WO2016163417A1 - ポリアミドイミド、ポリアミドイミド原料塩およびそれらの製造方法 - Google Patents
ポリアミドイミド、ポリアミドイミド原料塩およびそれらの製造方法 Download PDFInfo
- Publication number
- WO2016163417A1 WO2016163417A1 PCT/JP2016/061297 JP2016061297W WO2016163417A1 WO 2016163417 A1 WO2016163417 A1 WO 2016163417A1 JP 2016061297 W JP2016061297 W JP 2016061297W WO 2016163417 A1 WO2016163417 A1 WO 2016163417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamideimide
- diamine
- raw material
- dicarboxylic acid
- material salt
- Prior art date
Links
- 239000004962 Polyamide-imide Substances 0.000 title claims abstract description 126
- 229920002312 polyamide-imide Polymers 0.000 title claims abstract description 126
- 150000003839 salts Chemical class 0.000 title claims abstract description 67
- 239000002994 raw material Substances 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 49
- 150000001875 compounds Chemical class 0.000 title 1
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 125000003118 aryl group Chemical group 0.000 claims abstract description 11
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 8
- 125000004429 atom Chemical group 0.000 claims abstract description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 6
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims abstract description 4
- 150000004985 diamines Chemical class 0.000 claims description 75
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 64
- 238000002844 melting Methods 0.000 claims description 50
- 230000008018 melting Effects 0.000 claims description 50
- 238000006116 polymerization reaction Methods 0.000 claims description 25
- 239000007787 solid Substances 0.000 claims description 25
- 230000009477 glass transition Effects 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 238000007865 diluting Methods 0.000 claims description 3
- 229910000039 hydrogen halide Inorganic materials 0.000 abstract description 5
- 239000012433 hydrogen halide Substances 0.000 abstract description 5
- 239000012778 molding material Substances 0.000 abstract description 4
- 239000002966 varnish Substances 0.000 abstract description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 39
- 238000006243 chemical reaction Methods 0.000 description 30
- 238000010438 heat treatment Methods 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 19
- 239000002245 particle Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 238000001746 injection moulding Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- -1 aromatic tricarboxylic acid Chemical class 0.000 description 9
- 150000003628 tricarboxylic acids Chemical class 0.000 description 9
- 238000004566 IR spectroscopy Methods 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000001308 synthesis method Methods 0.000 description 8
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 7
- 238000000113 differential scanning calorimetry Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 150000004984 aromatic diamines Chemical class 0.000 description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000007086 side reaction Methods 0.000 description 6
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 230000008034 disappearance Effects 0.000 description 4
- 239000012948 isocyanate Substances 0.000 description 4
- 150000002513 isocyanates Chemical class 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 4
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- 239000002981 blocking agent Substances 0.000 description 3
- WTNDADANUZETTI-UHFFFAOYSA-N cyclohexane-1,2,4-tricarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)C(C(O)=O)C1 WTNDADANUZETTI-UHFFFAOYSA-N 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 150000003949 imides Chemical class 0.000 description 3
- 229940018564 m-phenylenediamine Drugs 0.000 description 3
- 239000002685 polymerization catalyst Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000005084 2D-nuclear magnetic resonance Methods 0.000 description 2
- YLFZBPFYWIFYCP-UHFFFAOYSA-N 4-(4-carboxyphenyl)phthalic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C(C(O)=O)=C1 YLFZBPFYWIFYCP-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BTHGHFBUGBTINV-UHFFFAOYSA-N naphthalene-2,3,6-tricarboxylic acid Chemical compound C1=C(C(O)=O)C(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 BTHGHFBUGBTINV-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- ICNFHJVPAJKPHW-UHFFFAOYSA-N 4,4'-Thiodianiline Chemical compound C1=CC(N)=CC=C1SC1=CC=C(N)C=C1 ICNFHJVPAJKPHW-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- DALNZVCOTIEBNC-UHFFFAOYSA-N NC1(CC=C2C=CC=CC2=C1)N.NC1=CC=CC2=C(C=CC=C12)N Chemical compound NC1(CC=C2C=CC=CC2=C1)N.NC1=CC=CC2=C(C=CC=C12)N DALNZVCOTIEBNC-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- OIFQXZBVIMTLEF-UHFFFAOYSA-N anthracene-2,3,6-tricarboxylic acid Chemical compound C1=C(C(O)=O)C(C(O)=O)=CC2=CC3=CC(C(=O)O)=CC=C3C=C21 OIFQXZBVIMTLEF-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- CBLAIDIBZHTGLV-UHFFFAOYSA-N dodecane-2,11-diamine Chemical compound CC(N)CCCCCCCCC(C)N CBLAIDIBZHTGLV-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- PWSKHLMYTZNYKO-UHFFFAOYSA-N heptane-1,7-diamine Chemical compound NCCCCCCCN PWSKHLMYTZNYKO-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/14—Polyamide-imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Definitions
- the present invention relates to a polyamideimide, a polyamideimide raw material salt, and a method for producing them.
- Polyamideimide is widely used for applications such as films, wire coating materials, molding materials, and adhesives because of its high heat resistance and chemical resistance.
- polyamideimide As a method for producing polyamideimide, there are known three methods: an isocyanate method, an acid chloride method, and a direct polymerization method.
- the isocyanate method is a method in which an aromatic dicarboxylic acid or an imide dicarboxylic acid synthesized from an aromatic tricarboxylic anhydride / aromatic diamine (molar ratio 2/1) is reacted with an aromatic diisocyanate (for example, Patent Documents 1 to 3).
- the acid chloride method is a method in which a substantially equimolar amount of an aromatic tricarboxylic acid anhydride chloride and an aromatic diamine are reacted in an organic polar solvent (for example, Patent Document 4).
- the direct polymerization method is a method in which an aromatic tricarboxylic acid or a derivative thereof (excluding an acid chloride derivative) and an aromatic diamine are directly reacted in the presence of a dehydration catalyst (for example, Patent Document 5).
- the acid chloride method has a relatively low side reaction and a low-crosslinking structure and a highly linear polyamideimide, but has a problem in that highly corrosive hydrogen chloride is by-produced and remains in the polyamideimide. It was. Further, the acid chloride method has a problem that the regularity in the molecular chain is low because the amine terminal of the diamine reacts with both the chloride terminal and the anhydride group of the aromatic tricarboxylic acid anhydride chloride. As a result, when the obtained polyamideimide was used for a molded article, the physical properties of the molded article were not sufficient, and the usage to be used was limited.
- the direct polymerization method does not use diisocyanate or acid chloride, there is no problem of gelation or generation of hydrogen chloride.
- the amine terminal of the diamine is an aromatic tricarboxylic acid anhydride. Since it reacts with both the carboxyl terminal and the anhydride group, there is a problem that the regularity in the molecular chain is low. As a result, when the obtained polyamideimide was used for a molded article, the physical properties of the molded article were not sufficient, and the usage to be used was limited.
- the present invention solves the above-described problems, and has a high molecular structure regularity, a small branched structure, no hydrogen halide, and does not need to be separated and purified in a subsequent process, film, varnish, molding material It aims at providing the polyamideimide which can be used suitably as.
- the present inventors have synthesized the polyamideimide from a bisimide dicarboxylic acid composed of a diamine and a tricarboxylic acid anhydride and a diamine that is the same as or different from the diamine.
- the present invention has been found.
- the gist of the present invention is as follows.
- a polyamide that can be suitably used as a film, varnish, or molding material, having high molecular structure regularity, few branched structures, no hydrogen halide, and no need for separation and purification in a subsequent process.
- An imide can be provided.
- the polyamideimide of the present invention is a polyamideimide having a repeating unit represented by the general formula (1) composed of bisimide dicarboxylic acid and diamine.
- R 1 and R 2 independently represent a divalent residue having an aromatic ring, an aliphatic ring or an aliphatic hydrocarbon
- R 3 and R 4 independently represent an aromatic ring or The trivalent residue which has an aliphatic ring is shown,
- bonded with each ring may be substituted by the other atom or atomic group.
- the number of repeating units is an integer of 1 or more, preferably 4 to 1000, more preferably 20 to 1000.
- the tricarboxylic acid anhydride used for the bisimide dicarboxylic acid is an aromatic or alicyclic tricarboxylic acid anhydride.
- the tricarboxylic acid ring include, for example, a benzene ring, a naphthalene ring, an anthracene ring, a biphenyl ring, a cyclohexane ring, preferably a benzene ring, a naphthalene ring, a biphenyl ring, a cyclohexane ring, more preferably a benzene ring, a cyclohexane ring, Preferably a benzene ring is mentioned.
- Tricarboxylic acids include those in which a hydrogen atom bonded to a ring is substituted with another atom or atomic group.
- tricarboxylic acid anhydride examples include trimellitic acid anhydride, 2,3,6-naphthalene tricarboxylic acid anhydride, 2,3,6-anthracentricarboxylic acid anhydride, 3,4,4′-biphenyltricarboxylic acid Anhydride, 1,2,4-cyclohexanetricarboxylic acid anhydride, etc., preferably trimellitic acid anhydride, 2,3,6-naphthalenetricarboxylic acid anhydride, 3,4,4′-biphenyltricarboxylic acid anhydride, Examples include 1,2,4-cyclohexanetricarboxylic acid anhydride, more preferably trimellitic acid anhydride, or 1,2,4-cyclohexanetricarboxylic acid anhydride, and still more preferably trimellitic acid anhydride.
- a tricarboxylic acid anhydride may be used independently and may use 2 or more types together.
- the diamine used for the bisimide dicarboxylic acid is an aliphatic diamine, an alicyclic diamine or an aromatic diamine. Preferably, it is an aliphatic diamine or an aromatic diamine.
- the diamine may contain —O— and —S—, and one or more hydrogen atoms may be substituted with halogen, or may have a side chain.
- diamines include hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, m-phenylenediamine, p-phenylenediamine, m-xylylenediamine, p-xylylenediamine, benzidine.
- the above diamines may be used alone or in combination of two or more.
- the diamine constituting the polyamideimide the same or different diamine used for the bisimide carboxylic acid can be used.
- the polyamideimide of the present invention is synthesized by (1) once synthesizing a polyamideimide raw material salt composed of bisimide dicarboxylic acid and diamine, and then polymerizing the polyamideimide raw material salt (hereinafter referred to as “two-step synthesis method”). )) Or (2) can be synthesized in one step by reacting bisimide dicarboxylic acid and diamine directly (hereinafter referred to as “one-step synthesis method”). First, the two-stage synthesis method will be described.
- the polyamideimide of the present invention can be produced by once synthesizing a polyamideimide raw material salt composed of bisimide dicarboxylic acid and diamine, and heating and polymerizing the raw material salt.
- the bisimide dicarboxylic acid a known one (for example, a commercially available product) may be used, or one synthesized from a tricarboxylic acid anhydride and a diamine may be used, for example.
- the reaction between tricarboxylic acid anhydride and diamine may be performed in a solution state or a molten state, or may be performed in a solid (powder) state.
- the solid state is preferred from the viewpoint that it can be used for the synthesis of polyamideimide raw material salt powder without requiring a pulverization step or the like.
- the polyamideimide raw material salt can be obtained by neutralizing a bisimide dicarboxylic acid synthesized from a tricarboxylic acid anhydride and a diamine with the same or different diamine as the diamine.
- the method of obtaining the polyamideimide raw material salt by the reaction of bisimide dicarboxylic acid and diamine may be performed in a solution state or a molten state, or may be performed in a solid state.
- the solid state is preferable from the viewpoint that the polyamideimide raw material salt powder can be synthesized without requiring a solvent drying step, a pulverizing step, or the like.
- the polyamide-imide raw material salt of the present invention can be achieved by reacting a solid bisimide dicarboxylic acid with a liquid diamine.
- the bisimide dicarboxylic acid has a melting point of less than that of the diamine. This can be achieved by heating above the melting point and adding diamine.
- the amount of diamine added In order to maintain the solid state of the bisimide dicarboxylic acid and the resulting polyamideimide salt during the process, the amount of diamine added, the addition rate, the addition method, the heating temperature of the bisimide dicarboxylic acid, the reaction time, etc. It is preferable that the conditions are set appropriately and the contents are sufficiently stirred.
- melting point is also called “melting point” and is used in the general sense of a temperature at which a solid melts.
- the melting point can be obtained by filling a sample in a capillary and heating it, and visually observing the melting point, or by a measuring device such as differential scanning calorimetry (DSC).
- DSC differential scanning calorimetry
- bisimide dicarboxylic acid maintains its solid state.
- the average particle size of the bisimide dicarboxylic acid is preferably 5 ⁇ m to 1 mm, and more preferably 20 to 200 ⁇ m.
- the average particle diameter can be measured by a sedimentation method or a laser diffraction / scattering method.
- a value measured by a laser diffraction / scattering method is used.
- the diamine is not particularly limited as long as it is in a liquid state at the time of reaction with the solid bisimide dicarboxylic acid, and may be added as a solid, or may be added after being heated and melted to be a liquid. From the viewpoint of reducing the particle size of the resulting polyamideimide raw material salt, it is preferable to add it after heating and melting to form a liquid. Since the time for heating the diamine is shorter, it is preferable that the diamine is added in a solid form such as a powder or a granule that is not heated by itself.
- a powder feeder equipped with a double damper mechanism may be used.
- the diamine is added as a liquid, the diamine is heated and melted in a container different from the reaction container to form a liquid, and then sent to the reaction container, and the liquid diamine is dropped or added to the bisimide dicarboxylic acid. It is preferable to spray in the form of a spray.
- the heating of the bisimide dicarboxylic acid may be performed after adding the diamine or may be performed before adding the diamine, but the latter is more preferable.
- the heating temperature when the bisimide dicarboxylic acid is heated in advance before the addition of the diamine is preferably set to be equal to or higher than the melting point of the diamine and lower than the melting point of the bisimide dicarboxylic acid.
- the melting point of dicarboxylic acid is more preferably ⁇ 5 ° C. or less.
- the said heating temperature exceeds melting
- the said heating temperature is below the melting point of diamine, both bisimide dicarboxylic acid and diamine will be in a solid state, and the production
- the heating temperature of the bisimide dicarboxylic acid is 100 ° C. or higher and 210 ° C. or lower, preferably 100 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and 200 ° C. or lower.
- the heating temperature exceeds 210 ° C., water is generated because a polymerization reaction occurs during the formation reaction of the polyamideimide raw material salt.
- the resulting polyamideimide raw material salt is caused by the generated water.
- the heating temperature is less than 100 ° C., the formation reaction of the polyamideimide raw material salt may be insufficient.
- the same temperature may be sufficient as the heating temperature at the time of heating bisimide dicarboxylic acid previously, and the production
- the method for adding the diamine is not particularly limited as long as the bisimide dicarboxylic acid can maintain its solid state during the reaction.
- a method of intermittently adding 1/10 to 1/100 of the total amount) is preferable.
- the addition rate of the diamine is preferably 0.005 to 2.00% by mass / min from the viewpoint of stably maintaining the solid state of the bisimide dicarboxylic acid, and 0.01 to 1.00% by mass / min.
- “mass% / min” is the ratio of the low melting point component added per minute to the total amount of the low melting point component finally added.
- a method combining the above methods such as a method of continuously adding diamine may be used.
- the diamine may be dissolved in a diluting solvent and added to the bisimide dicarboxylic acid.
- a diluting solvent examples include water, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and diethylene glycol, and amide solvents such as N-methyl-2-pyrrolidone and N, N-dimethylacetamide.
- the average particle diameter of the resulting polyamideimide raw material salt is preferably 2 mm or less, and more preferably 500 ⁇ m or less.
- the average particle size of the polyamideimide raw material salt is preferably 2 mm or less, for example, even when water is generated when the polyamideimide raw material salt is solid-phase polymerized to obtain the polyamideimide, the water inside the polyamideimide raw material salt is reduced. Since it can be easily removed, there is an advantage that the speed of the polymerization reaction can be increased.
- the stirring mechanism provided in the reaction apparatus for reacting bisimide dicarboxylic acid and diamine may be appropriately selected according to the type and production amount of the polyamideimide raw material salt to be produced, such as paddle type, tumbler type, ribbon type, etc. And blenders and mixers. A combination of these may also be used.
- the reaction apparatus for reacting bisimide dicarboxylic acid and diamine is not particularly limited as long as bisimide dicarboxylic acid and diamine can be sufficiently stirred, and a known reaction apparatus can be used.
- the method of heating the bisimide dicarboxylic acid before the reaction or heating the reaction system during the production reaction is not particularly limited, and using a heat medium such as steam, a heater or the like. The method of heating is mentioned.
- the reaction between the bisimide dicarboxylic acid and the diamine may be carried out in any atmosphere under an air atmosphere or an inert gas atmosphere such as nitrogen, in order to suppress side reactions and coloring. Is preferably carried out in an inert gas atmosphere. Further, the reaction may be performed in a sealed state or under an inert gas flow.
- a granular polyamideimide raw material salt from which polyamideimide can be obtained can be provided.
- a polyamideimide raw material salt characterized by comprising a bisimide dicarboxylic acid and a diamine; (2) The bisimide dicarboxylic acid is heated below the melting point of the bisimide dicarboxylic acid and above the melting point of the diamine, and the diamine is added so that the bisimide dicarboxylic acid maintains its solid state.
- the polymerization method of the polyamideimide raw material salt may be either a melt polymerization method or a solid phase polymerization method, but since the polyamideimide is often close to the flow initiation temperature and the thermal decomposition temperature, the solid phase polymerization method is preferable.
- the reaction temperature is not particularly limited as long as it is lower than the melting point of the produced polyamideimide or lower than the decomposition temperature, but is usually 160 to 350 ° C.
- the reaction time is preferably in the range of 0.5 to 24 hours after reaching the reaction temperature, and in the range of 0.5 to 8 hours from the viewpoint of the balance between the finally reached molecular weight and productivity. Is more preferable.
- Solid phase polymerization may be carried out in an inert gas stream such as nitrogen or under reduced pressure. Moreover, you may carry out still and may carry out, stirring.
- the melting point and glass transition temperature of polyamideimide refer to the melting point and glass transition temperature measured by the following “Analysis Method (1) Melting Point and Glass Transition Temperature”.
- the melting point could not be measured at a temperature up to 350 ° C., the measurement limit, it was not detected.
- the polyamideimide to be measured is amorphous, the melting point is not measured.
- the polyamideimide raw material salt is heated at a temperature lower than the melting point of the bisimide dicarboxylic acid and higher than 200 ° C., and polymerization is performed while maintaining the solid state. It is preferable. More preferably, the melting point of bisimide dicarboxylic acid is ⁇ 5 ° C. or less. This is because the solid state of the bisimide dicarboxylic acid can be reliably maintained.
- the reaction temperature is not particularly limited as long as it is equal to or higher than the glass transition temperature of the produced polyamideimide.
- the reaction time is preferably in the range of 0.5 to 36 hours after reaching the reaction temperature, more preferably in the range of 1 to 16 hours, from the viewpoint of the balance between the finally reached molecular weight and productivity. preferable.
- the melt polymerization may be performed in an inert gas stream such as nitrogen, or may be performed under pressure.
- the terminal blocking agent seals the terminal functional group of the polymer.
- the terminal blocking agent include acetic acid, lauric acid, benzoic acid, octylamine, cyclohexylamine, and aniline. It is preferable that the usage-amount of terminal blocker is 5 mol% or less with respect to the total mol number of a polyamideimide raw material salt.
- the polymerization catalyst examples include phosphoric acid, phosphorous acid, hypophosphorous acid, and salts thereof. Since the usage-amount of a polymerization catalyst causes the performance of a product and workability fall, it is preferable that it is 2 mol% or less with respect to the total mol number of a polyamideimide raw material salt.
- additives examples include inorganic fillers, fillers, and stabilizers. From the viewpoint of the reactivity of the bisimide dicarboxylate, the amount of the additive used is preferably 30% by mass or less based on the total mass of the polyamideimide raw material salt.
- the polyamideimide of the present invention can be produced by heating the bisimide dicarboxylic acid at a temperature below its melting point and above 200 ° C. and adding the diamine so as to maintain its solid state.
- the heating of the bisimide dicarboxylic acid may be performed after adding the diamine or may be performed before adding the diamine, but the latter is more preferable.
- the heating temperature when the bisimide dicarboxylic acid is heated in advance before the addition of the diamine is more preferably (the melting point of bisimide dicarboxylic acid ⁇ 5 ° C.) or less. This is because the solid state of the bisimide dicarboxylic acid can be reliably maintained.
- the specific heating temperature of the bisimide dicarboxylic acid is appropriately set within the above temperature range depending on the bisimide carboxylic acid, the diamine, and a combination thereof.
- condition and methods for maintaining the solid state of bisimide dicarboxylic acid, addition amount of diamine, addition rate, addition method, etc. can be performed with reference to the conditions described in the above two-step synthesis method.
- a polyamideimide raw material salt By using the polyamideimide raw material salt, a polyamideimide having a higher molecular structure regularity and fewer branched structures can be obtained.
- a polyamideimide having a degree of polymerization (n) (number of repeating units) of about 4 to 1000, preferably about 10 to 1000, and more preferably about 20 to 500 can be synthesized.
- the degree of polymerization can be adjusted by changing the blending ratio of bisimide dicarboxylic acid and diamine, the amount of end-capping agent added, the polymerization temperature, the polymerization time, etc., for example, the degree of polymerization is the addition of end-capping agent It can be increased by reducing the amount.
- the degree of polymerization can be generally measured by estimation by gel permeation chromatography, nuclear magnetic resonance (NMR), solution viscosity method, or melt viscosity method.
- the polyamideimide of the present invention has a structure in which the repeating units represented by the general formula (1) are regularly connected linearly, and has few branched and crosslinked structures.
- the polyamideimide obtained according to the invention can have a glass transition temperature of at least 100 ° C., higher, at least 150 ° C., even higher, at least 250 ° C., even higher, at least 270 ° C.
- the polyamideimide obtained by the present invention when having crystallinity, has a melting point of at least 150 ° C, higher, at least 250 ° C, even higher, at least 300 ° C, and even higher, at least 350 ° C. be able to.
- the polyamideimide obtained according to the present invention can have a 5% weight loss temperature of at least 300 ° C., higher, at least 350 ° C., even higher, at least 380 ° C., even higher, at least 480 ° C.
- the polyamideimide of the present invention can be formed into a molded body by injection molding, compression molding or extrusion molding. Of these, injection molding is preferred. Although it does not specifically limit as an injection molding machine used for injection molding, For example, a screw in-line type injection molding machine and a plunger type injection molding machine are mentioned.
- the polyamideimide heated and melted in the cylinder of the injection molding machine is weighed for each shot, injected into the mold in a molten state, cooled and solidified in a predetermined shape, and then taken out from the mold as a molded body. .
- the resin temperature at the time of injection molding is preferably equal to or higher than the glass transition temperature of polyamideimide, and more preferably less than the weight reduction start temperature. The temperature is more preferably (glass transition temperature + 50 ° C.) or more and (5% weight loss temperature ⁇ 10 ° C.) or less.
- the polyamideimide used for injection molding is sufficiently dry.
- Polyamideimide having a high moisture content may foam in the cylinder of an injection molding machine, making it difficult to obtain an optimal molded body.
- the moisture content of the polyamideimide used for injection molding is preferably less than 0.3% by mass, and more preferably less than 0.1% by mass.
- the polyamideimide of the present invention has high heat resistance and chemical resistance, it can be suitably used for molded parts for automobile parts and electric / electronic parts. Examples of electrical / electronic component applications include belts for copying machines.
- polyamideimide of the present invention can also be used as a binder for electrodes of lithium secondary batteries and the like.
- Example 1 Synthesis of polyamideimide raw material salt
- a ribbon consisting of 465 parts by mass of 1,3-bis (N-trimellitimidomethyl) benzene (melting point: not detected 300 ° C. or higher) (average particle size: 451 ⁇ m) and 0.593 parts by mass of anhydrous sodium hypophosphite
- the mixture was supplied to a blender-type reactor and heated to 170 ° C. with stirring at a rotation speed of 70 rpm under a nitrogen flow. Thereafter, 139 parts by mass of m-xylylenediamine (melting point: 14 ° C.) heated to 25 ° C. was fed at a rate of 0.695 parts by mass / min (0.50% by mass / min) using a liquid feeder.
- the polyamide-imide raw material salt is generated by infrared spectroscopy (IR), 164cm -1, 1559cm -1, an increase of absorption derived from a salt of a carboxylic acid and an amine which is detected in the vicinity of 1374cm -1 and This was confirmed by the disappearance of the peak derived from the melting point of m-xylenediamine by differential scanning calorimetry (DSC).
- IR infrared spectroscopy
- DSC differential scanning calorimetry
- Example 2 A mixture of 465 parts by mass of 1,4-bis (N-trimellitimidomethyl) benzene (melting point: not detected 300 ° C. or higher) (average particle size: 402 ⁇ m) and 0.593 parts by mass of anhydrous sodium hypophosphite is ribbon The mixture was supplied to a blender-type reactor and heated to 170 ° C. with stirring at a rotation speed of 70 rpm under a nitrogen flow. Thereafter, 139 parts by mass of m-xylylenediamine (melting point: 14 ° C.) heated to 25 ° C. was fed at a rate of 0.695 parts by mass / min (0.50% by mass / min) using a liquid feeder.
- the polyamide-imide raw material salt is generated by infrared spectroscopy (IR), 164cm -1, 1559cm -1, an increase of absorption derived from a salt of a carboxylic acid and an amine which is detected in the vicinity of 1374cm -1 and This was confirmed by the disappearance of cake derived from the melting point of m-xylenediamine by differential scanning calorimetry (DSC).
- IR infrared spectroscopy
- DSC differential scanning calorimetry
- Example 3 A ribbon composed of 465 parts by mass of 1,3-bis (N-trimellitimidomethyl) benzene (melting point: not detected at 300 ° C or higher) (average particle size: 413 ⁇ m) and 0.593 parts by mass of anhydrous sodium hypophosphite The mixture was supplied to a blender-type reactor and heated to 170 ° C. with stirring at a rotation speed of 70 rpm under a nitrogen flow.
- the polyamide-imide raw material salt is generated by infrared spectroscopy (IR), 164cm -1, 1559cm -1, an increase of absorption derived from a salt of a carboxylic acid and an amine which is detected in the vicinity of 1374cm -1 and This was confirmed by the disappearance of cake derived from the melting point of m-xylenediamine by differential scanning calorimetry (DSC).
- IR infrared spectroscopy
- DSC differential scanning calorimetry
- Example 4 465 parts by mass of 1,3-bis (N-trimellitimidomethyl) benzene (melting point: not detected 300 ° C. or higher) (average particle size: 378 ⁇ m) is fed to a ribbon blender type reactor, and the number of revolutions under nitrogen flow Heated to 150 ° C. with stirring at 70 rpm. Thereafter, 139 parts by mass of m-xylylenediamine (melting point: 14 ° C.) heated to 25 ° C. was maintained at 150 ° C. at a rate of 0.695 parts by mass using a liquid feeder.
- the polyamide-imide raw material salt is generated by infrared spectroscopy (IR), 164cm -1, 1559cm -1, an increase of absorption derived from a salt of a carboxylic acid and an amine which is detected in the vicinity of 1374cm -1 and This was confirmed by the disappearance of cake derived from the melting point of m-xylenediamine by differential scanning calorimetry (DSC).
- IR infrared spectroscopy
- DSC differential scanning calorimetry
- Example P-1 99.903 parts by mass of the polyamideimide raw material salt obtained in Production Example 4 was again added to the ribbon blender reactor. Thereafter, 0.097 parts by mass of anhydrous sodium hypophosphite was added to the polyamideimide raw material salt, and the mixture was heated at 180 ° C. for 2 hours with stirring at a rotation speed of 50 rpm under a nitrogen flow. Thereafter, the temperature was raised to 200 ° C., and further heated at 200 ° C. for 6 hours to obtain granular (average particle size: 280 ⁇ m) polyamideimide.
- the melting point of the obtained polyamideimide was about 290 ° C.
- the glass transition temperature was 180 ° C.
- the 5% weight loss temperature was 390 ° C.
- Example P-2 99.903 parts by mass of the polyamideimide raw material salt obtained in Production Example 4 was again added to the ribbon blender reactor. Thereafter, 0.097 parts by mass of anhydrous sodium hypophosphite was added to the polyamideimide raw material salt, and heated at 250 ° C. for 6 hours under a nitrogen flow. Then, it heated up at 300 degreeC and heated for 2 hours, and the block-like polyamideimide was obtained.
- the melting point of the obtained polyamideimide was not detected at a temperature up to 350 ° C., the upper limit of the DSC measurement, and the glass transition temperature was 180 ° C. and the 5% weight loss temperature was 390 ° C.
- Example P-3 74.74 parts by mass of 4,4-bis (N-trimellitimidophenyl) ether was added to a ribbon blender reactor. Thereafter, 0.076 parts by mass of anhydrous sodium hypophosphite was added, and the mixture was heated to 250 ° C. under a nitrogen flow. While confirming that 4,4-bis (N-trimellitimidophenyl) ether maintained its shape, 25.19 parts by mass of solid 4,4′-diaminodiphenyl ether (melting point: 188 ° C.) was added.
- the melting point of the obtained polyamideimide was not detected at a temperature up to 350 ° C., the upper limit of the DSC measurement, and the glass transition temperature was 258 ° C. and the 5% weight loss temperature was 471 ° C.
- the presence of the gelled product was confirmed by visual observation that 10 mg of a sample was dissolved in 1 mL of a solvent (N-methyl-2-pyrrolidone, etc.) by heating, and an undissolved product was generated. When no undissolved material was generated, it was judged that no gelled product was present.
- a solvent N-methyl-2-pyrrolidone, etc.
- the presence of hydrogen halide was judged by the presence or absence of chlorine, and the presence of chlorine was confirmed by fluorescent X-ray measurement. When chlorine was not detected by measurement, or when the amount of detected chlorine was less than 0.005% by weight, it was judged that chlorine (hydrogen chloride) was not contained.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
(1)一般式(1)で表される繰り返し単位を有することを特徴とするポリアミドイミド:
(式中、R1、R2は、独立して、芳香環、脂肪族環または脂肪族炭化水素を有する二価の残基を示し、R3、R4は、独立して、芳香環または脂肪族環を有する三価の残基を示し、それぞれの環に結合した水素原子は他の原子または原子団に置換されていてもよい。)
(2)ビスイミドジカルボン酸とジアミンからポリアミドイミドを重合せしめることを特徴とする上記一般式(1)で表される繰り返し単位を有するポリアミドイミドの製造方法。
(3)ビスイミドジカルボン酸とジアミンからなるポリアミドイミド原料塩を重合せしめることを特徴とする上記一般式(1)で表される繰り返し単位を有するポリアミドイミドの製造方法。
上記式中、R1、R2は、独立して、芳香環、脂肪族環または脂肪族炭化水素を有する二価の残基を示し、R3、R4は、独立して、芳香環または脂肪族環を有する三価の残基を示し、それぞれの環に結合した水素原子は他の原子または原子団に置換されていてもよい。繰り返し単位の数は、1以上、好ましくは4~1000、より好ましくは20~1000の整数である。
本発明のポリアミドイミドは(1)ビスイミドジカルボン酸とジアミンからなるポリアミドイミド原料塩を一旦合成し、次に、該ポリアミドイミド原料塩を重合させることにより合成(以下、「2段階合成法」という。)するか、または(2)ビスイミドジカルボン酸とジアミンとを直接反応させることにより1段階で合成(以下、「1段階合成法」という。)することができる。
まず、2段階合成法について説明する。
2段階合成法においては、本発明のポリアミドイミドは、ビスイミドジカルボン酸とジアミンから構成されるポリアミドイミド原料塩を一旦合成し、該原料塩を加熱し重合することにより製造することができる。
ジアミンは加熱される時間が短いほど好ましいので、係る観点からは、ジアミンは、それ自体が加熱されていない粉体、粒状等の固体形態で添加されることが好ましい。
(2)ビスイミドジカルボン酸を、ビスイミドジカルボン酸の融点未満、ジアミンの融点以上で加熱し、ビスイミドジカルボン酸が、その固体状態を保つように、前記ジアミンを添加することを特徴とする前記(1)記載のポリアミドイミド原料塩の製造方法;および
(3)ジアミンを希釈溶媒に溶解させて、ビスイミドジカルボン酸に添加することを特徴とする前記(2)記載のポリアミドイミド原料塩の製造方法
に係る発明が提供されるものである。
(1段階合成法)
本発明のポリアミドイミドは、ビスイミドジカルボン酸を、その融点未満、200℃を超える温度で加熱し、その固体状態を保つように、前記ジアミンを添加することにより製造することができる。
実施例1
1,3-ビス(N-トリメリットイミドメチル)ベンゼン(融点:未検出 300℃以上)(平均粒径:451μm)465質量部、無水次亜リン酸ナトリウム0.593質量部からなる混合物をリボンブレンダー式の反応装置に供給し、窒素流通下、回転数70rpmで撹拌しながら170℃に加熱した。その後、25℃に加熱したm-キシリレンジアミン(融点:14℃)139質量部を0.695質量部/分(0.50質量%/分)の速度で、送液装置を用いて、3時間かけて、170℃に保った1,3-ビス(N-トリメリットイミドメチル)ベンゼンに添加した[1,3-ビス(N-トリメリットイミドメチル)ベンゼン:m-キシレンジアミン=47:50(モル比)]。得られたポリアミドイミド原料塩は、粒状(平均粒径:420μm)であった。
1,4-ビス(N-トリメリットイミドメチル)ベンゼン(融点:未検出 300℃以上)(平均粒径:402μm)465質量部、無水次亜リン酸ナトリウム0.593質量部からなる混合物をリボンブレンダー式の反応装置に供給し、窒素流通下、回転数70rpmで撹拌しながら170℃に加熱した。その後、25℃に加熱したm-キシリレンジアミン(融点:14℃)139質量部を0.695質量部/分(0.50質量%/分)の速度で、送液装置を用いて、3時間かけて、170℃に保った1,4-ビス(N-トリメリットイミドメチル)ベンゼンに添加した[1,4-ビス(N-トリメリットイミドメチル)ベンゼン:m-キシレンジアミン=47:50(モル比)]。得られたポリアミドイミド原料塩は、粒状(平均粒径:357μm)であった。
1,3-ビス(N-トリメリットイミドメチル)ベンゼン(融点: 未検出 300℃以上)(平均粒径:413μm)465質量部、無水次亜リン酸ナトリウム0.593質量部からなる混合物をリボンブレンダー式の反応装置に供給し、窒素流通下、回転数70rpmで撹拌しながら170℃に加熱した。その後、m-キシリレンジアミン(融点:14℃)139質量部に対して希釈溶媒として水45質量部を添加した混合溶媒を25℃に加熱し、0.736質量部/分(0.40質量%/分)の速度で、送液装置を用いて、4時間かけて、170℃に保った1,3-ビス(N-トリメリットイミドメチル)ベンゼンに添加した[1,3-ビス(N-トリメリットイミドメチル)ベンゼン:m-キシレンジアミン=47:50(モル比)]。得られたポリアミドイミド原料塩は、粒状(平均粒径:307μm)であった。
1,3-ビス(N-トリメリットイミドメチル)ベンゼン(融点:未検出 300℃以上)(平均粒径;378μm)465質量部をリボンブレンダー式の反応装置に供給し、窒素流通下、回転数70rpmで撹拌しながら150℃に加熱した。その後、25℃に加熱したm-キシリレンジアミン(融点:14℃)139質量部を0.695質量部/分の速度で、送液装置を用いて、150℃に保った1,3-ビス(N-トリメリットイミドメチル)ベンゼンに添加し、さらに、25℃に加熱した安息香酸(融点:122℃)7.5質量部を、ダブルダンパー機構を備えた送粉装置を用いて、0.35質量部/分の速度で添加した。得られたポリアミドイミド原料塩は、粒状(平均粒径:310μm)であった[1,3-ビス(N-トリメリットイミドメチル)ベンゼン:メタキシレンジアミン:安息香酸=47:50:3(モル比)]。
(1)融点およびガラス転移温度
ポリアミドイミド5mgを、示差走査型熱量計(パーキンエルマー社製、「DSC8500」)を用い、窒素雰囲気下で25℃から350℃まで20℃/分で昇温し(1st Scan)、350℃にて5分間保持した。その後、500℃/分で25℃まで降温し、25℃にて5分間保持後、350℃まで20℃/分でさらに昇温した(2nd Scan)。そして、1st Scanで観測される結晶融解ピークのピークトップ温度を融点とし、2nd Scanで観測されるガラス転移に由来する2つの折曲点の温度の中間点をガラス転移温度とした。
示差熱熱重量同時測定装置(日立ハイテクサイエンス社製TG/DTA「TG/DTA7200」)を用いて、200mL/分の窒素雰囲気下で、30℃から800℃まで10℃/分で昇温した。昇温前の質量に対して5質量%減少する温度を熱分解温度とした。
製造例4で得られたポリアミドイミド原料塩99.903質量部を、再度リボンブレンダー式の反応装置に添加した。その後、無水次亜リン酸ナトリウム0.097質量部をポリアミドイミド原料塩に対して添加し、窒素流通下、回転数50rpmで撹拌しながら180℃で2時間加熱した。その後、200℃に昇温し、さらに200℃で6時間加熱し粒状(平均粒径:280μm)のポリアミドイミドを得た。
製造例4で得られたポリアミドイミド原料塩99.903質量部を、再度リボンブレンダー式の反応装置に添加した。その後、無水次亜リン酸ナトリウム0.097質量部をポリアミドイミド原料塩に対して添加し、窒素流通下、250℃で6時間加熱した。その後、300℃に昇温し、2時間加熱し塊状のポリアミドイミドを得た。
4,4-ビス(N-トリメリットイミドフェニル)エーテル74.74質量部をリボンブレンダー式の反応装置に添加した。その後、無水次亜リン酸ナトリウム0.076質量部を添加し、窒素流通下、250℃に加熱した。そこに4,4-ビス(N-トリメリットイミドフェニル)エーテルが形状を維持していることを確認しながら、固体の4,4’-ジアミノジフェニルエーテル(融点:188℃)25.19質量部を、ダブルダンパー機構を備えた送粉装置を用いて、0.084質量部/分の速度(0.333質量%/分)で添加し、粒状(平均粒径:457μm)のポリアミドイミドを得た。
Claims (8)
- 繰り返し単位の数が、4~1000である、請求項1に記載のポリアミドイミド。
- 少なくとも100℃のガラス転移温度を有する、請求項1または2に記載のポリアミドイミド。
- ビスイミドジカルボン酸とジアミンからなるポリアミドイミド原料塩を重合せしめることを特徴とする請求項1~3いずれかに記載のポリアミドイミドの製造方法。
- ビスイミドジカルボン酸とジアミンとからなることを特徴とするポリアミドイミド原料塩。
- ビスイミドジカルボン酸を、ビスイミドジカルボン酸の融点未満、ジアミンの融点以上で加熱し、ビスイミドジカルボン酸が、その固体状態を保つように、前記ジアミンを添加することを特徴とする請求項5記載のポリアミドイミド原料塩の製造方法。
- ジアミンを希釈溶媒に溶解させて、ビスイミドジカルボン酸に添加することを特徴とする請求項6記載のポリアミドイミド原料塩の製造方法。
- ビスイミドジカルボン酸とジアミンを、ビスイミドジカルボン酸の融点未満、200℃以上で重合反応させることを特徴とする請求項1~3いずれかに記載のポリアミドイミドの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/564,678 US10584212B2 (en) | 2015-04-07 | 2016-04-06 | Polyamide-imide, raw material salt of polyamide-imide, and production method thereof |
EP16776583.3A EP3281967A4 (en) | 2015-04-07 | 2016-04-06 | Polyamide-imide, raw material salt for polyamide-imide, and methods respectively for producing these compounds |
KR1020177027004A KR20170134397A (ko) | 2015-04-07 | 2016-04-06 | 폴리아마이드이미드, 폴리아마이드이미드 원료염 및 그들의 제조 방법 |
CN201680020195.3A CN107428936B (zh) | 2015-04-07 | 2016-04-06 | 聚酰胺酰亚胺、聚酰胺酰亚胺原料盐及它们的制造方法 |
JP2017511030A JP7097695B2 (ja) | 2015-04-07 | 2016-04-06 | ポリアミドイミドおよびポリアミドイミド原料塩の製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-078794 | 2015-04-07 | ||
JP2015078793 | 2015-04-07 | ||
JP2015078794 | 2015-04-07 | ||
JP2015-078793 | 2015-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016163417A1 true WO2016163417A1 (ja) | 2016-10-13 |
Family
ID=57072249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/061297 WO2016163417A1 (ja) | 2015-04-07 | 2016-04-06 | ポリアミドイミド、ポリアミドイミド原料塩およびそれらの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10584212B2 (ja) |
EP (1) | EP3281967A4 (ja) |
JP (1) | JP7097695B2 (ja) |
KR (1) | KR20170134397A (ja) |
CN (1) | CN107428936B (ja) |
TW (1) | TWI708794B (ja) |
WO (1) | WO2016163417A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019189730A (ja) * | 2018-04-24 | 2019-10-31 | ユニチカ株式会社 | ポリアミドイミド組成物およびその使用 |
JP2021134236A (ja) * | 2020-02-25 | 2021-09-13 | ユニチカ株式会社 | ポリアミドイミド |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55120628A (en) * | 1979-03-13 | 1980-09-17 | Sumitomo Chem Co Ltd | Production of aromatic polyamide-imide polymer |
JPS56501883A (ja) * | 1980-01-16 | 1981-12-24 | ||
JPS6239629A (ja) * | 1985-08-13 | 1987-02-20 | Mitsui Petrochem Ind Ltd | ポリアミドイミド |
JPS63117035A (ja) * | 1986-11-05 | 1988-05-21 | Toray Ind Inc | 熱可塑性ポリエ−テルイミドアミド |
JPH0848775A (ja) * | 1994-07-11 | 1996-02-20 | Dsm Nv | ポリアミド−イミド |
JPH11128703A (ja) * | 1997-09-05 | 1999-05-18 | Air Prod And Chem Inc | 位置特異的ポリアミド−イミドから作製した半透膜及びこれを使用するガス分離法 |
WO2011121850A1 (ja) * | 2010-03-29 | 2011-10-06 | 日立化成工業株式会社 | ナジイミド骨格を有するポリアミドイミド及びその製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1116379A (en) | 1964-07-09 | 1968-06-06 | Eastman Kodak Co | Copolyimides |
JPS4419274B1 (ja) | 1965-03-30 | 1969-08-21 | ||
JPS494077B1 (ja) | 1970-12-28 | 1974-01-30 | ||
US4066631A (en) * | 1975-05-19 | 1978-01-03 | Pennwalt Corporation | Process for preparation of linear polyamide-imides from aromatic tricarboxylic acid anhydrides and diamines |
DE2528251C2 (de) * | 1975-06-25 | 1983-11-10 | Basf Ag, 6700 Ludwigshafen | Polyamidimid-Vorkondensate |
US4183839A (en) * | 1976-04-08 | 1980-01-15 | John V. Long | Polyimide resin-forming composition |
FR2399452A1 (fr) * | 1977-08-05 | 1979-03-02 | France Etat | Polyamide-imide a base d'adamantane et procede pour sa fabrication |
US4348513A (en) * | 1980-01-16 | 1982-09-07 | Standard Oil Company (Indiana) | Injection moldable amide-imide copolymers and terpolymers |
US4861862A (en) * | 1987-12-31 | 1989-08-29 | General Electric Company | Polyetherimide amide from polyoxyalkylene diimide dicarboxylic acid |
JP2889709B2 (ja) * | 1990-12-28 | 1999-05-10 | 三井化学株式会社 | ポリアミドイミド樹脂の製造方法 |
JPH0859614A (ja) | 1994-08-23 | 1996-03-05 | Mitsubishi Gas Chem Co Inc | ビスジカルボキシミド類の製造方法 |
JP3103503B2 (ja) * | 1996-05-02 | 2000-10-30 | 財団法人韓國化學研究所 | 直接重合法によるポリアミドイミド樹脂の製造方法 |
US5886131A (en) * | 1997-05-30 | 1999-03-23 | China Textile Institute | Method for preparing 1,4-Bis(4-aminophenoxy)naphthalene and its polymers |
JP2001122858A (ja) | 1999-10-22 | 2001-05-08 | Kawasaki Kasei Chem Ltd | フタルイミド化合物の製造方法 |
JP4822257B2 (ja) | 2005-10-28 | 2011-11-24 | 独立行政法人産業技術総合研究所 | 芳香族カルボン酸イミドの製造方法 |
-
2016
- 2016-04-06 KR KR1020177027004A patent/KR20170134397A/ko not_active Withdrawn
- 2016-04-06 WO PCT/JP2016/061297 patent/WO2016163417A1/ja active Application Filing
- 2016-04-06 JP JP2017511030A patent/JP7097695B2/ja active Active
- 2016-04-06 TW TW105110739A patent/TWI708794B/zh active
- 2016-04-06 CN CN201680020195.3A patent/CN107428936B/zh not_active Expired - Fee Related
- 2016-04-06 US US15/564,678 patent/US10584212B2/en not_active Expired - Fee Related
- 2016-04-06 EP EP16776583.3A patent/EP3281967A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55120628A (en) * | 1979-03-13 | 1980-09-17 | Sumitomo Chem Co Ltd | Production of aromatic polyamide-imide polymer |
JPS56501883A (ja) * | 1980-01-16 | 1981-12-24 | ||
JPS6239629A (ja) * | 1985-08-13 | 1987-02-20 | Mitsui Petrochem Ind Ltd | ポリアミドイミド |
JPS63117035A (ja) * | 1986-11-05 | 1988-05-21 | Toray Ind Inc | 熱可塑性ポリエ−テルイミドアミド |
JPH0848775A (ja) * | 1994-07-11 | 1996-02-20 | Dsm Nv | ポリアミド−イミド |
JPH11128703A (ja) * | 1997-09-05 | 1999-05-18 | Air Prod And Chem Inc | 位置特異的ポリアミド−イミドから作製した半透膜及びこれを使用するガス分離法 |
WO2011121850A1 (ja) * | 2010-03-29 | 2011-10-06 | 日立化成工業株式会社 | ナジイミド骨格を有するポリアミドイミド及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3281967A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019189730A (ja) * | 2018-04-24 | 2019-10-31 | ユニチカ株式会社 | ポリアミドイミド組成物およびその使用 |
JP7233071B2 (ja) | 2018-04-24 | 2023-03-06 | ユニチカ株式会社 | ポリアミドイミド組成物およびその使用 |
JP2021134236A (ja) * | 2020-02-25 | 2021-09-13 | ユニチカ株式会社 | ポリアミドイミド |
Also Published As
Publication number | Publication date |
---|---|
US20180072848A1 (en) | 2018-03-15 |
EP3281967A4 (en) | 2018-04-18 |
TW201700544A (zh) | 2017-01-01 |
KR20170134397A (ko) | 2017-12-06 |
JPWO2016163417A1 (ja) | 2018-02-01 |
TWI708794B (zh) | 2020-11-01 |
US10584212B2 (en) | 2020-03-10 |
EP3281967A1 (en) | 2018-02-14 |
JP7097695B2 (ja) | 2022-07-08 |
CN107428936A (zh) | 2017-12-01 |
CN107428936B (zh) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6565676B2 (ja) | ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末 | |
Yin et al. | Synthesis and characterization of novel polyimides derived from 1, 1-bis [4-(4′-aminophenoxy) phenyl]-1-[3 ″, 5 ″-bis (trifluoromethyl) phenyl]-2, 2, 2-trifluoroethane | |
US20140228513A1 (en) | Thermoplastic polyimides | |
JP5920543B2 (ja) | ポリアミドの製造方法 | |
TW201120095A (en) | Polyamide and polyamide composition | |
WO2012128165A1 (ja) | 2-フェニル-4,4'-ジアミノジフェニルエーテル類を用いた成形性に優れたレジントランスファー成形用末端変性イミドオリゴマー、その混合物、およびそれらを含むワニス、ならびに、レジントランスファー成形により作製された耐熱性に優れるそれらの硬化樹脂およびそれらの繊維強化硬化樹脂 | |
TW201817770A (zh) | 聚醯胺、聚醯胺薄膜及薄膜電容器 | |
JP7097695B2 (ja) | ポリアミドイミドおよびポリアミドイミド原料塩の製造方法 | |
JP6752196B2 (ja) | ビスイミドジカルボン酸の製造方法 | |
US10745520B2 (en) | Process for producing aromatic polyimides | |
JP2018058966A (ja) | ポリアミドイミドを含有する樹脂溶液およびその使用方法 | |
WO2012118107A1 (ja) | ポリアミド樹脂の製造方法 | |
Shiina et al. | Preparation and properties of polyimide–silica hybrid films with conjugation of the polyimide and silica by a sol–gel process using 3-(triethoxysilyl) propyl succinic anhydride | |
US10647814B2 (en) | Process for producing aromatic polyimides | |
CN113462278B (zh) | 清漆组合物、聚酰亚胺树脂的制造方法及添加剂 | |
JP2018058970A (ja) | ポリアミドイミド粉体 | |
JP6385042B2 (ja) | ポリアミド樹脂およびその製造方法 | |
JP7233071B2 (ja) | ポリアミドイミド組成物およびその使用 | |
JPH0859614A (ja) | ビスジカルボキシミド類の製造方法 | |
JP2018059230A (ja) | ポリアミドイミド繊維またはポリアミドイミド不織布 | |
KR101971078B1 (ko) | 폴리아믹산 및 폴리이미드 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16776583 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017511030 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177027004 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016776583 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15564678 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |