WO2012102501A2 - 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법 - Google Patents
웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법 Download PDFInfo
- Publication number
- WO2012102501A2 WO2012102501A2 PCT/KR2012/000314 KR2012000314W WO2012102501A2 WO 2012102501 A2 WO2012102501 A2 WO 2012102501A2 KR 2012000314 W KR2012000314 W KR 2012000314W WO 2012102501 A2 WO2012102501 A2 WO 2012102501A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- wavelength converter
- underfill
- emitting diode
- light emitting
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 170
- 239000004065 semiconductor Substances 0.000 claims abstract description 91
- 230000008878 coupling Effects 0.000 claims abstract description 9
- 238000010168 coupling process Methods 0.000 claims abstract description 9
- 238000005859 coupling reaction Methods 0.000 claims abstract description 9
- 239000011248 coating agent Substances 0.000 claims description 33
- 238000000576 coating method Methods 0.000 claims description 33
- 230000004888 barrier function Effects 0.000 claims description 32
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 19
- 239000011521 glass Substances 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 9
- 239000000945 filler Substances 0.000 claims description 7
- 229910010272 inorganic material Inorganic materials 0.000 claims description 6
- 239000011147 inorganic material Substances 0.000 claims description 6
- 239000011368 organic material Substances 0.000 claims description 6
- 238000000638 solvent extraction Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 62
- 230000008569 process Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000000149 penetrating effect Effects 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/483—Containers
- H01L33/486—Containers adapted for surface mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/507—Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/56—Materials, e.g. epoxy or silicone resin
Definitions
- the present invention relates to a light emitting diode package and a method of manufacturing the same, and more particularly, to a wafer level light emitting diode package and a method of manufacturing the same.
- Light-emitting diodes can be made light and short, have the advantages of energy saving and long life. Accordingly, the light emitting diode is used as a back light source of various display devices including a mobile phone, and the light emitting diode package in which the light emitting diode is mounted can implement white light having high color rendering property and is applied to general lighting by replacing white light sources such as fluorescent lamps. It is becoming.
- a light emitting diode package is usually formed by mounting an individual light emitting diode chip in a package having lead electrodes, connecting the light emitting diode chip and lead electrodes with a bonding wire, and encapsulating the light emitting diode chip with an encapsulant.
- the light emitting diode package manufacturing method handles the light emitting diode chips individually, and therefore, it takes a lot of time and money to produce a large quantity of light emitting diode packages, resulting in poor productivity. Furthermore, since the bonding wire is formed again after mounting the LED chip, the LED package manufacturing process is complicated. In addition, since the wire bonding process using the capillary requires a space for moving the capillary, there is a limit to miniaturization of the package size, and it is easy to cause a package defect due to poor bonding or disconnection of the wire.
- the problem to be solved by the present invention is to provide a light emitting diode package suitable for mass production by simplifying the process and a manufacturing method thereof.
- Another object of the present invention is to provide a light emitting diode package suitable for miniaturization and a method of manufacturing the same.
- Another object of the present invention is to provide a structurally stable light emitting diode package and a method of manufacturing the same.
- Another object of the present invention is to provide a light emitting diode package suitable for realizing mixed light, especially white light, and a method of manufacturing the same.
- a plurality of semiconductor stacked structures are formed on a first substrate, wherein each of the semiconductor stacked structures includes a first conductive semiconductor layer, a second conductive semiconductor layer, and the first conductive semiconductor layer.
- the chip bonding process can be simplified and the working time can be greatly reduced.
- the second substrate may be, for example, Si, AlN, SiC, ceramic, metal printed circuit board, metal core printed circuit board, or organic printed circuit board, but is not limited thereto.
- the method may further include forming first bumps and second bumps on the first conductivity type semiconductor layer and the second conductivity type semiconductor layer of each semiconductor laminate.
- the plurality of semiconductor stacked structures may be coupled to the first lead electrodes by bonding the first bumps and the second bumps to the first lead electrodes and the second lead electrodes.
- the method may further include forming an underfill covering the plurality of semiconductor stacked structures.
- the first bumps and the second bumps penetrate the underfill.
- the underfill may include a phosphor to perform wavelength conversion of light emitted from the semiconductor laminate.
- the underfill may mitigate the difference in coefficient of thermal expansion between the first substrate and the second substrate, and may help to bond the first substrate and the second substrate.
- the underfill may comprise a filler for adjusting the coefficient of thermal expansion and / or elasticity.
- the forming of the underfill may include forming a B-stage underfill covering the plurality of semiconductor stacked structures on the first substrate, and forming the first and second bumps on the first and second lead electrodes. During bonding, it may comprise curing the semi-cured underfill.
- the underfill material may be applied on the first substrate by a method such as spin coating or lamination, and then semi-cured on the first substrate.
- a wavelength converter may be formed to cover the back surface of the first substrate.
- the wavelength converter may be formed to cover the side surface of the first substrate after dividing the first substrate. Further, after dividing the first substrate, a portion of the underfill below the divided region is partially removed, and the wavelength converter may also be formed so that the underfill is partially removed to cover the exposed side surface.
- the method may further comprise forming a moisture barrier coating covering the wavelength converter.
- the moisture barrier coating protects the wavelength converter by blocking water or moisture and further protects the semiconductor laminate structure.
- the moisture barrier coating may be formed of silicon oxide or silicon nitride that may block moisture, and may also be formed by alternately stacking an organic material layer and an inorganic material layer. By alternately stacking the organic material layer and the inorganic material layer, it is possible to lengthen the penetration path of moisture introduced into the outside and prevent moisture from penetrating into the wavelength converter.
- the wavelength converter may be an epoxy or silicone resin containing a phosphor.
- the wavelength converter may be a glass containing a phosphor.
- the glass may be attached to the back side of the first substrate using an adhesive or attached to the back side of the first substrate by low temperature direct bonding. By using low temperature direct bonding technology, it is possible to prevent light loss due to the adhesive.
- the wavelength converter may be formed after dividing the first substrate.
- the wavelength converter may fill a space between the plurality of semiconductor stacked structures and the second substrate. That is, the wavelength converter and the underfill may be simultaneously formed.
- the method may further include removing the wavelength converter under the divided region of the first substrate to divide the wavelength converter in package units and to form a moisture barrier coating covering the divided wavelength converter.
- the method may further include forming a surface texture on the back side of the first substrate to increase light extraction efficiency.
- Surface textures can be formed using wet etching, electron beam lithography or nano imprint techniques.
- the side surface of the first substrate may be divided to be inclined with respect to the vertical direction of the rear surface of the first substrate, thereby further improving the light extraction efficiency.
- a wafer level light emitting diode package includes a substrate; A semiconductor laminate structure disposed on the front surface of the first substrate, the active layer being interposed between a first conductive semiconductor layer, a second conductive semiconductor layer, and the first conductive semiconductor layer and the second conductive semiconductor layer.
- a semiconductor laminated structure having a region;
- a second substrate having a first lead electrode and a second lead electrode;
- a plurality of connectors electrically connecting the semiconductor stacked structure and the first and second lead electrodes;
- a wavelength converter covering a rear surface of the first substrate.
- the wafer level LED package is provided by mounting a first substrate on which a plurality of semiconductor laminate structures are formed on a second substrate, and then dividing the first substrate and the second substrate. Are manufactured. Accordingly, the size of the first substrate and the second substrate in the wafer level light emitting diode package is generally similar, so that a small light emitting diode package can be provided.
- an underfill may be located between the first substrate and the second substrate.
- the underfill may reinforce the bonding force between the semiconductor laminate and the second substrate to prevent the semiconductor laminate from being separated from the second substrate.
- the underfill may include at least one of a phosphor and a filler.
- the wavelength converter may cover at least a portion of the side surface of the underfill.
- a moisture barrier coating can cover the wavelength converter. Therefore, it is possible to prevent moisture from penetrating into the wavelength converter from the outside.
- the moisture barrier coating may cover the side of the underfill.
- the moisture barrier coating may have a structure in which an organic material layer and an inorganic material layer are alternately stacked. This moisture barrier coating increases the penetration path of moisture, making it difficult for moisture to penetrate into the wafer level light emitting diode package.
- the wavelength converter may also fill the space between the first substrate and the second substrate. That is, the underfill may be formed of the same material and the same process as the wavelength converter.
- the wavelength converter may be a glass containing a phosphor.
- the glass may be directly bonded to the rear surface of the first substrate. That is, the adhesive for attaching the glass to the first substrate can be omitted, thereby preventing the light loss by using the adhesive.
- the rear surface of the first substrate may include a surface texture for increasing light extraction efficiency, and the side surface of the first substrate may be inclined with respect to the vertical direction of the rear surface of the first substrate.
- the chip bonding process can be simplified and the working time can be simplified because a plurality of semiconductor stacked structures on the first substrate are bonded to the second substrate at the wafer level, and the first and second substrates are divided to fabricate a package. Can be greatly reduced. Moreover, manufacturing light emitting diode packages at the wafer level makes them suitable for package miniaturization. Furthermore, by using the underfill to improve the bonding force between the first substrate and the second substrate can provide a structurally stable light emitting diode package, by adopting a moisture barrier layer to prevent moisture from penetrating into the light emitting diode package from the outside. Can be.
- the wavelength converter can be used to implement mixed color light, especially white light, and the underfill and / or wavelength converter can perform wavelength conversion not only on the upper surface of the semiconductor laminated structure but also on the light emitted to the side and bottom surfaces. have.
- 1 to 7 are cross-sectional views illustrating a method of manufacturing a light emitting diode package according to an embodiment of the present invention.
- FIGS. 8 to 12 are cross-sectional views illustrating a method of manufacturing a light emitting diode package according to another embodiment of the present invention.
- 13 to 16 are cross-sectional views illustrating a method of manufacturing a light emitting diode package according to still another embodiment of the present invention.
- 1 to 7 are cross-sectional views illustrating a method of manufacturing a light emitting diode package according to an embodiment of the present invention.
- a wafer 20 on which a plurality of semiconductor stacked structures 30 are formed on a first substrate 21 is prepared.
- the wafer 20 includes a first substrate 21 and a plurality of semiconductor stacked structures 30 arranged on the first substrate, and further includes an ohmic contact layer 31, an insulating layer 33, and a first substrate 21.
- the first electrodes 36a, the second electrodes 36b, the underfill 40a, and a buffer layer (not shown) may be included.
- the semiconductor stacked structure 30 may include a first conductive semiconductor layer 25, an active layer 27, and a second conductive semiconductor layer 29.
- the first electrode 36a may include a first electrode pad 35a and a first bump 37a
- the second electrode 36b may include a second electrode pad 35b and a second bump ( 37b).
- the first substrate 21 may be a growth substrate capable of growing a nitride semiconductor layer, such as sapphire, silicon carbide, spinel, or the like.
- the first substrate 21 is a transparent substrate that can transmit light.
- the semiconductor stacked structure 30 may be manufactured by a conventional light emitting diode chip manufacturing process. That is, epitaxial layers including the first conductive semiconductor layer 25, the active layer 27, and the second conductive semiconductor layer 29 are grown on the first substrate 21, and the epitaxial layers are patterned to form the epitaxial layers. A plurality of semiconductor stacked structures 30 are formed on the substrate 21. The second conductive semiconductor layer 29 and the active layer 27 may also be partially removed to expose a portion of the first conductive semiconductor layer 25.
- the active layer 27 and the first and second conductive semiconductor layers 25 and 29 may be formed of a III-N-based compound semiconductor such as (Al, Ga, In) N semiconductor.
- the first and second conductivity-type semiconductor layers 25 and 29 may be single layers or multiple layers, respectively.
- the first conductivity type and / or second conductivity type semiconductor layers 25 and 29 may include a contact layer and a cladding layer, and may also include a superlattice layer.
- the active layer 27 may have a single quantum well structure or a multiple quantum well structure.
- the first conductivity type may be n type
- the second conductivity type may be p type, but is not limited thereto and vice versa.
- the buffer layer mitigates lattice mismatch between the substrate 21 and the first conductivity type semiconductor layer 25 to reduce the defect density generated in the semiconductor layers 25, 27, and 29.
- an ohmic contact layer 31 may be formed on the second conductive semiconductor layer 29, and each of the first and second conductive semiconductor layers 25 and 29 may be formed on the second conductive semiconductor layer 29.
- the first electrode pad 35a and the second electrode pad 35b may be formed.
- the ohmic contact layer 31 may be formed of, for example, a transparent conductive layer such as Ni / Au, ITO, IZO, or ZnO, but is not limited thereto.
- the ohmic contact layer 31 may include a reflective metal layer.
- the first electrode pad 35a and the second electrode pad 35b may include, for example, Ti, Cu, Ni, Al, Au, or Cr, and may be formed of two or more of these materials.
- the second electrode pad 35b may be electrically connected to the second conductive semiconductor layer 29 through the ohmic contact layer.
- An insulating layer 33 may also be formed to cover the semiconductor stack structures 30 before the electrode pads 35a and 35b are formed.
- the insulating layer 33 may be formed of, for example, silicon oxide or silicon nitride.
- first bump 37a and a second bump 37b may be formed on the first electrode pad 35a and the second electrode pad 35b, respectively.
- the first bumps and the second bumps are connectors that electrically connect the plurality of semiconductor stacked structures to the first and second lead electrodes 53a and 53b of the second substrate 51, and connect the plurality of semiconductor stacked structures. It is structurally coupled to the second substrate 51.
- the first bumps 37a and the second bumps 37b may be formed of Au or solder, or bumps may be formed of a solid metal material such as Ni or a Ni alloy, and Au or solder may be formed thereon.
- the first bumps 37a and the second bumps 37b may be formed of stud bumps using a wire bonding technique.
- an underfill 40a may be formed on the substrate 21 on which the semiconductor stack structures 30 are formed.
- the underfill 40a may be formed of a thermosetting resin or a thermoplastic resin.
- the underfill 40a may include a phosphor and / or a filler.
- the phosphor may be added to wavelength-convert the light emitted to the side of the semiconductor laminate 30, and a filler may be added, for example, to adjust the thermal expansion coefficient and elastic modulus of the underfill 40a.
- the underfill 40a may be formed using a spin coat or lamination technique, for example, and may be formed using a screen printing technique using squeeze. Accordingly, the underfill 40a may be formed to cover the side surfaces of the semiconductor stacked structures 30 and to cover the upper surface thereof, and the first and second bumps 37a and 37b may penetrate the underfill 40a. May be exposed to the outside.
- the underfill 40a may be cured in the wafer 20 preparation step, but is not limited thereto.
- the underfill 40a may remain in a semi-cured state in the wafer 20 preparation step. Thereafter, the semi-cured underfill that bonds the first bump 37a and the second bump 37b to the lead electrodes 53a and 53b of the second substrate 21 may be cured.
- a second substrate 51 having first lead electrodes 53a and second lead electrodes 53b is prepared.
- the second substrate 51 may be a printed circuit board on which lead electrodes 53a and 53b are printed, for example, an organic PCB such as a conventional FR4-PCB, a metal-PCB, a metal core PCB, a ceramic substrate, a Si substrate, and an AlN. Substrate or SiC substrate.
- organic PCB such as a conventional FR4-PCB, a metal-PCB, a metal core PCB, a ceramic substrate, a Si substrate, and an AlN.
- Substrate or SiC substrate for example, an organic PCB such as a conventional FR4-PCB, a metal-PCB, a metal core PCB, a ceramic substrate, a Si substrate, and an AlN.
- the lead electrodes 53a and 53b may be insulated from the conductive substrate by an insulating layer (not shown).
- the first and second lead electrodes 53a and 53b may have internal terminals or pads on the second substrate 51 and external terminals for connecting to an external power source under the first substrate 51.
- the first and second lead electrodes 53a and 53b pass through the second substrate 51.
- the first and second lead electrodes 53a and 53b may fill the through holes of the second substrate 51, but are not limited thereto and may be formed along side surfaces of the through holes.
- the first bumps 37a and the second bumps 37b are bonded to the first lead electrodes 53a and the second lead electrodes 53b.
- the first and second bumps 37a and 37b may be bonded to the first and second lead electrodes 53a and 53b using a bonding technique such as thermocompression, thermosonic, reflow, or the like. Can be bonded.
- Metal pads, such as Au, may be formed on the second substrate 51 for the bonding, and solder paste may be further formed on the metal pads.
- the underfill in the semi-cured state is first adjusted during the metal bonding by adjusting the temperature profile of the thermocompression bonding process.
- the viscosity of 40a) may be reduced to generate a flow of the semi-cured underfill 40a, and then the curing of the semi-cured underfill 40a may proceed while maintaining or decreasing the temperature.
- the underfill 40a may reinforce the coupling of the wafer 20 and the package member 50.
- a filler may be added to the underfill 40a to allow the underping 40a to buffer the difference in coefficient of thermal expansion between the wafer 20 and the package member 50. Accordingly, the underfill 40a may improve reliability as well as structural stability of the LED package.
- the back surface of the first substrate 21 may be partially removed by grinding or the like to thin the first substrate 21.
- the wavelength converter 60 is formed on the rear surface of the first substrate 21.
- the wavelength converter 60 may be formed by coating a phosphor or by coating a resin containing the phosphor.
- a resin containing phosphors may be applied to the first substrate 21 and the wavelength converter 60 may be formed to a uniform thickness using a squeeze.
- a wavelength converter containing a phosphor for example, glass, may be attached to the first substrate 21.
- the glass may be attached to the first substrate 21 using an adhesive, but may be attached to the first substrate 21 using a low temperature direct bonding technique without using an adhesive.
- the first substrate 21 and the second substrate 51 are divided.
- the underfill 40a is also divided together.
- the first substrate 21 and the second substrate 51 may be divided by scribing, breaking, sawing, or may be divided using a laser. Accordingly, individual LED packages can be completed.
- the first substrate 21 and the second substrate 51 may be divided together in the same process using, for example, a laser. Accordingly, the first substrate 21 and the second substrate may be formed in substantially the same size. However, the present invention is not limited thereto, and the first substrate 21 may be divided first, and then the second substrate 51 may be divided in a separate process. In this case, as illustrated in FIG. 5, the size of the first substrate 21 may be slightly smaller than the size of the second substrate 51.
- the wavelength converter 60 containing the phosphor is likely to deform the phosphor properties by the resin penetrating from the outside.
- the wavelength converter 60 is formed of a silicone resin, it is necessary to protect the silicone resin and the phosphor from moisture introduced from the outside.
- a moisture barrier coating 70 may be formed to cover the wavelength converter 60.
- the moisture barrier coating 70 may be formed over the first substrate 21 to cover the wavelength converter 60 before dividing the first substrate 21, and then with the first substrate 21). Can be divided. Alternatively, the moisture barrier coating 70 may be formed after dividing the first substrate 21 and the underfill 40a, or may be formed after dividing the second substrate 51. Accordingly, the moisture barrier coating 70 may cover side surfaces of the wavelength converter 60 and the underfill 40a to prevent moisture from penetrating into the light emitting diode package from the outside.
- the moisture barrier coating 70 may be formed of, for example, a silicon oxide film or a silicon nitride film.
- the moisture barrier coating 70 may be formed by alternately stacking the organic material layer 71 and the inorganic material layer 73 as shown in FIG. 7.
- the moisture barrier coating 70 may be formed by alternately stacking a transparent polymer and an oxide or nitride of a metal such as silicon (Si) or aluminum (Al), for example, using a low temperature vacuum deposition technique. This moisture barrier coating 70 lengthens the penetration path of moisture to prevent moisture from penetrating the wavelength converter 60.
- the manufacturing process is simpler and the manufacturing cost can be reduced as compared with the prior art in which the individual chips are mounted. Furthermore, since there is no need to electrically connect the lead electrodes and the semiconductor laminate structure by using the bonding wires in the package fabrication process, it is possible to eliminate a package failure caused by disconnection or short circuit of the bonding wires.
- the underfill 40a is formed to cover the plurality of semiconductor stack structures 30 before the wafer 20 and the package member 50 are coupled, but the underfill 40a is not necessarily required.
- the underfill 40a may be formed by bonding the wafer and the package member 50 and then injecting an underfill material into a region between the first substrate 21 and the second substrate 51.
- FIGS. 8 to 12 are cross-sectional views illustrating a method of manufacturing a light emitting diode package according to another embodiment of the present invention.
- the wafer 20 and the package member 50 are prepared as described above with reference to FIGS. 1 to 3, and they are combined. Thereafter, the surface texture T is formed on the rear surface of the first substrate 21.
- the surface texture T may be formed by etching the first substrate 21 using wet etching, electron beam lithography or nanoimprint technology.
- the surface texture T may be formed, for example, in a pattern having a pitch of several tens of nm to several um and having one or more aspect ratios.
- the surface texture T improves the light extraction efficiency of the light emitted from the semiconductor stacked structure 30.
- the first substrate 21 is divided.
- the cross section may be divided to have an inverted triangular shape using a diamond blade or a laser.
- the side surface of the first substrate 21 may be formed to be inclined with respect to the vertical direction of the rear surface. The inclined side surface of the first substrate 21 improves the extraction efficiency of light emitted from the semiconductor stacked structure 30.
- the underfill 40a under the divided region may be partially removed.
- the underfill 40a may be removed to leave a portion on the second substrate 51, but is not limited thereto and may be removed to expose the surface of the second substrate 51.
- a wavelength converter 60a covering the first substrate 21 is formed.
- the wavelength converter 60a may be formed of a resin containing a phosphor.
- the wavelength converter 60a covers the back and side surfaces of the first substrate 21, and also covers the side surfaces of the underfill 40a exposed in the divided region.
- the second substrate 51 is divided to complete an individual LED package.
- the wavelength converter 60a and the remaining underfill 40a below the divided region may also be divided together.
- a moisture barrier coating 70 may be further formed to prevent moisture from penetrating into the wavelength converter 60a.
- the wavelength converter 60a and the remaining underfill 40a below the divided region may be removed first, and a moisture barrier coating 70 may be formed.
- the moisture barrier coating 70 may be formed before or after dividing the second substrate 51.
- the light extraction efficiency may be improved by forming the surface texture T on the rear surface of the first substrate 21, and the first substrate 21 may be inclined so that the side surface of the first substrate 21 is inclined. ), The light extraction efficiency can be further improved.
- the technique of forming the surface texture T and forming the inclined side surface is not limited to the present embodiment but may be equally applied to other embodiments.
- the wavelength converter 60a is formed to partially cover the side surface of the semiconductor laminate structure 30 by forming the wavelength converter 60a after partially removing the first substrate 21 and the underfill 40a. Can be.
- 13 to 16 are cross-sectional views illustrating a method of manufacturing a light emitting diode package according to still another embodiment of the present invention.
- the surface texture T is formed on the rear surface of the first substrate 21. And side surfaces of the first substrate 21 are inclinedly divided.
- the step of forming the underfill 40a in the wafer 20 preparation step is omitted.
- the wavelength converter 60b covering the divided first substrate 21 is formed.
- the wavelength converter 60b may also fill the region between the first substrate 21 and the second substrate 51. That is, the underfill 40a may be formed together using the wavelength converter 60b.
- the wavelength converter 60b may be formed using a resin containing a phosphor, and may be formed to have a uniform thickness on the first substrate 21 using a squeeze.
- the second substrate 51 is divided to complete an individual LED package.
- the wavelength converter 60b in the divided region of the first substrate 21 may also be divided together.
- a moisture barrier coating 70 may be further formed to prevent moisture from penetrating into the wavelength converter 60b.
- a moisture barrier coating 70 may be formed that first removes the wavelength converter 60b below the divided region and covers the wavelength converter 60b.
- the moisture barrier coating 70 may be formed before or after dividing the second substrate 51.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
Claims (33)
- 제1 기판 상에 복수의 반도체 적층 구조체를 형성하되, 상기 각 반도체 적층 구조체는 제1 도전형 반도체층, 제2 도전형 반도체층 및 상기 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 개재된 활성 영역을 포함하고,상기 복수의 반도체 적층 구조체에 대응하도록 정렬된 제1 리드 전극들 및 제2 리드 전극들을 갖는 제2 기판을 준비하고,상기 복수의 반도체 적층 구조체를 상기 제2 기판에 결합하고,상기 결합 후, 상기 제1 기판 및 상기 제2 기판을 복수의 패키지로 분할하는 것을 포함하는 발광 다이오드 패키지 제조 방법.
- 청구항 1에 있어서,상기 각 반도체 적층 구조체의 제1 도전형 반도체층 및 제2 도전형 반도체층 상에 각각 제1 범프 및 제2 범프를 형성하는 것을 더 포함하고,상기 제1 범프들 및 제2 범프들을 상기 제1 리드 전극들 및 제2 리드 전극들에 본딩함으로써 상기 복수의 반도체 적층 구조체가 상기 제1 리드 전극들에 결합되는 발광 다이오드 패키지 제조 방법.
- 청구항 2에 있어서,상기 복수의 반도체 적층 구조체를 덮는 언더필을 형성하는 것을 더 포함하되, 상기 제1 범프들 및 제2 범프들은 상기 언더필을 관통하는 발광 다이오드 패키지 제조 방법.
- 청구항 3에 있어서,상기 언더필은 형광체 및 충진제 중 적어도 하나를 포함하는 발광 다이오드 패키지 제조 방법.
- 청구항 3에 있어서,상기 언더필을 형성하는 것은,상기 제1 기판 상에서 상기 복수의 반도체 적층 구조체를 덮는 반경화 언더필을 형성하고,상기 제1 및 제2 범프들을 상기 제1 및 제2 리드 전극들에 본딩하는 동안, 상기 반경화 언더필을 경화시키는 것을 포함하는 발광 다이오드 패키지 제조 방법.
- 청구항 3에 있어서,상기 결합 후, 상기 제1 기판의 뒷면을 덮는 파장변환기를 형성하는 것을 더 포함하는 발광 다이오드 패키지 제조 방법.
- 청구항 6에 있어서,상기 파장변환기는, 상기 제1 기판을 분할한 후, 상기 제1 기판의 측면을 덮도록 형성되는 발광 다이오드 패키지 제조 방법.
- 청구항 7에 있어서,상기 제1 기판을 분할한 후, 분할 영역 아래의 상기 언더필의 일부를 부분적으로 제거하는 것을 더 포함하고,상기 파장변환기는 또한 상기 언더필이 부분적으로 제거되어 노출된 측면을 덮도록 형성되는 발광 다이오드 패키지 제조 방법.
- 청구항 8에 있어서,상기 파장변환기를 덮는 수분 장벽 코팅을 형성하는 것을 더 포함하는 발광 다이오드 패키지 제조 방법.
- 청구항 9에 있어서,상기 수분 장벽 코팅은 상기 파장변환기를 패키지 내에 매립하도록 형성되는 발광 다이오드 패키지 제조 방법.
- 청구항 1에 있어서,상기 결합 후, 상기 제1 기판의 뒷면을 덮는 파장변환기를 형성하는 것을 더 포함하는 발광 다이오드 패키지 제조 방법.
- 청구항 11에 있어서,상기 파장변환기는 형광체를 함유하는 글래스인 발광 다이오드 패키지 제조 방법.
- 청구항 12에 있어서,상기 글래스는 저온 직접 본딩에 의해 상기 기판 상에 부착된 발광 다이오드 패키지 제조 방법.
- 청구항 11에 있어서,상기 파장변환기를 덮는 수분 장벽 코팅을 형성하는 것을 더 포함하는 발광 다이오드 패키지 제조 방법.
- 청구항 14에 있어서,상기 수분 장벽 코팅은 유기 재료층과 무기 재료층을 교대로 적층하여 형성된 발광 다이오드 패키지 제조 방법.
- 청구항 11에 있어서,상기 파장변환기는 상기 제1 기판을 분할한 후에 형성되는 발광 다이오드 패키지 제조 방법.
- 청구항 16에 있어서,상기 파장변환기는 상기 복수의 반도체 적층 구조체와 상기 제2 기판 사이의 공간을 채우는 발광 다이오드 패키지 제조 방법.
- 청구항 17에 있어서,상기 제1 기판의 분할 영역 아래의 상기 파장변환기를 제거하여 패키지 단위로 파장변환기를 분할하고,분할된 파장변환기를 덮는 수분 장벽 코팅을 형성하는 것을 더 포함하는 발광 다이오드 패키지 제조 방법.
- 청구항 1에 있어서,상기 제1 기판 뒷면에 광 추출 효율을 증가시키기 위한 표면 텍스쳐를 형성하는 것을 더 포함하는 발광 다이오드 패키지 제조 방법.
- 청구항 1에 있어서,상기 제1 기판을 분할할 때, 상기 제1 기판의 측면이 상기 제1 기판의 뒷면의 수직 방향에 대해 경사지도록 분할되는 발광 다이오드 패키지 제조 방법.
- 제1 기판;상기 제1 기판의 앞면 상에 배치된 반도체 적층 구조체로서, 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 개재된 활성 영역을 갖는 반도체 적층 구조체;제1 리드 전극 및 제2 리드 전극을 갖는 제2 기판;상기 반도체 적층 구조체와 상기 제1 및 제2 리드 전극을 전기적으로 연결하는 복수의 커넥터; 및상기 제1 기판의 뒷면을 덮는 파장변환기를 포함하는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 21에 있어서,상기 제1 기판과 상기 제2 기판 사이에 위치하는 언더필을 더 포함하는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 22에 있어서,상기 언더필은 형광체 및 충진제 중 적어도 하나를 포함하는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 22에 있어서,상기 파장변환기는 상기 언더필의 측면 중 적어도 일부를 덮는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 24에 있어서,상기 파장변환기를 덮는 수분 장벽 코팅을 더 포함하는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 25에 있어서,상기 수분 장벽 코팅은 상기 언더필의 측면을 덮는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 21에 있어서,상기 파장변환기를 덮는 수분 장벽 코팅을 더 포함하는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 27에 있어서,상기 수분 장벽 코팅은 유기 재료층과 무기 재료층이 교대로 적층된 구조를 갖는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 27에 있어서,상기 파장변환기는 상기 제1 기판과 상기 제2 기판 사이의 공간을 채우는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 21에 있어서,상기 파장변환기는 형광체를 함유하는 글래스인 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 30에 있어서,상기 글래스는 상기 제1 기판의 뒷면에 직접 본딩된 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 21에 있어서,상기 제1 기판의 뒷면은 광 추출 효율을 증가시키기 위한 표면 텍스쳐를 포함하는 웨이퍼 레벨 발광 다이오드 패키지.
- 청구항 21에 있어서,상기 제1 기판의 측면은 상기 제1 기판 뒷면의 수직 방향에 대해 경사진 웨이퍼 레벨 발광 다이오드 패키지.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280006927.5A CN103339749B (zh) | 2011-01-28 | 2012-01-13 | 晶片级发光二极管封装件及制造此的方法 |
EP12739572.1A EP2669963B1 (en) | 2011-01-28 | 2012-01-13 | Method of fabricating a light emitting diode package |
JP2013551891A JP2014507804A (ja) | 2011-01-28 | 2012-01-13 | ウエハーレベル発光ダイオードパッケージ及びそれを製造する方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110008736A KR101761834B1 (ko) | 2011-01-28 | 2011-01-28 | 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법 |
KR10-2011-0008736 | 2011-01-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012102501A2 true WO2012102501A2 (ko) | 2012-08-02 |
WO2012102501A3 WO2012102501A3 (ko) | 2012-09-20 |
Family
ID=46581248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/000314 WO2012102501A2 (ko) | 2011-01-28 | 2012-01-13 | 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8592232B2 (ko) |
EP (2) | EP2669963B1 (ko) |
JP (1) | JP2014507804A (ko) |
KR (1) | KR101761834B1 (ko) |
CN (1) | CN103339749B (ko) |
TW (1) | TWI528595B (ko) |
WO (1) | WO2012102501A2 (ko) |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9269878B2 (en) | 2011-05-27 | 2016-02-23 | Lg Innotek Co., Ltd. | Light emitting device and light emitting apparatus |
KR101350159B1 (ko) * | 2012-08-31 | 2014-02-13 | 한국광기술원 | 백색 발광 다이오드 제조방법 |
JP2014150196A (ja) | 2013-02-01 | 2014-08-21 | Toshiba Corp | 半導体発光装置およびその製造方法 |
TWI622189B (zh) | 2013-02-08 | 2018-04-21 | 晶元光電股份有限公司 | 發光二極體元件 |
JP6071661B2 (ja) * | 2013-03-11 | 2017-02-01 | 株式会社東芝 | 半導体発光装置 |
DE102013103079A1 (de) * | 2013-03-26 | 2014-10-02 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips |
EP2999014B1 (en) | 2013-05-13 | 2020-01-22 | Seoul Semiconductor Co., Ltd. | Manufacturing method of light-emitting device package |
JP6394052B2 (ja) * | 2013-05-13 | 2018-09-26 | 日亜化学工業株式会社 | 発光装置及びその製造方法 |
CN104183682A (zh) * | 2013-05-27 | 2014-12-03 | 崴发控股有限公司 | 覆晶式发光二极管元件及其封装结构 |
TWI540766B (zh) * | 2013-07-10 | 2016-07-01 | 隆達電子股份有限公司 | 發光二極體封裝結構 |
JP2015056652A (ja) * | 2013-09-13 | 2015-03-23 | 株式会社東芝 | 窒化物半導体発光装置 |
EP2854186A1 (en) * | 2013-09-26 | 2015-04-01 | Seoul Semiconductor Co., Ltd. | Light source module, fabrication method therefor, and backlight unit including the same |
KR102100923B1 (ko) * | 2013-09-30 | 2020-04-16 | 서울반도체 주식회사 | 발광 디바이스 및 제조방법 |
DE102013222200A1 (de) * | 2013-10-31 | 2015-08-27 | Osram Opto Semiconductors Gmbh | Elektronisches Bauelement und Verfahren zum Herstellen eines elektronischen Bauelements |
CN103682006A (zh) * | 2013-12-30 | 2014-03-26 | 杭州士兰明芯科技有限公司 | Led结构及其制造方法 |
KR101584201B1 (ko) * | 2014-01-13 | 2016-01-13 | 삼성전자주식회사 | 반도체 발광소자 및 이의 제조방법 |
KR102098245B1 (ko) * | 2014-02-11 | 2020-04-07 | 삼성전자 주식회사 | 광원 패키지 및 그를 포함하는 표시 장치 |
JP6349953B2 (ja) * | 2014-05-20 | 2018-07-04 | 日亜化学工業株式会社 | 発光装置の製造方法 |
US10910350B2 (en) * | 2014-05-24 | 2021-02-02 | Hiphoton Co., Ltd. | Structure of a semiconductor array |
JP6398381B2 (ja) * | 2014-06-30 | 2018-10-03 | 日亜化学工業株式会社 | 発光装置及びその製造方法 |
TWI634675B (zh) * | 2014-07-14 | 2018-09-01 | 新世紀光電股份有限公司 | 發光元件結構 |
JP6384202B2 (ja) * | 2014-08-28 | 2018-09-05 | 日亜化学工業株式会社 | 発光装置の製造方法 |
JP6519127B2 (ja) * | 2014-09-19 | 2019-05-29 | 日亜化学工業株式会社 | 発光装置の製造方法 |
KR20160036862A (ko) | 2014-09-26 | 2016-04-05 | 서울바이오시스 주식회사 | 발광 소자 제조 방법 및 그것에 의해 제조된 발광 소자 |
DE102014114372B4 (de) * | 2014-10-02 | 2022-05-05 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement |
WO2016080768A1 (ko) * | 2014-11-18 | 2016-05-26 | 서울반도체 주식회사 | 발광 장치 및 이를 포함하는 차량용 램프 |
US9755105B2 (en) * | 2015-01-30 | 2017-09-05 | Nichia Corporation | Method for producing light emitting device |
TW201628217A (zh) * | 2015-01-30 | 2016-08-01 | 聯京光電股份有限公司 | 改良之發光二極體封裝結構與方法 |
CN107258022B (zh) * | 2015-03-16 | 2019-09-24 | 首尔伟傲世有限公司 | 包括金属块的发光元件 |
KR20160124375A (ko) * | 2015-04-17 | 2016-10-27 | 삼성전자주식회사 | 반도체 발광 소자 패키지의 제조 방법 |
CN104993029A (zh) * | 2015-07-09 | 2015-10-21 | 佛山市南海区联合广东新光源产业创新中心 | 半导体发光芯片级封装 |
CN104993032B (zh) * | 2015-07-16 | 2018-04-20 | 广东晶科电子股份有限公司 | 一种白光led器件及其制备方法 |
DE102015214222A1 (de) * | 2015-07-28 | 2017-02-02 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Bauelements und ein Bauelement |
DE102015214219A1 (de) * | 2015-07-28 | 2017-02-02 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Bauelements und ein Bauelement |
TWI581460B (zh) * | 2015-09-04 | 2017-05-01 | 錼創科技股份有限公司 | 發光元件及其製作方法 |
US10170455B2 (en) | 2015-09-04 | 2019-01-01 | PlayNitride Inc. | Light emitting device with buffer pads |
TWI552385B (zh) * | 2015-09-04 | 2016-10-01 | 錼創科技股份有限公司 | 發光元件 |
CN106558640B (zh) * | 2015-09-25 | 2019-01-22 | 光宝光电(常州)有限公司 | 发光二极管封装结构及其制造方法 |
KR102555242B1 (ko) * | 2015-09-30 | 2023-07-17 | 삼성전자주식회사 | 발광소자 패키지 |
KR102554231B1 (ko) * | 2016-06-16 | 2023-07-12 | 서울바이오시스 주식회사 | 전극 구조를 갖는 수직형 발광 다이오드 및 그것을 갖는 발광 다이오드 패키지 |
JP6724634B2 (ja) * | 2016-07-28 | 2020-07-15 | 日亜化学工業株式会社 | 発光装置の製造方法 |
JP6776855B2 (ja) * | 2016-12-06 | 2020-10-28 | 日亜化学工業株式会社 | 発光装置 |
WO2018113922A1 (en) * | 2016-12-20 | 2018-06-28 | Osram Opto Semiconductors Gmbh | Light emitting element with an optoelectronic semiconductor chip |
CN107039363A (zh) * | 2017-03-09 | 2017-08-11 | 广东美的制冷设备有限公司 | 功率模块及其制造方法 |
KR102514503B1 (ko) * | 2017-03-13 | 2023-03-27 | 서울반도체 주식회사 | 디스플레이 장치 제조 방법 |
DE112018001504T5 (de) * | 2017-03-23 | 2020-03-12 | Seoul Semiconductor Co., Ltd. | Bildschirmgerät und verfahren zur herstellung desselben |
US10497845B2 (en) * | 2017-03-27 | 2019-12-03 | Seoul Semiconductor Co., Ltd. | Display apparatus and method of manufacturing the same |
DE102017107834A1 (de) * | 2017-04-11 | 2018-10-11 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes bauelement |
US10658558B2 (en) | 2017-10-10 | 2020-05-19 | Lumileds Llc | LED package including converter confinement |
US11121172B2 (en) * | 2017-11-08 | 2021-09-14 | Seoul Viosys Co., Ltd. | Light-emitting diode unit for display comprising plurality of pixels and display device having same |
CN109994593A (zh) * | 2017-12-29 | 2019-07-09 | 中芯长电半导体(江阴)有限公司 | 发光二极管芯片的封装结构及封装方法 |
TWI672834B (zh) * | 2018-01-25 | 2019-09-21 | 致伸科技股份有限公司 | 光源模組以及光源模組之製造方法 |
US10998297B1 (en) * | 2018-05-15 | 2021-05-04 | Facebook Technologies, Llc | Nano-porous metal interconnect for light sources |
US10643964B2 (en) * | 2018-07-02 | 2020-05-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Structures for bonding a group III-V device to a substrate by stacked conductive bumps |
CN112864296B (zh) * | 2019-01-29 | 2022-06-28 | 泉州三安半导体科技有限公司 | 一种led封装器件 |
CN111987205B (zh) * | 2019-05-22 | 2021-12-07 | 山东浪潮华光光电子股份有限公司 | 一种GaAs基LED灯珠的封装方法 |
CN114467178A (zh) | 2019-10-23 | 2022-05-10 | 首尔伟傲世有限公司 | Led显示装置 |
KR20210065353A (ko) | 2019-11-27 | 2021-06-04 | 삼성전자주식회사 | 반도체 패키지 |
TWI768433B (zh) * | 2020-08-19 | 2022-06-21 | 聯嘉光電股份有限公司 | 三合一RGB mini-LED製程方法 |
DE102021116242A1 (de) * | 2021-06-23 | 2022-12-29 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement |
CN113991004A (zh) * | 2021-10-26 | 2022-01-28 | 东莞市中麒光电技术有限公司 | Led基板制作方法、led基板、led器件制作方法及led器件 |
DE102022121519A1 (de) * | 2022-08-25 | 2024-03-07 | Ams-Osram International Gmbh | Strahlung emittierendes halbleiterbauelement und verfahren zur herstellung von strahlung emittierenden halbleiterbauelementen |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06151977A (ja) * | 1992-11-11 | 1994-05-31 | Sharp Corp | 光半導体装置 |
US5886383A (en) * | 1997-01-10 | 1999-03-23 | International Rectifier Corporation | Integrated schottky diode and mosgated device |
JPH10335383A (ja) * | 1997-05-28 | 1998-12-18 | Matsushita Electric Ind Co Ltd | 半導体装置の製造方法 |
US6706546B2 (en) * | 1998-10-09 | 2004-03-16 | Fujitsu Limited | Optical reflective structures and method for making |
JP4234269B2 (ja) * | 1999-07-16 | 2009-03-04 | 浜松ホトニクス株式会社 | 半導体装置及びその製造方法 |
US6835963B2 (en) * | 1999-12-22 | 2004-12-28 | Kabushiki Kaisha Toshiba | Light-emitting element and method of fabrication thereof |
JP3589187B2 (ja) * | 2000-07-31 | 2004-11-17 | 日亜化学工業株式会社 | 発光装置の形成方法 |
US6734453B2 (en) * | 2000-08-08 | 2004-05-11 | Translucent Photonics, Inc. | Devices with optical gain in silicon |
FI114740B (fi) * | 2001-04-27 | 2004-12-15 | Wallac Oy | Kuvantavan mittauslaitteen varjostinlevy |
US7042024B2 (en) * | 2001-11-09 | 2006-05-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting apparatus and method for manufacturing the same |
US6611052B2 (en) * | 2001-11-16 | 2003-08-26 | Micron Technology, Inc. | Wafer level stackable semiconductor package |
JP4277496B2 (ja) * | 2001-11-21 | 2009-06-10 | 富士電機デバイステクノロジー株式会社 | 半導体装置 |
JP2004087253A (ja) * | 2002-08-26 | 2004-03-18 | Toyota Central Res & Dev Lab Inc | 有機電子デバイス |
CN101789482B (zh) * | 2003-03-10 | 2013-04-17 | 丰田合成株式会社 | 固体元件装置及其制造方法 |
DE10311820A1 (de) * | 2003-03-13 | 2004-09-30 | Schott Glas | Halbleiterlichtquelle |
KR20050034936A (ko) * | 2003-10-10 | 2005-04-15 | 삼성전기주식회사 | 형광체를 이용한 파장변환형 발광 다이오드 패키지 및제조방법 |
US7518158B2 (en) * | 2003-12-09 | 2009-04-14 | Cree, Inc. | Semiconductor light emitting devices and submounts |
EP1706893A2 (en) * | 2003-12-24 | 2006-10-04 | Gelcore LLC | Laser lift-off of sapphire from a nitride flip-chip |
JP4163641B2 (ja) * | 2004-02-25 | 2008-10-08 | 株式会社東芝 | Led素子 |
WO2005081333A2 (en) * | 2004-02-20 | 2005-09-01 | Oc Oerlikon Balzers Ag | Diffusion barrier layer and method for manufacturing a diffusion barrier layer |
JP2005294820A (ja) * | 2004-03-12 | 2005-10-20 | Showa Denko Kk | Iii族窒化物半導体発光素子及びその形成方法、それを用いたランプ、光源 |
JP4543712B2 (ja) * | 2004-03-17 | 2010-09-15 | 日亜化学工業株式会社 | 発光装置の製造方法 |
JP2006066868A (ja) * | 2004-03-23 | 2006-03-09 | Toyoda Gosei Co Ltd | 固体素子および固体素子デバイス |
KR100707100B1 (ko) * | 2004-10-01 | 2007-04-13 | 엘지이노텍 주식회사 | 발광 다이오드 및 그 제조방법 |
US7256483B2 (en) * | 2004-10-28 | 2007-08-14 | Philips Lumileds Lighting Company, Llc | Package-integrated thin film LED |
US7462502B2 (en) * | 2004-11-12 | 2008-12-09 | Philips Lumileds Lighting Company, Llc | Color control by alteration of wavelength converting element |
US7098070B2 (en) * | 2004-11-16 | 2006-08-29 | International Business Machines Corporation | Device and method for fabricating double-sided SOI wafer scale package with through via connections |
KR100665121B1 (ko) * | 2005-02-28 | 2007-01-09 | 삼성전기주식회사 | 파장변환형 발광 다이오드 패키지 제조방법 |
JP2006269079A (ja) * | 2005-03-22 | 2006-10-05 | Hitachi Lighting Ltd | 光源モジュール、液晶表示装置および光源モジュールの製造方法 |
TWI294694B (en) * | 2005-06-14 | 2008-03-11 | Ind Tech Res Inst | Led wafer-level chip scale packaging |
JP2009509326A (ja) * | 2005-09-19 | 2009-03-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 可変色の発光装置及びその制御方法 |
US7375379B2 (en) * | 2005-12-19 | 2008-05-20 | Philips Limileds Lighting Company, Llc | Light-emitting device |
JP2007250629A (ja) * | 2006-03-14 | 2007-09-27 | Toshiba Corp | 発光装置及びその製造方法、並びに蛍光パターン形成物 |
KR100854328B1 (ko) * | 2006-07-07 | 2008-08-28 | 엘지전자 주식회사 | 발광 소자 패키지 및 그 제조방법 |
US20080035942A1 (en) * | 2006-08-08 | 2008-02-14 | Lg Electronics Inc. | Light emitting device package and method for manufacturing the same |
JP4905009B2 (ja) * | 2006-09-12 | 2012-03-28 | 豊田合成株式会社 | 発光装置の製造方法 |
KR100845856B1 (ko) * | 2006-12-21 | 2008-07-14 | 엘지전자 주식회사 | 발광 소자 패키지 및 그 제조방법 |
JP2008171997A (ja) * | 2007-01-11 | 2008-07-24 | Rohm Co Ltd | GaN系半導体発光素子 |
JP5251038B2 (ja) * | 2007-08-23 | 2013-07-31 | 豊田合成株式会社 | 発光装置 |
EP2040316B1 (de) * | 2007-09-20 | 2014-08-06 | OSRAM Opto Semiconductors GmbH | Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements |
JP2009099647A (ja) * | 2007-10-15 | 2009-05-07 | Yokogawa Electric Corp | 半導体実装方法 |
JP2009111102A (ja) * | 2007-10-29 | 2009-05-21 | Mitsubishi Chemicals Corp | 集積型発光源およびその製造方法 |
US20090140279A1 (en) * | 2007-12-03 | 2009-06-04 | Goldeneye, Inc. | Substrate-free light emitting diode chip |
US8878219B2 (en) * | 2008-01-11 | 2014-11-04 | Cree, Inc. | Flip-chip phosphor coating method and devices fabricated utilizing method |
KR101428719B1 (ko) * | 2008-05-22 | 2014-08-12 | 삼성전자 주식회사 | 발광 소자 및 발광 장치의 제조 방법, 상기 방법을이용하여 제조한 발광 소자 및 발광 장치 |
JP2008263246A (ja) * | 2008-08-06 | 2008-10-30 | Sanyo Electric Co Ltd | 発光装置 |
KR101539246B1 (ko) * | 2008-11-10 | 2015-07-24 | 삼성전자 주식회사 | 광추출 효율이 향상된 발광 장치의 제조 방법 및 그 방법으로 제조된 발광 장치 |
JP4799606B2 (ja) * | 2008-12-08 | 2011-10-26 | 株式会社東芝 | 光半導体装置及び光半導体装置の製造方法 |
JP4724222B2 (ja) * | 2008-12-12 | 2011-07-13 | 株式会社東芝 | 発光装置の製造方法 |
KR20110099761A (ko) * | 2008-12-24 | 2011-09-08 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 양면 파장 변환기 및 이를 이용하는 광 발생 소자를 제조하는 방법 |
JP5518502B2 (ja) * | 2009-01-27 | 2014-06-11 | シチズン電子株式会社 | 発光ダイオードの製造方法 |
US7842544B2 (en) * | 2009-02-20 | 2010-11-30 | National Semiconductor Corporation | Integrated circuit micro-module |
JP2011009572A (ja) * | 2009-06-26 | 2011-01-13 | Citizen Electronics Co Ltd | フリップチップ実装型led及びフリップチップ実装型ledの製造方法。 |
US9254506B2 (en) * | 2010-07-02 | 2016-02-09 | 3M Innovative Properties Company | Moisture resistant coating for barrier films |
KR101230622B1 (ko) * | 2010-12-10 | 2013-02-06 | 이정훈 | 집단 본딩을 이용한 반도체 디바이스 제조 방법 및 그것에 의해 제조된 반도체 디바이스 |
JP5679869B2 (ja) * | 2011-03-07 | 2015-03-04 | スタンレー電気株式会社 | 光半導体素子の製造方法 |
-
2011
- 2011-01-28 KR KR1020110008736A patent/KR101761834B1/ko active IP Right Grant
-
2012
- 2012-01-13 CN CN201280006927.5A patent/CN103339749B/zh active Active
- 2012-01-13 WO PCT/KR2012/000314 patent/WO2012102501A2/ko active Application Filing
- 2012-01-13 EP EP12739572.1A patent/EP2669963B1/en active Active
- 2012-01-13 JP JP2013551891A patent/JP2014507804A/ja not_active Withdrawn
- 2012-01-13 EP EP14150304.5A patent/EP2720283B1/en active Active
- 2012-01-26 US US13/359,287 patent/US8592232B2/en active Active
- 2012-01-30 TW TW101102898A patent/TWI528595B/zh active
-
2013
- 2013-11-07 US US14/074,098 patent/US8916898B2/en active Active
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2669963A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2669963B1 (en) | 2018-08-22 |
JP2014507804A (ja) | 2014-03-27 |
CN103339749A (zh) | 2013-10-02 |
EP2720283A2 (en) | 2014-04-16 |
EP2669963A2 (en) | 2013-12-04 |
EP2720283A3 (en) | 2015-12-23 |
US8916898B2 (en) | 2014-12-23 |
EP2720283B1 (en) | 2018-05-16 |
EP2669963A4 (en) | 2015-12-23 |
WO2012102501A3 (ko) | 2012-09-20 |
US8592232B2 (en) | 2013-11-26 |
US20130026518A1 (en) | 2013-01-31 |
KR101761834B1 (ko) | 2017-07-27 |
KR20120087505A (ko) | 2012-08-07 |
CN103339749B (zh) | 2016-03-30 |
TWI528595B (zh) | 2016-04-01 |
TW201244183A (en) | 2012-11-01 |
US20140061709A1 (en) | 2014-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012102501A2 (ko) | 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법 | |
KR101230622B1 (ko) | 집단 본딩을 이용한 반도체 디바이스 제조 방법 및 그것에 의해 제조된 반도체 디바이스 | |
CN105977232B (zh) | 在基板中安装器件的方法、安装有器件的基板结构和电子装置 | |
US9412920B2 (en) | Phosphor reflecting sheet, light emitting diode device, and producing method thereof | |
CN101627481B (zh) | 一种晶片级荧光体涂层方法和利用该方法制造的器件 | |
WO2012044011A2 (en) | Wafer level light emitting diode package and method of fabricating the same | |
JP2011233650A (ja) | 半導体発光装置 | |
CN101032034A (zh) | 用于封装发光器件的芯片级方法和芯片级封装的发光器件 | |
KR101797560B1 (ko) | 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법 | |
TW202139344A (zh) | 微型發光二極體的轉移方法 | |
US20120193670A1 (en) | Light emitting device having wavelength converting layer and method of fabricating the same | |
KR101291092B1 (ko) | 반도체 소자 구조물을 제조하는 방법 | |
KR20130109743A (ko) | 발광다이오드 패키지 및 그 제조방법 | |
KR20210069026A (ko) | 발광 소자 및 그 제조 방법 | |
WO2018030680A1 (ko) | 반도체 발광소자 | |
KR101300463B1 (ko) | 반도체 소자 구조물을 제조하는 방법 | |
TWI455378B (zh) | 一具穿隧栓塞之發光元件及其製造方法 | |
US12107201B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
WO2014081190A1 (ko) | 반도체 발광소자 및 이를 봉지하는 방법 | |
CN118099331A (zh) | 一种超薄led芯片的制备方法及超薄led芯片 | |
KR20120068795A (ko) | 집단 본딩을 이용한 반도체 디바이스 제조 방법 및 그것에 의해 제조된 반도체 디바이스 | |
TW201508954A (zh) | 光電半導體元件及其製作方法 | |
KR20140048178A (ko) | 반도체 소자 구조물을 제조하는 방법 | |
CN116598413A (zh) | 一种内嵌网状结构的led器件扇出封装结构及制备方法 | |
WO2015030481A1 (ko) | 반도체 발광소자 및 이를 제조하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280006927.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12739572 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012739572 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013551891 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |