JP3845566B2 - 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス - Google Patents

薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス Download PDF

Info

Publication number
JP3845566B2
JP3845566B2 JP2001307807A JP2001307807A JP3845566B2 JP 3845566 B2 JP3845566 B2 JP 3845566B2 JP 2001307807 A JP2001307807 A JP 2001307807A JP 2001307807 A JP2001307807 A JP 2001307807A JP 3845566 B2 JP3845566 B2 JP 3845566B2
Authority
JP
Japan
Prior art keywords
thin film
film
semiconductor
semiconductor film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001307807A
Other languages
English (en)
Other versions
JP2003115497A (ja
Inventor
寛明 次六
光敏 宮坂
哲也 小川
秀忠 時岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Mitsubishi Electric Corp
Original Assignee
Seiko Epson Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Mitsubishi Electric Corp filed Critical Seiko Epson Corp
Priority to JP2001307807A priority Critical patent/JP3845566B2/ja
Publication of JP2003115497A publication Critical patent/JP2003115497A/ja
Application granted granted Critical
Publication of JP3845566B2 publication Critical patent/JP3845566B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Recrystallisation Techniques (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイスに関する。特に、ガラス等の絶縁表面を有する基板上に形成される薄膜半導体装置(以下、TFTという)等の薄膜半導体装置及びその製造方法並びに当該装置を備える液晶表示装置及び有機EL表示装置等の電子デバイスに関する。
【0002】
【従来の技術】
複数の画素を有するアクティブ型液晶表示装置、有機EL表示装置、及びイメージセンサ等の各種電子デバイスにおいては、各画素を個別に駆動するために、ガラス等の絶縁表面を有する基板上に形成されるTFTが用いられることが多い。また、近年の表示素子は、画素を駆動するためのTFTが形成された基板上に、このTFTのスイッチング動作を制御するための駆動回路が設けられることが多い。この駆動回路内には多数のトランジスタが設けられるが、このトランジスタもTFTで形成されている。TFTは、ガラス等の絶縁性表面上に薄膜状の珪素半導体(Si)又はその酸化物(酸化珪素(SiO2))を堆積し、エッチング処理、熱処理、電極形成処理、その他の処理を行いつつ、これらの処理を繰り返し行うことにより製造される。薄膜状の珪素半導体は、結晶性を有するものと非晶質珪素半導体(a−Si)とに大別される。
【0003】
非晶質珪素半導体は作成温度が低く、気相法で比較的容易に作成することが可能であり、更に量産性にも富むため、TFTに用いる薄膜状の珪素半導体として最も一般的に用いられている。しかしながら、非晶質珪素半導体は、導電率等の物性が結晶性を有する珪素半導体に比べて劣るという欠点がある。従って、今後TFTの動作速度を高速化するためには、結晶性を有する珪素半導体を用いたTFT及びその製造方法を確立することが極めて重要となる。
【0004】
現状においては、結晶性を有する珪素半導体として製造上の容易さから多結晶珪素半導体(p−Si)が多く用いられている。汎用ガラス基板を使用し得る600℃程度以下の低温にて薄膜状の多結晶珪素半導体を作成する方法としては、非晶質珪素半導体膜を厚さ50nm程度成膜した後、この非晶質珪素半導体膜にキセノン塩素(XeCl)エキシマレーザ光(波長308nm)を照射し、非晶質珪素半導体膜を溶融結晶化させて多結晶珪素半導体膜を得るという方法が一般的である。
【0005】
しかしながら、上述の多結晶珪素半導体膜を用いたTFTのチャネル形成領域には、多結晶珪素半導体膜の結晶粒界が存在する為、その電気特性が単結晶珪素半導体を用いたTFTに比べて著しく劣ることが分かっている。このため、大粒径の多結晶珪素半導体を用いることにより、結晶粒界の電気特性への影響を小さくする方法等の方策が採られている。
【0006】
【発明が解決しようとする課題】
ところで、上述した従来のエキシマレーザ光を照射して多結晶珪素半導体膜を得る方法では、最大1μm程度の結晶粒が得られるが、結晶粒及び結晶粒界の位置を制御することができない。このため、チャネル形成領域に結晶粒界が含まれるかどうかは確率的事象であって、全く制御不可能であった。チャネル形成領域に結晶粒界が含まれるか否かによりTFTの特性は大きくばらつくことになる。例えば、チャネル形成領域に存在する結晶粒界の数が多ければTFTの電気特性は悪くなり、チャネル形成領域に存在する結晶粒界の数が少なければTFTの電気特性は比較的良くなる。しかしながら、例えチャネル形成領域に存在する結晶粒界の数を少なくすることができたとしても、そのTFTの電気特性は単結晶珪素半導体を用いたTFTに比べれば遙かに劣る。
【0007】
近年の電子デバイスは高速動作が求められており、特に電子デバイス内に設けられるTFTには各素子毎の電気的特性のばらつきが少なく、且つ、高速でスイッチング可能な優れた電気的特性が求められている。例えば、液晶表示装置を例に挙げると、高精細化により画素の数が増加すると、増加した分だけ1画素がオン状態となっている時間が短くなる。これは、画素を駆動するTFTのみならず、このTFTを駆動するための駆動回路内に設けられているTFTについても同様である。従って、電子デバイスの特性を向上させるためには、基本となるTFTの電気的特性を改善することが極めて重要である。
【0008】
本発明は上記事情に鑑みてなされたものであり、結晶粒界の位置が制御された結晶性の良い大粒径の結晶粒からなる半導体膜を備え、電気特性が良く且つそのばらつきが少ない薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイスを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明の薄膜半導体装置の製造方法は、基板上に形成された半導体膜の一部をチャネル形成領域として用いる薄膜半導体装置の製造方法において、前記半導体膜の一部を局所的に加熱する局所加熱機構を前記基板上に形成する加熱機構形成工程と、前記加熱機構形成工程後に行われ、前記局所加熱機構上に前記半導体膜を形成する半導体膜形成工程と、前記局所加熱機構により前記半導体膜が局所的に加熱された状態にて前記半導体膜を溶融結晶化させる結晶化工程と、前記半導体膜を島状に加工する素子分離工程と、前記島状に加工した半導体膜の上にゲート絶縁膜を介して2つのゲート電極を形成するゲート電極形成工程と、前記2つのゲート電極をマスクとして前記半導体膜に不純物イオンを注入し、ソース領域、ドレイン領域、及び2つのチャネル形成領域を形成するイオン注入工程と、を含み、前記チャネル形成領域は、前記半導体膜の結晶成長が進行する第1方向に関して、前記局所加熱機構に完全に含まれ、且つ、前記局所加熱機構の中心近傍の両側に所定の距離だけ離間するように配置されることを特徴としている。
かかる構成の発明は、まず基板上に局所加熱機構を形成する(加熱機構形成工程)。局所加熱機構は、一例として基板上に形成された島状の第一半導体膜とこれを覆う下側絶縁膜とからなる。従って局所加熱機構形成工程の具体例としては、基板上に第一半導体膜を堆積する第一半導体膜堆積工程と、この第一半導体膜を所定の形状に加工する第一半導体膜加工工程と、第一半導体膜上に下側絶縁膜を形成する下側絶縁膜形成工程とを含んだ工程が挙げられる。
次に前記局所加熱機構上に半導体膜を形成する(半導体膜形成工程)。半導体膜は、非晶質半導体膜又は結晶性を有する半導体膜からなる。従って半導体膜形成工程の具体例としては、前記局所加熱機構上に非晶質半導体膜を堆積する工程が挙げられ、更にこの非晶質半導体膜の結晶性を高める工程として非晶質半導体膜を固相にて結晶化させる固相成長工程又は非晶質半導体膜を溶融状態を経て結晶性を改善する溶融結晶化改善工程が挙げられる。
次に前記局所加熱機構により前記半導体膜が局所的に加熱された状態にて前記半導体膜を溶融結晶化させる(結晶化工程)。この結晶化工程では、一例として前記半導体膜側から光を照射することにより前記半導体膜を溶融結晶化させる。光を照射すると、一部の光は前記半導体膜に吸収され、一部の光は前記半導体膜を透過する。ある程度の光を吸収した半導体膜は溶融結晶化する。一方、半導体膜を透過した光は前記局所加熱機構の第一半導体膜に吸収される。第一半導体膜の温度は光を吸収したことにより上昇し、第一半導体膜上の半導体膜は局所的に加熱される。ここで、半導体膜は溶融結晶化過程にあるが、溶融結晶化過程では結晶粒は低温部から高温部に向かって成長する。半導体膜の内でその下に局所加熱機構が配置されている部位のみがその周辺に比べて高温になるため、冷却固化時における結晶粒は局所加熱機構の辺の僅かに外側上の半導体膜部位から局所加熱機構の中心上の半導体膜部位に向かって成長する。局所加熱機構によって形成された温度差が溶融半導体膜の冷却固化時に結晶の横成長を生じさせるのである。
ここで、結晶化工程の具体例としては、半導体膜側から半導体膜を20%程度以上透過するレーザ光を照射するという工程が挙げられる。そのレーザ光の具体例としては光の波長が約532nmの固体レーザの高調波が挙げられ、更に具体的にいえばQスイッチ発振するネオジウム(Nd)添加のイットリウムアルミニウムガーネット(YAG)レーザ光の第二高調波(Nd:YAG2ωレーザ光)等が挙げられる。
結晶化工程が終了したら、前記半導体膜を島状に加工し(素子分離工程)、島状に加工した半導体膜の上にゲート絶縁膜を介して2つのゲート電極を形成する(ゲート電極形成工程)。その後で、2つのゲート電極をマスクとして半導体膜に不純物イオンを注入し、チャネル形成領域を2つ形成する(イオン注入工程)。このイオン注入工程では、半導体膜の結晶成長が進行する第1方向に関して、前記チャネル形成領域が前記局所加熱機構に完全に含まれ、且つ、前記局所加熱機構の中心近傍の両側に所定の距離だけ離間した位置に配置されるように前記半導体膜を加工する。半導体膜内での結晶横成長は必ず局所加熱機構の外側1μm程度の位置から始まる。従って、上述の位置関係に局所加熱機構とチャネル形成領域とを設定しておけば、チャネル形成領域内で第1方向(薄膜半導体装置が動作する際の電流方向)を横切る第2方向に延びる結晶粒界(電流を横切る結晶粒界)の数を常に局所加熱機構の中心上付近に一個とすることができる。
更に、本発明では、前記チャネル形成領域が配列された第1方向に関して、前記チャネル形成領域が前記局所加熱機構に完全に含まれ、且つ、前記局所加熱機構の中心近傍の両側に所定の距離だけ離間した位置に配置されるように前記半導体膜を加工する。かかる位置関係に局所加熱機構とチャネル形成領域とを設定しておけば、チャネル形成領域内において第1方向(半導体装置が動作する際の電流方向)を横切る結晶粒界(電流を横切る結晶粒界)を全く無くすことができる。即ち、チャネル形成領域内に結晶粒界を横切らない電流経路を必ず複数個形成することができるので、本発明の薄膜半導体装置は単結晶珪素薄膜を用いた小さなシリコン−オン−インシュレーター(SOI)装置を複数個並列接続したものと同等と化し、その性能は一般的な薄膜半導体装置に比べて飛躍的に向上する。
また、チャネル形成領域内で第1方向を横切る結晶粒界が全く無いので、結晶粒界の存在に起因する薄膜半導体装置の特性ばらつきが無くなる。即ち、基板上に形成される全ての薄膜半導体装置がほとんど同じ特性を示す様になる。
更に、上述の位置関係に局所加熱機構とチャネル形成領域とを設定しておけば、薄膜半導体装置のオフ電流が低減されるという効果がある。上述の位置関係に局所加熱機構とチャネル形成領域とを設定しておくということは、チャネル形成領域を第1方向に分割するということである。すると薄膜半導体装置のソース・ドレイン電圧は各チャネル形成領域に割り振られ、その結果ドレイン領域端空乏領域の電場が弱くなる。よってプール・フレンケル効果を伴うフォノン・アシスト・トンネリング現象は抑制され、薄膜半導体装置のオフ電流は低減されるのである。
以上のように、本発明の薄膜半導体装置の製造方法によれば、チャネル形成領域内において、当該チャネル形成領域が配列された第1方向を横切る結晶粒界が全く無く、チャネル形成領域は第1方向に分割されているので、電気特性が良く、ばらつきの少ない薄膜半導体装置を製造できる。
また、本発明の薄膜半導体装置の製造方法は、前記第1方向における前記チャネル形成領域それぞれの長さが、2μm以下であることを特徴としている。
この発明によれば、チャネル形成領域内において、前記第1方向を横切る結晶粒界を確実に無くすことができるという効果を有する。結晶の横成長の大きさは典型的には2μmから2.5μm程度であり、最大でも3.5μm程度である。よって、チャネル形成領域の第1方向の長さを2μm以下にすることによって、チャネル形成領域内において前記第1方向を横切る結晶粒界を確実に無くすことができるのである。
また、本発明の薄膜半導体装置の製造方法は、前記チャネル形成領域各々の位置が、前記局所加熱機構の中心近傍から前記第1方向にそれぞれ0.5μm以上離間した位置に設定されることを特徴としている。
この発明によれば、チャネル形成領域内において第1方向を横切る第2方向に延びる結晶粒界を確実に含まないようにすることができるという効果を有する。第2方向に延びる結晶粒界付近は、結晶粒界部を頂上として山状に隆起している。この発明によれば、結晶粒界部を頂上とする山状の領域を避けてチャネル形成領域を形成することができる。即ち、チャネル形成領域は半導体膜厚の薄い領域のみに形成されるため、半導体装置の電気特性が向上する。また、チャネル形成領域が平坦な領域に形成されるので、チャネル形成領域とゲート絶縁膜との界面状態が良好になり、半導体装置の信頼性が向上する。
上記課題を解決するために、本発明の薄膜半導体装置は、基板上に形成された半導体膜の一部をチャネル形成領域として用いる薄膜半導体装置において、前記基板と前記チャネル形成領域との間に局所加熱機構が形成されており、前記半導体膜には、異なる2箇所にチャネル形成領域が形成されており、前記チャネル形成領域には、前記チャネル形成領域が配列された第1方向に延びる結晶粒界のみが存在し、前記チャネル形成領域の間には、前記第1方向を横切る第2方向に延びる1つの結晶粒界が存在することを特徴としている。
この発明によれば、チャネル形成領域内において第2方向に延びる結晶粒界が全く無く、しかもチャネル形成領域が第2方向に分割されているので、電気特性が良く、ばらつきの少ない薄膜半導体装置となる。
また、本発明の薄膜半導体装置は、前記第1方向における前記チャネル形成領域それぞれの長さが、2μm以下であることを特徴としている。
この発明によれば、チャネル形成領域内において、第2方向に延びる結晶粒界を確実に無くすことができるという効果を有する。半導体膜を溶融結晶化によって横成長させた場合、結晶の横成長の大きさは典型的には2μmから2.5μm程度であり、最大で3.5μm程度である。よって、チャネル形成領域の第1方向の長さを2μm以下にすることによって、チャネル形成領域内において第2方向に延びる結晶粒界を確実に無くすことができるのである。
また、本発明の薄膜半導体装置は、前記チャネル形成領域各々の位置が、前記結晶粒界から前記第1方向にそれぞれ0.5μm以上離間した位置に設定されることを特徴としている。
この発明によれば、チャネル形成領域内において第1方向を横切る第2方向に延びる結晶粒界を確実に含まないようにすることができるという効果を有する。第2方向に延びる結晶粒界付近は、結晶粒界部を頂上として山状に隆起している。この発明によれば、結晶粒界部を頂上とする山状の領域を避けてチャネル形成領域を形成することができる。即ち、チャネル形成領域は半導体膜厚の薄い領域のみに形成されるため、半導体装置の電気特性が向上する。また、チャネル形成領域が平坦な領域に形成されるので、チャネル形成領域とゲート絶縁膜との界面状態が良好になり、半導体装置の信頼性が向上する。
上記課題を解決するために、本発明の電子デバイスは、上記の何れかに記載された薄膜半導体装置の製造方法を用いて製造された薄膜半導体装置、又は、上記の何れかに記載された薄膜半導体装置を、画素のスイッチング手段として備えることを特徴としている。ここで、画素とは、走査線と、データ線と、走査線とデータ線とに接続されたスイッチング手段と、当該スイッチング手段に接続された画素電極からなるものである。
この発明によれば、電気特性が良く且つそのばらつきが少ない薄膜半導体装置を電気的なスイッチング手段及び電気光学的なスイッチング手段の少なくとも一方のスイッチング手段として備えており、動作速度を高速化することができるため、多数の画素を有するアクティブ型液晶表示装置、有機EL表示装置、及びイメージセンサ等の各種電子デバイスに用いて極めて好適である。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態による薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイスについて詳細に説明する。図1は、本発明の一実施形態による電子デバイスの全体構成の一例を示す斜視図である。図1に示した電子デバイスは、薄膜トランジスタ(Thin Film Transistor, 以下、TFTと略記する)をスイッチング手段として用いたアクティブマトリクス方式の透過型液晶装置の例であり、図1(a)は液晶装置の全体構成を示す斜視図であって、図1(b)は図1(a)における一画素の拡大図である。尚、図1においては、理解を容易にするため、画素及び画素に設けられたTFTを拡大して図示している。
【0011】
本実施形態による電子デバイスとしての液晶装置1は、図1(a)に示すように、TFTが形成された側の素子基板2と対向基板3とが対向配置され、これらの素子基板2と対向基板3との間に誘電率異方性が正の液晶からなる液晶層(図示省略)が封入されている。素子基板2の内面側には、多数のソース線4及び多数のゲート線5が互いに交差するように格子状に設けられている。各ソース線4と各ゲート線5の交差点の近傍にはTFT6が形成されており、各TFT6を介して画素電極7がそれぞれ接続されている。即ち、マトリクス状に配置された各画素毎に1つのTFT6と1つの画素電極7とが設けられている。一方、対向基板3の内面側全面には、多数の画素がマトリクス状に配列されてなる表示領域の全体にわたって一つの共通電極8が形成されている。
【0012】
図1(b)に示すように、TFT6は、ゲート線5から延びるゲート電極10と、ゲート電極10を覆う絶縁膜(図示略)と、この絶縁膜上に形成された多結晶シリコンからなる半導体層11と、半導体層11中のソース領域に電気的に接続されたソース線4から延びるソース電極12と、半導体層11中のドレイン領域に電気的に接続されたドレイン電極13とを有している。そして、TFT6のドレイン電極13が画素電極7に電気的に接続されている。本実施形態においては、画素電極7がITO等の透明導電膜で形成され、対向基板3側の共通電極8もITO等の透明導電膜で形成されている。
【0013】
また、図1において、20,21はTFT6を駆動するための駆動回路(ソースドライバ)を示している。この駆動回路20,21は、TFT6と同様に素子基板2の内面側に形成されており、図示せぬ多数のTFTを含んで構成されている。この駆動回路20,21には、図示せぬ制御回路から制御信号が供給されており、この制御信号に基づいて各TFT6を駆動するための駆動信号(走査信号)を生成する。また、図1中の22,23は、TFT6を駆動するためのもう一つの駆動回路(ゲートドライバ)を示している。この駆動回路22,23も多数のTFTを含んで構成され、供給される制御信号から各TFT6を駆動するための駆動信号(データ信号)を生成する。
【0014】
以上、本発明の一実施形態による電子デバイスの一例としての液晶装置について説明したが、次に、本発明の実施形態による薄膜半導体装置としてのTFT6及び駆動回路20〜23内に設けられる図示しないTFTの製造方法及びその構成の詳細について説明する。
【0015】
〔第1実施形態による薄膜半導体装置及びその製造方法〕
図2〜図6は、本発明の第1実施形態による薄膜半導体装置の製造方法の一例を示す工程図である。図2〜図6において、(a)は薄膜半導体装置の断面図であり、(b)は平面透視図である。尚、以下の説明においては、図2〜図6中に示したXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。図2〜図6に示したXYZ直交座標系は、積層構造を有する薄膜半導体装置の界面内にXY平面を設定し、界面に直交する方向をZ軸方向に設定してある。
【0016】
本実施形態の薄膜半導体装置は、図2に示すように、まず、基板として厚さ1.1mmの石英基板111を用い、この石英基板111上に下地保護膜112として電子サイクロトロン共鳴プラズマ化学気相堆積法(ECR−PECVD法)により酸化珪素膜(SiO2膜)を膜厚200nm程度堆積する。次に、下地保護膜112としての酸化珪素膜上に低圧化学気相堆積法(LPCVD法)により非晶質珪素膜(a−Si膜)を膜厚50nm程度堆積し、その後フォト・リソグラフィー法により上記非晶質珪素膜をパターニングして第一半導体膜113とする。
【0017】
第一半導体膜113の長さ(Y方向の長さ)は後述する活性領域(チャネル形成領域)の長さ(X方向の長さ)よりも約1μm長くなるように形成される。尚、詳細は後述するが、活性領域のY方向の位置は第一半導体膜113の中央付近に設定される。また、第一半導体膜の幅(X方向の長さ)は50μm程度に設定され、活性領域は幅方向(X方向)に関して完全に第一半導体膜113に包含されるように設定される。
【0018】
第一半導体膜113を形成すると、次に、第一半導体膜113上に下側絶縁膜114としてECR−PECVD法により酸化珪素膜を膜厚160nm程度堆積する。上述した第一半導体膜113と下側絶縁膜114とは、後に活性領域と化す半導体膜(活性半導体膜)部位を局所的に加熱する発熱部材であり、本発明にいう局所加熱機構に相当するものである。尚、第一半導体膜113及び下側絶縁膜114を形成する工程は、本発明にいう加熱機構形成工程に相当する。
【0019】
以上の工程が終了すると、下側絶縁膜114としての酸化珪素膜上に活性半導体膜115としてLPCVD法により非晶質珪素膜を膜厚50nm程度堆積し、その後固相成長法により窒素雰囲気下600℃にて48時間の熱処理を施して活性半導体膜115の結晶性を改善し、更に活性半導体膜115としての大粒径多結晶珪素膜にキセノン塩素(XeCl)エキシマレーザ(波長308nm)を照射して活性珪素膜中の結晶内部欠陥を低減する。この工程は本発明にいう半導体膜形成工程に相当する。
【0020】
以上の工程が終了すると、第一半導体膜113と下側絶縁膜114とからなる発熱部材によって活性半導体膜115を局所的に加熱した状態で活性半導体膜115を溶融結晶化させる工程が行われる。具体的には、図3(a)に示すように、活性半導体膜115としての多結晶珪素膜側からイットリウムアルミニウムガーネットにNd3+イオンをドープしたものを母体結晶としたレーザ(YAGレーザ:波長1064nm)の第二高調波を用いたレーザ(YAG2ωレーザ:波長532nm)から射出されるYAG2ωレーザ光116を照射する。
【0021】
YAG2ωレーザ光116の照射領域は長さ15mmで幅65μmの長方形状であり、その照射領域内における光強度分布は、長さ方向に略台形状に分布しており、幅方向については、略台形状又は略ガウス関数的な光強度分布を有しているのが好ましい。YAG2ωレーザ光116の照射領域は、その長さ方向が第一半導体膜113の幅方向(X方向)とほぼ一致するように設定される。従って、YAG2ωレーザ光116は、照射領域の幅の分だけ移動(進行)させて順次照射されるが、この照射領域の進行方向と薄膜半導体装置のソース・ドレイン方向とがほぼ平行になる。
【0022】
ここで、YAG2ωレーザ光116の照射エネルギー密度は450mJ・cm-2で、活性半導体膜115上の任意の一点は20回のパルスレーザ光が照射される。YAG2ωレーザ光116を照射すると、YAG2ωレーザ光116の一部は活性半導体膜115としての多結晶珪素膜に吸収されるが、残りのYAG2ωレーザ光116は活性半導体膜115としての多結晶珪素膜に吸収されずに透過する。活性半導体膜115としての多結晶珪素膜を透過したYAG2ωレーザ光117は下側絶縁膜114としての酸化珪素膜を透過して第一半導体膜113に吸収される。尚、下側絶縁膜114に入射したYAG2ωレーザ光117の一部は、酸化珪素膜11内において多重反射又は干渉した後で第一半導体膜113に吸収される。
【0023】
第一半導体膜113はYAG2ωレーザ光117を吸収したことにより温度が上昇し、熱を持つようになる。この第一半導体膜113から放出される熱118が活性半導体膜115に影響して、第一半導体膜113直上の活性半導体膜115の温度が、第一半導体膜113直上以外の活性半導体膜115の温度よりも高くなる。こうして生じた活性半導体膜115内の温度差により活性半導体膜115の結晶成長が温度が低い領域(第一半導体膜113直上以外の活性半導体膜から温度が高い領域(第一半導体膜113直上の活性半導体膜)へ(図3中Y方向)と生じる。
【0024】
Y軸方向に関しては、第一半導体膜113の直上が最も温度が高く、この位置からY方向及び−Y方向へ進むに従って、温度が低くなる。従って、結晶成長はY方向及び−Y方向へ進行する訳であるが、最終的に第一半導体膜113の中央直上で二つの成長した結晶が衝突し、そこに結晶の成長方向(Y方向:第1方向)に垂直な方向(X方向:第2方向)に延びる結晶粒界119が生ずる。図3(b)に示すように、X軸方向に延びる結晶粒界119は1つのみであり、他の結晶粒界はY軸方向へ延びていることに注意されたい。尚、結晶の横成長(X方向及びY方向)の大きさは典型的には2μm〜2.5μm程度であり、最大で3.5μm程度となる。尚、以上の工程は、本発明にいう結晶化工程に相当する。
【0025】
YAG2ωレーザー光116を照射して活性半導体膜115の結晶化を行なった後は、活性半導体膜115を島状に加工して活性領域を形成する素子分離工程として、フォト・リソグラフィー法により活性半導体膜115のパターニングを行う。ここで、図4(b)に示すように、パターニング後の活性半導体膜115の幅(X方向の長さ)が第一半導体膜113の幅(X方向の長さ)よりも短くなり、且つ活性半導体膜115の長さ(Y方向の長さ)が第一半導体膜113の長さ(Y方向の長さ)よりも長くなるようにパターニングする。このようにパターニングすることで、活性領域が長さ方向(Y方向)に関して局所加熱機構としての第一半導体膜113に完全に含まれることになる。
【0026】
以上の工程が終了すると、活性半導体膜115上にゲート絶縁膜としてECR−PECVD法により酸化珪素膜を膜厚60nm程度堆積する。この酸化珪素膜は、ゲート絶縁膜120として用いられる。そして、ゲート絶縁膜120としての酸化珪素膜上にスパッタリング法により窒化タンタル(TaN)膜を50nm程度堆積し、タンタル(Ta)膜を450nm程度堆積する。その後、フォト・リソグラフィー法により上記TaN膜、Ta膜をパターニングしてゲート電極121a,121bとする。
【0027】
このパターニングを行なう際に、薄膜半導体装置のチャネル形成領域となるゲート電極121a,121b直下の活性半導体膜115が、長さ方向(Y方向)に関して第一半導体膜113に完全に含まれ、且つ第一半導体膜113の長さ方向に関する中心近傍、即ち結晶の横成長方向(Y方向:第1方向)に垂直な方向(X方向:第2方向)の結晶粒界119を含まず、且つY方向に関して第一半導体膜113の中心近傍の両側に位置するようにゲート電極121a,121bを形成する。ゲート電極121a,121bのY方向の長さは2μmとし、ゲート電極121a,121bのY方向の位置はY方向における第一半導体膜113の中心直上位置からY方向及びーY方向へそれぞれ0.5μm離間した位置に設定する。尚、図4(b)に示すようにゲート電極121a,121bは、共通の電極121に接続されている。
【0028】
以上の工程を経て、ゲート電極121a,121bを形成すると、次にゲート電極121a,121bをマスクとしてドナー又はアクセプターとなる不純物イオンをイオンドーピング法により打ち込み、図5(a)、図5(b)に示すように、ソース領域115a、ドレイン領域115c、及びチャネル形成領域115bを自己整合的に形成する。この時、活性半導体膜115の結晶の横成長方向(Y方向)に沿ってキャリアが移動するようにソース領域115a及びドレイン領域115cを形成する。そして、ソース領域115a及びドレイン領域115cに添加された不純物元素の活性化を行なうために、窒素雰囲気下において、300℃にて4時間の熱処理を施す。ここで、チャネル形成領域115bは、ゲート電極121a,121bをマスクとして形成されるため、X方向に延びた結晶粒界119の両側に形成される。つまり、2つのチャネル形成領域115bの間に結晶流界119が位置するように形成される。
【0029】
その後、層間絶縁膜122としてプラズマCVD法(PECVD法)によりTEOS(Si(OCH2CH34)と酸素とを原料気体とした酸化珪素膜を膜厚500nm程度堆積する。最後に、フォト・リソグラフィー法によりコンタクト・ホールを形成した後で、スパッタリング法によりアルミニウム(Al)を堆積し、フォト・リソグラフィー法によりAlをパターニングしてソース電極123及びドレイン電極124を形成して薄膜半導体装置が製造される。
【0030】
以上説明したように、本発明の第1実施形態による薄膜半導体装置によれば、ゲート電極121a,121bの直下に形成されるチャネル形成領域115bには、キャリアが移動する方向(Y方向)に垂直な方向(X方向)に延びる結晶粒界が存在しないため、単結晶半導体装置並みの高性能のスイッチング特性を有し、しかも薄膜半導体装置毎の特性のばらつきがない薄膜半導体装置を製造することができる。
【0031】
〔第2実施形態による薄膜半導体装置〕
次に、本発明の第2実施形態による薄膜半導体装置及びその製造方法について説明する。尚、以下の説明においては、以上説明した第1実施形態による薄膜半導体装置及びその製造方法と共通する部分については、説明を簡略化し又は説明を割愛する。図7は、本発明の第2実施形態による薄膜半導体装置を説明するための図であり、(a)は薄膜半導体装置の断面図であり、(b)は平面透視図である。尚、第1実施形態と同様に、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。図2〜図6に示したXYZ直交座標系は、積層構造を有する薄膜半導体装置の界面内にXY平面を設定し、界面に直交する方向をZ軸方向に設定してある。
【0032】
本実施形態の薄膜半導体装置は、基板として厚さ1.1mmの石英基板211があり、この石英基板211上に下地保護膜212として酸化珪素膜が膜厚200nm程度に形成されている。更に、下地保護膜212としての酸化珪素膜上に活性半導体膜として多結晶珪素膜213が膜厚50nm程度形成されている。ここで、本発明の第1実施形態と同様に、下地保護膜212としての酸化珪素膜と活性半導体膜としての多結晶珪素膜213との間に発熱部材として第一半導体膜と下側絶縁膜とが存在していても良い。
【0033】
また、上述した活性半導体膜としての多結晶珪素膜213の上にゲート絶縁膜215としての酸化珪素膜が形成されており、このゲート絶縁膜215としての酸化珪素膜上にゲート電極216a,216bとして膜厚50nm程度の窒化タンタル(TaN)膜と膜厚450nm程度のタンタル(Ta)膜が形成されている。更に、ゲート電極216a,216b及びゲート絶縁膜215上には、層間絶縁膜217としての酸化珪素膜とアルミニウム(Al)からなるソース電極218及びドレイン電極219が形成されている。本実施形態の薄膜半導体装置は以上の構成を有している。
【0034】
第1実施形態と同様に、本実施形態においてもチャネル形成領域213bは長さ方向(Y方向)に2つ形成され、この2つのチャネル形成領域213bの間に長さ方向(Y方向)を横切る方向(X方向)に延びる結晶粒界214が一つ存在する。そして、2つチャネル形成領域213b内には、X方向に延びる結晶粒界が存在しない。2つのチャネル形成領域213bの間、チャネル形成領域213bを挟む2つの領域(図7中斜線を付した領域)は不純物イオンが打ち込まれた低抵抗領域であり、チャネル形成領域213bを挟む2つの領域は、それぞれソース領域213a及びドレイン領域213cである。また、チャネル形成領域213bのY方向の長さはそれぞれ2μmであり、2つのチャネル形成領域213b各々は、X方向に延びる結晶粒界214からぞれぞれY方向、−Y方向に0.5μm離間した位置に形成されている。
【0035】
以上説明したように、本発明の第2実施形態による薄膜半導体装置によれば、薄膜半導体装置のチャネル形成領域となるゲート電極直下の活性領域に、キャリアが移動する方向に垂直な方向に延びる結晶粒界が存在しないので、単結晶半導体装置並みの高性能な薄膜半導体装置が得られる。
【0036】
以上、本発明の第1、第2実施形態による薄膜半導体装置、及びその製造方法、並びに薄膜半導体装置を備える電子デバイスについて説明したが、本発明は上記実施形態に制限されず、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では、薄膜半導体装置として液晶表示装置の画素を駆動するために設けられるTFT及びこのTFTを駆動するための駆動装置内に設けられるTFTを例に挙げて説明したが。しかしながら、本発明は液晶表示装置に設けられるTFTのみならず、有機EL表示装置に設けられるTFTにも適用することができる。勿論、有機EL表示装置の場合も、画素を駆動するために設けられるTFT及びこのTFTを駆動するための駆動装置内に設けられるTFTに適用することができる。つまるところ、本発明は、トランジスタを製造する過程で活性領域内に結晶粒界が生じ、電気特性が悪化する場合の全般について適用可能である。
【0037】
また、上記実施形態では、電子デバイスとして液晶表示装置を例に挙げたが、有機EL表示装置及びイメージセンサのみならず、液晶プロジェクタ、マルチメディア対応のパーソナルコンピュータ(PC)及びエンジニアリング・ワークステーション(EWS)、ページャ、携帯電話、ワードプロセッサ、テレビ、ビューファインダ型又はモニタ直視型のビデオテープレコーダ、電子手帳、電子卓上計算機、カーナビゲーション装置、POS端末、タッチパネルを備えた装置等の電子デバイスに適用することが可能である。
【0038】
【発明の効果】
以上説明したように、本発明によれば、結晶性の良い大粒径の結晶粒から成る半導体膜から成り、チャネル形成領域の結晶粒界の位置が制御された、電気特性が良く、ばらつきの少ない薄膜半導体装置を提供することができるという効果がある。
また、本発明の薄膜半導体装置の製造方法によると、安価なガラス基板の使用が可能となる低温プロセスを用いて高性能な薄膜半導体装置を容易に且つ安定的に製造することができるという効果がある。
従って、本発明の薄膜半導体装置、及びその製造方法をアクティブ・マトリックス液晶表示装置に適用した場合には、大型で高品質な液晶表示装置を容易に且つ安定的に製造することができる。
この発明によれば、電気特性が良く且つそのばらつきが少ない薄膜半導体装置を電気的なスイッチング手段及び電気光学的なスイッチング手段の少なくとも一方のスイッチング手段として備えており、動作速度を高速化することができるため、多数の画素を有するアクティブ型液晶表示装置、有機EL表示装置、及びイメージセンサ等の各種電子デバイスに用いて極めて好適である。
更に、他の電子デバイスの製造に適用した場合にも高品質な電子デバイスを容易に且つ安定的に製造することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態による電子デバイスの全体構成の一例を示す斜視図である。
【図2】 本発明の第1実施形態による薄膜半導体装置の製造方法の一例を示す工程図であり、(a)は薄膜半導体装置の断面図であり、(b)は平面透視図である。
【図3】 本発明の第1実施形態による薄膜半導体装置の製造方法の一例を示す工程図であり、(a)は薄膜半導体装置の断面図であり、(b)は平面透視図である。
【図4】 本発明の第1実施形態による薄膜半導体装置の製造方法の一例を示す工程図であり、(a)は薄膜半導体装置の断面図であり、(b)は平面透視図である。
【図5】 本発明の第1実施形態による薄膜半導体装置の製造方法の一例を示す工程図であり、(a)は薄膜半導体装置の断面図であり、(b)は平面透視図である。
【図6】 本発明の第1実施形態による薄膜半導体装置の製造方法の一例を示す工程図であり、(a)は薄膜半導体装置の断面図であり、(b)は平面透視図である。
【図7】 本発明の第2実施形態による薄膜半導体装置を説明するための図であり、(a)は薄膜半導体装置の断面図であり、(b)は平面透視図である。
【符号の説明】
20〜23……駆動回路
111,211……石英基板
112,212……下地保護膜
113……第一半導体膜
114……下側絶縁膜
115,213……活性半導体膜
115a,213a……ソース領域
115c,213c……ドレイン領域
115b,213b……チャネル形成領域
116……YAG2ωレーザ光
117……活性半導体膜を透過したYAG2ωレーザ光
118……第一半導体膜の熱
119,214……結晶粒界
120,215……ゲート絶縁膜
121a,121b,216a,216b……ゲート電極
122,217……層間絶縁膜
123,218……ソース電極
124,219……ドレイン電極

Claims (7)

  1. 基板上に形成された半導体膜の一部をチャネル形成領域として用いる薄膜半導体装置の製造方法において、
    前記半導体膜の一部を局所的に加熱する局所加熱機構を前記基板上に形成する加熱機構形成工程と、
    前記加熱機構形成工程後に行われ、前記局所加熱機構上に前記半導体膜を形成する半導体膜形成工程と、
    前記局所加熱機構により前記半導体膜が局所的に加熱された状態にて前記半導体膜を溶融結晶化させる結晶化工程と、
    前記半導体膜を島状に加工する素子分離工程と、
    前記島状に加工した半導体膜の上にゲート絶縁膜を介して2つのゲート電極を形成するゲート電極形成工程と、
    前記2つのゲート電極をマスクとして前記半導体膜に不純物イオンを注入し、ソース領域、ドレイン領域、及び2つのチャネル形成領域を形成するイオン注入工程と、を含み、
    前記チャネル形成領域は、前記半導体膜の結晶成長が進行する第1方向に関して、前記局所加熱機構に完全に含まれ、且つ、前記局所加熱機構の中心近傍の両側に所定の距離だけ離間するように配置されることを特徴とする薄膜半導体装置の製造方法。
  2. 前記第1方向における前記チャネル形成領域それぞれの長さは、2μm以下であることを特徴とする請求項1記載の薄膜半導体装置の製造方法。
  3. 前記チャネル形成領域各々の位置は、前記局所加熱機構の中心近傍から前記第1方向にそれぞれ0.5μm以上離間した位置に設定されることを特徴とする請求項1又は請求項2記載の薄膜半導体装置の製造方法。
  4. 基板上に形成された半導体膜の一部をチャネル形成領域として用いる薄膜半導体装置において、
    前記基板と前記チャネル形成領域との間に局所加熱機構が形成されており、
    前記半導体膜には、異なる2箇所にチャネル形成領域が形成されており、
    前記チャネル形成領域には、前記チャネル形成領域が配列された第1方向に延びる結晶粒界のみが存在し、前記チャネル形成領域の間には、前記第1方向を横切る第2方向に延びる1つの結晶粒界が存在することを特徴とする薄膜半導体装置。
  5. 前記第1方向における前記チャネル形成領域それぞれの長さは、2μm以下であることを特徴とする請求項4記載の薄膜半導体装置。
  6. 前記チャネル形成領域各々の位置は、前記結晶粒界から前記第1方向にそれぞれ0.5μm以上離間した位置に設定されることを特徴とする請求項4又は請求項5記載の薄膜半導体装置。
  7. 請求項1から請求項3の何れか一項に記載の薄膜半導体装置の製造方法を用いて製造された薄膜半導体装置、又は、請求項4から請求項6の何れか一項に記載の薄膜半導体装置を、電気的なスイッチング手段及び電気光学的なスイッチング手段の少なくとも一方のスイッチング手段として備えることを特徴とする電子デバイス。
JP2001307807A 2001-10-03 2001-10-03 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス Expired - Fee Related JP3845566B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001307807A JP3845566B2 (ja) 2001-10-03 2001-10-03 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001307807A JP3845566B2 (ja) 2001-10-03 2001-10-03 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス

Publications (2)

Publication Number Publication Date
JP2003115497A JP2003115497A (ja) 2003-04-18
JP3845566B2 true JP3845566B2 (ja) 2006-11-15

Family

ID=19127214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001307807A Expired - Fee Related JP3845566B2 (ja) 2001-10-03 2001-10-03 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス

Country Status (1)

Country Link
JP (1) JP3845566B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745822B2 (en) 2003-06-27 2010-06-29 Nec Corporation Thin film transistor and thin film transistor substrate including a polycrystalline semiconductor thin film having a large heat capacity part and a small heat capacity part
KR100601374B1 (ko) 2004-05-28 2006-07-13 삼성에스디아이 주식회사 박막 트랜지스터 및 그 제조방법과 박막 트랜지스터를포함하는 평판표시장치
JP6506973B2 (ja) * 2015-01-21 2019-04-24 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
JP2003115497A (ja) 2003-04-18

Similar Documents

Publication Publication Date Title
JP5997802B2 (ja) 半導体装置
US9171956B2 (en) Thin film transistor and display device using the same
US20050059222A1 (en) Method of forming polycrystalline semiconductor layer and thin film transistor using the same
US7033434B2 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
US20050212047A1 (en) Thin film transistor substrate and manufacturing method thereof
JP4597730B2 (ja) 薄膜トランジスタ基板およびその製造方法
US8535994B2 (en) Thin-film transistor array device manufacturing method
US7015122B2 (en) Method of forming polysilicon thin film transistor
JP3845566B2 (ja) 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス
US7435667B2 (en) Method of controlling polysilicon crystallization
JP4642310B2 (ja) 薄膜半導体装置の製造方法および薄膜半導体装置
JP2009302171A (ja) 半導体装置の製造方法、トランジスタの製造方法ならびに電気光学装置の製造方法
JP3845569B2 (ja) 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス
JP4141292B2 (ja) 半導体装置
JP4035019B2 (ja) 半導体装置の製造方法
JP2734359B2 (ja) 薄膜トランジスタ及びその製造方法
JP3357798B2 (ja) 半導体装置およびその製造方法
JP2006049647A (ja) アクティブマトリクス基板、電気光学装置、電子デバイス及びアクティブマトリクス基板の製造方法
KR100719919B1 (ko) 다결정실리콘 박막트랜지스터 형성방법
JP4397599B2 (ja) 半導体装置の作製方法
JPH0645607A (ja) 液晶表示装置及びその製造方法
JP4526773B2 (ja) 半導体装置の作製方法
JP2003133328A (ja) 薄膜トランジスタ及びその製造方法
JP4141307B2 (ja) 半導体装置の作製方法
JP4689150B2 (ja) 半導体回路及びその作製方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees