WO2012117902A1 - 硬化性組成物 - Google Patents
硬化性組成物 Download PDFInfo
- Publication number
- WO2012117902A1 WO2012117902A1 PCT/JP2012/054181 JP2012054181W WO2012117902A1 WO 2012117902 A1 WO2012117902 A1 WO 2012117902A1 JP 2012054181 W JP2012054181 W JP 2012054181W WO 2012117902 A1 WO2012117902 A1 WO 2012117902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- acid
- organic polymer
- polymer
- curable composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J171/00—Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
- C09J171/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2642—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
- C08G65/2645—Metals or compounds thereof, e.g. salts
- C08G65/2663—Metal cyanide catalysts, i.e. DMC's
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/336—Polymers modified by chemical after-treatment with organic compounds containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08L101/10—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
- C09J201/02—Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C09J201/10—Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
Definitions
- an organic heavy group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and having a silicon group capable of forming a crosslink by forming a siloxane bond hereinafter also referred to as “reactive silicon group”.
- the present invention relates to a curable composition useful as a contact-type adhesive containing the polymer and the organic polymer.
- Adhesive is applied to both sides of the adherend, and after leaving it for a certain period of time (after taking open time), contact adhesives that are pasted using initial tack (initial tackiness) are temporarily fixed or temporarily pressed. Has been used for a long time since it is easy to use and has excellent balance of other physical properties.
- contact adhesives are solvent-type adhesives in which polymers such as natural rubber and synthetic rubber are dissolved in organic solvents (solid content 20-35%). There was a problem.
- Patent Document 1 discloses an adhesive composed of a modified silicone polymer and a (meth) acrylate copolymer having a reactive silicon group.
- this adhesive takes a long time to develop tack (tackiness), and does not have a sufficiently satisfactory performance as an alternative to the current solvent contact adhesive.
- Patent Documents 2 and 3 disclose contact adhesives comprising a polymer having a trialkoxysilyl group, a polymer having a dialkoxysilyl group, and a (meth) acrylate copolymer.
- JP-A-3-263478 Japanese Patent Laid-Open No. 10-251552 JP 2001-220568 A
- An object of the present invention is to provide a curable composition useful as a contact adhesive that has a high initial tackiness speed, a high tack strength, and a long duration of tackiness. is there.
- the present inventor as a result of combining organic polymers having a specific molecular weight and a specific number of reactive silicon groups, can be used as an initial adhesive property useful as a contact adhesive. Has been found to be expressed, and the present invention has been completed.
- the present invention (1). It is a linear organic polymer, and is represented by the organic polymer (P) having a reactive silicon group represented by the following general formula (1) only at one end, and the following general formula (2) A curable composition containing a reactive silicon group-containing organic polymer (Q) having a reactive silicon group,
- V represents a divalent hydrocarbon group having 1 to 8 carbon atoms
- X represents a hydroxyl group or a hydrolyzable group.
- R 1 represents a hydrocarbon group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by R 0 3 SiO—.
- R 0 are hydrocarbon groups having 1 to 20 carbon atoms, which may be the same or different, V is a divalent hydrocarbon group having 1 to 8 carbon atoms, X is A hydroxyl group or a hydrolyzable group, d is either 1 or 2.
- R 1 and X When a plurality of R 1 and X are present, they may be the same or different.
- the curing catalyst (H) contains a tin-based compound, and the content thereof is 2 parts by weight or less with respect to 100 parts by weight of the total amount of (P) and (Q).
- the curable composition according to any one of 1 to 10 which contains silica and / or calcium carbonate as a filler (F), (12).
- a contact adhesive comprising as a component the curable composition according to any one of 1 to 12, About.
- the curable composition containing the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q) of the present invention exhibits initial adhesive properties useful as a contact adhesive.
- the reactive silicon group-containing organic polymer (P) of the present invention is particularly limited as long as it is a linear organic polymer having a reactive silicon group represented by the following general formula (1) only at one end. It will never be done.
- -V-SiX 3 (1) In the formula, V represents a divalent hydrocarbon group having 1 to 8 carbon atoms, and X represents a hydroxyl group or a hydrolyzable group. When a plurality of X are present, they may be the same or different. .
- X in the general formula (1) represents a hydroxyl group or a hydrolyzable group.
- the hydrolyzable group is not particularly limited, and examples thereof include known hydrolyzable groups such as a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an amino group. Examples thereof include an oxy group, a mercapto group, and an alkenyloxy group.
- a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable.
- An alkoxy group such as a group is more preferable, and a methoxy group and an ethoxy group are particularly preferable.
- the main chain structure of the reactive silicon group-containing organic polymer (P) of the present invention is not particularly limited as long as it is other than a (meth) acrylic acid alkyl ester-based (co) polymer, and has various main chain structures. Things can be used.
- main chain structure examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc.
- Polyoxyalkylene polymers ethylene-propylene copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or copolymers of butadiene and acrylonitrile and / or styrene , Polybutadiene, isoprene or copolymers of butadiene and acrylonitrile, styrene, etc., hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; 2 such as adipic acid Polyester polymer obtained by condensation of basic acid and glycol, or ring-opening polymerization of lactones; polysulfide-based polymer; by condensation polymerization of nylon 6, hexamethylenediamine and adipic acid by ring-opening polymerization of ⁇ -caprolactam Nylon 6 ⁇ 6, Nylon 6 ⁇ 10 by condensation
- saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, hydrogenated polybutadiene, and polyoxyalkylene polymers have relatively low glass transition temperatures and high initial adhesive strength.
- the glass transition temperature of the reactive silicon group-containing organic polymer (P) of the present invention is not particularly limited, but is preferably 20 ° C. or less, more preferably 0 ° C. or less, and ⁇ 20 ° C. It is particularly preferred that The glass transition temperature is a value obtained by DSC measurement.
- polyoxyalkylene polymers are particularly preferable because they have high moisture permeability and are excellent in deep-part curability when formed into a one-component composition, and also have excellent adhesiveness.
- the polyoxyalkylene polymer is a polymer having a repeating unit represented by —R 6 —O— (wherein R 6 is a linear or branched alkylene group having 1 to 14 carbon atoms), and R 6 is more preferably a linear or branched alkylene group having 2 to 4 carbon atoms.
- repeating unit represented by —R 6 —O— examples include —CH 2 O—, —CH 2 CH 2 O—, —CH 2 CH (CH 3 ) O—, —CH 2 CH (C 2 H 5 ) O—, —CH 2 C (CH 3 ) (CH 3 ) O—, —CH 2 CH 2 CH 2 CH 2 O—, and the like.
- the main chain structure of the polyoxyalkylene polymer may consist of only one type of repeating unit or may consist of two or more types of repeating units.
- those composed of a polyoxypropylene-based polymer having a repeating unit of oxypropylene of 50% by weight or more, preferably 80% by weight or more of the polymer main chain structure are amorphous. From the viewpoint of quality and relatively low viscosity.
- the main chain structure of the organic polymer needs to be linear. By being linear, the entanglement between the molecular chains increases, and the effect of improving the initial adhesiveness can be obtained.
- the polyoxyalkylene polymer is preferably obtained by a ring-opening polymerization reaction of a cyclic ether compound using a polymerization catalyst in the presence of an initiator.
- cyclic ether compound examples include ethylene oxide, propylene oxide, butylene oxide, tetramethylene oxide, and tetrahydrofuran. These cyclic ether compounds may be used alone or in combination of two or more. Among these cyclic ether compounds, it is particularly preferable to use propylene oxide because an amorphous and relatively low viscosity polyether polymer can be obtained.
- the initiator include ethylene glycol, propylene glycol, butanediol, hexamethylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, triethylene glycol, allyl alcohol, methanol, ethanol, propanol, butanol, and pentanol.
- Alcohols such as hexanol; polyoxyalkylene polymers such as polyoxypropylene diol, polyoxyethylene diol, polyoxypropylene monool, polyoxyethylene monool having a number average molecular weight of 300 to 4,000, etc. Can be given.
- Examples of the method for synthesizing a polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH, and a complex obtained by reacting an organoaluminum compound with porphyrin as disclosed in JP-A-61-215623.
- Polymerization method using transition metal compound-porphyrin complex catalyst Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No. 3,427,256, US Pat. No. 3,427,334, Polymerization method using double metal cyanide complex catalyst as shown in US Pat. No.
- the main chain structure of the reactive silicon group-containing organic polymer (P) of the present invention other bonding components such as a urethane bond and a urea bond are included in the main chain structure as long as the effects of the present invention are not significantly impaired.
- the polyurethane prepolymer can be obtained by a known method. For example, it can be obtained by reacting a polyol compound and a polyisocyanate compound.
- polyol compound examples include polyether polyol, polyester polyol, polycarbonate polyol, and polyether polyester polyol.
- polyisocyanate compound examples include diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, methylene-bis (cyclohexyl isocyanate), isophorone diisocyanate, hexamethylene diisocyanate, and the like.
- the polyurethane prepolymer may have either a hydroxyl group or an isocyanate group at the end.
- a cured product obtained from a curable composition using a polymer having a urethane bond, a urea bond, and / or an ester bond in the main chain structure of the reactive silicon group-containing organic polymer (P) of the present invention The main chain may be cleaved at the urethane bond, urea bond, and / or ester bond portion due to heat or the like, and the strength of the cured product may be significantly reduced.
- An amide bond (—NR 7 —C ( ⁇ O) —; R 7 represents a hydrogen atom or a substituted or unsubstituted organic group) in the main chain skeleton of the reactive silicon group-containing organic polymer (P) of the present invention.
- R 7 represents a hydrogen atom or a substituted or unsubstituted organic group
- the viscosity of a polymer may become high.
- a viscosity may rise after storage, and workability
- the amide bond may be cleaved by heat or the like.
- the average number of amide bonds is 1 to 10, preferably 1.5 to 5, more preferably 2 to 3, per molecule.
- the number is less than 1, the curability may not be sufficient.
- the polymer may have a high viscosity and may be difficult to handle.
- the main chain structure of the reactive silicon group-containing organic polymer (P) of the present invention in the main chain structure from the viewpoint of obtaining a curable composition excellent in storage stability and workability.
- the reactive silicon group-containing organic polymer (P) of the present invention is preferably obtained by the following method (a) and / or (b).
- a reactive silicon group-containing polyoxyalkylene polymer is preferably obtained by the following method (a) and / or (b).
- an isocyanate methylsilane compound represented by OCN—CH 2 —SiX 3 (wherein X is the same as described in the general formula (1)), a reactive silicon group-containing polyurethane prepolymer.
- the polymer obtained by the method (a) is preferable because it has a lower viscosity than the reactive silicon group-containing organic polymer obtained by the method (b) or (b1).
- the method (b) is preferable because a high conversion rate can be obtained in a relatively short reaction time.
- the molecular weight distribution (Mw / Mn) of the reactive silicon group-containing organic polymer (P) is preferably 1.6 or less, more preferably 1.5 or less, and particularly preferably 1.4 or less.
- the number average molecular weight of the reactive silicon group-containing organic polymer (P) is preferably 22,000 to 100,000 in terms of polystyrene-reduced number average molecular weight (Mn) by gel permeation chromatography (GPC). 25,000 to 50,000 is more preferable.
- Mn polystyrene-reduced number average molecular weight
- GPC gel permeation chromatography
- the reactive silicon group needs to be present only at one end of the linear organic polymer. If the organic polymer containing the reactive silicon group represented by the general formula (1) is contained at both ends, the surface of the adhesive is immediately cured (skinned) at the initial stage of curing. Will lose its stickiness.
- the organic polymer containing the reactive silicon group represented by the general formula (1) at both ends preferably contains only 5% by weight or less in the curable composition, and contains only 1% by weight or less. Is preferable, and it is preferable not to contain substantially.
- the number of reactive silicon groups in the organic polymer (P) needs to be 0.5 to 1.0 on average per molecule. If it is less than 0.5, the strength of the cured product tends to be low, and sufficient adhesive strength tends not to be obtained.
- the number of reactive silicon groups is more preferably 0.6 to 1.0, still more preferably 0.7 to 1.0, and most preferably 0.8 to 1.0.
- the average number of reactive silicon groups in the reactive silicon group-containing organic polymer (P) is determined by a method in which protons on carbon to which the reactive silicon groups are directly bonded are quantified by a high resolution 1 H-NMR measurement method. It is defined as the average number obtained.
- the reactive silicon group is added to the organic polymer precursor before the reactive silicon group is introduced.
- the organic polymer precursor in which no reactive silicon group is introduced and the modified organic polymer precursor in which no by-product reactive silicon group is introduced have the same main chain structure.
- the calculation is performed by including it in the parameter (number of molecules) when calculating the average number of reactive silicon groups in one molecule.
- the reactive silicon group-containing organic polymer (Q) of the present invention is not particularly limited as long as it is an organic polymer having a reactive silicon group represented by the following general formula (2) at the molecular chain terminal. . -V-SiR 1 d X 3-d (2) (Wherein R 1 represents a hydrocarbon group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by R 0 3 SiO—.
- R 0 are hydrocarbon groups having 1 to 20 carbon atoms, which may be the same or different, V is a divalent hydrocarbon group having 1 to 8 carbon atoms, X is A hydroxyl group or a hydrolyzable group, d is either 1 or 2. When a plurality of R 1 and X are present, they may be the same or different.
- X in the general formula (2) represents a hydroxyl group or a hydrolyzable group. It does not specifically limit as a hydrolysable group, A well-known hydrolysable group is mention
- the number of X in the present invention, only the organic polymer (P) reacts first to develop tackiness at the initial stage of curing, and then the organic polymer (Q) reacts to ensure the final adhesive strength. Is a design to do. Therefore, when the number of X is 3 (d in the general formula (2) is 0), the organic polymer (Q) and the organic polymer (P) react simultaneously, and the above effect is obtained. Hateful. Therefore, the number of X is preferably 1 or 2, and the number of X is most preferably 2 because curability, storage stability, and the obtained cured product exhibits good rubber elasticity.
- R 1 in the general formula (2) is not particularly limited, and examples thereof include alkyl groups such as a methyl group and an ethyl group; cycloalkyl groups such as a cyclohexyl group; aryl groups such as a phenyl group; aralkyl groups such as a benzyl group; Of these, a methyl group is particularly preferred.
- bonding group V in the general formula (2) include, for example, —CH 2 —, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 — and the like.
- a divalent linking group consisting of the following hydrocarbon groups.
- Specific examples of the group represented by —SiR 1 d X 3-d in the general formula (2) include a dimethoxymethylsilyl group, a diethoxymethylsilyl group, a diisopropoxymethylsilyl group, a methoxydimethylsilyl group, and an ethoxydimethyl group. Examples thereof include a silyl group.
- a dimethoxymethylsilyl group is particularly preferred because of a difference in reactivity with the organic polymer (P) and good initial adhesion performance.
- the main chain structure of the reactive silicon group-containing organic polymer (Q) of the present invention is not particularly limited, and has the same structure as the main chain structure described above for the reactive silicon group-containing organic polymer (P). Can be used. Among these, a main chain structure derived from polyoxypropylene diol and / or polyoxypropylene triol is preferable, and a main chain structure derived from polyoxypropylene diol is more preferable.
- the reactive silicon group-containing organic polymer (Q) of the present invention is preferably obtained by the following method (c).
- (C) After converting the terminal hydroxyl group of the hydroxyl group-terminated polyoxyalkylene polymer to an allyl group, the silane compound represented by HSiR 1 d X 3-d (R 1 , X, and d are each represented by the general formula (2))
- the molecular weight distribution (Mw / Mn) of the reactive silicon group-containing organic polymer (Q) is preferably 1.6 or less, more preferably 1.5 or less, and particularly preferably 1.4 or less.
- the reactive silicon group-containing organic polymer (Q) may be used alone or in combination of two or more.
- the number average molecular weight of the reactive silicon group-containing organic polymer (Q) is preferably 3,000 to 100,000, more preferably 5,000 to 50,000, and more preferably 8,000 to 35, in terms of polystyrene by GPC measurement. Is particularly preferred, and 10,000 to 20,000 is most preferred.
- the number of reactive silicon groups in the reactive silicon group-containing organic polymer (Q) should be 1.0 to 3.0 on average per molecule.
- the number is preferably 1.2 to 2.5, and most preferably 1.4 to 2.0.
- the number of reactive silicon groups per molecule is less than 1.0, the curability becomes insufficient and it becomes difficult to develop good rubber elastic behavior.
- the main chain structure of the reactive silicon group-containing organic polymer (Q) is preferably a linear structure or a branched structure having 1 to 6 branches, and the linear or branched number is 1 to 2.
- the branched structure is more preferable, and a linear or branched structure having one branch is particularly preferable. If the number of terminals having reactive silicon groups bonded in one molecule is excessively increased, the crosslink density is increased and it is difficult to obtain good rubber elasticity.
- the reactive silicon group may be present at either the end of the main chain of the molecular chain of the organic polymer, the end of the side chain, or both.
- the reactive silicon group when the reactive silicon group is at the end of the main chain of the molecular chain, the molecular weight between the cross-linking points becomes long, so that it is easy to obtain a rubber-like cured product having high strength, high elongation, and low elastic modulus. To preferred.
- the ratio of the reactive silicon group-containing organic polymer (P) exceeds 60 parts by weight, curing tends to be insufficient and the final adhesive strength tends to be low.
- it becomes less than 5 weight part there exists a tendency for initial adhesiveness to become difficult to be acquired.
- the molecular weight of the polymer (P) may be higher than the molecular weight of the polymer (Q). is necessary.
- the polymer (P) plays a role of reacting at the initial stage of curing and developing adhesiveness. At this time, a higher molecular weight is preferable because the speed of developing tackiness is high and the strength tends to increase.
- the polymer (Q) plays a role of lowering the viscosity of the composition and curing after the polymer (P) to increase the final strength of the adhesive.
- the molecular weight of the polymer (Q) needs to be lower than that of the polymer (P). Further, the lower the molecular weight, the higher the crosslink density of the resulting rubber elastic body, and the higher the strength as an adhesive. It tends to be high, which is preferable.
- the molecular weight of the polymer (Q) is preferably 5,000 or more lower than the molecular weight of the polymer (P).
- the curable composition of the present invention promotes a reaction in which the reactive silicon group of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q) are crosslinked by hydrolyzing and condensing. Therefore, it is preferable to add a curing catalyst (H).
- the condensation catalyst is not particularly limited and may be a known catalyst.
- the reactive silicon group-containing organic polymer (P) represented by the general formula (1) and The reaction time with the reactive silicon group-containing organic polymer (Q) represented by the general formula (2) is likely to be different, that is, the polymer (P) reacts in a very short time, while the polymer (Q ) React slowly over time.
- the amine compound used as the curing catalyst is not particularly limited.
- amidines such as 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, DBU, DBA-DBU and DBN
- guanidines such as guanidine, phenylguanidine and diphenylguanidine
- butylbiguanide, 1 Biguanides such as -o-tolyl biguanide and 1-phenyl biguanide are preferable because they exhibit high activity, and aryl group-substituted biguanides such as 1-o-tolyl biguanide and 1-phenyl biguanide can be expected to have high adhesiveness.
- aryl group-substituted biguanides such as 1-o-tolyl biguanide and 1-phenyl biguanide can be expected to have high adhesiveness.
- aryl group-substituted biguanides such as 1-o-tolyl biguanide and 1-phenyl biguanide can be expected to have high adhesiveness. preferable.
- An amine compound is basic, but an amine compound in which the conjugate acid has a pKa value of 11 or more is preferable because of its high catalytic activity. 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine , DBU, DBN and the like are particularly preferable because the pKa value of the conjugate acid is 12 or more and high catalytic activity is exhibited.
- ketimine compound that generates the amine compound by hydrolysis can also be used as a curing catalyst.
- the amount used is 0.01 with respect to a total of 100 parts by weight of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q). Is preferably 20 parts by weight, more preferably 0.1-15 parts by weight, and particularly preferably 0.5-10 parts by weight. If the amount of the condensation catalyst used is less than 0.01 parts by weight, the curing rate may be insufficient, and the curing reaction may not proceed sufficiently. On the other hand, when the amount of the condensation catalyst used exceeds 20 parts by weight, the curing rate is too high, and the time that the curable composition can be used tends to be short, resulting in poor workability and poor storage stability.
- Examples of the tin compound used as the curing catalyst of the present invention include dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctate, dibutyltin diethylhexanolate, dibutyltin dimethyl maleate, dibutyltin Diethyl maleate, dibutyl tin dibutyl maleate, dibutyl tin dioctyl maleate, dibutyl tin ditridecyl maleate, dibutyl tin dibenzyl maleate, dibutyl tin diacetate, dioctyl tin diethyl maleate, dioctyl tin dioctyl maleate, dibutyl tin dimethoxide , Dibutyltin dinonylphenoxide, dibutenyltin
- dibutyltin dilaurate and dioctyltin dilaurate are preferred.
- these catalysts are used, a difference in the curing reaction rate between the organic polymer (P) and the organic polymer (Q) tends to occur, and good adhesiveness can be obtained for a long time at the initial stage of curing.
- the amount used is 2 with respect to a total of 100 parts by weight of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q). Must be less than or equal to parts by weight.
- a more preferable use amount when a tin compound is used as a curing catalyst is 1 for a total of 100 parts by weight of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q). It is 0.01 parts by weight or more, more preferably 0.5 parts by weight or less and 0.1 parts by weight or more.
- a known condensation catalyst can be used in addition to the amine compound and the tin compound.
- carboxylic acids can be used.
- Linear saturated fatty acids such as acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melicic acid, and laccelic acid;
- Aliphatic dicarboxylic acids include adipic acid, azelaic acid, pimelic acid, suberic acid, sebacic acid, glutaric acid, oxalic acid, malonic acid, ethylmalonic acid, dimethylmalonic acid, ethylmethylmalonic acid, diethylmalonic acid, succinic acid 2,2-dimethylsuccinic acid, 2,2-diethylsuccinic acid, chain dicarboxylic acids such as 2,2-dimethylglutaric acid, 1,2,2-trimethyl-1,3-cyclopentanedicarboxylic acid, And saturated dicarboxylic acids such as acetic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, acetylenedicarboxylic acid, and itaconic acid.
- aliphatic polycarboxylic acid examples include chain tricarboxylic acids such as aconitic acid, citric acid, isocitric acid, 3-methylisocitric acid, and 4,4-dimethylaconitic acid.
- Aromatic carboxylic acids include benzoic acid, 9-anthracene carboxylic acid, atrolactic acid, anisic acid, isopropyl benzoic acid, salicylic acid, toluic acid, etc .; phthalic acid, isophthalic acid, terephthalic acid, carboxyphenyl And aromatic polycarboxylic acids such as acetic acid and pyromellitic acid.
- amino acids such as alanine, leucine, threonine, aspartic acid, glutamic acid, arginine, cysteine, methionine, phenylalanine, tryptophan, histidine and the like can be mentioned.
- carboxylic acid derivative etc. which produce carboxylic acid by hydrolysis of carboxylic anhydride, ester, amide, nitrile, acyl chloride, etc. can also be used.
- carboxylic acid used as the curing catalyst 2-ethylhexanoic acid, octylic acid, neodecanoic acid, oleic acid, naphthenic acid, etc. are easily available, inexpensive, and reactive silicon group-containing organic polymer ( P) and the compatibility with the reactive silicon group-containing organic polymer (Q) are preferable because of good compatibility.
- metal compounds can be used as curing catalysts.
- titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, titanium tetraacetylacetonate, bisacetylacetonatodiisopropoxytitanium; aluminum trisacetylacetonate, aluminum trisethylacetoacetate, diisopropoxyaluminum ethylacetoacetate, etc.
- Organoaluminum compounds; zirconium compounds such as zirconium tetraacetylacetonate are listed.
- the curing catalyst two or more different types of catalysts may be used in combination.
- the curable composition of the present invention is a (meth) acrylic acid alkyl ester-based (co) polymer (R) (hereinafter referred to as a (co) polymer (in order to improve initial adhesive properties and to enhance adhesiveness). R) may also be described.) Is preferably added.
- (Meth) acrylic acid alkyl ester (co) polymer is a polymer composed of one (meth) acrylic acid alkyl ester compound as a repeating unit, and a plurality of (meth) acrylic acid alkyl ester compounds as repeating units. And a copolymer composed of one or a plurality of (meth) acrylic acid alkyl ester compounds as repeating units and a compound copolymerizable therewith.
- the description method “(meth) acrylic acid alkyl ester” refers to an acrylic acid alkyl ester and / or a methacrylic acid alkyl ester, and also has the same meaning in the subsequent description methods.
- the (meth) acrylic acid alkyl ester compound used as the repeating unit is not particularly limited and includes conventionally known compounds such as methyl acrylate, ethyl acrylate, n-propyl acrylate, and n-acrylic acid.
- the methacrylic acid ester compound is not particularly limited, and examples thereof include conventionally known compounds, such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, methacrylic acid.
- Tert-butyl acid Tert-butyl acid, n-hexyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, undecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, myristyl methacrylate, cetyl methacrylate, stearyl methacrylate, behenyl methacrylate, methacryl Examples include acid biphenyl.
- the main chain skeleton of the (meth) acrylic acid alkyl ester-based (co) polymer (R) is substantially composed of one or two or more (meth) acrylic acid alkyl ester compounds. Consisting of the above compound means that the proportion of the repeating unit derived from the (meth) acrylic acid alkyl ester compound present in the (co) polymer (R) exceeds 50%. Moreover, the ratio of the repeating unit derived from the (meth) acrylic acid alkyl ester compound present in the (co) polymer (R) is preferably 70% or more.
- the alkyl (meth) acrylate having a molecular chain substantially having (r-1) an alkyl group having 1 to 8 carbon atoms.
- a copolymer comprising an ester compound and (r-2) a (meth) acrylic acid alkyl ester compound having an alkyl group having 10 or more carbon atoms hereinafter sometimes referred to as (co) polymer (R) -a). ) Is preferred.
- R 3 described in the general formula (3) is not particularly limited, and examples thereof include 1 to C carbon atoms such as a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group, and a 2-ethylhexyl group.
- R 3 contained in the (co) polymer (R) -a is not necessarily limited to one type of alkyl group.
- R 4 described in the general formula (4) is not particularly limited, and examples thereof include, for example, a lauryl group, a tridecyl group, a cetyl group, a stearyl group, an alkyl group having 22 carbon atoms, a carbon number of 10 or more such as a biphenyl group, and the like. Includes 10-30, preferably 10-20, long-chain alkyl groups. Note that R 4 contained in the (co) polymer (R) -a is not necessarily limited to one type of alkyl group.
- the molecular chain of the (co) polymer (R) -a is substantially composed of the compounds (r-1) and (r-2). )) Means that the proportion of repeating units derived from the compounds (r-1) and (r-2) present in the (co) polymer (R) -a exceeds 50%.
- the ratio of repeating units derived from the compounds (r-1) and (r-2) present in the (co) polymer (R) -a is preferably 70% or more.
- an organic polymer having a reactive silicon group (P ) And (Q) and the (co) polymer (R) -a are reduced in compatibility, tend to become cloudy, and tend to deteriorate the adhesive properties of the cured product.
- the ratio of the repeating units derived from the compounds (r-1) and (r-2) present in the (co) polymer (R) -a is the weight ratio (derived from (r-1): (r- 2) Origin) is preferably 95: 5 to 40:60, more preferably 90:10 to 60:40.
- the ratio is larger than 95: 5, the compatibility is lowered, and when it is smaller than 40:60, the cost tends to be disadvantageous.
- the (co) polymer (R) may also include a repeating unit derived from a compound having copolymerizability with these.
- the compound having copolymerizability with the (meth) acrylic acid alkyl ester compound is not particularly limited, and examples thereof include acrylic acid such as acrylic acid and methacrylic acid; acrylamide, methacrylamide, N-methylolacrylamide, and N-methylolmethacrylamide.
- Amide groups such as, epoxy groups such as glycidyl acrylate and glycidyl methacrylate, compounds containing amino groups such as diethylaminoethyl acrylate, diethylaminoethyl methacrylate and aminoethyl vinyl ether; other acrylonitrile, styrene, ⁇ -methylstyrene, alkyl vinyl ether, vinyl chloride, And compounds derived from vinyl acetate, vinyl propionate, ethylene, and the like.
- the molecular weight of the (co) polymer (R) component is not particularly limited, but the number average molecular weight in terms of polystyrene in GPC is preferably 500 to 100,000, more preferably 1,000 to 50,000. Those having a molecular weight of 2,000 to 20,000 are particularly preferred because they are easy to handle and have excellent adhesive properties.
- the method for producing the (co) polymer (R) is not particularly limited, and examples thereof include a usual vinyl polymerization method such as a solution polymerization method using a radical reaction and a bulk polymerization method.
- the reaction is usually carried out at 50 to 150 ° C. by adding the above-mentioned compound, radical initiator, chain transfer agent, solvent and the like.
- radical initiator examples include azobisisobutyronitrile and benzoyl peroxide.
- chain transfer agents include mercaptans such as n-dodecyl mercaptan, t-dodecyl mercaptan, lauryl mercaptan, and halogen-containing compounds. Is mentioned.
- solvent for example, non-reactive solvents such as ethers, hydrocarbons and esters are preferably used.
- the (co) polymer (R) preferably has a reactive silicon group represented by the following general formula (5) because the cured product obtained has excellent adhesive strength and heat resistance.
- -V-SiR 1 e X 3-e (5) (In the formula, R 1 and X are the same as those in the general formula (2). V represents a divalent hydrocarbon group having 1 to 8 carbon atoms, and e represents 0, 1 , or 2. R 1 , For each of X, when they are present, they may be the same or different.)
- the method for introducing a reactive silicon group into the (co) polymer (R) is not particularly limited, and various methods are exemplified.
- D a method of copolymerizing a compound having a polymerizable unsaturated bond and a reactive silicon group together with the compounds (r-1) and (r-2);
- E after copolymerizing a compound having a polymerizable unsaturated bond and a reactive functional group (hereinafter referred to as Y ′ group) (for example, acrylic acid) together with the compounds (r-1) and (r-2),
- Y ′ group for example, acrylic acid
- the compound having a polymerizable unsaturated bond and a reactive silicon group described in (d) is not particularly limited.
- vinyl alkylpolyalkoxysilanes such as alkoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, and vinyltriethoxysilane.
- Examples of the Y ′ group and Y ′′ group described in (e) can be a combination of various groups.
- the Y ′ group an amino group, a hydroxyl group, and a carboxylic acid group can be used as the Y ′′ group. Mention may be made of isocyanate groups.
- the Y ′ group is an allyl group
- Y ′′ Examples of the group include a silicon hydride group (H—Si).
- the Y ′ group and the Y ′′ group can be bonded by a hydrosilylation reaction in the presence of a Group VIII transition metal.
- Examples of the mercaptan having a reactive silicon group used as the chain transfer agent described in (f) include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, and ⁇ -mercaptopropyltriethoxysilane. .
- the compounds (r-1) and (r-2) are made of a bifunctional radical polymerizable compound and a mercaptan having an alkoxysilyl group as a chain transfer agent. A method of copolymerization in the presence is also possible.
- Examples of azobisnitrile compounds and disulfide compounds having a reactive silicon group described in (g) include alkoxysilyl compounds described in, for example, JP-A-60-23405 and JP-A-62-70405. Examples thereof include azobisnitrile compounds having a group and disulfide compounds having an alkoxysilyl group.
- Examples of the method described in (h) include the methods described in JP-A No. 09-272714.
- the number of reactive silicon groups in the (co) polymer (R) is not particularly limited, and an average of 0.1 per molecule of the (co) polymer (R) from the viewpoint of the effect on the adhesive force and cost.
- the number is from 4.0 to 4.0, and more preferably from 0.5 to 2.0.
- the blending ratio of the organic polymer (P), the organic polymer (Q) and the (co) polymer (R) having a reactive silicon group in the composition of the present invention is the sum of ((P) + (Q)).
- the amount of component (R) is preferably 5 to 500 parts by weight, more preferably 5 to 300 parts by weight, particularly preferably 5 to 100 parts by weight, based on 100 parts by weight. Most preferred is parts by weight. If it is less than 5 parts by weight, a sufficient effect on initial tackiness and final adhesiveness cannot be obtained, and if it is 500 parts by weight or more, the viscosity becomes high and handling becomes difficult.
- a filler (F) in order to improve the initial pressure-sensitive adhesive properties and to increase the adhesiveness and the mechanical strength of the cured product.
- Fillers include reinforcing fillers such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, Resin powder such as magnesium carbonate, diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc white, PVC powder, PMMA powder And fillers such as asbestos, glass fibers and filaments.
- the filler 1 to 300 parts by weight, preferably 10 to 200 parts by weight, based on 100 parts by weight of the total of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q). Part.
- silica and calcium carbonate are particularly preferred because they tend to improve the initial adhesive properties.
- a plasticizer an adhesion promoter, a physical property modifier, a sagging inhibitor (thixotropic agent), a stabilizer and the like can be added.
- a plasticizer can be added to the curable composition of the present invention.
- the plasticizer By adding the plasticizer, the viscosity and slump property of the curable composition and the mechanical properties such as tensile strength and elongation of the cured product obtained by curing the curable composition can be adjusted.
- plasticizer examples include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), butyl benzyl phthalate, and the like; bis (2-ethylhexyl) ) Terephthalic acid ester compounds such as 1,4-benzenedicarboxylate (specifically, EASTMAN168 (manufactured by EASTMAN CHEMICAL)); non-phthalic acid ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester (specifically Is Hexamol DINCH (manufactured by BASF); aliphatic such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, tributyl acetylcitrate Carbox
- a polymeric plasticizer can be used.
- the initial physical properties can be maintained over a long period of time compared to the case where a low-molecular plasticizer that is a plasticizer that does not contain a polymer component in the molecule is used.
- the drying property (paintability) when an alkyd paint is applied to the cured product can be improved.
- polymer plasticizer examples include vinyl polymers obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester; Polyester plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and dipropylene glycol; number average molecular weight of 500 or more Furthermore, more than 1,000 polyether polyols such as polyethylene glycol polypropylene glycol and polytetramethylene glycol, or the hydroxy group of these polyether polyols are esterified And polyethers such as derivatives converted into ether groups; polystyrenes such as polystyrene and poly- ⁇ -methylstyrene; polybutadiene, polybutene, polyisobutylene,
- polyethers and vinyl polymers are preferable.
- polyethers are used as a plasticizer, the surface curability and deep part curability are improved, and the curing delay after storage does not occur.
- Polypropylene glycol is more preferred.
- a vinyl polymer is preferable from the viewpoint of compatibility, weather resistance, and heat resistance.
- acrylic polymers and / or methacrylic polymers are preferred, and acrylic polymers such as polyacrylic acid alkyl esters are more preferred.
- the polymer synthesis method is preferably a living radical polymerization method and more preferably an atom transfer radical polymerization method because the molecular weight distribution is narrow and viscosity can be lowered. Further, it is preferable to use a polymer obtained by so-called SGO process obtained by continuous bulk polymerization of an alkyl acrylate monomer described in JP-A-2001-207157 at high temperature and high pressure.
- the number average molecular weight of the polymer plasticizer is preferably 500 to 15,000, more preferably 800 to 10,000, still more preferably 1,000 to 8,000, and particularly preferably 1,000. 5,000. Most preferred is 1,000 to 3,000. If the molecular weight is too low, the plasticizer will flow out over time due to heat and rain, and the initial physical properties cannot be maintained over a long period of time. Moreover, when molecular weight is too high, a viscosity will become high and workability
- the molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow and preferably less than 1.80. 1.70 or less is more preferable, 1.60 or less is more preferable, 1.50 or less is more preferable, 1.40 or less is particularly preferable, and 1.30 or less is most preferable.
- the number average molecular weight of the polymer plasticizer is measured by a GPC method in the case of a vinyl polymer and by a terminal group analysis method in the case of a polyether polymer. Moreover, molecular weight distribution (Mw / Mn) is measured by GPC method (polystyrene conversion).
- the polymer plasticizer may or may not have a reactive silicon group.
- it acts as a reactive plasticizer and can prevent migration of the plasticizer from the cured product.
- it is preferably 1 or less, more preferably 0.8 or less on average per molecule.
- the number average molecular weight is required to be lower than that of the reactive silicon group-containing organic polymer (P).
- the plasticizer is used in an amount of 5 to 150 parts by weight, preferably 10 to 120 parts by weight, based on a total of 100 parts by weight of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q). Parts, more preferably 20 to 100 parts by weight. If it is less than 5 parts by weight, the effect as a plasticizer will not be exhibited, and if it exceeds 150 parts by weight, the mechanical strength of the cured product will be insufficient.
- a plasticizer may be used independently and may use 2 or more types together. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. These plasticizers can also be blended at the time of polymer production.
- a silane coupling agent in the curable composition of the present invention, a silane coupling agent, a reaction product of the silane coupling agent, or a compound other than the silane coupling agent can be added as an adhesion promoter.
- the silane coupling agent include ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatemethyltrimethoxysilane.
- Silanes containing isocyanate groups such as ⁇ -isocyanatomethyldimethoxymethylsilane; ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, N - ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropi Triethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropylmethyldiethoxysilane, ⁇ -ureidopropyltrimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, N-
- silane coupling agent used in the present invention is 0.1 to 20 parts by weight with respect to 100 parts by weight in total of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q). It is preferable to use in a range of 0.5 to 10 parts by weight.
- an anti-sagging agent may be added to prevent sagging and improve workability if necessary.
- the sagging inhibitor is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
- the sagging inhibitor is used in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight in total of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q).
- antioxidant antioxidant
- an antioxidant can be used in the curable composition of the present invention. If an antioxidant is used, the weather resistance of the cured product can be increased.
- the antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols, with hindered phenols being particularly preferred.
- Tinuvin 622LD, Tinuvin 144; CHIMASSORB 944LD, CHIMASORB 119FL (all of which are manufactured by Ciba Japan Co., Ltd.); All are manufactured by ADEKA Corporation); Sanol LS-770, Sanol LS-765, Sanol LS-292, Sanol LS-2626, Sanol LS-1114, Sanol LS-744 (all of which are manufactured by Sankyo Lifetech Co., Ltd.)
- Hindered amine light stabilizers can also be used. Specific examples of the antioxidant are also described in JP-A-4-283259 and JP-A-9-194731.
- the amount of the antioxidant used is in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight in total of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q).
- the amount is preferably 0.2 to 5 parts by weight.
- a light stabilizer can be used.
- Use of a light stabilizer can prevent photooxidation degradation of the cured product.
- Examples of the light stabilizer include benzotriazole, hindered amine, and benzoate compounds, with hindered amines being particularly preferred.
- the amount of the light stabilizer used is in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight in total of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q).
- the amount is preferably 0.2 to 5 parts by weight. Specific examples of the light stabilizer are also described in JP-A-9-194731.
- a tertiary amine is used as a hindered amine light stabilizer as described in JP-A-5-70531. It is preferable to use a contained hindered amine light stabilizer for improving the storage stability of the composition.
- Tinuvin 622LD Tinuvin 144
- CHIMASSORB119FL Adekastab LA-57, LA-62, LA-67, LA-63 (all above)
- Light stabilizers such as SANOL LS-765, LS-292, LS-2626, LS-1114, and LS-744 (all of which are manufactured by Sankyo Lifetech Co., Ltd.).
- an ultraviolet absorber can be used.
- the surface weather resistance of the cured product can be enhanced.
- ultraviolet absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds, and benzotriazole-based compounds are particularly preferable.
- the amount of the ultraviolet absorber used is in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight in total of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q).
- the amount is preferably 0.2 to 5 parts by weight. It is preferable to use a phenolic or hindered phenolic antioxidant, a hindered amine light stabilizer and a benzotriazole ultraviolet absorber in combination.
- various additives may be added as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product.
- additives include, for example, flame retardants, curability modifiers, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, Examples include solvents and fungicides. These various additives may be used alone or in combination of two or more.
- the curable composition of the present invention can also be prepared as a one-component type in which all the blended components are pre-blended and sealed and cured by moisture in the air after construction. It is also possible to prepare a two-component type in which components such as a plasticizer and water are blended and the compounding material and the polymer composition are mixed before use.
- the curable composition When the curable composition is of a one-component type, all the ingredients are pre-blended, so the water-containing ingredients are dehydrated and dried before use, or dehydrated during decompression or the like during compounding and kneading. Is preferred.
- the curable composition When the curable composition is a two-component type, it is not necessary to add a curing catalyst to the main component containing a polymer having a reactive silicon group, so gelation is possible even if some moisture is contained in the compounding agent. However, when long-term storage stability is required, dehydration and drying are preferable.
- a heat drying method is preferable in the case of a solid substance such as a powder, and a dehydration method using a reduced pressure dehydration method or a synthetic zeolite, activated alumina, silica gel or the like is preferable in the case of a liquid material.
- a small amount of an isocyanate compound may be blended to react with an isocyanate group and water for dehydration.
- lower alcohols such as methanol and ethanol; n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, ⁇ -
- an alkoxysilane compound such as glycidoxypropyltrimethoxysilane further improves the storage stability.
- the amount of silicon compound capable of reacting with water such as dehydrating agent, especially vinyltrimethoxysilane is 100 parts by weight in total of the reactive silicon group-containing organic polymer (P) and the reactive silicon group-containing organic polymer (Q).
- the range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight is preferred.
- the curable composition of the present invention can be used as a building sealing material or an industrial adhesive. Moreover, it can be used as a sealant for buildings, ships, automobiles, roads and the like. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal, resin moldings alone or with the help of a primer, it can be used as various types of sealing compositions and adhesive compositions. it can. Among adhesives, it is particularly useful as a contact adhesive. Among them, the vinyl adhesive for long floor sheets requires an initial adhesive force in order to constrain the gusset of the long sheet, and it takes a long time (100 minutes or more) when performing construction of a large area. The curable composition of the present invention is useful because its adhesive properties need to be maintained. Furthermore, it is also useful as a food packaging material, cast rubber material, molding material, and paint.
- the terminal ethoxy group is converted to a methoxy group, so that one end is a trimethoxysilyl group, the average number of silicon groups per molecule is 0.8, and the number average
- a reactive silicon group-containing polyoxypropylene polymer (P-2) having a molecular weight of 14,400 and Mw / Mn 1.2 was obtained.
- the terminal ethoxy group is converted to a methoxy group, the terminal is a trimethoxysilyl group, the average number of silicon groups per molecule is 1.6, and the number average molecular weight
- the terminal ethoxy group is converted to a methoxy group, the terminal is a trimethoxysilyl group, the average number of silicon groups per molecule is 0.8, and the number average molecular weight
- Examples 1 to 7 After the polymer (P), polymer (Q), polymer (R), whiten SB, and Aerosil 200 were mixed and sufficiently kneaded at the ratio shown in Table 1, they were passed once through three paint rolls. Dispersed. Next, the mixture was kneaded for 2 hours while being dehydrated with a planetary mixer under reduced pressure at 120 ° C. and 0.2 mmHg. After cooling to room temperature, A-171, A-1120 and curing catalyst (H) were added in the proportions shown in Table 1 and mixed thoroughly. Finally, after degassing for 3 minutes under reduced pressure of 0.2 mmHg, the formulation was filled into a moisture-proof cartridge-type container.
- Viscosity VH rotor No. 7 was measured.
- Initial stickiness / Adhesive expression time and duration After applying the compound prepared on the slate plate with a comb, observe the condition of the compound with each finger at each open time and release the finger from the compound The time when a sense of resistance was felt at that time was defined as the stickiness expression time. Further, the time until resistance disappeared was defined as the duration of stickiness.
- Comparative Examples 1 to 5 Except for blending polymer (P), polymer (P ′), polymer (Q), (co) polymer (R), and additives in the proportions shown in Comparative Examples 1 to 5 in Table 1. Formulations were prepared and evaluated in the same manner as in Examples 1-7.
- the curable composition of the present invention can be used as a building sealing material or an industrial adhesive. Moreover, it can be used as a sealant for buildings, ships, automobiles, roads and the like. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal, resin moldings alone or with the aid of a primer, it can be used as various types of sealing compositions and adhesive compositions. it can. Among adhesives, it is particularly useful as a contact adhesive. Furthermore, it is also useful as a food packaging material, cast rubber material, molding material, and paint.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
(1).直鎖状の有機重合体であり、下記一般式(1)で表される反応性ケイ素基を一方の末端にのみ有する有機重合体(P)、および、下記一般式(2)で表される反応性ケイ素基を有する反応性ケイ素基含有有機重合体(Q)を含有する硬化性組成物であって、
該有機重合体(P)と該有機重合体(Q)との配合割合が、(P):(Q)=60:40~5:95(重量部)であり、さらに該有機重合体(P)の数平均分子量が該有機重合体(Q)よりも大きいことを特徴とする硬化性組成物、
-V-SiX3 (1)
(式中、Vは炭素数1~8の2価の炭化水素基を示し、Xは水酸基または加水分解性基を示す。Xが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
-V-SiR1 dX3-d (2)
(式中、R1は炭素数1~20の炭化水素基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、またはR0 3SiO-で表わされるトリオルガノシロキシ基を示し、3個のR0は炭素数1~20の炭化水素基であり、それらは同じでもよく、異なっていてもよい。Vは炭素数1~8の2価の炭化水素基を示す。Xは水酸基または加水分解性基を示す。dは1,2のいずれかを示す。R1,Xのそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
(2).有機重合体(P)の主鎖構造がポリオキシプロピレン系重合体であることを特徴とする1に記載の硬化性組成物、
(3).有機重合体(Q)の主鎖構造が、ポリオキシプロピレン系重合体であることを特徴とする1、2のいずれか1項に記載の硬化性組成物、
(4).有機重合体(P)の数平均分子量が10000以上であることを特徴とする1~3のいずれか1項に記載の硬化性組成物、
(5).有機重合体(Q)の数平均分子量が20000以下であることを特徴とする1~4のいずれか1項に記載の硬化性組成物、
(6).有機重合体(Q)の有する反応性ケイ素基の数が、一分子あたり平均して1.4個以上であることを特徴とする1~5のいずれか1項に記載の硬化性組成物、
(7).さらに(メタ)アクリル酸アルキルエステル系(共)重合体(R)を含有することを特徴とする1~6のいずれか1項に記載の硬化性組成物、
(8).硬化触媒(H)として、アミン系の化合物を含有することを特徴とする1~7のいずれか1項に記載の硬化性組成物、
(9).硬化触媒(H)として、錫系の化合物を含有し、さらにその含有量が(P)と(Q)の合計量100重量部に対して2重量部以下であることを特徴とする1~8のいずれか1項に記載の硬化性組成物、
(10).錫系の硬化触媒(H)がジブチル錫ジラウレートおよび/またはジオクチル錫ジラウレートであることを特徴とする9のいずれか1項に記載の硬化性組成物、
(11).充填剤(F)として、シリカおよび/または炭酸カルシウムを含有することを特徴とする1~10のいずれか1項に記載の硬化性組成物、
(12).主鎖にポリオキシプロピレン系重合体構造を有する有機重合体(P)が、一分子中に水酸基を1つ有する開始剤を用いて重合したポリオキシプロピレン系重合体より得られた有機重合体であることを特徴とする2~11のいずれか1項に記載の硬化性組成物、
(13).1~12のいずれか1項に記載の硬化性組成物を成分として含むコンタクト型接着剤、
に関する。
(反応性ケイ素基含有有機重合体(P))
本発明の反応性ケイ素基含有有機重合体(P)は、以下の一般式(1)で表される反応性ケイ素基を一方の末端にのみ有する直鎖状の有機重合体であれば特に限定されることはない。
-V-SiX3 (1)
(式中、Vは炭素数1~8の2価の炭化水素基を示し、Xは水酸基または加水分解性基を示す。Xが複数存在するとき、それらは同じでもよく、異なっていてもよい。)。
一般式(1)中のXは水酸基または加水分解性基を示す。加水分解性基としては、特に限定されず、公知の加水分解性基があげられ、例えば、水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などがあげられる。これらの中では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましく、加水分解性が穏やかで取扱いやすいことからメトキシ基、エトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。
本発明の反応性ケイ素基含有有機重合体(P)の主鎖構造は、(メタ)アクリル酸アルキルエステル系(共)重合体以外であれば、特に制限はなく、各種の主鎖構造を持つものを使用することができる。
ポリオキシアルキレン系重合体は、-R6-O-(式中、R6は炭素数1~14の直鎖状もしくは分岐アルキレン基である)で示される繰り返し単位を有する重合体であり、R6は炭素数2~4の直鎖状もしくは分岐状アルキレン基がより好ましい。-R6-O-で示される繰り返し単位の具体例としては、-CH2O-、-CH2CH2O-、-CH2CH(CH3)O-、-CH2CH(C2H5)O-、-CH2C(CH3)(CH3)O-、-CH2CH2CH2CH2O-、などがあげられる。ポリオキシアルキレン系重合体の主鎖構造は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーラント、接着剤等に使用される場合には、オキシプロピレンの繰り返し単位を重合体主鎖構造の50重量%以上、好ましくは80重量%以上有するポリオキシプロピレン系重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。
本発明の反応性ケイ素基含有有機重合体(P)は、下記(a)および/または(b)の方法により得ることが好ましい。
(a)水酸基末端ポリオキシアルキレン系重合体の末端水酸基をアリル基に変換した後、HSiX3(Xは一般式(1)の記載と同じ)を反応させて得られるポリオキシアルキレン系重合体。あるいは、HSiX3で表わされるシラン化合物(X、は一般式(1)の記載と同じ。)を反応させた後、触媒下、アルコール系化合物等を反応させ、加水分解性基を変換させて得られる反応性ケイ素基含有ポリオキシアルキレン系重合体。
(b)水酸基末端ポリオキシアルキレン系重合体の末端水酸基に、OCN-CH2-SiX3(Xは一般式(1)の記載と同じ)で表わされるイソシアネートメチルシラン化合物を反応させて得られるポリオキシアルキレン系重合体。
(b1)水酸基末端ポリウレタンプレポリマー、イソシアネート基末端ポリウレタンプレポリマー、アミノ基末端ポリウレタンプレポリマーからなる群から選ばれる少なくとも1種のポリウレタンプレポリマーの各末端官能基(すなわち、水酸基、イソシアネート基、アミノ基)に、OCN-CH2-SiX3(Xは一般式(1)の記載と同じ)で表わされるイソシアネートメチルシラン化合物を反応させて得られる反応性ケイ素基含有ポリウレタンプレポリマー。
本発明の反応性ケイ素基含有有機重合体(Q)は、以下の一般式(2)で表される反応性ケイ素基を分子鎖末端に有する有機重合体であれば特に限定されることはない。
-V-SiR1 dX3-d (2)
(式中、R1は炭素数1~20の炭化水素基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、またはR0 3SiO-で表わされるトリオルガノシロキシ基を示し、3個のR0は炭素数1~20の炭化水素基であり、それらは同じでもよく、異なっていてもよい。Vは炭素数1~8の2価の炭化水素基を示す。Xは水酸基または加水分解性基を示す。dは1,2のいずれかを示す。R1,Xのそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)。
一般式(2)中のXは水酸基または加水分解性基を示す。加水分解性基としては、特に限定されず、公知の加水分解性基があげられ、前記一般式(1)で述べたものと同じものをあげることができる。加水分解性が穏やかで取扱いやすいことからメトキシ基、エトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。またXの数についてであるが、本発明では有機重合体(P)のみが先に反応し硬化初期に粘着性を発現させ、次いで有機重合体(Q)が反応し最終的な接着強度を確保する設計である。そのため、Xの個数が3(一般式(2)中のdが0)の時は、有機重合体(Q)と有機重合体(P)とが同時に反応してしまい、上記の効果が得られにくい。そのため、Xの個数は1あるいは2であることが好ましく、硬化性、貯安性、得られる硬化物が良好なゴム弾性を示すことからXの個数は2であることが最も好ましい。
本発明の反応性ケイ素基含有有機重合体(Q)の主鎖構造は、特に制限はなく、上記、反応性ケイ素基含有有機重合体(P)で述べた主鎖構造と同じ構造を有するものを使用することができる。その中でも、ポリオキシプロピレンジオールおよび/またはポリオキシプロピレントリオールに由来する主鎖構造が好ましく、ポリオキシプロピレンジオールに由来する主鎖構造がより好ましい。
本発明の反応性ケイ素基含有有機重合体(Q)は、下記(c)の方法により得ることが好ましい。
(c)水酸基末端ポリオキシアルキレン系重合体の末端水酸基をアリル基に変換した後、HSiR1 dX3-dで表わされるシラン化合物(R1、X、dはそれぞれ一般式(2)の記載と同じ。)を反応させて得られる反応性ケイ素基含有ポリオキシアルキレン系重合体。
CH2=C(R2)COOR3 (3)
(式中R2は水素原子またはメチル基、R3は炭素数1から8のアルキル基を示す)で示される。
CH2=C(R2)COOR4 (4)
(式中R2は一般式(3)の表記と同じ。R4は炭素数10以上のアルキル基を示す。) で示される化合物である。
-V-SiR1 eX3-e (5)
(式中、R1、Xは一般式(2)と同じ。Vは炭素数1~8の2価の炭化水素基を示し、eは0,1,2のいずれかを示す。R1,Xのそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)。
(ニ)、重合性不飽和結合と反応性ケイ素基を有する化合物を、化合物(r-1)、(r-2)とともに共重合させる方法、
(ホ)、重合性不飽和結合と反応性官能基(以下Y’基という)を有する化合物(例えば、アクリル酸)を化合物(r-1)、(r-2)とともに共重合させたのち、生成した共重合体を反応性ケイ素基およびY’基と反応しうる官能基(以下Y’’基という)を有する化合物(例えば、イソシアネート基と-Si(OCH3)3基を有する化合物)と反応させる方法、
(へ)、連鎖移動剤として反応性ケイ素基を有するメルカプタンの存在下、化合物(r-1)、(r-2)を共重合させる方法、
(ト)、反応性ケイ素基を有するアゾビスニトリル化合物やジスルフィド化合物を開始剤として化合物(r-1)、(r-2)を共重合させる方法、
(チ)、リビングラジカル重合法によって化合物(r-1)、(r-2)を重合させ、分子末端に反応性ケイ素基を導入する方法、などが挙げられる。
これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレンやポリ-α-メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等があげられるが、これらに限定されるものではない。
メトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。また、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等もシランカップリング剤として用いることができる。本発明に用いるシランカップリング剤は、反応性ケイ素基含有有機重合体(P)および反応性ケイ素基含有有機重合体(Q)の合計100重量部に対して、0.1~20重量部の範囲で使用することが好ましく、特に、0.5~10重量部の範囲で使用するのが好ましい。
ブタノールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量28,500(送液システムとして東ソー製HLC-8120GPCを用い、カラムは東ソー製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)で片末端にブトキシ基、逆の片末端に水酸基を有する、ポリオキシプロピレン系重合体を得た。続いてこのポリオキシプロピレン系重合体の水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基片末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え、撹拌しながら、TES(トリエトキシシラン)0.82重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のTESを減圧下留去した。さらにメタノール20重量部、HCl 12ppmを添加して末端のエトキシ基をメトキシ基に変換することにより、片末端がトリメトキシシリル基であり、1分子あたりのケイ素基が平均0.8個、数平均分子量が28,800、Mw/Mn=1.3である反応性ケイ素基含有ポリオキシプロピレン重合体(P-1)を得た。
ブタノールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量14,000(合成例1と同様の方法で算出した)で片末端にブトキシ基、逆の片末端に水酸基を有する、ポリオキシプロピレン系重合体を得た。続いてこのポリオキシプロピレン系重合体の水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基片末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え、撹拌しながら、TES(トリエトキシシラン)1.65重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のTESを減圧下留去した。さらにメタノール20重量部、HCl 12ppmを添加して末端のエトキシ基をメトキシ基に変換することにより、片末端がトリメトキシシリル基であり、1分子あたりのケイ素基が平均0.8個、数平均分子量が14,400、Mw/Mn=1.2である反応性ケイ素基含有ポリオキシプロピレン重合体(P-2)を得た。
数平均分子量が約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量28,500(合成例1と同様の方法で算出した)のポリオキシプロピレングリコールを得た。続いてこの水酸基末端ポリオキシプロピレングリコールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え、撹拌しながら、TES(トリエトキシシラン)1.31重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のTESを減圧下留去した。さらにメタノール20重量部、HCl 12ppmを添加して末端のエトキシ基をメトキシ基に変換することにより、末端がトリメトキシシリル基であり、1分子あたりのケイ素基が平均1.6個、数平均分子量が29,100、Mw/Mn=1.3である反応性ケイ素基含有ポリオキシプロピレン重合体(P’-3)を得た。
数平均分子量が約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量28,500(合成例1と同様の方法で算出した)のポリオキシプロピレングリコールを得た。続いてこの水酸基末端ポリオキシプロピレングリコールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え、撹拌しながら、TES(トリエトキシシラン)0.65重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のTESを減圧下留去した。さらにメタノール20重量部、HCl 12ppmを添加して末端のエトキシ基をメトキシ基に変換することにより、末端がトリメトキシシリル基であり、1分子あたりのケイ素基が平均0.8個、数平均分子量が29,100、Mw/Mn=1.3である反応性ケイ素基含有ポリオキシプロピレン重合体(P’-4)を得た。
分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量が14,000(合成例1と同様の方法で算出した)のポリオキシプロピレングリコールを得た。続いてこの水酸基末端ポリオキシプロピレングリコールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)72ppmを加え撹拌しながら、メチルジメトキシシラン1.70部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のメチルジメトキシシランを減圧下留去することにより、末端がメチルジメトキシシリル基であり、1分子あたりのケイ素基が平均1.6個、数平均分子量が14,200、Mw/Mn=1.2である直鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(Q-1)を得た。
分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量が29,000(合成例1と同様の方法で算出した)のポリオキシプロピレングリコールを得た。続いてこの水酸基末端ポリオキシプロピレングリコールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)72ppmを加え撹拌しながら、メチルジメトキシシラン0.86部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のメチルジメトキシシランを減圧下留去することにより、末端がメチルジメトキシシリル基であり、1分子あたりのケイ素基が平均1.6個、数平均分子量が29,500、Mw/Mn=1.3である直鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(Q-2)を得た。
分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量が14,000(合成例1と同様の方法で算出した)のポリオキシプロピレングリコールを得た。続いてこの水酸基末端ポリオキシプロピレングリコールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)72ppmを加え撹拌しながら、メチルジメトキシシラン1.05部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のメチルジメトキシシランを減圧下留去することにより、末端がメチルジメトキシシリル基であり、1分子あたりのケイ素基が平均1.0個、数平均分子量が14,200、Mw/Mn=1.2である直鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(Q-3)を得た。
105℃に加熱したトルエン40g中に、メタクリル酸メチル66g、アクリル酸ブチル10g、メタクリル酸ステアリル15g、n-ドデシルメルカプタン9g、および重合開始剤として2,2’-アゾビスイソブチロニトリル3gをトルエン15gに溶かした溶液を5時間かけて滴下した後、2時間撹拌した。さらに、2,2’-アゾビスイソブチロニトリル0.3gをトルエン10gに溶かした溶液を追加して2時間撹拌することにより、固形分濃度60重量%、数平均分子量が3,000(GPCより求めたポリスチレン換算値)、分子量分布が1.62のアクリル系共重合体を得た(R-1)。
105℃に加熱したトルエン40g中に、メタクリル酸メチル67g、アクリル酸ブチル5g、メタクリル酸ステアリル15g、3-メタクリロキシプロピルメチルジメトキシシラン5g、γ-メルカプトプロピルメチルジメトキシシラン8g、および重合開始剤として2,2’-アゾビスイソブチロニトリル3gをトルエン15gに溶かした溶液を5時間かけて滴下した後、2時間撹拌した。さらに、2,2’-アゾビスイソブチロニトリル0.3gをトルエン10gに溶かした溶液を追加して2時間撹拌することにより、固形分濃度60重量%、数平均分子量が3,000(GPCより求めたポリスチレン換算値)、分子量分布が1.62のアクリル系共重合体を得た(R-2)。
表1に示す割合で、重合体(P)、重合体(Q)、重合体(R)、ホワイトンSB、アエロジル200を混合して充分混練りした後、3本ペイントロールに1回通して分散させた。ついでプラネタリーミキサーで120℃、0.2mmHgの減圧条件下で脱水させながら2時間混練した。室温まで冷却後、表1に示す割合でA-171、A-1120、硬化触媒(H)を添加し十分混合した。最後に0.2mmHgの減圧条件下で3分脱泡した後、配合物を防湿性のカートリッジ型容器に充填した。
作製した配合物の粘度、初期粘着特性、接着性を下記に示す方法にて測定した。
○粘度
23℃での粘度をBH型ローターNo.7にて測定した。
○初期粘着性
・粘着性発現時間および持続時間
作成した配合物をスレート板へクシ目で塗布した後、各オープンタイム毎に指触にて配合物の状態を観測し、配合物から指を離す際に抵抗感が感じられた時間を粘着性発現時間とした。また抵抗感がなくなるまでの時間を粘着性持続時間とした。
・初期収まり性(粘着強度)
作成した配合物をスレート板へクシ目で塗布し、各オープンタイム毎に長さ200mmで25mm幅のビニル床シート(タジマ製、パーマリューム)を張り合わせた。なおビニル床シートは予め半径25mmの塩ビパイプに、裏面を内側にして巻き付けクセ付けしたものを用いた。この、ビニル床シートを張り合わせた後しばらく放置し、ビニル床シートが反り返って浮いてくる場合は粘着強度×、反り返らずに張り合わせられた場合は粘着強度○、と判断した。
○剥離接着強度
作成した配合物をスレート板へクシ目で塗布し、粘着性が発現するまでオープン
タイムを取った後、長さ200mmで25mm幅のビニル床シートを張り合わせた。23℃で1週間放置後、90℃剥離方向に引張試験を行い(テストスピード200mm/min)、接着強度を求めた。
表1の比較例1~5に示す割合で重合体(P)、重合体(P’)、重合体(Q)、(共)重合体(R)、および添加剤を配合した以外は、実施例1~7と同様にして配合物を作製し、評価を行った。
Claims (13)
- 直鎖状の有機重合体であり、下記一般式(1)で表される反応性ケイ素基を一方の末端にのみ有する有機重合体(P)、および、下記一般式(2)で表される反応性ケイ素基を有する反応性ケイ素基含有有機重合体(Q)を含有する硬化性組成物であって、該有機重合体(P)と該有機重合体(Q)との配合割合が、(P):(Q)=60:40~5:95(重量部)であり、さらに該有機重合体(P)の数平均分子量が該有機重合体(Q)よりも大きいことを特徴とする硬化性組成物。
-V-SiX3 (1)
(式中、Vは炭素数1~8の2価の炭化水素基を示し、Xは水酸基または加水分解性基を示す。Xが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
-V-SiR1 dX3-d (2)
(式中、R1は炭素数1~20の炭化水素基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、またはR0 3SiO-で表わされるトリオルガノシロキシ基を示し、3個のR0は炭素数1~20の炭化水素基であり、それらは同じでもよく、異なっていてもよい。Vは炭素数1~8の2価の炭化水素基を示す。Xは水酸基または加水分解性基を示す。dは1,2のいずれかを示す。R1,Xのそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。) - 有機重合体(P)の主鎖構造がポリオキシプロピレン系重合体であることを特徴とする請求項1に記載の硬化性組成物。
- 有機重合体(Q)の主鎖構造が、ポリオキシプロピレン系重合体であることを特徴とする請求項1、2のいずれか1項に記載の硬化性組成物。
- 有機重合体(P)の数平均分子量が10000以上であることを特徴とする請求項1~3のいずれか1項に記載の硬化性組成物。
- 有機重合体(Q)の数平均分子量が20000以下であることを特徴とする請求項1~4のいずれか1項に記載の硬化性組成物。
- 有機重合体(Q)の有する反応性ケイ素基の数が、一分子あたり平均して1.4個以上であることを特徴とする請求項1~5のいずれか1項に記載の硬化性組成物。
- さらに(メタ)アクリル酸アルキルエステル系(共)重合体(R)を含有することを特徴とする請求項1~6のいずれか1項に記載の硬化性組成物。
- 硬化触媒(H)として、アミン系の化合物を含有することを特徴とする請求項1~7のいずれか1項に記載の硬化性組成物。
- 硬化触媒(H)として、錫系の化合物を含有し、さらにその含有量が(P)と(Q)の合計量100重量部に対して2重量部以下であることを特徴とする請求項1~8のいずれか1項に記載の硬化性組成物。
- 錫系の硬化触媒(H)がジブチル錫ジラウレートおよび/またはジオクチル錫ジラウレートであることを特徴とする請求項9のいずれか1項に記載の硬化性組成物。
- 充填剤(F)として、シリカおよび/または炭酸カルシウムを含有することを特徴とする請求項1~10のいずれか1項に記載の硬化性組成物。
- 主鎖にポリオキシプロピレン系重合体構造を有する有機重合体(P)が、一分子中に水酸基を1つ有する開始剤を用いて重合したポリオキシプロピレン系重合体より得られた有機重合体であることを特徴とする請求項2~11のいずれか1項に記載の硬化性組成物。
- 請求項1~12のいずれか1項に記載の硬化性組成物を成分として含むコンタクト型接着剤。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280011222.2A CN103827226B (zh) | 2011-03-02 | 2012-02-22 | 固化性组合物 |
US14/002,573 US9534158B2 (en) | 2011-03-02 | 2012-02-22 | Curable composition |
EP12752103.7A EP2682432B1 (en) | 2011-03-02 | 2012-02-22 | Curable composition |
JP2013502254A JP5824030B2 (ja) | 2011-03-02 | 2012-02-22 | 硬化性組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011045374 | 2011-03-02 | ||
JP2011-045374 | 2011-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012117902A1 true WO2012117902A1 (ja) | 2012-09-07 |
Family
ID=46757841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054181 WO2012117902A1 (ja) | 2011-03-02 | 2012-02-22 | 硬化性組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9534158B2 (ja) |
EP (1) | EP2682432B1 (ja) |
JP (1) | JP5824030B2 (ja) |
CN (1) | CN103827226B (ja) |
WO (1) | WO2012117902A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014192914A1 (ja) * | 2013-05-30 | 2014-12-04 | 株式会社カネカ | 硬化性組成物およびその硬化物 |
JP2015105293A (ja) * | 2013-11-29 | 2015-06-08 | 株式会社カネカ | 硬化性組成物 |
CN105246979A (zh) * | 2013-05-30 | 2016-01-13 | 株式会社钟化 | 固化性组合物 |
JP2016098302A (ja) * | 2014-11-20 | 2016-05-30 | 株式会社カネカ | 硬化性組成物 |
CN106062083A (zh) * | 2014-01-23 | 2016-10-26 | 株式会社钟化 | 固化性组合物 |
JP2019156884A (ja) * | 2018-03-07 | 2019-09-19 | Agc株式会社 | オキシアルキレン重合体、オキシアルキレン重合体を含む硬化性組成物、シーリング材用のオキシアルキレン重合体を含む硬化性組成物、及び硬化物 |
JP2021004348A (ja) * | 2019-06-27 | 2021-01-14 | 積水フーラー株式会社 | 硬化性組成物及びその製造方法 |
JP2022523392A (ja) * | 2019-02-28 | 2022-04-22 | カネカ アメリカズ ホールディング,インコーポレイティド | 湿気硬化性接着剤組成物 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9505879B2 (en) | 2012-05-31 | 2016-11-29 | Kaneka Corporation | Polymer having terminal structure including plurality of reactive silicon groups, method for manufacturing same, and use for same |
US9969843B2 (en) | 2012-05-31 | 2018-05-15 | Kaneka Corporation | Polymer having terminal structure including plurality of reactive silicon groups, method for manufacturing same, and use for same |
US11686094B2 (en) | 2013-03-15 | 2023-06-27 | Holcim Technology Ltd | Bonding adhesive and adhered roofing systems prepared using the same |
JP2015113348A (ja) * | 2013-12-06 | 2015-06-22 | 信越化学工業株式会社 | 硬化性組成物および光半導体装置 |
EP3255113A1 (en) * | 2016-06-08 | 2017-12-13 | Soudal | Adhesive and/or sealant composition with high initial tack |
PL3360912T3 (pl) * | 2017-02-10 | 2020-01-31 | Evonik Degussa Gmbh | Sposób wytwarzania hydrosililowanych eterów polioksyalkilenowych |
CN107541170B (zh) * | 2017-09-06 | 2021-07-13 | 广州集泰化工股份有限公司 | 一种建筑用单组分硅烷改性聚醚密封胶及其制备方法 |
EP3617249A1 (en) | 2018-08-28 | 2020-03-04 | Soudal | Adhesive and/or sealant composition |
CA3113952C (en) | 2018-09-24 | 2023-09-19 | Building Materials Investment Corporation | Roofing membranes with improved adhesive bonding strength |
CN113330086B (zh) | 2018-11-16 | 2023-11-03 | 巴斯夫欧洲公司 | 可固化的组合物 |
US20220282014A1 (en) * | 2019-07-10 | 2022-09-08 | Soken Chemical & Engineering Co., Ltd. | Curable Composition and Cured Product |
EP4034601A1 (en) | 2019-09-24 | 2022-08-03 | Basf Se | Curable compositions with acrylic and silicone resins |
EP4077405A1 (en) | 2019-12-20 | 2022-10-26 | Basf Se | Combination of crosslinkers to improve coating properties |
DE102020117919A1 (de) | 2020-07-07 | 2022-01-13 | Franken Systems Gmbh | 2-Komponenten-Beschichtungszusammensetzung zur Bauwerksabdichtung |
DE102021107569A1 (de) | 2021-03-25 | 2022-09-29 | Franken Systems Gmbh | 2-Komponenten-Beschichtungszusammensetzung zur Bauwerksabdichtung mit Katalysator-Cokatalysator-System |
EP4437060A1 (en) | 2021-11-26 | 2024-10-02 | Soudal | Waterborne adhesive and/or sealant composition |
DE202022103247U1 (de) | 2022-06-09 | 2022-06-30 | Franken Systems Gmbh | 2-Komponenten-Systeme und deren Verwendung als Spachtel- und Reparatur- und Ausgleichsmassen |
Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3278457A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278458A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278459A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
US3427335A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same |
US3427334A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity |
JPS4627250B1 (ja) | 1965-10-15 | 1971-08-07 | ||
US3632557A (en) | 1967-03-16 | 1972-01-04 | Union Carbide Corp | Vulcanizable silicon terminated polyurethane polymers |
JPS50156599A (ja) | 1974-06-07 | 1975-12-17 | ||
JPS546096A (en) | 1977-06-15 | 1979-01-17 | Kanegafuchi Chem Ind Co Ltd | Preparation of silyl-terminated polymer |
JPS5513468A (en) | 1978-07-17 | 1980-01-30 | Toshiba Corp | Display unit |
JPS5513767A (en) | 1978-07-18 | 1980-01-30 | Kanegafuchi Chem Ind Co Ltd | Production of polymer terminated with silyl groups |
US4345053A (en) | 1981-07-17 | 1982-08-17 | Essex Chemical Corp. | Silicon-terminated polyurethane polymer |
JPS57164123A (en) | 1981-04-02 | 1982-10-08 | Toshiba Silicone Co Ltd | Production of silicon-containing polyoxyalkylene |
US4366307A (en) | 1980-12-04 | 1982-12-28 | Products Research & Chemical Corp. | Liquid polythioethers |
JPS5915336B2 (ja) | 1980-10-16 | 1984-04-09 | ザ ゼネラル タイヤ アンド ラバ− カンパニ− | ポリプロピレンエ−テル及びポリ−1,2−ブチレンエ−テルポリオ−ル類の処理法 |
JPS59168014A (ja) | 1983-03-15 | 1984-09-21 | Kanegafuchi Chem Ind Co Ltd | 硬化性弾性組成物 |
JPS6023405A (ja) | 1983-07-19 | 1985-02-06 | Sunstar Giken Kk | 室温硬化性弾性組成物 |
JPS60228516A (ja) | 1984-04-26 | 1985-11-13 | Kanegafuchi Chem Ind Co Ltd | 新規重合体の製造法 |
JPS61197631A (ja) | 1985-02-28 | 1986-09-01 | Kanegafuchi Chem Ind Co Ltd | 分子量分布の狭いポリアルキレンオキシドの製造方法 |
JPS61215622A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造方法 |
JPS61215623A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法 |
JPS61218632A (ja) | 1985-03-25 | 1986-09-29 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有する分子量分布の狭いポリアルキレンオキシド |
JPS6270405A (ja) | 1985-09-24 | 1987-03-31 | Sunstar Giken Kk | アルコキシシリル基を有するテレケリツクなビニルポリマ−およびその製法 |
JPS63254149A (ja) | 1987-04-13 | 1988-10-20 | Kanegafuchi Chem Ind Co Ltd | 硬化性樹脂組成物 |
JPS6422904A (en) | 1987-07-17 | 1989-01-25 | Kanegafuchi Chemical Ind | Isobutylene polymer |
US4960844A (en) | 1988-08-03 | 1990-10-02 | Products Research & Chemical Corporation | Silane terminated liquid polymers |
JPH032450B2 (ja) | 1986-05-30 | 1991-01-16 | Toshiba Silicone | |
JPH0372527A (ja) | 1989-05-09 | 1991-03-27 | Asahi Glass Co Ltd | ポリアルキレンオキシド誘導体の製造法 |
JPH03263478A (ja) | 1990-02-13 | 1991-11-22 | Cemedine Co Ltd | コンタクト型接着方法 |
JPH0457850A (ja) * | 1990-06-28 | 1992-02-25 | Shin Etsu Chem Co Ltd | 室温硬化性組成物 |
JPH04283259A (ja) | 1991-03-11 | 1992-10-08 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH0469659B2 (ja) | 1986-06-25 | 1992-11-06 | Kanegafuchi Chemical Ind | |
JPH0570531A (ja) | 1991-09-12 | 1993-03-23 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH07108928B2 (ja) | 1986-06-26 | 1995-11-22 | 鐘淵化学工業株式会社 | 硬化性組成物 |
JPH09194731A (ja) | 1996-01-23 | 1997-07-29 | Asahi Glass Co Ltd | 硬化性組成物 |
JPH09272714A (ja) | 1996-02-08 | 1997-10-21 | Kanegafuchi Chem Ind Co Ltd | 末端に官能基を有する(メタ)アクリル系重合体の 製造方法 |
JPH10251552A (ja) | 1997-03-07 | 1998-09-22 | Konishi Kk | シリコーン系樹脂組成物 |
JPH10273512A (ja) | 1997-03-31 | 1998-10-13 | Mitsui Chem Inc | ポリアルキレンオキシドの製造方法 |
JPH1160722A (ja) | 1997-08-19 | 1999-03-05 | Mitsui Chem Inc | ポリオキシアルキレンポリオールの製造方法 |
JP2001072854A (ja) | 1999-09-01 | 2001-03-21 | Asahi Glass Co Ltd | 室温硬化性組成物 |
JP2001207157A (ja) | 2000-01-28 | 2001-07-31 | Toagosei Co Ltd | シーリング材組成物 |
JP2001220568A (ja) | 2000-02-10 | 2001-08-14 | Konishi Co Ltd | シリコーン系コンタクト型接着剤 |
JP2003313418A (ja) * | 2002-04-19 | 2003-11-06 | Kanegafuchi Chem Ind Co Ltd | 硬化性樹脂組成物 |
JP2004224985A (ja) * | 2003-01-24 | 2004-08-12 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
WO2007040143A1 (ja) | 2005-09-30 | 2007-04-12 | Kaneka Corporation | トリメトキシシリル基末端を有する有機重合体の製造方法 |
JP2007154009A (ja) * | 2005-12-02 | 2007-06-21 | Kaneka Corp | 硬化性組成物 |
JP2007231086A (ja) * | 2006-02-28 | 2007-09-13 | Asahi Glass Co Ltd | 硬化性組成物およびコンタクト型接着剤 |
JP2008285585A (ja) | 2007-05-17 | 2008-11-27 | Kaneka Corp | トリメトキシシリル基を末端に有する有機重合体の製造方法 |
WO2009011329A1 (ja) * | 2007-07-19 | 2009-01-22 | Kaneka Corporation | 硬化性組成物 |
JP2010150381A (ja) * | 2008-12-25 | 2010-07-08 | Asahi Glass Co Ltd | 硬化性組成物 |
JP4536319B2 (ja) | 2000-08-02 | 2010-09-01 | パナソニック株式会社 | 送信装置、受信装置および無線通信システム |
JP2011127004A (ja) * | 2009-12-18 | 2011-06-30 | Cemedine Co Ltd | 複数のポリオキシアルキレン系重合体を用いるスピーカー組立用接着剤 |
JP2011178955A (ja) * | 2010-03-03 | 2011-09-15 | Asahi Glass Co Ltd | 硬化性組成物 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6280562B1 (en) | 1990-02-13 | 2001-08-28 | Cemedine Company, Ltd | Contact adhering method |
JP2001022568A (ja) | 1999-07-08 | 2001-01-26 | Hitachi Ltd | パッケージ適用支援システムおよびパッケージ適用支援プログラムを記憶した記憶媒体 |
JP2001311056A (ja) * | 2000-04-28 | 2001-11-09 | Kanegafuchi Chem Ind Co Ltd | 被着体の接着方法 |
EP1852472A1 (en) * | 2005-02-25 | 2007-11-07 | Kaneka Corporation | Curable composition and cured object thereof |
-
2012
- 2012-02-22 US US14/002,573 patent/US9534158B2/en active Active
- 2012-02-22 EP EP12752103.7A patent/EP2682432B1/en active Active
- 2012-02-22 CN CN201280011222.2A patent/CN103827226B/zh active Active
- 2012-02-22 JP JP2013502254A patent/JP5824030B2/ja active Active
- 2012-02-22 WO PCT/JP2012/054181 patent/WO2012117902A1/ja active Application Filing
Patent Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3278457A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278458A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278459A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
US3427335A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same |
US3427334A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity |
JPS4627250B1 (ja) | 1965-10-15 | 1971-08-07 | ||
US3632557A (en) | 1967-03-16 | 1972-01-04 | Union Carbide Corp | Vulcanizable silicon terminated polyurethane polymers |
JPS50156599A (ja) | 1974-06-07 | 1975-12-17 | ||
JPS546096A (en) | 1977-06-15 | 1979-01-17 | Kanegafuchi Chem Ind Co Ltd | Preparation of silyl-terminated polymer |
JPS5513468A (en) | 1978-07-17 | 1980-01-30 | Toshiba Corp | Display unit |
JPS5513767A (en) | 1978-07-18 | 1980-01-30 | Kanegafuchi Chem Ind Co Ltd | Production of polymer terminated with silyl groups |
JPS5915336B2 (ja) | 1980-10-16 | 1984-04-09 | ザ ゼネラル タイヤ アンド ラバ− カンパニ− | ポリプロピレンエ−テル及びポリ−1,2−ブチレンエ−テルポリオ−ル類の処理法 |
US4366307A (en) | 1980-12-04 | 1982-12-28 | Products Research & Chemical Corp. | Liquid polythioethers |
JPS57164123A (en) | 1981-04-02 | 1982-10-08 | Toshiba Silicone Co Ltd | Production of silicon-containing polyoxyalkylene |
US4345053A (en) | 1981-07-17 | 1982-08-17 | Essex Chemical Corp. | Silicon-terminated polyurethane polymer |
JPS59168014A (ja) | 1983-03-15 | 1984-09-21 | Kanegafuchi Chem Ind Co Ltd | 硬化性弾性組成物 |
JPS6023405A (ja) | 1983-07-19 | 1985-02-06 | Sunstar Giken Kk | 室温硬化性弾性組成物 |
JPS60228516A (ja) | 1984-04-26 | 1985-11-13 | Kanegafuchi Chem Ind Co Ltd | 新規重合体の製造法 |
JPS61197631A (ja) | 1985-02-28 | 1986-09-01 | Kanegafuchi Chem Ind Co Ltd | 分子量分布の狭いポリアルキレンオキシドの製造方法 |
JPS61215622A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造方法 |
JPS61215623A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法 |
JPS61218632A (ja) | 1985-03-25 | 1986-09-29 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有する分子量分布の狭いポリアルキレンオキシド |
JPS6270405A (ja) | 1985-09-24 | 1987-03-31 | Sunstar Giken Kk | アルコキシシリル基を有するテレケリツクなビニルポリマ−およびその製法 |
JPH032450B2 (ja) | 1986-05-30 | 1991-01-16 | Toshiba Silicone | |
JPH0469659B2 (ja) | 1986-06-25 | 1992-11-06 | Kanegafuchi Chemical Ind | |
JPH07108928B2 (ja) | 1986-06-26 | 1995-11-22 | 鐘淵化学工業株式会社 | 硬化性組成物 |
JPS63254149A (ja) | 1987-04-13 | 1988-10-20 | Kanegafuchi Chem Ind Co Ltd | 硬化性樹脂組成物 |
JPS6422904A (en) | 1987-07-17 | 1989-01-25 | Kanegafuchi Chemical Ind | Isobutylene polymer |
US4960844A (en) | 1988-08-03 | 1990-10-02 | Products Research & Chemical Corporation | Silane terminated liquid polymers |
JPH0372527A (ja) | 1989-05-09 | 1991-03-27 | Asahi Glass Co Ltd | ポリアルキレンオキシド誘導体の製造法 |
JPH03263478A (ja) | 1990-02-13 | 1991-11-22 | Cemedine Co Ltd | コンタクト型接着方法 |
JPH0457850A (ja) * | 1990-06-28 | 1992-02-25 | Shin Etsu Chem Co Ltd | 室温硬化性組成物 |
JPH04283259A (ja) | 1991-03-11 | 1992-10-08 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH0570531A (ja) | 1991-09-12 | 1993-03-23 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH09194731A (ja) | 1996-01-23 | 1997-07-29 | Asahi Glass Co Ltd | 硬化性組成物 |
JPH09272714A (ja) | 1996-02-08 | 1997-10-21 | Kanegafuchi Chem Ind Co Ltd | 末端に官能基を有する(メタ)アクリル系重合体の 製造方法 |
JPH10251552A (ja) | 1997-03-07 | 1998-09-22 | Konishi Kk | シリコーン系樹脂組成物 |
JPH10273512A (ja) | 1997-03-31 | 1998-10-13 | Mitsui Chem Inc | ポリアルキレンオキシドの製造方法 |
JPH1160722A (ja) | 1997-08-19 | 1999-03-05 | Mitsui Chem Inc | ポリオキシアルキレンポリオールの製造方法 |
JP2001072854A (ja) | 1999-09-01 | 2001-03-21 | Asahi Glass Co Ltd | 室温硬化性組成物 |
JP2001207157A (ja) | 2000-01-28 | 2001-07-31 | Toagosei Co Ltd | シーリング材組成物 |
JP2001220568A (ja) | 2000-02-10 | 2001-08-14 | Konishi Co Ltd | シリコーン系コンタクト型接着剤 |
JP4536319B2 (ja) | 2000-08-02 | 2010-09-01 | パナソニック株式会社 | 送信装置、受信装置および無線通信システム |
JP2003313418A (ja) * | 2002-04-19 | 2003-11-06 | Kanegafuchi Chem Ind Co Ltd | 硬化性樹脂組成物 |
JP2004224985A (ja) * | 2003-01-24 | 2004-08-12 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
WO2007040143A1 (ja) | 2005-09-30 | 2007-04-12 | Kaneka Corporation | トリメトキシシリル基末端を有する有機重合体の製造方法 |
JP2007154009A (ja) * | 2005-12-02 | 2007-06-21 | Kaneka Corp | 硬化性組成物 |
JP2007231086A (ja) * | 2006-02-28 | 2007-09-13 | Asahi Glass Co Ltd | 硬化性組成物およびコンタクト型接着剤 |
JP2008285585A (ja) | 2007-05-17 | 2008-11-27 | Kaneka Corp | トリメトキシシリル基を末端に有する有機重合体の製造方法 |
WO2009011329A1 (ja) * | 2007-07-19 | 2009-01-22 | Kaneka Corporation | 硬化性組成物 |
JP2010150381A (ja) * | 2008-12-25 | 2010-07-08 | Asahi Glass Co Ltd | 硬化性組成物 |
JP2011127004A (ja) * | 2009-12-18 | 2011-06-30 | Cemedine Co Ltd | 複数のポリオキシアルキレン系重合体を用いるスピーカー組立用接着剤 |
JP2011178955A (ja) * | 2010-03-03 | 2011-09-15 | Asahi Glass Co Ltd | 硬化性組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2682432A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105246979A (zh) * | 2013-05-30 | 2016-01-13 | 株式会社钟化 | 固化性组合物 |
CN105324436A (zh) * | 2013-05-30 | 2016-02-10 | 株式会社钟化 | 固化性组合物及其固化物 |
WO2014192914A1 (ja) * | 2013-05-30 | 2014-12-04 | 株式会社カネカ | 硬化性組成物およびその硬化物 |
EP3006511A4 (en) * | 2013-05-30 | 2016-11-16 | Kaneka Corp | VULCANIZABLE COMPOSITION |
JPWO2014192914A1 (ja) * | 2013-05-30 | 2017-02-23 | 株式会社カネカ | 硬化性組成物およびその硬化物 |
US10077375B2 (en) | 2013-05-30 | 2018-09-18 | Kaneka Corporation | Curable composition |
JP2015105293A (ja) * | 2013-11-29 | 2015-06-08 | 株式会社カネカ | 硬化性組成物 |
US10150895B2 (en) | 2014-01-23 | 2018-12-11 | Kaneka Corporation | Curable composition |
CN106062083A (zh) * | 2014-01-23 | 2016-10-26 | 株式会社钟化 | 固化性组合物 |
JP2016098302A (ja) * | 2014-11-20 | 2016-05-30 | 株式会社カネカ | 硬化性組成物 |
JP2019156884A (ja) * | 2018-03-07 | 2019-09-19 | Agc株式会社 | オキシアルキレン重合体、オキシアルキレン重合体を含む硬化性組成物、シーリング材用のオキシアルキレン重合体を含む硬化性組成物、及び硬化物 |
JP7127302B2 (ja) | 2018-03-07 | 2022-08-30 | Agc株式会社 | オキシアルキレン重合体を含む硬化性組成物、シーリング材用のオキシアルキレン重合体を含む硬化性組成物、及び硬化物 |
JP2022523392A (ja) * | 2019-02-28 | 2022-04-22 | カネカ アメリカズ ホールディング,インコーポレイティド | 湿気硬化性接着剤組成物 |
JP7486511B2 (ja) | 2019-02-28 | 2024-05-17 | カネカ アメリカズ ホールディング,インコーポレイティド | 湿気硬化性接着剤組成物 |
JP2021004348A (ja) * | 2019-06-27 | 2021-01-14 | 積水フーラー株式会社 | 硬化性組成物及びその製造方法 |
JP7377512B2 (ja) | 2019-06-27 | 2023-11-10 | 積水フーラー株式会社 | 硬化性組成物及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2682432A1 (en) | 2014-01-08 |
CN103827226A (zh) | 2014-05-28 |
JPWO2012117902A1 (ja) | 2014-07-07 |
EP2682432A4 (en) | 2014-08-20 |
US20140094553A1 (en) | 2014-04-03 |
JP5824030B2 (ja) | 2015-11-25 |
US9534158B2 (en) | 2017-01-03 |
CN103827226B (zh) | 2016-12-07 |
EP2682432B1 (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5824030B2 (ja) | 硬化性組成物 | |
US8901255B2 (en) | Curable composition | |
JP5345836B2 (ja) | 硬化性組成物 | |
US7910682B2 (en) | Curable composition and methods for improving recovery properties and creep properties | |
JP5226315B2 (ja) | 硬化性組成物 | |
JP5974013B2 (ja) | 硬化性組成物およびその硬化物 | |
JPWO2006112340A1 (ja) | 透明性に優れた硬化性組成物及び硬化物 | |
JP5502723B2 (ja) | 硬化性組成物と硬化物 | |
WO2012033030A1 (ja) | 湿気硬化型反応性ホットメルト接着剤組成物 | |
JP2012057148A (ja) | 硬化性組成物 | |
JP5025162B2 (ja) | 硬化性組成物 | |
JP5260332B2 (ja) | 透明な硬化性組成物および、その硬化物 | |
WO2012036109A1 (ja) | 硬化性組成物 | |
WO2023048186A1 (ja) | 硬化性組成物 | |
JP2012057150A (ja) | 硬化性組成物 | |
JP2023150179A (ja) | 硬化性組成物 | |
JP5864430B2 (ja) | 湿気硬化型反応性ホットメルト接着剤組成物 | |
JP5547871B2 (ja) | 硬化性組成物および硬化物 | |
JP2012107098A (ja) | 硬化性組成物 | |
JPWO2016024584A1 (ja) | 積層体およびシーリング方法 | |
JP2014080532A (ja) | 硬化性組成物 | |
JP2013163787A (ja) | 硬化性組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12752103 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013502254 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012752103 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14002573 Country of ref document: US |