WO2012070457A1 - ナイロン塩粉末の製造方法、およびナイロンの製造方法 - Google Patents

ナイロン塩粉末の製造方法、およびナイロンの製造方法 Download PDF

Info

Publication number
WO2012070457A1
WO2012070457A1 PCT/JP2011/076474 JP2011076474W WO2012070457A1 WO 2012070457 A1 WO2012070457 A1 WO 2012070457A1 JP 2011076474 W JP2011076474 W JP 2011076474W WO 2012070457 A1 WO2012070457 A1 WO 2012070457A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
nylon salt
dicarboxylic acid
diamine
nylon
Prior art date
Application number
PCT/JP2011/076474
Other languages
English (en)
French (fr)
Inventor
中井 誠
真梨子 前田
光博 川原
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to EP11843585.8A priority Critical patent/EP2644638B1/en
Priority to KR1020137008631A priority patent/KR101604324B1/ko
Priority to JP2012545703A priority patent/JP5868332B2/ja
Priority to CN201180052897.7A priority patent/CN103201314B/zh
Priority to US13/822,749 priority patent/US9045591B2/en
Publication of WO2012070457A1 publication Critical patent/WO2012070457A1/ja
Priority to HK13113518.1A priority patent/HK1186200A1/xx

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • C08G69/30Solid state polycondensation

Definitions

  • the present invention relates to a method for producing a nylon salt powder suitable for producing nylon having excellent heat resistance. Furthermore, it is related with the manufacturing method of nylon using the nylon salt powder obtained by this manufacturing method.
  • nylon having excellent heat resistance using diamine and dicarboxylic acid as raw materials.
  • the usual method for producing nylon excellent in heat resistance using diamine and dicarboxylic acid as raw materials is as follows. That is, first, a diamine and a dicarboxylic acid are reacted to produce a nylon salt. Thereafter, the obtained nylon salt is made to have a high molecular weight by solid phase polymerization or melt polymerization. Thus, nylon can be stably made into high molecular weight by obtaining nylon from nylon salt.
  • JP2001-348427A discloses a method for obtaining a nylon salt by reacting a diamine and a dicarboxylic acid at high temperature and high pressure in the presence of water, and then ejecting the obtained reaction product at high temperature to separate water. Is disclosed.
  • the production method disclosed in JP2001-348427A requires a step of ejecting the reacted diamine and dicarboxylic acid at high temperature and high pressure as described above. Therefore, there is a problem that the manufacturing equipment becomes large, the process becomes complicated, and the cost increases.
  • nylon when nylon is produced by solid-phase polymerization of a nylon salt obtained using water, the nylon becomes a gel or a triamine having a branched structure as a by-product is produced. End up. Therefore, there is a problem that the melting point of the obtained nylon is lowered and the heat resistance is poor. From the above, as a method for producing nylon, it is considered ideal to obtain a nylon salt powder and polymerize it under the condition that water is not present.
  • JP2001-200053A is a production in which dicarboxylic acid is added to molten diamine to produce a slurry comprising molten diamine and solid dicarboxylic acid, and then the slurry is reacted to form a nylon salt.
  • a method is disclosed.
  • the nylon salt is agglomerated in the reaction vessel, it is difficult to remove it from the reaction vessel.
  • the present situation is that no technology for obtaining a powder of nylon salt by a simple method in the absence of water has been found so far.
  • the present invention sets the water content to 5% by mass or less based on the total amount of the dicarboxylic acid powder and the diamine, and maintains the powder state of the dicarboxylic acid powder and the diamine.
  • the object is to obtain a powdery nylon salt efficiently by the reaction. Further, it is an object to efficiently obtain nylon having high heat resistance and high molecular weight by polymerizing the nylon salt of this powder.
  • the gist of the present invention is as follows.
  • (1) When producing a nylon salt powder by reacting a dicarboxylic acid powder, the water content is set to 5% by mass or less based on the total amount of the dicarboxylic acid powder and the diamine, A method for producing a nylon salt powder comprising heating to a temperature not higher than the melting point of dicarboxylic acid and adding diamine to the dicarboxylic acid powder so as to maintain the state of the dicarboxylic acid powder while maintaining this heating temperature. (2) The method for producing a nylon salt powder according to (1), wherein the heating temperature is 100 to 210 ° C.
  • the water content is 5% by mass or less based on the total amount of the dicarboxylic acid powder and the diamine, and the dicarboxylic acid powder and the diamine are reacted while maintaining the powder state. Therefore, the powdered nylon salt can be obtained without complicating the process and increasing the cost. Furthermore, according to the nylon production method of the present invention, nylon having a high heat resistance and a high molecular weight can be efficiently obtained by polymerizing the nylon salt of this powder.
  • the present invention will be described below.
  • the method for producing the nylon salt powder of the present invention uses dicarboxylic acid powder and diamine as raw materials.
  • the dicarboxylic acid constituting the dicarboxylic acid powder is not particularly limited, and examples thereof include terephthalic acid, isophthalic acid, adipic acid, sebacic acid, oxalic acid, naphthalenedicarboxylic acid, and cyclohexanedicarboxylic acid.
  • terephthalic acid, isophthalic acid, and adipic acid are preferable from the viewpoint of versatility, and the resulting nylon has a high melting point, so that it is easy to maintain the powder state, and in addition, the reaction heat during salt formation can be reduced.
  • terephthalic acid and isophthalic acid are more preferable.
  • the melting point of the dicarboxylic acid used in the present invention is usually about 120 to 400 ° C.
  • the diamine is not particularly limited, and examples thereof include 1,4-butanediamine, 1,6-hexanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, and 1,12-dodecane.
  • examples thereof include diamine, 2-methyl-1,5-pentanediamine, p-phenylenediamine, m-xylylenediamine, and p-xylylenediamine.
  • 1,6-hexanediamine, 1,9-nonanediamine, and 1,10-decanediamine are preferable from the viewpoint of versatility.
  • the melting point of the diamine used in the present invention is usually about 25 to 200 ° C.
  • the nylon salt can be mixed with lactams such as caprolactam, if necessary, as a raw material for copolymer nylon.
  • lactams such as caprolactam
  • the amount of copolymerization may be in a range that does not impair the effects of the present invention.
  • the amount is preferably 1 to 30 mol% with respect to dicarboxylic acid. More preferably, it is 20 mol%.
  • Nylon salts obtained by combining the above monomers include nylon 6T, nylon 9T, nylon 10T, nylon 6I, nylon 9T, nylon 10I, nylon 46, nylon 66, nylon 69, nylon 610, MXD6 nylon, PXD6 nylon.
  • Nylon salt for obtaining etc. is mentioned.
  • T is terephthalic acid
  • I is isophthalic acid
  • MXD is metaxylylenediamine
  • PXD is paraxylylenediamine.
  • the method for producing the nylon salt powder of the present invention is a nylon salt for obtaining nylon 46, nylon 6T, nylon 9T, and nylon 10T, which are nylons having a good balance of low water absorption, high heat resistance, and high crystallinity. It can use suitably for manufacture of.
  • a diamine is added to a dicarboxylic acid powder heated at a temperature not lower than the melting point of the diamine and not higher than the melting point of the dicarboxylic acid, and the diamine and the dicarboxylic acid powder are maintained while maintaining the state of the dicarboxylic acid powder. It is necessary to react with.
  • the dicarboxylic acid powder can be reacted with diamine while maintaining the powder state by heating the dicarboxylic acid powder beforehand. If the dicarboxylic acid powder is not heated in advance, there arises a problem that the nylon salt is agglomerated. In other words, when the dicarboxylic acid powder is heated after adding the diamine, the diamine and the dicarboxylic acid do not react under conditions where the temperature is not sufficiently raised in the initial stage of heating, so that a nylon salt is not formed, and the liquid diamine and dicarboxylic acid are not produced.
  • the mixture is in the form of a slurry, a paste, or a clay. When the mixture is further heated from such a state, a massive nylon salt is formed instead of powder.
  • the dicarboxylic acid must have a powder form at any stage during the reaction with the diamine. Therefore, it is necessary to use the dicarboxylic acid that is in the form of a lump after pulverizing it beforehand.
  • the term “powder” means that the powder has a granular form and the particle size is about 5 ⁇ m to 2 mm.
  • the volume average particle diameter of the dicarboxylic acid is preferably 5 ⁇ m to 1 mm, and more preferably 20 to 200 ⁇ m.
  • FIG. 1 is a schematic view showing a cross section of a diamine, a dicarboxylic acid powder, and a produced nylon salt during the reaction.
  • the diamine 2 is added to the dicarboxylic acid powder 1 heated beforehand (a).
  • the reaction starts when the diamine 2 comes into contact with a part of the surface of the dicarboxylic acid powder 1 (b), and the nylon salt 3 is partially formed on the surface of the dicarboxylic acid powder 1 (c).
  • the diamine may be added as a solid or may be added after being heated and melted to form a liquid. However, from the viewpoint of reducing the volume average particle size of the obtained nylon salt powder, the diamine is heated and melted to become a liquid. It is preferable to add.
  • the diamine When the diamine is added as a solid, the diamine may be prepared in another container different from the reaction container and supplied to the reaction container from another container while adjusting the addition rate of the diamine.
  • the apparatus for feeding diamine from another container to the reaction container is preferably an apparatus capable of feeding powder without mixing air in the atmosphere.
  • An example of such a device is a powder feeding device provided with a double damper mechanism.
  • the diamine when diamine is added as a liquid, the diamine is heated and melted in a container different from the reaction container to form a liquid, and then sent to the reaction container, and the liquid diamine is sprayed onto the dicarboxylic acid powder in a spray form.
  • the apparatus for feeding diamine to the reaction vessel is preferably an apparatus capable of feeding without mixing air in the atmosphere.
  • the water content needs to be 5% by mass or less based on the total amount of the dicarboxylic acid powder and the diamine as the raw material. It is preferably at most mass%, more preferably at most 0.5 mass%, further preferably at most 0.3 mass%, particularly preferably at most 0.2 mass%, and 0 mass%. % Is most preferred. If water is contained when the raw material is charged, there is a problem that the generated nylon salt is partially melted and fused, or the reaction system becomes high pressure.
  • the method for producing the nylon salt powder of the present invention it is necessary to heat the dicarboxylic acid powder as a raw material in advance before adding the diamine.
  • the heating temperature when the dicarboxylic acid powder as a raw material is heated in advance before the addition of the diamine must be not less than the melting point of the diamine and not more than the melting point of the dicarboxylic acid constituting the dicarboxylic acid powder. + 10 ° C.) and preferably (dicarboxylic acid melting point ⁇ 5 ° C.) or less.
  • the heating temperature is lower than the melting point of the diamine, both the dicarboxylic acid powder and the diamine are in a solid state, and there is a problem that the formation reaction of the nylon salt hardly proceeds.
  • the heating temperature exceeds the melting point of the dicarboxylic acid, there is a problem that the entire reaction system becomes liquid and the whole is agglomerated with the formation of the nylon salt.
  • the heating temperature of the dicarboxylic acid powder is preferably 100 ° C. or higher and 210 ° C. or lower, and more preferably 120 ° C. or higher and 200 ° C. or lower. If the heating temperature is less than 100 ° C., the formation reaction of the nylon salt may be insufficient. On the other hand, when the heating temperature exceeds 210 ° C., an amide formation reaction occurs during the formation reaction of the nylon salt to generate moisture, and as a result, the resulting nylon salt is reduced due to the generated water. In some cases, partial melting may result in fusion or the reaction system may become high pressure.
  • the same temperature may be sufficient as the heating temperature at the time of heating the dicarboxylic acid powder which is a raw material beforehand, and the production
  • the reaction time for carrying out the above-mentioned nylon salt formation reaction is preferably 0 to 6 hours after the addition of the diamine is completed. More preferably, it is 25 to 3 hours.
  • the method for adding diamine is not particularly limited as long as the dicarboxylic acid can maintain a powder state during the reaction.
  • a method of adding diamine continuously, or a diamine is divided into appropriate amounts (for example, added).
  • a method of intermittently adding 1/10 to 1/100 of the total amount of diamine) is preferred.
  • a method combining the above methods such as a method of adding diamine continuously after adding an appropriate amount of diamine intermittently may be used.
  • the addition rate of diamine is preferably 0.07 to 6.7% by mass / min, and preferably 0.1 to 3.4% by mass / min from the viewpoint of stably maintaining the powdered state of the dicarboxylic acid. It is more preferable.
  • “mass% / min” is a ratio of the diamine added for 1 minute with respect to the total amount of diamine finally added here.
  • the addition time of the diamine is preferably 0.25 to 24 hours, more preferably 0.6 to 10 hours, from the viewpoint of reducing the particle size of the obtained nylon salt powder.
  • the method for producing the nylon salt powder of the present invention from the viewpoint of increasing the efficiency of the production reaction of the nylon salt, when supplying the raw material to the reaction vessel, in addition to the dicarboxylic acid powder and the diamine, as long as the effects of the present invention are not impaired. Further, a terminal blocking agent and a polymerization catalyst may be added.
  • the end-capping agent seals the end of the terminal functional group of the polymer.
  • terminal blocking agents include acetic acid, lauric acid, benzoic acid, octylamine, cyclohexylamine, aniline and the like.
  • the amount of the end-capping agent used is preferably 5 mol% or less with respect to the total number of moles of the dicarboxylic acid powder as the raw material monomer and the diamine.
  • the polymerization catalyst examples include phosphoric acid, phosphorous acid, hypophosphorous acid, and salts thereof. If the amount of the polymerization catalyst used is too large, the product performance and processability may be reduced, so 2 mol% or less is preferable with respect to the total number of moles of the dicarboxylic acid powder as the raw material monomer and the diamine.
  • various additives may be added at any stage within a range not impairing the effects of the present invention.
  • the additive include inorganic fillers, fillers, stabilizers and the like.
  • the use amount of the additive is preferably 20% by mass or less with respect to the total mass of the dicarboxylic acid powder as the raw material monomer and the diamine from the viewpoint of not preventing the contact between the diamine and the dicarboxylic acid powder.
  • the production rate of the nylon salt is preferably 90% or more, and more preferably 95% or more.
  • the production rate of the nylon salt is 90% or more, the amount of unreacted diamine that is converted into vapor is reduced, so that there is an advantage that it is easy to obtain high molecular weight nylon.
  • the method for calculating the production rate of the nylon salt will be described in detail in Examples.
  • the volume average particle size of the obtained nylon salt powder is preferably 2 mm or less, and more preferably 500 ⁇ m or less.
  • the stirring mechanism provided in the reaction apparatus for reacting the dicarboxylic acid powder and the diamine may be appropriately selected according to the type and production amount of the nylon salt to be produced, such as a paddle type, tumbler type, ribbon type blender, A mixer etc. are mentioned. A combination of these may also be used.
  • the reaction apparatus for reacting the dicarboxylic acid powder and the diamine is not particularly limited as long as the dicarboxylic acid powder and the diamine can be sufficiently stirred, and a known reaction apparatus can be used.
  • the method of heating the dicarboxylic acid powder before the reaction or heating the reaction system during the production reaction is not particularly limited, and heating is performed using a heating medium such as steam, a heater, or the like. The method of doing is mentioned.
  • the reaction between the dicarboxylic acid powder and the diamine may be performed in air or in an inert gas atmosphere such as nitrogen.
  • an inert gas atmosphere such as nitrogen.
  • the reaction can be performed in a sealed state or under an inert gas flow.
  • the resulting nylon salt does not agglomerate, This can be a powder.
  • the nylon salt By making the nylon salt into powder, even if moisture is generated when the nylon salt is polymerized to obtain nylon, moisture inside the nylon salt is easily removed, so that the speed of the amidation reaction can be increased. it can.
  • generation of triamine which is a by-product of the branched structure, can be suppressed. Therefore, it can be suitably used also when producing a nylon salt that is difficult to be polymerized by melt polymerization due to raw materials and additives.
  • the method for producing the nylon salt powder of the present invention does not substantially use water, there is no need to provide a step of distilling off water. Therefore, a process can be reduced compared with the manufacturing method which adds water.
  • Nylon can be obtained by polymerizing the nylon salt powder obtained by the above-described method for producing a nylon salt powder.
  • the method for producing the nylon of the present invention is not particularly limited as long as the nylon salt powder obtained by the above-described method for producing a nylon salt powder is used, and methods such as solid phase polymerization and melt polymerization may be used. it can.
  • the polymerization conditions are not particularly limited, but the reaction temperature is preferably 180 ° C. or higher and lower than the melting point of nylon, more preferably 200 ° C. or higher and below the melting point of nylon. .
  • the reaction time can be 0.5 to 100 hours after reaching the reaction temperature, and more preferably 0.5 to 24 hours.
  • the solid phase polymerization may be performed in an inert gas stream such as nitrogen, or may be performed under reduced pressure. Moreover, you may carry out still and may carry out stirring.
  • nylon salt and nylon were measured by the following method.
  • (1) Powder state of reaction product When half of the total amount of diamine was added, the stirring blade was stopped and the valve (50 mm diameter) at the bottom of the reaction apparatus was opened. It was visually confirmed whether or not the reactant was dispensed just by opening the valve. When the reactant was dispensed, a small amount of the reactant was quickly collected and the powder state was visually evaluated.
  • Nylon salt formation rate Unreacted diamine when heated from 10 ° C. to 120 ° C. at a temperature rising rate of 20 ° C./min using a differential scanning calorimeter (“DSC-7”, manufactured by Perkin Elmer) ⁇ H (J / g) of the heat of fusion of the component and heat of fusion ⁇ H ′ (J / g) when only the diamine was measured were calculated.
  • Relative viscosity of nylon 35 kg of nylon salt was subjected to solid phase polymerization in a 50 L reaction vessel at 230 ° C. for 5 hours under a nitrogen flow of 4 L / min to obtain nylon.
  • TPA terephthalic acid, melting point 300 ° C. or higher, volume average particle size 80 ⁇ m ADA: adipic acid, melting point 152 ° C., volume average particle size 170 ⁇ m DA: 1,10-decanediamine, melting point 62 ° C HA: 1,6-hexanediamine, melting point 42 ° C.
  • BA 1,4-butanediamine, melting point 27 ° C.
  • PA p-phenylenediamine, melting point 139 ° C NA: 1,9-nonanediamine, melting point 36 ° C.
  • SHP Sodium hypophosphite
  • BA Benzoic acid
  • Example 1 A mixture of 4.82 kg (29.0 mol) of TPA powder, 9.8 g (0.093 mol) of SHP as a polymerization catalyst, and 77.9 g (0.64 mol) of BA as an end-blocking agent was reacted in a ribbon blender type. The mixture was supplied to the apparatus and heated to 180 ° C. with stirring at a rotation speed of 30 rpm under nitrogen sealing. Then, TPA powder kept at 180 ° C continuously over 3 hours using 5.10 kg (29.6 mol) of DA heated to 100 ° C at a rate of 0.56% by mass / min. To obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 2 1177 g (7.08 mol) of TPA powder was supplied to a reactor equipped with a paddle-type stirring blade, and heated to 145 ° C. while stirring at 60 rpm under nitrogen sealing. Thereafter, 824 g (7.08 mol) of HA was divided into 36 times by 22.9 g (2.8% by mass) once every 5 minutes (that is, HA was intermittently divided into 1/36 of the total amount). In addition, it was added to the TPA powder maintained at 145 ° C. while maintaining a nitrogen sealed state by a powder feeding apparatus equipped with a double damper mechanism. Stirring was further continued at 145 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 3 6.32 kg (43.2 mol) of ADA powder was supplied to a ribbon blender type reactor, and heated to 125 ° C. with stirring at a rotation speed of 30 rpm under nitrogen sealing. Then, while spraying BD3.68 kg (43.2 mol) heated to 60 ° C. using a spraying device in a spray form, continuously at a rate of 0.83% by mass / min over 2 hours, It was added to ADA powder kept at 125 ° C. Stirring was further continued at 125 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 4 As shown in Table 1, the same operation as in Example 1 was performed except that BD was continuously added to the ADA powder at a rate of 0.56% by mass / min over 3 hours, and the nylon salt powder was obtained. Obtained. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 5 981.7 g (5.91 mol) of TPA powder was supplied to a reactor equipped with a paddle type stirring blade and heated to 95 ° C. under a nitrogen stream while stirring at a rotation speed of 60 rpm. Thereafter, 1018.3 g (5.91 mol) of DA was divided into 36 times, 28.286 g (2.8 mass% per time), once every 5 minutes, and then fed by a powder feeder equipped with a double damper mechanism. It was added to the TPA powder maintained at 95 ° C. while maintaining the nitrogen sealed state. Stirring was further continued at 95 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 6 A nylon salt powder was obtained by performing the same operation as in Example 5 except that the heating temperature and reaction temperature of the TPA powder were changed to 215 ° C. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 7 A mixture of 4.82 kg (29.0 mol) of TPA powder, 9.8 g (0.093 mol) of SHP as a polymerization catalyst, and 77.9 g (0.64 mol) of BA as an end-blocking agent was reacted in a ribbon blender type. The mixture was supplied to the apparatus and heated to 180 ° C. with stirring at a rotation speed of 30 rpm under nitrogen sealing. Thereafter, using a spray device, DA 5.10 kg (29.6 mol) heated to 100 ° C. was added to the above mixture continuously maintained at 180 ° C. over 3 hours at a rate of 0.56% by mass / min. Nylon salt powder was obtained by spraying. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 8 1094.3 g (7.49 mol) of ADA powder was supplied to a reactor equipped with a paddle type stirring blade and heated to 125 ° C. under a nitrogen stream while stirring at a rotation speed of 60 rpm. Thereafter, 905.7 g (7.79 mol) of HA was divided into 36 times, 25.158 g (2.8 mass% per time) once every 5 minutes, by a powder feeder equipped with a double damper mechanism. It was added to the ADA powder kept at 125 ° C. while maintaining the nitrogen sealed state. Stirring was further continued at 125 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 9 1211.4 g (7.29 mol) of TPA powder was supplied to a reactor equipped with a paddle type stirring blade and heated to 175 ° C. under a nitrogen stream while stirring at a rotation speed of 60 rpm. Thereafter, 788.6 g (7.29 mol) of PA was divided into 36 times, 21.905 g (2.8% by mass per time) once every 10 minutes, and the powder was fed with a double damper mechanism. It was added to the TPA powder kept at 175 ° C. while maintaining the nitrogen sealed state. Stirring was further continued at 175 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder. The polymer was confirmed to be p-aramid by IR measurement using an infrared spectrophotometer (“SYSTEM 2000 type” manufactured by Perkin Elmer).
  • SYSTEM 2000 type manufactured by Perkin Elmer
  • Example 10 981.7 g (5.91 mol) of TPA powder was supplied to a reactor equipped with a paddle type stirring blade and heated to 180 ° C. under a nitrogen stream while stirring at a rotation speed of 60 rpm. Thereafter, 1018.3 g (5.91 mol) of DA was divided into 10 times, once every 3 minutes, 101.83 g (10.0 mass% per time), and a powder feeder equipped with a double damper mechanism. It added to the TPA powder kept at 180 ° C. while maintaining the nitrogen sealed state. Stirring was further continued at 180 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 11 981.7 g (5.91 mol) of TPA powder was supplied to a reactor equipped with a paddle type stirring blade and heated to 180 ° C. under a nitrogen stream while stirring at a rotation speed of 60 rpm. Thereafter, 1018.3 g (5.91 mol) of DA was divided into 36 times, once every 20 minutes, 28.286 g (2.8% by mass per time), and fed with a powder feeder equipped with a double damper mechanism. It added to the TPA powder kept at 180 ° C. while maintaining the nitrogen sealed state. Stirring was further continued at 180 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 12 862.0 g (5.19 mol) of TPA powder was supplied to a reactor equipped with a paddle type stirring blade and heated to 180 ° C. in a nitrogen stream while stirring at a rotation speed of 60 rpm. Thereafter, DA1138.0 g (6.60 mol) was divided into 36 times, once every 5 minutes, 31.627 g (2.8 mass% per time), and a powder feeder equipped with a double damper mechanism. It added to the TPA powder kept at 180 ° C. while maintaining the nitrogen sealed state. Stirring was further continued at 180 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 13 1102.0 g (6.63 mol) of TPA powder was supplied to a reactor equipped with a paddle type stirring blade and heated to 180 ° C. under a nitrogen stream while stirring at a rotation speed of 60 rpm. Thereafter, 898.0 g (5.21 mol) of DA was divided into 36 times, 24.944 g (2.8 mass% per time) once every 5 minutes, by a powder feeder equipped with a double damper mechanism. It added to the TPA powder kept at 180 ° C. while maintaining the nitrogen sealed state. Stirring was further continued at 180 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 14 1094.3 g (7.49 mol) of ADA powder and 40 g of water (2% by mass with respect to the total amount of dicarboxylic acid powder and diamine) were supplied to a reactor equipped with a paddle type stirring blade at a rotation speed of 60 rpm. While stirring, the mixture was heated to 125 ° C. under a nitrogen stream. Thereafter, 905.7 g (7.79 mol) of HA was divided into 36 times, 25.158 g (2.8% by mass per time) once every 5 minutes, by a powder feeder equipped with a double damper mechanism. It was added to the ADA powder kept at 125 ° C. while maintaining the nitrogen sealed state. Stirring was further continued at 125 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 15 1094.3 g (7.49 mol) of ADA powder and 100 g of water (5% by mass with respect to the total amount of dicarboxylic acid powder and diamine) were supplied to a reactor equipped with a paddle type stirring blade at a rotational speed of 60 rpm. While stirring, the mixture was heated to 125 ° C. under a nitrogen stream. Thereafter, 905.7 g (7.79 mol) of HA was divided into 36 times, 25.158 g (2.8% by mass per time) once every 5 minutes, by a powder feeder equipped with a double damper mechanism. It was added to the ADA powder kept at 125 ° C. while maintaining the nitrogen sealed state. Stirring was further continued at 125 ° C. for 1 hour to obtain a nylon salt powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 16 Ribbon blender-type reaction was performed with a mixture of 5.03 kg (30.2 mol) of TPA powder, 10.3 g (0.097 mol) of SHP as a polymerization catalyst, and 81.3 g (0.67 mol) of BA as a terminal blocking agent.
  • the mixture was supplied to the apparatus and heated to 170 ° C. with stirring at a rotation speed of 30 rpm under nitrogen sealing. Thereafter, 4.88 kg (30.9 mol) of NA heated to 80 ° C. was continuously maintained at 170 ° C. over 3 hours at a rate of 0.56% by mass / min using a liquid feeding device. Addition to the mixture gave a nylon salt powder.
  • Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 17 Nylon in the same manner as in Example 1 except that 19.84 g of water (0.2% by mass with respect to the total amount of the dicarboxylic acid powder and the diamine) was supplied to the reactor in addition to the dicarboxylic acid powder and the diamine. A salt powder was obtained. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 18 Nylon in the same manner as in Example 1 except that 29.76 g of water (0.3% by mass relative to the total amount of dicarboxylic acid powder and diamine) was supplied to the reactor in addition to dicarboxylic acid powder and diamine. A salt powder was obtained. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 19 Nylon in the same manner as in Example 1 except that 49.6 g of water (0.5% by mass with respect to the total amount of dicarboxylic acid powder and diamine) was supplied to the reactor in addition to dicarboxylic acid powder and diamine. A salt powder was obtained. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 20 Nylon in the same manner as in Example 1 except that 99.2 g of water (1.0% by mass with respect to the total amount of dicarboxylic acid powder and diamine) was supplied to the reactor in addition to dicarboxylic acid powder and diamine. A salt powder was obtained. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 21 A mixture consisting of 4.82 kg (29.0 mol) of TPA powder and 77.9 g (0.64 mol) of BA as an end-blocking agent is fed to a ribbon blender type reactor and stirred at 30 rpm under nitrogen sealing. While heating to 180 ° C. Thereafter, 5.10 kg (29.6 mol) of DA heated to 100 ° C. was continuously added at a rate of 0.56% by mass / min using a liquid feeding device for 3 hours and maintained at 180 ° C. Nylon salt powder was obtained by adding to the powder. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Example 22 A nylon salt powder was obtained in the same manner as in Example 21 except that a mixture consisting of 4.82 kg (29.0 mol) of TPA powder and 9.8 g (0.093 mol) of SHP as a catalyst was supplied to the reactor. It was. Table 1 shows raw materials, reaction conditions, and evaluation results of the obtained nylon salt powder.
  • Comparative Example 1 1177 g (7.08 mol) of TPA powder was supplied to a reactor equipped with a paddle type stirring blade, and heated to 145 ° C. under nitrogen sealing while stirring at a rotation speed of 60 rpm. Thereafter, HA823 g (7.08 mol) was added all at once to the TPA powder kept at 145 ° C. Further, stirring was continued at 145 ° C. for 4 hours. The TPA during the reaction was agglomerated in the reactor. Table 2 shows the raw materials of nylon salt, reaction conditions, and evaluation results of nylon salt.
  • Comparative Example 2 A nylon salt was obtained in the same manner as in Example 4 except that the heating temperature of the ADA powder and the reaction temperature were 165 ° C. The obtained nylon salt was agglomerated in the reactor. Table 2 shows the raw materials of nylon salt, reaction conditions, and evaluation results of nylon salt.
  • Comparative Example 3 A nylon salt was obtained in the same manner as in Example 4 except that the ADA powder was not heated in advance.
  • the obtained nylon salt was a mixture of lump and powder.
  • Table 2 shows the raw materials, reaction conditions, and evaluation results of the obtained nylon salt.
  • Comparative Example 4 1094.3 g (7.49 mol) of ADA powder and 140 g of water (7% by mass with respect to the total amount of dicarboxylic acid powder and diamine) were supplied to a reactor equipped with a paddle type stirring blade at a rotational speed of 60 rpm. While stirring, the mixture was heated to 125 ° C. under a nitrogen stream. Thereafter, maintaining the temperature at 125 ° C., 905.7 g (7.79 mol) of HA was added to the TPA powder by dividing into 36 times, 25.158 g (2.8 mass% per time) once every 5 minutes. did. Stirring was further continued at 125 ° C. for 1 hour to obtain a nylon salt. Table 2 shows the raw materials, reaction conditions, and evaluation results of the obtained nylon salt.
  • the obtained nylon salt was in a powder form and suitable for solid phase polymerization. It was. Moreover, the production rate of the nylon salt was high, and the polymerizability of the nylon obtained in addition was also good.
  • Example 6 since the production reaction temperature of the nylon salt was higher than the preferred range of the present invention, the particle size of the produced nylon salt powder was slightly larger. Further, the production rate of nylon salt was somewhat low. This is presumed to be a result due to partial dissolution of the obtained nylon salt in water generated by the progress of the amidation reaction.
  • Example 10 since the addition time of diamine was shorter than the more preferable range of the present invention, the particle size of the produced nylon salt powder was slightly larger.
  • Example 14 water was added to the reaction system when the raw materials were charged into the reaction vessel, but the water content was 5% by mass relative to the total amount of the dicarboxylic acid powder and the diamine.
  • the resulting nylon salt was powdery and suitable for solid phase polymerization.
  • the production rate of nylon salt was high, and in addition, the polymerizability of nylon was good.
  • Examples 21 and 22 are the same as those in Example 1 except that the polymerization catalyst and the end-capping agent were omitted.
  • the relative viscosity of nylon was slightly lower than that in Example 1, and in Example 22, the relative viscosity of nylon was slightly higher than that in Example 1.
  • Comparative Example 4 the amount of water in the system when charging the raw material into the reaction vessel was 7% by mass, which was more than the range specified in the present application. And powder were mixed.
  • the water content is 5% by mass or less based on the total amount of the dicarboxylic acid powder and the diamine, and the dicarboxylic acid powder and the diamine are reacted while maintaining the powder state. Therefore, the powdered nylon salt can be obtained without complicating the process and increasing the cost. Furthermore, the nylon production method of the present invention is very useful because it is possible to efficiently obtain nylon having high heat resistance and high molecular weight by polymerizing the nylon salt of this powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polyamides (AREA)

Abstract

 ジカルボン酸粉末を反応させてナイロン塩粉末を製造するに際し、水の含有量をジカルボン酸粉末とジアミンの合計量に対して5質量%以下とし、ジカルボン酸粉末を予めジアミンの融点以上かつジカルボン酸の融点以下の温度に加熱し、この加熱温度を維持しながら、ジカルボン酸の粉末の状態を保つようにジアミンをジカルボン酸粉末に添加することを特徴とするナイロン塩粉末の製造方法である。

Description

ナイロン塩粉末の製造方法、およびナイロンの製造方法
 本発明は、耐熱性に優れたナイロンの製造に好適なナイロン塩粉末の製造方法に関する。さらに、該製造方法により得られたナイロン塩粉末を用いるナイロンの製造方法に関する。
 ジアミンとジカルボン酸とを原料として、耐熱性に優れたナイロンを得ることが検討されている。ジアミンとジカルボン酸を原料として、耐熱性に優れたナイロンを製造するための通常の方法は、以下の通りである。すなわち、まず、ジアミンとジカルボン酸を反応させナイロン塩を作製する。その後、得られたナイロン塩を、固相重合や溶融重合により高分子量化するという方法である。このようにナイロン塩からナイロンを得ることで、ナイロンを安定して高分子量化することができる。
 ナイロンを得るための、ナイロン塩を製造する方法は種々検討されている。例えば、JP2001-348427Aには、水の存在下で、ジアミンとジカルボン酸とを高温高圧で反応させ、次いで、得られた反応物を高温で噴出させることで水を分離し、ナイロン塩を得る方法が開示されている。しかしながら、JP2001-348427Aに開示された製造方法は、上述のように、反応させたジアミンとジカルボン酸を、高温高圧で噴出させる工程を必要とする。そのため、製造設備が大掛かりなものとなったり、工程が煩雑になったりし、コストアップに繋がるという問題がある。また、水を用いて得られたナイロン塩を固相重合し、ナイロンを製造した場合には、該ナイロンがゲル状となったり、副生成物である分岐構造を有するトリアミンが生成したりしてしまう。そのため、得られたナイロンの融点が下がり、耐熱性に劣るという問題がある。以上のことから、ナイロンの製造方法としては、水が存在しない条件で、ナイロン塩の粉末を得、それを重合する方法が理想的であると考えられる。
 一方、JP2001-200053Aには、溶融したジアミンに、ジカルボン酸を添加して、溶融したジアミンと固体のジカルボン酸からなるスラリーを作製し、その後、該スラリーを反応させて、ナイロン塩を生成させる製造方法が開示されている。しかしながら、JP2001-200053Aに開示された製造方法においては、反応容器内でナイロン塩が塊状化するため、それを反応容器から取り出すことが困難である。また、得られたナイロン塩を反応容器から取り出すことができたとしても、該ナイロン塩を実使用に供する場合には、塊状化したナイロン塩を粉砕する工程を別途設けることが必要となるため、工程が煩雑となり、またコストアップに繋がる場合がある。
 つまり、水が存在しない条件で、簡易な方法でナイロン塩の粉末を得る技術は、これまでに見出されていないのが現状である。
 上記のような問題を解決するため、本発明は、水の含有量をジカルボン酸粉末とジアミンの合計量に対して5質量%以下とし、ジカルボン酸粉末とジアミンとを、粉末の状態を保ちながら反応させることで、効率よく粉末のナイロン塩を得ることを目的とする。さらに、この粉末のナイロン塩を重合することにより、耐熱性に優れ、かつ高分子量のナイロンを、効率よく得ることを目的とする。
すなわち、本発明の要旨は以下の通りである。
(1)ジカルボン酸粉末を反応させてナイロン塩粉末を製造するに際し、水の含有量をジカルボン酸粉末とジアミンの合計量に対して5質量%以下とし、ジカルボン酸粉末を予めジアミンの融点以上かつジカルボン酸の融点以下の温度に加熱し、この加熱温度を維持しながら、ジカルボン酸の粉末の状態を保つようにジアミンをジカルボン酸粉末に添加することを特徴とするナイロン塩粉末の製造方法。
(2)加熱温度を100~210℃とすることを特徴とする(1)のナイロン塩粉末の製造方法。
(3)融点以上に加熱したジアミンを、ジカルボン酸粉末にスプレー状に噴霧して添加することを特徴とする(1)または(2)のナイロン塩粉末の製造方法。
(4)ジカルボン酸粉末を構成するジカルボン酸が、テレフタル酸および/またはイソフタル酸であることを特徴とする(1)~(3)のいずれかのナイロン塩粉末の製造方法。
(5)ジアミンの添加速度が、最終的に添加されるジアミン全量に対して、0.07~6.7質量%/分であることを特徴とする(1)~(4)のいずれかのナイロン塩粉末の製造方法。
(6)(1)~(5)いずれかの製造方法で製造されたナイロン塩粉末を重合することを特徴とするナイロンの製造方法。
本発明のナイロン塩粉末の製造方法によれば、水の含有量をジカルボン酸粉末とジアミンの合計量に対して5質量%以下とし、ジカルボン酸粉末とジアミンとを、粉末の状態を保ちながら反応させるため、工程が煩雑になったり、コストアップに繋がったりすることなく、粉末のナイロン塩を得ることができる。さらに、本発明のナイロンの製造方法によれば、この粉末のナイロン塩を重合することにより、耐熱性に優れ、かつ高分子量のナイロンを、効率よく得ることができる。
本発明のナイロン塩粉末を製造する際の、反応時のジアミン、ジカルボン酸粉末、および生成するナイロン塩粉末の断面を示す概略図である。
以下、本発明について説明する。
 本発明のナイロン塩粉末の製造方法は、ジカルボン酸粉末およびジアミンを原料として用いる。
 ジカルボン酸粉末を構成するジカルボン酸としては、特に限定されないが、例えば、テレフタル酸、イソフタル酸、アジピン酸、セバシン酸、シュウ酸、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸が挙げられる。なかでも、汎用性の観点から、テレフタル酸、イソフタル酸、アジピン酸が好ましく、得られるナイロンの融点が高くなるので粉末の状態を保ちやすく、加えて、塩生成時の反応熱が小さくすることができるのでテレフタル酸、イソフタル酸がより好ましい。
 本発明において用いられるジカルボン酸の融点は、通常、120~400℃程度である。
 ジアミンとしては、特に限定されないが、例えば、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、2-メチル-1,5-ペンタンジアミン、p-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミンが挙げられる。中でも、汎用性の観点から、1,6-ヘキサンジアミン、1,9-ノナンジアミン、1,10-デカンジアミンが好ましい。
 本発明において用いられるジアミンの融点は、通常、25~200℃程度である。
 本発明においては、ナイロン塩に、必要に応じて、カプロラクタム等のラクタム類を混合することにより、共重合ナイロンの原料とすることもできる。ナイロンにラクタム類が共重合される場合、その共重合量は、本発明の効果を損なわない範囲とすればよく、例えば、ジカルボン酸に対して1~30モル%とすることが好ましく、5~20モル%とすることがより好ましい。
 前記のようなモノマーを組み合わせて得られるナイロン塩としては、ナイロン6T、ナイロン9T、ナイロン10T、ナイロン6I、ナイロン9T、ナイロン10I、ナイロン46、ナイロン66、ナイロン69、ナイロン610、MXD6ナイロン、PXD6ナイロン等を得るためのナイロン塩が挙げられる。ここで、Tはテレフタル酸、Iはイソフタル酸、MXDはメタキシリレンジアミン、PXDはパラキシリレンジアミンを示す。
 なかでも、本発明のナイロン塩粉末の製造方法は、低吸水性、高耐熱性、高結晶性をバランスよく兼ね備えたナイロンであるナイロン46、ナイロン6T、ナイロン9T、ナイロン10Tを得るためのナイロン塩の製造に好適に用いることができる。
 本発明のナイロン塩粉末の製造方法では、ジアミンの融点以上かつジカルボン酸の融点以下の温度で加熱したジカルボン酸粉末にジアミンを添加し、ジカルボン酸の粉末の状態を保ちながら、ジアミンとジカルボン酸粉末とを反応させることが必要である。
 予め、ジカルボン酸粉末を加熱することにより、粉末状態を維持しつつジアミンと反応させることができるという利点がある。予めジカルボン酸粉末を加熱しないと、ナイロン塩が塊状化するという問題が起こる。つまり、ジアミンを添加してからジカルボン酸粉末を加熱すると、加熱初期の十分に昇温していない条件下では、ジアミンとジカルボン酸が反応しないためナイロン塩が生成せず、液体のジアミンとジカルボン酸粉末からなるスラリー状、ペースト状、粘土状といった状態の混合物となる。このような状態から、該混合物をさらに加熱すると、粉末状ではなく塊状のナイロン塩が生成する。
 ジカルボン酸は、ジアミンとの反応中のいずれの段階においても、粉末の形態を有していることが必要である。そのため、塊状であるジカルボン酸は、あらかじめ粉砕等により粉末化してから用いることが必要である。
 また、ジカルボン酸とジアミンとの反応中のいずれの段階においても、ジカルボン酸が粉末の状態を維持するためには、添加されたジアミンが反応系中に広がった際に、全体としてスラリー状、ペースト状、粘土状といった状態にならないことが必要である。この時、引き続きジアミンが添加される場合には、先に添加されたジアミンが粉末状態のジカルボン酸と反応し固体状態となっていることが好ましい。なお、ジカルボン酸および得られた固体のナイロン塩が粉末状態を維持するためには、後述するジアミンの添加量、添加速度、添加方法、ジカルボン酸粉末の加熱温度、反応時間等の条件が適切に設定されることや、粉体が十分に撹拌されていることが必要である。
 上述の条件を適宜設定することにより、ジカルボン酸の粉末状態を維持することが可能となる理由は定かではないが、以下のように推測される。つまり、上述の条件を適宜設定することにより、ジカルボン酸粉末の表面に、適量のジアミンが均一に付着する。それにより、ジカルボン酸粉末やナイロン塩粉末の表面どうしが付着することなく、互いに独立して存在することができ、これらの塊状化が抑制されるためであると推測される。
 なお、本発明において、粉末であるとは、粒状の形態を有しており、その粒径が5μm~2mm程度であることをいう。
 本発明においては、上述のように、ジカルボン酸の粉末状態が維持されている。該ジカルボン酸の体積平均粒径は、5μm~1mmであることが好ましく、20~200μmであることがより好ましい。ジカルボン酸の体積平均粒径を5μm~1mmとすることで、ナイロン塩の反応の進行を早くすることができる。また、粉末の飛散が軽減され、粉末の取扱が容易になる。なお、体積平均粒径の求め方は、実施例において詳述する。
 次いで、図1を用い、本発明のナイロン塩粉末の製造方法における、ナイロン塩粉末の生成反応を説明する。
 図1は反応時のジアミン、ジカルボン酸粉末、および生成するナイロン塩の断面を示す概略図である。まず、予め加熱されたジカルボン酸粉末1に、ジアミン2が添加される(a)。そして、ジカルボン酸粉末1の表面の一部に、ジアミン2が接触することで反応が開始され(b)、ジカルボン酸粉末1の表面に、部分的にナイロン塩3が生成する(c)。さらにジアミン2が添加されると、ジカルボン酸粉末1の表面におけるジアミンの付着面積が拡大し、ジカルボン酸粉末1とジアミン2との反応が引き続き起こる。そして、ジカルボン酸粉末1の表面におけるナイロン塩3の部分が拡大していく(d、e)。ジカルボン酸粉末とジアミンとの反応が完全に終了すると、その全体がナイロン塩となった粉末が得られる(f)。
 ジアミンは、固体で添加してもよいし、加熱溶融して液体としてから添加してもよいが、得られるナイロン塩粉末の体積平均粒径をより小さくする観点から、加熱溶融して液体としてから添加することが好ましい。
 ジアミンを固体で添加する場合、ジアミンを反応容器とは異なる別の容器に準備しておき、ジアミンの添加速度を調整しながら、別の容器から反応容器に供給すればよい。ジアミンを別の容器から反応容器に送粉する装置は、大気中の空気を混入させずに送粉できる装置が好ましい。そのような装置としては、例えば、ダブルダンパー機構を備えた送粉装置が挙げられる。また、ジアミンを固体で添加する場合、ジアミンが投入された別の容器の圧力を、反応容器の圧力よりも高くすることで、反応容器から別の容器へジアミンが逆流することを防止することができる。
一方、ジアミンを液体で添加する場合、反応容器とは異なる別の容器でジアミンを加熱溶融し液体としてから、反応容器に送液し、液体状のジアミンをジカルボン酸粉末にスプレー状に噴霧することが好ましい。ジアミンを反応容器に送液する装置は、大気中の空気が混入させずに送液できる装置が好ましい。また、液体状のジアミンを添加する際には、送液装置の出口を反応させるジカルボン酸の粉末の相に予め入れておくことが好ましい。そのようにすることで、効率的にナイロン塩粉末を作製することができる。
 ジカルボン酸粉末とジアミンを反応させるに際し、両者の全供給量のモル比は、(ジカルボン酸粉末)/(ジアミン)=45/55~55/45の範囲が好ましく、47.5/52.5~52.5/47.5であることがより好ましい。ジカルボン酸粉末とジアミンとのモル比を上記の範囲に制御することで、高分子量のナイロンを得ることが可能なナイロン塩粉末とすることができる。
 本発明のナイロン塩粉末の製造方法においては、原料を仕込む際に、水の含有量が原料であるジカルボン酸粉末とジアミンの合計量に対して5質量%以下であることが必要であり、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.3質量%以下であることがさらに好ましく、0.2質量%以下であることが特に好ましく、0質量%であることが最も好ましい。原料を仕込む際に、水を含んでいると、生成したナイロン塩が一部溶融して融着したり、反応系が高圧となったりするという問題がある。
 本発明のナイロン塩粉末の製造方法においては、ジアミンを添加する前に、原料であるジカルボン酸粉末を予め加熱しておくことが必要である。
 原料であるジカルボン酸粉末を、ジアミンの添加前に予め加熱する際の加熱温度は、ジアミンの融点以上かつジカルボン酸粉末を構成するジカルボン酸の融点以下とすることが必要であり、(ジアミンの融点+10℃)以上かつ(ジカルボン酸の融点-5℃)以下とすることが好ましい。上記加熱温度がジアミンの融点未満であると、ジカルボン酸粉末およびジアミンのいずれもが固体の状態となり、ナイロン塩の生成反応がほとんど進行しないという問題がある。一方、上記加熱温度がジカルボン酸の融点を超えると、反応系全体が液状になり、ナイロン塩の生成にともない全体が塊状化するという問題がある。
 上記の範囲のなかでも、ジカルボン酸粉末の加熱温度は、100℃以上かつ210℃以下であることが好ましく、120℃以上かつ200℃以下であることがより好ましい。上記加熱温度が100℃未満であると、ナイロン塩の生成反応が不十分となる場合がある。一方、上記加熱温度が210℃を超えると、ナイロン塩の生成反応の際に、アミド生成反応が起こって水分が発生し、その結果、発生した水に起因して、得られたナイロン塩が一部溶融して融着したり、反応系が高圧となったりする場合がある。
 なお、原料であるジカルボン酸粉末を予め加熱する際の加熱温度と、ナイロン塩の生成における反応温度は、同じ温度であってもよいし、異なる温度であってもよい。
 上記のナイロン塩の生成反応をおこなう際の反応時間は、ジカルボン酸の粉末状態を安定して維持する観点から、ジアミンの添加が終了してから、0~6時間であることが好ましく、0.25~3時間であることがより好ましい。
 ジアミンの添加方法は、反応中においてジカルボン酸が粉末状態を維持しうるものであれば、特に限定されない。なかでも、得られたナイロン塩が塊状となることを抑制し、効率よく生成反応をおこなう観点から、連続してジアミンを添加する方法や、ジアミンを、分割して適量ずつ(例えば、添加されるジアミン全量のうちの、1/10~1/100の量ずつ)を間欠的に添加する方法が好ましい。また、ジアミンを適量ずつ間欠的に添加した後に、さらにジアミンを連続して添加する方法など、上記の方法を組み合わせた方法でもよい。
 ジアミンの添加速度は、ジカルボン酸の粉末状態を安定して維持する観点から、0.07~6.7質量%/分であることが好ましく、0.1~3.4質量%/分であることがより好ましい。なお、ここで、「質量%/分」とは、最終的に添加されるジアミン全量に対する、1分間に添加されるジアミンの割合である。
 ジアミンの添加時間は、得られるナイロン塩粉末の粒径をより小さくする観点から、0.25~24時間であることが好ましく、0.6~10時間であることがより好ましい。
 本発明のナイロン塩粉末の製造方法では、ナイロン塩の生成反応の効率化の観点から、原料を反応容器に供給する際に、本発明の効果を損なわない範囲において、ジカルボン酸粉末とジアミン以外に、末端封鎖剤、重合触媒を加えてもよい。
 末端封鎖剤は、高分子の末端官能基の末端を封止するものである。このような末端封鎖剤としては、酢酸、ラウリン酸、安息香酸、オクチルアミン、シクロヘキシルアミン、アニリン等が挙げられる。末端封鎖剤の使用量は、原料モノマーであるジカルボン酸粉末とジアミンの合計のモル数に対して、5モル%以下が好ましい。
 重合触媒としては、リン酸、亜リン酸、次亜リン酸、またはそれらの塩等が挙げられる。重合触媒の使用量は、多すぎると製品の性能や加工性低下の原因となるため、原料モノマーであるジカルボン酸粉末とジアミンの合計のモル数に対して、2モル%以下が好ましい。
 また、本発明のナイロン塩粉末の製造方法においては、本発明の効果を損なわない範囲において、任意の段階で、各種の添加剤が添加されてもよい。添加剤としては、無機充填材、フィラー、安定剤等が挙げられる。添加剤の使用量は、ジアミンとジカルボン酸粉末との接触を妨げない観点から、原料モノマーであるジカルボン酸粉末とジアミンの合計の質量に対して、20質量%以下が好ましい。
 本発明のナイロン塩粉末の製造方法において、ナイロン塩の生成率は、90%以上であることが好ましく、95%以上であることがより好ましい。ナイロン塩の生成率が90%以上であると、未反応のジアミンが蒸気となって散脱する量が減少するので、高分子量のナイロンを得ることが容易になるという利点がある。なお、ナイロン塩の生成率を算出する方法は、実施例において詳述する。
 得られるナイロン塩粉末の体積平均粒径は、2mm以下であることが好ましく、500μm以下であることがより好ましい。ナイロン塩粉末の体積平均粒径を2mm以下とすることで、該ナイロン塩粉末を重合させてナイロンを得る際に水分が発生したとしても、ナイロン塩内部の水分が抜けやすくなるため、アミド化反応の速度を早くすることができるという利点がある。
 本発明のナイロン塩粉末の製造方法においては、ナイロン塩の生成反応を完全に遂行させるため、ジアミンの添加中や、ジアミンの添加終了後において、十分撹拌をおこなうことが好ましい。ジカルボン酸粉末とジアミンを反応させるための反応装置に設けられる撹拌機構としては、製造するナイロン塩の種類や生産量に合わせて適宜選択すればよく、パドル型、タンブラー型、リボン型等のブレンダー、ミキサー等が挙げられる。また、これらを組み合わせたものでもよい。
 ジカルボン酸粉末とジアミンを反応させるための反応装置としては、ジカルボン酸粉末およびジアミンを十分撹拌できることができれば、特に限定されず、公知の反応装置を用いることができる。
 上記の反応装置において、反応前のジカルボン酸粉末を加熱したり、生成反応の際に反応系を加熱したりする方法としては、特に限定されず、スチームなどの熱媒、ヒーター等を用いて加熱する方法が挙げられる。
 本発明のナイロン塩粉末の製造方法において、ジカルボン酸粉末とジアミンとの反応は、空気中でおこなわれてもよいし、窒素等の不活性ガス雰囲気下でおこなわれてもよい。副反応や着色を抑制するため、不活性ガス雰囲気下でおこなうことが好ましい。また、反応は密閉状態または不活性ガス流通下でおこなうことができる。
 本発明のナイロン塩粉末の製造方法においては、ジカルボン酸粉末を構成するジカルボン酸の融点以下の温度で、ジカルボン酸粉末とジアミンとを反応させるため、得られるナイロン塩は塊状化することがなく、これを粉末とすることができる。ナイロン塩を粉末とすることで、該ナイロン塩を重合してナイロンを得る際に水分が発生したとしても、ナイロン塩の内部の水分が抜けやすくなるため、アミド化反応の速度を早くすることができる。また、分岐構造の副生物であるトリアミンの発生を抑制することもできる。そのため、原料や添加物に起因して、溶融重合による重合が困難であるナイロン塩を作製する場合にも、好適に用いることができる。
 また、本発明のナイロン塩粉末の製造方法は、実質的に水を用いないため、水を留去する工程を設ける必要がない。そのため、水を加える製造方法に比べて工程を減らすことができる。
 本発明のナイロンの製造方法について、以下に述べる。
 上述のナイロン塩粉末の製造方法により得られたナイロン塩粉末を重合させることにより、ナイロンを得ることができる。
 本発明のナイロンの製造方法としては、上述のナイロン塩粉末の製造方法により得られたナイロン塩粉末を用いるものであれば、特に制限されず、固相重合、溶融重合などの方法を用いることができる。
 固相重合によりナイロンを製造する場合、その重合条件は特に制限されないが、反応温度は180℃以上、ナイロンの融点以下とすることが好ましく、200℃以上、ナイロンの融点以下とすることがより好ましい。反応時間は、反応温度に達してから、0.5~100時間とすることができ、0.5~24時間がより好ましい。固相重合は、窒素などの不活性ガス気流中でおこなってもよく、減圧下でおこなってもよい。また、静止しておこなってもよく、攪拌しながらおこなってもよい。
 次に、実施例により本発明をさらに具体的に説明する。しかし、本発明はこれらによって限定されるものではない。
 ナイロン塩およびナイロンの物性測定は以下の方法によっておこなった。
(1)反応物の粉末状態
 全量の半分のジアミンを添加した時点で、攪拌翼を停止し、反応装置下部のバルブ(50mm径)を開放した。バルブを開放しただけで、反応物が払い出されるかどうかを目視で確認した。そして、反応物が払い出された場合は、少量の反応物を素早く採取し、目視で粉末状態を評価した。
 良い:バルブを開放しただけで、反応装置から反応物が払い出された。得られた反応物はすべて粉末状であった。
 普通:バルブを開放しただけで、反応装置から反応物が払い出された。しかし、得られた反応物は、粉末状物と塊状物が混在していた。
 悪い:バルブを開放しただけでは、反応装置から反応物が払い出されなかった。
(2)ナイロン塩の粉末状態
 反応終了後、反応装置下部のバルブ(50mm径)を開放した。バルブを開放しただけで、ナイロン塩が払い出されるかどうかを目視で確認した。そして、ナイロン塩が払い出された場合は、得られたナイロン塩の粉末状態を目視で評価した。評価基準は、(1)と同様とした。
 本発明においては、(1)と(2)の評価が、いずれも「良い」または「普通」の評価であれば、内容物が粉末状態を保って反応していたとした。
(3)ナイロン塩の生成率
 示差走査型熱量計(パーキンエルマー社製、「DSC-7」)を用い、昇温速度20℃/分で10℃から120℃まで昇温した際の未反応ジアミン成分の融解熱のΔH(J/g)と、ジアミンのみを測定した際の融解熱ΔH’(J/g)を算出した。以下の式により、ナイロン塩の生成率を求めた。
生成率(%)=100-(ΔH/ΔH’)×100
(4)粉末の体積平均粒径
 レーザー回折/散乱式粒度分布測定装置(堀場製作所社製、「LA920」)を用いて測定した。
(5)ナイロンの相対粘度
 ナイロン塩35kgを、50Lの反応容器で、4L/分の窒素気流下、230℃で5時間かけて固相重合し、ナイロンを得た。ナイロンを96%硫酸に溶解し、濃度1g/dlの試料溶液を作製した。続いて、ウベローデ型粘度計を用い、25℃の温度で試料溶液および溶媒の落下時間を測定し、以下の式を用いて相対粘度を求めた。
相対粘度=(試料溶液の落下時間)/(溶媒のみの落下時間)
実用上、2.0以上が好ましい。
 実施例および比較例に用いた原料は、次の通りである。
・TPA:テレフタル酸、融点300℃以上、体積平均粒径80μm
・ADA:アジピン酸、融点152℃、体積平均粒径170μm
・DA:1,10-デカンジアミン、融点62℃
・HA:1,6-ヘキサンジアミン、融点42℃
・BA:1,4-ブタンジアミン、融点27℃
・PA:p-フェニレンジアミン、融点139℃
・NA:1,9-ノナンジアミン、融点36℃
・SHP:次亜リン酸ナトリウム
・BA:安息香酸
実施例1
 TPA粉末4.82kg(29.0モル)、重合触媒としてのSHP9.8g(0.093モル)、末端封鎖剤としてのBA77.9g(0.64モル)からなる混合物を、リボンブレンダー式の反応装置に供給し、窒素密閉下、回転数30rpmで撹拌しながら180℃に加熱した。その後、100℃に加熱したDA5.10kg(29.6モル)を、0.56質量%/分の速度で、送液装置を用いて、3時間かけて連続的に180℃を保ったTPA粉末に添加し、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例2
 TPA粉末1177g(7.08モル)を、パドル型の撹拌翼を備えた反応装置に供給し、窒素密閉下、回転数60rpmで撹拌しながら145℃に加熱した。その後、HA824g(7.08モル)を、5分に1回、22.9g(1回あたり2.8質量%)ずつ、36回に分割し(すなわち、HAを全量の1/36ずつ間欠的に)、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、145℃を保ったTPA粉末に添加した。さらに1時間、145℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例3
 ADA粉末6.32kg(43.2モル)を、リボンブレンダー式の反応装置に供給し、窒素密閉下、回転数30rpmで撹拌しながら125℃に加熱した。その後、噴霧装置を用いて60℃に加温したBD3.68kg(43.2モル)を、スプレー状に噴霧しながら、0.83質量%/分の速度で、2時間かけて連続的に、125℃を保ったADA粉末に添加した。さらに1時間、125℃で攪拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例4
 表1に示すように、BDを0.56質量%/分の速度で、3時間かけて連続的にADA粉末に添加した以外は、実施例1と同様な操作をおこなって、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例5
 TPA粉末981.7g(5.91モル)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、95℃に加熱した。その後、DA1018.3g(5.91モル)を、5分に1回、28.286g(1回あたり2.8質量%)ずつ、36回に分割し、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、95℃に保ったTPA粉末に添加した。さらに1時間、95℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例6
 TPA粉末の加熱温度と反応温度を215℃に変更した以外は、実施例5と同様な操作をおこなって、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例7
 TPA粉末4.82kg(29.0モル)、重合触媒としてのSHP9.8g(0.093モル)、末端封鎖剤としてのBA77.9g(0.64モル)からなる混合物を、リボンブレンダー式の反応装置に供給し、窒素密閉下、回転数30rpmで撹拌しながら180℃に加熱した。その後、噴霧装置を用い、100℃に加温したDA5.10kg(29.6モル)を、0.56質量%/分の速度で、3時間かけて連続的に180℃に保った前記混合物にスプレー状に噴霧し、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例8
 ADA粉末1094.3g(7.49モル)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、125℃に加熱した。その後、HA905.7g(7.79モル)を、5分に1回、25.158g(1回あたり2.8質量%)ずつ、36回に分割し、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、125℃に保ったADA粉末に添加した。さらに1時間、125℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例9
 TPA粉末1211.4g(7.29モル)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、175℃に加熱した。その後、PA788.6g(7.29モル)を、10分に1回、21.905g(1回当たり2.8質量%)ずつ、36回に分割し、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、175℃に保ったTPA粉末に添加した。さらに1時間、175℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。なお、赤外分光光度計(パーキンエルマー社製 「SYSTEM2000型」)を用いたIR測定により、重合物が、p-アラミドであることを確認した。
実施例10
 TPA粉末981.7g(5.91モル)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、180℃に加熱した。その後、DA1018.3g(5.91モル)を、3分に1回、101.83g(1回当たり10.0質量%)ずつ、10回に分割し、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、180℃に保ったTPA粉末に添加した。さらに1時間、180℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例11
 TPA粉末981.7g(5.91モル)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、180℃に加熱した。その後、DA1018.3g(5.91モル)を、20分に1回、28.286g(1回当たり2.8質量%)ずつ、36回に分割し、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、180℃に保ったTPA粉末に添加した。さらに1時間、180℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例12
 TPA粉末862.0g(5.19モル)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、180℃に加熱した。その後、DA1138.0g(6.60モル)を、5分に1回、31.627g(1回当たり2.8質量%)ずつ、36回に分割し、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、180℃に保ったTPA粉末に添加した。さらに1時間、180℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例13
 TPA粉末1102.0g(6.63モル)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、180℃に加熱した。その後、DA898.0g(5.21モル)を、5分に1回、24.944g(1回当たり2.8質量%)ずつ、36回に分割し、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、180℃に保ったTPA粉末に添加した。さらに1時間、180℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例14
 ADA粉末1094.3g(7.49モル)、水40g(ジカルボン酸粉末とジアミンの合計量に対して2質量%)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、125℃に加熱した。その後、HA905.7g(7.79モル)を、5分に1回、25.158g(1回当たり2.8質量%)ずつ、36回に分割し、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、125℃に保ったADA粉末に添加した。さらに1時間、125℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例15
 ADA粉末1094.3g(7.49モル)、水100g(ジカルボン酸粉末とジアミンの合計量に対して5質量%)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、125℃に加熱した。その後、HA905.7g(7.79モル)を、5分に1回、25.158g(1回当たり2.8質量%)ずつ、36回に分割し、ダブルダンパー機構を備えた送粉装置により窒素密閉状態を維持しつつ、125℃に保ったADA粉末に添加した。さらに1時間、125℃で撹拌を続け、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例16
 TPA粉末5.03kg(30.2モル)、重合触媒としてのSHP10.3g(0.097モル)、末端封鎖剤としてのBA81.3g(0.67モル)からなる混合物を、リボンブレンダー式の反応装置に供給し、窒素密閉下、回転数30rpmで撹拌しながら170℃に加熱した。その後、80℃に加温したNA4.88kg(30.9モル)を、送液装置を用いて、0.56質量%/分の速度で、3時間かけて連続的に、170℃に保った前記混合物に添加し、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例17
 反応装置に、ジカルボン酸粉末およびジアミンに加えて、水19.84g(ジカルボン酸粉末とジアミンの合計量に対して0.2質量%)を供給した以外は、実施例1と同様にして、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例18
 反応装置に、ジカルボン酸粉末およびジアミンに加えて、水29.76g(ジカルボン酸粉末とジアミンの合計量に対して0.3質量%)を供給した以外は、実施例1と同様にして、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例19
 反応装置に、ジカルボン酸粉末およびジアミンに加えて、水49.6g(ジカルボン酸粉末とジアミンの合計量に対して0.5質量%)を供給した以外は、実施例1と同様にして、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例20
 反応装置に、ジカルボン酸粉末およびジアミンに加えて、水99.2g(ジカルボン酸粉末とジアミンの合計量に対して1.0質量%)を供給した以外は、実施例1と同様にして、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例21
 TPA粉末4.82kg(29.0モル)、末端封鎖剤としてのBA77.9g(0.64モル)からなる混合物を、リボンブレンダー式の反応装置に供給し、窒素密閉下、回転数30rpmで撹拌しながら180℃に加熱した。その後、100℃に加熱したDA5.10kg(29.6モル)を、送液装置を用いて、0.56質量%/分の速度で、3時間かけて連続的に、180℃を保ったTPA粉末に添加し、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
実施例22
反応装置に、TPA粉末4.82kg(29.0モル)、触媒としてのSHP9.8g(0.093モル)からなる混合物を供給した以外は、実施例21と同様にして、ナイロン塩粉末を得た。得られたナイロン塩粉末の原料、反応条件、評価結果を表1に示す。
比較例1
 TPA粉末1177g(7.08モル)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素密閉下、145℃に加熱した。その後、HA823g(7.08モル)を一括して、145℃に保ったTPA粉末に添加した。さらに、4時間、145℃で攪拌を続けた。反応中のTPAは反応装置中で塊状となった。ナイロン塩の原料、反応条件、ナイロン塩の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
比較例2
 ADA粉末の加熱温度、および反応温度を165℃とした以外は、実施例4と同様な操作をおこなって、ナイロン塩を得た。得られたナイロン塩は反応装置中で塊状となった。ナイロン塩の原料、反応条件、ナイロン塩の評価結果を表2に示す。
比較例3
 ADA粉末をあらかじめ加熱しないこと以外は、実施例4と同様な操作をおこなって、ナイロン塩を得た。得られたナイロン塩は塊状物と粉末が混在したものとなった。得られたナイロン塩の原料、反応条件、評価結果を表2に示す。
比較例4
 ADA粉末1094.3g(7.49モル)、水140g(ジカルボン酸粉末とジアミンの合計量に対して7質量%)を、パドル型の撹拌翼を備えた反応装置に供給し、回転数60rpmで撹拌しながら、窒素気流下、125℃に加熱した。その後、125℃を保って、HA905.7g(7.79モル)を、5分に1回、25.158g(1回当たり2.8質量%)ずつ、36回に分割してTPA粉末に添加した。さらに1時間、125℃で撹拌を続け、ナイロン塩を得た。得られたナイロン塩の原料、反応条件、評価結果を表2に示す。
 実施例1~22の製造方法では、いずれの場合も、ジカルボン酸を粉末の状態を保ちながら反応させることができたため、得られたナイロン塩は粉末状で、固相重合に適したものであった。また、ナイロン塩の生成率が高く、加えて得られたナイロンの重合性も良好であった。
 実施例1、3、4、7および16~22においては、反応前にジアミンを予め加熱溶融したため、体積平均粒径のより小さいナイロン塩粉末を短時間で得ることができた。
 実施例3および7においては、反応前にジアミンを予め加熱溶融し、ジアミンをスプレー状に噴霧しながら添加したため、体積平均粒径のより小さいナイロン塩粉末を短時間で得ることができた。加えて、ナイロン塩の生成率も高いものであった。
 実施例6においては、ナイロン塩の生成反応温度が本発明の好ましい範囲より高かったため、生成したナイロン塩粉末の粒径がやや大きいものとなった。また、ナイロン塩の生成率がやや低いものであった。これは、アミド化反応が進行して発生した水に、得られたナイロン塩が一部溶解することに起因する結果であると推測される。
 実施例10においては、ジアミンの添加時間が本発明のより好ましい範囲よりも短かったため、生成したナイロン塩粉末の粒径がやや大きいものとなった。
 実施例12、13においては、ジアミンとジカルボン酸のモル比が、本発明の好ましい範囲からはずれていた。本発明のナイロン塩粉末を生成することは可能であったが、ナイロンの相対粘度がやや低いものとなった。
 実施例14、15および17~20においては、反応容器へ原料を仕込む際に、反応系中に水を加えたが、水の含有量がジカルボン酸粉末とジアミンの合計量に対して5質量%以下であったため、得られたナイロン塩は粉末状で、固相重合に適したものであった。また、ナイロン塩の生成率が高く、加えてナイロンの重合性も良好であった。
 実施例21、22は、実施例1において、それぞれ重合触媒、末端封鎖剤を省いて反応させたものである。実施例21は、実施例1と比較して、ナイロンの相対粘度がやや低いものとなり、実施例22は、実施例1と比較して、ナイロンの相対粘度がやや高いものとなった。
 比較例1は、ジアミンを一度に投入してジカルボン酸粉末に添加した。ジカルボン酸とジアミンの混合物はスラリー溶液となり、ジカルボン酸は粉末の状態を維持することができず、ナイロン塩の生成にともなって全体が塊状化した。
 比較例2は、反応温度がジカルボン酸の融点よりも高かったため、ジアミンを添加した際に溶液状態となり、ジカルボン酸が粉末の状態を維持することができなかった。そのため、ナイロン塩の生成にともなって全体が塊状化した。
 比較例3は、ジカルボン酸粉末をあらかじめ加熱しなかったため、得られたナイロン塩は塊状物と粉末が混在したものとなった。
 比較例4は、反応容器へ原料を仕込む際の系内の水の量が7質量%であり、本願に規定する範囲よりも過多であったため、粉末が一部溶解、融着し、塊状物と粉末が混在したものとなった。
 本発明のナイロン塩粉末の製造方法によれば、水の含有量をジカルボン酸粉末とジアミンの合計量に対して5質量%以下とし、ジカルボン酸粉末とジアミンとを、粉末の状態を保ちながら反応させるため、工程が煩雑になったり、コストアップに繋がったりすることなく、粉末のナイロン塩を得ることができる。さらに、本発明のナイロンの製造方法によれば、この粉末のナイロン塩を重合することにより、耐熱性に優れ、かつ高分子量のナイロンを、効率よく得ることができるため非常に有用である。
 
 

Claims (6)

  1.  ジカルボン酸粉末を反応させてナイロン塩粉末を製造するに際し、水の含有量をジカルボン酸粉末とジアミンの合計量に対して5質量%以下とし、ジカルボン酸粉末を予めジアミンの融点以上かつジカルボン酸の融点以下の温度に加熱し、この加熱温度を維持しながら、ジカルボン酸の粉末の状態を保つようにジアミンをジカルボン酸粉末に添加することを特徴とするナイロン塩粉末の製造方法。
  2.  加熱温度を100~210℃とすることを特徴とする請求項1に記載のナイロン塩粉末の製造方法。
  3.  融点以上に加熱したジアミンを、ジカルボン酸粉末にスプレー状に噴霧して添加することを特徴とする請求項1または請求項2記載のナイロン塩粉末の製造方法。
  4.  ジカルボン酸粉末を構成するジカルボン酸が、テレフタル酸および/またはイソフタル酸であることを特徴とする請求項1~3のいずれかに記載のナイロン塩粉末の製造方法。
  5.  ジアミンの添加速度が、最終的に添加されるジアミン全量に対して、0.07~6.7質量%/分であることを特徴とする請求項1~4のいずれかに記載のナイロン塩粉末の製造方法。
  6.  請求項1~5のいずれかの製造方法で製造されたナイロン塩粉末を重合することを特徴とするナイロンの製造方法。
     
     
PCT/JP2011/076474 2010-11-26 2011-11-17 ナイロン塩粉末の製造方法、およびナイロンの製造方法 WO2012070457A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11843585.8A EP2644638B1 (en) 2010-11-26 2011-11-17 Method for producing nylon salt powder, and method for producing nylon
KR1020137008631A KR101604324B1 (ko) 2010-11-26 2011-11-17 나일론 염 분말의 제조 방법, 및 나일론의 제조 방법
JP2012545703A JP5868332B2 (ja) 2010-11-26 2011-11-17 ナイロン塩粉末の製造方法、およびナイロンの製造方法
CN201180052897.7A CN103201314B (zh) 2010-11-26 2011-11-17 尼龙盐粉末的制造方法及尼龙的制造方法
US13/822,749 US9045591B2 (en) 2010-11-26 2011-11-17 Method for producing nylon salt powder, and method for producing nylon
HK13113518.1A HK1186200A1 (en) 2010-11-26 2013-12-05 Method for producing nylon salt powder, and method for producing nylon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010263031 2010-11-26
JP2010-263031 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070457A1 true WO2012070457A1 (ja) 2012-05-31

Family

ID=46145801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076474 WO2012070457A1 (ja) 2010-11-26 2011-11-17 ナイロン塩粉末の製造方法、およびナイロンの製造方法

Country Status (8)

Country Link
US (1) US9045591B2 (ja)
EP (1) EP2644638B1 (ja)
JP (1) JP5868332B2 (ja)
KR (1) KR101604324B1 (ja)
CN (1) CN103201314B (ja)
HK (1) HK1186200A1 (ja)
TW (1) TWI512006B (ja)
WO (1) WO2012070457A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030939A (ja) * 1999-07-15 2001-02-06 Honda Motor Co Ltd 転回機構を備えた四輪車両
JP2013067928A (ja) * 2011-09-26 2013-04-18 Unitika Ltd 半芳香族ポリアミド繊維、半芳香族ポリアミド不織布及びその製造方法
WO2014118275A1 (en) * 2013-01-30 2014-08-07 Dsm Ip Assets B.V. Pa-mxdt/zt copolymers
WO2014118276A1 (en) * 2013-01-30 2014-08-07 Dsm Ip Assets B.V. Process for the production of polyamides
WO2014118277A1 (en) 2013-01-31 2014-08-07 Dsm Ip Assets B.V. Process for the preparation of diamine/dicarboxylic acid salts and polyamides thereof
WO2014118278A1 (en) * 2013-01-30 2014-08-07 Dsm Ip Assets B.V. Process for the preparation of a polyamide
JP2014173058A (ja) * 2013-03-12 2014-09-22 Unitika Ltd 半芳香族ポリアミド粉粒体およびその製造方法
JP2014524928A (ja) * 2011-07-26 2014-09-25 ディーエスエム アイピー アセッツ ビー.ブイ. ジアミン/ジカルボン酸塩の製造方法
EP2951147B1 (en) 2013-01-31 2017-08-02 DSM IP Assets B.V. Process for the preparation of diamine/dicarboxylic acid salts and polyamides thereof
JP2017522423A (ja) * 2014-07-29 2017-08-10 ディーエスエム アイピー アセッツ ビー.ブイ. ナイロン塩の調製方法およびナイロン塩の重合方法
TWI600636B (zh) * 2012-08-01 2017-10-01 Dsm智慧財產有限公司 製備二胺/二羧酸鹽的方法
JP2018501389A (ja) * 2014-12-17 2018-01-18 キャセイ アールアンドディー センター カンパニー、 リミテッド ナイロン塩及びその製造方法
JP2019189782A (ja) * 2018-04-27 2019-10-31 ユニチカ株式会社 ナイロン塩粉末の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI648310B (zh) * 2013-01-30 2019-01-21 荷蘭商Dsm智慧財產有限公司 聚醯胺的製備方法
TWI671121B (zh) * 2014-07-29 2019-09-11 荷蘭商帝斯曼知識產權資產管理有限公司 用於製備聚醯胺的方法、用於該方法中的耐綸鹽及用於製造該鹽的方法
CN107778479B (zh) * 2016-08-30 2020-05-08 江苏瑞美福实业有限公司 一种制备半芳香族聚酰胺的投料方法
CN108003013A (zh) * 2017-06-23 2018-05-08 河南城建学院 一种尼龙酸的回收利用方法
CN107353198B (zh) * 2017-08-25 2020-11-06 南京工业大学 戊二胺己二酸盐及其晶体
EP3498757A1 (en) 2017-12-18 2019-06-19 Rhodia Operations Process for the preparation of stoichiometric dicarboxylic acid/diamine salts and polyamides thereof
CN108586265A (zh) * 2018-04-13 2018-09-28 南京工业大学 戊二胺癸二酸盐及其晶体
BR112021015292A2 (pt) 2019-02-21 2021-10-05 Invista Textiles (U.K.) Limited Processo para a preparação de poliamidas
CN110591343B (zh) * 2019-09-02 2022-03-29 湖南华曙高科技股份有限公司 一种高分子粉末材料及其制备方法以及采用该材料制备工件的方法
CN112920400A (zh) * 2020-12-29 2021-06-08 深圳市华盈新材料有限公司 生物基半芳香聚酰胺共聚物及其制备方法、组合物和应用
WO2022268883A1 (en) 2021-06-23 2022-12-29 Dsm Ip Assets B.V. Process for making a solid diammonium dicarboxylate salt and polyamides thereof
CN115725072A (zh) * 2021-08-31 2023-03-03 华润化学材料科技股份有限公司 尼龙干盐及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220527A (ja) * 1985-07-19 1987-01-29 Teijin Ltd ポリヘキサメチレンテレフタルアミド系ポリマ−の製造法
JPH10509761A (ja) * 1994-11-23 1998-09-22 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ナイロンの低温製造法
JP2001200053A (ja) 2000-01-21 2001-07-24 Mitsubishi Gas Chem Co Inc ポリアミドの製造方法
JP2001348427A (ja) 2000-06-09 2001-12-18 Kuraray Co Ltd ポリアミドの製造方法
JP2005002327A (ja) * 2003-05-20 2005-01-06 Mitsubishi Gas Chem Co Inc ポリアミドの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2636243C2 (de) * 1976-08-12 1985-12-19 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von pulverförmigen Polymerisaten
CA2022032A1 (en) * 1989-07-27 1991-01-28 Stephen A. Taylor Process for the preparation of polyamide prepolymers
US5874520A (en) * 1996-12-12 1999-02-23 E. I. Du Pont De Nemours And Company Preparation of nylon salts from diamine carbamates and dicarboxylic acids
US5801278A (en) * 1997-03-07 1998-09-01 E. I. Du Pont De Nemours And Companh Low water diamine-dicarboxylic acid salt preparation
DE602004025064D1 (de) 2003-05-20 2010-03-04 Mitsubishi Gas Chemical Co Verfahren zur Herstellung von Polyamid
WO2011118441A1 (ja) * 2010-03-26 2011-09-29 ユニチカ株式会社 半芳香族ポリアミド、およびその製造方法
CN103159951B (zh) * 2011-12-13 2017-04-12 上海杰事杰新材料(集团)股份有限公司 一种制备高温尼龙的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220527A (ja) * 1985-07-19 1987-01-29 Teijin Ltd ポリヘキサメチレンテレフタルアミド系ポリマ−の製造法
JPH10509761A (ja) * 1994-11-23 1998-09-22 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ナイロンの低温製造法
JP2001200053A (ja) 2000-01-21 2001-07-24 Mitsubishi Gas Chem Co Inc ポリアミドの製造方法
JP2001348427A (ja) 2000-06-09 2001-12-18 Kuraray Co Ltd ポリアミドの製造方法
JP2005002327A (ja) * 2003-05-20 2005-01-06 Mitsubishi Gas Chem Co Inc ポリアミドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2644638A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030939A (ja) * 1999-07-15 2001-02-06 Honda Motor Co Ltd 転回機構を備えた四輪車両
JP2014524928A (ja) * 2011-07-26 2014-09-25 ディーエスエム アイピー アセッツ ビー.ブイ. ジアミン/ジカルボン酸塩の製造方法
JP2013067928A (ja) * 2011-09-26 2013-04-18 Unitika Ltd 半芳香族ポリアミド繊維、半芳香族ポリアミド不織布及びその製造方法
TWI600636B (zh) * 2012-08-01 2017-10-01 Dsm智慧財產有限公司 製備二胺/二羧酸鹽的方法
EA031112B1 (ru) * 2013-01-30 2018-11-30 ДСМ АйПи АССЕТС Б.В. Способ получения полиамида и полученный сополиамид
KR102156951B1 (ko) 2013-01-30 2020-09-17 디에스엠 아이피 어셋츠 비.브이. 폴리아미드의 제조 방법
CN111393634A (zh) * 2013-01-30 2020-07-10 帝斯曼知识产权资产管理有限公司 制备聚酰胺的方法
WO2014118275A1 (en) * 2013-01-30 2014-08-07 Dsm Ip Assets B.V. Pa-mxdt/zt copolymers
CN104955875A (zh) * 2013-01-30 2015-09-30 帝斯曼知识产权资产管理有限公司 制备聚酰胺的方法
KR20150110772A (ko) * 2013-01-30 2015-10-02 디에스엠 아이피 어셋츠 비.브이. 폴리아미드의 제조 방법
US9850348B2 (en) 2013-01-30 2017-12-26 Dsm Ip Assets B.V. Process for the preparation of a polyamide
WO2014118276A1 (en) * 2013-01-30 2014-08-07 Dsm Ip Assets B.V. Process for the production of polyamides
CN104968708A (zh) * 2013-01-30 2015-10-07 帝斯曼知识产权资产管理有限公司 Pa-mxdt/zt共聚物
JP2016508525A (ja) * 2013-01-30 2016-03-22 ディーエスエム アイピー アセッツ ビー.ブイ. ポリアミドの調製プロセス
WO2014118278A1 (en) * 2013-01-30 2014-08-07 Dsm Ip Assets B.V. Process for the preparation of a polyamide
CN104968641B (zh) * 2013-01-31 2017-03-15 帝斯曼知识产权资产管理有限公司 制备二胺/二羧酸盐及其聚酰胺的方法
EP2951147B1 (en) 2013-01-31 2017-08-02 DSM IP Assets B.V. Process for the preparation of diamine/dicarboxylic acid salts and polyamides thereof
JP2016510335A (ja) * 2013-01-31 2016-04-07 ディーエスエム アイピー アセッツ ビー.ブイ. ジアミン/ジカルボン酸塩およびそれらのポリアミドの調製方法
CN104968641A (zh) * 2013-01-31 2015-10-07 帝斯曼知识产权资产管理有限公司 制备二胺/二羧酸盐及其聚酰胺的方法
KR20150112971A (ko) * 2013-01-31 2015-10-07 디에스엠 아이피 어셋츠 비.브이. 다이아민/다이카복실산 염 및 이의 폴리아미드의 제조 방법
KR102379405B1 (ko) 2013-01-31 2022-03-25 디에스엠 아이피 어셋츠 비.브이. 다이아민/다이카복실산 염 및 이의 폴리아미드의 제조 방법
WO2014118277A1 (en) 2013-01-31 2014-08-07 Dsm Ip Assets B.V. Process for the preparation of diamine/dicarboxylic acid salts and polyamides thereof
US10233287B2 (en) 2013-01-31 2019-03-19 Dsm Ip Assets B.V. Process for the preparation of diamine/dicarboxylic acid salts and polyamides thereof
KR20200137042A (ko) * 2013-01-31 2020-12-08 디에스엠 아이피 어셋츠 비.브이. 다이아민/다이카복실산 염 및 이의 폴리아미드의 제조 방법
KR102186863B1 (ko) 2013-01-31 2020-12-07 디에스엠 아이피 어셋츠 비.브이. 다이아민/다이카복실산 염 및 이의 폴리아미드의 제조 방법
JP2014173058A (ja) * 2013-03-12 2014-09-22 Unitika Ltd 半芳香族ポリアミド粉粒体およびその製造方法
JP2017522423A (ja) * 2014-07-29 2017-08-10 ディーエスエム アイピー アセッツ ビー.ブイ. ナイロン塩の調製方法およびナイロン塩の重合方法
US10487176B2 (en) 2014-12-17 2019-11-26 Cathay Biotech Inc. Nylon salt and preparation method therefor
JP2018501389A (ja) * 2014-12-17 2018-01-18 キャセイ アールアンドディー センター カンパニー、 リミテッド ナイロン塩及びその製造方法
JP2019189782A (ja) * 2018-04-27 2019-10-31 ユニチカ株式会社 ナイロン塩粉末の製造方法
JP7055364B2 (ja) 2018-04-27 2022-04-18 ユニチカ株式会社 ナイロン塩粉末の製造方法

Also Published As

Publication number Publication date
TWI512006B (zh) 2015-12-11
EP2644638A4 (en) 2014-04-23
JPWO2012070457A1 (ja) 2014-05-19
EP2644638B1 (en) 2015-06-10
US20130172521A1 (en) 2013-07-04
KR101604324B1 (ko) 2016-03-17
CN103201314B (zh) 2014-12-17
HK1186200A1 (en) 2014-03-07
TW201241044A (en) 2012-10-16
JP5868332B2 (ja) 2016-02-24
EP2644638A1 (en) 2013-10-02
KR20140000220A (ko) 2014-01-02
US9045591B2 (en) 2015-06-02
CN103201314A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5868332B2 (ja) ナイロン塩粉末の製造方法、およびナイロンの製造方法
JP6613473B2 (ja) ポリアミドの調製プロセス
EP2505598B1 (en) Process for production of polyamide
PH12014501623B1 (en) Production method for polyamide
JP2017522424A (ja) ポリアミドの調製方法、それに使用されるナイロン塩、および塩の製造方法
JP3939764B2 (ja) 低水分ジアミン/ジカルボン酸塩の製造
JP6223154B2 (ja) ポリアミド樹脂およびその製造方法
JP5588959B2 (ja) ポリアミドの製造方法
JP5956903B2 (ja) ポリアミドの製造方法
JP7055364B2 (ja) ナイロン塩粉末の製造方法
US20230374217A1 (en) Yield-optimized method for producing a polyamide powder composition
JP2012188557A (ja) ポリアミドの製造方法
JP5567928B2 (ja) ポリアミドの製造方法
KR20150114482A (ko) Pa-mxdt/zt 공중합체
JP5627447B2 (ja) ポリアミドの製造方法
JP6153717B2 (ja) ポリアミド樹脂およびその製造方法
TW201441278A (zh) 聚醯胺的製備方法
EP2951228B1 (en) Process for the preparation of a polyamide
WO2016163417A1 (ja) ポリアミドイミド、ポリアミドイミド原料塩およびそれらの製造方法
JPH08198963A (ja) ポリアミドの製造方法
JPH10226725A (ja) ポリアミド粒状物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843585

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13822749

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011843585

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012545703

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137008631

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE