WO2011145149A1 - 表示用薄膜半導体装置の製造方法 - Google Patents

表示用薄膜半導体装置の製造方法 Download PDF

Info

Publication number
WO2011145149A1
WO2011145149A1 PCT/JP2010/003404 JP2010003404W WO2011145149A1 WO 2011145149 A1 WO2011145149 A1 WO 2011145149A1 JP 2010003404 W JP2010003404 W JP 2010003404W WO 2011145149 A1 WO2011145149 A1 WO 2011145149A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
semiconductor device
layer
manufacturing
gate electrode
Prior art date
Application number
PCT/JP2010/003404
Other languages
English (en)
French (fr)
Inventor
西田健一郎
永井久雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/003404 priority Critical patent/WO2011145149A1/ja
Priority to JP2012515729A priority patent/JPWO2011145286A1/ja
Priority to PCT/JP2011/002582 priority patent/WO2011145286A1/ja
Publication of WO2011145149A1 publication Critical patent/WO2011145149A1/ja
Priority to US13/679,313 priority patent/US8623715B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Definitions

  • the present invention relates to a method of manufacturing a thin film semiconductor device for driving an active matrix liquid crystal display or an organic EL display, and in particular, a channel layer includes a first channel layer made of a polycrystalline semiconductor layer and an amorphous semiconductor layer.
  • the present invention relates to a method of manufacturing a thin film semiconductor device for display having a plurality of structures with two channel layers.
  • a thin film semiconductor device for display called a thin film transistor (TFT) is used to drive a pixel.
  • TFT thin film transistor
  • an organic EL display is a current-driven device, unlike a voltage-driven liquid crystal display, and development of a thin film semiconductor device having excellent on / off characteristics as a drive circuit for an active matrix display device has been urgently developed.
  • a thin film semiconductor device of a driving circuit of a liquid crystal display there is a thin film semiconductor device using an amorphous semiconductor layer (amorphous semiconductor layer) such as amorphous silicon as a single layer as a channel layer.
  • amorphous semiconductor layer such as amorphous silicon
  • this type of thin film semiconductor device has a large band gap and a low off-current, it has a problem of low on-current due to low mobility.
  • a thin film semiconductor device for a driving circuit of a liquid crystal display there is a thin film semiconductor device using a polycrystalline semiconductor layer as a single layer as a channel layer.
  • This type of thin film semiconductor device has a high on-current due to high carrier mobility, as opposed to a thin film semiconductor device using an amorphous semiconductor layer as a single layer for a channel layer.
  • the carrier mobility is high, there is a problem in that the off-state current is also increased.
  • a drive circuit of an organic EL display uses a two-layer structure of a first channel layer made of a polycrystalline semiconductor layer and a second channel layer made of an amorphous semiconductor layer as a channel layer.
  • a thin film semiconductor device has been proposed.
  • Patent Document 1 A method for forming such a polycrystalline semiconductor layer is disclosed in Patent Document 1.
  • the amorphous silicon film is crystallized by annealing the substrate on which the amorphous silicon film is formed at a temperature of 800 ° C. or higher and 1000 ° C. or lower. It is to let you.
  • the method for manufacturing a thin film semiconductor device using a single layer of an amorphous semiconductor layer as a channel layer has no particularly high temperature treatment, and the process temperature is 350 ° C. at the maximum. Stay to the extent.
  • a step of crystallizing an amorphous silicon film by annealing is required.
  • the above high temperature treatment is required.
  • FIG. 18A is a photomicrograph of the state of film peeling at the gate electrode taken with an optical microscope in a top view of the thin film semiconductor device.
  • FIG. 18A it can be confirmed that a plurality of circular film peelings 301 have occurred in the gate electrode 300.
  • FIG. 18B is a cross-sectional SEM photograph of the film peeling around the gate electrode when the thin film semiconductor device at this time is viewed in cross section. As shown in FIG. 18B, it can be confirmed that a gap 302 is generated in the gate electrode 300 made of molybdenum tungsten on the undercoat layer 200 of the silicon nitride film. As a result, film peeling occurs in the gate insulating film 400 and the polycrystalline semiconductor layer 500 on the gate electrode 300. As described above, in a bottom gate type thin film semiconductor device, when a high-temperature annealing process is performed after the gate electrode is formed, a circular film may be peeled off on the gate electrode.
  • the present invention has been made in order to solve the above-described problem. Even when molybdenum is used as the gate electrode, the present invention provides a thin film semiconductor device for display that can suppress the occurrence of film peeling on the gate electrode. An object is to provide a manufacturing method.
  • one aspect of a method for manufacturing a thin film semiconductor device for display according to the present invention includes a first step of preparing a glass substrate, and diffusion of impurities contained in the glass substrate on the glass substrate.
  • a second step of forming an undercoat layer for preventing the above a third step of forming a metal layer made of molybdenum having a stronger bonding force with oxygen atoms than the undercoat layer on the undercoat layer, and a predetermined step
  • the amorphous semiconductor layer is annealed at a temperature ranging from 700 ° C.
  • the method for manufacturing a thin film semiconductor device for display it is possible to suppress the oxidation of molybdenum constituting the gate electrode, and thus it is possible to suppress the occurrence of film peeling on the gate electrode.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a thin film semiconductor device for display according to each embodiment of the present invention.
  • FIG. 2 is a flowchart of the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a thin film semiconductor device for display according to Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a thin film semiconductor device for display according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram for explaining the cause of film peeling in the thin film semiconductor device for display.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a thin film semiconductor device for display according to each embodiment of the present invention.
  • FIG. 2 is a flowchart of the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the
  • FIG. 6 is a diagram showing the oxygen concentration contained in the thin film semiconductor device manufactured by the manufacturing method according to this embodiment and the manufacturing method according to the conventional example.
  • FIG. 7 is a diagram showing the relationship between the hydrogen plasma processing conditions and the number of film peeling occurrences on the gate electrode.
  • FIG. 8 is a flowchart of the manufacturing method of the thin film semiconductor device for display according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing a configuration of characteristic steps among all the steps in the method for manufacturing a thin film semiconductor device for display according to Embodiment 2 of the present invention.
  • FIG. 10 is a flowchart of the manufacturing method of the thin film semiconductor device for display according to the third embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a configuration of characteristic steps among all the steps in the method for manufacturing a thin film semiconductor device for display according to Embodiment 3 of the present invention.
  • FIG. 12 is a flowchart of the method for manufacturing the thin film semiconductor device for display according to the second embodiment of the present invention.
  • FIG. 13 is a cross-sectional view schematically showing a configuration of characteristic steps among all the steps in the method for manufacturing a thin film semiconductor device for display according to Embodiment 4 of the present invention.
  • FIG. 14 is a flowchart of the manufacturing method of the thin film semiconductor device for display according to the fifth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view schematically showing a configuration of characteristic steps among all the steps in the method for manufacturing a thin film semiconductor device for display according to Embodiment 5 of the present invention.
  • FIG. 16 is a partially cutaway perspective view of an organic EL display according to Embodiment 6 of the present invention.
  • FIG. 17 is a circuit configuration diagram of a pixel using the thin film semiconductor device for display according to each embodiment of the present invention.
  • FIG. 18A is a photomicrograph of the state of film peeling at the gate electrode taken with an optical microscope in a top view of the thin film semiconductor device.
  • FIG. 18B is a cross-sectional SEM photograph showing a state of film peeling around the gate electrode in a cross-sectional view of the thin film semiconductor device.
  • One aspect of the method for producing a thin film semiconductor device for display according to the present invention includes a first step of preparing a glass substrate, and an undercoat layer for preventing diffusion of impurities contained in the glass substrate on the glass substrate.
  • a fourth step of forming an electrode, a fifth step of forming a gate insulating film on the gate electrode, a sixth step of forming an amorphous semiconductor layer on the gate insulating film, and the amorphous semiconductor layer A seventh step of annealing the substrate at a temperature in the temperature range of 700 ° C. to 900 ° C. to crystallize the amorphous semiconductor layer to form a polycrystalline semiconductor layer; and the polycrystalline semiconductor layer
  • the predetermined reduction reaction treatment when the predetermined reduction reaction treatment is performed between the fourth step and the seventh step, the undercoat layer and the gate The predetermined reduction reaction treatment is preferably performed toward the interface with the electrode.
  • the predetermined reduction reaction treatment is a treatment for reducing the oxygen concentration in the vicinity of the interface between the undercoat layer and the gate electrode. Is preferred.
  • the undercoat layer and the metal layer It is preferable to perform the predetermined reduction reaction treatment toward the interface.
  • the predetermined reduction reaction treatment is a treatment for reducing the oxygen concentration in the vicinity of the interface between the undercoat layer and the metal layer. Is preferred.
  • a gate electrode is formed on the undercoat layer. It is preferable to perform the predetermined reduction reaction process toward the region.
  • the reduction reaction treatment can be performed on the gate electrode formation region of the undercoat layer.
  • the predetermined reduction reaction treatment is a treatment for reducing the oxygen concentration in the vicinity of the surface of the gate electrode formation region of the undercoat layer. Is preferred.
  • the undercoat layer is preferably a layer made of a nitride film.
  • the impurity contained in the glass substrate is preferably sodium or phosphorus.
  • the undercoat layer can prevent the impurities of sodium or phosphorus contained in the glass substrate from entering the semiconductor layer.
  • the glass substrate contains oxygen atoms as a main component
  • the undercoat layer has a weaker binding force with oxygen atoms than the glass substrate.
  • the molybdenum preferably has a weaker binding force with oxygen atoms than the glass substrate and a stronger binding force with oxygen atoms than the undercoat layer.
  • a second amorphous semiconductor layer is formed on the polycrystalline semiconductor layer between the seventh step and the eighth step.
  • a step is provided, and in the eighth step, the source electrode and the drain electrode are formed on the second amorphous semiconductor layer.
  • an amorphous semiconductor layer can be formed between the polycrystalline semiconductor layer and the source and drain electrodes.
  • the polycrystalline semiconductor layer preferably includes a microcrystalline semiconductor layer having an average particle diameter of 20 nm to 60 nm.
  • the polycrystalline semiconductor layer is a microcrystalline semiconductor layer having an average grain size of 20 nm to 60 nm, a thin film semiconductor device having high carrier mobility and excellent on-characteristics compared to an amorphous semiconductor is realized. Can do.
  • the predetermined reduction reaction process is performed between the fourth step and the fifth step.
  • the oxygen concentration at the gate electrode interface is high, and there is no cleaning process after the gate electrode forming process and before the gate insulating film forming process. There is no treatment to contain. Therefore, by performing the reduction reaction process at this stage, the gate electrode is covered with the gate insulating film in a state where the oxygen concentration is low, so that the oxygen layer at the interface between the undercoat layer and the gate electrode is minimized.
  • a high temperature annealing treatment in a temperature range of 700 ° C. to 900 ° C. can be performed. This aspect can most effectively reduce the oxygen concentration at the gate electrode interface.
  • the predetermined reduction reaction treatment is preferably performed between the fifth step and the sixth step.
  • the predetermined reduction reaction treatment is preferably performed between the sixth step and the seventh step.
  • the gate electrode is already covered with the gate insulating film and the amorphous semiconductor layer during the reduction reaction process, it is possible to prevent oxygen from entering again at the interface between the gate electrode and the undercoat layer after this stage. can do. Moreover, since the reduction reaction treatment can be performed immediately before the annealing step, the oxygen concentration at the gate electrode interface can be effectively reduced.
  • the predetermined reduction reaction process is performed between the third step and the fourth step.
  • the oxygen concentration at the interface between the gate metal layer and the undercoat layer can be reduced, so the undercoat layer and the gate electrode formed thereafter The oxygen concentration at the interface can be reduced.
  • the predetermined reduction reaction process is performed between the second step and the third step.
  • the oxygen concentration at the interface between the undercoat layer and the gate electrode to be formed thereafter can be reduced by performing the reduction reaction treatment on the undercoat layer. Can be reduced.
  • the predetermined reduction reaction treatment is preferably a hydrogen plasma treatment.
  • the glass substrate on which the gate electrode is formed on the undercoat layer is disposed in a chamber for performing the hydrogen plasma treatment.
  • the high-frequency power for performing the hydrogen plasma treatment is preferably in the range of 75 W to 200 W, and the treatment time by the high-frequency power is preferably in the range of 15 seconds to 60 seconds.
  • the predetermined reduction reaction treatment is preferably a hydrogen atmosphere annealing treatment.
  • the predetermined reduction reaction treatment is preferably a water vapor ashing treatment.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a thin film semiconductor device for display according to each embodiment of the present invention.
  • a thin film semiconductor device 10 for display is a bottom gate type thin film transistor device, and is an undercoat layer sequentially formed on a glass substrate 1 and a glass substrate 1. 2, a gate electrode 3, a gate insulating film 4, a polycrystalline semiconductor layer 5, an amorphous semiconductor layer 6, a pair of contact layers 7a and 7b, and a pair of source electrode 8a and drain electrode 8b.
  • the glass substrate 1 is made of, for example, a glass material such as quartz glass.
  • the undercoat layer 2 is formed on the surface of the glass substrate 1 in order to prevent impurities such as sodium and phosphorus contained in the glass substrate 1 from entering the semiconductor layer.
  • the impurities in the glass substrate 1 are contained in the process of forming the glass substrate 1 itself.
  • a nitride film such as a silicon nitride film (SiN) can be used.
  • SiN silicon nitride film
  • a silicon nitride film It is preferable to use a nitride film such as.
  • the thickness of the silicon nitride film is set to about 100 nm, it is possible to sufficiently prevent the impurities of the glass substrate 1 from diffusing out of the glass substrate 1.
  • the gate electrode 3 is made of a metal made of molybdenum (Mo), such as molybdenum tungsten (MoW), and is formed on the undercoat layer 2.
  • Mo molybdenum
  • the thickness of the gate electrode 3 is about 50 nm.
  • the gate insulating film 4 is made of, for example, silicon dioxide (SiO 2 ), silicon nitride (SiN), and a laminated film thereof, and is formed on the glass substrate 1 and the gate electrode 3 so as to cover the gate electrode 3. .
  • silicon dioxide since the polycrystalline semiconductor layer 5 is used as the channel layer, it is preferable to use silicon dioxide as the gate insulating film 4. This is because in order to maintain good threshold voltage characteristics in the TFT, it is preferable to make the interface state with the channel layer good, and silicon dioxide is suitable.
  • the film thickness of the gate insulating film 4 is about 100 to 150 nm.
  • the polycrystalline semiconductor layer 5 is a first channel layer formed on the gate insulating film 4 and is made of, for example, polycrystalline silicon.
  • the polycrystalline semiconductor layer 5 includes a microcrystalline semiconductor layer having an average particle diameter of 20 nm to 60 nm.
  • the polycrystalline semiconductor layer 5 is a crystallized silicon layer formed by crystallizing amorphous silicon and has a microcrystalline structure called a microcrystal.
  • the amorphous semiconductor layer 6 is a second channel layer formed on the polycrystalline semiconductor layer 5 and is composed of, for example, an amorphous silicon layer (amorphous silicon layer).
  • the display thin film semiconductor device 10 has a channel layer having a two-layer structure of the first channel layer made of the polycrystalline semiconductor layer 5 and the second channel layer made of the amorphous semiconductor layer 6. Is. Note that the polycrystalline semiconductor layer 5 and the amorphous semiconductor layer 6 are formed in an island shape when viewed in plan.
  • the pair of contact layers 7 a and 7 b are composed of an amorphous semiconductor layer containing impurities at a high concentration, and are formed on the amorphous semiconductor layer 6 so as to be separated from each other. Further, the contact layer 7a and the contact layer 7b are formed apart from each other. The contact layers 7a and 7b are formed so as to cover the upper surface and side surfaces of both ends of the amorphous semiconductor layer 6 and the side surfaces of the polycrystalline semiconductor layer 5, and from the upper surface of the amorphous semiconductor layer 6 to the glass substrate 1. It is formed over the upper surface.
  • each of the contact layers 7a and 7b is an n-type semiconductor layer obtained by doping an amorphous silicon layer with phosphorus (P) as an impurity, and has a high concentration of 1 ⁇ 10 19 (atm / cm 3 ) or more. This is an n + layer containing the impurities.
  • the pair of source electrode 8a and drain electrode 8b are formed on the contact layers 7a and 7b, respectively, and are provided apart from each other.
  • the source electrode 8a and the drain electrode 8b have a single layer structure or a multilayer structure such as a conductive material and an alloy, respectively.
  • a conductive material and an alloy for example, aluminum (Al), molybdenum (Mo), tungsten (W), copper (Cu), titanium ( It is comprised with materials, such as Ti) and chromium (Cr).
  • the source electrode 8a and the drain electrode 8b are formed by a three-layer structure of MoW / Al / MoW.
  • FIG. 2 is a flowchart of the manufacturing method of the display thin film semiconductor device 10 according to the first embodiment of the present invention.
  • the manufacturing method of the display thin film semiconductor device includes at least a glass substrate preparation step (S11), an undercoat layer formation step (S12), and a molybdenum metal layer.
  • the glass substrate preparation step (S11) is a step of preparing a predetermined glass substrate.
  • the undercoat layer forming step (S12) is a step of forming the undercoat layer 2 on the glass substrate 1.
  • the molybdenum metal layer forming step (S13) is a step of forming a molybdenum metal layer made of a material containing molybdenum as the material of the gate electrode 3 on the undercoat layer 2.
  • the gate electrode formation step (S14) is a step of forming the gate electrode 3 by patterning the molybdenum metal layer by a predetermined etching process.
  • the reduction reaction treatment step (S15) is a step of performing a predetermined reduction reaction treatment such as a hydrogen reduction treatment.
  • the gate insulating film forming step (S16) is a step of forming the gate insulating film 4 on the gate electrode 3.
  • the amorphous semiconductor layer forming step (S17) is a step of forming a first amorphous semiconductor layer such as an amorphous silicon layer on the gate insulating film 4.
  • the annealing step (S18) is a step of annealing the amorphous semiconductor layer on the gate insulating film 4 in a predetermined temperature range. By this annealing step, the amorphous semiconductor layer is crystallized to form the polycrystalline semiconductor layer 5.
  • the source / drain electrode formation step (S19) is a step of forming the source electrode 8a and the drain electrode 8b above the polycrystalline semiconductor layer 5.
  • the manufacturing method of the thin film semiconductor device for display according to the first embodiment of the present invention includes steps other than those described above.
  • FIGS. 3 and 4 are cross-sectional views schematically showing the configuration of each step in the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention.
  • Glass substrate preparation step S11 First, as shown in FIG. 3A, a glass substrate 1 made of a glass material such as quartz glass is prepared (S11). The glass substrate 1 is preferably washed.
  • an undercoat layer 2 made of an insulating film of a silicon nitride film is formed on the glass substrate 1.
  • the silicon nitride film can be formed by plasma CVD.
  • the film thickness of the undercoat layer 2 was about 100 nm.
  • molybdenum metal layer forming step: S13 Next, after washing with pure water or the like, as shown in FIG. 3C, a molybdenum metal layer 3M (gate metal layer) made of a material containing molybdenum is formed on the undercoat layer 2 with a film thickness of about 50 nm. A film is formed (S13).
  • molybdenum tungsten (MoW) is used as the molybdenum metal layer 3M.
  • the molybdenum metal layer 3M was formed by sputtering.
  • wet etching is performed using the remaining resist R1 as a mask, and the molybdenum metal layer 3M is patterned to form a gate electrode 3 having a predetermined shape. Thereafter, by removing the resist and washing, a gate electrode 3 having a predetermined shape can be formed on the undercoat layer 2 as shown in FIG.
  • a predetermined reduction reaction process is performed toward the interface between the undercoat layer 2 and the gate electrode 3.
  • the hydrogen reduction reaction process by a hydrogen plasma process was performed as a reduction reaction process.
  • the hydrogen plasma treatment generates hydrogen ions (H + ) and hydrogen radicals (H * ) in the plasma atmosphere, and exists in the vicinity of the inside and outside of the gate electrode 3 oxidized by the generated hydrogen ions and hydrogen radicals. Oxygen and oxygen present in the atmosphere can be removed. That is, as hydrogen ions and hydrogen radicals enter the interface between the undercoat layer 2 and the gate electrode 3, the oxygen inside and around the gate electrode 3 is combined with the hydrogen ions and hydrogen radicals to form moisture. Evaporate and escape. Thereby, the oxygen concentration existing in the vicinity of the interface between the undercoat layer 2 and the gate electrode 3 can be reduced.
  • a gate insulating film 4 made of silicon dioxide is formed to a thickness of about 100 nm on the gate electrode 3 and the exposed undercoat layer 2 so as to cover the gate electrode 3.
  • the film is formed.
  • the gate insulating film 4 can be formed by plasma CVD or the like.
  • an amorphous semiconductor layer 5a of amorphous silicon is formed on the gate insulating film 4 to a thickness of about 50 nm.
  • the amorphous semiconductor layer 5a can be formed by plasma CVD or the like.
  • the amorphous semiconductor layer 5a can be crystallized to form a polycrystalline semiconductor layer 5p.
  • the amorphous semiconductor layer 5a is crystallized by laser annealing using an excimer laser to form a polycrystalline semiconductor layer 5p having a microcrystalline microcrystalline structure.
  • an amorphous semiconductor layer 6 a of amorphous silicon is formed to a thickness of about 100 nm. . Thereby, a hydrogenated amorphous silicon layer can be formed.
  • a resist is applied on the amorphous semiconductor layer 6a, exposed and developed, so that the resist remains in the portion where the channel layer is formed as shown in FIG. A resist R2 is formed.
  • the impurity for example, a pentavalent element such as phosphorus can be used. Further, the gas flow rate is adjusted so that the impurity concentration becomes high.
  • a resist R3 having a predetermined shape is selectively formed.
  • dry etching is performed using the resist R3 as a mask, to pattern the amorphous semiconductor layer 7S 1 of the high concentration impurity doped.
  • the amorphous semiconductor layer 7S 1 high concentration impurity doped are patterned, is contact forming layer the amorphous semiconductor layer 7S 2 of the high concentration impurity doped.
  • FIG. 4 (e) by washing to remove the resist R3, the amorphous semiconductor layer 7S 2 of the high concentration impurity doped are exposed, which is the contact forming layer.
  • the source drain metal film made of a material that constitutes the source electrode 8a and the drain electrode 8b 8M is deposited.
  • the source / drain metal film 8M having a three-layer structure of MoW / Al / MoW is formed by sputtering.
  • a resist is applied on the source / drain metal film 8M, and exposure and development are performed. As shown in FIG. The resist R4 is selectively formed.
  • a source electrode 8a and a drain electrode 8b having a predetermined shape can be formed as shown in FIG. .
  • the amorphous semiconductor layer 7S 2 of the high concentration impurity doped functions as an etching stopper.
  • a passivation film may be formed so as to cover the entire thin film semiconductor device for display.
  • FIG. 5 is a schematic diagram for explaining the cause of film peeling in the thin film semiconductor device for display.
  • the amorphous semiconductor layer is annealed in the temperature range of 700 ° C. to 900 ° C. to form the polycrystalline semiconductor layer. Although it crystallizes, as shown in FIG. 18A, there is a problem in that this annealing treatment causes film peeling of various sizes on the gate electrode.
  • molybdenum oxide MoO 3
  • molybdenum oxide that easily sublimates at a melting point of about 800 ° C. is sublimated and gasified by annealing at 700 ° C. to 900 ° C.
  • gas is present in and around the gate electrode, and the film formed on the gate electrode is considered to be easily peeled off.
  • the undercoat layer is formed in order to prevent the glass plate as a substrate from adversely affecting the thin film semiconductor device.
  • impurities such as sodium and phosphorus are contained in the glass plate in the process of forming the glass plate itself, but when the impurities such as sodium and phosphorus enter the semiconductor layer of the channel layer, the impurities function as charges. This causes a negative shift in leakage current and threshold voltage.
  • An undercoat layer is formed to prevent impurities present in the glass plate from entering the semiconductor layer.
  • a nitride film such as silicon nitride is often used in order to more effectively block impurities from entering.
  • the inventor when the gate electrode containing molybdenum is directly formed on the silicon nitride film, the inventor has an oxygen-rich layer having a high oxygen content on the surface of the silicon nitride film in any manufacturing process of the thin film semiconductor device.
  • the bonding strength with oxygen atoms is greater for molybdenum than for nitride films. For this reason, oxygen atoms existing on the surface of the undercoat layer 200 of the nitride film diffuse naturally or by heat treatment or the like toward the gate electrode 300 containing molybdenum as shown in FIG. 5B.
  • the oxygen atom 600 is combined with molybdenum of the gate electrode 300 to form molybdenum oxide 360.
  • the nitride film has a smaller bonding force with oxygen atoms than the glass substrate.
  • Molybdenum has a lower bonding force with oxygen atoms than a glass substrate, but has a higher bonding force with oxygen atoms than a nitride film.
  • the present invention has been made to solve such a problem.
  • the amorphous semiconductor layer is heated to 700 ° C. to 900 ° C.
  • the predetermined reduction reaction treatment was performed before the step of performing the annealing treatment at a temperature in the temperature range.
  • oxygen present inside and outside the oxidized gate electrode 3 and oxygen present in the atmosphere can be removed.
  • the oxygen concentration existing in the vicinity of the interface between the undercoat layer 2 and the gate electrode 3 can be reduced.
  • the reduction reaction process is performed between the gate electrode forming step and the gate insulating film forming step.
  • the oxygen concentration at the interface of the gate electrode 3 is increased by the cleaning process in the etching. Therefore, it is effective to perform the reduction reaction process immediately after the gate electrode 3 is formed.
  • the treatment using moisture does not occur. Therefore, by performing a reduction reaction process between the gate electrode forming step and the gate insulating film forming step, it is possible to suppress oxygen from being mixed again at the interface between the undercoat layer 2 and the gate electrode 3.
  • the gate electrode 3 is covered with the gate insulating film 4 in a state where the oxygen concentration is extremely low, the reduction reaction treatment is performed on the interface between the undercoat layer 2 and the gate electrode 3 while maintaining the state. That is, the amorphous semiconductor layer 5a can be subjected to a high-temperature annealing process in a temperature range of 700 ° C. to 900 ° C. in a state where the oxygen layer at the interface between the undercoat layer 2 and the gate electrode 3 is the smallest.
  • the reduction reaction process can be performed on the interface between the gate electrode 3 and the undercoat layer 2 through only one patterned gate electrode 3 layer.
  • the oxygen layer existing at the interface between the undercoat layer 2 and the gate electrode 3 made of molybdenum can be most effectively reduced, so that the circular film peeling on the gate electrode 3 can be suppressed to the maximum. can do.
  • the method for manufacturing the thin film semiconductor device for display 10 according to the present embodiment even when molybdenum is used as the material of the gate electrode 3, generation of molybdenum oxide can be suppressed. Accordingly, the occurrence of film peeling on the gate electrode 3 due to the annealing temperature of the annealing process can be suppressed, and the display thin film semiconductor device 10 having desired characteristics can be realized.
  • a reduction reaction process is conventionally used. This is used, for example, to stabilize the characteristics of the amorphous semiconductor layer 6a as a channel layer.
  • the reduction reaction process is not normally performed, and conventionally, at least a reduction reaction process at a level that reduces the oxygen concentration between the undercoat layer 2 and the gate electrode 3. Is not done.
  • hydrogen plasma treatment is separately performed in order to stabilize the characteristics of the amorphous semiconductor layer 6a.
  • FIG. 6 is a view showing the oxygen concentration contained in the thin film semiconductor device manufactured by the manufacturing method according to the present embodiment and the manufacturing method according to the conventional example.
  • FIG. 6 is a graph in which the oxygen concentration in the thickness (depth) direction from the polycrystalline semiconductor layer to the glass substrate is measured by secondary ion mass spectrometry (SIMS) in a thin film semiconductor device.
  • SIMS secondary ion mass spectrometry
  • the oxygen concentration indicated by a solid line indicates the case where the thin film semiconductor device is manufactured by performing hydrogen plasma treatment (the present invention).
  • the oxygen concentration indicated by the dotted line indicates the case where a thin film semiconductor device is manufactured without performing hydrogen plasma treatment (conventional example).
  • a glass substrate having a gate electrode formed on an undercoat layer is placed in a chamber, a high frequency power (RF power) when performing the hydrogen plasma treatment is 200 W, and a treatment time by the RF power is set.
  • RF power radio frequency power
  • the polycrystalline semiconductor layer was made of microcrystalline amorphous silicon
  • the gate insulating film was made of silicon dioxide
  • the gate electrode was made of molybdenum tungsten
  • the undercoat layer was made of silicon nitride.
  • the oxygen concentration at the interface between the undercoat layer and the gate electrode was 2.7E + 21 (atoms / cm 3 ) in the case of the conventional example in which the hydrogen plasma treatment indicated by the dotted line is not performed.
  • the hydrogen plasma treatment indicated by the solid line was performed, it was 2.1E + 20 (atoms / cm 3 ). That is, in the case of the present invention in which the hydrogen plasma treatment indicated by the solid line is performed, the oxygen content at the interface between the undercoat layer and the gate electrode is greatly reduced compared to the conventional example in which the hydrogen plasma treatment indicated by the dotted line is not performed. You can see that it is made.
  • FIG. 7 is a diagram showing the relationship between the hydrogen plasma processing conditions and the number of film peeling on the gate electrode.
  • the processing conditions of the hydrogen plasma are as follows: RF power is 75 (W), 15 (s), RF power is 130 (W), processing time is 15 (s), and RF power is 75 (W).
  • the processing time was 60 (s), the RF power was 130 (W), the processing time was 60 (s), the RF power was 200 (W), the processing time was 60 (s), and each was performed with two samples. . Note that when the RF power is 0 (W) and the processing time is 0 (s), the hydrogen plasma treatment is not performed.
  • FIG. 7 the processing conditions of the hydrogen plasma are as follows: RF power is 75 (W), 15 (s), RF power is 130 (W), processing time is 15 (s), and RF power is 75 (W).
  • the processing time was 60 (s)
  • the RF power was 130 (W)
  • the processing time was 60 (s)
  • the RF power was 200 (
  • Ring represents the number of ring-shaped film peelings
  • Mall Spot “Middle Spot”, and “Large Spot” are small, medium, and large, respectively. This represents the number of spotted film peeling having a size.
  • the RF power when performing the hydrogen plasma treatment is in the range of 75 W to 200 W, and the processing time by the RF power is in the range of 15 seconds to 60 seconds. Thereby, film peeling hardly occurs on the gate electrode.
  • the experimental results shown in FIGS. 6 and 7 show that the oxygen concentration existing in the vicinity of the interface between the undercoat layer and the gate electrode can be reduced by performing the reduction reaction treatment with hydrogen plasma.
  • oxidation of molybdenum of the gate electrode can be suppressed, so that occurrence of film peeling on the gate electrode can be suppressed.
  • Embodiment 2 Next, a method for manufacturing a thin film semiconductor device for display according to Embodiment 2 of the present invention will be described with reference to FIGS.
  • FIG. 8 is a flowchart of the method for manufacturing the thin film semiconductor device for display according to the second embodiment of the present invention.
  • the method for manufacturing a thin film semiconductor device for display according to the second embodiment of the present invention includes at least a glass substrate preparation step (S21), an undercoat layer forming step (S22), and a molybdenum metal layer.
  • S29 source / drain electrode formation step in this order.
  • the difference between the method for manufacturing the thin film semiconductor device for display according to the present embodiment and the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention is the timing of performing the reduction reaction process. That is, in the method for manufacturing a thin film semiconductor device for display according to the first embodiment of the present invention, the reduction reaction processing step (S15) is between the gate electrode formation step (S14) and the gate insulating film formation (S16). In contrast, in the method for manufacturing a thin film semiconductor device for display according to the present embodiment, the reduction reaction process step (S26) is between the gate insulating film formation step (S25) and the amorphous semiconductor formation step (S27).
  • the manufacturing method of the display thin film semiconductor device according to the present embodiment includes processes other than those described above.
  • FIG. 9 is a cross-sectional view schematically showing a configuration of characteristic steps among all the steps in the method for manufacturing a thin film semiconductor device for display according to Embodiment 2 of the present invention.
  • the same components as those in the manufacturing method of the first embodiment shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted. Further, the following description will focus on differences from the manufacturing method according to Embodiment 1 of the present invention shown in FIGS.
  • FIGS. 9A to 9F are sequentially performed. That is, a glass substrate preparation step, an undercoat layer formation step, a molybdenum metal layer formation step, and a gate electrode formation step are sequentially performed. Note that the steps in FIGS. 9A to 9F are the same as the steps in FIGS. 3A to 3F.
  • the gate insulating film 4 made of silicon dioxide is formed to about 100 nm on the gate electrode 3 and the undercoat layer 2 by plasma CVD so as to cover the gate electrode 3.
  • the film is formed with a film thickness. This step corresponds to the step shown in FIG.
  • a predetermined reduction reaction process is performed toward the interface between the undercoat layer 2 and the gate electrode 3.
  • a hydrogen reduction reaction process using a hydrogen plasma process was performed.
  • the oxygen concentration existing in the vicinity of the interface between the undercoat layer 2 and the gate electrode 3 can be reduced.
  • the gate insulating film 4 is formed on the gate electrode 3, but since hydrogen ions penetrate to a depth of several ⁇ m, the oxygen concentration inside and around the gate electrode 3 is reduced. Is sufficiently possible.
  • each step of FIG. 9 (i) to FIG. 9 (l) is performed in the same manner as each step of FIG. 3 (i) to FIG. 3 (l) of the manufacturing method according to the first embodiment.
  • Each process of FIGS. 9 (i) to 9 (l) is the same as each process of FIGS. 3 (i) to 3 (l).
  • the same steps as those in FIGS. 4A to 4J in the manufacturing method according to Embodiment 1 of the present invention are performed.
  • the first amorphous semiconductor layer forming step, the annealing step, the second amorphous semiconductor layer forming step, and the channel layer island forming step are performed in this order.
  • the method for manufacturing the thin film semiconductor device for display according to the second embodiment of the present invention is similar to the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention.
  • the oxygen concentration existing in the vicinity of the interface between the undercoat layer 2 and the gate electrode 3 can be reduced, and generation of molybdenum oxide can be suppressed. Accordingly, it is possible to greatly reduce the gasification of molybdenum oxide by sublimation at the annealing temperature in the above temperature range, so that it is possible to suppress the occurrence of a circular film peeling on the gate electrode 3.
  • the reduction reaction treatment process is provided between the gate insulating film formation process and the first amorphous semiconductor layer formation process.
  • the gate electrode 3 is already covered with the gate insulating film 4 during the reduction reaction process. Thereby, after this stage, it can suppress that oxygen mixes in the interface vicinity of the gate electrode 3 and the undercoat layer 2 again. Therefore, the state in which the reduction reaction process is performed on the vicinity of the interface between the gate electrode 3 and the undercoat layer 2, that is, the state where the oxygen layer near the interface between the gate electrode 3 and the undercoat layer 2 is small.
  • the amorphous semiconductor layer 5a can be annealed at a temperature in the temperature range of 700 ° C. to 900 ° C.
  • the reduction reaction process is performed on the vicinity of the interface between the gate electrode and the undercoat layer via one layer of the gate insulating film. Therefore, the effect of the reduction reaction process is reduced compared to the case where the reduction reaction process is performed only through the gate electrode as in the first embodiment because the reduction reaction process is performed through the film for one layer. become.
  • the oxygen layer existing in the vicinity of the interface between the undercoat layer and the gate electrode can be sufficiently reduced. Film peeling can be sufficiently suppressed.
  • FIG. 10 is a flowchart of the method for manufacturing the thin film semiconductor device for display according to the third embodiment of the present invention.
  • the manufacturing method of the display thin film semiconductor device includes at least a glass substrate preparation step (S31), an undercoat layer formation step (S32), and a molybdenum metal layer.
  • the difference between the method for manufacturing the thin film semiconductor device for display according to the present embodiment and the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention is also the timing for performing the reduction reaction process. That is, in the method for manufacturing a thin film semiconductor device for display according to the first embodiment of the present invention, the reduction reaction processing step (S15) is between the gate electrode formation step (S14) and the gate insulating film formation (S16). On the other hand, in the method for manufacturing a thin film semiconductor device for display according to the present embodiment, the reduction reaction processing step (S37) is between the amorphous semiconductor forming step (S36) and the annealing step (S38).
  • the manufacturing method of the thin film semiconductor device for display according to the third embodiment of the present invention includes processes other than those described above.
  • FIG. 11 is a cross-sectional view schematically showing a configuration of characteristic steps among all the steps in the method for manufacturing a thin film semiconductor device for display according to Embodiment 3 of the present invention.
  • FIG. 11 the same components as those in the manufacturing method of the first embodiment shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted. Further, the following description will focus on differences from the manufacturing method according to Embodiment 1 of the present invention shown in FIGS.
  • each step of FIGS. 11A to 11F is sequentially performed. That is, a glass substrate preparation step, an undercoat layer formation step, a molybdenum metal layer formation step, and a gate electrode formation step are sequentially performed.
  • a glass substrate preparation step an undercoat layer formation step, a molybdenum metal layer formation step, and a gate electrode formation step are sequentially performed.
  • Each process of FIGS. 11A to 11F is the same as each process of FIGS. 3A to 3F.
  • the gate insulating film 4 made of silicon dioxide is formed to about 100 nm on the gate electrode 3 and the undercoat layer 2 by plasma CVD so as to cover the gate electrode 3.
  • the film is formed with a film thickness. This step corresponds to the step shown in FIG.
  • a first amorphous semiconductor layer 5a which is an amorphous silicon layer, is formed on the gate insulating film 4 to a thickness of about 50 nm by plasma CVD. This step corresponds to the step shown in FIG. 3I of the first embodiment.
  • a predetermined reduction reaction treatment is performed toward the interface between the undercoat layer 2 and the gate electrode 3.
  • a hydrogen reduction reaction process using a hydrogen plasma process was performed.
  • the oxygen concentration existing in the vicinity of the interface between the undercoat layer 2 and the gate electrode 3 can be reduced.
  • the gate insulating film 4 and the amorphous semiconductor layer 5a are formed on the gate electrode 3.
  • hydrogen ions penetrate to a depth on the order of several ⁇ m, the inside and the periphery of the gate electrode 3 are formed. It is possible to reduce the oxygen concentration.
  • each step of FIG. 11 (j) to FIG. 11 (l) is performed in the same manner as each step of FIG. 3 (j) to FIG. 3 (l) of the manufacturing method according to the first embodiment.
  • Each step in FIGS. 11 (j) to 11 (l) is the same as each step in FIGS. 3 (j) to 3 (l).
  • the same steps as those in FIGS. 4A to 4J in the manufacturing method according to Embodiment 1 of the present invention are performed.
  • an annealing step, a second amorphous semiconductor layer formation step, a channel layer island formation step, a contact layer film formation step, a source drain is performed in this order.
  • the method for manufacturing the thin film semiconductor device for display according to the third embodiment of the present invention is applied to the amorphous semiconductor layer 5a in the same manner as the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention.
  • a step of performing a predetermined reduction reaction treatment is provided before the step of performing the annealing treatment at a temperature in the temperature range of 700 ° C. to 900 ° C.
  • the oxygen concentration existing in the vicinity of the interface between the undercoat layer 2 and the gate electrode 3 can be reduced, and generation of molybdenum oxide can be suppressed. Accordingly, it is possible to greatly reduce the gasification of molybdenum oxide by sublimation at the annealing temperature in the above temperature range, so that it is possible to suppress the occurrence of a circular film peeling on the gate electrode 3.
  • the reduction reaction treatment process is provided between the first amorphous semiconductor layer forming process and the annealing process.
  • the reduction reaction process is performed at this stage, the gate electrode 3 is already covered with the gate insulating film 4 and the amorphous semiconductor layer 5a during the reduction reaction process. Thereby, after this stage, it can suppress that oxygen mixes in the interface of the gate electrode 3 and the undercoat layer 2 again. Therefore, the state in which the reduction reaction process is performed on the vicinity of the interface between the gate electrode 3 and the undercoat layer 2, that is, the state where the oxygen layer near the interface between the gate electrode 3 and the undercoat layer 2 is small.
  • the amorphous semiconductor layer can be annealed at a temperature in the temperature range of 700 ° C. to 900 ° C.
  • the reduction reaction process can be performed immediately before the annealing step, the oxygen concentration in the vicinity of the gate electrode interface can be effectively reduced.
  • the reduction reaction process is performed on the interface between the gate electrode and the undercoat layer via the gate insulating film and the amorphous semiconductor layer. Therefore, compared with the case where the reduction reaction process is performed through only one layer of the gate insulating film as in the second embodiment, the effect of the reduction reaction process is as much as the reduction reaction process is performed through the two layers of film. Will be reduced. However, in practice, even in the reduction reaction process at this stage, the oxygen layer existing in the vicinity of the interface between the undercoat layer and the gate electrode can be sufficiently reduced. Film peeling can be sufficiently suppressed.
  • FIG. 12 is a flowchart of the method for manufacturing the thin film semiconductor device for display according to the second embodiment of the present invention.
  • the method for manufacturing the thin film semiconductor device for display according to the third embodiment of the present invention includes at least a glass substrate preparation step (S41), an undercoat layer forming step (S42), and a molybdenum metal layer. Formation step (S43), reduction reaction treatment step (S44), gate electrode formation step (S45), gate insulating film formation step (S46), amorphous semiconductor layer formation step (S47), and annealing step (S48) ) And a source / drain electrode formation step (S49) in this order.
  • the difference between the method for manufacturing the thin film semiconductor device for display according to the present embodiment and the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention is also the timing for performing the reduction reaction process. That is, in the method for manufacturing a thin film semiconductor device for display according to the first embodiment of the present invention, the reduction reaction processing step (S15) is between the gate electrode formation step (S14) and the gate insulating film formation (S16). On the other hand, in the manufacturing method of the thin film semiconductor device for display according to the present embodiment, the reduction reaction process step (S44) is between the molybdenum metal layer formation step (S33) and the gate electrode formation step (S35).
  • the manufacturing method of the display thin film semiconductor device according to the fourth embodiment of the present invention includes processes other than those described above.
  • FIG. 13 is a cross-sectional view schematically showing a configuration of characteristic steps among all the steps in the method for manufacturing a thin film semiconductor device for display according to Embodiment 4 of the present invention.
  • the same components as those in the manufacturing method of the first embodiment shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted. Further, the following description will focus on differences from the manufacturing method according to Embodiment 1 of the present invention shown in FIGS.
  • FIGS. 13A to 13C are sequentially performed. That is, a glass substrate preparation step, an undercoat layer formation step, and a molybdenum metal layer formation step are sequentially performed. 13A to 13C are the same as the steps in FIGS. 3A to 3C.
  • a predetermined reduction reaction treatment is performed toward the interface between the undercoat layer 2 and the molybdenum metal layer 3M.
  • a hydrogen reduction reaction process using a hydrogen plasma process was performed. Thereby, the oxygen concentration existing in the vicinity of the interface between the undercoat layer 2 and the molybdenum metal layer 3M can be reduced.
  • the molybdenum metal layer 3M is formed on the entire surface of the undercoat layer 2, but hydrogen radicals penetrate to a depth of about 100 nm, and hydrogen ions have a depth of the order of several ⁇ m. Since it penetrates, the oxygen concentration in the molybdenum metal layer 3M and in the vicinity of the interface with the undercoat layer 2 can be reduced.
  • a gate electrode forming step is performed as in FIGS. 3 (d) to 3 (f). That is, a resist R1 is selectively formed on the molybdenum metal layer 3M (FIG. 13E), wet etching is performed to pattern the molybdenum metal layer 3M (FIG. 13F), and the gate electrode 3 having a predetermined shape is formed. Is formed (FIG. 13G).
  • FIG. 13 (h) to FIG. 13 (l) are performed in the same manner as the respective steps of FIG. 3 (h) to FIG. 3 (l) of the manufacturing method according to the first embodiment.
  • Each process in FIGS. 13 (h) to 13 (l) is the same as each process in FIGS. 3 (h) to 3 (l).
  • the same steps as those in FIGS. 4A to 4J in the manufacturing method according to Embodiment 1 of the present invention are performed.
  • a gate insulating film formation step a first amorphous semiconductor layer formation step, an annealing step, a second amorphous semiconductor layer formation step, a channel layer island formation step, and a contact layer film formation
  • the process, the source / drain electrode formation process, and the contact layer formation process / channel etching process are performed in this order.
  • the method for manufacturing the thin film semiconductor device for display according to the fourth embodiment of the present invention is similar to the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention.
  • the oxygen concentration existing in the vicinity of the interface between the undercoat layer 2 and the molybdenum metal layer 3M can be reduced, so that the oxygen concentration in the vicinity of the interface between the undercoat layer 2 and the gate electrode 3 formed thereafter is reduced. be able to. Therefore, generation of molybdenum oxide can be suppressed. Accordingly, it is possible to greatly reduce the gasification of molybdenum oxide by sublimation at the annealing temperature in the above temperature range, so that it is possible to suppress the occurrence of a circular film peeling on the gate electrode 3.
  • a process including moisture is performed in the subsequent process. For example, water washing is performed in the development and peeling of the resist or the etching of the metal layer or the metal film.
  • oxygen may be mixed again in the interface between the undercoat layer 2 and the gate electrode 3 in the subsequent process.
  • FIG. 14 is a flowchart of the method for manufacturing the thin film semiconductor device for display according to the fifth embodiment of the present invention.
  • the manufacturing method of the thin film semiconductor device for display according to the fifth embodiment of the present invention includes at least a glass substrate preparation step (S51), an undercoat layer forming step (S52), and a reduction reaction process.
  • a source / drain electrode formation step (S59) in this order.
  • the difference between the method for manufacturing the thin film semiconductor device for display according to the present embodiment and the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention is also the timing for performing the reduction reaction process. That is, in the method for manufacturing a thin film semiconductor device for display according to the first embodiment of the present invention, the reduction reaction processing step (S15) is between the gate electrode formation step (S14) and the gate insulating film formation (S16). On the other hand, in the method for manufacturing a thin film semiconductor device for display according to the present embodiment, the reduction reaction processing step (S53) is between the undercoat layer forming step (S52) and the molybdenum metal layer forming step (S54).
  • the contents of each step in the manufacturing method according to the present embodiment are the same as those in the manufacturing method of the thin film semiconductor device for display according to the first embodiment of the present invention, and thus the description thereof is omitted.
  • the method for manufacturing a thin film semiconductor device for display according to the fifth embodiment of the present invention includes steps other than those described above.
  • FIG. 15 is a cross-sectional view schematically showing a configuration of characteristic steps among all the steps in the method for manufacturing a thin film semiconductor device for display according to Embodiment 5 of the present invention.
  • the same components as those in the manufacturing method of the first embodiment shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted. Further, the following description will focus on differences from the manufacturing method according to Embodiment 1 of the present invention described with reference to FIGS.
  • FIGS. 15A and 15B are sequentially performed. That is, the glass substrate preparation step and the undercoat layer forming step are sequentially performed. Note that the steps in FIGS. 15A and 15B are the same as the steps in FIGS. 3A and 3B.
  • a predetermined reduction reaction process is performed toward at least the gate electrode formation region of the undercoat layer 2.
  • a hydrogen reduction reaction process using a hydrogen plasma process was performed. Thereby, the oxygen concentration which exists in the surface vicinity in the area
  • a molybdenum metal layer forming step is performed as in FIG. That is, a molybdenum metal layer 3M containing molybdenum is formed on the undercoat layer 2 with a thickness of about 50 nm. Also in this embodiment, molybdenum tungsten (MoW) is used as the molybdenum metal layer 3M.
  • MoW molybdenum tungsten
  • the molybdenum metal layer 3M was formed by sputtering.
  • a gate electrode forming step is performed in the same manner as in FIGS. 3 (d) to 3 (f). That is, a resist R1 is selectively formed on the molybdenum metal layer 3M (FIG. 15E), wet etching is performed to pattern the molybdenum metal layer 3M (FIG. 15F), and the gate electrode 3 having a predetermined shape is formed. Is formed (FIG. 15G).
  • FIG. 15H to 15L is the same as each process in FIGS. 3H to 3L.
  • FIGS. 4A to 4J in the manufacturing method according to Embodiment 1 of the present invention are performed.
  • a gate insulating film formation step a first amorphous semiconductor layer formation step, an annealing step, a second amorphous semiconductor layer formation step, a channel layer island formation step, and a contact layer film formation
  • the process, the source / drain electrode formation process, and the contact layer formation process / channel etching process are performed in this order.
  • the method for manufacturing the thin film semiconductor device for display according to the fifth embodiment of the present invention is similar to the method for manufacturing the thin film semiconductor device for display according to the first embodiment of the present invention.
  • the oxygen present in the vicinity of the surface of the gate electrode formation region of the undercoat layer 2 is obtained by performing the reduction reaction treatment on the undercoat layer.
  • the concentration can be reduced.
  • the oxygen concentration in the vicinity of the interface between the undercoat layer 2 and the gate electrode 3 formed thereafter can be reduced, and generation of molybdenum oxide can be suppressed. Accordingly, it is possible to greatly reduce the gasification of molybdenum oxide by sublimation at the annealing temperature in the above temperature range, so that it is possible to suppress the occurrence of a circular film peeling on the gate electrode 3.
  • a process including moisture may be performed in a process after the reduction reaction process.
  • the undercoat layer 2 and the gate electrode 3 There is a possibility that oxygen will again enter the interface.
  • FIG. 16 is a partially cutaway perspective view of an organic EL display according to Embodiment 6 of the present invention.
  • the thin film semiconductor device for display according to each embodiment described above can be used as a switching element of an active matrix substrate of an organic EL display.
  • the organic EL display 20 includes an active matrix substrate 21, a plurality of pixels 22 arranged in a matrix on the active matrix substrate 21, and an array on the active matrix substrate 21 connected to the pixels 22.
  • a plurality of source lines 27 and gate lines 28 are connected.
  • the organic EL layer 25 is configured by laminating layers such as an electron transport layer, a light emitting layer, and a hole transport layer.
  • each pixel circuit 23 is provided with the thin film semiconductor device for display according to any of the above-described embodiments as a switching element of the pixel 22.
  • FIG. 16 is a circuit configuration diagram of a pixel using the thin film semiconductor device for display according to each of the first to fifth embodiments of the present invention.
  • the pixel 22 includes a driving thin film semiconductor device 31, a selection thin film semiconductor device 32, an organic EL element 33, and a capacitor 34.
  • the driving thin film semiconductor device 31 is a driving transistor for driving the organic EL element 33
  • the selection thin film semiconductor device 32 is a selection transistor.
  • the source electrode 32S of the thin film semiconductor device 32 for selection is connected to the source line 27, the gate electrode 32G is connected to the gate line 28, and the drain electrode 32D is the gate electrode of the capacitor 34 and the thin film semiconductor device 31 for driving. It is connected to 31G.
  • the drain electrode 31D of the driving thin film semiconductor device 31 is connected to the power supply line 35, and the source electrode 31S is connected to the anode of the organic EL element 33.
  • the signal voltage supplied via the source line 27 is written to the capacitor 34.
  • the holding voltage written to the capacitor 34 is held throughout one frame period. Due to this holding voltage, the conductance of the driving thin film semiconductor device 31 changes in an analog manner, and a driving current corresponding to the light emission gradation flows from the anode to the cathode of the organic EL element 33. Thereby, the organic EL element 33 emits light and is displayed as an image.
  • the thin film semiconductor device for display according to the first to fifth embodiments of the present invention can be applied to both the thin film semiconductor device 31 for driving and the thin film semiconductor device 32 for selection.
  • the display according to the embodiment of the present invention has been described above, but the present invention is not limited to this.
  • an organic EL display using an organic EL element has been described.
  • the present invention can also be applied to a display including another display element using an active matrix substrate such as a liquid crystal display element.
  • the display according to the sixth embodiment of the present invention described above can be used as a flat panel display and can be applied to all display devices such as a television set, a personal computer, and a mobile phone.
  • the manufacturing method of the thin film semiconductor device for display according to the present invention has been described above based on the embodiment. However, the manufacturing method of the thin film semiconductor device for display according to the present invention is limited to the above embodiment. is not.
  • the hydrogen plasma treatment is used as the reduction reaction treatment for suppressing the oxidation of molybdenum in the gate electrode.
  • the present invention is not limited to this.
  • a hydrogen atmosphere annealing process or a water vapor ashing process may be used.
  • Hydrogen atmosphere annealing can be used as a reduction reaction treatment in the present invention.
  • the steam ashing can generate hydrogen ions and hydrogen radicals, and can be used as a reduction reaction treatment in the present invention.
  • the reduction reaction process is performed only once in each embodiment.
  • a plurality of reduction reaction processes may be performed by combining the embodiments.
  • laser annealing is used.
  • a pulse laser is more preferable than a CW laser (Continuous Wave Laser). This is because the pulse laser has a shorter heat input time than the CW laser, and the use of the pulse laser can more reliably reduce film peeling on the gate electrode.
  • the gate insulating film may have a laminated structure of silicon nitride (lower layer) and silicon dioxide (upper layer).
  • a polycrystalline semiconductor layer is used as the channel layer.
  • a single layer is preferable. This is because even if a laminated structure of silicon nitride and silicon dioxide is used, film peeling on the gate electrode can be prevented, but if the laminated structure is used, the threshold voltage shifts to the negative side. .
  • the thin film semiconductor device for display according to the present invention can be widely used in various electric devices as a display device such as a television set, a personal computer, a mobile phone, or other switching elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Liquid Crystal (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 ガラス基板(1)を準備する第1工程と、ガラス基板(1)上にアンダーコート層(2)を形成する第2工程と、アンダーコート層(2)上にモリブデン金属層(3M)を形成する第3工程と、モリブデン金属層(3M)からゲート電極(3)を形成する第4工程と、ゲート電極(3)上にゲート絶縁膜(4)を形成する第5工程と、ゲート絶縁膜(4)上に非結晶半導体層(5a)を形成する第6工程と、700℃から900℃の温度範囲でアニール処理を行って非結晶半導体層(5a)を結晶化して多結晶半導体層(5p)を形成する第7工程と、多結晶半導体層(5p)の上方にソース電極(8a)及びドレイン電極(8b)を形成する第8工程とを含む表示用薄膜半導体装置の製造方法である。さらに、第2工程より後から第7工程より前において少なくとも1回、アンダーコート層(2)とゲート電極(3)との界面に向けて還元反応処理を行う工程を含む。

Description

表示用薄膜半導体装置の製造方法
 本発明は、アクティブマトリクス方式の液晶ディスプレイ又は有機ELディスプレイを駆動するための薄膜半導体装置の製造方法に関し、特に、チャネル層を多結晶半導体層からなる第1チャネル層と非結晶半導体層からなる第2チャネル層との複数構造にした表示用薄膜半導体装置の製造方法に関する。
 従来から、液晶ディスプレイ又は有機ELディスプレイ等のアクティブマトリクス駆動型のフラットパネルディスプレイ(FPD)では、画素を駆動するために薄膜トランジスタ(TFT)と呼ばれる表示用薄膜半導体装置が用いられている。
 中でも有機ELディスプレイは、電圧駆動型の液晶ディスプレイと異なり電流駆動型のデバイスであり、アクティブマトリクス方式の表示装置の駆動回路として優れたオンオフ特性を有する薄膜半導体装置の開発が急がれている。
 従来、液晶ディスプレイの駆動回路の薄膜半導体装置としては、チャネル層としてアモルファスシリコン等の非結晶半導体層(非晶質半導体層)を単層として用いた薄膜半導体装置が存在する。この種の薄膜半導体装置は、バンドギャップが大きいためオフ電流は低いものの、移動度が低いためにオン電流も低いという問題がある。
 また、液晶ディスプレイの駆動回路の薄膜半導体装置として、チャネル層として多結晶半導体層を単層として用いた薄膜半導体装置も存在する。この種の薄膜半導体装置は、チャネル層に非結晶半導体層を単層として用いた薄膜半導体装置とは逆に、キャリアの移動度が高いためにオン電流は大きい。しかし、キャリアの移動度が高いため、オフ電流も高くなるという問題がある。
 これらの問題に対しては、有機ELディスプレイの駆動回路において、チャネル層として、多結晶半導体層からなる第1チャネル層と非結晶半導体層からなる第2チャネル層との2層構造のものを用いた薄膜半導体装置が提案されている。
 このような多結晶半導体層を形成する方法が特許文献1に開示されている。特許文献1に開示された多結晶半導体層の形成方法は、アモルファスシリコン膜が形成された基板に対して、800℃以上1000℃以下の温度でアニール処理を施すことにより、アモルファスシリコン膜を結晶化させるというものである。
国際公開第1999/041777号
 このように、従来の薄膜半導体装置の製造方法については、非結晶半導体層を単層でチャネル層として用いた薄膜半導体装置の製造方法については、特に高温処理がなく、プロセス温度は最大でも350℃程度にとどまる。
 これに対し、多結晶半導体層をチャネル層に含む薄膜半導体装置の製造方法においては、上述のように、アモルファスシリコン膜をアニール処理して結晶化する工程が必要となり、当該アニール処理には700℃以上という高温処理が要求される。
 そして、チャネル層として多結晶半導体層を含む薄膜半導体装置において、ゲート電極の材料としてモリブデンを用いた場合、多結晶半導体層を形成するために、アモルファスシリコンの非結晶半導体層に対して700℃から900℃の温度範囲でアニール処理を行って当該非結晶半導体層を結晶化すると、ゲート電極上に、図18Aに示すような様々な大きさの円形状の膜剥がれが多数発生することが分かった。図18Aは、薄膜半導体装置の上面視において、ゲート電極における膜剥がれの様子を光学顕微鏡で撮影した顕微鏡写真である。
 図18Aに示すように、ゲート電極300において複数の円形状の膜剥がれ301が発生していることを確認することができる。また、図18Bは、このときの薄膜半導体装置を断面視したときに、ゲート電極周辺における膜剥がれの様子を撮影した断面SEM写真である。図18Bに示すように、シリコン窒化膜のアンダーコート層200上のモリブデンタングステンからなるゲート電極300に空隙302が生じていることを確認することができる。これにより、ゲート電極300上のゲート絶縁膜400及び多結晶半導体層500に膜剥がれが発生する。このように、ボトムゲート型の薄膜半導体装置では、ゲート電極形成後に高温のアニール処理が存在すると、ゲート電極上において円形状の膜剥がれ生じる場合がある。
 そして、膜剥がれが生じた薄膜半導体装置を薄膜トランジスタとして用いると、ゲート電極に所定の電圧を印加しても、膜剥がれが生じた箇所はゲート電極として機能しないので、所望の特性が出ず、薄膜トランジスタとしての機能が大幅に劣化するという問題がある。
 本発明は、上記問題を解決するためになされたものであり、ゲート電極としてモリブデンを用いた場合であっても、ゲート電極上の膜剥がれの発生を抑制することができる表示用薄膜半導体装置の製造方法を提供することを目的とする。
 上記問題を解決するために、本発明に係る表示用薄膜半導体装置の製造方法の一態様は、ガラス基板を準備する第1工程と、前記ガラス基板上に前記ガラス基板に含有される不純物の拡散を防止するためのアンダーコート層を形成する第2工程と、前記アンダーコート層上に前記アンダーコート層より酸素原子との結合力が強いモリブデンからなる金属層を形成する第3工程と、所定のエッチング処理により前記金属層からゲート電極を形成する第4工程と、前記ゲート電極上にゲート絶縁膜を形成する第5工程と、前記ゲート絶縁膜上に非結晶半導体層を形成する第6工程と、前記非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理を行い、前記非結晶半導体層を結晶化して多結晶半導体層を形成する第7工程と、前記多結晶半導体層の上方にソース電極及びドレイン電極を形成する第8工程と、を含み、前記第2工程より後から第7工程より前の段階において少なくとも1回、前記アンダーコート層の少なくともゲート電極形成領域に向けて、所定の還元反応処理を行う工程を含むものである。
 本発明に係る表示用薄膜半導体装置の製造方法によれば、ゲート電極を構成するモリブデンの酸化を抑制することができるので、ゲート電極上における膜剥がれの発生を抑制することができる。
図1は、本発明の各実施の形態に係る表示用薄膜半導体装置の構成を模式的に示した断面図である。 図2は、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法のフローチャートである。 図3は、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法における各工程の構成を模式的に示した断面図である。 図4は、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法における各工程の構成を模式的に示した断面図である。 図5は、表示用薄膜半導体装置に膜剥がれが発生する原因を説明する模式図である。 図6は、本実施形態に係る製造方法と従来例に係る製造方法とによって製造した薄膜半導体装置に含まれる酸素濃度を示す図である。 図7は、水素プラズマ処理条件とゲート電極上の膜剥がれ発生個数との関係を示す図である。 図8は、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法のフローチャートである。 図9は、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法における全ての工程のうち特徴的な工程の構成を模式的に示した断面図である。 図10は、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法のフローチャートである。 図11は、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法における全ての工程のうち特徴的な工程の構成を模式的に示した断面図である。 図12は、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法のフローチャートである。 図13は、本発明の実施の形態4に係る表示用薄膜半導体装置の製造方法における全ての工程のうち特徴的な工程の構成を模式的に示した断面図である。 図14は、本発明の実施の形態5に係る表示用薄膜半導体装置の製造方法のフローチャートである。 図15は、本発明の実施の形態5に係る表示用薄膜半導体装置の製造方法における全ての工程のうち特徴的な工程の構成を模式的に示した断面図である。 図16は、本発明の実施の形態6に係る有機ELディスプレイの一部切り欠き斜視図である。 図17は、本発明の各実施の形態に係る表示用薄膜半導体装置を用いた画素の回路構成図である。 図18Aは、薄膜半導体装置の上面視において、ゲート電極における膜剥がれの様子を光学顕微鏡で撮影した顕微鏡写真である。 図18Bは、薄膜半導体装置の断面視において、ゲート電極周辺における膜剥がれの様子を撮影した断面SEM写真である。
 本発明に係る表示用薄膜半導体装置の製造方法の一態様は、ガラス基板を準備する第1工程と、前記ガラス基板上に前記ガラス基板に含有される不純物の拡散を防止するためのアンダーコート層を形成する第2工程と、前記アンダーコート層上に前記アンダーコート層より酸素原子との結合力が強いモリブデンからなる金属層を形成する第3工程と、所定のエッチング処理により前記金属層からゲート電極を形成する第4工程と、前記ゲート電極上にゲート絶縁膜を形成する第5工程と、前記ゲート絶縁膜上に非結晶半導体層を形成する第6工程と、前記非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理を行い、前記非結晶半導体層を結晶化して多結晶半導体層を形成する第7工程と、前記多結晶半導体層の上方にソース電極及びドレイン電極を形成する第8工程と、を含み、前記第2工程より後から第7工程より前の段階において少なくとも1回、前記アンダーコート層の少なくともゲート電極形成領域に向けて、所定の還元反応処理を行う工程を含むものである。
 これにより、アンダーコート層とゲート電極との界面近傍、アンダーコート層と金属層との界面近傍、又は、アンダーコート層の表面近傍に存在する酸素を減少させることができる。よって、ゲート電極の材料としてモリブデンを用いた場合であっても、酸化モリブデンの発生を抑制することができる。従って、700℃から900℃の温度範囲における高温アニール処理を行っても、ゲート電極上の膜剥がれの発生を抑制することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理を前記第4工程から前記第7工程までの間に行う場合は、前記アンダーコート層と前記ゲート電極との界面に向けて当該所定の還元反応処理を行うことが好ましい。
 これにより、アンダーコート層とゲート電極との界面に対して還元反応処理を行うことができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、前記アンダーコート層と前記ゲート電極との界面近傍での酸素濃度を低減する処理であることが好ましい。
 これにより、アンダーコート層とゲート電極との界面近傍における酸素濃度を低減することができるので、酸化モリブデンの発生を抑制することができる。従って、高温アニール処理を行っても、ゲート電極上の膜剥がれの発生を抑制することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理を前記第3工程と前記第4工程の間に行う場合は、前記アンダーコート層と前記金属層との界面に向けて当該所定の還元反応処理を行うことが好ましい。
 これにより、アンダーコート層と金属層との界面に対して還元反応処理を行うことができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、前記アンダーコート層と前記金属層との界面近傍での酸素濃度を低減する処理であることが好ましい。
 これにより、アンダーコート層と金属層との界面近傍における酸素濃度を低減することができるので、酸化モリブデンの発生を抑制することができる。従って、高温アニール処理を行っても、ゲート電極上の膜剥がれの発生を抑制することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理を前記第2工程と前記第3工程の間に行う場合は、前記アンダーコート層のゲート電極形成領域に向けて当該所定の還元反応処理を行うことが好ましい。
 これにより、アンダーコート層のゲート電極形成領域に対して還元反応処理を行うことができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、前記アンダーコート層のゲート電極形成領域の表面近傍での酸素濃度を低減する処理であることが好ましい。
 これにより、アンダーコート層表面近傍における酸素濃度を低減することができるので、酸化モリブデンの発生を抑制することができる。従って、高温アニール処理を行っても、ゲート電極上の膜剥がれの発生を抑制することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記アンダーコート層は、窒化膜からなる層であることが好ましい。
 これにより、ガラス基板に含まれる不純物の拡散を効果的に防止することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記ガラス基板に含有される不純物は、ナトリウム又はリンであることが好ましい。
 これにより、アンダーコート層によって、ガラス基板に含有されるナトリウム又はリンの不純物が半導体層に侵入することを防止することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記ガラス基板は、酸素原子を主成分として含み、前記アンダーコート層は、前記ガラス基板より酸素原子との結合力が弱く、前記モリブデンは、前記ガラス基板より酸素原子との結合力が弱く前記アンダーコート層より酸素原子との結合力が強いことが好ましい。
 これにより、モリブデンがアンダーコート層に対して酸化しやすくなるが、還元反応処理によってモリブデンの酸化を抑制することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記第7工程と前記第8工程との間に、前記多結晶半導体層上に第2の非結晶半導体層を形成する工程を設け、前記第8工程において、前記第2の非結晶半導体層上に前記ソース電極及び前記ドレイン電極を形成することが好ましい。
 これにより、多結晶半導体層とソース電極及びドレイン電極との間に、非結晶半導体層を形成することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記多結晶半導体層は、平均粒径が20nmから60nmの微結晶半導体層を含むことが好ましい。
 これにより、多結晶半導体層が、平均粒径が20nmから60nmの微結晶半導体層であるので、非晶質半導体に比べてキャリア移動度が高く、オン特性に優れた薄膜半導体装置を実現することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、前記第4工程と前記第5工程との間においてなされることが好ましい。
 これにより、エッチング処理によるゲート電極を形成した後はゲート電極界面における酸素濃度が高くなっており、また、ゲート電極形成工程の後からゲート絶縁膜形成工程の前までにおいては洗浄工程がなく酸素が含有する処理がない。従って、この段階で還元反応処理を行うことにより、酸素濃度の少ない状態の中でゲート絶縁膜によってゲート電極が被覆されるので、アンダーコート層とゲート電極との界面の酸素層が最も少ない状態で、700℃から900℃の温度範囲の高温アニール処理を行うことができる。本態様は、最も効果的にゲート電極界面における酸素濃度を低減することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、前記第5工程と前記第6工程との間においてなされることが好ましい。
 これにより、還元反応処理時においてゲート電極はゲート絶縁膜によって既に被覆されているので、この段階以降において、ゲート電極とアンダーコート層との界面に再度酸素が混入することを抑制することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、前記第6工程と前記第7工程との間においてなされることが好ましい。
 これにより、還元反応処理時においてゲート電極はゲート絶縁膜及び非結晶半導体層によって既に被覆されているので、この段階以降において、ゲート電極とアンダーコート層との界面に再度酸素が混入することを抑制することができる。しかも、アニール工程直前に還元反応処理を行うことができるので、効果的にゲート電極界面における酸素濃度を低減することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、前記第3工程と前記第4工程との間においてなされることが好ましい。
 このように、ゲート電極を形成する前の金属層の状態であっても、ゲート金属層とアンダーコート層との界面における酸素濃度を低減することができるので、アンダーコート層とその後形成するゲート電極との界面における酸素濃度を低減することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、前記第2工程と前記第3工程との間においてなされることが好ましい。
 このように、ゲート電極の金属層を形成する前であっても、アンダーコート層に対して還元反応処理を行っておくことにより、アンダーコート層とその後形成するゲート電極との界面における酸素濃度を低減することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、水素プラズマ処理であることが好ましい。
 これにより、水素イオンと水素ラジカルを発生することができるので、水素イオンと水素ラジカルによって酸素を除去することができるので、アンダーコート層とゲート電極との界面に存在する酸素を減少させることができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記アンダーコート層上に前記ゲート電極が形成された前記ガラス基板を、前記水素プラズマ処理を行うためのチャンバ内に配置し、前記水素プラズマ処理を行う際の高周波パワーは75Wから200Wの範囲内であって、当該高周波パワーによる処理時間は15秒から60秒の範囲内とすることが好ましい。
 これにより、ゲート電極上において膜剥がれが発生することをほぼ解消することができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、水素雰囲気アニール処理であることが好ましい。
 これにより、還元反応を起こすことができるので、アンダーコート層とゲート電極との界面に存在する酸素を減少させることができる。
 さらに、本発明に係る表示用薄膜半導体装置の製造方法の一態様において、前記所定の還元反応処理は、水蒸気アッシング処理であることが好ましい。
 これにより、水素イオンと水素ラジカルを発生させることができるので、アンダーコート層とゲート電極との界面に存在する酸素を減少させることができる。
 以下、本発明に係る表示用薄膜半導体装置の製造方法について、実施の形態に基づいて説明する。
 (表示用薄膜半導体装置の構成)
 まず、本発明の各実施の形態に係る表示用薄膜半導体装置について、図1を用いて説明する。図1は、本発明の各実施の形態に係る表示用薄膜半導体装置の構成を模式的に示した断面図である。
 図1に示すように、本発明の各実施の形態に係る表示用薄膜半導体装置10は、ボトムゲート型の薄膜トランジスタ装置であって、ガラス基板1、ガラス基板1上に順次形成されたアンダーコート層2、ゲート電極3、ゲート絶縁膜4、多結晶半導体層5、非結晶半導体層6、一対のコンタクト層7a及び7b、並びに、一対のソース電極8a及びドレイン電極8bを備える。
 ガラス基板1は、例えば、石英ガラス等のガラス材料によって構成されている。
 アンダーコート層2は、ガラス基板1の中に含まれるナトリウムやリン等の不純物が半導体層に侵入することを防止するために、ガラス基板1の表面に形成されるものである。ガラス基板1内の上記不純物は、ガラス基板1そのものを形成する過程で含有されてしまう。
 アンダーコート層2の材料としては、例えば、シリコン窒化膜(SiN)等の窒化膜を用いることができる。なお、アンダーコート層2の材料として、二酸化シリコン等その他の絶縁膜を用いることも可能ではあるが、ガラス基板1内の上記不純物が半導体層に侵入することを防止するためには、シリコン窒化膜等の窒化膜を用いる方が好ましい。また、シリコン窒化膜の膜厚を100nm程度とすることにより、ガラス基板1の不純物がガラス基板1外に拡散することを十分に防止することができる。
 ゲート電極3は、モリブデン(Mo)からなる金属、例えば、モリブデンタングステン(MoW)等から構成され、アンダーコート層2上に形成される。ゲート電極3の膜厚としては、50nm程度である。
 ゲート絶縁膜4は、例えば、二酸化シリコン(SiO)、窒化シリコン(SiN)及びその積層膜等から構成され、ゲート電極3を覆うようにガラス基板1上及びゲート電極3上に形成されている。本実施形態では、チャネル層として多結晶半導体層5を用いているので、ゲート絶縁膜4としては二酸化シリコンを用いることが好ましい。これは、TFTにおける良好な閾値電圧特性を維持するためにはチャネル層との界面状態を良好なものにすることが好ましく、二酸化シリコンが適しているからである。なお、ゲート絶縁膜4の膜厚としては、100~150nm程度である。
 多結晶半導体層5は、ゲート絶縁膜4上に形成された第1チャネル層であって、例えば、多結晶シリコン等から構成される。なお、多結晶半導体層5は、平均粒径が20nmから60nmの微結晶半導体層を含んでいる。本実施形態において、多結晶半導体層5は、非晶質シリコンを結晶化することにより形成した結晶化シリコン層であり、マイクロクリスタルと呼ばれる微結晶構造を有する。
 非結晶半導体層6は、多結晶半導体層5上に形成された第2チャネル層であって、例えば、非晶質シリコン層(アモルファスシリコン層)等から構成される。
 このように、本実施形態に係る表示用薄膜半導体装置10は、多結晶半導体層5からなる第1チャネル層と非結晶半導体層6からなる第2チャネル層との2層構造のチャネル層を有するものである。なお、多結晶半導体層5及び非結晶半導体層6は、平面視したときに島状に形成されている。
 一対のコンタクト層7a及び7bは、不純物を高濃度に含む非晶質半導体層から構成され、非結晶半導体層6上に離間して形成される。また、コンタクト層7aとコンタクト層7bとは離間して形成される。各コンタクト層7a及び7bは、非結晶半導体層6の両端部の上面と側面、及び多結晶半導体層5の側面を覆うように形成されており、非結晶半導体層6の上面からガラス基板1の上面に亘って形成されている。本実施形態において、各コンタクト層7a及び7bは、非晶質シリコン層に不純物としてリン(P)をドーピングしたn型半導体層であって、1×1019(atm/cm)以上の高濃度の不純物を含むn層である。
 一対のソース電極8a及びドレイン電極8bは、それぞれコンタクト層7a及び7b上に形成されており、離間して設けられている。ソース電極8a及びドレイン電極8bは、それぞれ導電性材料及び合金等の単層構造又は多層構造であり、例えば、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)、銅(Cu)、チタン(Ti)及びクロム(Cr)等の材料で構成される。本実施形態では、ソース電極8a及びドレイン電極8bは、MoW/Al/MoWの三層構造によって形成されている。
 以下、このように構成される表示用薄膜半導体装置10の製造方法について、実施の形態に基づいて説明する。
 (実施の形態1)
 まず、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法について、図2~図4を用いて説明する。なお、本実施形態における各構成要素の符号については、図1に示す表示用薄膜半導体装置10の構成要素と同じものについては、同じ符号を用いる。
 図2は、本発明の実施の形態1に係る表示用薄膜半導体装置10の製造方法のフローチャートである。
 図2に示すように、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法は、少なくとも、ガラス基板準備工程(S11)と、アンダーコート層形成工程(S12)と、モリブデン金属層形成工程(S13)と、ゲート電極形成工程(S14)と、還元反応処理工程(S15)と、ゲート絶縁膜形成工程(S16)と、非結晶半導体層形成工程(S17)と、アニール工程(S18)と、ソースドレイン電極形成工程(S19)とを、この順に含む。
 ガラス基板準備工程(S11)は、所定のガラス基板を準備する工程である。
 アンダーコート層形成工程(S12)は、ガラス基板1上にアンダーコート層2を形成する工程である。
 モリブデン金属層形成工程(S13)は、アンダーコート層2上に、ゲート電極3の材料であるモリブデンを含む材料からなるモリブデン金属層を形成する工程である。
 ゲート電極形成工程(S14)は、所定のエッチング処理によりモリブデン金属層をパターニングしてゲート電極3を形成する工程である。
 還元反応処理工程(S15)は、水素還元処理等の所定の還元反応処理を行う工程である。
 ゲート絶縁膜形成工程(S16)は、ゲート電極3上にゲート絶縁膜4を形成する工程である。
 非結晶半導体層形成工程(S17)は、ゲート絶縁膜4上にアモルファスシリコン層等の第1の非結晶半導体層を形成する工程である。
 アニール工程(S18)は、ゲート絶縁膜4上の非結晶半導体層を所定の温度範囲でアニールする工程である。このアニール工程により、非結晶半導体層が結晶化して多結晶半導体層5が形成される。
 ソースドレイン電極形成工程(S19)は、多結晶半導体層5上の上方に、ソース電極8a及びドレイン電極8bを形成する工程である。
 なお、その他、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法では、上記以外の工程も含まれる。
 以下、上記以外の工程も含めた本発明の実施の形態1に係る表示用薄膜半導体装置の具体的な製造方法について、図3及び図4を用いてさらに詳述する。図3及び図4は、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法における各工程の構成を模式的に示した断面図である。
  (ガラス基板準備工程:S11)
 まず、図3(a)に示すように、石英ガラス等のガラス材料によって構成されたガラス基板1を準備する(S11)。なお、ガラス基板1は洗浄することが好ましい。
  (アンダーコート層形成工程:S12)
 次に、図3(b)に示すように、ガラス基板1上に、シリコン窒化膜の絶縁膜からなるアンダーコート層2を形成する。シリコン窒化膜は、プラズマCVDによって形成することができる。また、アンダーコート層2の膜厚は、100nm程度とした。
  (モリブデン金属層形成工程:S13)
 次に、純水等で洗浄した後に、図3(c)に示すように、アンダーコート層2上に、モリブデンを含む材料からなるモリブデン金属層3M(ゲート金属層)を50nm程度の膜厚で成膜する(S13)。本実施形態では、モリブデン金属層3Mとして、モリブデンタングステン(MoW)を用いた。また、モリブデン金属層3Mは、スパッタによって成膜した。
  (ゲート電極形成工程:S14)
 次に、モリブデン金属層3M上にレジストを塗布し、図3(d)に示すように、ゲート電極を形成する部分に当該レジストが残るようにして露光及び現像をして、選択的にレジストR1を形成する。
 次に、図3(e)に示すように、残したレジストR1をマスクとしてウェットエッチングを施して、モリブデン金属層3Mをパターニングして所定形状のゲート電極3を形成する。その後、レジストを除去して洗浄することによって、図3(f)に示すように、アンダーコート層2上に所定形状のゲート電極3を形成することができる。
  (還元反応処理工程:S15)
 次に、図3(g)に示すように、アンダーコート層2とゲート電極3との界面に向けて、所定の還元反応処理を行う。本実施形態では、還元反応処理として、水素プラズマ処理による水素還元反応処理を行った。水素プラズマ処理は、プラズマ雰囲気中に水素イオン(H)と水素ラジカル(H)を発生させるものであり、発生させた水素イオンと水素ラジカルによって、酸化したゲート電極3の内外近傍に存在する酸素及び雰囲気中に存在する酸素を除去することができる。つまり、水素イオンと水素ラジカルがアンダーコート層2とゲート電極3との界面に入り込んでいくことにより、ゲート電極3の内部及びその周辺の酸素が水素イオンと水素ラジカルと結合し、水分となって気化して抜けていく。これにより、アンダーコート層2とゲート電極3との界面近傍に存在する酸素濃度を減少させることができる。
  (ゲート絶縁膜形成工程:S16)
 次に、図3(h)に示すように、ゲート電極3を覆うようにして、ゲート電極3上及び露出するアンダーコート層2上に、二酸化シリコンからなるゲート絶縁膜4を100nm程度の膜厚で成膜する。ゲート絶縁膜4は、プラズマCVD等によって成膜することができる。
  (第1の非結晶半導体層形成工程:S17)
 次に、図3(i)に示すように、ゲート絶縁膜4上に、アモルファスシリコン層の非結晶半導体層5aを50nm程度の膜厚で成膜する。非結晶半導体層5aは、プラズマCVD等によって成膜することができる。
  (アニール工程:S18)
 次に、500℃の脱水素アニール処理を行った後に、非結晶半導体層5aに対して、700℃から900℃の温度範囲の温度にて結晶化アニール処理を行う。これにより、図3(j)に示すように、非結晶半導体層5aを結晶化して多結晶半導体層5pを形成することができる。本実施形態では、エキシマレーザを用いたレーザアニールによって、非結晶半導体層5aを結晶化させて、マイクロクリスタルの微結晶構造を有する多結晶半導体層5pを形成した。
  (第2の非結晶半導体層形成工程)
 次に、SiH/Hの水素プラズマ処理による水素化を行ったあとに、図3(k)に示すように、アモルファスシリコン層の非結晶半導体層6aを100nm程度の膜厚で成膜する。これにより、水素化したアモルファスシリコン層を形成することができる。
  (チャネル層島化工程)
 次に、非結晶半導体層6a上にレジストを塗布し、露光及び現像をして、図3(l)に示すように、チャネル層を形成する部分に当該レジストが残るようにして、選択的にレジストR2を形成する。
 次に、残したレジストR2をマスクとしてドライエッチングを施して、非結晶半導体層6aとともに多結晶半導体層5pをパターニングすることにより、図4(a)に示すように、島状の多結晶半導体層5及び非結晶半導体層6を形成する。その後、図4(b)に示すように、レジストを除去して洗浄することにより、下層の多結晶半導体層5を第1チャネル層とし、上層の非結晶半導体層6を第2チャネル層とする2層構造を有する島状のチャネル層を形成することができる。
  (コンタクト層用膜形成工程)
 次に、図4(c)に示すように、非結晶半導体層6上及びガラス基板1上に、プラズマCVD等によって、コンタクト層となる、不純物をドープしたアモルファスシリコン層からなる非晶質半導体層7Sを成膜する。不純物としては、例えば、リン等の5価元素を用いることができる。また、不純物濃度が高濃度となるようにガス流量を調整する。
 次に、所定形状のコンタクト層を形成するために、高濃度不純物ドープの非晶質半導体層7S上にレジストを塗布し、露光及び現像をして、図4(d)に示すように、所定形状のレジストR3を選択的に形成する。その後、レジストR3をマスクとしてドライエッチングを施し、高濃度不純物ドープの非晶質半導体層7Sをパターニングする。このとき、非結晶半導体層6の上面と側面、及び多結晶半導体層5の側面を覆うようにして、高濃度不純物ドープの非晶質半導体層7Sがパターニングされて、コンタクト形成用膜である高濃度不純物ドープの非晶質半導体層7Sとなる。その後、図4(e)に示すように、レジストR3を除去して洗浄することにより、コンタクト形成用膜である高濃度不純物ドープの非晶質半導体層7Sが露出する。
  (ソースドレイン電極形成工程:S19)
 次に、図4(f)に示すように、高濃度不純物ドープの非晶質半導体層7S上及びガラス基板1上に、ソース電極8a及びドレイン電極8bを構成する材料からなるソースドレイン金属膜8Mを成膜する。本実施形態では、MoW/Al/MoWの三層構造のソースドレイン金属膜8Mをスパッタ法によって成膜した。
 次に、所定形状のソース電極8a及びドレイン電極8bを形成するために、ソースドレイン金属膜8M上にレジストを塗布し、露光及び現像をして、図4(g)に示すように、所定形状のレジストR4を選択的に形成する。
 次に、レジストR4をマスクとしてウェットエッチングを施してソースドレイン金属膜8Mをパターニングすることにより、図4(h)に示すように、所定形状のソース電極8a及びドレイン電極8bを形成することができる。なお、このとき、高濃度不純物ドープの非晶質半導体層7Sがエッチングストッパーとして機能する。
  (コンタクト層形成工程/チャネルエッチング工程)
 次に、図4(i)に示すように、レジストR4をマスクとしてドライエッチングを施し、露出した高濃度不純物ドープの非晶質半導体層7Sをエッチングするとともに、非結晶半導体層6の上層をエッチングする。このように不純物ドープの非晶質半導体層7Sを分離することにより、一対のn層である一対のコンタクト層7a及び7bを形成することができる。また、非結晶半導体層6の上層をエッチングすることにより、所望の膜厚のチャネル層を形成することができる。
 その後、レジストR4を除去して洗浄することにより、図4(j)に示すように、本発明の実施の形態1に係る表示用薄膜半導体装置を完成することができる。
 なお、図示しないが、表示用薄膜半導体装置の全体を覆うように、パッシベーション膜を形成してもよい。
  (本発明の作用効果)
 次に、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法における作用効果について、図5を参照して詳述する。図5は、表示用薄膜半導体装置に膜剥がれが発生する原因を説明する模式図である。
 上述のとおり、従来の表示用薄膜半導体装置においては、多結晶半導体層を形成するために非結晶半導体層に対して700℃から900℃の温度範囲でアニール処理を行って当該非結晶半導体層を結晶化するが、図18Aに示すように、このアニール処理によって、ゲート電極上に様々な大きさの膜剥がれが生じるという問題がある。
 本発明者は、このような問題が生ずるメカニズムについて鋭意検討した結果、以下の理由によって、上記問題が生じるというということを解明した。
 まず、ゲート電極の材料としてモリブデンを用いると、酸化モリブデン(MoO)が形成される場合があり、この酸化モリブデンによって上記問題が生じることをつきとめた。つまり、ゲート電極に酸化モリブデンが発生すると、融点が約800℃で昇華しやすい酸化モリブデンは、700℃から900℃のアニール処理によって昇華してガス化するということが判明した。これにより、ゲート電極内部及び周辺にガスが存在することになり、ゲート電極上に形成される膜が剥がれやすくなると考えられる。
 本発明者は、酸化モリブデンが形成される原因について検討した結果、ゲート電極の下層に存在するアンダーコート層にその原因があるという知見を得ることができた。以下、さらに、詳述する。
 アンダーコート層は、そもそも基板であるガラス板が薄膜半導体装置に悪影響を与えることを防止するために形成されるものである。つまり、ガラス板には、ナトリウムやリン等の不純物がガラス板そのものの形成過程で含有されてしまうが、このナトリウムやリン等の不純物がチャネル層の半導体層に入り込むと、当該不純物が電荷として機能してリーク電流や閾値電圧のマイナスシフトの原因となる。このガラス板に存在する不純物が半導体層に侵入することを遮断するために、アンダーコート層が形成される。アンダーコート層としては、不純物の侵入をより効果的に遮断するために窒化シリコン等の窒化膜が用いられることが多い。
 そして、本発明者は、この窒化シリコン膜上にモリブデンを含むゲート電極が直接形成された場合、薄膜半導体装置のいずれかの製造工程において、窒化シリコン膜の表面に酸素含有率の高い酸素リッチ層が形成されるという知見を得た。すなわち、図5(a)に示すように、窒化膜のアンダーコート層200とゲート電極300との間に酸素原子600を含む酸素リッチ層が存在していると考えられる。
 酸素原子との結合力という視点で考えると、酸素原子との結合力は、モリブデンの方が窒化膜よりも大きい。このため、窒化膜のアンダーコート層200の表面に存在する酸素原子が自然に又は熱処理等によって、図5(b)に示すように、モリブデンを含むゲート電極300の方に拡散する。
 これにより、図5(c)に示すように、当該酸素原子600がゲート電極300のモリブデンと結合して酸化モリブデン360が形成すると考えられる。なお、窒化膜は、ガラス基板よりも酸素原子との結合力は小さい。また、モリブデンは、ガラス基板よりも酸素原子との結合力が弱いものの、窒化膜よりも酸素原子との結合力が大きい。
 このように、酸素原子との結合力は、モリブデンの方が窒化膜よりも大きいことから、モリブデンの方が窒化膜に対して酸化しやくなり、これにより、拡散した酸素原子によって酸化モリブデンが形成される。
 この状態で、700℃から900℃のアニール処理が行われると、図5(d)に示すように、酸化モリブデン360は昇華してガス化する。これにより、ゲート電極300内部及びその周辺にガス361が存在することになる。
 そして、図5(e)に示すように、ゲート電極300におけるガス361が内部から抜ける際に、ゲート電極300上のゲート絶縁膜400及び多結晶半導体層500に膜剥がれが発生する。
 本発明は、このような問題を解決するためになされたものであり、本発明の実施の形態1の表示用薄膜半導体装置10の製造方法では、非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理を行う工程よりも前に、所定の還元反応処理を行うこととした。これにより、酸化したゲート電極3の内外近傍に存在する酸素及び雰囲気中に存在する酸素を除去することができる。これにより、アンダーコート層2とゲート電極3との界面近傍に存在する酸素濃度を減少させることができる。
 従って、酸素原子との結合力がアンダーコート層2よりも大きいモリブデンをゲート電極3の材料として用いた場合であっても、アンダーコート層2とゲート電極3との界面近傍に存在する酸素層に起因するモリブデンの酸化が起こりにくい状態とすることができる。そして、この状態で、ゲート電極3上にゲート絶縁膜4及び非結晶半導体層5aを形成し、非結晶半導体層5aを結晶化するために、所定のアニール温度にてアニール処理を行ったとしても、ゲート電極3の内部及びその周辺において、モリブデンと結合する酸素原子がそもそも少ない状態となっている。従って、モリブデンの酸化が促進されないので、モリブデンが酸化モリブデンとなって当該酸化モリブデンがアニール処理の温度で昇華してガス化するということを大幅に減少させることができる。この結果、ゲート電極上に、円形状の膜剥がれが生ずることを抑制することができる。
 また、本実施形態に係る表示用薄膜半導体装置10の製造方法では、還元反応処理を、ゲート電極形成工程とゲート絶縁膜形成工程との間に行っている。ウェットエッチング処理によってゲート電極3をパターニングした後は、エッチングにおける洗浄工程によってゲート電極3界面における酸素濃度が高くなっているので、ゲート電極3形成直後に還元反応処理を行うことは効果的である。また、ゲート電極3を形成した後であってゲート絶縁膜4によってゲート電極3を被覆するまでの段階においては、水分を用いた処理は発生しない。従って、ゲート電極形成工程とゲート絶縁膜形成工程との間に還元反応処理を行うことにより、アンダーコート層2とゲート電極3との界面に再度酸素が混入することを抑制することができる。また、酸素濃度の極めて少ない状態でゲート電極3がゲート絶縁膜4に被覆されるので、アンダーコート層2とゲート電極3との界面に対して還元反応処理が行われた状態を保ったまま、すなわち、アンダーコート層2とゲート電極3との界面の酸素層が最も少ない状態で、非結晶半導体層5aに対して700℃から900℃の温度範囲による高温アニール処理を行うことができる。
 しかも、ゲート電極形成工程とゲート絶縁膜形成工程との間の段階においては、ゲート電極3上にはゲート絶縁膜4又は非結晶半導体層5a等の他の層が形成されない。これにより、パターニングされたゲート電極3一層のみを介して、ゲート電極3とアンダーコート層2との界面に対して還元反応処理を行うことができる。
 この結果、アンダーコート層2とモリブデンからなるゲート電極3との界面に存在する酸素層を最も効果的に減少させることができるので、ゲート電極3上に生ずる円形状の膜剥がれを最大限に抑制することができる。
 以上のとおり、本実施形態に係る表示用薄膜半導体装置10の製造方法によれば、ゲート電極3の材料としてモリブデンを用いた場合であっても、酸化モリブデンの発生を抑制することができる。従って、アニール処理のアニール温度によるゲート電極3上の膜剥がれの発生を抑制することができるので、所望の特性を有する表示用薄膜半導体装置10を実現することができる。
 なお、表示用薄膜半導体装置の製造工程においては、従来より還元反応処理が用いられることがあるが、これは、例えば、チャネル層としての非結晶半導体層6aの特性を安定させるために用いられるものであり、これよりも前の段階の工程においては、通常、還元反応処理は行われず、従来は、少なくとも、アンダーコート層2とゲート電極3との間の酸素濃度を低減するレベルの還元反応処理は行われていない。なお、本実施形態では、第2の非結晶半導体層形成工程において、非結晶半導体層6aの特性を安定させるために別途水素プラズマ処理を行っている。
  (本発明の実験結果)
 次に、本実施形態に係る表示用薄膜半導体装置の製造方法の作用効果を確認する実験を行ったので、その実験結果について、図6及び図7を用いて説明する。
 図6は、本実施形態に係る製造方法と従来例に係る製造方法とによって製造した薄膜半導体装置に含まれる酸素濃度を示す図である。また、図6は、薄膜半導体装置において、多結晶半導体層からガラス基板までの厚み(深さ)方向における酸素濃度を二次イオン質量分析法(SIMS)によって測定し、プロットしたものである。図6において、実線で示す酸素濃度は、水素プラズマ処理を行って薄膜半導体装置を製造した場合(本発明)を示している。また、点線で示す酸素濃度は、水素プラズマ処理を行わないで薄膜半導体装置を製造した場合(従来例)を示している。なお、水素プラズマ処理は、アンダーコート層上にゲート電極が形成されたガラス基板をチャンバ内に配置し、水素プラズマ処理を行う際の高周波パワー(RFパワー)を200Wとし、当該RFパワーによる処理時間を60(s)とした。また、各構成要素の材料については、多結晶半導体層はアモルファスシリコンを微結晶化したものとし、ゲート絶縁膜は二酸化シリコンとし、ゲート電極はモリブデンタングステンとし、アンダーコート層は窒化シリコンとした。
 図6に示すように、アンダーコート層とゲート電極との界面における酸素濃度は、点線で示す水素プラズマ処理を行わない従来例の場合は、2.7E+21(atom/cm)であったが、実線で示す水素プラズマ処理を行った本発明の場合は、2.1E+20(atom/cm)であった。すなわち、実線で示す水素プラズマ処理を行った本発明の場合は、点線で示す水素プラズマ処理を行わない従来例の場合に対して、アンダーコート層とゲート電極との界面における酸素含有量を大きく低減できていることが分かる。
 また、図7は、水素プラズマ処理条件とゲート電極上の膜剥がれ発生個数との関係を示す図である。水素プラズマの処理条件は、図7に示すように、RFパワーが75(W)で15(s)、RFパワーが130(W)で処理時間が15(s)、RFパワーが75(W)で処理時間が60(s)、RFパワーが130(W)で処理時間が60(s)、RFパワーが200(W)で処理時間が60(s)で行い、それぞれ2つの試料で行った。なお、RFパワーが0(W)で処理時間が0(s)は、水素プラズマ処理を行っていない場合である。なお、図7中、「リング」はリング状の膜剥がれが発生した個数を表しており、また、「斑点小」、「斑点中」、「斑点大」は、それぞれ、小、中、大の大きさの斑点状の膜剥がれが発生した個数を表している。
 図7に示すように、水素プラズマ処理を行った場合は、RFパワーの出力の大きさにかかわらず、また、処理時間の長さにもかかわらず、膜剥がれはほとんど発生しなかった。これに対し、水素プラズマ処理を行っていない場合は、無数の膜剥がれが生じていることが分かる。従って、水素プラズマ処理を行う際のRFパワーは75Wから200Wの範囲内であって、RFパワーによる処理時間は15秒から60秒の範囲内とすることが好ましい。これにより、ゲート電極上に膜剥がれはほとんど発生しない。
 以上、図6及び図7に示す実験結果により、水素プラズマによる還元反応処理を行うことによって、アンダーコート層とゲート電極との界面近傍に存在する酸素濃度を低減させることができるということが分かる。これにより、ゲート電極のモリブデンが酸化することを抑制することができるので、ゲート電極上における膜剥がれの発生を抑制することができる。
 (実施の形態2)
 次に、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法について、図8及び図9を用いて説明する。
 図8は、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法のフローチャートである。
 図8に示すように、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法は、少なくとも、ガラス基板準備工程(S21)と、アンダーコート層形成工程(S22)と、モリブデン金属層形成工程(S23)と、ゲート電極形成工程(S24)と、ゲート絶縁膜形成工程(S25)と、還元反応処理工程(S26)と、非結晶半導体層形成工程(S27)と、アニール工程(S28)と、ソースドレイン電極形成工程(S29)とを、この順に含む。
 本実施形態に係る表示用薄膜半導体装置の製造方法と本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法とが異なる点は、還元反応処理を行うタイミングである。すなわち、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程(S15)が、ゲート電極形成工程(S14)とゲート絶縁膜形成(S16)との間にあったのに対し、本実施形態に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程(S26)が、ゲート絶縁膜形成工程(S25)と非結晶半導体形成工程(S27)との間にある。
 なお、本実施形態に係る製造方法における各工程の内容については、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法における各工程と同じであるので、その説明は省略する。また、その他、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法では、上記以外の工程も含まれる。
 以下、上記以外の工程も含めた本発明の実施の形態2に係る表示用薄膜半導体装置の具体的な製造方法について、図9を用いてさらに詳述する。図9は、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法における全ての工程のうち特徴的な工程の構成を模式的に示した断面図である。なお、図9において、図3に示す実施の形態1の製造方法における構成要素と同じ構成要素については、同じ符号を付しており、詳しい説明は省略する。また、以下、図3及び図4に示された本発明の実施の形態1に係る製造方法と異なる点を中心に説明する。
 まず、実施の形態1に係る製造方法の図3(a)~図3(f)と同様に、図9(a)~図9(f)の各工程が順に行われる。すなわち、ガラス基板準備工程、アンダーコート層形成工程、モリブデン金属層形成工程及びゲート電極形成工程が順次行われる。なお、図9(a)~図9(f)の各工程は、図3(a)~図3(f)の各工程と同じである。
 次に、図9(g)に示すように、ゲート電極3を覆うようにして、ゲート電極3上及びアンダーコート層2上に、プラズマCVDによって、二酸化シリコンからなるゲート絶縁膜4を100nm程度の膜厚で成膜する。なお、この工程は、実施の形態1の図3(h)に示す工程に相当する。
 次に、図9(h)に示すように、アンダーコート層2とゲート電極3との界面に向けて、所定の還元反応処理を行う。還元反応処理としては、実施の形態1と同様に、水素プラズマ処理による水素還元反応処理を行った。これにより、アンダーコート層2とゲート電極3との界面近傍に存在する酸素濃度を減少させることができる。なお、本実施形態では、ゲート電極3上にゲート絶縁膜4が形成されているが、水素イオンは数μmオーダの深さまで侵入するので、ゲート電極3の内部及び周辺の酸素濃度を低減させることは十分可能である。
 その後、実施の形態1に係る製造方法の図3(i)~図3(l)の各工程と同様に、図9(i)~図9(l)の各工程が行われる。図9(i)~図9(l)の各工程は、図3(i)~図3(l)の各工程と同じである。また、その後は、図示しないが、本発明の実施の形態1に係る製造方法における図4(a)~図4(j)と同じ工程が行われる。
 すなわち、還元反応処理工程の後は、実施の形態1に係る製造方法と同様に、第1の非結晶半導体層形成工程、アニール工程、第2の非結晶半導体層形成工程、チャネル層島化工程、コンタクト層用膜形成工程、ソースドレイン電極形成工程、及び、コンタクト層形成工程/チャネルエッチング工程をこの順で行う。
 以上のとおり、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法は、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法と同様に、非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理を行う工程よりも前に、所定の還元反応処理を行う工程を備える。これにより、アンダーコート層2とゲート電極3との界面近傍に存在する酸素濃度を減少させることができるので、酸化モリブデンの発生を抑制することができる。従って、酸化モリブデンが上記温度範囲のアニール温度で昇華してガス化することを大幅に減少させることができるので、ゲート電極3上に、円形状の膜剥がれが生ずることを抑制することができる。
 また、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程を、ゲート絶縁膜形成工程と第1の非結晶半導体層形成工程との間に設けている。この段階で還元反応処理を行うと、還元反応処理時においてゲート電極3はゲート絶縁膜4によって既に被覆されている。これにより、この段階以降において、ゲート電極3とアンダーコート層2との界面近傍に再度酸素が混入することを抑制することができる。従って、ゲート電極3とアンダーコート層2との界面近傍に対して還元反応処理が行われた状態を保ったまま、すなわち、ゲート電極3とアンダーコート層2との界面近傍の酸素層が少ない状態で、非結晶半導体層5aに対して700℃から900℃の温度範囲の温度にてアニール処理を行うことができる。
 従って、モリブデンの酸化が促進されないので、酸化モリブデンの発生を抑制することができ、酸化モリブデンが昇華してガス化することを減少させることができる。この結果、ゲート電極上に膜剥がれが発生することを抑制することができる。
 なお、本実施形態における還元反応処理を行う段階では、ゲート電極とアンダーコート層との界面近傍に対して、ゲート絶縁膜の1層を経由して還元反応処理を行うことなる。そのため、1層分の膜を介して還元反応処理を行う分、実施の形態1のように、ゲート電極のみを介して還元反応処理を行う場合と比較して還元反応処理による効果は低減することになる。但し、実際には、この段階による還元反応処理であっても、アンダーコート層とゲート電極との界面近傍に存在する酸素層を十分に減少させることができるので、ゲート電極上に生ずる円形状の膜剥がれを十分に抑制することができる。
 (実施の形態3)
 次に、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法について、図10及び図11を用いて説明する。
 図10は、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法のフローチャートである。
 図10に示すように、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法は、少なくとも、ガラス基板準備工程(S31)と、アンダーコート層形成工程(S32)と、モリブデン金属層形成工程(S33)と、ゲート電極形成工程(S34)と、ゲート絶縁膜形成工程(S35)と、非結晶半導体層形成工程(S36)と、還元反応処理工程(S37)と、アニール工程(S38)と、ソースドレイン電極形成工程(S39)とを、この順に含む。
 本実施形態に係る表示用薄膜半導体装置の製造方法と本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法とが異なる点も、還元反応処理を行うタイミングである。すなわち、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程(S15)が、ゲート電極形成工程(S14)とゲート絶縁膜形成(S16)との間にあったのに対し、本実施形態に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程(S37)が、非結晶半導体形成工程(S36)とアニール工程(S38)との間にある。
 なお、本実施形態に係る製造方法における各工程の内容については、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法における各工程と同じであるので、その説明は省略する。また、その他、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法では、上記以外の工程も含まれる。
 以下、上記以外の工程も含めた本発明の実施の形態3に係る表示用薄膜半導体装置の具体的な製造方法について、図11を用いてさらに詳述する。図11は、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法における全ての工程のうち特徴的な工程の構成を模式的に示した断面図である。なお、図11において、図3に示す実施の形態1の製造方法における構成要素と同じ構成要素については、同じ符号を付しており、詳しい説明は省略する。また、以下、図3及び図4に示された本発明の実施の形態1に係る製造方法と異なる点を中心に説明する。
 まず、実施の形態1に係る製造方法の図3(a)~図3(f)と同様に、図11(a)~図11(f)の各工程が順に行われる。すなわち、ガラス基板準備工程、アンダーコート層形成工程、モリブデン金属層形成工程及びゲート電極形成工程が順次行われる。なお、図11(a)~図11(f)の各工程は、図3(a)~図3(f)の各工程と同じである。
 次に、図11(g)に示すように、ゲート電極3を覆うようにして、ゲート電極3上及びアンダーコート層2上に、プラズマCVDによって、二酸化シリコンからなるゲート絶縁膜4を100nm程度の膜厚で成膜する。なお、この工程は、実施の形態1の図3(h)に示す工程に相当する。
 次に、図11(h)に示すように、ゲート絶縁膜4上に、プラズマCVDによって、アモルファスシリコン層である第1の非結晶半導体層5aを50nm程度の膜厚で成膜する。なお、この工程は、実施の形態1の図3(i)に示す工程に相当する。
 次に、図11(i)に示すように、アンダーコート層2とゲート電極3との界面に向けて、所定の還元反応処理を行う。還元反応処理としては、実施の形態1と同様に、水素プラズマ処理による水素還元反応処理を行った。これにより、アンダーコート層2とゲート電極3との界面近傍に存在する酸素濃度を減少させることができる。なお、本実施形態では、ゲート電極3上にゲート絶縁膜4及び非結晶半導体層5aが形成されているが、水素イオンは数μmオーダの深さまで侵入するので、ゲート電極3の内部及び周辺の酸素濃度を低減させることは十分可能である。
 その後、実施の形態1に係る製造方法の図3(j)~図3(l)の各工程と同様に、図11(j)~図11(l)の各工程が行われる。なお、図11(j)~図11(l)の各工程は、図3(j)~図3(l)の各工程と同じである。また、その後は、図示しないが、本発明の実施の形態1に係る製造方法における図4(a)~図4(j)と同じ工程が行われる。
 すなわち、還元反応処理工程の後は、実施の形態1に係る製造方法と同様に、アニール工程、第2の非結晶半導体層形成工程、チャネル層島化工程、コンタクト層用膜形成工程、ソースドレイン電極形成工程、及び、コンタクト層形成工程/チャネルエッチング工程をこの順で行う。
 以上のとおり、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法は、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法と同様に、非結晶半導体層5aに対して700℃から900℃の温度範囲の温度にてアニール処理を行う工程よりも前に、所定の還元反応処理を行う工程を備える。これにより、アンダーコート層2とゲート電極3との界面近傍に存在する酸素濃度を減少させることができるので、酸化モリブデンの発生を抑制することができる。従って、酸化モリブデンが上記温度範囲のアニール温度で昇華してガス化することを大幅に減少させることができるので、ゲート電極3上に、円形状の膜剥がれが生ずることを抑制することができる。
 また、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程を、第1の非結晶半導体層形成工程とアニール工程との間に設けている。この段階で還元反応処理を行うと、還元反応処理時においてゲート電極3はゲート絶縁膜4及び非結晶半導体層5aによって既に被覆されている。これにより、この段階後において、ゲート電極3とアンダーコート層2との界面に再度酸素が混入することを抑制することができる。従って、ゲート電極3とアンダーコート層2との界面近傍に対して還元反応処理が行われた状態を保ったまま、すなわち、ゲート電極3とアンダーコート層2との界面近傍の酸素層が少ない状態で、非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理を行うことができる。しかも、アニール工程直前に還元反応処理を行うことができるので、効果的にゲート電極界面近傍における酸素濃度を低減することができる。
 従って、モリブデンの酸化は促進されないので、酸化モリブデンの発生を抑制することができ、酸化モリブデンが昇華してガス化することを減少させることができる。この結果、ゲート電極3上に膜剥がれが発生することを抑制することができる。
 なお、本実施形態における還元反応処理を行う段階では、ゲート電極とアンダーコート層との界面に対して、ゲート絶縁膜と非結晶半導体層の2層を経由して還元反応処理を行うことなる。そのため、2層の膜を介して還元反応処理を行う分、実施の形態2のように、ゲート絶縁膜の1層のみを介して還元反応処理を行う場合と比較して還元反応処理による効果は低減することになる。但し、実際には、この段階による還元反応処理であっても、アンダーコート層とゲート電極との界面近傍に存在する酸素層を十分に減少させることができるので、ゲート電極上に生ずる円形状の膜剥がれを十分に抑制することができる。
 (実施の形態4)
 次に、本発明の実施の形態4に係る表示用薄膜半導体装置の製造方法について、図12及び図13を用いて説明する。
 図12は、本発明の実施の形態2に係る表示用薄膜半導体装置の製造方法のフローチャートである。
 図12に示すように、本発明の実施の形態3に係る表示用薄膜半導体装置の製造方法は、少なくとも、ガラス基板準備工程(S41)と、アンダーコート層形成工程(S42)と、モリブデン金属層形成工程(S43)と、還元反応処理工程(S44)と、ゲート電極形成工程(S45)と、ゲート絶縁膜形成工程(S46)と、非結晶半導体層形成工程(S47)と、アニール工程(S48)と、ソースドレイン電極形成工程(S49)とを、この順に含む。
 本実施形態に係る表示用薄膜半導体装置の製造方法と本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法とが異なる点も、還元反応処理を行うタイミングである。すなわち、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程(S15)が、ゲート電極形成工程(S14)とゲート絶縁膜形成(S16)との間にあったのに対し、本実施形態に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程(S44)が、モリブデン金属層形成工程(S33)とゲート電極形成工程(S35)との間にある。
 なお、本実施形態に係る製造方法における各工程の内容については、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法における各工程と同じであるので、その説明は省略する。また、その他、本発明の実施の形態4に係る表示用薄膜半導体装置の製造方法では、上記以外の工程も含まれる。
 以下、上記以外の工程も含めた本発明の実施の形態4に係る表示用薄膜半導体装置の具体的な製造方法について、図13を用いてさらに詳述する。図13は、本発明の実施の形態4に係る表示用薄膜半導体装置の製造方法における全ての工程のうち特徴的な工程の構成を模式的に示した断面図である。なお、図13において、図3に示す実施の形態1の製造方法における構成要素と同じ構成要素については、同じ符号を付しており、詳しい説明は省略する。また、以下、図3及び図4に示された本発明の実施の形態1に係る製造方法と異なる点を中心に説明する。
 まず、実施の形態1に係る製造方法の図3(a)~図3(c)と同様に、図13(a)~図13(c)の各工程が順に行われる。すなわち、ガラス基板準備工程、アンダーコート層形成工程及びモリブデン金属層形成工程が順次行われる。なお、図13(a)~図13(c)の各工程は、図3(a)~図3(c)の各工程と同じである。
 次に、図13(d)に示すように、アンダーコート層2とモリブデン金属層3Mとの界面に向けて、所定の還元反応処理を行う。還元反応処理としては、実施の形態1と同様に、水素プラズマ処理による水素還元反応処理を行った。これにより、アンダーコート層2とモリブデン金属層3Mとの界面近傍に存在する酸素濃度を減少させることができる。なお、本実施形態では、アンダーコート層2の全面にモリブデン金属層3Mが形成されているが、水素ラジカルは100nm程度の深さまで侵入し、また、水素イオンにいたっては数μmオーダの深さまで侵入するので、モリブデン金属層3Mの内部及びアンダーコート層2との界面近傍における酸素濃度を低減させることができる。
 次に、図13(e)~図13(g)に示すように、図3(d)~図3(f)と同様に、ゲート電極形成工程を行う。すなわち、モリブデン金属層3M上に選択的にレジストR1を形成し(図13(e))、ウェットエッチングを施してモリブデン金属層3Mをパターニングし(図13(f))、所定形状のゲート電極3を形成する(図13(g))。
 その後、実施の形態1に係る製造方法の図3(h)~図3(l)の各工程と同様に、図13(h)~図13(l)の各工程が行われる。なお、図13(h)~図13(l)の各工程は、図3(h)~図3(l)の各工程と同じである。また、その後は、図示しないが、本発明の実施の形態1に係る製造方法における図4(a)~図4(j)と同じ工程が行われる。
 すなわち、還元反応処理工程の後は、ゲート絶縁膜形成工程、第1の非結晶半導体層形成工程、アニール工程、第2の非結晶半導体層形成工程、チャネル層島化工程、コンタクト層用膜形成工程、ソースドレイン電極形成工程、及び、コンタクト層形成工程/チャネルエッチング工程をこの順で行う。
 以上のとおり、本発明の実施の形態4に係る表示用薄膜半導体装置の製造方法は、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法と同様に、非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理を行う工程よりも前に、所定の還元反応処理を行う工程を備える。これにより、アンダーコート層2とモリブデン金属層3Mとの界面近傍に存在する酸素濃度を減少させることができるので、アンダーコート層2とその後形成するゲート電極3との界面近傍における酸素濃度を低減することができる。よって、酸化モリブデンの発生を抑制することができる。従って、酸化モリブデンが上記温度範囲のアニール温度で昇華してガス化することを大幅に減少させることができるので、ゲート電極3上に、円形状の膜剥がれが生ずることを抑制することができる。
 なお、本実施形態のようにモリブデン金属層形成工程とゲート電極形成工程との間に還元反応処理を行うと、その後の工程において、水分を含む処理が行われることになる。例えば、レジストの現像や剥離、又は金属層や金属膜のエッチングにおいて、水洗浄が施される。
 このため、ゲート電極形成工程の前の段階において還元反応処理を行うと、この後の工程において、アンダーコート層2とゲート電極3との界面に再度酸素が混入する可能性はある。
 しかしながら、その後の工程において仮に酸素が混入することになっても、上記の段階で還元反応処理を行っておくことにより、酸化モリブデンの発生を抑制することができる。従って、その後、非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理が行われたとしても、酸化モリブデンが昇華してガス化することを減少させることができる。この結果、ゲート電極3上に膜剥がれが発生することを抑制することができる。
 (実施の形態5)
 次に、本発明の実施の形態5に係る表示用薄膜半導体装置の製造方法について、図14及び図15を用いて説明する。
 図14は、本発明の実施の形態5に係る表示用薄膜半導体装置の製造方法のフローチャートである。
 図14に示すように、本発明の実施の形態5に係る表示用薄膜半導体装置の製造方法は、少なくとも、ガラス基板準備工程(S51)と、アンダーコート層形成工程(S52)と、還元反応処理工程(S53)と、モリブデン金属層形成工程(S54)と、ゲート電極形成工程(S55)と、ゲート絶縁膜形成工程(S56)と、非結晶半導体層形成工程(S57)と、アニール工程(S58)と、ソースドレイン電極形成工程(S59)とを、この順に含む。
 本実施形態に係る表示用薄膜半導体装置の製造方法と本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法とが異なる点も、還元反応処理を行うタイミングである。すなわち、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程(S15)が、ゲート電極形成工程(S14)とゲート絶縁膜形成(S16)との間にあったのに対し、本実施形態に係る表示用薄膜半導体装置の製造方法では、還元反応処理工程(S53)が、アンダーコート層形成工程(S52)とモリブデン金属層形成工程(S54)との間にある。
 なお、本実施形態に係る製造方法における各工程の内容については、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法における各工程と同じであるので、その説明は省略する。また、その他、本発明の実施の形態5に係る表示用薄膜半導体装置の製造方法では、上記以外の工程も含まれる。
 以下、上記以外の工程も含めた本発明の実施の形態5に係る表示用薄膜半導体装置の具体的な製造方法について、図15を用いてさらに詳述する。図15は、本発明の実施の形態5に係る表示用薄膜半導体装置の製造方法における全ての工程のうち特徴的な工程の構成を模式的に示した断面図である。なお、図15において、図3に示す実施の形態1の製造方法における構成要素と同じ構成要素については、同じ符号を付しており、詳しい説明は省略する。また、以下、図3及び図4を用いて説明した本発明の実施の形態1に係る製造方法と異なる点を中心に説明する。
 まず、実施の形態1に係る製造方法の図3(a)及び図3(b)と同様に、図15(a)及び図15(b)の各工程が順に行われる。すなわち、ガラス基板準備工程及びアンダーコート層形成工程が順次行われる。なお、図15(a)及び図15(b)の各工程は、図3(a)及び図3(b)の各工程と同じである。
 次に、図15(c)に示すように、アンダーコート層2の少なくともゲート電極形成領域に向けて、所定の還元反応処理を行う。還元反応処理としては、実施の形態1と同様に、水素プラズマ処理による水素還元反応処理を行った。これにより、アンダーコート層2のゲート電極が形成される領域における表面近傍に存在する酸素濃度を減少させることができる。
 次に、図15(d)に示すように、図3(c)と同様に、モリブデン金属層形成工程を行う。すなわち、アンダーコート層2上に、モリブデンを含むモリブデン金属層3Mを50nm程度の膜厚で成膜する。本実施形態でも、モリブデン金属層3Mとして、モリブデンタングステン(MoW)を用いた。また、モリブデン金属層3Mは、スパッタによって成膜した。
 次に、図15(e)~図15(g)に示すように、図3(d)~図3(f)と同様に、ゲート電極形成工程を行う。すなわち、モリブデン金属層3M上に選択的にレジストR1を形成し(図15(e))、ウェットエッチングを施してモリブデン金属層3Mをパターニングし(図15(f))、所定形状のゲート電極3を形成する(図15(g))。
 その後、実施の形態1に係る製造方法の図3(h)~図3(l)の各工程と同様に、図15(h)~図15(l)の各工程が行われる。なお、図15(h)~図15(l)の各工程は、図3(h)~図3(l)の各工程と同じである。また、その後は、図示しないが、本発明の実施の形態1に係る製造方法における図4(a)~図4(j)と同じ工程が行われる。
 すなわち、還元反応処理工程の後は、ゲート絶縁膜形成工程、第1の非結晶半導体層形成工程、アニール工程、第2の非結晶半導体層形成工程、チャネル層島化工程、コンタクト層用膜形成工程、ソースドレイン電極形成工程、及び、コンタクト層形成工程/チャネルエッチング工程をこの順で行う。
 以上のとおり、本発明の実施の形態5に係る表示用薄膜半導体装置の製造方法は、本発明の実施の形態1に係る表示用薄膜半導体装置の製造方法と同様に、非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理を行う工程よりも前に、所定の還元反応処理を行う工程を備える。このように、ゲート電極の金属層を形成する前であっても、アンダーコート層に対して還元反応処理を行っておくことにより、アンダーコート層2のゲート電極形成領域の表面近傍に存在する酸素濃度を減少させることができる。これにより、アンダーコート層2とその後形成するゲート電極3との界面近傍における酸素濃度を低減することができ、酸化モリブデンの発生を抑制することができる。従って、酸化モリブデンが上記温度範囲のアニール温度で昇華してガス化することを大幅に減少させることができるので、ゲート電極3上に、円形状の膜剥がれが生ずることを抑制することができる。
 なお、本実施形態は、実施の形態4と同様に、還元反応処理の後の工程において、水分を含む処理が行われることがあり、この後の工程において、アンダーコート層2とゲート電極3との界面に再度酸素が混入する可能性はある。
 しかしながら、その後の工程において仮に酸素が混入することになっても、上記の段階で還元反応処理を行っておくことにより、酸化モリブデンの発生を抑制することができる。従って、その後、非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理が行われたとしても、酸化モリブデンが昇華してガス化することを減少させることができる。この結果、ゲート電極3上に膜剥がれが発生することを抑制することができる。
 (実施の形態6)
 次に、上記の実施の形態1~5に係る表示用薄膜半導体装置をディスプレイに適用した本発明の実施の形態6に係る表示装置について、図16を用いて説明する。なお、本実施形態に係る表示装置の一態様では、有機ELディスプレイに適用した例について説明する。
 図16は、本発明の実施の形態6に係る有機ELディスプレイの一部切り欠き斜視図である。上述した各実施の形態に係る表示用薄膜半導体装置は、有機ELディスプレイのアクティブマトリクス基板のスイッチング素子と用いることができる。
 図16に示すように、有機ELディスプレイ20は、アクティブマトリクス基板21と、アクティブマトリクス基板21上にマトリクス状に複数配置された画素22と、画素22に接続され、アクティブマトリクス基板21上にアレイ状に複数配置された画素回路23と、画素22と画素回路23の上に順次積層された陽極24、有機EL層25及び陰極26(透明電極)と、各画素回路23と制御回路(不図示)とを接続する複数本のソース線27及びゲート線28とを備えている。有機EL層25は、電子輸送層、発光層、正孔輸送層等の各層が積層されて構成されている。
 有機ELディスプレイ20において、各画素回路23に、画素22のスイッチング素子として、前述した各実施の形態のいずれかの表示用薄膜半導体装置が設けられている。
 次に、上記有機ELディスプレイ20における画素22の回路構成について、図17を用いて説明する。図16は、本発明の上記の各実施の形態1~5に係る表示用薄膜半導体装置を用いた画素の回路構成図である。
 図17に示すように、画素22は、駆動用の薄膜半導体装置31と、選択用の薄膜半導体装置32と、有機EL素子33と、コンデンサ34とを備える。駆動用の薄膜半導体装置31は、有機EL素子33を駆動する駆動トランジスタであり、選択用の薄膜半導体装置32は、選択トランジスタである。
 選択用の薄膜半導体装置32のソース電極32Sは、ソース線27に接続され、ゲート電極32Gは、ゲート線28に接続され、ドレイン電極32Dは、コンデンサ34及び駆動用の薄膜半導体装置31のゲート電極31Gに接続されている。
 また、駆動用の薄膜半導体装置31のドレイン電極31Dは、電源線35に接続され、ソース電極31Sは有機EL素子33のアノードに接続されている。
 この構成において、ゲート線28にゲート信号が入力され、選択用の薄膜半導体装置32をオン状態にすると、ソース線27を介して供給された信号電圧がコンデンサ34に書き込まれる。そして、コンデンサ34に書き込まれた保持電圧は、1フレーム期間を通じて保持される。この保持電圧により、駆動用の薄膜半導体装置31のコンダクタンスがアナログ的に変化し、発光階調に対応した駆動電流が、有機EL素子33のアノードからカソードへと流れる。これにより、有機EL素子33が発光し、画像として表示される。
 なお、本発明の実施の形態1~5に係る表示用薄膜半導体装置は、駆動用の薄膜半導体装置31及び選択用の薄膜半導体装置32のいずれにも適用することができる。
 以上、本発明の一実施形態に係るディスプレイについて説明したが、本発明はこれに限定されない。例えば、上記の実施形態では有機EL素子を用いた有機ELディスプレイについて説明したが、液晶表示素子等、アクティブマトリクス基板が用いられる他の表示素子を備えたディスプレイにも適用することもできる。
 また、以上説明した本発明の実施の形態6に係るディスプレイについては、フラットパネルディスプレイとして利用することができ、テレビジョンセット、パーソナルコンピュータ、携帯電話などのあらゆる表示装置に適用することができる。
 以上、本発明に係る表示用薄膜半導体装置の製造方法について、実施の形態に基づいて説明したが、本発明に係る表示用薄膜半導体装置の製造方法は、上記の実施の形態に限定されるものではない。
 例えば、上記の各実施の形態では、ゲート電極におけるモリブデンの酸化を抑制するための還元反応処理として、水素プラズマ処理としたが、これに限るものではない。例えば、水素雰囲気アニール処理又は水蒸気アッシング処理であっても構わない。水素雰囲気アニールは、本発明における還元反応処理として利用することができる。また、水蒸気アッシングは、水素イオン及び水素ラジカルを発生させることができ、本発明における還元反応処理として利用することができる。
 また、上記の各実施の形態では、各実施の形態において還元反応処理は1回しか行っていないが、各実施の形態を組み合わせるようにして、複数回の還元反応処理を行っても構わない。
 また、非結晶半導体層を結晶化させるためのアニール処理においては、レーザアニールを用いたが、レーザアニールとしては、CWレーザ(Continuous Wave Laser)よりもパルスレーザの方が好ましい。これは、パルスレーザの方がCWレーザよりも入熱時間が短いからであり、パルスレーザを用いた方がより確実にゲート電極上の膜剥がれを軽減することができる。
 また、ゲート絶縁膜としては、窒化シリコン(下層)と二酸化シリコン(上層)との積層構造とすることもできるが、本実施形態ではチャネル層として多結晶半導体層を用いているので、二酸化シリコンの単層とすることが好ましい。これは、窒化シリコンと二酸化シリコンとの積層構造を用いてもゲート電極上の膜剥がれを防止することができるが、当該積層構造を用いると、閾値電圧がマイナス側にシフトしてしまうからである。
 なお、その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明に係る表示用薄膜半導体装置は、テレビジョンセット、パーソナルコンピュータ、携帯電話などの表示装置、又はその他スイッチング素子等として様々な電気機器に広く利用することができる。
 1 ガラス基板
 2、200 アンダーコート層
 3、300 ゲート電極
 3M モリブデン金属層
 4、400 ゲート絶縁膜
 5、5p、500 多結晶半導体層
 5a、6、6a 非結晶半導体層
 7a、7b コンタクト層
 7S、7S 非晶質半導体層
 8a ソース電極
 8b ドレイン電極
 10 表示用薄膜半導体装置
 20 有機ELディスプレイ
 21 アクティブマトリクス基板
 22 画素
 23 画素回路
 24 陽極
 25 有機EL層
 26 陰極
 27 ソース線
 28 ゲート線
 31、32 薄膜半導体装置
 31G、32G ゲート電極
 31S、32S ソース電極 
 31D、32D ドレイン電極
 33 有機EL素子
 34 コンデンサ
 35 電源線
 R1、R2、R3、R4 レジスト
 301 膜剥がれ
 302 空隙
 360 酸化モリブデン
 361 ガス
 600 酸素原子

Claims (21)

  1.  ガラス基板を準備する第1工程と、
     前記ガラス基板上に前記ガラス基板に含有される不純物の拡散を防止するためのアンダーコート層を形成する第2工程と、
     前記アンダーコート層上に前記アンダーコート層より酸素原子との結合力が強いモリブデンからなる金属層を形成する第3工程と、
     所定のエッチング処理により前記金属層からゲート電極を形成する第4工程と、
     前記ゲート電極上にゲート絶縁膜を形成する第5工程と、
     前記ゲート絶縁膜上に非結晶半導体層を形成する第6工程と、
     前記非結晶半導体層に対して700℃から900℃の温度範囲の温度にてアニール処理を行い、前記非結晶半導体層を結晶化して多結晶半導体層を形成する第7工程と、
     前記多結晶半導体層の上方にソース電極及びドレイン電極を形成する第8工程と、を含み、
     前記第2工程より後から第7工程より前の段階において少なくとも1回、前記アンダーコート層の少なくともゲート電極形成領域に向けて、所定の還元反応処理を行う工程を含む、
     表示用薄膜半導体装置の製造方法。
  2.  前記所定の還元反応処理を前記第4工程から前記第7工程までの間に行う場合は、前記アンダーコート層と前記ゲート電極との界面に向けて当該所定の還元反応処理を行う
     請求項1記載の表示用薄膜半導体装置の製造方法。
  3.  前記所定の還元反応処理は、前記アンダーコート層と前記ゲート電極との界面近傍での酸素濃度を低減する処理である、
     請求項2記載の表示用薄膜半導体装置の製造方法。
  4.  前記所定の還元反応処理を前記第3工程と前記第4工程の間に行う場合は、前記アンダーコート層と前記金属層との界面に向けて当該所定の還元反応処理を行う
     請求項1記載の表示用薄膜半導体装置の製造方法。
  5.  前記所定の還元反応処理は、前記アンダーコート層と前記金属層との界面近傍での酸素濃度を低減する処理である、
     請求項4記載の表示用薄膜半導体装置の製造方法。
  6.  前記所定の還元反応処理を前記第2工程と前記第3工程の間に行う場合は、前記アンダーコート層のゲート電極形成領域に向けて当該所定の還元反応処理を行う
     請求項1記載の表示用薄膜半導体装置の製造方法。
  7.  前記所定の還元反応処理は、前記アンダーコート層のゲート電極形成領域の表面近傍での酸素濃度を低減する処理である、
     請求項6記載の表示用薄膜半導体装置の製造方法。
  8.  前記アンダーコート層は、窒化膜からなる層である、
     請求項1ないし請求項7のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  9.  前記ガラス基板に含有される不純物は、ナトリウム又はリンである、
     請求項1ないし請求項8のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  10.  前記ガラス基板は、酸素原子を主成分として含み、
     前記アンダーコート層は、前記ガラス基板より酸素原子との結合力が弱く、
     前記モリブデンは、前記ガラス基板より酸素原子との結合力が弱く前記アンダーコート層より酸素原子との結合力が強い
     請求項1ないし請求項9のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  11.  前記第7工程と前記第8工程との間に、前記多結晶半導体層上に第2の非結晶半導体層を形成する工程を設け、
     前記第8工程において、前記第2の非結晶半導体層上に前記ソース電極及び前記ドレイン電極を形成する、
     請求項1ないし請求項10のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  12.  前記多結晶半導体層は、平均粒径が20nmから60nmの微結晶半導体層を含む、
     請求項1ないし請求項11のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  13.  前記所定の還元反応処理は、前記第4工程と前記第5工程との間においてなされる、
     請求項1~3、8~12のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  14.  前記所定の還元反応処理は、前記第5工程と前記第6工程との間においてなされる、
     請求項1~3、8~12のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  15.  前記所定の還元反応処理は、前記第6工程と前記第7工程との間においてなされる、
     請求項1~3、8~12のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  16.  前記所定の還元反応処理は、前記第3工程と前記第4工程との間においてなされる、
     請求項1、3、4、8~12のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  17.  前記所定の還元反応処理は、前記第2工程と前記第3工程との間においてなされる、
     請求項1、6~12のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  18.  前記所定の還元反応処理は、水素プラズマ処理である、
     請求項1ないし請求項17のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  19.  前記アンダーコート層上に前記ゲート電極が形成された前記ガラス基板を、前記水素プラズマ処理を行うためのチャンバ内に配置し、
     前記水素プラズマ処理を行う際の高周波パワーは75Wから200Wの範囲内であって、当該高周波パワーによる処理時間は15秒から60秒の範囲内とする、
     請求項18記載の表示用薄膜半導体装置の製造方法。
  20.  前記所定の還元反応処理は、水素雰囲気アニール処理である、
     請求項1ないし請求項17のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
  21.  前記所定の還元反応処理は、水蒸気アッシング処理である、
     請求項1ないし請求項17のいずれか1項に記載の表示用薄膜半導体装置の製造方法。
PCT/JP2010/003404 2010-05-20 2010-05-20 表示用薄膜半導体装置の製造方法 WO2011145149A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/003404 WO2011145149A1 (ja) 2010-05-20 2010-05-20 表示用薄膜半導体装置の製造方法
JP2012515729A JPWO2011145286A1 (ja) 2010-05-20 2011-05-10 表示用薄膜半導体装置の製造方法
PCT/JP2011/002582 WO2011145286A1 (ja) 2010-05-20 2011-05-10 表示用薄膜半導体装置の製造方法
US13/679,313 US8623715B2 (en) 2010-05-20 2012-11-16 Method for fabricating thin-film semiconductor device for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003404 WO2011145149A1 (ja) 2010-05-20 2010-05-20 表示用薄膜半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2011145149A1 true WO2011145149A1 (ja) 2011-11-24

Family

ID=44991276

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/003404 WO2011145149A1 (ja) 2010-05-20 2010-05-20 表示用薄膜半導体装置の製造方法
PCT/JP2011/002582 WO2011145286A1 (ja) 2010-05-20 2011-05-10 表示用薄膜半導体装置の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002582 WO2011145286A1 (ja) 2010-05-20 2011-05-10 表示用薄膜半導体装置の製造方法

Country Status (3)

Country Link
US (1) US8623715B2 (ja)
JP (1) JPWO2011145286A1 (ja)
WO (2) WO2011145149A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019752A (zh) * 2016-07-29 2016-10-12 深圳市华星光电技术有限公司 一种液晶显示面板及制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069056A1 (ja) 2011-11-09 2013-05-16 パナソニック株式会社 薄膜形成基板及び薄膜形成方法
KR102141977B1 (ko) * 2012-07-20 2020-08-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
CN108305938B (zh) * 2017-01-12 2020-03-31 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法、阵列基板、显示装置
US11587789B2 (en) * 2020-03-06 2023-02-21 Applied Materials, Inc. System and method for radical and thermal processing of substrates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252166A (ja) * 1986-04-24 1987-11-02 Matsushita Electronics Corp シヨツトキ−バリアダイオ−ド
JPH0645607A (ja) * 1992-07-21 1994-02-18 Hitachi Ltd 液晶表示装置及びその製造方法
JPH06283423A (ja) * 1992-06-15 1994-10-07 Kawasaki Steel Corp 多結晶シリコン膜の形成方法
JPH09293870A (ja) * 1996-04-25 1997-11-11 Sony Corp 半導体装置およびその製造方法
JP2002329701A (ja) * 2001-02-28 2002-11-15 Matsushita Electric Ind Co Ltd 半導体基板およびそれを用いた表示装置およびその製造方法および製造装置
JP2009283930A (ja) * 2008-04-25 2009-12-03 Semiconductor Energy Lab Co Ltd 薄膜トランジスタ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437035A (ja) 1990-06-01 1992-02-07 Fuji Xerox Co Ltd 薄膜半導体装置
US5466641A (en) 1992-06-15 1995-11-14 Kawasaki Steel Corporation Process for forming polycrystalline silicon film
WO1999041777A1 (fr) 1998-02-13 1999-08-19 Seiko Epson Corporation Procede de production d'un dispositif semi-conducteur et appareil de traitement a chaud
JP4494451B2 (ja) * 1998-08-21 2010-06-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6246070B1 (en) 1998-08-21 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device provided with semiconductor circuit made of semiconductor element and method of fabricating the same
JP3908128B2 (ja) * 2001-09-07 2007-04-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6844523B2 (en) 2001-09-07 2005-01-18 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for a semiconductor device, semiconductor device and electronic equipment
JP3904512B2 (ja) * 2002-12-24 2007-04-11 シャープ株式会社 半導体装置およびその製造方法、並びに半導体装置を備えた電子機器
US8310152B2 (en) 2007-12-10 2012-11-13 Panasonic Corporation Organic EL device and EL display panel having a low driving voltage and high light emitting frequency, and method for manufacturing
JP5138542B2 (ja) 2008-10-24 2013-02-06 パナソニック株式会社 有機エレクトロルミネッセンス素子及びその製造方法
CN102379041A (zh) 2010-06-21 2012-03-14 松下电器产业株式会社 薄膜晶体管阵列器件、有机el显示装置以及薄膜晶体管阵列器件的制造方法
JP5891504B2 (ja) 2011-03-08 2016-03-23 株式会社Joled 薄膜トランジスタアレイ装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252166A (ja) * 1986-04-24 1987-11-02 Matsushita Electronics Corp シヨツトキ−バリアダイオ−ド
JPH06283423A (ja) * 1992-06-15 1994-10-07 Kawasaki Steel Corp 多結晶シリコン膜の形成方法
JPH0645607A (ja) * 1992-07-21 1994-02-18 Hitachi Ltd 液晶表示装置及びその製造方法
JPH09293870A (ja) * 1996-04-25 1997-11-11 Sony Corp 半導体装置およびその製造方法
JP2002329701A (ja) * 2001-02-28 2002-11-15 Matsushita Electric Ind Co Ltd 半導体基板およびそれを用いた表示装置およびその製造方法および製造装置
JP2009283930A (ja) * 2008-04-25 2009-12-03 Semiconductor Energy Lab Co Ltd 薄膜トランジスタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019752A (zh) * 2016-07-29 2016-10-12 深圳市华星光电技术有限公司 一种液晶显示面板及制作方法
WO2018018855A1 (zh) * 2016-07-29 2018-02-01 深圳市华星光电技术有限公司 一种液晶显示面板及制作方法
CN106019752B (zh) * 2016-07-29 2020-05-05 深圳市华星光电技术有限公司 一种液晶显示面板及制作方法

Also Published As

Publication number Publication date
JPWO2011145286A1 (ja) 2013-07-22
US20130071972A1 (en) 2013-03-21
US8623715B2 (en) 2014-01-07
WO2011145286A1 (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
US7115453B2 (en) Semiconductor device and manufacturing method of the same
TWI382471B (zh) 多晶矽製造方法、以之製造之tft、tft製造方法及含該tft之有機發光二極體顯示裝置
KR101043508B1 (ko) 박막 트랜지스터 기판 및 표시 디바이스
KR101263726B1 (ko) 폴리실리콘을 이용한 박막트랜지스터를 포함하는 어레이 기판 및 이의 제조방법
US7227187B2 (en) Semiconductor device and manufacturing method thereof
JP5820402B2 (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
JP5508535B2 (ja) 半導体薄膜の形成方法、半導体装置、半導体装置の製造方法、基板及び薄膜基板
WO2013005250A1 (ja) 薄膜トランジスタおよびその製造方法ならびに表示装置
JP6085758B2 (ja) 薄膜トランジスタ及び薄膜トランジスタの製造方法
WO2013118233A1 (ja) 薄膜半導体装置の製造方法及び薄膜半導体装置
WO2011145149A1 (ja) 表示用薄膜半導体装置の製造方法
WO2012153364A1 (ja) 表示用薄膜半導体装置及び表示用薄膜半導体装置の製造方法
KR20040013273A (ko) 박막 트랜지스터 및 그 제조방법
WO2013001579A1 (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
WO2013061553A1 (ja) 薄膜半導体装置及びその製造方法
KR101599280B1 (ko) 어레이 기판의 제조방법
KR101588448B1 (ko) 폴리실리콘을 이용한 박막트랜지스터를 포함하는 어레이 기판 및 이의 제조방법
JP5253990B2 (ja) 薄膜トランジスタ
JPH10189499A (ja) 半導体装置の製造方法
JP2009010242A (ja) 表示装置及びその製造方法
WO2013018126A1 (ja) 薄膜トランジスタ及びその製造方法
JP2000323717A (ja) 薄膜トランジスタおよびこの薄膜トランジスタの製造方法
JP2003059942A (ja) 薄膜トランジスタの製造方法
JPWO2013005250A1 (ja) 薄膜トランジスタおよびその製造方法ならびに表示装置
JP2005093651A (ja) 薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP