル層としては、非結晶性半導体膜がSPC範囲で結晶化した第2結晶性半導体膜5bとなるように、かつ、スイッチ用TFT10bのチャネル層としては、非結晶性半導体膜が溶融範囲で結晶化した第1結晶性半導体膜5aとなるように、長軸ガウシアン型CWレーザ光のビームプロファイルが設定されている。
 本変形例は、駆動用TFT10aとスイッチ用TFT10bとにおけるチャネル層の結晶性半導体膜が変形例1と入れ替わった構成となっている。従って、本変形例と変形例1とは、長軸ガウシアン型CWレーザ光のビームプロファイルは同じであるが、CWレーザ光のビームスキャン位置が異なっている。
 すなわち、図20に示すように、CWレーザ光に光強度分布における一定の幅の内部領域WINは、スイッチ用TFT10bの第2結晶性半導体膜5bを形成するために用いられ、当該光強度分布における外部領域WOUTは、駆動用TFT10aの第1結晶性半導体膜5aを形成するために用いられる。
 (変形例4)
 図21は、本発明の変形例3に係る薄膜トランジスタアレイ装置の製造方法おけるビームプロファイル及びレーザ照射位置を示す図である。
 図21に示すように、本変形例では、駆動用TFT10aのチャネル層としては、非結晶性半導体膜がSPC範囲で結晶化した第2結晶性半導体膜5bとなるように、かつ、スイッチ用TFT10bのチャネル層としては、非結晶性半導体膜が溶融範囲で結晶化した第1結晶性半導体膜5aとなるように、長軸ガウシアン型CWレーザ光のビームプロファイルが設定されている。
 本変形例は、TFTのレイアウトが変形例1と異なり、長軸ガウシアン型CWレーザ光のビームプロファイル及びビームスキャン位置は変形例1と同様である。
 すなわち、図21に示すように、CWレーザ光に光強度分布における一定の幅の内部領域WINは、スイッチ用TFT10bの第2結晶性半導体膜5bを形成するために用いられ、当該光強度分布における外部領域WOUTは、駆動用TFT10aの第1結晶性半導体膜5aを形成するために用いられる。
 以上、本発明の変形例について説明したが、これらの変形例に係る薄膜トランジスタアレイ装置は、上述の有機EL表示装置300に適用することができる。
 また、本発明の実施形態及び変形例に係る有機EL表示装置300は、フラットパネルディスプレイ等として利用することができる。例えば、図22に示すようなテレビジョンセット400、又は、携帯電話機やパーソナルコンピュータなどのあらゆる表示装置に適用することができる。
 以上、本発明に係る薄膜トランジスタアレイ装置、有機EL表示装置及び薄膜トランジスタアレイ装置の製造方法について、実施形態及び変形例に基づいて説明したが、本発明は上記の実施形態及び変形例に限定されるものではない。
 例えば、上記の実施形態では、駆動用TFT10aの第1チャネル層50a及びスイッチ用TFT10bの第2チャネル層50bは、いずれも結晶性半導体膜と非結晶性半導体膜との2層構造としたが、これに限らない。例えば、第1チャネル層50a及び第2チャネル層50bとしては、所定の結晶組織を有する半導体膜の単層構造としても構わない。
 その他、各実施形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明に係る薄膜トランジスタアレイ装置及び有機EL表示装置は、テレビジョンセット、パーソナルコンピュータ、携帯電話などの表示装置等の電気機器において広く利用することができる。
 1 基板
 2 アンダーコート層
 3a、3b ゲート電極
 3M ゲート金属膜
 4 ゲート絶縁膜
 5a 第1結晶性半導体膜
 5b 第2結晶性半導体膜
 5α、6α 非結晶性半導体膜
 5Me、5Ex 結晶性半導体膜
 6a 第1非結晶性半導体膜
 6b 第2非結晶性半導体膜
 7a 第1コンタクト層
 7b 第2コンタクト層
 7αD 非晶質性半導体膜
 8a 第1ソース電極
 8b 第2ソース電極
 8M ソースドレイン金属膜
 9a 第1ドレイン電極
 9b 第2ドレイン電極
 10a 駆動用TFT
 10b スイッチ用TFT
 20 画素
 21 ソース配線
 22 電源配線
 23 ゲート配線
 24、25、26、27 コンタクト
 29 コンデンサ
 30 有機EL素子
 50a 第1チャネル層
 50b 第2チャネル層
 100 薄膜トランジスタアレイ装置
 200 TFTアレイ基板
 220 表示部
 300 有機EL表示装置
 310 第1層間絶縁膜
 320 第2層間絶縁膜
 330、340 コンタクト部
 350 バンク
 351 開口部
 360 下部電極
 370 有機EL層
 380 上部電極
 400 テレビジョンセット
 500 CWレーザ光結晶化装置
 501 試料
 510 レーザ装置
 520 長軸成形レンズ
 530 ミラー
 540 短軸成形レンズ
 550 集光レンズ
 560 ビームプロファイラー
 570 石英ガラス

Claims (52)

  1.  基材と、
     前記基材の上方に配置された第1ゲート電極と、
     前記基材の上方であって前記第1ゲート電極と並設して配置され、前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極と、
     前記第1ゲート電極及び前記第2ゲート電極の上に配置されたゲート絶縁膜と、
     前記第1ゲート電極の上方であって前記ゲート絶縁膜上に配置され、第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜と、
     前記第1結晶性半導体膜上に形成された第1ソース電極及び第1ドレイン電極と、
     前記第2ゲート電極の上方であって前記ゲート絶縁膜上に配置され、前記第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜と、
     前記第2結晶性半導体膜上に形成された第2ソース電極及び第2ドレイン電極と、を具備し、
     前記第1結晶性半導体膜の結晶粒及び前記第2結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、
     前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、
     前記第1結晶性半導体膜の結晶粒は、
     前記一定の幅の内部領域を用いて、前記非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上に加熱することにより前記非結晶性半導体膜を溶融する第1工程と、
     前記溶融させた前記非結晶性半導体膜を冷却することで前記非結晶性半導体膜を結晶化する第2工程と、により形成され、
     前記第2結晶性半導体膜の結晶粒は、
     前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって、前記一定の幅の外部領域を用いて、前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満に加熱し、前記非結晶性半導体膜を溶融結晶化させることにより形成される、
     薄膜トランジスタアレイ装置。
  2.  前記光強度分布における最大光強度を100%としたときに、前記光強度分布における前記一定の幅の前記内部領域は、光強度が77%から100%の領域である、
     請求項1に記載の薄膜トランジスタアレイ装置。
  3.  前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、エネルギー密度が7.4[J/cm]から9.6[J/cm]の範囲の領域である、
     請求項1に記載の薄膜トランジスタアレイ装置。
  4.  前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、単位体積あたりの吸収エネルギーが4.1×10[J/cm]から5.3×10[J/cm]の範囲の領域である、
     請求項1に記載の薄膜トランジスタアレイ装置。
  5.  前記第1の平均結晶粒径は、60nmから1μmである、
     請求項2から請求項4のいずれか1項に記載の薄膜トランジスタアレイ装置。
  6.  前記光強度分布における最大光強度を100%としたときに、
     前記光強度分布における前記一定の幅の前記外部領域は、光強度が61%から77%の領域である、
     請求項2に記載の薄膜トランジスタアレイ装置。
  7.  前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が5.8[J/cm]から7.4[J/cm]の範囲の領域である、
     請求項3に記載の薄膜トランジスタアレイ装置。
  8.  前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが3.2×10[J/cm]から4.1×10[J/cm]の範囲の領域である、
     請求項4に記載の薄膜トランジスタアレイ装置。
  9.  前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲は、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度で且つ前記非結晶性半導体膜の融点以上の温度範囲であり、
     前記第2の平均結晶粒径は、40nmから60nmである、
     請求項6から請求項8のいずれか1項に記載の薄膜トランジスタアレイ装置。
  10.  前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンであり、
     前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度で且つ前記非結晶性半導体膜の融点以上の温度範囲は、1100℃~1414℃であり、
     前記第2結晶性半導体膜の結晶粒は、前記非結晶性半導体膜を、過冷却液体状態を経て結晶化させることにより形成される、
     請求項9に記載の薄膜トランジスタアレイ装置。
  11.  前記光強度分布における最大光強度を100%としたときに、
     前記光強度分布における前記一定の幅の前記外部領域は、光強度が44%から61%の領域である、
     請求項2に記載の薄膜トランジスタアレイ装置。
  12.  前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が4.3[J/cm]から5.8[J/cm]の範囲の領域である、
     請求項3に記載の薄膜トランジスタアレイ装置。
  13.  前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが2.4×10[J/cm]から3.2×10[J/cm]の範囲の領域である、
     請求項4に記載の薄膜トランジスタアレイ装置。
  14.  前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲は、前記非結晶性半導体膜の融点以下で前記非結晶性半導体膜の結晶成長温度以上の温度範囲であり、
     前記第2の平均結晶粒径は、25nmから35nmである、
     請求項11から請求項13のいずれか1項に記載の薄膜トランジスタアレイ装置。
  15.  前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンであり、
     前記非結晶性半導体膜の融点以下で前記非結晶性半導体膜の結晶成長温度以上の温度範囲は、600℃~1100℃であり、
     前記第2結晶性半導体膜の結晶粒は、前記非結晶性半導体膜内に結晶を固相成長させることにより形成される、
     請求項14に記載の薄膜トランジスタアレイ装置。
  16.  前記第1結晶性半導体膜は、非結晶性構造と結晶構造との混晶を含む、
     請求項1から請求項15のいずれか1項に記載の薄膜トランジスタアレイ装置。
  17.  前記第2結晶性半導体膜は、非結晶性構造と結晶構造との混晶を含む、
     請求項1から請求項16のいずれか1項に記載の薄膜トランジスタアレイ装置。
  18.  前記第2ソース電極又は第2ドレイン電極は、前記第1ゲート電極と電気的に接続されている、
     請求項1から請求項17のいずれか1項に記載の薄膜トランジスタアレイ装置。
  19.  請求項1から請求項18のいずれか1項に記載の薄膜トランジスタアレイ装置を備える有機EL表示装置であって、
     前記薄膜トランジスタアレイ装置が複数の画素の画素単位に配置された薄膜トランジスタアレイ基板と、
     前記薄膜トランジスタアレイ基板の上方に配置された層間絶縁膜と、
     前記層間絶縁膜の上方に、前記画素単位に配置された下部電極と、
     前記薄膜トランジスタアレイ装置と前記下部電極とを接続させるコンタクトと、
     前記層間絶縁膜の上方に配置され、開口部を有するバンクと、
     前記バンクの開口部内に形成された有機発光層と、
     前記有機発光層の上方に配置された上部電極と、を具備し、
     前記薄膜トランジスタアレイ装置に含まれる前記第1結晶性半導体膜は、前記画素の発光を制御する駆動回路における駆動トランジスタのチャネル層を構成し、
     前記薄膜トランジスタアレイ装置に含まれる前記第2結晶性半導体膜は、前記駆動回路におけるスイッチングトランジスタのチャネル層を構成する、
     有機EL表示装置。
  20.  請求項1から請求項18のいずれか1項に記載の薄膜トランジスタアレイ装置を備える有機EL表示装置であって、
     前記薄膜トランジスタアレイ装置が複数の画素の画素単位に配置された薄膜トランジスタアレイ基板と、
     前記薄膜トランジスタアレイ基板の上方に配置された層間絶縁膜と、
     前記層間絶縁膜の上方に、前記画素単位に配置された下部電極と、
     前記薄膜トランジスタアレイ装置と前記下部電極とを接続させるコンタクトと、
     前記層間絶縁膜の上方に配置され、開口部を有するバンクと、
     前記バンクの開口部内に形成された有機発光層と、
     前記有機発光層の上方に配置された上部電極と、を具備し、
     前記薄膜トランジスタアレイ装置に含まれる前記第1結晶性半導体膜は、前記画素の発光を制御する駆動回路におけるスイッチングトランジスタのチャネル層を構成し、
     前記薄膜トランジスタアレイ装置に含まれる前記第2結晶性半導体膜は、前記駆動回路における駆動トランジスタのチャネル層を構成する、
     有機EL表示装置。
  21.  基材を準備する第1工程と、
     前記基材の上方に第1ゲート電極を形成する第2工程と、
     前記基材の上方に前記第1ゲート電極と並設して前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極を形成する第3工程と、
     前記第1ゲート電極及び前記第2ゲート電極の上にゲート絶縁膜を形成する第4工程と、
     前記第1ゲート電極の上方であって前記ゲート絶縁膜上に第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜を形成し、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に前記第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜を形成する第5工程と、
     前記第1結晶性半導体膜上に第1ソース電極及び第1ドレイン電極を形成し、前記第2結晶性半導体膜上に第2ソース電極及び第2ドレイン電極を形成する第6工程と、を具備し、
     前記第1結晶性半導体膜の結晶粒及び前記第2結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、
     前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記非結晶性半導体膜の温度が前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、
     前記第1結晶性半導体膜の結晶粒は、前記第5工程において、
     前記一定の幅の内部領域を用いて、前記非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点以上に加熱することにより前記非結晶性半導体膜を溶融する第5-1工程と、
     前記溶融させた前記非結晶性半導体膜を冷却することで前記非結晶性半導体膜を結晶化する第5-2工程と、により形成され、
     前記第2結晶性半導体膜の結晶粒は、前記第5工程において、
     前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって、前記一定の幅の外部領域を用いて、前記共通の非結晶性半導体膜の温度を前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満に加熱し、前記非結晶性半導体膜内に結晶を溶融結晶化させることにより形成される、
     薄膜トランジスタアレイ装置の製造方法。
  22.  前記光強度分布における最大光強度を100%としたときに、前記光強度分布における前記一定の幅の前記内部領域は、光強度が77%から100%の領域である、
     請求項21に記載の薄膜トランジスタアレイ装置の製造方法。
  23.  前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、エネルギー密度が7.4[J/cm]から9.6[J/cm]の範囲の領域である、
     請求項21に記載の薄膜トランジスタアレイ装置の製造方法。
  24.  前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記内部領域は、単位体積あたりの吸収エネルギーが4.1×10[J/cm]から5.3×10[J/cm]の範囲の領域である、
     請求項21に記載の薄膜トランジスタアレイ装置の製造方法。
  25.  前記第1の平均結晶粒径は、60nmから1μmである、
     請求項22から請求項24のいずれか1項に記載の薄膜トランジスタアレイ装置の製造方法。
  26.  前記光強度分布における最大光強度を100%としたときに、
     前記光強度分布における前記一定の幅の前記外部領域は、光強度が61%から77%の領域である、
     請求項22に記載の薄膜トランジスタアレイ装置の製造方法。
  27.  前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が5.8[J/cm]から7.4[J/cm]の範囲の領域である、
     請求項23に記載の薄膜トランジスタアレイ装置の製造方法。
  28.  前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが3.2×10[J/cm]から4.1×10[J/cm]の範囲の領域である、
     請求項24に記載の薄膜トランジスタアレイ装置の製造方法。
  29.  前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲は、前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度で且つ前記非結晶性半導体膜の融点以上の温度範囲であり、
     前記第2の平均結晶粒径は、40nmから60nmである、
     請求項26から請求項28のいずれか1項に記載の薄膜トランジスタアレイ装置の製造方法。
  30.  前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンであり、
     前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度で且つ前記非結晶性半導体膜の融点以上の温度範囲は、1100℃~1414℃であり、
     前記第2結晶性半導体膜の結晶粒は、前記非結晶性半導体膜を、過冷却液体状態を経て結晶化させることにより形成される、
     請求項29に記載の薄膜トランジスタアレイ装置の製造方法。
  31.  前記光強度分布における最大光強度を100%としたときに、
     前記光強度分布における前記一定の幅の前記外部領域は、光強度が44%から61%の領域である、
     請求項22に記載の薄膜トランジスタアレイ装置の製造方法。
  32.  前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が4.3[J/cm]から5.8[J/cm]の範囲の領域である、
     請求項23に記載の薄膜トランジスタアレイ装置の製造方法。
  33.  前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが2.4×10[J/cm]から3.2×10[J/cm]の範囲の領域である、
     請求項24に記載の薄膜トランジスタアレイ装置の製造方法。
  34.  前記第1結晶性半導体膜及び前記第2結晶性半導体膜の融点未満の温度範囲は、前記非結晶性半導体膜の融点以下で前記非結晶性半導体膜の結晶成長温度以上の温度範囲であり、
     前記第2の平均結晶粒径は、25nmから35nmである、
     請求項31から請求項33のいずれか1項に記載の薄膜トランジスタアレイ装置の製造方法。
  35.  前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンであり、
     前記非結晶性半導体膜の融点以下で前記非結晶性半導体膜の結晶成長温度以上の温度範囲は、600℃~1100℃であり、
     前記第2結晶性半導体膜の結晶粒は、前記非結晶性半導体膜内に結晶を固相成長させることにより形成される、
     請求項34に記載の薄膜トランジスタアレイ装置の製造方法。
  36.  前記第5工程と前記第6工程との間において、
     前記第1結晶性半導体膜と前記第2結晶性半導体膜とを離間させる工程を含む、
     請求項21から請求項35のいずれか1項に記載の薄膜トランジスタアレイ装置の製造方法。
  37.  前記第1結晶性半導体膜と前記第2結晶性半導体膜とを離間させる工程において、
     前記第1結晶性半導体膜と前記第2結晶性半導体膜との境界領域を、パターニングにより除去する、
     請求項36に記載の薄膜トランジスタアレイ装置の製造方法。
  38.  前記凸形状の連続的な光強度分布は、ガウシアン分布である、
     請求項21から請求項37のいずれか1項に記載の薄膜トランジスタアレイ装置の製造方法。
  39.  前記第5工程において、
     前記非結晶性半導体膜にマイクロセカンドオーダにてレーザ照射する、
     請求項21から請求項38のいずれか1項に記載の薄膜トランジスタアレイ装置の製造方法。
  40.  前記第5工程において、
     前記非結晶性半導体膜上にレーザ照射する時間が10~100マイクロセカンドである、
     請求項39に記載の薄膜トランジスタアレイ装置の製造方法。
  41.  基材と、
     前記基材の上方に配置された第1ゲート電極と、
     前記基材の上方であって前記第1ゲート電極と並設して配置され、前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極と、
     前記第1ゲート電極及び前記第2ゲート電極の上に配置されたゲート絶縁膜と、
     前記第1ゲート電極の上方であって前記ゲート絶縁膜上に配置され、第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜と、
     前記第1結晶性半導体膜上に形成された第1ソース電極及び第1ドレイン電極と、
     前記第2ゲート電極の上方であって前記ゲート絶縁膜上に配置され、前記第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜と、
     前記第2結晶性半導体膜上に形成された第2ソース電極及び第2ドレイン電極と、を具備し、
     前記第1結晶性半導体膜の結晶粒及び前記第2結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、
     前記レーザ照射による前記非結晶性半導体膜の温度が1414℃以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記非結晶性半導体膜の温度が1414℃未満の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、
     前記第1結晶性半導体膜の結晶粒は、
     前記一定の幅の内部領域を用いて、前記非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を1414℃以上に加熱することにより前記非結晶性半導体膜を溶融する第1工程と、
     前記溶融させた前記非結晶性半導体膜を冷却することで前記非結晶性半導体膜を結晶化する第2工程と、により形成され、
     前記第2結晶性半導体膜の結晶粒は、
     前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって、前記一定の幅の外部領域を用いて、前記共通の非結晶性半導体膜の温度を1414℃未満に加熱し、前記非結晶性半導体膜内に結晶を固相成長させることにより形成され、
     前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンである、
     薄膜トランジスタアレイ装置。
  42.  基材を準備する第1工程と、
     前記基材の上方に第1ゲート電極を形成する第2工程と、
     前記基材の上方に前記第1ゲート電極と並設して前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極を形成する第3工程と、
     前記第1ゲート電極及び前記第2ゲート電極の上にゲート絶縁膜を形成する第4工程と、
     前記第1ゲート電極の上方であって前記ゲート絶縁膜上に第1の平均結晶粒径の結晶粒によって構成された第1結晶性半導体膜を形成し、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に前記第1の平均結晶粒径より平均結晶粒径が小さい第2の平均結晶粒径の結晶粒によって構成された第2結晶性半導体膜を形成する第5工程と、
     前記第1結晶性半導体膜上に第1ソース電極及び第1ドレイン電極を形成し、前記第2結晶性半導体膜上に第2ソース電極及び第2ドレイン電極を形成する第6工程と、を具備し、
     前記第1結晶性半導体膜の結晶粒及び前記第2結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、
     前記レーザ照射による前記非結晶性半導体膜の温度が1414℃以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記非結晶性半導体膜の温度が1414℃未満の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、
     前記第1結晶性半導体膜の結晶粒は、前記第5工程において、
     前記一定の幅の内部領域を用いて、前記非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を1414℃以上に加熱することにより前記非結晶性半導体膜を溶融する第5-1工程と、
     前記溶融させた前記非結晶性半導体膜を冷却することで前記非結晶性半導体膜を結晶化する第5-2工程と、により形成され、
     前記第2結晶性半導体膜の結晶粒は、前記第5工程において、
     前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって、前記一定の幅の外部領域を用いて、前記共通の非結晶性半導体膜の温度を1414℃未満に加熱し、前記非結晶性半導体膜内に結晶を固相成長させることにより形成され、
     前記第1結晶性半導体膜、前記第2結晶性半導体膜及び前記非結晶性半導体膜を構成する材料はシリコンである、
     薄膜トランジスタアレイ装置の製造方法。
  43.  基材と、
     前記基材の上方に配置された第1ゲート電極と、
     前記基材の上方であって前記第1ゲート電極と並設して配置され、前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極と、
     前記第1ゲート電極及び前記第2ゲート電極の上に配置されたゲート絶縁膜と、
     前記第1ゲート電極の上方であって前記ゲート絶縁膜上に配置され、所定の平均結晶粒径の結晶粒によって構成された結晶性半導体膜と、
     前記結晶性半導体膜上に形成された第1ソース電極及び第1ドレイン電極と、
     前記第2ゲート電極の上方であって前記ゲート絶縁膜上に配置された非結晶性半導体膜と、
     前記非結晶性半導体膜上に形成された第2ソース電極及び第2ドレイン電極と、を具備し、
     前記結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、
     前記レーザ照射による前記共通の非結晶性半導体膜の温度が前記結晶性半導体膜の融点以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記共通の非結晶性半導体膜の温度が前記非結晶性半導体膜の結晶成長温度以下の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、
     前記結晶性半導体膜の結晶粒は、
     前記一定の幅の内部領域を用いて、前記共通の非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を前記結晶性半導体膜の融点以上に加熱することにより前記共通の非結晶性半導体膜を溶融する第1工程と、
     前記溶融させた前記共通の非結晶性半導体膜を冷却することで前記共通の非結晶性半導体膜を結晶化する第2工程と、により形成され、
     前記非結晶性半導体膜は、
     前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって前記一定の幅の外部領域を用いて前記共通の非結晶性半導体膜の結晶成長温度以下の温度範囲で照射される、
     薄膜トランジスタアレイ装置。
  44.  前記光強度分布における最大光強度を100%としたときに、
     前記光強度分布における前記一定の幅の前記内部領域は、光強度が77%から100%の領域であり、
     前記光強度分布における前記一定の幅の前記外部領域は、光強度が44%以下の領域である、
     請求項43に記載の薄膜トランジスタアレイ装置。
  45.  前記光強度分布におけるエネルギー密度の最大値が9.6[J/cm]である場合、
     前記光強度分布における前記一定の幅の前記内部領域は、エネルギー密度が7.4[J/cm]から9.6[J/cm]の範囲の領域であり、
     前記光強度分布における前記一定の幅の前記外部領域は、エネルギー密度が4.3[J/cm]以下の範囲の領域である、
     請求項43に記載の薄膜トランジスタアレイ装置。
  46.  前記光強度分布における単位体積あたりの吸収エネルギーの最大値が5.3×10[J/cm]である場合、
     前記光強度分布における前記一定の幅の前記内部領域は、単位体積あたりの吸収エネルギーが4.1×10[J/cm]から5.3×10[J/cm]の範囲の領域であり、
     前記光強度分布における前記一定の幅の前記外部領域は、単位体積あたりの吸収エネルギーが2.4×10[J/cm]以下の領域である、
     請求項43に記載の薄膜トランジスタアレイ装置。
  47.  前記所定の平均結晶粒径は、60nmから1μmである、
     請求項44から請求項46のいずれか1項に記載の薄膜トランジスタアレイ装置。
  48.  前記非結晶性半導体膜はアモルファスであり、
     前記共通の非結晶性半導体膜の結晶成長温度以下の温度範囲は、600℃以下の温度範囲である、
     請求項47に記載の薄膜トランジスタアレイ装置。
  49.  前記結晶性半導体膜は、非結晶性構造と結晶構造との混晶を含む、
     請求項43から請求項48のいずれか1項に記載の薄膜トランジスタアレイ装置。
  50.  前記第2ソース電極又は第2ドレイン電極は、前記第1ゲート電極と電気的に接続されている、
     請求項43から請求項48のいずれか1項に記載の薄膜トランジスタアレイ装置。
  51.  請求項43から請求項50のいずれか1項に記載の薄膜トランジスタアレイ装置を備える有機EL表示装置であって、
     前記薄膜トランジスタアレイ装置が複数の画素の画素単位に配置された薄膜トランジスタアレイ基板と、
     前記薄膜トランジスタアレイ基板の上方に配置された層間絶縁膜と、
     前記層間絶縁膜の上方に、前記画素単位に配置された下部電極と、
     前記薄膜トランジスタアレイ装置と前記下部電極とを接続させるコンタクトと、
     前記層間絶縁膜の上方に配置され、開口部を有するバンクと、
     前記バンクの開口部内に形成された有機発光層と、
     前記有機発光層の上方に配置された上部電極と、を具備し、
     前記薄膜トランジスタアレイ装置に含まれる前記結晶性半導体膜は、前記画素の発光を制御する駆動回路における駆動トランジスタのチャネル層を構成し、
     前記薄膜トランジスタアレイ装置に含まれる前記非結晶性半導体膜は、前記駆動回路におけるスイッチングトランジスタのチャネル層を構成する、
     有機EL表示装置。
  52.  基材を準備する第1工程と、
     前記基材の上方に第1ゲート電極を形成する第2工程と、
     前記基材の上方に前記第1ゲート電極と並設して前記第1ゲート電極と同一材質及び同一膜厚の第2ゲート電極を形成する第3工程と、
     前記第1ゲート電極及び前記第2ゲート電極の上にゲート絶縁膜を形成する第4工程と、
     前記第1ゲート電極の上方であって前記ゲート絶縁膜上に所定の平均結晶粒径の結晶粒によって構成された結晶性半導体膜を形成し、前記第2ゲート電極の上方であって前記ゲート絶縁膜上に非結晶性半導体膜を形成する第5工程と、
     前記結晶性半導体膜上に第1ソース電極及び第1ドレイン電極を形成し、前記非結晶性半導体膜上に第2ソース電極及び第2ドレイン電極を形成する第6工程と、を具備し、
     前記結晶性半導体膜の結晶粒は、短軸及び長軸の両方向において凸形状の連続的な光強度分布を有する連続発振型のレーザを用いて共通の非結晶性半導体膜に対してレーザ照射を行うことで形成され、
     前記レーザ照射による前記共通の非結晶性半導体膜の温度が前記結晶性半導体膜の融点以上の温度範囲になる領域が一定の幅を持つように、且つ、前記一定の幅の外部領域においては前記レーザ照射による前記共通の非結晶性半導体膜の温度が前記共通の非結晶性半導体膜の結晶成長温度以下の温度範囲になるように、前記長軸における凸形状の連続的な光強度分布が規定されており、
     前記結晶性半導体膜の結晶粒は、前記第5工程において、
     前記一定の幅の内部領域を用いて、前記共通の非結晶性半導体膜をレーザ照射し前記共通の非結晶性半導体膜の温度を前記結晶性半導体膜の融点以上に加熱することにより前記共通の非結晶性半導体膜を溶融する第5-1工程と、
     前記溶融させた前記共通の非結晶性半導体膜を冷却することで前記共通の非結晶性半導体膜を結晶化する第5-2工程と、により形成され、
     前記非結晶性半導体膜は、
     前記第1工程と同一工程において、前記第1工程において用いられるレーザ照射によって前記一定の幅の外部領域を用いて前記共通の非結晶性半導体膜の結晶成長温度以下の温度範囲で照射される、
     薄膜トランジスタアレイ装置の製造方法。
PCT/JP2011/001358 2011-03-08 2011-03-08 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法 WO2012120563A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012522314A JP5891504B2 (ja) 2011-03-08 2011-03-08 薄膜トランジスタアレイ装置の製造方法
PCT/JP2011/001358 WO2012120563A1 (ja) 2011-03-08 2011-03-08 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法
US13/476,460 US8535994B2 (en) 2011-03-08 2012-05-21 Thin-film transistor array device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001358 WO2012120563A1 (ja) 2011-03-08 2011-03-08 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/476,460 Continuation US8535994B2 (en) 2011-03-08 2012-05-21 Thin-film transistor array device manufacturing method

Publications (1)

Publication Number Publication Date
WO2012120563A1 true WO2012120563A1 (ja) 2012-09-13

Family

ID=46795944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001358 WO2012120563A1 (ja) 2011-03-08 2011-03-08 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法

Country Status (3)

Country Link
US (1) US8535994B2 (ja)
JP (1) JP5891504B2 (ja)
WO (1) WO2012120563A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145149A1 (ja) 2010-05-20 2011-11-24 パナソニック株式会社 表示用薄膜半導体装置の製造方法
JP5724105B2 (ja) * 2011-09-30 2015-05-27 株式会社Joled 薄膜トランジスタアレイ装置、el表示パネル、el表示装置、薄膜トランジスタアレイ装置の製造方法、el表示パネルの製造方法
WO2013069056A1 (ja) 2011-11-09 2013-05-16 パナソニック株式会社 薄膜形成基板及び薄膜形成方法
CN110739316A (zh) * 2019-10-29 2020-01-31 合肥维信诺科技有限公司 阵列基板、显示面板及阵列基板的制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332323A (ja) * 2005-05-26 2006-12-07 Hitachi Displays Ltd 画像表示装置とその製造方法
JP2009246235A (ja) * 2008-03-31 2009-10-22 Sharp Corp 半導体基板の製造方法、半導体基板及び表示装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9406900D0 (en) * 1994-04-07 1994-06-01 Philips Electronics Uk Ltd Manufacture of electronic devices comprising thin -film transistors
JP3253808B2 (ja) * 1994-07-07 2002-02-04 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP4465065B2 (ja) * 1998-10-30 2010-05-19 シャープ株式会社 配線の断線修復方法
TW445545B (en) * 1999-03-10 2001-07-11 Mitsubishi Electric Corp Laser heat treatment method, laser heat treatment apparatus and semiconductor device
JP3562389B2 (ja) * 1999-06-25 2004-09-08 三菱電機株式会社 レーザ熱処理装置
US6451631B1 (en) * 2000-08-10 2002-09-17 Hitachi America, Ltd. Thin film crystal growth by laser annealing
JP2002231955A (ja) 2001-02-01 2002-08-16 Hitachi Ltd 表示装置およびその製造方法
KR20040052468A (ko) * 2001-11-12 2004-06-23 소니 가부시끼 가이샤 레이저 어닐 장치 및 박막 트랜지스터의 제조 방법
US7113527B2 (en) * 2001-12-21 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for laser irradiation and manufacturing method of semiconductor device
US6930326B2 (en) * 2002-03-26 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
JP2004146782A (ja) * 2002-08-29 2004-05-20 Advanced Lcd Technologies Development Center Co Ltd 結晶化状態のin−situモニタリング方法
JP5046464B2 (ja) * 2002-12-18 2012-10-10 株式会社半導体エネルギー研究所 半導体記憶素子の作製方法
JP4481040B2 (ja) * 2003-03-07 2010-06-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4408667B2 (ja) * 2003-08-22 2010-02-03 三菱電機株式会社 薄膜半導体の製造方法
JP4718863B2 (ja) * 2004-02-25 2011-07-06 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の作製方法
KR20070090246A (ko) * 2004-12-22 2007-09-05 칼 짜이스 레이저 옵틱스 게엠베하 선형 빔을 형성하기 위한 광 조명 시스템
US8221544B2 (en) * 2005-04-06 2012-07-17 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
TWI390734B (zh) 2005-04-06 2013-03-21 Samsung Display Co Ltd 製造多晶矽薄膜之方法及製造具有多晶矽薄膜之薄膜電晶體之方法
KR20070014528A (ko) 2005-07-29 2007-02-01 삼성전자주식회사 어레이 기판, 이의 제조방법 및 실리콘 결정화 방법
US7914971B2 (en) * 2005-08-12 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Light exposure mask and method for manufacturing semiconductor device using the same
JP2007088364A (ja) * 2005-09-26 2007-04-05 Hitachi Displays Ltd 表示装置
KR101299604B1 (ko) * 2005-10-18 2013-08-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR20070081829A (ko) 2006-02-14 2007-08-20 삼성전자주식회사 유기 발광 표시 장치 및 그 제조 방법
JP2007324425A (ja) * 2006-06-02 2007-12-13 Sony Corp 薄膜半導体装置及びその製造方法と表示装置
US7433372B2 (en) * 2006-06-05 2008-10-07 Cymer, Inc. Device and method to stabilize beam shape and symmetry for high energy pulsed laser applications
US20080090396A1 (en) * 2006-10-06 2008-04-17 Semiconductor Energy Laboratory Co., Ltd. Light exposure apparatus and method for making semiconductor device formed using the same
JP5188718B2 (ja) * 2007-01-31 2013-04-24 株式会社ジャパンディスプレイイースト 表示装置の製造方法
JP5126471B2 (ja) * 2007-03-07 2013-01-23 株式会社ジャパンディスプレイイースト 平面表示装置の製造方法
US20110006297A1 (en) * 2007-12-12 2011-01-13 Idemitsu Kosan Co., Ltd. Patterned crystalline semiconductor thin film, method for producing thin film transistor and field effect transistor
CN101911256B (zh) * 2008-01-07 2012-07-18 株式会社Ihi 激光退火方法以及装置
US8704217B2 (en) * 2008-01-17 2014-04-22 Idemitsu Kosan Co., Ltd. Field effect transistor, semiconductor device and semiconductor device manufacturing method
JP2009277478A (ja) 2008-05-14 2009-11-26 Toshiba Mobile Display Co Ltd 表示装置
JP2010140934A (ja) 2008-12-09 2010-06-24 Seiko Epson Corp 薄膜トランジスタの製造方法
KR20130044124A (ko) 2010-05-10 2013-05-02 파나소닉 액정 디스플레이 주식회사 결정성 반도체막의 제조 방법, 결정성 반도체막을 갖는 기판, 박막 트랜지스터
CN102379041A (zh) * 2010-06-21 2012-03-14 松下电器产业株式会社 薄膜晶体管阵列器件、有机el显示装置以及薄膜晶体管阵列器件的制造方法
KR20130023021A (ko) 2010-06-21 2013-03-07 파나소닉 주식회사 실리콘 박막의 결정화 방법 및 실리콘 tft 장치의 제조 방법
WO2012008103A1 (ja) 2010-07-16 2012-01-19 パナソニック株式会社 結晶性半導体膜の製造方法及び結晶性半導体膜の製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332323A (ja) * 2005-05-26 2006-12-07 Hitachi Displays Ltd 画像表示装置とその製造方法
JP2009246235A (ja) * 2008-03-31 2009-10-22 Sharp Corp 半導体基板の製造方法、半導体基板及び表示装置

Also Published As

Publication number Publication date
JPWO2012120563A1 (ja) 2014-07-07
US8535994B2 (en) 2013-09-17
JP5891504B2 (ja) 2016-03-23
US20120231589A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
WO2011161715A1 (ja) 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法
US8878186B2 (en) Semiconductor device and display apparatus
US9111803B2 (en) Thin-film device, thin-film device array, and method of manufacturing thin-film device
JP5820402B2 (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
JP2020004860A (ja) 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法
US9236487B2 (en) Method of manufacturing substrate having thin film thereabove, method of manufacturing thin-film-device substrate, thin-film substrate, and thin-film-device substrate
JP2020004859A (ja) 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法
JP5891504B2 (ja) 薄膜トランジスタアレイ装置の製造方法
JP2007281420A (ja) 半導体薄膜の結晶化方法
JP2007047808A (ja) 表示装置及び表示用薄膜半導体装置
JP4169071B2 (ja) 表示装置
JP5411292B2 (ja) 結晶性半導体膜の製造方法及び結晶性半導体膜の製造装置
KR101923190B1 (ko) 정전기 보호 회로를 구비한 표시장치 및 그의 제조방법
TW575866B (en) Display device with active-matrix transistor and method for manufacturing the same
KR20100032224A (ko) 박막 트랜지스터의 제조방법
US8884304B2 (en) Thin film transistor array substrate having polysilicon
JP2013016779A (ja) 薄膜トランジスタ、これを備えた表示装置、およびその製造方法
JP3845566B2 (ja) 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス
JP3845569B2 (ja) 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス
JP2011216665A (ja) 結晶性半導体膜の形成方法、および、半導体デバイスの製造方法
JP2004165598A (ja) アクティブ・マトリクス型表示装置とその製造方法
KR20070095043A (ko) 표시 장치의 제조 방법
JP2009194348A (ja) 半導体製造方法
JPH11121756A (ja) 半導体装置の製造方法
JPH10242050A (ja) 半導体薄膜、半導体装置およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012522314

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860542

Country of ref document: EP

Kind code of ref document: A1