WO2012029392A1 - ポリ乳酸ブロック共重合体の製造方法 - Google Patents

ポリ乳酸ブロック共重合体の製造方法 Download PDF

Info

Publication number
WO2012029392A1
WO2012029392A1 PCT/JP2011/064629 JP2011064629W WO2012029392A1 WO 2012029392 A1 WO2012029392 A1 WO 2012029392A1 JP 2011064629 W JP2011064629 W JP 2011064629W WO 2012029392 A1 WO2012029392 A1 WO 2012029392A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
poly
lactic acid
block copolymer
polylactic acid
Prior art date
Application number
PCT/JP2011/064629
Other languages
English (en)
French (fr)
Inventor
高橋佳丈
直塚拓磨
須藤健
大目裕千
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US13/819,199 priority Critical patent/US9150690B2/en
Priority to BR112013002442A priority patent/BR112013002442A2/pt
Priority to KR1020127032740A priority patent/KR20130113332A/ko
Priority to CN201180042032.2A priority patent/CN103068880B/zh
Priority to JP2011535342A priority patent/JP5630439B2/ja
Priority to EP11821410.5A priority patent/EP2612877B1/en
Publication of WO2012029392A1 publication Critical patent/WO2012029392A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another

Definitions

  • the present invention relates to a method for producing a polylactic acid block copolymer having a high molecular weight, a high melting point, and forming a polylactic acid stereocomplex having excellent heat resistance and crystallinity in a high yield.
  • Polylactic acid is a polymer that can be melt-molded practically and has biodegradable characteristics, so that it is developed as a biodegradable plastic that is decomposed in the natural environment and released as carbon dioxide or water after use. Has been promoted.
  • polylactic acid itself is made from renewable resources (biomass) originating from carbon dioxide and water, so carbon that does not increase or decrease in the global environment even if carbon dioxide is released after use. Neutral properties have attracted attention and are expected to be used as environmentally friendly materials.
  • lactic acid which is a monomer of polylactic acid, is being produced at low cost by fermentation using microorganisms, and has been studied as an alternative material for general-purpose polymers made of petroleum-based plastics.
  • polylactic acid has lower heat resistance and durability than petroleum-based plastics, and its crystallization speed is low, so it is inferior in productivity, and the range of practical use is greatly limited. .
  • Polylactic acid stereocomplex is formed by mixing optically active poly-L-lactic acid (hereinafter referred to as PLLA) and poly-D-lactic acid (hereinafter referred to as PDLA). As a result, the temperature reaches 220.degree. For this reason, application as a high melting point and highly crystalline fiber, film, and resin molded product is tried.
  • PLLA optically active poly-L-lactic acid
  • PDLA poly-D-lactic acid
  • a polylactic acid stereocomplex is formed by mixing PLLA and PDLA in a solution state or by heat-melting and mixing PLLA and PDLA.
  • the solution mixing of PLLA and PDLA has a problem that the manufacturing process becomes complicated because the solvent needs to be volatilized after mixing, resulting in high cost of the polylactic acid stereocomplex.
  • polylactic acid block copolymers composed of PLLA segments and PDLA segments have been disclosed as techniques for forming a stereocomplex with high molecular weight (Patent Documents 1 to 4).
  • Patent Document 1 after preparing a mixture by melt-kneading PLLA and PDLA prepared by ring-opening polymerization or direct polycondensation under heating, a polylactic acid block copolymer is obtained by solid-phase polymerization of the mixture. It has gained.
  • Patent Document 2 prepares a polylactic acid block copolymer by melt-mixing PLLA and PDLA obtained by melt polymerization under heating and then solid-phase polymerizing the mixture.
  • a polylactic acid block copolymer is prepared by mixing PLLA and PDLA in the vicinity of a melting point and solid-phase polymerizing them in the presence of polylactic acid homocrystals.
  • Patent Document 4 obtains a polylactic acid block copolymer by mixing PLLA and PDLA obtained by direct polycondensation at a melting point or higher and then solid-phase polymerizing the mixture.
  • Patent Document 1 it is necessary to heat to a temperature equal to or higher than the melting point of the polylactic acid stereocomplex during melt-kneading, and the molecular weight of the mixture is lowered during melt-kneading. Further, improvement in productivity has also been desired in that a long-time reaction is required in solid phase polymerization.
  • the formation of the stereo complex is controlled only by the kneading temperature, and partial melting is observed during kneading, so that the crystal characteristics of the mixture are insufficient, and there are variations. Further, the polylactic acid block copolymer obtained by solid-phase polymerization of the kneaded product has a problem that crystal characteristics are insufficient.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing a polylactic acid block copolymer that forms a polylactic acid stereocomplex having a high molecular weight and a high melting point.
  • the method for producing a polylactic acid block copolymer of the present invention has a weight average molecular weight of one of poly-L-lactic acid and poly-D-lactic acid as a raw material of not less than 170,000, and the other weight average molecular weight. Is preferably 20,000 or more.
  • the mixture of poly-L-lactic acid and poly-D-lactic acid preferably satisfies the following formula (2).
  • the obtained polylactic acid block copolymer preferably satisfies the following formula (3).
  • the polylactic acid block copolymer in the DSC measurement of the obtained polylactic acid block copolymer, the polylactic acid block copolymer is heated to 250 ° C. and kept at a constant temperature for 3 minutes, and then cooled. It is preferable that the temperature-falling crystallization temperature when the temperature is lowered at a rate of 20 ° C./min is 130 ° C. or higher.
  • the degree of dispersion represented by the ratio of the weight average molecular weight to the number average molecular weight of the obtained polylactic acid block copolymer is 2.7 or less.
  • the method for producing a polylactic acid block copolymer of the present invention is a molded article containing the resulting polylactic acid block copolymer, wherein the molded article satisfies the following formula (4) and has a thickness of 100 ⁇ m:
  • the haze value is preferably 30% or less.
  • Relative crystallinity [( ⁇ Hm ⁇ Hc) / ⁇ Hm] ⁇ 100> 90 (4)
  • ⁇ Hm Crystal melting enthalpy (J / g) of the molded body
  • ⁇ Hc Crystallization enthalpy at elevated temperature of the molded body (J / g)
  • the catalyst contained in the mixture is preferably 0.001 to 0.5 parts by weight with respect to 100 parts by weight of the mixture.
  • the catalyst contained in the mixture is obtained from a tin compound, a titanium compound, a lead compound, a zinc compound, a cobalt compound, an iron compound, a lithium compound, a rare earth compound, and a sulfonic acid compound. It is preferable that it is at least one kind.
  • the tin compound is at least one selected from tin (II) acetate, tin (II) octylate, tin (II) chloride, and tin (IV) chloride
  • the sulfonic acid compound is preferably at least one selected from methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, propanedisulfonic acid, naphthalene disulfonic acid, and 2-aminoethanesulfonic acid.
  • the temperature during solid-phase polymerization is preferably raised stepwise or continuously.
  • the polylactic acid block copolymer to be obtained preferably has a weight average molecular weight of 100,000 or more.
  • a polylactic acid block copolymer forming a polylactic acid stereocomplex having a high molecular weight and a high melting point can be produced in a high yield. Since this polylactic acid block copolymer has a high molecular weight and a high melting point, it can be suitably used in fields requiring heat resistance, which was difficult to use with polylactic acid homopolymers.
  • the polylactic acid block copolymer is a polylactic acid block copolymer in which a segment composed of L-lactic acid units and a segment composed of D-lactic acid units are covalently bonded.
  • the segment composed of L-lactic acid units is a polymer containing L-lactic acid as a main component, and means a polymer containing 70 mol% or more of L-lactic acid units. It is more preferably 80 mol% or more, more preferably 90 mol% or more, particularly preferably 95 mol% or more, and most preferably 98 mol% or more.
  • the segment composed of D-lactic acid units is a polymer mainly composed of D-lactic acid and means a polymer containing 70 mol% or more of D-lactic acid units.
  • the content is more preferably 80 mol% or more, more preferably 90 mol% or more, particularly preferably 95 mol% or more, and most preferably 98 mol% or more.
  • the segment composed of L-lactic acid or D-lactic acid unit contains other components as long as the performance of the polylactic acid block copolymer and the polylactic acid resin composition containing the polylactic acid block copolymer is not impaired. Units may be included. Examples of component units other than L-lactic acid or D-lactic acid units include polycarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones.
  • succinic acid adipic acid, sebacic acid
  • Polycarboxylic acids such as fumaric acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid or their derivatives, ethylene glycol, propylene glycol, butane Ethylene oxide or propylene oxide was added to diol, pentanediol, hexanediol, octanediol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol, trimethylolpropane or pentaerythritol
  • Polyhydric alcohols aromatic polyhydric alcohols obtained by addition reaction of ethylene oxide with bisphenol, polyhydric alcohols such as diethylene glycol, triethylene glycol, polyethylene glycol
  • the weight average molecular weight of the polylactic acid block copolymer obtained by the method of the present invention is not particularly limited, but is preferably 100,000 or more and less than 300,000 from the viewpoint of mechanical properties. More preferably, it is 120,000 or more and less than 280,000, more preferably 130,000 or more and less than 270,000, particularly preferably 140,000 or more and less than 260,000 from the viewpoint of moldability and mechanical properties.
  • the degree of dispersion of the polylactic acid block copolymer is preferably in the range of 1.5 to 3.0 from the viewpoint of mechanical properties. The range of the degree of dispersion is more preferably 1.8 to 2.7, and 2.0 to 2.4 is particularly preferable from the viewpoint of moldability and mechanical properties.
  • the weight average molecular weight and dispersity are values in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
  • the polylactic acid block copolymer obtained in the present invention preferably has a stereocomplex formation rate (Sc) in the range of 80 to 100% from the viewpoint of heat resistance. More preferably, it is in the range of 85 to 100%, and particularly preferably 90 to 100%.
  • the stereocomplex formation rate is the ratio of the stereocomplex crystals in all the crystals in polylactic acid. Specifically, poly-L-lactic acid single crystals and poly-D-lactic acid single crystals melted when heated from 30 ° C. to 250 ° C. with a differential scanning calorimeter (DSC) at a temperature rising rate of 20 ° C./min. It is possible to calculate by the following formula (3), where ⁇ Hl is the amount of heat based on ⁇ , and ⁇ Hh is the amount of heat based on crystal melting of the stereocomplex crystal.
  • the total number of segments consisting of L-lactic acid units and segments consisting of D-lactic acid units contained in one molecule of the polylactic acid block copolymer is 3 or more. It is preferable in that a polylactic acid block copolymer that easily forms can be obtained. More preferably, it is 5 or more, and it is especially preferable that it is 7 or more.
  • the total weight ratio of the segment composed of L-lactic acid units and the segment composed of D-lactic acid units is preferably 90:10 to 10:90. More preferably, it is 80:20 to 20:80, and particularly preferably 75:25 to 60:40 or 40:60 to 25:75.
  • the weight ratio of the segment comprising L-lactic acid units is in the above preferred range, a polylactic acid stereocomplex is easily formed, and as a result, the rise in the melting point of the polylactic acid block copolymer is sufficiently large.
  • the method for producing poly-L-lactic acid comprising L-lactic acid units and poly-D-lactic acid comprising D-lactic acid units used as raw materials is not particularly limited, and production of general polylactic acid is not limited.
  • the method can be used. Specifically, using L-lactic acid or D-lactic acid as a raw material, a cyclic dimer L-lactide or D-lactide is once generated, and then ring-opening polymerization is performed.
  • a one-step direct polymerization method in which a raw material is directly subjected to dehydration condensation in a solvent or a non-solvent is known, and any production method may be used.
  • poly-L-lactic acid is a polymer containing L-lactic acid as a main component, and means a polymer containing 70 mol% or more of L-lactic acid units.
  • the content is preferably 80 mol%, more preferably 90 mol% or more, still more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
  • Poly-D-lactic acid is a polymer mainly composed of D-lactic acid, and means a polymer containing 70 mol% or more of D-lactic acid units.
  • the content is preferably 80 mol%, more preferably 90 mol% or more, still more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
  • the amount of lactide and oligomer contained in poly-L-lactic acid or poly-D-lactic acid is preferably 5% or less, respectively. More preferably, it is 3% or less, and particularly preferably 1% or less.
  • the amount of lactic acid contained in poly-L-lactic acid or poly-D-lactic acid is preferably 2% or less. More preferably, it is 1% or less, Most preferably, it is 0.5% or less.
  • the acid value of poly-L-lactic acid or poly-D-lactic acid is preferably 100 eq / ton in either one of poly-L-lactic acid or poly-D-lactic acid. More preferably, it is 50 eq / ton or less, More preferably, it is 30 eq / ton or less, Especially preferably, it is 15 eq / ton or less.
  • the other acid value of poly-L-lactic acid or poly-D-lactic acid to be mixed is preferably 600 eq / ton or less. More preferably, it is 300 eq / ton or less, More preferably, it is 150 eq / ton or less, Most preferably, it is 100 eq / ton or less.
  • One of the poly-L-lactic acid and poly-D-lactic acid used in the present invention has a weight average molecular weight of 60,000 to 300,000, and the other has a weight average molecular weight of 10,000 to 50,000. It is preferable. If the weight average molecular weight is less than 10,000, the polylactic acid block copolymer has a high degree of dispersion and the weight average molecular weight does not increase. On the other hand, if the weight average molecular weight exceeds 50,000, the polylactic acid block copolymer There is a problem that the formation rate of the stereocomplex becomes low. More preferably, one weight average molecular weight is 100,000 to 270,000 and the other weight average molecular weight is 15,000 to 45,000.
  • one weight average molecular weight is 150,000 to 240,000 and the other weight average molecular weight is 20,000 to 40,000.
  • the combination of the weight average molecular weights of poly-L-lactic acid and poly-D-lactic acid is preferably selected as appropriate so that the weight average molecular weight after mixing is 90,000 or more.
  • the ratio of the higher weight average molecular weight to the lower weight average molecular weight of the poly-L-lactic acid and poly-D-lactic acid used in the present invention is preferably 2 or more and less than 30. If this ratio is less than 2, there is a problem that the stereocomplex formation rate of the polylactic acid block copolymer is lowered. On the other hand, if this ratio is 30 or more, the degree of dispersion of the polylactic acid block copolymer increases, There is a problem that physical properties are lowered. More preferably, it is 3 or more and less than 20, and more preferably 5 or more and less than 15.
  • Examples of the polymerization catalyst for producing poly-L-lactic acid or poly-D-lactic acid by the ring-opening polymerization method include a metal catalyst and an acid catalyst.
  • Examples of the metal catalyst include tin catalysts, titanium compounds, lead compounds, zinc compounds, cobalt compounds, iron compounds, lithium compounds, and rare earth compounds.
  • As the kind of the compound metal alkoxide, metal halogen compound, organic carboxylate, carbonate, sulfate, oxide and the like are preferable.
  • tin powder tin (II) chloride, tin (IV) chloride, tin (II) bromide, tin (IV) bromide, ethoxy tin (II), t-butoxy tin (IV), isopropoxy Tin (IV), tin acetate (II), tin acetate (IV), tin octylate (II), tin (II) laurate, tin (II) myristate, tin (II) palmitate, tin stearate (II) ), Tin (II) oleate, tin (II) linoleate, tin (II) acetylacetone, tin (II) oxalate, tin (II) lactate, tin (II) tartrate, tin (II) pyrophosphate, p- Phenol sulfonate t
  • Titanium compounds lead diisopropoxy (II), lead monochloride, lead acetate, lead (II) octylate, lead (II) isooctanoate, lead (II) isononanoate, lead (II) laurate, lead oleate
  • Lead compounds such as (II), lead linoleate (II), lead naphthenate, lead neodecanoate (II), lead oxide, lead (II) sulfate, zinc powder, methyl propoxy zinc, zinc chloride, zinc acetate, octylic acid Zinc (II), zinc naphthenate, zinc carbonate, zinc oxide, zinc sulfate and other zinc compounds, cobalt chloride, cobalt acetate, cobalt octylate (II), isooctane Cobalt (II), cobalt (II) isononanoate, cobalt (II) laurate, cobal
  • potassium compounds such as potassium isopropoxide, potassium chloride, potassium acetate, potassium octylate, potassium naphthenate, t-butyl potassium carbonate, potassium sulfate, potassium oxide, copper (II) diisopropoxide, copper chloride (II), copper acetate (II), copper octylate, copper naphthenate, copper sulfate (II), copper compounds such as dicopper carbonate, nickel chloride, nickel acetate, nickel octylate, nickel carbonate, nickel sulfate (II) , Nickel compounds such as nickel oxide, tetraisopropoxyzirconium (IV), zirconium trichloride, zirconium acetate, zirconium octylate, zirconium naphthenate, zirconium carbonate (II), zirconium carbonate (IV), zirconium sulfate, zirconium oxide (II ) And other
  • the acid catalyst may be a Bronsted acid as a proton donor, a Lewis acid as an electron pair acceptor, or an organic acid or an inorganic acid.
  • monocarboxylic acid compounds such as formic acid, acetic acid, propionic acid, heptanoic acid, octanoic acid, octylic acid, nonanoic acid, isononanoic acid, trifluoroacetic acid and trichloroacetic acid, oxalic acid, succinic acid, maleic acid, tartaric acid
  • dicarboxylic acid compounds such as malonic acid, tricarboxylic acid compounds such as citric acid and tricarivallic acid, benzenesulfonic acid, n-butylbenzenesulfonic acid, n-octylbenzenesulfonic acid, n-dodecylbenzenesulfonic acid, pentadecylbenzenesulfonic acid 2,5-dimethylbenzenesulfonic acid, 2,5-dibutylbenzenesulfonic acid, o-aminobenzenesulf
  • the shape of the acid catalyst is not particularly limited, and any of a solid acid catalyst and a liquid acid catalyst may be used.
  • the solid acid catalyst acidic clay, kaolinite, bentonite, montmorillonite, talc, zirconium silicate and Natural minerals such as zeolite, oxides such as silica, alumina, titania and zirconia or oxide complexes such as silica alumina, silica magnesia, silica boria, alumina boria, silica titania and silica zirconia, chlorinated alumina, fluorinated alumina, positive Examples thereof include ion exchange resins.
  • a metal catalyst is preferred as the polymerization catalyst, among which tin compounds, titanium compounds, antimony compounds, and rare earth compounds are more preferred, and when the melting point of the produced polylactic acid is taken into consideration More preferred are tin compounds and titanium compounds.
  • tin-based organic carboxylates or tin-based halogen compounds are preferred, and in particular, tin (II) acetate, tin (II) octylate, and tin chloride (II) ) Is more preferable.
  • the addition amount of the polymerization catalyst is not particularly limited, and is preferably 0.001 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the raw material to be used (L-lactic acid, D-lactic acid, etc.). More preferred is 0.001 part by weight or more and 1 part by weight or less.
  • the catalyst amount is within the above preferred range, an effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
  • the addition timing of the polymerization catalyst is not particularly limited, but it is preferable to add the catalyst after heating and dissolving the lactide from the viewpoint of uniformly dispersing the catalyst in the system and increasing the polymerization activity.
  • a metal catalyst and an acid catalyst can be mentioned.
  • Preferred metal catalysts include tin compounds, titanium compounds, lead compounds, zinc compounds, cobalt compounds, iron compounds, lithium compounds, rare earth compounds, and types of compounds include metal alkoxides, metal halogen compounds, and organic carboxylates. Carbonate, sulfate, oxide and the like are preferable.
  • tin powder tin (II) chloride, tin (IV) chloride, tin (II) bromide, tin (IV) bromide, ethoxy tin (II), t-butoxy tin (IV), isopropoxy Tin (IV), tin acetate (II), tin acetate (IV), tin octylate (II), tin (II) laurate, tin (II) myristate, tin (II) palmitate, tin stearate (II) ), Tin (II) oleate, tin (II) linoleate, tin (II) acetylacetone, tin (II) oxalate, tin (II) lactate, tin (II) tartrate, tin (II) pyrophosphate, p- Phenol sulfonate t
  • Titanium compounds lead diisopropoxy (II), lead monochloride, lead acetate, lead (II) octylate, lead (II) isooctanoate, lead (II) isononanoate, lead (II) laurate, lead oleate
  • Lead compounds such as (II), lead linoleate (II), lead naphthenate, lead neodecanoate (II), lead oxide, lead (II) sulfate, zinc powder, methyl propoxy zinc, zinc chloride, zinc acetate, octylic acid Zinc (II), zinc naphthenate, zinc carbonate, zinc oxide, zinc sulfate and other zinc compounds, cobalt chloride, cobalt acetate, cobalt octylate (II), isooctane Cobalt (II), cobalt (II) isononanoate, cobalt (II) laurate, cobal
  • potassium compounds such as potassium isopropoxide, potassium chloride, potassium acetate, potassium octylate, potassium naphthenate, t-butyl potassium carbonate, potassium sulfate, potassium oxide, copper (II) diisopropoxide, copper chloride (II), copper acetate (II), copper octylate, copper naphthenate, copper sulfate (II), copper compounds such as dicopper carbonate, nickel chloride, nickel acetate, nickel octylate, nickel carbonate, nickel sulfate (II) , Nickel compounds such as nickel oxide, tetraisopropoxyzirconium (IV), zirconium trichloride, zirconium acetate, zirconium octylate, zirconium naphthenate, zirconium carbonate (II), zirconium carbonate (IV), zirconium sulfate, zirconium oxide (II ) And other
  • a preferred acid catalyst may be a Bronsted acid as a proton donor, a Lewis acid as an electron pair acceptor, or an organic acid or an inorganic acid.
  • monocarboxylic acid compounds such as formic acid, acetic acid, propionic acid, heptanoic acid, octanoic acid, octylic acid, nonanoic acid, isononanoic acid, trifluoroacetic acid and trichloroacetic acid, oxalic acid, succinic acid, maleic acid, tartaric acid
  • dicarboxylic acid compounds such as malonic acid, tricarboxylic acid compounds such as citric acid and tricarivallic acid, benzenesulfonic acid, n-butylbenzenesulfonic acid, n-octylbenzenesulfonic acid, n-dodecylbenzenesulfonic acid, pentadecylbenzenesulfonic acid 2,5-dimethylbenzenesulfonic acid, 2,5-dibutylbenzenesulfonic acid, o-aminobenzenesulf
  • the shape of the acid catalyst is not particularly limited, and any of a solid acid catalyst and a liquid acid catalyst may be used.
  • the solid acid catalyst acidic clay, kaolinite, bentonite, montmorillonite, talc, zirconium silicate and Natural minerals such as zeolite, oxides such as silica, alumina, titania and zirconia or oxide complexes such as silica alumina, silica magnesia, silica boria, alumina boria, silica titania and silica zirconia, chlorinated alumina, fluorinated alumina, positive Examples thereof include ion exchange resins.
  • tin compounds when considering the molecular weight of the produced polylactic acid, tin compounds, titanium compounds, antimony compounds, rare earth compounds, and acid catalysts are preferred, and when considering the melting point of the produced polylactic acid, tin compounds, titanium compounds are preferred. And sulfonic acid compounds are more preferred.
  • a tin-based organic carboxylate or a tin-based halogen compound is preferable, particularly tin (II) acetate, tin (II) octylate
  • mono and disulfonic acid compounds are preferred, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, propanedisulfonic acid, naphthalene disulfonic acid, and 2-aminoethane Sulphonic acid is more preferred.
  • one type of catalyst may be used, or two or more types may be used in combination, but it is preferable to use two or more types in combination from the viewpoint of increasing the polymerization activity. It is preferable to use one or more selected from tin compounds and / or one or more selected from sulfonic acid compounds from the viewpoint that coloring can be suppressed.
  • tin acetate (II) and / or tin (II) octylate and any one of methanesulfonic acid, ethanesulfonic acid, propanedisulfonic acid, naphthalenedisulfonic acid, and 2-aminoethanesulfonic acid More preferably, it is used in combination with one or more kinds of tin (II) acetate and / or tin (II) octylate and any one of methanesulfonic acid, ethanesulfonic acid, propanedisulfonic acid and 2-aminoethanesulfonic acid. The combined use is more preferable.
  • the addition amount of the polymerization catalyst is not particularly limited, and is preferably 0.001 part by weight or more and 0.5 part by weight or less with respect to 100 parts by weight of the raw material to be used (L-lactic acid, D-lactic acid, etc.) In particular, 0.001 part by weight or more and 0.3 part by weight or less are more preferable.
  • the catalyst amount is within the above preferred range, an effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
  • tin When one or more types selected from tin compounds and / or one or more types selected from sulfonic acid compounds are used in combination, tin can be maintained because high polymerization activity can be maintained and coloring can be suppressed.
  • the weight ratio of the compound to the sulfonic acid compound is preferably 1: 1 to 1:30. In view of excellent productivity, the weight ratio of the tin compound and the sulfonic acid compound is more preferably 1: 2 to 1:15.
  • the addition timing of the polymerization catalyst is not particularly limited, but the acid catalyst is preferably added after dehydrating the raw material or the raw material in terms of excellent productivity, and the metal catalyst is added after dehydrating the raw material. It is preferable in view of increasing the polymerization activity.
  • Polylactic acid mixing method Next, the process of mixing poly-L-lactic acid and poly-D-lactic acid will be described.
  • poly-L-lactic acid and poly-D-lactic acid are mixed to form a mixture in which the stereocomplex formation rate (Sc) is in the range of more than 60% to 100% immediately before solid-phase polymerization. It is important to polymerize.
  • the stereocomplex formation rate (Sc) of the mixture is preferably in the range of more than 70% to 99%, particularly preferably in the range of more than 80% to 95%.
  • the stereocomplex formation rate is the ratio of the stereocomplex crystals in all the crystals in polylactic acid. Specifically, poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when heated from 30 ° C. to 250 ° C.
  • the crystallization treatment temperature here is higher than the glass transition temperature and is lower than the melting point of polylactic acid having a low melting point among the poly-L-lactic acid or poly-D-lactic acid mixed as described above. Although not particularly limited, it is more preferable that the temperature is within the range of the temperature rising crystallization temperature and the temperature falling crystallization temperature measured in advance by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • any of reduced pressure, normal pressure, and increased pressure may be used.
  • the time for crystallization is not particularly limited, but it is sufficiently crystallized within 3 hours, and within 2 hours is preferable.
  • the method for mixing poly-L-lactic acid and poly-D-lactic acid is not particularly limited.
  • the melting point of the higher melting point component of poly-L-lactic acid and poly-D-lactic acid is higher than the melting end temperature.
  • the method include melt kneading and a method of removing the solvent after mixing in a solvent, but from the viewpoint of efficient mixing, a method of melt kneading at or above the melting end temperature is preferable.
  • the melting point refers to the temperature at the top of the polylactic acid single crystal melting peak measured by (DSC) with a differential scanning calorimeter, and the melting end temperature is determined with a differential scanning calorimeter (DSC). It means the peak end temperature in the polylactic acid single crystal melting peak measured by the above.
  • Examples of the method of melt kneading at a temperature higher than the melting end temperature include a method in which poly-L-lactic acid and poly-D-lactic acid are mixed by a batch method or a continuous method.
  • Examples include a single screw extruder, a twin screw extruder, a plast mill, a kneader, and a stirred tank reactor equipped with a pressure reducing device. From the viewpoint of uniform and sufficient kneading, a single screw extruder or a twin screw extruder may be used. preferable.
  • the method for supplying polylactic acid is not particularly limited.
  • a method for supplying poly-L-lactic acid and poly-D-lactic acid in a lump from a resin supply port, and a side supply port as required. Can be used to supply poly-L-lactic acid and poly-D-lactic acid separately to the resin supply port and the side supply port, respectively.
  • the supply of polylactic acid to the kneader can also be performed in a molten state directly from the polylactic acid production process.
  • the screw element in the extruder is preferably provided with a kneading element in the mixing part so that poly-L-lactic acid and poly-D-lactic acid can be uniformly mixed to form a stereo complex.
  • the mixing is performed at a temperature higher than the melting end temperature of the component having a higher melting point among poly-L-lactic acid and poly-D-lactic acid.
  • the range is preferably 140 ° C to 250 ° C, more preferably 160 ° C to 230 ° C, and particularly preferably 180 ° C to 210 ° C.
  • the mixing time condition is preferably in the range of 0.1 to 10 minutes, more preferably in the range of 0.3 to 5 minutes, and particularly preferably in the range of 0.5 to 3 minutes.
  • the mixing time is in the above preferred range, poly-L-lactic acid and poly-D-lactic acid can be uniformly mixed, and thermal decomposition is hardly caused by mixing.
  • the pressure condition for mixing is not particularly limited, and may be any condition under an air atmosphere or an inert gas atmosphere such as nitrogen.
  • the mixing weight ratio of poly-L-lactic acid composed of L-lactic acid units and poly-D-lactic acid composed of D-lactic acid units is preferably 90:10 to 10:90. More preferably, it is 80:20 to 20:80, and particularly preferably 75:25 to 40:60 or 40:60 to 25:75.
  • the weight ratio of poly-L-lactic acid composed of L-lactic acid units is within the above preferred range, the melting point of the finally obtained polylactic acid block copolymer is increased, while a polylactic acid stereocomplex is formed. It becomes easy.
  • the mixing weight ratio of poly-L-lactic acid and poly-D-lactic acid is other than 50:50, it is preferable to add a larger amount of poly-L-lactic acid or poly-D-lactic acid having a larger weight average molecular weight. .
  • the catalyst may be a residual amount of the catalyst in producing poly-L-lactic acid and / or poly-D-lactic acid, or one or more selected from the above catalysts may be added in the mixing step. it can.
  • the content of the catalyst is not particularly limited, and is preferably 0.001 part by weight or more and 0.5 part by weight or less with respect to 100 parts by weight of the mixture of poly-L-lactic acid and poly-D-lactic acid. 0.001 part by weight or more and 0.3 part by weight or less are more preferable.
  • the catalyst amount is within the above preferred range, an effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
  • poly-L-lactic acid (segment consisting of L-lactic acid units) composed of L-lactic acid units of the polylactic acid block copolymer finally obtained within a range not impairing the effects of the present invention
  • a polyfunctional compound may be mixed.
  • the polyfunctional compound used here is not particularly limited, and polyvalent carboxylic acid anhydride, polyvalent carboxylic acid halide, polyvalent carboxylic acid, polyvalent isocyanate, polyvalent amine, polyhydric alcohol and Polyepoxy compounds and the like, specifically, 1,2-cyclohexanedicarboxylic anhydride, succinic anhydride, phthalic anhydride, trimellitic anhydride, 1,8-naphthalenedicarboxylic anhydride, Polycarboxylic acid anhydrides such as pyromellitic acid anhydride, polycarboxylic acid halides such as isophthalic acid chloride, terephthalic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, succinic acid, adipic acid, sebacic acid, fumaric acid , Terephthalic acid, isophthalic acid, polyvalent carboxylic acids such as 2,6-naphthalenedicarboxylic acid, hexamethyle Polyisocyanates
  • polyvalent carboxylic acid anhydrides Preferred are polyvalent carboxylic acid anhydrides, polyvalent isocyanates, polyhydric alcohols and polyvalent epoxy compounds, and particularly preferred are polyvalent carboxylic acid anhydrides, polyvalent isocyanates and polyvalent epoxy compounds. These can be used alone or in combination of two or more.
  • the mixing amount of the polyfunctional compound is not particularly limited, and is preferably 0.01 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid. Further, it is more preferably 0.1 parts by weight or more and 10 parts by weight or less.
  • the effect which uses a polyfunctional compound can be exhibited as the addition amount of a polyfunctional compound is the said preferable range.
  • a reaction catalyst may be added in order to promote the reaction of poly-L-lactic acid and poly-D-lactic acid with the polyfunctional compound.
  • the reaction catalyst include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, stearin.
  • Alkali metal compounds such as dipotassium, dilithium hydrogen phosphate, disodium salt of bisphenol A, dipotassium salt, dilithium salt, sodium salt of phenol, potassium salt, lithium salt, cesium salt, hydroxide Calcium, hydroxide Alkaline earths such as lithium, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium carbonate, magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, magnesium stearate, strontium stearate Metal compounds, triethylamine, tributylamine, trihexylamine, triamylamine, triethanolamine, dimethylamino
  • the addition amount of the reaction catalyst is not particularly limited, and is preferably 0.001 part by weight or more and 0.5 part by weight or less with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid.
  • the catalyst amount is within the above preferred range, the effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer can be increased.
  • the weight average molecular weight (Mw) of the mixture of poly-L-lactic acid and poly-D-lactic acid after mixing needs to be 90,000 or more from the viewpoint of improving the yield after solid-phase polymerization.
  • Mw is less than 90,000, the yield after solid-phase polymerization becomes low, and there is a problem that productivity is inferior. 100,000 or more is more preferable, 110,000 or more is more preferable, and 120,000 or more is particularly preferable.
  • the yield after solid-phase polymerization is the ratio of the weight of the polylactic acid block copolymer after solid-phase polymerization to the weight of the mixture before solid-phase polymerization. Specifically, when the weight of the mixture before solid phase polymerization is Wp and the weight of the polymer after solid phase polymerization is Ws, it can be calculated by the following formula (5).
  • the dispersion degree of the mixture of poly-L-lactic acid and poly-D-lactic acid after mixing is preferably in the range of 1.5 to 4.0. A more preferred range is 2.0 to 3.7, and a particularly preferred range is 2.5 to 3.5.
  • the degree of dispersion means the ratio of the weight average molecular weight to the number average molecular weight of the mixture.
  • the standard polydispersity by gel permeation chromatography (GPC) measurement using hexafluoroisopropanol or chloroform as a solvent It is a value in terms of methyl methacrylate.
  • the amount of lactide and the amount of oligomer contained in poly-L-lactic acid or poly-D-lactic acid are each preferably 5% or less. More preferably, it is 3% or less, and particularly preferably 1% or less.
  • the amount of lactic acid contained in poly-L-lactic acid or poly-D-lactic acid is preferably 2% or less. More preferably, it is 1% or less, and particularly preferably 0.5% or less.
  • the shape of the mixture of poly-L-lactic acid and poly-D-lactic acid is not particularly limited, and any of a lump, a film, a pellet, and a powder may be used. From the viewpoint of efficiently proceeding with solid phase polymerization, it is preferable to use pellets or powder.
  • the method for forming pellets include a method in which the mixture is extruded into a strand shape and pelletized, and a method in which the mixture is extruded into water and pelletized using an underwater cutter.
  • pulverizing using grinders such as a mixer, a blender, a ball mill, and a hammer mill, is mentioned.
  • the method for carrying out this solid phase polymerization step is not particularly limited, and may be a batch method or a continuous method.
  • the reaction vessel may be a stirred tank reactor, a mixer reactor, a tower reactor, or the like. These reactors can be used in combination of two or more.
  • a mixture of poly-L-lactic acid and poly-D-lactic acid is crystallized.
  • the poly-L-lactic acid and the poly-D are used during the solid phase polymerization step. -Crystallization of the mixture of lactic acid is not necessarily required, but the efficiency of solid phase polymerization can be further increased by crystallization.
  • the method for crystallization is not particularly limited, and a known method can be used. Examples thereof include a method of maintaining the crystallization treatment temperature in a gas phase or a liquid phase, and a method of cooling and solidifying a molten mixture of poly-L-lactic acid and poly-D-lactic acid while performing stretching or shearing operations. From the viewpoint that the operation is simple, a method of holding at the crystallization treatment temperature in the gas phase or in the liquid phase is preferable.
  • the crystallization treatment temperature here is higher than the glass transition temperature and is lower than the melting point of polylactic acid having a low melting point among the poly-L-lactic acid or poly-D-lactic acid mixed as described above. Although not particularly limited, it is more preferable that the temperature is within the range of the temperature rising crystallization temperature and the temperature falling crystallization temperature measured in advance by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • any of reduced pressure, normal pressure, and increased pressure may be used.
  • the time for crystallization is not particularly limited, but it is sufficiently crystallized within 3 hours, and within 2 hours is preferable.
  • the temperature condition for carrying out this solid phase polymerization step is a temperature not higher than the melting point of the mixture of poly-L-lactic acid and poly-D-lactic acid, and specifically, preferably 100 ° C. or higher and 220 ° C. or lower. Further, from the viewpoint of further promoting solid phase polymerization, it is more preferably 110 ° C. or more and 210 ° C. or less, and most preferably 120 ° C. or more and 200 ° C. or less.
  • the melting point of the mixture of poly-L-lactic acid and poly-D-lactic acid is measured by a differential scanning calorimeter (DSC) when the temperature is increased from 30 ° C. to 250 ° C. at a temperature increase rate of 20 ° C./min.
  • DSC differential scanning calorimeter
  • the temperature conditions when the temperature is raised stepwise during solid-phase polymerization are as follows: 120 to 145 ° C. for 1 to 15 hours as the first stage, 135 to 160 ° C. for 1 to 15 hours as the second stage, and 150 as the third stage. It is preferable to raise the temperature at ⁇ 175 ° C. for 10 to 30 hours. Further, as the first step, it is 130 to 145 ° C. for 2 to 12 hours, as the second step, 140 to 160 ° C. for 2 to 12 hours, as the third step. It is more preferable to raise the temperature at 155 to 175 ° C. for 10 to 25 hours.
  • a temperature condition for continuously raising the temperature during solid phase polymerization it is preferable to continuously raise the temperature from an initial temperature of 130 ° C. to 150 ° C. to 150 to 175 ° C. at a rate of 1 to 5 ° C./min.
  • combining stepwise temperature rise and continuous temperature rise is also preferable from the viewpoint of efficiently proceeding solid phase polymerization.
  • this solid phase polymerization step when carried out, it is preferably carried out under reduced pressure or in an inert gas stream such as dry nitrogen.
  • the degree of vacuum when performing solid-phase polymerization under reduced pressure is preferably 150 Pa or less, more preferably 75 Pa or less, and particularly preferably 20 Pa or less.
  • the flow rate of the inert gas when solid-phase polymerization is performed under an inert gas stream is preferably in the range of 0.1 to 2,000 mL / min, and in the range of 0.5 to 1,000 mL / min with respect to 1 g of the mixture. Is more preferable, and the range of 1.0 to 500 mL / min is particularly preferable.
  • the polymer yield after solid phase polymerization is preferably 90% or more. More preferably, it is 93% or more, and particularly preferably 95% or more.
  • the polymer yield here is the ratio of the weight of the polylactic acid block copolymer after solid phase polymerization to the weight of the mixture before solid phase polymerization. Specifically, when the weight of the mixture before solid phase polymerization is Wp and the weight of the polymer after solid phase polymerization is Ws, it can be calculated by the following formula (6).
  • the degree of dispersion of the mixture is small. Specifically, the dispersion degree of the mixture before the solid phase polymerization is in the range of 1.5 to 4.0, and the dispersion degree of the polylactic acid block copolymer is in the range of 1.5 to 2.7 after the solid phase polymerization. It is preferable. More preferably, the dispersion degree of the mixture before the solid phase polymerization is in the range of 2.0 to 3.7, and the dispersion degree of the polylactic acid block copolymer is reduced to the range of 1.8 to 2.6 after the solid phase polymerization.
  • the degree of dispersion of the polylactic acid block copolymer is 2.0 to 2.5 after the solid phase polymerization from the range of the dispersion degree of the mixture before the solid phase polymerization of 2.5 to 3.5. It is to be in the range.
  • the weight average molecular weight of the polylactic acid block copolymer obtained by the production method of the present invention is not particularly limited, but is preferably in the range of 100,000 or more and less than 300,000 in terms of moldability and mechanical properties. . More preferably, it is in the range of 120,000 or more and less than 280,000, and particularly preferably in the range of 140,000 or more and less than 260,000.
  • the degree of dispersion of the polylactic acid block copolymer is preferably in the range of 1.5 to 3.0 from the viewpoint of mechanical properties.
  • the range of the degree of dispersion is more preferably 1.8 to 2.7, and 2.0 to 2.4 is particularly preferable from the viewpoints of moldability and mechanical properties.
  • the weight average molecular weight and dispersity are values in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
  • the average chain length of the polylactic acid block copolymer obtained by the production method of the present invention is preferably 20 or more. More preferably, it is 25 or more, and 30 or more is particularly preferable from the viewpoint of mechanical properties of the molded article.
  • the average chain length of the compact was determined by 13 C-NMR measurement, and the integrated value of the peak existing in the vicinity of 170.1 to 170.3 ppm of the carbon peak attributed to carbonyl carbon was (169). When the integrated value of the peak existing in the vicinity of 8 to 170.0 ppm is (b), it can be calculated by the following formula (7).
  • the polylactic acid block copolymer obtained by the production method of the present invention has a melting point based on poly-L-lactic acid single crystals and poly-D-lactic acid single crystals in the range of 150 ° C. to 190 ° C., and is a stereocomplex.
  • the formation has a melting point based on stereocomplex crystals in the range of 200-230 ° C.
  • a preferable range of the melting point derived from the stereocomplex crystal is 205 ° C. to 230 ° C., a temperature range of 210 ° C. to 230 ° C. is more preferable, and a temperature range of 215 ° C. to 230 ° C. is particularly preferable.
  • the crystallinity can be controlled by the amount of the main L-lactic acid (or D-lactic acid) unit contained in the poly-L-lactic acid (or poly-D-lactic acid) used as a raw material.
  • the melting point derived from the stereocomplex crystal is preferably increased.
  • the preferred range of the main component L-lactic acid contained in poly-L-lactic acid is preferably 80 mol%, more preferably 90 mol% or more, and more preferably 95 mol% or more. More preferably, it is more preferably 98 mol% or more.
  • the polylactic acid block copolymer preferably has a stereocomplex formation rate (Sc) in the range of 80 to 100% from the viewpoint of heat resistance. More preferably, it is in the range of 85 to 100%, and particularly preferably 90 to 100%.
  • the stereocomplex formation rate is the ratio of the stereocomplex crystals in all the crystals in polylactic acid. Specifically, the crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when the temperature is increased from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min with a differential scanning calorimeter (DSC). It is possible to calculate by the following formula (8), where ⁇ H1 is the amount of heat based on and ⁇ Hh is the amount of heat based on crystal melting of the stereocomplex crystal.
  • the polylactic acid block copolymer obtained by the production method of the present invention preferably has a temperature-falling crystallization temperature (Tc) of 130 ° C. or higher in terms of excellent moldability and heat resistance.
  • Tc temperature-falling crystallization temperature
  • the temperature drop crystallization temperature (Tc) of the molded body is a constant temperature state at 250 ° C. for 3 minutes after being heated from 30 ° C. to 250 ° C. by a differential scanning calorimeter (DSC) at a temperature rising rate of 20 ° C./min.
  • DSC differential scanning calorimeter
  • the crystallization temperature derived from polylactic acid crystals measured when the temperature was lowered at a cooling rate of 20 ° C./min.
  • the crystallization temperature (Tc) is not particularly limited, but is preferably 130 ° C. or higher, more preferably 132 ° C. or higher, and particularly preferably 135 ° C. or higher from the viewpoint of heat resistance and transparency.
  • the polylactic acid block copolymer has a high melting point due to the formation of a polylactic acid stereocomplex that the total number of segments consisting of L-lactic acid units and segments consisting of D-lactic acid units contained in one molecule is 3 or more. It is preferable in terms of easy.
  • the polylactic acid block copolymer obtained according to the present invention after solid-phase polymerization.
  • the polylactic acid block copolymer may be thermally decomposed during melt kneading and melt molding by the remaining catalyst, and thermal decomposition can be suppressed by adding a catalyst deactivator. , Thermal stability can be improved.
  • Examples of the catalyst deactivator used in the present invention include hindered phenol compounds, thioether compounds, vitamin compounds, triazole compounds, polyvalent amine compounds, hydrazine derivative compounds, phosphorus compounds, and the like. You may use together. Among them, it is preferable to include at least one phosphorus compound, and it is more preferable to use a phosphate compound or a phosphite compound. Further preferred examples of specific examples include “ADEKA STAB” AX-71 (dioftademil phosphate), PEP-8 (distearyl pentaerythritol diphosphite), PEP-36 (cyclic neopentatetrayl bis) manufactured by ADEKA Corporation. (2,6-tert-butyl-4-methylphenyl) phosphite).
  • hindered phenol compounds include n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) -propionate, n-octadecyl-3- (3′-methyl).
  • hindered phenol compounds include “ADEKA STAB” AO-20, AO-30, AO-40, AO-50, AO-60, AO-70, AO-80, manufactured by ADEKA Corporation.
  • AO-330 “Irganox” 245,259,565,1010,1035,1076,1098,1222,1330,1425,1520,3114,5057, manufactured by Ciba Specialty Chemicals Co., Ltd., manufactured by Sumitomo Chemical Co., Ltd.
  • thioether compound examples include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol tetrakis (3-lauryl thiopropionate) Pentaerythritol-tetrakis (3-dodecylthiopropionate), pentaerythritol-tetrakis (3-octadecylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3- Stearylthiopropionate).
  • thioether compounds include “ADEKA STAB” A0-23, AO-412S, AO-503A manufactured by ADEKA Corporation, “Irganox” PS802 manufactured by Ciba Specialty Chemicals Co., Ltd., Sumitomo Chemical Industries, Ltd. "Sumilyzer” TPL-R, TPM, TPS, TP-D, DSTP, DLTP, DLTOIB, DMTP manufactured by API Corporation, "Sinox” 412S, manufactured by Cypro Kasei Co., Ltd. " Cyanox "1212 etc. are mentioned.
  • polyamine compounds include 3,9-bis [2- (3,5-diamino-2,4,6-triazaphenyl) ethyl] -2,4,8,10-tetraoxaspiro.
  • Undecane ethylenediamine-tetraacetic acid, ethylenediamine-tetraacetic acid alkali metal salt (Li, Na, K), N, N'-disalicylidene-ethylenediamine, N, N'-disalicylidene-1 , 2-propylenediamine, N, N ′′ -disalicylidene-N′-methyl-dipropylenetriamine, 3-salicyloylamino-1,2,4-triazole and the like.
  • hydrazine derivative compounds include decamethylene dicarboxylic acid-bis (N'-salicyloyl hydrazide), bis (2-phenoxypropionyl hydrazide) isophthalate, and N-formyl-N'-salicyloyl hydrazine.
  • Examples of phosphorus compounds include phosphite compounds and phosphate compounds.
  • Specific examples of such phosphite compounds include tetrakis [2-tert-butyl-4-thio (2′-methyl-4′-hydroxy-5′-tert-butylphenyl) -5-methylphenyl] -1, 6-hexamethylene-bis (N-hydroxyethyl-N-methylsemicarbazide) -diphosphite, tetrakis [2-t-butyl-4-thio (2'-methyl-4'-hydroxy-5'-t-butylphenyl) -5-methylphenyl] -1,10-decamethylene-di-carboxylic acid-di-hydroxyethylcarbonylhydrazide-diphosphite, tetrakis [2-tert-butyl-4-thio (2'-methyl-4'-hydroxy-) 5'-tert-butylphenyl) -5-methylphenyl] -1
  • Phosphite tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylenephosphonite, bis (2,4-di-t- Tilphenyl) pentaerythritol-di-phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite, 2,2-methylenebis (4,6-di-t-butyl) Phenyl) octyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris (2-methyl-4-ditridecylphos Phyto-5-t-butyl-phenyl) butane, tris (mixed mono and di-nonylphenyl) phosphite
  • Tris (2,4-di-t-butylphenyl) phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol di-phosphite, tetrakis (2,4-di-t -Butylphenyl) -4,4'-biphenylenephosphonite can be preferably used.
  • phosphite compounds include “ADEKA STAB” C, PEP-4C, PEP-8, PEP-11C, PEP-24G, PEP-36, HP-10, 2112, 260 manufactured by ADEKA Corporation. 522A, 329A, 1178, 1500, C, 135A, 3010, TPP, “Irgaphos” 168 manufactured by Ciba Specialty Chemicals Co., Ltd., “Smilizer” P-16 manufactured by Sumitomo Chemical Co., Ltd., “Sand” manufactured by Clariant Examples include stub “PEPQ” and “Weston” 618, 619G, and 624 manufactured by GE.
  • the phosphate compound examples include monostearyl acid phosphate, distearyl acid phosphate, methyl acid phosphate, isopropyl acid phosphate, butyl acid phosphate, octyl acid phosphate, isodecyl acid phosphate, etc., among them monostearyl acid phosphate Distearyl acid phosphate is preferred.
  • Specific product names of phosphate compounds include “Irganox” MD1024 manufactured by Ciba Specialty Chemicals Co., Ltd., “Inhibitor” OABH manufactured by Eastman Kodak Co., Ltd., “Adeka Stub” CDA-1, manufactured by ADEKA Corporation, CDA-6, AX-71 and the like can be mentioned.
  • the addition amount of the catalyst deactivator is not particularly limited, but is preferably 0.001 to 2 parts by weight with respect to 100 parts by weight of the polylactic acid block copolymer in terms of excellent thermal stability.
  • the amount is more preferably 0.01 to 1 part by weight, still more preferably 0.05 to 0.5 part by weight, and most preferably 0.08 to 0.3 part by weight.
  • the timing of adding the catalyst deactivator is not particularly limited, and any of the polylactic acid production process, the polylactic acid mixing process and the solid phase polymerization process may be used, but a high melting point, high molecular weight polylactic acid block copolymer can be obtained.
  • ordinary additives such as fillers (glass fiber, carbon fiber, metal fiber, natural fiber, organic fiber are used as long as the object of the present invention is not impaired.
  • fillers glass fiber, carbon fiber, metal fiber, natural fiber, organic fiber
  • the polylactic acid block copolymer obtained by the production method of the present invention includes other thermoplastic resins (for example, polyethylene, polypropylene, polystyrene, acrylic resin, acrylonitrile-butadiene, Styrene copolymer, polyamide, polycarbonate, polyphenylene sulfide resin, polyether ether ketone resin, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyetherimide, cellulose ester, etc.) or thermosetting resin (eg phenol resin, melamine) Resin, polyester resin, silicone resin, epoxy resin, etc.) or soft thermoplastic resin (eg, ethylene / glycidyl methacrylate copolymer, polyester elastomer, De elastomers, ethylene / propylene terpolymer, ethylene / butene-1 copolymer) can further contain at least one or more of such.
  • thermoplastic resins for example, polyethylene, polypropylene,
  • an acrylic resin having an alkyl (meth) acrylate unit having an alkyl group having 1 to 4 carbon atoms as a main component is preferably mentioned. Further, alkyl (meth) acrylate having an alkyl group having 1 to 4 carbon atoms may be copolymerized with another alkyl acrylate having an alkyl group having 1 to 4 carbon atoms or an aromatic vinyl compound such as styrene. Good.
  • alkyl (meth) acrylates having the above alkyl groups include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, cyclohexyl acrylate and cyclohexyl methacrylate.
  • acrylic resin when the acrylic resin is used in the present invention, polymethyl methacrylate composed of methyl methacrylate is particularly preferable.
  • the polylactic acid block copolymer obtained by the production method of the present invention has a characteristic that it easily forms a high-melting polylactic acid stereocomplex even after it is once melted and solidified when it is processed into a molded product.
  • the haze value is preferably 30% or less.
  • Relative crystallinity [( ⁇ Hm ⁇ Hc) / ⁇ Hm] ⁇ 100> 90 (9)
  • ⁇ Hm is the crystal melting enthalpy (J / g) of the molded body
  • ⁇ Hc is the crystallization enthalpy (J / g) of the molded body at elevated temperature.
  • the relative crystallinity is preferably more than 90%, more preferably 92% or more, and particularly preferably 94% or more.
  • ⁇ Hc is the crystallization enthalpy of the molded body measured by a differential scanning calorimeter (DSC) at a temperature rising rate of 20 ° C./min
  • ⁇ Hm is measured by DSC at a temperature rising rate of 20 ° C./min.
  • DSC differential scanning calorimeter
  • the haze value is a value obtained by measuring a molded product having a thickness of 100 ⁇ m according to JIS K 7105. From the viewpoint of transparency, the haze value is preferably 30% or less, more preferably 10% or less. preferable. Although a minimum is not specifically limited, If it is 0.1% or more, it can be used practically without a problem.
  • a molded body containing the obtained polylactic acid block copolymer having a relative crystallinity of over 90% and a thickness of 500 ⁇ m.
  • the haze value is preferably 30% or less.
  • the haze value is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, further preferably 7% or less, and preferably 5% or less. It is particularly preferable in terms of sex.
  • the lower limit is not particularly limited and is 0% or more.
  • the molded product containing the obtained polylactic acid block copolymer does not contain a crystal nucleating agent used for improving transparency.
  • the haze value is 30% or less when the relative crystallinity exceeds 90% or more and the molded product has a thickness of 1 mm.
  • the haze value is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, further preferably 7% or less, and preferably 5% or less. It is particularly preferable in terms of sex.
  • the molded product containing the obtained polylactic acid block copolymer is excellent in moldability and heat resistance, so that the polylactic acid block copolymer contained in the molded product is
  • the lowering crystallization temperature (Tc) is preferably 130 ° C. or higher.
  • the temperature drop crystallization temperature (Tc) of the molded body is a constant temperature state at 250 ° C. for 3 minutes after being heated from 30 ° C. to 250 ° C. by a differential scanning calorimeter (DSC) at a temperature rising rate of 20 ° C./min.
  • the crystallization temperature (Tc) is not particularly limited, but is preferably 130 ° C. or higher, more preferably 132 ° C. or higher, and particularly preferably 135 ° C. or higher from the viewpoint of heat resistance and transparency.
  • the stereocomplex formation rate (Sc) is preferably 80% or more, and preferably 70% or more. More preferably, it is 75 to 100%, more preferably 90 to 100%.
  • the stereocomplex formation rate is the ratio of the stereocomplex crystals in all the crystals in polylactic acid. Specifically, the amount of heat based on crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal measured by a differential scanning calorimeter (DSC) is ⁇ Hl, and the amount of heat based on crystal melting of stereocomplex crystals. Can be calculated by the following equation (10).
  • the polylactic acid block copolymer contained in the molded product containing the polylactic acid block copolymer obtained in the present invention includes a segment composed of L-lactic acid units and a D-lactic acid unit contained per molecule of the polylactic acid block copolymer. It is preferable that the total number of the segments consisting of 3 is 3 or more in that a polylactic acid block copolymer that easily forms a polylactic acid stereocomplex having a high melting point can be obtained.
  • the molecular weight per segment is preferably 2,000 to 50,000. More preferably, it is 4,000 to 45,000, and 5,000 to 40,000 is particularly preferable from the viewpoint of mechanical properties.
  • the average chain length of the polylactic acid block copolymer contained in the molded product containing the polylactic acid block copolymer obtained in the present invention is preferably 20 or more. More preferably, it is 25 or more, and 30 or more is particularly preferable from the viewpoint of mechanical properties of the molded article.
  • the average chain length of the compact was determined by 13 C-NMR measurement, and the integrated value of the peak existing in the vicinity of 170.1 to 170.3 ppm of the carbon peak attributed to carbonyl carbon was (169). When the integrated value of the peak existing in the vicinity of 8 to 170.0 ppm is (b), it can be calculated by the following formula (11).
  • the weight average molecular weight of the polylactic acid block copolymer contained in the molded product containing the polylactic acid block copolymer obtained is not particularly limited, In terms of mechanical properties, it is preferably 100,000 or more and less than 300,000. More preferably, it is 120,000 or more and less than 280,000, and it is particularly preferably 140,000 or more and less than 260,000 in terms of moldability and mechanical properties.
  • the dispersity of the polylactic acid block copolymer contained in the molded product containing the polylactic acid block copolymer obtained in the present invention is preferably in the range of 1.5 to 3.0 from the viewpoint of mechanical properties.
  • the range of the degree of dispersion is more preferably 1.8 to 2.7, and 2.0 to 2.4 is particularly preferable in terms of moldability and mechanical properties.
  • the weight average molecular weight and dispersity are values in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
  • the polylactic acid resin composition constituting the molded article containing the polylactic acid block copolymer obtained in the present invention comprises a polylactic acid block copolymer comprising a segment comprising L-lactic acid units and a segment comprising D-lactic acid units. It is preferable that it is a polylactic acid resin composition containing 60% or more. More preferably, it is 70% or more, and particularly preferably 80% or more.
  • the amount of lactide and the amount of oligomer contained in the polylactic acid resin composition contained in the molded product containing the polylactic acid block copolymer obtained are each preferably 5% or less. More preferably, it is 3% or less, and particularly preferably 1% or less.
  • the amount of lactic acid contained in poly-L-lactic acid or poly-D-lactic acid is preferably 2% or less. More preferably, it is 1% or less, More preferably, it is 0.5% or less, Most preferably, it is 0.1% or less.
  • a method for producing a molded product containing the obtained polylactic acid block copolymer includes sheet molding, injection molding, extrusion molding, blow molding, vacuum molding, press molding, and the like.
  • Known molding methods can be mentioned, and injection molding, blow molding, vacuum molding and press molding are preferred in terms of transparency and heat resistance.
  • examples thereof include a method of obtaining a sheet by sandwiching a polylactic acid resin composition containing a polylactic acid block copolymer with a predetermined mold.
  • the degree of crystallinity can be increased by heat-treating the obtained sheet at a predetermined temperature for a predetermined time.
  • a press sheet having a thickness of 100 ⁇ m is manufactured by heating at 240 ° C.
  • a method of performing heat treatment at 80 ° C. for 5 minutes and 110 ° C. for 30 minutes can be given.
  • the mold temperature is preferably a temperature range from the glass transition temperature to the melting point of the polylactic acid block copolymer and from the melting point, preferably in terms of transparency and heat resistance. Is set to a temperature range of 60 ° C. or higher and 220 ° C. or lower, more preferably, a temperature range of 70 ° C. or higher and 200 ° C. or lower, more preferably a temperature range of 80 ° C. or higher and 180 ° C. or lower, and a molding cycle of 150 seconds or shorter.
  • the injection molding is preferably performed for 90 seconds or less, more preferably for 60 seconds or less, and even more preferably for 50 seconds or less.
  • blow molding when blow molding is performed as the method for producing the molded body, for example, a polylactic acid block copolymer having a bottomed tube-shaped molded article having a crystallinity that can be blow-molded by injection molding according to the above method ( Parison), and then the temperature range of the glass transition point of the polylactic acid block copolymer and the glass transition point + 80 ° C. or less, preferably 60 ° C. or more and 140 ° C. or less, more preferably 70 ° C. or more, 130
  • a molded body is obtained by moving to a blow molding die set in a temperature range of °C or less and supplying compressed air from an air nozzle while stretching with a stretching rod.
  • the sheet or film when vacuum forming is performed as a method for producing the molded body, after obtaining a sheet or film having a crystallinity that can be formed once, the sheet or film is heated to 60 to 150 ° C. with a heater such as a hot plate or hot air.
  • the mold is preferably heated at 65 to 120 ° C., more preferably at 70 to 90 ° C., and the sheet is set at a mold temperature of 30 to 150 ° C., preferably 40 to 100 ° C., more preferably 50 to 90 ° C.
  • There is a method of molding by making the inside of the mold depressurized at the same time as making it closely contact.
  • the polylactic acid block copolymer when press molding is performed as a method for producing the molded body, after obtaining a sheet or film having a crystallinity that can be molded once, the polylactic acid block copolymer is heated with a heater such as a hot plate or hot air. Heating is performed at ⁇ 150 ° C., preferably 65-120 ° C., more preferably 70-90 ° C., and the sheet is set at a mold temperature of 30-150 ° C., preferably 40-100 ° C., more preferably 50-90 ° C. There is a method in which the mold is made of a male mold and a female mold that are in close contact with each other and pressurized and clamped.
  • the stretching treatment is performed to impart transparency.
  • the shape of the formed body to be stretched is preferably a film or sheet shape.
  • a temperature range of the polylactic acid stereocomplex above the glass transition point and below the melting point preferably 60 ° C. or more and 170 ° C. or less, more preferably 70 ° C. or more and 150 ° C. or less. It is preferable to stretch in the temperature range.
  • the polylactic acid block copolymer obtained by the method for producing a polylactic acid block copolymer of the present invention includes, for example, a film, a sheet, a fiber / cloth, a nonwoven fabric, an injection molded product, an extrusion molded product, a vacuum / pressure molded product, and a blow molding.
  • Products, and composites with other materials, etc., and these molded products are agricultural materials, horticultural materials, fishery materials, civil engineering / building materials, stationery, medical supplies, automotive parts It is useful for electrical / electronic parts, optical films, and other applications.
  • mobile terminals such as relay cases, coil bobbins, optical pickup chassis, motor cases, notebook computer housings or internal parts, CRT display housings or internal parts, printer housings or internal parts, mobile phones, mobile PCs, handheld mobiles, etc.
  • the weight average molecular weight and degree of dispersion are values in terms of standard polymethyl methacrylate measured by gel permeation chromatography (GPC). GPC measurement was performed using a WATERS differential refractometer WATERS410 as a detector, a WATERS MODEL510 as a pump, and a column in which Shodex GPC HFIP-806M and Shodex GPC HFIP-LG were connected in series.
  • Measurement conditions were such that the flow rate was 0.5 mL / min, hexafluoroisopropanol was used as the solvent, and 0.1 mL of a solution having a sample concentration of 1 mg / mL was injected.
  • (2) Melting point, melting temperature and heat of fusion The melting point, melting end temperature and heat of fusion were measured with a Perkin Elmer differential scanning calorimeter (DSC). Measurement conditions are a sample of 5 mg, a nitrogen atmosphere, and a heating rate of 20 ° C./min.
  • the melting point refers to the peak top temperature in the crystal melting peak
  • the melting end temperature refers to the peak end temperature in the crystal melting peak.
  • the melting point of the block copolymer means that the temperature is increased from 30 ° C. to 250 ° C. at a temperature increase rate of 20 ° C./min at the first temperature increase, then cooled to 30 ° C. at a temperature decrease rate of 20 ° C./min. It is the melting point measured when the temperature is raised from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min during warming.
  • (3) Stereo complex formation rate (Sc) The stereocomplex formation rate (Sc) of the polylactic acid block copolymer and the polylactic acid stereocomplex (mixture of poly-L-lactic acid and poly-D-lactic acid) was calculated from the following formula (12).
  • ⁇ Hl indicates the amount of heat based on crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal appearing at 150 ° C. or more and less than 190 ° C.
  • ⁇ Hh is a stereocomplex crystal appearing at 190 ° C. or more and less than 250 ° C. The amount of heat based on the crystal melting of is shown.
  • the stereo complex formation rate in the mixture was calculated from the crystal melting peak measured at the first temperature rise of the differential scanning calorimeter (DSC), and the stereo of the polylactic acid block copolymer after solid phase polymerization was calculated.
  • the complex formation rate was raised from 30 ° C. to 250 ° C. at a temperature increase rate of 20 ° C./min at the first temperature increase, then cooled to 30 ° C. at a temperature decrease rate of 20 ° C./min, and further increased at the second temperature increase. This is calculated from the crystal melting peak measured when the temperature is raised from 30 ° C. to 250 ° C. at a rate of 20 ° C./min.
  • (4) Polymer Yield The yield (Y) of the polylactic acid block copolymer was calculated from the following formula (13).
  • the total ⁇ Hm of the melting enthalpy and stereocomplex crystal melting enthalpy derived from the poly-L-lactic acid single crystal and the poly-D-lactic acid single crystal and the crystallization enthalpy ⁇ Hc at the time of temperature rise of the molded product were measured, respectively. ).
  • Relative crystallinity [( ⁇ Hm ⁇ Hc) / ⁇ Hm] ⁇ 100 (14) (7) Haze value The haze value was measured as an index of the transparency of the molded product. Using a Nippon Denshoku haze meter NDH-300A, a haze value was measured according to JIS K 7105 for a sheet-like molded body having a thickness of 0.1 mm. (8) Storage elastic modulus The storage elastic modulus was measured as an index of the heat resistance of the molded body. A central part of a sheet-like molded body having a thickness of 0.1 mm is cut into 40 mm ⁇ 2 mm to form a strip-like sample, and the temperature rise rate is 2 ° C.
  • PLA1 poly-L-lactic acid
  • PLA1 had a weight average molecular weight of 18,000, a dispersity of 1.5, a melting point of 149 ° C., and a melting end temperature of 163 ° C.
  • Reference Example 2 The PLA 1 obtained in Reference Example 1 was crystallized at 110 ° C. for 1 hour under a nitrogen atmosphere, and then solid-phased at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 5 hours at 160 ° C. Polymerization was performed to obtain poly-L-lactic acid (PLA2).
  • PLA2 had a weight average molecular weight of 43,000, a dispersity of 1.8, a melting point of 159 ° C., and a melting end temperature of 176 ° C.
  • Reference Example 3 The PLA 1 obtained in Reference Example 1 was crystallized at 110 ° C. for 1 hour in a nitrogen atmosphere, and then solid-phased at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 12 hours at 160 ° C. Polymerization was performed to obtain poly-L-lactic acid (PLA3).
  • PLA3 had a weight average molecular weight of 17,000, a dispersity of 1.8, a melting point of 168 ° C., and a melting end temperature of 189 ° C.
  • PLA5 poly-L-lactic acid
  • PLA5 had a weight average molecular weight of 262,000, a dispersity of 2.1, a melting point of 171 ° C., and a melting end temperature of 191 ° C.
  • Reference Example 6 1 kg of 90 wt% L-lactic acid aqueous solution was oligomerized by distilling water while stirring at 150 ° C. and 4,000 Pa for 6 hours.
  • PLA6 had a weight average molecular weight of 154,000, a dispersity of 2.6, a melting point of 172 ° C., and a melting end temperature of 194 ° C.
  • PLA7 Poly-L-lactic acid
  • PLA7 was obtained by carrying out the polymerization reaction in the same manner as in Reference Example 1 except that the polymerization reaction catalyst was changed to 0.02 part of tin (II) acetate and 0.13 part of methanesulfonic acid. It was.
  • PLA7 had a weight average molecular weight of 19000, a dispersity of 1.5, a melting point of 150 ° C., and a melting end temperature of 164 ° C.
  • the PLA 7 obtained in Reference Example 1 was crystallized at 110 ° C.
  • PLA8 had a weight average molecular weight of 14,000, a dispersity of 1.8, a melting point of 169 ° C., and a melting end temperature of 189 ° C.
  • Reference Example 9 The PLA 7 obtained in Reference Example 1 was crystallized at 110 ° C. for 1 hour in a nitrogen atmosphere, and then solid-phased at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 12 hours at 160 ° C.
  • PLA9 poly-L-lactic acid
  • PLA9 had a weight average molecular weight of 221,000, a dispersity of 1.8, a melting point of 170 ° C., and a melting end temperature of 191 ° C.
  • Reference Example 10 In a reaction vessel equipped with a stirrer and a reflux apparatus, 50 parts of a 90% D-lactic acid aqueous solution was placed, the temperature was raised to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water.
  • PDA1 poly-D-lactic acid
  • PDA1 had a weight average molecular weight of 15,000, a dispersity of 1.5, a melting point of 147 ° C., and a melting end temperature of 163 ° C.
  • PDA2 poly-D-lactic acid
  • PDA2 had a weight average molecular weight of 29,000, a dispersity of 1.6, a melting point of 150 ° C., and a melting end temperature of 168 ° C.
  • Reference Example 12 The PDA 1 obtained in Reference Example 7 was crystallized at 110 ° C. for 1 hour in a nitrogen atmosphere, and then solid phase at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 6 hours at 160 ° C.
  • PDA3 poly-D-lactic acid
  • PDA3 had a weight average molecular weight of 42,000, a dispersity of 1.6, a melting point of 158 ° C., and a melting end temperature of 176 ° C.
  • the PDA 1 obtained in Reference Example 7 was crystallized at 110 ° C. for 1 hour in a nitrogen atmosphere, and then solid-phased at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 18 hours at 160 ° C.
  • Polymerization was performed to obtain poly-D-lactic acid (PDA4).
  • PDA4 had a weight average molecular weight of 1,98,000, a dispersity of 2.0, a melting point of 170 ° C., and a melting end temperature of 191 ° C.
  • 1 kg of 90 wt% D-lactic acid aqueous solution was oligomerized by distilling water while stirring at 150 ° C. and 4,000 Pa for 6 hours.
  • 0.2 g of stannous chloride and 0.2 g of p-toluenesulfonic acid were added, and poly-L-lactic acid (PDA5) was obtained by performing melt polymerization at 180 ° C. and 1,300 Pa for 3 hours. .
  • PDA5 had a weight average molecular weight of 16,000, a dispersity of 1.5, a melting point of 144 ° C., and a melting end temperature of 160 ° C.
  • a polymerization reaction was carried out in the same manner as in Reference Example 10 except that the polymerization reaction catalyst was changed to 0.02 part of tin (II) acetate and 0.13 part of methanesulfonic acid to obtain poly-D-lactic acid (PDA6). It was. PDA6 had a weight average molecular weight of 16,000, a dispersity of 1.5, a melting point of 149 ° C., and a melting end temperature of 162 ° C.
  • PDA8 had a weight average molecular weight of 50,000, a dispersity of 1.6, a melting point of 160 ° C., and a melting end temperature of 177 ° C.
  • Reference Example 7 The PDA 6 obtained in Reference Example 7 was subjected to crystallization treatment at 110 ° C.
  • PDA9 poly-D-lactic acid
  • the twin-screw extruder is provided with a plasticizing part set at a temperature of 180 ° C.
  • the structure can be mixed under application of shear.
  • Poly-L-lactic acid and poly-D-lactic acid were mixed at a mixing temperature of 200 ° C. under application of shear.
  • the combinations of poly-L-lactic acid and poly-D-lactic acid are as shown in Table 1.
  • the polymer after mixing was subjected to crystallization treatment at a pressure of 13.3 Pa and 110 ° C. for 2 hours, and then measured for physical properties.
  • Examples 1 to 12 and Comparative Example 5 had a high molecular weight of 100,000 or more in weight average molecular weight at the time of mixing, whereas Comparative Examples 1 to 4 had a weight average molecular weight in the case of mixing. Was less than 100,000.
  • the thermal characteristics during mixing the mixture was observed to have a high melting point at all levels of Examples 1 to 7 and Comparative Examples 1 to 5.
  • the stereocomplex formation rate was as high as 60% or more in Examples 1 to 12 and Comparative Examples 1 to 4, but the molecular weights of both poly-L-lactic acid and poly-D-lactic acid to be mixed were 100,000 or more. In Comparative Example 5, which was a combination, the stereo complex formation rate was low.
  • Step of solid-phase polymerization of a mixture of poly-L-lactic acid and poly-D-lactic acid The mixture obtained in (1) is solid-phased in a vacuum dryer at 140 ° C. and a pressure of 13.3 Pa for 4 hours. Polymerization was carried out, and then the temperature was raised to 150 ° C. for 4 hours, and further to 160 ° C. for 10 hours to carry out solid phase polymerization.
  • Examples 1 to 12 (SB1 to SB12), Comparative Examples 1 to 3 (SB13 to SB15) and 5 (SB17) using high molecular weight segments as polylactic acid to be mixed are all used.
  • Comparative Example 4 which is a combination of low molecular weights of poly-L-lactic acid and poly-D-lactic acid mixed with a low molecular weight of 100,000 or less, the yield after solid-phase polymerization was high. Was 90% or more and was a low value.
  • the thermal characteristics after solid-phase polymerization high melting point of the mixture was observed at all levels of Examples 1 to 12 (SB1 to 12) and Comparative Examples 1 to 5 (SB13 to SB17).
  • the stereo complex formation rate was high at 80% or more in Examples 1 to 12 (SB1 to SB12) and Comparative Examples 1 to 4 (SB13 to SB16), but Stereo Complex formation was performed for Comparative Example 5 (SB17). The rate was low.
  • the temperature-falling crystallization temperature is 130 ° C. or higher in Examples 1 to 12 (SB1 to SB12) and Comparative Example 4 (SB16), while Comparative Examples 1 to 3 (SB13 to SB15) and 5 (SB17) are used.
  • the weight average molecular weight at the time of mixing was 84,000.
  • a part of the melting point was increased due to the formation of a stereo complex.
  • the polymer was only partially melted and polylactic acid single crystals remained, and as a result, the stereocomplex formation rate was as low as 26%.
  • Step of solid-phase polymerization of a mixture of poly-L-lactic acid and poly-D-lactic acid The mixture obtained in (1) was heat-treated at 110 ° C. for 2 hours at a pressure of 66.6 Pa, and then at 130 ° C. Solid state polymerization was performed by heating for 5 hours at 140 ° C. for 25 hours (30 hours in total).
  • the molecular weight after solid phase polymerization was 151,000, but the yield after solid phase polymerization was as low as 90% or less.
  • the thermal characteristics after solid-phase polymerization a high melting point was observed due to the formation of stereocomplexes, and the stereocomplex formation rate was also high.
  • the temperature-falling crystallization temperature after solid-phase polymerization was 124 ° C., which was lower than 130 ° C. or higher shown in the examples.
  • Example 1 the mixture of poly-L-lactic acid and poly-D-lactic acid was filled in a glass container without gaps, sealed and heated.
  • the heating temperature and time are the same as in Example 1.
  • the solid phase polymerization did not proceed only by heating the mixture, and the weight average molecular weight of the sample SB19 after heating was 81,000, which was lower than that of Example 1.
  • the yield of this sample SB19 was 98%, the dispersity was 2.7, and the melting point was 162 ° C / 215 ° C.
  • the cooling crystallization temperature was 112 ° C under reduced pressure. It was low compared with Example 1 which performed solid-state polymerization by this.
  • PLA11 had a weight average molecular weight of 122,000, a dispersity of 1.7, a melting point of 170 ° C., and a melting end temperature of 188 ° C.
  • Reference Example 21 In a reaction vessel equipped with a stirrer, 100 parts of D-lactide was uniformly dissolved at 160 ° C. in a nitrogen atmosphere, 0.003 part of tin octylate was added, and a polymerization reaction was carried out for 6 hours. After completion of the polymerization reaction, the reaction product was dissolved in chloroform, precipitated in methanol (5 times the amount of chloroform) with stirring, and the monomer was completely removed to obtain poly-D-lactic acid (PDA10).
  • PDA10 poly-D-lactic acid
  • PDA10 had a weight average molecular weight of 1.3 million, a dispersity of 1.6, a melting point of 180 ° C., and a melting end temperature of 194 ° C.
  • PDA10 had a weight average molecular weight of 1.3 million, a dispersity of 1.6, a melting point of 180 ° C., and a melting end temperature of 194 ° C.
  • 100 parts of D-lactide and 0.05 part of ethylene glycol were uniformly dissolved at 150 ° C. in a nitrogen atmosphere, and then 0.003 part of tin octylate was added and polymerized for 3 hours. Reaction was performed. After completion of the polymerization, the reaction product was dissolved in chloroform, precipitated in methanol (5 times the amount of chloroform) with stirring, and the monomer was completely removed to obtain poly-D-lactic acid (PDA11).
  • PDA11 had a weight average molecular weight of 1,98,000, a dispersity of 1.7, a melting point of 172 ° C., and a melting end temperature of 190 ° C.
  • Reference Example 23 In a reaction vessel equipped with a stirrer, 100 parts of D-lactide and 0.1 part of ethylene glycol are uniformly dissolved in a nitrogen atmosphere at 150 ° C., and then 0.003 part of tin octylate is added and polymerized for 3 hours. Reaction was performed. Thereafter, 0.01 part of a phosphorus-based catalyst deactivator was added to the reaction system and stirred for 10 minutes to deactivate the catalyst.
  • poly-D-lactic acid had a weight average molecular weight of 122,000, a dispersity of 1.7, a melting point of 169 ° C., and a melting end temperature of 188 ° C.
  • Process of mixing poly-L-lactic acid and poly-D-lactic acid Mixing of poly-L-lactic acid and poly-D-lactic acid is performed using a batch type twin-screw kneader (labor plast mill) manufactured by Toyo Seiki. A polylactic acid mixture was obtained.
  • test conditions are kneading temperature 245 ° C., kneading rotation speed 120 rpm, kneading time is 10 minutes for comparative examples 8 and 11, and 60 minutes for comparative examples 9 and 12.
  • the combinations of poly-L-lactic acid and poly-D-lactic acid are as shown in Table 2.
  • the weight average molecular weight of the polylactic acid mixture was as high as 100,000 or more in Comparative Example 8 (SC14) and Comparative Example 11 (SC17), while Comparative Example 9 (SC15) and Comparative Example 12 having a long kneading time of 60 minutes. In (SC18), there was a downward trend of 100,000 or less.
  • the melting point of the polylactic acid mixture was observed to be 200 ° C. or more due to stereocomplex formation, but the stereocomplex formation rate was 60% or less in both Comparative Examples 8 and 11 and was lower than that in Examples 1-8. .
  • Regarding the cooling crystallization temperature of the polylactic acid mixture it was observed at 105 ° C. and 125 ° C.
  • the weight average molecular weight of the polylactic acid mixture was 84,000 and 510,000 for Comparative Example 10 (SC16) and Comparative Example 13 (SC19), respectively, and was as long as Comparative Examples 9 and 12 The molecular weight tended to decrease with time kneading.
  • the temperature drop crystallization temperature of the polylactic acid mixture was 103 ° C. and 120 ° C. for Comparative Example 10 (SC16) and Comparative Example 13 (SC19), respectively, and Comparative Example 9 (SC15) Almost identical to Example 12 (SC18).
  • the weight average molecular weight of the polylactic acid mixture obtained by kneading is 110,000 to 120,000 in Comparative Examples 14 to 16 (SC20 to SC22), whereas the molecular weight is as low as 65,000 in Comparative Example 17 (SC23). It was a tendency to become.
  • the melting point of the polylactic acid mixture was observed to be 200 ° C. or higher due to the formation of a stereocomplex, but the temperature-falling crystallization temperature of the polylactic acid mixture was observed only in Comparative Examples 14 to 16 (SC20 to SC22) combined with a crystal nucleating agent. It was.
  • Example 13 to 24, Comparative Examples 18 to 24 As shown in Table 3, the polylactic acid block copolymers (SB1 to SB12, SB13 to SB18) obtained in Examples 1 to 12 and Comparative Examples 1 to 6 and the polylactic acid mixture (SB19) obtained in Comparative Example 7
  • the mixture was melt-kneaded at 240 ° C. together with 0.05 part of a phosphorus-based catalyst deactivator using a twin-screw extruder to deactivate the catalyst. Subsequently, the sheet was melted by heating at 240 ° C. for 2 minutes, and then pressed at a press temperature of 80 ° C. to produce a press sheet having a thickness of 0.1 mm. Next, the press sheet was heat-treated at 110 ° C. for 30 minutes under a nitrogen atmosphere to obtain sheet-like molded bodies for various measurements.
  • Table 3 shows various physical property values measured by sampling the central part of the sheet-like molded body.
  • the relative crystallinity of the sheet-like molded bodies of Examples 13 to 24 and Comparative Examples 18 to 24 was 100%. Further, when the haze value was measured for a sample cut out to a size of 5 cm ⁇ 5 cm from the center of the sheet-like molded body, all of the sheet molded bodies of Examples 13 to 24 were less than 10% and excellent in transparency. It was. On the other hand, the haze values of the sheet molded articles of Comparative Examples 18 to 24 were 10% or more except that the sheet molded article of Comparative Example 21 was less than 10%.
  • the sheet-like molded body was cut into 40 mm ⁇ 2 mm from the central portion to form a strip-like sample, and the storage elastic modulus at 130 ° C. by dynamic viscoelasticity was measured. All were 2 GPa or more and were excellent in heat resistance. When the tensile strength was measured about the said strip-shaped sample, all were 60 Mpa or more.
  • the sheet molded bodies of Comparative Examples 18 to 24 had a storage elastic modulus at 130 ° C. of 2 GPa or more in Comparative Examples 21, 23 and 24, but the other was less than 2 GPa. Moreover, about the tensile strength of the strip-shaped sample, all the sheet compacts were less than 60 MPa, and the physical property was low compared with the Example.
  • the sheet-like molded body is heated using a vacuum molding machine under the conditions of a heating temperature of 100 ° C. and a heating time of 60 seconds, and is brought into close contact with the mold at a mold temperature of 40 ° C., and at the same time, the inside of the mold is decompressed.
  • a cylindrical container having an inner diameter of 6 cm and a depth of 10 cm was obtained.
  • This cylindrical container was heat-treated at 110 ° C. for 30 minutes under a nitrogen atmosphere, then dropped onto the concrete from the bottom of the container at a height of 2 m, filled with water and covered with a lid, and dropped impact The number of times until the container was damaged and water leaked was measured.
  • Example 25 About the polylactic acid block copolymer SB1 obtained by solid phase polymerization in Example 1, the catalyst was deactivated before producing a sheet compact. The method for deactivating the catalyst is the same as in Examples 13-24. Subsequently, the polylactic acid block copolymer subjected to catalyst deactivation was heated and melted at 240 ° C. for 2 minutes, and then pressed at a press temperature of 80 ° C. to prepare a 0.1 mm thick press sheet, It was set as the sheet-like molded object for various measurements by cooling in ice water. The method for measuring various physical properties of the sheet-like molded body is the same as in Examples 13-24.
  • Example 25 the relative crystallinity of the sheet-like molded body of Example 25 was as low as 10% because the molded body was not heat-treated. Further, the haze value of the sheet-like molded body was 2% because the molded body was not heat-treated, and the transparency was high. However, the tensile strength and impact resistance of the sheet-like molded product are lower than those of Examples 13 to 24, and the storage elastic modulus at 130 ° C. is not measured because the molded product was broken during the temperature rising process. It was possible. (Comparative Example 25) About the polylactic acid mixture SC1 obtained in Example 1, the catalyst was deactivated before producing the sheet compact. The method for deactivating the catalyst is the same as in Examples 13-24. Subsequently, molded bodies for measuring various physical properties were produced using SC1 in which the catalyst was deactivated. The method for producing a molded body and the method for measuring physical properties are the same as in Examples 13-24.
  • the relative crystallinity of the sheet-like molded body of Comparative Example 25 was 100%. Moreover, the haze value of the sheet-like molded body was 14% for the molded body, and the transparency was high. Although the sheet-like molded product had a high storage elastic modulus at 130 ° C. of 2.4 GPa, the tensile strength and impact resistance were inferior to those of Examples 13-24. (Comparative Examples 26, 27, 29, 30) About the polylactic acid mixture (SC19, SC20, SC22, SC23) obtained in Comparative Examples 8, 9, 11, and 12, the catalyst was deactivated before producing a sheet molded body. The method for deactivating the catalyst is the same as in Examples 13-24.
  • molded articles for measuring various physical properties were prepared using the polylactic acid mixture in which the catalyst was deactivated.
  • a method for preparing a molded body for measuring various physical properties and a method for measuring physical properties are the same as in Examples 13 to 24.
  • the relative crystallinity of the sheet-like molded bodies of each comparative example was 100% in Comparative Examples 27, 29, and 30, respectively, but 78% in Comparative Example 26 was low. Further, the haze value of the sheet-like molded body was 22% in Comparative Example 31, but was 40% or more in Comparative Examples 26, 27, and 29, and the transparency was lower than that in Examples 13 to 24. . Furthermore, the storage elastic modulus at 130 ° C. of the sheet molded body was 2 GPa or less, which was a result of inferior high-temperature rigidity.
  • Comparative Example 26 having a high molecular weight of the molded article, but Comparative Examples 28, 30, and 31 were lower than those in Examples 13-24.
  • Comparative Examples 28 and 31 About the polylactic acid mixture (SC21, SC24) obtained in Comparative Examples 10 and 13, the catalyst was deactivated before producing the sheet compact. The method for deactivating the catalyst is the same as in Examples 13-24. Subsequently, molded articles for measuring various physical properties were prepared using the polylactic acid mixture in which the catalyst was deactivated. The method for producing a molded article for measuring various physical properties and the method for measuring physical properties are the same as in Examples 13-24.
  • the relative crystallinity of the sheet-like molded bodies of the respective comparative examples was 100%.
  • the haze values of the molded products were as low as 50% or more in Comparative Examples 32 and 33, and the transparency was low in Comparative Examples 34 to 36 due to the combined use of the crystal nucleating agent.
  • the mechanical properties of the molded articles were all lower than those of Examples 13 to 24.
  • Comparative Example 36 having a low molecular weight tended to have lower physical properties in both tensile strength and impact resistance.
  • the polylactic acid block copolymer obtained by the production method of the present invention was excellent in heat resistance, crystallinity and transparency even in a molded body.
  • the production method of the present invention provides a polylactic acid block copolymer having a high molecular weight and a high melting point, it can be suitably used in fields requiring heat resistance, which was difficult to use with polylactic acid homopolymers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリ-L-乳酸またはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~5万であるポリ-L-乳酸とポリ-D-乳酸を混合し、重量平均分子量が9万以上、かつステレオコンプレックス形成率(Sc)が下記式を満たす混合物を得る工程、次いで、混合物を混合物の融点より低い温度で固相重合する工程からなるL-乳酸単位からなるセグメントとD-乳酸単位からなるセグメントにより構成されるポリ乳酸ブロック共重合体の製造方法。 Sc=ΔHh/(ΔHl+ΔHh)×100>60 ここで、ΔHh:ステレオコンプレックス結晶に基づく熱量(J/g)、ΔHl:ポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)である。 本発明の製造方法によれば、高分子量かつ高融点を有するポリ乳酸ステレオコンプレックスを形成するポリ乳酸ブロック共重合体を得ることができる。

Description

ポリ乳酸ブロック共重合体の製造方法
 本発明は、高分子量、高融点を有し、耐熱性および結晶性に優れたポリ乳酸ステレオコンプレックスを形成するポリ乳酸ブロック共重合体を高収率で製造する方法に関する。
 ポリ乳酸は、実用上溶融成型可能な高分子であり、生分解性の特徴を有することから使用した後は自然環境中で分解して炭酸ガスや水として放出される生分解性プラスチックとしての開発が進められてきた。一方、近年では、ポリ乳酸自身が二酸化炭素や水を起源とする再生可能資源(バイオマス)を原料としているため、使用後に二酸化炭素が放出されたとしても地球環境中における二酸化炭素は増減しないというカーボンニュートラルの性質が注目され、環境低負荷材料としての利用が期待されている。さらに、ポリ乳酸のモノマーである乳酸は微生物を利用した発酵法により安価に製造されつつあり、石油系プラスチック製の汎用ポリマーの代替素材としても検討されるようになってきた。しかしながら、ポリ乳酸は、石油系プラスチックに比較すると耐熱性や耐久性が低く、結晶化速度が小さいため生産性にも劣っており、実用化の範囲は大幅に限定されているのが現状である。
 このような問題点を解決する手段の一つとして、ポリ乳酸ステレオコンプレックスの利用が注目されている。ポリ乳酸ステレオコンプレックスは光学活性なポリ-L-乳酸(以下、PLLA)とポリ-D-乳酸(以下、PDLA)を混合することにより形成され、この融点はポリ乳酸ホモポリマーの融点170℃に比較して50℃高い220℃に達する。このため、高融点および高結晶性の繊維、フィルムおよび樹脂成型品としての適用が試みられている。
 従来、ポリ乳酸ステレオコンプレックスはPLLAとPDLAを溶液状態で混合するか、PLLAとPDLAを加熱溶融混合させることで形成される。しかしながら、PLLAとPDLAの溶液混合については、混合後に溶剤を揮発させる必要があることから製造工程が煩雑になり、結果としてポリ乳酸ステレオコンプレックスが高コストになる問題がある。また、PLLAとPDLAの加熱溶融混合の場合には、ポリ乳酸ステレオコンプレックスが十分溶融する温度で混合する必要があり、このような温度ではポリ乳酸の熱分解反応を併発するため、成型品として用いる場合には物性の低下を生じる問題があった。さらに、高分子量のPLLAと高分子量のPDLAを加熱溶融混合した場合には、混合組成比が50:50であってもポリ乳酸ホモポリマーの融点が消失しないため、耐熱性と耐久性を兼ね備えた材料は得られないのが現状である。
 一方、高分子量においてもステレオコンプレックスを形成する技術としてPLLAセグメントとPDLAセグメントからなるポリ乳酸ブロック共重合体が開示されている(特許文献1~4)。
 特許文献1は、開環重合あるいは直接重縮合にて作製したPLLAとPDLAを加熱下で溶融混練することで混合物を作製した後、この混合物を固相重合することでポリ乳酸ブロック共重合体を得ている。
 特許文献2は、溶融重合で得られたPLLAとPDLAを加熱下で溶融混合した後、この混合物を固相重合することでポリ乳酸ブロック共重合体を作製している。
 特許文献3は、PLLAとPDLAを融点近傍で混合し、ポリ乳酸単独結晶存在下で固相重合することによりポリ乳酸ブロック共重合体を作製している。
 特許文献4は、直接重縮合で得られたPLLAとPDLAを融点以上で混合した後、この混合物を固相重合することでポリ乳酸ブロック共重合体を得ている。
特開2003-238672号公報 特開2006-28336号公報 特開2006-307071号公報 特開2009-40997号公報
 特許文献1の技術では、溶融混練時にポリ乳酸ステレオコンプレックスの融点以上の温度に加温する必要があり、溶融混練時に混合物の分子量低下が課題となる。また、固相重合にて長時間反応が必要である点においても生産性向上が望まれていた。
 特許文献2の技術では、PLLAとPDLAの混合組成比が50:50よりも離れたときのみ高分子量のポリ乳酸ブロック共重合体が得られている。この場合、ステレオコンプレックス形成が低いため、得られたポリ乳酸ブロック共重合体は耐熱性や結晶性が向上しにくいという問題がある。
 特許文献3の技術ではステレオコンプレックスの形成を混練温度のみで制御しており、混練時には部分的な融解がみられることから混合物の結晶特性が不十分であり、さらにはばらつきが存在する。また、この混練物を固相重合したポリ乳酸ブロック共重合体についても結晶特性が不十分である問題があった。
 特許文献4の技術では混練に用いるPLLAとPDLAの分子量が5万以下であるため、固相重合での高分子量化のために長時間の反応が必要である。また、固相重合後における収率を高くすることが課題であることから生産性向上も望まれていた。
 本発明の課題は、上記した従来技術の問題点を解決し、高分子量かつ高融点を有するポリ乳酸ステレオコンプレックスを形成するポリ乳酸ブロック共重合体の製造方法を提供することにある。
 本発明の課題は、次の[1]、[2]のいずれかの製造方法により解決される。
 すなわち、[1]ポリ-L-乳酸またはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~5万であるポリ-L-乳酸とポリ-D-乳酸を混合し、重量平均分子量が9万以上、ステレオコンプレックス形成率(Sc)が下記式(1)を満たす混合物を得る工程、次いで、混合物を混合物の融点より低い温度で固相重合する工程からなるL-乳酸単位からなるセグメントとD-乳酸単位からなるセグメントにより構成されるポリ乳酸ブロック共重合体の製造方法、
 Sc=ΔHh/(ΔHl+ΔHh)×100>60   (1)
 ここで、ΔHh:ステレオコンプレックス結晶に基づく熱量(J/g)、ΔHl:ポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)、
または、[2]ポリ-L-乳酸とポリ-D-乳酸のうち、重量平均分子量の高い方と重量平均分子量の低い方の比が2以上30未満であるポリ-L-乳酸とポリ-D-乳酸を混合し、重量平均分子量が9万以上、かつステレオコンプレックス形成率(Sc)が下記式(1)を満たす混合物を得る工程、次いで、混合物を混合物の融点より低い温度で固相重合する工程からなるポリ乳酸ブロック共重合体の製造方法、である。
 Sc=ΔHh/(ΔHl+ΔHh)×100>60   (1)
 ここで、ΔHh:ステレオコンプレックス結晶に基づく熱量(J/g)、ΔHl:ポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
 本発明のポリ乳酸ブロック共重合体の製造方法は、原料となるポリ-L-乳酸とポリ-D-乳酸のいずれか一方の重量平均分子量が17万以上であり、かつもう一方の重量平均分子量が2万以上であることが好ましい。
 本発明のポリ乳酸ブロック共重合体の製造方法は、ポリ-L-乳酸とポリ-D-乳酸の混合物が下記式(2)を満たすことが好ましい。
 Sc=ΔHh/(ΔHl+ΔHh)×100>70   (2)
 本発明のポリ乳酸ブロック共重合体の製造方法は、得られるポリ乳酸ブロック共重合体が下記式(3)を満たすことが好ましい。
 Sc=ΔHh/(ΔHl+ΔHh)×100>80   (3)
 本発明のポリ乳酸ブロック共重合体の製造方法は、得られるポリ乳酸ブロック共重合体のDSC測定において、ポリ乳酸ブロック共重合体を250度まで昇温して3分間恒温状態にした後、冷却速度20℃/minで降温した際の降温結晶化温度が130℃以上であることが好ましい。
 本発明のポリ乳酸ブロック共重合体の製造方法は、得られるポリ乳酸ブロック共重合体の重量平均分子量と数平均分子量の比で示される分散度が2.7以下であることが好ましい。
 本発明のポリ乳酸ブロック共重合体の製造方法は、得られるポリ乳酸ブロック共重合体を含む成形体であって、該成形体が下記式(4)を満たし、かつ厚さ100μmの成形体としたときのヘイズ値が30%以下であることが好ましい。
 相対結晶化度=[(ΔHm-ΔHc)/ΔHm]×100>90  (4)
 ここで、ΔHm:成形体の結晶融解エンタルピー(J/g)、ΔHc:成形体の昇温時結晶化エンタルピー(J/g)
 本発明のポリ乳酸ブロック共重合体の製造方法は、混合物に含まれる触媒が、混合物100重量部に対して0.001~0.5重量部であることが好ましい。
 本発明のポリ乳酸ブロック共重合体の製造方法は、混合物に含まれる触媒が錫化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物、およびスルホン酸化合物から得られる少なくとも一種であることが好ましい。
 本発明のポリ乳酸ブロック共重合体の製造方法は、錫化合物が、酢酸錫(II)、オクチル酸錫(II)、塩化錫(II)、塩化錫(IV)から選ばれる少なくとも一種であり、スルホン酸化合物がメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、プロパンジスルホン酸、ナフタレンジスルホン酸、および2-アミノエタンスルホン酸から選ばれる少なくとも一種であることが好ましい。
 本発明のポリ乳酸ブロック共重合体の製造方法は、固相重合時の温度を段階的または連続的に昇温することが好ましい。
 本発明のポリ乳酸ブロック共重合体の製造方法は、得られるポリ乳酸ブロック共重合体の重量平均分子量が10万以上であることが好ましい。
 本発明によれば、高分子量かつ高融点を有するポリ乳酸ステレオコンプレックスを形成するポリ乳酸ブロック共重合体を高収率で製造することができる。このポリ乳酸ブロック共重合体は高分子量かつ高融点であるため、ポリ乳酸ホモポリマーでは使用が困難であった耐熱性が要求される分野に好適に採用できる。
 以下、本発明について詳細に説明する。
 本発明において、ポリ乳酸ブロック共重合体とは、L-乳酸単位からなるセグメントとD-乳酸単位からなるセグメントが共有結合したポリ乳酸ブロック共重合体である。
 ここで、L-乳酸単位からなるセグメントとは、L-乳酸を主成分とする重合体であり、L-乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることがより好ましく、90mol%以上含有していることがさらに好ましく、95mol%以上含有していることが特に好ましく、98mol%以上含有していることが最も好ましい。
 また、D-乳酸単位からなるセグメントとは、D-乳酸を主成分とする重合体であり、D-乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることがより好ましく、90mol%以上含有していることがさらに好ましく、95mol%以上含有していることが特に好ましく、98mol%以上含有していることが最も好ましい。
 本発明において、L-乳酸またはD-乳酸単位からなるセグメントは、得られるポリ乳酸ブロック共重合体およびポリ乳酸ブロック共重合体を含むポリ乳酸樹脂組成物の性能を損なわない範囲で、他の成分単位を含んでいてもよい。L-乳酸またはD-乳酸単位以外の他の成分単位としては、多価カルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトンなどが挙げられ、具体的には、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムスルホイソフタル酸などの多価カルボン酸類またはそれらの誘導体、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、トリメチロールプロパンまたはペンタエリスリトールにエチレンオキシドまたはプロピレンオキシドを付加した多価アルコール、ビスフェノールにエチレンオキシドを付加反応させた芳香族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの多価アルコール類またはそれらの誘導体、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸類、およびグリコリド、ε-カプロラクトングリコリド、ε-カプロラクトン、β-プロピオラクトン、δ-ブチロラクトン、β-またはγ-ブチロラクトン、ピバロラクトン、δ-バレロラクトンなどのラクトン類などが挙げられる。
 本発明の方法により得られるポリ乳酸ブロック共重合体の重量平均分子量は、特に限定されるものではないが、10万以上30万未満であることが、機械物性の点で好ましい。より好ましくは12万以上28万未満であり、さらに好ましくは13万以上27万未満であり、14万以上26万未満であることが成形性および機械物性の点で特に好ましい。また、ポリ乳酸ブロック共重合体の分散度は、1.5~3.0の範囲が機械物性の点で好ましい。分散度の範囲が1.8~2.7であることがさらに好ましく、2.0~2.4であることが成形性および機械物性の点で特に好ましい。なお、重量平均分子量および分散度とは、溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。
 さらに、本発明で得られるポリ乳酸ブロック共重合体は、耐熱性の観点からステレオコンプレックス形成率(Sc)が80~100%の範囲であることが好ましい。さらに好ましくは85~100%の範囲であり、90~100%であることが特に好ましい。ここで、ステレオコンプレックス形成率とは、ポリ乳酸中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には示差走査型熱量計(DSC)で昇温速度20℃/minで30℃から250℃まで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(3)で算出することができる。
 Sc=ΔHh/(ΔHl+ΔHh)×100   (3)
 本発明においては、ポリ乳酸ブロック共重合体一分子あたりに含まれるL-乳酸単位からなるセグメントおよびD-乳酸単位からなるセグメントの合計数が3以上であることが、高融点のポリ乳酸ステレオコンプレックスを形成しやすいポリ乳酸ブロック共重合体が得られる点で好ましい。さらに好ましくは5以上であり、7以上であることが特に好ましい。
 本発明において、L-乳酸単位からなるセグメントとD-乳酸単位からなるセグメントのそれぞれの合計の重量比は、90:10~10:90であることが好ましい。さらに好ましくは80:20~20:80であり、特に好ましくは75:25~60:40あるいは40:60~25:75である。L-乳酸単位からなるセグメントの重量比が上記好ましい範囲であると、ポリ乳酸ステレオコンプレックスが形成しやすく、その結果、ポリ乳酸ブロック共重合体の融点の上昇が十分に大きくなる。
(原料として用いるポリ乳酸の製造方法)
 本発明において、原料として用いるL―乳酸単位からなるポリ-L-乳酸およびD-乳酸単位からなるポリ-D-乳酸の製造方法については、特に限定されるものではなく、一般のポリ乳酸の製造方法を利用することができる。具体的には、L-乳酸またはD-乳酸を原料として、一旦、環状2量体であるL-ラクチドまたはD-ラクチドを生成せしめ、その後、開環重合を行う2段階のラクチド法と、当該原料を溶媒中または非溶媒中で直接脱水縮合を行う1段階の直接重合法などが知られており、いずれの製法を利用してもよい。
 ここで、ポリ-L-乳酸とは、L-乳酸を主成分とする重合体であり、L-乳酸単位を70mol%以上含有している重合体をいう。好ましくは80mol%であり、90mol%以上含有していることがより好ましく、95mol%以上含有していることがさらに好ましく、98mol%以上含有していることが特に好ましい。
 また、ポリ-D-乳酸とは、D-乳酸を主成分とする重合体であり、D-乳酸単位を70mol%以上含有している重合体をいう。好ましくは80mol%であり、90mol%以上含有していることがより好ましく、95mol%以上含有していることがさらに好ましく、98mol%以上含有していることが特に好ましい。
 ポリ-L-乳酸またはポリ-D-乳酸に含有するラクチド量およびオリゴマー量は、それぞれ5%以下であることが好ましい。さらに好ましくは3%以下であり、特に好ましくは1%以下である。また、ポリ-L-乳酸またはポリ-D-乳酸に含有する乳酸量は、2%以下であることが好ましい。さらに好ましくは1%以下であり、特に好ましくは0.5%以下である。
 ポリ-L-乳酸またはポリ-D-乳酸の酸価は、ポリ-L-乳酸またはポリ-D-乳酸の内、いずれか一方の酸価が100eq/tonであることが好ましい。より好ましくは50eq/ton以下であり、さらに好ましくは30eq/ton以下であり、特に好ましくは15eq/ton以下である。また、混合するポリ-L-乳酸またはポリ-D-乳酸の内、もう一方の酸価は600eq/ton以下であることが好ましい。より好ましくは300eq/ton以下であり、さらに好ましくは150eq/ton以下であり、特に好ましくは100eq/ton以下である。
 本発明で使用するポリ-L-乳酸またはポリ-D-乳酸は、いずれか一方の重量平均分子量が6万~30万以下であり、もう一方の重量平均分子量が1万~5万以下であることが好ましい。重量平均分子量が1万に満たないとポリ乳酸ブロック共重合体の分散度が大きくなり、重量平均分子量が高くならない問題があり、一方、重量平均分子量が5万を越えるとポリ乳酸ブロック共重合体のステレオコンプレックス形成率が低くなる問題がある。より好ましくは、一方の重量平均分子量が10万~27万、もう一方の重量平均分子量が1.5万~4.5万である。さらに好ましくは、一方の重量平均分子量が15万~24万、もう一方の重量平均分子量が2万~4万である。また、ポリ-L-乳酸とポリ-D-乳酸の重量平均分子量の組み合わせとしては混合後の重量平均分子量が9万以上となるよう、適宜選択することが好ましい。
 また、本発明で使用するポリ-L-乳酸とポリ-D-乳酸は、重量平均分子量の高い方と重量平均分子量の低い方の比が、2以上30未満であることが好ましい。この比が2に満たないとポリ乳酸ブロック共重合体のステレオコンプレックス形成率が低くなる問題があり、一方、この比が30以上であるとポリ乳酸ブロック共重合体の分散度が大きくなり、機械物性が低くなる問題がある。より好ましくは、3以上20未満であり、5以上15未満であることがさらに好ましい。
 開環重合法によりポリ-L-乳酸またはポリ-D-乳酸を製造する際の重合触媒としては、金属触媒と酸触媒が挙げられる。金属触媒としては錫化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物などの金属触媒が挙げられる。化合物の種類としては、金属アルコキシド、金属ハロゲン化合物、有機カルボン酸塩、炭酸塩、硫酸塩、酸化物などが好ましい。具体的には、錫粉末、塩化錫(II)、塩化錫(IV)、臭化錫(II)、臭化錫(IV)、エトキシ錫(II)、t-ブトキシ錫(IV)、イソプロポキシ錫(IV)、酢酸錫(II)、酢酸錫(IV)、オクチル酸錫(II)、ラウリン酸錫(II)、ミリスチン酸錫(II)、パルミチン酸錫(II)、ステアリン酸錫(II)、オレイン酸錫(II)、リノール酸錫(II)、アセチルアセトン錫(II)、シュウ酸錫(II)、乳酸錫(II)、酒石酸錫(II)、ピロリン酸錫(II)、p-フェノールスルホン酸錫(II)、ビス(メタンスルホン酸)錫(II)、硫酸錫(II)、酸化錫(II)、酸化錫(IV)、硫化錫(II)、硫化錫(IV)、酸化ジメチル錫(IV)、酸化メチルフェニル錫(IV)、酸化ジブチル錫(IV)、酸化ジオクチル錫(IV)、酸化ジフェニル錫(IV)、酸化トリブチル錫、水酸化トリエチル錫(IV)、水酸化トリフェニル錫(IV)、水素化トリブチル錫、モノブチル錫(IV)オキシド、テトラメチル錫(IV)、テトラエチル錫(IV)、テトラブチル錫(IV)、ジブチルジフェニル錫(IV)、テトラフェニル錫(IV)、酢酸トリブチル錫(IV)、酢酸トリイソブチル錫(IV)、酢酸トリフェニル錫(IV)、二酢酸ジブチル錫、ジオクタン酸ジブチル錫、ジラウリン酸ジブチル錫(IV)、マレイン酸ジブチル錫(IV)、ジブチル錫ビス(アセチルアセトナート)、塩化トリブチル錫(IV)、二塩化ジブチル錫、三塩化モノブチル錫、二塩化ジオクチル錫、塩化トリフェニル錫(IV)、硫化トリブチル錫、硫酸トリブチル錫、メタンスルホン酸錫(II)、エタンスルホン酸錫(II)、トリフルオロメタンスルホン酸錫(II)、ヘキサクロロ錫(IV)酸アンモニウム、ジブチル錫スルフィド、ジフェニル錫スルフィドおよび硫酸トリエチル錫、フタロシアニン錫(II)等の錫化合物が挙げられる。また、チタニウムメトキシド、チタニウムプロポキシド、チタニウムイソプロポキシド、チタニウムブトキシド、チタニウムイソブトキシド、チタニウムシクロヘキシド、チタニウムフェノキシド、塩化チタン、二酢酸チタン、三酢酸チタン、四酢酸チタン、酸化チタン(IV)等のチタン化合物、ジイソプロポキシ鉛(II)、一塩化鉛、酢酸鉛、オクチル酸鉛(II)、イソオクタン酸鉛(II)、イソノナン酸鉛(II)、ラウリン酸鉛(II)、オレイン酸鉛(II)、リノール酸鉛(II)、ナフテン酸鉛、ネオデカン酸鉛(II)、酸化鉛、硫酸鉛(II)等の鉛化合物、亜鉛粉末、メチルプロポキシ亜鉛、塩化亜鉛、酢酸亜鉛、オクチル酸亜鉛(II)、ナフテン酸亜鉛、炭酸亜鉛、酸化亜鉛、硫酸亜鉛等の亜鉛化合物、塩化コバルト、酢酸コバルト、オクチル酸コバルト(II)、イソオクタン酸コバルト(II)、イソノナン酸コバルト(II)、ラウリン酸コバルト(II)、オレイン酸コバルト(II)、リノール酸コバルト(II)、ナフテン酸コバルト、ネオデカン酸コバルト(II)、炭酸第一コバルト、硫酸第一コバルト、酸化コバルト(II)等のコバルト化合物、塩化鉄(II)、酢酸鉄(II)、オクチル酸鉄(II)、ナフテン酸鉄、炭酸鉄(II)、硫酸鉄(II)、酸化鉄(II)等の鉄化合物、プロポキシリチウム、塩化リチウム、酢酸リチウム、オクチル酸リチウム、ナフテン酸リチウム、炭酸リチウム、硫酸ジリチウム、酸化リチウム等のリチウム化合物、トリイソプロポキシユウロピウム(III)、トリイソプロポキシネオジム(III)、トリイソプロポキシランタン、トリイソプロポキシサマリウム(III)、トリイソプロポキシイットリウム、イソプロポキシイットリウム、塩化ジスプロシウム、塩化ユウロピウム、塩化ランタン、塩化ネオジム、塩化サマリウム、塩化イットリウム、三酢酸ジスプロシウム(III)、三酢酸ユウロピウム(III)、酢酸ランタン、三酢酸ネオジム、酢酸サマリウム、三酢酸イットリウム、炭酸ジスプロシウム(III)、炭酸ジスプロシウム(IV)、炭酸ユウロピウム(II)、炭酸ランタン、炭酸ネオジム、炭酸サマリウム(II)、炭酸サマリウム(III)、炭酸イットリウム、硫酸ジスプロシウム、硫酸ユウロピウム(II)、硫酸ランタン、硫酸ネオジム、硫酸サマリウム、硫酸イットリウム、二酸化ユウロピウム、酸化ランタン、酸化ネオジム、酸化サマリウム(III)、酸化イットリウム等の希土類化合物が挙げられる。その他にも、カリウムイソプロポキシド、塩化カリウム、酢酸カリウム、オクチル酸カリウム、ナフテン酸カリウム、炭酸t-ブチルカリウム、硫酸カリウム、酸化カリウム等のカリウム化合物、銅(II)ジイソプロポキシド、塩化銅(II)、酢酸銅(II)、オクチル酸銅、ナフテン酸銅、硫酸銅(II)、炭酸二銅等の銅化合物、塩化ニッケル、酢酸ニッケル、オクチル酸ニッケル、炭酸ニッケル、硫酸ニッケル(II)、酸化ニッケル等のニッケル化合物、テトライソプロポキシジルコニウム(IV)、三塩化ジルコニウム、酢酸ジルコニウム、オクチル酸ジルコニウム、ナフテン酸ジルコニウム、炭酸ジルコニウム(II)、炭酸ジルコニウム(IV)、硫酸ジルコニウム、酸化ジルコニウム(II)等のジルコニウム化合物、トリイソプロポキシアンチモン、フッ化アンチモン(III)、フッ化アンチモン(V)、酢酸アンチモン、酸化アンチモン(III)等のアンチモン化合物、マグネシウム、マグネシウムジイソプロポキシド、塩化マグネシウム、酢酸マグネシウム、乳酸マグネシウム、炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム等のマグネシウム化合物、ジイソプロポキシカルシウム、塩化カルシウム、酢酸カルシウム、オクチル酸カルシウム、ナフテン酸カルシウム、乳酸カルシウム、硫酸カルシウム等のカルシウム化合物、アルミニウム、アルミニウムイソプロポキシド、塩化アルミニウム、酢酸アルミニウム、オクチル酸アルミニウム、硫酸アルミニウム、酸化アルミニウム等のアルミニウム化合物、ゲルマニウム、テトライソプロポキシゲルマン、酸化ゲルマニウム(IV)等のゲルマニウム化合物、トリイソプロポキシマンガン(III)、三塩化マンガン、酢酸マンガン、オクチル酸マンガン(II)、ナフテン酸マンガン(II)、硫酸第一マンガン等のマンガン化合物、塩化ビスマス(III)、ビスマス粉末、酸化ビスマス(III)、酢酸ビスマス、オクチル酸ビスマス、ネオデカン酸ビスマス等のビスマス化合物なども挙げることができる。また、錫酸ナトリウム、錫酸マグネシウム、錫酸カリウム、錫酸カルシウム、錫酸マンガン、錫酸ビスマス、錫酸バリウム、錫酸ストロンチウム、チタン酸ナトリウム、チタン酸マグネシウム、チタン酸アルミニウム、チタン酸カリウム、チタン酸カルシウム、チタン酸コバルト、チタン酸亜鉛、チタン酸マンガン、チタン酸ジルコニウム、チタン酸ビスマス、チタン酸バリウム、チタン酸ストロンチウムなどの2種以上の金属元素からなる化合物なども好ましい。また、酸触媒としては、プロトン供与体のブレンステッド酸でもよく、電子対受容体であるルイス酸でもよく、有機酸および無機酸のいずれでもよい。具体的には、ギ酸、酢酸、プロピオン酸、ヘプタン酸、オクタン酸、オクチル酸、ノナン酸、イソノナン酸、トリフルオロ酢酸およびトリクロロ酢酸などのモノカルボン酸化合物、シュウ酸、コハク酸、マレイン酸、酒石酸およびマロン酸などのジカルボン酸化合物、クエン酸およびトリカリバリル酸などのトリカルボン酸化合物、ベンゼンスルホン酸、n-ブチルベンゼンスルホン酸、n-オクチルベンゼンスルホン酸、n-ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、2,5-ジメチルベンゼンスルホン酸、2,5-ジブチルベンゼンスルホン酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3-アミノ-4-ヒドロキシベンゼンスルホン酸、5-アミノ-2-メチルベンゼンスルホン酸、3,5-ジアミノ-2,4,6-トリメチルベンゼンスルホン酸、2,4-ジニトロベンゼンスルホン酸、p-クロルベンゼンスルホン酸、 2,5-ジクロロベンゼンスルホン酸、p-フェノールスルホン酸、クメンスルホン酸、キシレンスルホン酸、o-クレゾールスルホン酸、m-クレゾールスルホン酸、p-クレゾールスルホン酸、p-トルエンスルホン酸、2-ナフタレンスルホン酸、1-ナフタレンスルホン酸、イソプロピルナフタレンスルホン酸、ドデシルナフタレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、1,5-ナフタレンジスルホン酸、2,7-ナフタレンジスルホン酸、4,4-ビフェニルジスルホン酸、アントラキノン-2-スルホン酸、m-ベンゼンジスルホン酸、2,5-ジアミノ-1,3-ベンゼンジスルホン酸、アニリン-2,4-ジスルホン酸、アントラキノン-1,5-ジスルホン酸、ポリスチレンスルホン酸などの芳香族スルホン酸、メタンスルホン酸、エタンスルホン酸、1-プロパンスルホン酸、n-オクチルスルホン酸、ペンタデシルスルホン酸、トリフルオロメタンスルホン酸、トリクロロメタンスルホン酸、1,2-エタンジスルホン酸、1,3-プロパンジスルホン酸、アミノメタンスルホン酸、2-アミノエタンスルホン酸などの脂肪族スルホン酸、シクロペンタンスルホン酸、シクロヘキサンスルホン酸およびカンファースルホン酸、3-シクロヘキシルアミノプロパンスルホン酸などの脂環式スルホン酸などのスルホン酸化合物、アスパラギン酸やグルタミン酸などの酸性アミノ酸、アスコルビン酸、レチノイン酸、リン酸、メタリン酸、亜リン酸、次亜リン酸、ポリリン酸、リン酸モノドデシルおよびリン酸モノオクタデシルなどのリン酸モノエステル、リン酸ジドデシルおよびリン酸ジオクタデシルなどのリン酸ジエステル、亜リン酸モノエステルおよび亜リン酸ジエステルなどのリン酸化合物、ホウ酸、塩酸、硫酸なども挙げられる。また、酸触媒としては、形状は特に限定されず、固体酸触媒および液体酸触媒のいずれでもよく、例えば、固体酸触媒としては、酸性白土、カオリナイト、ベントナイト、モンモリロナイト、タルク、ケイ酸ジルコニウムおよびゼオライトなどの天然鉱物、シリカ、アルミナ、チタニアおよびジルコニアなどの酸化物またはシリカアルミナ、シリカマグネシア、シリカボリア、アルミナボリア、シリカチタニアおよびシリカジルコニアなどの酸化物複合体、塩素化アルミナ、フッ素化アルミナ、陽イオン交換樹脂などが挙げられる。
 本発明において、生成するポリ乳酸の分子量を考慮した場合、重合触媒としては金属触媒が好ましく、中でも錫化合物、チタン化合物、アンチモン化合物、希土類化合物がより好ましく、生成するポリ乳酸の融点を考慮した場合には、錫化合物およびチタン化合物がより好ましい。さらに、生成するポリ乳酸の熱安定性を考慮した場合、錫系の有機カルボン酸塩あるいは錫系のハロゲン化合物が好ましく、特に酢酸錫(II)、オクチル酸錫(II)、および塩化錫(II)がより好ましい。
 重合触媒の添加量については特に限定されるものではなく、使用する原料(L-乳酸、D-乳酸など)100重量部に対して0.001重量部以上、2重量部以下が好ましく、とくに0.001重量部以上、1重量部以下がより好ましい。触媒量が上記好ましい範囲であると、重合時間の短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。また、触媒を2種類以上併用する場合は、合計添加量が上記の範囲内であることが好ましい。
 重合触媒の添加時期については特に限定されるものではないが、ラクチドを加熱溶解後、触媒を添加することが触媒を系内に均一分散し、重合活性を高める点で好ましい。
 また、直接重合法を利用してポリ-L-乳酸またはポリ-D-乳酸を製造する際の好ましい重合触媒としては、金属触媒と酸触媒が挙げられる。好ましい金属触媒としては、錫化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物が挙げられ、化合物の種類としては、金属アルコキシド、金属ハロゲン化合物、有機カルボン酸塩、炭酸塩、硫酸塩、酸化物などが好ましい。具体的には、錫粉末、塩化錫(II)、塩化錫(IV)、臭化錫(II)、臭化錫(IV)、エトキシ錫(II)、t-ブトキシ錫(IV)、イソプロポキシ錫(IV)、酢酸錫(II)、酢酸錫(IV)、オクチル酸錫(II)、ラウリン酸錫(II)、ミリスチン酸錫(II)、パルミチン酸錫(II)、ステアリン酸錫(II)、オレイン酸錫(II)、リノール酸錫(II)、アセチルアセトン錫(II)、シュウ酸錫(II)、乳酸錫(II)、酒石酸錫(II)、ピロリン酸錫(II)、p-フェノールスルホン酸錫(II)、ビス(メタンスルホン酸)錫(II)、硫酸錫(II)、酸化錫(II)、酸化錫(IV)、硫化錫(II)、硫化錫(IV)、酸化ジメチル錫(IV)、酸化メチルフェニル錫(IV)、酸化ジブチル錫(IV)、酸化ジオクチル錫(IV)、酸化ジフェニル錫(IV)、酸化トリブチル錫、水酸化トリエチル錫(IV)、水酸化トリフェニル錫(IV)、水素化トリブチル錫、モノブチル錫(IV)オキシド、テトラメチル錫(IV)、テトラエチル錫(IV)、テトラブチル錫(IV)、ジブチルジフェニル錫(IV)、テトラフェニル錫(IV)、酢酸トリブチル錫(IV)、酢酸トリイソブチル錫(IV)、酢酸トリフェニル錫(IV)、二酢酸ジブチル錫、ジオクタン酸ジブチル錫、ジラウリン酸ジブチル錫(IV)、マレイン酸ジブチル錫(IV)、ジブチル錫ビス(アセチルアセトナート)、塩化トリブチル錫(IV)、二塩化ジブチル錫、三塩化モノブチル錫、二塩化ジオクチル錫、塩化トリフェニル錫(IV)、硫化トリブチル錫、硫酸トリブチル錫、メタンスルホン酸錫(II)、エタンスルホン酸錫(II)、トリフルオロメタンスルホン酸錫(II)、ヘキサクロロ錫(IV)酸アンモニウム、ジブチル錫スルフィド、ジフェニル錫スルフィドおよび硫酸トリエチル錫、フタロシアニン錫(II)等の錫化合物が挙げられる。また、チタニウムメトキシド、チタニウムプロポキシド、チタニウムイソプロポキシド、チタニウムブトキシド、チタニウムイソブトキシド、チタニウムシクロヘキシド、チタニウムフェノキシド、塩化チタン、二酢酸チタン、三酢酸チタン、四酢酸チタン、酸化チタン(IV)等のチタン化合物、ジイソプロポキシ鉛(II)、一塩化鉛、酢酸鉛、オクチル酸鉛(II)、イソオクタン酸鉛(II)、イソノナン酸鉛(II)、ラウリン酸鉛(II)、オレイン酸鉛(II)、リノール酸鉛(II)、ナフテン酸鉛、ネオデカン酸鉛(II)、酸化鉛、硫酸鉛(II)等の鉛化合物、亜鉛粉末、メチルプロポキシ亜鉛、塩化亜鉛、酢酸亜鉛、オクチル酸亜鉛(II)、ナフテン酸亜鉛、炭酸亜鉛、酸化亜鉛、硫酸亜鉛等の亜鉛化合物、塩化コバルト、酢酸コバルト、オクチル酸コバルト(II)、イソオクタン酸コバルト(II)、イソノナン酸コバルト(II)、ラウリン酸コバルト(II)、オレイン酸コバルト(II)、リノール酸コバルト(II)、ナフテン酸コバルト、ネオデカン酸コバルト(II)、炭酸第一コバルト、硫酸第一コバルト、酸化コバルト(II)等のコバルト化合物、塩化鉄(II)、酢酸鉄(II)、オクチル酸鉄(II)、ナフテン酸鉄、炭酸鉄(II)、硫酸鉄(II)、酸化鉄(II)等の鉄化合物、プロポキシリチウム、塩化リチウム、酢酸リチウム、オクチル酸リチウム、ナフテン酸リチウム、炭酸リチウム、硫酸ジリチウム、酸化リチウム等のリチウム化合物、トリイソプロポキシユウロピウム(III)、トリイソプロポキシネオジム(III)、トリイソプロポキシランタン、トリイソプロポキシサマリウム(III)、トリイソプロポキシイットリウム、イソプロポキシイットリウム、塩化ジスプロシウム、塩化ユウロピウム、塩化ランタン、塩化ネオジム、塩化サマリウム、塩化イットリウム、三酢酸ジスプロシウム(III)、三酢酸ユウロピウム(III)、酢酸ランタン、三酢酸ネオジム、酢酸サマリウム、三酢酸イットリウム、炭酸ジスプロシウム(III)、炭酸ジスプロシウム(IV)、炭酸ユウロピウム(II)、炭酸ランタン、炭酸ネオジム、炭酸サマリウム(II)、炭酸サマリウム(III)、炭酸イットリウム、硫酸ジスプロシウム、硫酸ユウロピウム(II)、硫酸ランタン、硫酸ネオジム、硫酸サマリウム、硫酸イットリウム、二酸化ユウロピウム、酸化ランタン、酸化ネオジム、酸化サマリウム(III)、酸化イットリウム等の希土類化合物が挙げられる。その他にも、カリウムイソプロポキシド、塩化カリウム、酢酸カリウム、オクチル酸カリウム、ナフテン酸カリウム、炭酸t-ブチルカリウム、硫酸カリウム、酸化カリウム等のカリウム化合物、銅(II)ジイソプロポキシド、塩化銅(II)、酢酸銅(II)、オクチル酸銅、ナフテン酸銅、硫酸銅(II)、炭酸二銅等の銅化合物、塩化ニッケル、酢酸ニッケル、オクチル酸ニッケル、炭酸ニッケル、硫酸ニッケル(II)、酸化ニッケル等のニッケル化合物、テトライソプロポキシジルコニウム(IV)、三塩化ジルコニウム、酢酸ジルコニウム、オクチル酸ジルコニウム、ナフテン酸ジルコニウム、炭酸ジルコニウム(II)、炭酸ジルコニウム(IV)、硫酸ジルコニウム、酸化ジルコニウム(II)等のジルコニウム化合物、トリイソプロポキシアンチモン、フッ化アンチモン(III)、フッ化アンチモン(V)、酢酸アンチモン、酸化アンチモン(III)等のアンチモン化合物、マグネシウム、マグネシウムジイソプロポキシド、塩化マグネシウム、酢酸マグネシウム、乳酸マグネシウム、炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム等のマグネシウム化合物、ジイソプロポキシカルシウム、塩化カルシウム、酢酸カルシウム、オクチル酸カルシウム、ナフテン酸カルシウム、乳酸カルシウム、硫酸カルシウム等のカルシウム化合物、アルミニウム、アルミニウムイソプロポキシド、塩化アルミニウム、酢酸アルミニウム、オクチル酸アルミニウム、硫酸アルミニウム、酸化アルミニウム等のアルミニウム化合物、ゲルマニウム、テトライソプロポキシゲルマン、酸化ゲルマニウム(IV)等のゲルマニウム化合物、トリイソプロポキシマンガン(III)、三塩化マンガン、酢酸マンガン、オクチル酸マンガン(II)、ナフテン酸マンガン(II)、硫酸第一マンガン等のマンガン化合物、塩化ビスマス(III)、ビスマス粉末、酸化ビスマス(III)、酢酸ビスマス、オクチル酸ビスマス、ネオデカン酸ビスマス等のビスマス化合物なども挙げることができる。また、錫酸ナトリウム、錫酸マグネシウム、錫酸カリウム、錫酸カルシウム、錫酸マンガン、錫酸ビスマス、錫酸バリウム、錫酸ストロンチウム、チタン酸ナトリウム、チタン酸マグネシウム、チタン酸アルミニウム、チタン酸カリウム、チタン酸カルシウム、チタン酸コバルト、チタン酸亜鉛、チタン酸マンガン、チタン酸ジルコニウム、チタン酸ビスマス、チタン酸バリウム、チタン酸ストロンチウムなどの2種以上の金属元素からなる化合物なども好ましい。また、好ましい酸触媒としては、プロトン供与体のブレンステッド酸でもよく、電子対受容体であるルイス酸でもよく、有機酸および無機酸のいずれでもよい。具体的には、ギ酸、酢酸、プロピオン酸、ヘプタン酸、オクタン酸、オクチル酸、ノナン酸、イソノナン酸、トリフルオロ酢酸およびトリクロロ酢酸などのモノカルボン酸化合物、シュウ酸、コハク酸、マレイン酸、酒石酸およびマロン酸などのジカルボン酸化合物、クエン酸およびトリカリバリル酸などのトリカルボン酸化合物、ベンゼンスルホン酸、n-ブチルベンゼンスルホン酸、n-オクチルベンゼンスルホン酸、n-ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、2,5-ジメチルベンゼンスルホン酸、2,5-ジブチルベンゼンスルホン酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3-アミノ-4-ヒドロキシベンゼンスルホン酸、5-アミノ-2-メチルベンゼンスルホン酸、3,5-ジアミノ-2,4,6-トリメチルベンゼンスルホン酸、2,4-ジニトロベンゼンスルホン酸、p-クロルベンゼンスルホン酸、 2,5-ジクロロベンゼンスルホン酸、p-フェノールスルホン酸、クメンスルホン酸、キシレンスルホン酸、o-クレゾールスルホン酸、m-クレゾールスルホン酸、p-クレゾールスルホン酸、p-トルエンスルホン酸、2-ナフタレンスルホン酸、1-ナフタレンスルホン酸、イソプロピルナフタレンスルホン酸、ドデシルナフタレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、1,5-ナフタレンジスルホン酸、2,7-ナフタレンジスルホン酸、4,4-ビフェニルジスルホン酸、アントラキノン-2-スルホン酸、m-ベンゼンジスルホン酸、2,5-ジアミノ-1,3-ベンゼンジスルホン酸、 アニリン-2,4-ジスルホン酸、アントラキノン-1,5-ジスルホン酸、ポリスチレンスルホン酸などの芳香族スルホン酸、メタンスルホン酸、エタンスルホン酸、1-プロパンスルホン酸、n-オクチルスルホン酸、ペンタデシルスルホン酸、トリフルオロメタンスルホン酸、トリクロロメタンスルホン酸、 1,2-エタンジスルホン酸、1,3-プロパンジスルホン酸、アミノメタンスルホン酸、2-アミノエタンスルホン酸などの脂肪族スルホン酸、シクロペンタンスルホン酸、シクロヘキサンスルホン酸およびカンファースルホン酸、3-シクロヘキシルアミノプロパンスルホン酸などの脂環式スルホン酸などのスルホン酸化合物、アスパラギン酸やグルタミン酸などの酸性アミノ酸、アスコルビン酸、レチノイン酸、リン酸、メタリン酸、亜リン酸、次亜リン酸、ポリリン酸、リン酸モノドデシルおよびリン酸モノオクタデシルなどのリン酸モノエステル、リン酸ジドデシルおよびリン酸ジオクタデシルなどのリン酸ジエステル、亜リン酸モノエステルおよび亜リン酸ジエステルなどのリン酸化合物、ホウ酸、塩酸、硫酸なども挙げられる。また、酸触媒としては、形状は特に限定されず、固体酸触媒および液体酸触媒のいずれでもよく、例えば、固体酸触媒としては、酸性白土、カオリナイト、ベントナイト、モンモリロナイト、タルク、ケイ酸ジルコニウムおよびゼオライトなどの天然鉱物、シリカ、アルミナ、チタニアおよびジルコニアなどの酸化物またはシリカアルミナ、シリカマグネシア、シリカボリア、アルミナボリア、シリカチタニアおよびシリカジルコニアなどの酸化物複合体、塩素化アルミナ、フッ素化アルミナ、陽イオン交換樹脂などが挙げられる。
 本発明において、生成するポリ乳酸の分子量を考慮した場合、錫化合物、チタン化合物、アンチモン化合物、希土類化合物、および酸触媒が好ましく、生成するポリ乳酸の融点を考慮した場合に、錫化合物、チタン化合物、およびスルホン酸化合物がより好ましい。さらに、生成するポリ乳酸の熱安定性を考慮した場合、金属触媒の場合は、錫系の有機カルボン酸塩あるいは錫系のハロゲン化合物が好ましく、特に酢酸錫(II)、オクチル酸錫(II)、および塩化錫(II)がより好ましく、酸触媒の場合は、モノおよびジスルホン酸化合物が好ましく、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、プロパンジスルホン酸、ナフタレンジスルホン酸、および2-アミノエタンスルホン酸がより好ましい。また、触媒は1種類でもよく、2種類以上併用してもよいが、重合活性を高める点から考えて、2種類以上を併用することが好ましい。着色も抑制することが可能となるという点で、錫化合物から選択される1種類以上および/またはスルホン酸化合物から選択される1種類以上を用いることが好ましい。さらに生産性に優れるという点で、酢酸錫(II)および/またはオクチル酸錫(II)と、メタンスルホン酸、エタンスルホン酸、プロパンジスルホン酸、ナフタレンジスルホン酸、2-アミノエタンスルホン酸のいずれか一種類以上との併用がより好ましく、酢酸錫(II)および/またはオクチル酸錫(II)と、メタンスルホン酸、エタンスルホン酸、プロパンジスルホン酸、2-アミノエタンスルホン酸のいずれか一種との併用がさらに好ましい。
 重合触媒の添加量については特に限定されるものではなく、使用する原料(L-乳酸、D-乳酸など)100重量部に対して0.001重量部以上、0.5重量部以下が好ましく、とくに0.001重量部以上、0.3重量部以下がより好ましい。触媒量が上記好ましい範囲であると、重合時間の短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。また、触媒を2種類以上併用する場合は、合計添加量が上記の範囲内であることが好ましい。錫化合物から選択される1種類以上および/またはスルホン酸化合物から選択される1種類以上を併用する場合は、高い重合活性を維持し、かつ着色を抑制することが可能であるという点で、錫化合物とスルホン酸化合物の重量比が1:1~1:30であることが好ましい。生産性に優れるという点で、錫化合物とスルホン酸化合物の重量比が1:2~1:15であることがより好ましい。
 重合触媒の添加時期については特に限定されるものではないが、酸触媒については原料または原料を脱水した後に添加することが生産性に優れるという点で好ましく、金属触媒については原料を脱水した後に添加することが重合活性を高める点から考えて好ましい。
(ポリ乳酸の混合方法)
 次にポリ-L-乳酸とポリ-D-乳酸を混合する工程について説明する。
 本発明においてポリ-L-乳酸とポリ-D-乳酸を混合し、ステレオコンプレックス形成率(Sc)が固相重合直前において60%を越え100%までの範囲となる混合物とし、その混合物を固相重合することが重要である。混合物のステレオコンプレックス形成率(Sc)は、好ましくは70%を越え99%までの範囲であり、80%を越え95%までの範囲が特に好ましい。ここで、ステレオコンプレックス形成率とは、ポリ乳酸中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には、示差走査型熱量計(DSC)で昇温速度20℃/minで30℃から250℃まで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(4)で算出することができる。
 Sc=ΔHh/(ΔHl+ΔHh)×100   (4)
 また、混合に用いるポリ-L-乳酸とポリ-D-乳酸の結晶化の有無については特に限定されず、結晶化したポリ-L-乳酸とポリ-D-乳酸を混合してもよいし、溶融状態のポリ-L-乳酸とポリ-D-乳酸を混合することもできる。混合に用いるポリ-L-乳酸とポリ-D-乳酸の結晶化を行う場合、具体的な方法として気相中または液相中において結晶化処理温度で保持する方法およびポリ-L-乳酸とポリ-D-乳酸の溶融混合物を延伸または剪断の操作を行いながら冷却固化させる方法などが挙げられ、操作が簡便であるという観点においては、気相中または液相中において結晶化処理温度で保持する方法が好ましい。
 ここでいう結晶化処理温度とは、ガラス転移温度より高く、前記で混合したポリ-L-乳酸またはポリ-D-乳酸のうち、低い融点を有するポリ乳酸の融点よりも低い温度範囲であれば特に限定されるものではないが、予め示差走査型熱量計(DSC)により測定した昇温結晶化温度および降温結晶化温度の範囲内であることがより好ましい。
 結晶化させる際には、減圧、常圧または加圧のいずれの条件でもよい。
 また、結晶化させる際の時間については特に限定されるものではないが、3時間以内であれば十分に結晶化されており、2時間以内でも好ましい。
 ポリ-L-乳酸とポリ-D-乳酸の混合方法としては特に限定されるものではなく、例えばポリ-L-乳酸とポリ-D-乳酸のうち、融点の高い方の成分の融解終了温度以上で溶融混練する方法、あるいは溶媒中で混合した後に溶媒を除く方法などが挙げられるが、効率的に混合できるという観点では、融解終了温度以上で溶融混練する方法が好ましい。
 ここで、融点とは、示差走査型熱量計で(DSC)により測定したポリ乳酸単独結晶融解ピークにおけるピークトップの温度のことを指し、また融解終了温度とは示差走査型熱量計で(DSC)により測定したポリ乳酸単独結晶融解ピークにおけるピーク終了温度のことを指す。
 融解終了温度以上で溶融混練する方法としては、ポリ-L-乳酸とポリ-D-乳酸を回分法もしくは連続法で混合する方法が挙げられ、いずれの方法で混合してもよく、混練装置としては例えば、一軸押出機、二軸押出機、プラストミル、ニーダー、および減圧装置付き撹拌槽型反応機が挙げられ、均一かつ十分に混練できる観点においては一軸押出機、二軸押出機を用いることが好ましい。
 押出機を用いた混練において、ポリ乳酸の供給方法は特に限定されず、樹脂供給口からポリ-L-乳酸とポリ-D-乳酸を一括して供給する方法や、必要に応じてサイド供給口を利用し、ポリ-L-乳酸とポリ-D-乳酸を樹脂供給口とサイド供給口にそれぞれ分けて供給する方法が可能である。また、混練機へのポリ乳酸の供給は、ポリ乳酸製造工程から直接溶融状態で行うことも可能である。
 押出機におけるスクリューエレメントは、ポリ-L-乳酸とポリ-D-乳酸が均一に混合してステレオコンプレックス形成できるように、混合部にニーディングエレメントを備えるのが好ましい。
 混合する温度条件については、ポリ-L-乳酸とポリ-D-乳酸のうち、融点の高い方の成分の融解終了温度以上で行うことが好ましい。好ましくは140℃~250℃の範囲であり、さらに好ましくは160℃~230℃であり、特に好ましくは180~210℃である。混合温度が上記好ましい範囲であると、溶融状態で混合が可能であり、混合時における混合物の分子量低下も起きにくい。さらに、混合物の流動性を一定に保持することが可能であり、著しい流動性低下が起きにくい。
 混合する時間条件については、0.1~10minの範囲が好ましく、0.3~5minがより好ましく、0.5~3minの範囲が特に好ましい。混合時間が上記好ましい範囲であると、ポリ-L-乳酸とポリ-D-乳酸を均一に混合することが可能であり、混合により熱分解を生じにくい。
 混合する圧力条件については特に限定されるものではなく、大気雰囲気下または窒素などの不活性気体雰囲気下のいずれの条件でもよい。
 混合工程において、L-乳酸単位からなるポリ-L-乳酸とD-乳酸単位からなるポリ-D-乳酸の混合重量比は、90:10~10:90であることが好ましい。より好ましくは80:20~20:80であり、特に好ましくは75:25~40:60もしくは40:60~25:75である。L-乳酸単位からなるポリ-L-乳酸の重量比が上記好ましい範囲であると、最終的に得られるポリ乳酸ブロック共重合体の融点の上昇が大きくなり、一方、ポリ乳酸ステレオコンプレックスを形成しやすくなる。ポリ-L-乳酸とポリ-D-乳酸の混合重量比を50:50以外にする場合は、重量平均分子量の大きい方のポリ-L-乳酸またはポリ-D-乳酸を多く配合することが好ましい。
 この混合工程において、次の固相重合を効率的に進めるために、混合物に、触媒を含有させることが好ましい。このとき触媒は、ポリ-L-乳酸および/またはポリ-D-乳酸を製造する際の触媒の残留分であってもよいし、混合工程においてさらに前記触媒から選ばれる一種以上を添加することもできる。
 触媒の含有量は、特に限定されるものではなく、ポリ-L-乳酸とポリ-D-乳酸の混合物100重量部に対して0.001重量部以上、0.5重量部以下が好ましく、とくに0.001重量部以上、0.3重量部以下がより好ましい。触媒量が上記好ましい範囲であると、重合時間の短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。
 また、混合工程においては、本発明の効果を損なわない範囲で最終的に得られるポリ乳酸ブロック共重合体のL-乳酸単位からなるポリ-L-乳酸(L-乳酸単位からなるセグメント)と、D-乳酸単位からなるポリ-D-乳酸(D-乳酸単位からなるセグメント)との交互性を高めるために、多官能性化合物を混合してもよい。
 ここで使用する多官能性化合物としては、特に限定されるものではなく、多価カルボン酸無水物、多価カルボン酸ハロゲン化物、多価カルボン酸、多価イソシアネート、多価アミン、多価アルコールおよび多価エポキシ化合物などが挙げられ、具体的には、1,2-シクロヘキサンジカルボン酸無水物、コハク酸無水物、フタル酸無水物、トリメリット酸無水物、1,8-ナフタレンジカルボン酸無水物、ピロメリット酸無水物などの多価カルボン酸無水物、イソフタル酸クロリド、テレフタル酸クロリド、2,6-ナフタレンジカルボン酸クロリドなどの多価カルボン酸ハロゲン化物、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などの多価カルボン酸、ヘキサメチレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、トルエン-2,4-ジイソシアネートなどの多価イソシアネート、エチレンジアミン、ヘキサンジアミン、ジエチレントリアミンなどの多価アミン、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトールなどの多価アルコール、およびテレフタル酸ジグリシジルエステル、ナフタレンジカルボン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル、ピロメリット酸テトラグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどの多価エポキシ化合物などが挙げられる。好ましくは、多価カルボン酸無水物、多価イソシアネート、多価アルコールおよび多価エポキシ化合物であり、特に多価カルボン酸無水物、多価イソシアネートおよび多価エポキシ化合物がより好ましい。また、これらは1種または2種以上を併用して使用することができる。
 多官能性化合物の混合量については特に限定されるものではなく、ポリ-L-乳酸およびポリ-D-乳酸の合計100重量部に対して、0.01重量部以上、20重量部以下が好ましく、さらに0.1重量部以上、10重量部以下であることがより好ましい。多官能性化合物の添加量が上記好ましい範囲であると、多官能性化合物を使用する効果を発揮できる。
 さらに、多官能性化合物を用いる際には、ポリ-L-乳酸およびポリ-D-乳酸と多官能性化合物の反応を促進させるために、反応触媒を添加してもよい。反応触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、水素化ほう素ナトリウム、水素化ほう素リチウム、フェニル化ほう素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、りん酸水素二ナトリウム、りん酸水素二カリウム、りん酸水素二リチウム、ビスフェノールAの二ナトリウム塩、同二カリウム塩、同二リチウム塩、フェノールのナトリウム塩、同カリウム塩、同リチウム塩、同セシウム塩などのアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウムなどのアルカリ土類金属化合物、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、トリアミルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリエチレンジアミン、ジメチルフェニルアミン、ジメチルベンジルアミン、2-(ジメチルアミノメチル)フェノール、ジメチルアニリン、ピリジン、ピコリン、1,8-ジアザビシクロ(5,4,0)ウンデセン-7などの3級アミン、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-エチル-4-メチルイミダゾール、4-フェニル-2-メチルイミダゾールなどのイミダゾール化合物、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、トリプロピルベンジルアンモニウムクロライド、N-メチルピリジニウムクロライドなどの第4級アンモニウム塩、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン化合物、テトラメチルホスホニウムブロマイド、テトラブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、トリフェニルベンジルホスホニウムブロマイドなどのホスホニウム塩、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、トリ(p-ヒドロキシ)フェニルホスフェート、トリ(p-メトキシ)フェニルホスフェートなどのリン酸エステル、シュウ酸、p-トルエンスルホン酸、ジノニルナフタレンジスルホン酸、ドデシルベンゼンスルホン酸などの有機酸、および三フッ化ホウ素、四塩化アルミニウム、四塩化チタン、四塩化錫などのルイス酸などが挙げられ、これらは1種または2種以上を併用して使用することができる。
 反応触媒の添加量は特に限定されるものではなく、ポリ-L-乳酸およびポリ-D-乳酸の合計100重量部に対して、0.001重量部以上、0.5重量部以下が好ましい。触媒量が上記好ましい範囲であると、重合時間の短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量も大きくできる。
 混合後におけるポリ-L-乳酸とポリ-D-乳酸の混合物の重量平均分子量(Mw)は、固相重合後における収率を向上する観点で、9万以上であることが必要である。Mwが9万に満たない場合には固相重合後の収率が低くなり、生産性が劣る問題がある。10万以上がより好ましく、11万以上であることがさらに好ましく、12万以上であることが特に好ましい。ここでいう固相重合後における収率とは、固相重合前の混合物重量に対する固相重合後のポリ乳酸ブロック共重合体の重量の割合である。具体的には固相重合前の混合物重量をWp、固相重合後のポリマーの重量をWsとすると下記式(5)で算出することができる。
 Y=Ws/Wp×100   (5)
 また、混合後におけるポリ-L-乳酸とポリ-D-乳酸の混合物の分散度は1.5~4.0の範囲が好ましい。さらに好ましくは2.0~3.7の範囲であり、特に好ましくは2.5~3.5の範囲である。ここで、分散度とは、混合物の数平均分子量に対する重量平均分子量の割合のことをいい、具体的には溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。
 ポリ-L-乳酸またはポリ-D-乳酸に含有するラクチド量およびオリゴマー量は、それぞれ5%以下であることが好ましい。さらに好ましくは3%以下であり、特に好ましくは1%以下である。また、ポリ-L-乳酸またはポリ-D-乳酸に含有する乳酸量は、2%以下であることが好ましい。さらに好ましくは1%以下であり、特に好ましくは0.5%以下である。
(固相重合)
 次に、ポリ-L-乳酸とポリ-D-乳酸の混合物を固相重合する工程について説明する。この固相重合工程では、ポリ-L-乳酸とポリ-D-乳酸が、主に直接重合することによりポリ乳酸ブロック共重合体が得られる。
 この固相重合工程を実施する際には、ポリ-L-乳酸とポリ-D-乳酸の混合物の形状は、特に限定されるものではなく、塊状、フィルム、ペレットおよび粉末などいずれでもよいが、固相重合を効率的に進めるという観点においては、ペレットまたは粉末を用いることが好ましい。ペレットにする方法としては、混合物をストランド状に押出し、ペレタイズする方法、混合物を水中に押出し、アンダーウォーターカッターを用いてペレット化する方法が挙げられる。また、粉末にする方法としては、ミキサー、ブレンダー、ボールミルおよびハンマーミルなどの粉砕機を用いて粉砕する方法が挙げられる。この固相重合工程を実施する方法については特に限定されるものではなく、回分法でも連続法でもよく、また、反応容器は、撹拌槽型反応器、ミキサー型反応器および塔型反応器などを用いることができ、これらの反応器は2種以上組み合わせて使用することができる。
 この固相重合工程を実施する際には、ポリ-L-乳酸とポリ-D-乳酸の混合物が結晶化していることが好ましい。本発明において、ポリ-L-乳酸とポリ-D-乳酸の混合工程で得られた混合物が結晶化状態である場合は、固相重合工程を実施する際にポリ-L-乳酸とポリ-D-乳酸の混合物の結晶化は必ずしも必要ないが、結晶化を行うことで固相重合の効率をさらに高めることもできる。
 結晶化させる方法については特に限定されるものではなく、公知の方法を利用することができる。例えば、気相中または液相中において結晶化処理温度で保持する方法およびポリ-L-乳酸とポリ-D-乳酸の溶融混合物を延伸または剪断の操作を行いながら冷却固化させる方法などが挙げられ、操作が簡便であるという観点においては、気相中または液相中において結晶化処理温度で保持する方法が好ましい。
 ここでいう結晶化処理温度とは、ガラス転移温度より高く、前記で混合したポリ-L-乳酸またはポリ-D-乳酸のうち、低い融点を有するポリ乳酸の融点よりも低い温度範囲であれば特に限定されるものではないが、予め示差走査型熱量計(DSC)により測定した昇温結晶化温度および降温結晶化温度の範囲内であることがより好ましい。
 結晶化させる際には、減圧、常圧または加圧のいずれの条件でもよい。
 また、結晶化させる際の時間については特に限定されるものではないが、3時間以内であれば十分に結晶化されており、2時間以内でも好ましい。
 この固相重合工程を実施する際の温度条件としては、ポリ-L-乳酸とポリ-D-乳酸の混合物の融点以下の温度であり、具体的には、100℃以上、220℃以下が好ましく、さらに固相重合を効率的に進めるという観点においては、110℃以上、210℃以下であることがより好ましく、さらには、120℃以上、200℃以下であることが最も好ましい。ここで、ポリ-L-乳酸とポリ-D-乳酸の混合物の融点とは、示差走査熱量計(DSC)により昇温速度20℃/minで30℃から250℃まで昇温した際に測定されるポリ乳酸結晶由来の融点とステレオコンプレックス結晶由来の融点の内、温度の低い方の融点である。
 また、固相重合の反応時間を短縮するために、反応の進行とともに温度を段階的に上げるかあるいは連続的に上げることが好ましい。固相重合時に段階的に昇温するときの温度条件としては、第一段階として120~145℃で1~15時間、第二段階として135~160℃で1~15時間、第三段階として150~175℃で10~30時間と昇温するのが好ましく、さらには第一段階として130~145℃で2~12時間、第二段階として140~160℃で2~12時間、第三段階として155~175℃で10~25時間と昇温するのがより好ましい。固相重合時に連続的に昇温するときの温度条件としては、130℃~150℃の初期温度より1~5℃/minの速度で150~175℃まで連続的に昇温するのが好ましい。また、段階的な昇温と連続的な昇温を組み合わせることも固相重合を効率的に進行する観点から好ましい。
 また、この固相重合工程を実施する際には、減圧下または乾燥窒素などの不活性気体気流下で行うことが好ましい。減圧下で固相重合を行う際の真空度は、150Pa以下であることが好ましく、75Pa以下であることがさらに好ましく、20Pa以下であることが特に好ましい。不活性気体気流下で固相重合を行う際の不活性気体の流量は、混合物1gに対して0.1~2,000mL/minの範囲が好ましく、0.5~1,000mL/minの範囲がさらに好ましく、1.0~500mL/minの範囲が特に好ましい。
 固相重合後におけるポリマーの収率は90%以上であることが好ましい。さらに好ましくは93%以上であり、特に好ましくは95%以上である。ここでいうポリマーの収率とは固相重合前の混合物重量に対する固相重合後のポリ乳酸ブロック共重合体の重量の割合である。具体的には固相重合前の混合物重量をWp、固相重合後のポリマーの重量をWsとすると下記式(6)で算出することができる。
 Y=Ws/Wp×100   (6)
 固相重合工程においては、混合物の分散度が小さくなることが好ましい。具体的には固相重合前の混合物の分散度が1.5~4.0の範囲から固相重合後にはポリ乳酸ブロック共重合体の分散度が1.5~2.7の範囲になることが好ましい。さらに好ましくは固相重合前の混合物の分散度が2.0~3.7の範囲が固相重合後にはポリ乳酸ブロック共重合体の分散度が1.8~2.6の範囲に小さくなることであり、特に好ましくは、固相重合前の混合物の分散度が2.5~3.5の範囲から固相重合後にはポリ乳酸ブロック共重合体の分散度が2.0~2.5の範囲になることである。
(ポリ乳酸ブロック共重合体)
 本発明の製造方法により得られるポリ乳酸ブロック共重合体の重量平均分子量は、特に限定されるものではないが、10万以上30万未満の範囲であることが成形性および機械物性の点で好ましい。さらに好ましくは12万以上28万未満の範囲であり、14万以上26万未満の範囲であることが特に好ましい。また、ポリ乳酸ブロック共重合体の分散度は、1.5~3.0の範囲が機械物性の点で好ましい。分散度の範囲は1.8~2.7であることがさらに好ましく、2.0~2.4であることが成形性および機械物性の点で特に好ましい。なお、重量平均分子量および分散度は、溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。
 本発明の製造方法により得られるポリ乳酸ブロック共重合体の平均連鎖長は20以上が好ましい。さらに好ましくは25以上であり、30以上であることが成形体の機械物性の点で特に好ましい。なお、成形体の平均連鎖長は13C-NMR測定により、カルボニル炭素に帰属する炭素のピークのうち、170.1~170.3ppm付近に存在するピークの積分値を(a)と、169.8~170.0ppm付近に存在するピークの積分値を(b)としたとき、下記式(7)で算出することができる。
 平均連鎖長=(a)/(b)   (7)
 本発明の製造方法により得られるポリ乳酸ブロック共重合体は、150℃~190℃の範囲でポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶に基づく融点を有し、また、ステレオコンプレックス形成によりステレオコンプレックス結晶に基づく融点を200~230℃の範囲で有する。ステレオコンプレックス結晶由来の融点の好ましい範囲は205℃~230℃であり、210℃~230℃の温度範囲がさらに好ましく、215℃~230℃の温度範囲が特に好ましい。原料として用いるポリ-L-乳酸(もしくはポリ-D-乳酸)に含まれる主成分のL-乳酸(もしくはD-乳酸)単位の量により結晶性を制御することが可能で、結晶性が高いほどステレオコンプレックス結晶由来の融点は上昇し、好ましい。例えば、ポリ-L-乳酸中に含まれる主成分のL-乳酸の好ましい範囲は前記のとおり、好ましくは80mol%であり、90mol%以上含有していることがより好ましく、95mol%以上含有していることがさらに好ましく、98mol%以上含有していることが特に好ましい。
 ポリ乳酸ブロック共重合体は、耐熱性の観点からステレオコンプレックス形成率(Sc)が80~100%の範囲であることが好ましい。さらに好ましくは85~100%の範囲であり、90~100%であることが特に好ましい。ここで、ステレオコンプレックス形成率とは、ポリ乳酸中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には示差走査型熱量計(DSC)で昇温速度20℃/minで30℃から250℃まで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(8)で算出することができる。
 Sc=ΔHh/(ΔHl+ΔHh)×100   (8)
 本発明の製造方法により得られるポリ乳酸ブロック共重合体は、成形性および耐熱性に優れるという点で降温結晶化温度(Tc)が130℃以上であることが好ましい。ここで、成型体の降温結晶化温度(Tc)とは、示差走査熱量計(DSC)により昇温速度20℃/minで30℃から250℃まで昇温した後、250℃で3分間恒温状態に維持を行い、冷却速度20℃/minで降温した際に測定したポリ乳酸結晶由来の結晶化温度である。結晶化温度(Tc)は、特に限定されるものではないが、耐熱性および透明性の観点から、130℃以上が好ましく、132℃以上がより好ましく、135℃以上が特に好ましい。
 本発明において、ポリ乳酸ブロック共重合体は一分子に含まれるL-乳酸単位からなるセグメントおよびD-乳酸単位からなるセグメントの合計数は3以上であることがポリ乳酸ステレオコンプレックス形成により高融点化しやすい点で好ましい。
 本発明により得られたポリ乳酸ブロック共重合体は、固相重合後に触媒失活剤を添加することが好ましい。重合触媒が残存している場合、その残存触媒により溶融混練時および溶融成形時にポリ乳酸ブロック共重合体が、熱分解することがあり、触媒失活剤を添加することにより、熱分解を抑制でき、熱安定性を向上することができる。
 本発明でいう触媒失活剤としては、ヒンダードフェノール系化合物、チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物、ヒドラジン誘導体系化合物、リン系化合物などが挙げられ、これらを併用して用いてもよい。中でもリン系化合物を少なくとも1種含むことが好ましく、ホスフェート系化合物、ホスファイト系化合物であることがさらに好ましい。具体例のさらなる好ましい例としては(株)ADEKA製“アデカスタブ”AX-71(ジオフタデミルホスフェート)、PEP-8(ジステアリルペンタエリスリトールジホスファイト)、PEP-36(サイクリックネオペンタテトライルビス(2,6―t-ブチル-4-メチルフェニル)ホスファイト)である。
 ヒンダードフェノール系化合物の具体例としては、n-オクタデシル-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)-プロピオネート、n-オクタデシル-3-(3′-メチル-5′-t-ブチル-4′-ヒドロキシフェニル)-プロピオネート、n-テトラデシル-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)-プロピオネート、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、1,4-ブタンジオール-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、2,2′-メチレンビス-(4-メチル-t-ブチルフェノール)、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)-プロピオネート]、テトラキス[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、N,N′-ビス-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、N,N′-テトラメチレン-ビス-3-(3′-メチル-5′-t-ブチル-4′-ヒドロキシフェノール)プロピオニルジアミン、N,N′-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオニル]ヒドラジン、N-サリチロイル-N′-サリチリデンヒドラジン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、N,N′-ビス[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}エチル]オキシアミド、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N′-ヘキサメチレンビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイド等をあげることができる。好ましくは、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)-プロピオネート]、テトラキス[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N′-ヘキサメチレンビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイドである。ヒンダードフェノール系化合物の具体的な商品名としては、(株)ADEKA製“アデカスタブ”AO-20,AO-30,AO-40,AO-50,AO-60,AO-70,AO-80,AO-330、チバ・スペシャルティ・ケミカルズ(株)製“イルガノックス”245,259,565,1010,1035,1076,1098,1222,1330,1425,1520,3114,5057、住友化学工業(株)製“スミライザー”BHT-R、MDP-S、BBM-S、WX-R、NW、BP-76、BP-101、GA-80、GM、GS、サイアナミド社製“サイアノックス”CY-1790などが挙げられる。
 チオエーテル系化合物の具体例としては、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール-テトラキス(3-ラウリルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ドデシルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-オクタデシルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ミリスチルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ステアリルチオプロピオネート)などが挙げられる。チオエーテル系化合物の具体的な商品名としては、(株)ADEKA製“アデカスタブ”A0-23、AO-412S、AO-503A、チバ・スペシャルティ・ケミカルズ(株)製“イルガノックス”PS802、住友化学工業(株)製“スミライザー”TPL-R、TPM、TPS、TP-D、(株)エーピーアイコーポレーション製DSTP、DLTP、DLTOIB、DMTP、シプロ化成(株)製“シーノックス”412S、サイアナミド社製“サイアノックス”1212などが挙げられる。
 多価アミン系化合物の具体例としては、3,9-ビス[2-(3,5-ジアミノ-2,4,6-トリアザフェニル)エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、エチレンジアミン-テトラアセチックアシッド、エチレンジアミン-テトラアセチックアシッドのアルカリ金属塩(Li,Na,K)塩、N,N′-ジサリシリデン-エチレンジアミン、N,N′-ジサリシリデン-1,2-プロピレンジアミン、N,N′′-ジサリシリデン-N′-メチル-ジプロピレントリアミン、3-サリシロイルアミノ-1,2,4-トリアゾールなどが挙げられる。
 ヒドラジン誘導体系化合物の具体例としては、デカメチレンジカルボキシリックアシッド-ビス(N′-サリシロイルヒドラジド)、イソフタル酸ビス(2-フェノキシプロピオニルヒドラジド)、N-ホルミル-N′-サリシロイルヒドラジン、2,2-オキザミドビス-[エチル-3-(3,5-ジ-t-ブチル-4-ハイドロオキシフェニル)プロピオネート]、オギザリル-ビス-ベンジリデン-ヒドラジド、ニッケル-ビス(1-フェニル-3-メチル-4-デカノイル-5-ピラゾレート)、2-エトキシ-2′-エチルオキサニリド、5-t-ブチル-2-エトキシ-2′-エチルオキサニリド、N,N-ジエチル-N′,N′-ジフェニルオキサミド、N,N′-ジエチル-N,N′-ジフェニルオキサミド、オキサリックアシッド-ビス(ベンジリデンヒドラジド)、チオジプロピオニックアシッド-ビス(ベンジリデンヒドラジド)、ビス(サリシロイルヒドラジン)、N-サリシリデン-N′-サリシロイルヒドラゾン、N,N′-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、N,N′-ビス[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]オキサミドなどが挙げられる。
 リン系化合物としては、例えば、ホスファイト系化合物、ホスフェート系化合物が挙げられる。かかるホスファイト系化合物の具体例としては、テトラキス[2-t-ブチル-4-チオ(2′-メチル-4′-ヒドロキシ-5′-t-ブチルフェニル)-5-メチルフェニル]-1,6-ヘキサメチレン-ビス(N-ヒドロキシエチル-N-メチルセミカルバジド)-ジホスファイト、テトラキス[2-t-ブチル-4-チオ(2′-メチル-4′-ヒドロキシ-5′-t-ブチルフェニル)-5-メチルフェニル]-1,10-デカメチレン-ジ-カルボキシリックアシッド-ジ-ヒドロキシエチルカルボニルヒドラジド-ジホスファイト、テトラキス[2-t-ブチル-4-チオ(2′-メチル-4′-ヒドロキシ-5′-t-ブチルフェニル)-5-メチルフェニル]-1,10-デカメチレン-ジ-カルボキシリックアシッド-ジ-サリシロイルヒドラジド-ジホスファイト、テトラキス[2-t-ブチル-4-チオ(2′-メチル-4′-ヒドロキシ-5′-t-ブチルフェニル)-5-メチルフェニル]-ジ(ヒドロキシエチルカルボニル)ヒドラジド-ジホスァイト、テトラキス[2-t-ブチル-4-チオ(2′-メチル-4′-ヒドロキシ-5′-t-ブチルフェニル)-5-メチルフェニル]-N,N′-ビス(ヒドロキシエチル)オキサミド-ジホスファイトなどが挙げられるが、少なくとも1つのP-O結合が芳香族基に結合しているものがより好ましく、具体例としては、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4′-ビフェニレンホスフォナイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチル-フェニル)ブタン、トリス(ミックスドモノおよびジ-ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4′-イソプロピリデンビス(フェニル-ジアルキルホスファイト)などが挙げられ、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4′-ビフェニレンホスホナイトなどが好ましく使用できる。ホスファイト系化合物の具体的な商品名としては、(株)ADEKA製“アデカスタブ” C、PEP-4C、PEP-8、PEP-11C、PEP-24G、PEP-36、HP-10、2112、260、522A、329A、1178、1500、C、135A、3010、TPP、チバ・スペシャルティ・ケミカルズ(株)製“イルガフォス”168、住友化学工業(株)製“スミライザー”P-16、クラリアント社製“サンドスタブ”PEPQ、GE社製“ウエストン”618、619G、624などが挙げられる。
 ホスフェート系化合物の具体例としては、モノステアリルアシッドホスフェート、ジステアリルアシッドホスフェート、メチルアシッドホスフェート、イソプロピルアシッドホスフェート、ブチルアシッドホスフェート、オクチルアシッドホスフェート、イソデシルアシッドホスフェートなどが挙げられ、中でも、モノステアリルアシッドホスフェート、ジステアリルアシッドホスフェートが好ましい。ホスフェート系化合物の具体的な商品名としては、チバ・スペシャルティ・ケミカルズ(株)製“イルガノックス”MD1024、イーストマン・コダック社製“インヒビター”OABH、(株)ADEKA製“アデカスタブ”CDA-1、CDA-6、AX-71などを挙げることができる。
 触媒失活剤の添加量は、特に限定されないが、熱安定性に優れるという点で、ポリ乳酸ブロック共重合体100重量部に対して、0.001~2重量部であることが好ましく、0.01~1重量部であることがより好ましく、0.05~0.5重量部であることがさらに好ましく、0.08~0.3重量部であることが最も好ましい。触媒失活剤の添加時期は、特に限定されず、ポリ乳酸製造工程、ポリ乳酸混合工程および固相重合工程のいずれでもよいが、高融点、高分子量のポリ乳酸ブロック共重合体を得ることができるという点ではポリ乳酸製造工程およびポリ乳酸混合工程において、添加することが好ましく、生産性に優れるという点では、ポリ乳酸製造の終了直前または、ポリ乳酸混合の開始時に添加することがより好ましく、ポリ乳酸製造の終了直前およびポリ乳酸混合の開始時にそれぞれ添加することがさらに好ましい。なお、ポリ乳酸混合の開始時に添加する場合は、触媒失活剤を添加した後に、固相重合用の触媒を添加することが好ましい。熱安定性に優れるという点で、ポリ乳酸製造工程、または、ポリ乳酸混合工程のそれぞれの段階において、ポリ乳酸ブロック共重合体100重量部に対して、0.001~1重量部ずつ添加することが好ましく、生産性に優れるという点で、0.01~0.5重量部ずつ添加することがより好ましく、0.01~0.1重量部ずつ添加することがさらに好ましい。また、特に熱安定性に優れるという点で、固相重合終了後に添加することも好ましい。
 本発明の製造方法により得られるポリ乳酸ブロック共重合体には、本発明の目的を損なわない範囲で通常の添加剤、例えば、充填剤(ガラス繊維、炭素繊維、金属繊維、天然繊維、有機繊維、ガラスフレーク、ガラスビーズ、セラミックスファイバー、セラミックビーズ、アスベスト、ワラステナイト、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、モンモリロナイト、合成マイカ、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、ケイ酸アルミニウム、酸化ケイ素、石膏、ノバキュライト、ドーソナイトまたは白土など)、紫外線吸収剤(レゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、熱安定剤(ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、滑剤、離形剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(ニグロシンなど)および顔料(硫化カドミウム、フタロシアニンなど)を含む着色剤、着色防止剤(亜リン酸塩、次亜リン酸塩など)、難燃剤(赤燐、燐酸エステル、ブロム化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、水酸化マグネシウム、メラミンおよびシアヌール酸またはその塩、シリコン化合物など)、導電剤あるいは着色剤(カーボンブラックなど)、摺動性改良剤(グラファイト、フッ素樹脂など)、結晶核剤(タルクなどの無機系核剤、エチレンビスラウリン酸アミド、エチレンビス-12-ジヒドロキシステアリン酸アミドおよびトリメシン酸トリシクロヘキシルアミドなどの有機アミド系化合物、銅フタロシアニンおよびピグメントイエロー110などの顔料系核剤、有機カルボン酸金属塩、フェニルホスホン酸亜鉛など)、帯電防止剤などの1種または2種以上を添加することができる。
 また、本発明の製造方法により得られるポリ乳酸ブロック共重合体には、本発明の目的を損なわない範囲で他の熱可塑性樹脂(例えば、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、アクリルニトリル・ブタジエン・スチレン共重合体、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミド、セルロースエステルなど)または熱硬化性樹脂(例えば、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコン樹脂、エポキシ樹脂など)または軟質熱可塑性樹脂(例えば、エチレン/グリシジルメタクリレート共重合体、ポリエステルエラストマー、ポリアミドエラストマー、エチレン/プロピレンターポリマー、エチレン/ブテン-1共重合体など)などの少なくとも1種以上をさらに含有することができる。
 本発明でアクリル樹脂を使用する場合には、一般に炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキル単位を主成分とするアクリル樹脂が好ましく挙げられる。また、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルには、炭素数1~4のアルキル基を有する他のアクリル酸アルキルやスチレンなどの芳香族ビニル化合物を共重合してもよい。
 上記のアルキル基を有する(メタ)アクリル酸アルキルの例としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸シクロヘキシルおよびメタクリル酸シクロヘキシルなどが挙げられる。本発明でアクリル樹脂を使用する場合のアクリル樹脂としては、特にメタクリル酸メチルからなるポリメチルメタクリレートが好ましい。
 本発明の製造方法により得られるポリ乳酸ブロック共重合体は、成形品などに加工する際に、一旦熱溶融させて固化した後も、高融点のポリ乳酸ステレオコンプレックスを形成しやすい特徴を有する。
 本発明のポリ乳酸ブロック共重合体の製造方法においては、得られるポリ乳酸ブロック共重合体を含む成形体であって、該成形体が下記式(9)を満たし、かつ厚さ100μmの成形体としたときのヘイズ値が30%以下であることが好ましい。
 相対結晶化度=[(ΔHm-ΔHc)/ΔHm]×100>90  (9)
 ここで、ΔHm:成形体の結晶融解エンタルピー(J/g)、ΔHc:成形体の昇温時結晶化エンタルピー(J/g)である。
 相対結晶化度は90%を越えることが好ましく、92%以上であることがより好ましく、94%以上であることが特に好ましい。ここで、ΔHcとは、示差走査熱量計(DSC)により昇温速度20℃/minで測定した成形体の結晶化エンタルピーであり、ΔHmとは、DSCにより昇温速度20℃/minで測定した成形体の結晶融解エンタルピーであるが、第1昇温時に昇温速度20℃/minで30℃から250℃まで昇温した後、降温速度20℃/minで30℃まで冷却し、さらに第2昇温時に昇温速度20℃/minで30℃から250℃まで昇温した際に測定される結晶融解エンタルピーである。
 また、ヘイズ値とは、JIS K 7105に従って、厚み100μmの成形体を測定した値であり、透明性の点で、ヘイズ値が30%以下であることが好ましく、10%以下であることがより好ましい。下限は特に限定されないが、0.1%以上あれば、実用的に問題なく使用できる。
 本発明のポリ乳酸ブロック共重合体の製造法においては、得られるポリ乳酸ブロック共重合体を含む成形体であって、相対結晶化度が90%を越え、かつ厚さ500μmの成形体としたときのヘイズ値が30%以下であることが好ましい。ヘイズ値は20%以下であることが好ましく、15%以下であることがさらに好ましく、10%以下であることがさらに好ましく、7%以下であることがさらに好ましく、5%以下であることが透明性の点で特に好ましい。下限は特に限定されなく0%以上である。
 さらに、本発明のポリ乳酸ブロック共重合体の製造法においては、得られるポリ乳酸ブロック共重合体を含む成形体であって、透明性を向上させるために用いられる結晶核剤を含有していなくても、相対結晶化度が90%以上を越え、かつ厚さ1mmの成形体としたときのヘイズ値が30%以下であることが望ましい。ヘイズ値は20%以下であることが好ましく、15%以下であることがさらに好ましく、10%以下であることがさらに好ましく、7%以下であることがさらに好ましく、5%以下であることが透明性の点で特に好ましい。
 本発明のポリ乳酸ブロック共重合体の製造方法において、得られるポリ乳酸ブロック共重合体を含む成形体は、成形性および耐熱性に優れるという点で、成形体に含まれるポリ乳酸ブロック共重合体の降温結晶化温度(Tc)が130℃以上であることが好ましい。ここで、成型体の降温結晶化温度(Tc)とは、示差走査熱量計(DSC)により昇温速度20℃/minで30℃から250℃まで昇温した後、250℃で3分間恒温状態に維持を行い、冷却速度20℃/minで降温した際に測定したポリ乳酸結晶由来の結晶化温度である。結晶化温度(Tc)は、特に限定されるものではないが、耐熱性および透明性の観点から、130℃以上が好ましく、132℃以上がより好ましく、135℃以上が特に好ましい。
 本発明において得られるポリ乳酸ブロック共重合体を含む成形体に含まれるポリ乳酸ブロック共重合体は、ステレオコンプレックス形成率(Sc)が80%以上であることが好ましく、70%以上であることがさらに好ましく、75~100%であることがさらに好ましく、90~100%であることが特に好ましい。ここで、ステレオコンプレックス形成率とは、ポリ乳酸中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には示差走査型熱量計(DSC)で測定した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(10)で算出することができる。
 Sc=ΔHh/(ΔHl+ΔHh)×100   (10)
 本発明において得られるポリ乳酸ブロック共重合体を含む成形体に含まれるポリ乳酸ブロック共重合体は、ポリ乳酸ブロック共重合体一分子あたりに含まれるL-乳酸単位からなるセグメントおよびD-乳酸単位からなるセグメントの合計数が3以上であることが、高融点のポリ乳酸ステレオコンプレックスを形成しやすいポリ乳酸ブロック共重合体が得られる点で好ましい。また、1セグメントあたりの分子量は2千~5万であることが好ましい。さらに好ましくは、4千~4.5万であり、5千~4万であることが機械物性の点で特に好ましい。
 本発明において得られるポリ乳酸ブロック共重合体を含む成形体に含まれるポリ乳酸ブロック共重合体の平均連鎖長は20以上が好ましい。さらに好ましくは25以上であり、30以上であることが成形体の機械物性の点で特に好ましい。なお、成形体の平均連鎖長は13C-NMR測定により、カルボニル炭素に帰属する炭素のピークのうち、170.1~170.3ppm付近に存在するピークの積分値を(a)と、169.8~170.0ppm付近に存在するピークの積分値を(b)としたとき、下記式(11)で算出することができる。
 平均連鎖長=(a)/(b)   (11)
 本発明のポリ乳酸ブロック共重合体の製造方法において、得られるポリ乳酸ブロック共重合体を含む成形体に含まれるポリ乳酸ブロック共重合体の重量平均分子量は、特に限定されるものではないが、機械物性の点で10万以上30万未満であることが好ましい。12万以上28万未満であることがさらに好ましく、14万以上26万未満であることが成形性および機械物性の点で特に好ましい。また、本発明において得られるポリ乳酸ブロック共重合体を含む成形体に含まれるポリ乳酸ブロック共重合体の分散度は、1.5~3.0の範囲が機械物性の点で好ましい。分散度の範囲が1.8~2.7であることがさらに好ましく、2.0~2.4であることが成形性および機械物性の点で特に好ましい。なお、重量平均分子量および分散度とは、溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。
 本発明において得られるポリ乳酸ブロック共重合体を含む成形体を構成するポリ乳酸樹脂組成物は、L-乳酸単位からなるセグメントとD-乳酸単位からなるセグメントにより構成されるポリ乳酸ブロック共重合体を60%以上含有するポリ乳酸樹脂組成物であることが好ましい。さらに好ましくは70%以上であり、80%以上であることが特に好ましい。
 本発明において、得られるポリ乳酸ブロック共重合体を含む成形体に含まれるポリ乳酸樹脂組成物に含有するラクチド量およびオリゴマー量は、それぞれ5%以下であることが好ましい。さらに好ましくは3%以下であり、特に好ましくは1%以下である。また、ポリ-L-乳酸またはポリ-D-乳酸に含有する乳酸量は、2%以下であることが好ましい。さらに好ましくは1%以下であり、さらに好ましくは0.5%以下であり、特に好ましくは0.1%以下である。
 本発明のポリ乳酸ブロック共重合体の製造方法において、得られるポリ乳酸ブロック共重合体を含む成形体の製造方法としては、シート成形、射出成形、押出成形、ブロー成形、真空成形またはプレス成形など公知の成形方法を挙げることができ、透明性および耐熱性の点で、射出成形、ブロー成形、真空成形およびプレス成形が好ましい。
 本発明において前記成形体の製造方法としてシート成形を行う場合には、溶融したポリ乳酸ブロック共重合体を含むポリ乳酸樹脂組成物を所定の厚さのダイを通して押出によりシートを得る方法や溶融したポリ乳酸ブロック共重合体を含むポリ乳酸樹脂組成物を所定の金型で挟んでシートを得る方法を挙げることができる。さらに、得られたシートを所定の温度で所定の時間熱処理を行うことで、結晶化度を上げることもできる。具体的な製造方法としては、240℃で2分間加熱して溶融し、その後プレス金型温度80℃でプレスすることで厚さ100μmのプレスシートを作製し、このプレスシートを窒素雰囲気下、110℃で30分間の熱処理を行う方法や、240℃で2分間加熱して溶融し、その後プレス温度40℃でプレスすることで厚さ1mmのプレスシートを作製し、このプレスシートを窒素雰囲気下、80℃で5分間、110℃で30分間の熱処理を行う方法を挙げることができる。
 本発明において前記成形体の製造方法として射出成形を行う場合には、透明性および耐熱性の点で、金型温度をポリ乳酸ブロック共重合体のガラス転移温度以上および融点以下の温度範囲、好ましくは60℃以上、220℃以下の温度範囲、より好ましくは、70℃以上、200℃以下の温度範囲、さらに好ましくは、80℃以上、180℃以下の温度範囲に設定し、成形サイクル150秒以下、好ましくは90秒以下、より好ましくは60秒以下、さらに好ましくは50秒以下で射出成形してなることが好ましい。
 本発明において前記成形体の製造方法としてブロー成形を行う場合には、例えば、ポリ乳酸ブロック共重合体を上記の方法で射出成形によりブロー成形可能な結晶化度の有底のチューブ状成形物(パリソン)を成形し、次いでポリ乳酸ブロック共重合体のガラス転移点以上およびガラス転移点+80℃以下の温度範囲、好ましくは60℃以上、140℃以下の温度範囲、さらに好ましくは70℃以上、130℃以下の温度範囲に設定したブロー成形用の金型に移動して、延伸ロッドにより延伸しつつ、エアノズルから圧縮空気を供給して成形体を得る方法が挙げられる。
 本発明において前記成形体の製造方法として真空成形を行う場合には、一旦成形可能な結晶化度のシートやフィルムを得た後、シートやフィルムを熱板もしくは熱風などのヒーターで60~150℃、好ましくは65~120℃、より好ましくは70~90℃で加熱を行い、そのシートを金型温度30~150℃、好ましくは40~100℃、より好ましくは50~90℃に設定した金型に密着させると同時に、金型内を減圧することで成形する方法が挙げられる。
 本発明において前記成形体の製造方法としてプレス成形を行う場合には、一旦成形可能な結晶化度のシートやフィルムを得た後、ポリ乳酸ブロック共重合体を熱板もしくは熱風などのヒーターで60~150℃、好ましくは65~120℃、より好ましくは70~90℃で加熱を行い、そのシートを金型温度30~150℃、好ましくは40~100℃、より好ましくは50~90℃に設定した雄型と雌型からなる金型に密着して加圧を行い、型締めする方法が挙げられる。
 本発明のポリ乳酸ブロック共重合体の製造方法において、得られるポリ乳酸ブロック共重合体を含む成形体は、延伸処理を施さなくても透明性を有するため、透明性を付与するために延伸処理を行う必要はないが、その他必要に応じて延伸処理を施すことが可能である。延伸処理を行う成形体の形状は、フィルムやシート形状であることが好ましい。また、延伸処理を行う場合、ポリ乳酸ステレオコンプレックスのガラス転移点以上のおよび融点以下の温度範囲、好ましくは60℃以上、170℃以下の温度範囲、より好ましくは、70℃以上、150℃以下の温度範囲で延伸することが好ましい。
 本発明のポリ乳酸ブロック共重合体の製造方法により得られるポリ乳酸ブロック共重合体は、例えば、フィルム、シート、繊維・布、不織布、射出成形品、押出成形品、真空圧空成形品、ブロー成形品、および他の材料との複合体などに成形が可能であり、これらの成形品は、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、文具、医療用品、自動車用部品、電気・電子部品、光学フィルムまたはその他の用途として有用である。
 具体的には、リレーケース、コイルボビン、光ピックアップシャーシ、モーターケース、ノートパソコンハウジングまたは内部部品、CRTディスプレーハウジングまたは内部部品、プリンターハウジングまたは内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングまたは内部部品、記録媒体(CD、DVD、PD、FDDなど)ドライブのハウジングまたは内部部品、コピー機のハウジングまたは内部部品、ファクシミリのハウジングまたは内部部品、パラボラアンテナなどに代表される電気・電子部品を挙げることができる。更に、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、ビデオカメラ、プロジェクターなどの映像機器部品、レーザーディスク(登録商標)、コンパクトディスク(CD)、CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-R、DVD-RW、DVD-RAM、ブルーレイディスクなどの光記録媒体の基板、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代表される家庭・事務電気製品部品を挙げることができる。また電子楽器、家庭用ゲーム機、携帯型ゲーム機などのハウジングや内部部品、各種ギヤー、各種ケース、センサー、LEPランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドホン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、コイルボビンなどの電気・電子部品、サッシ戸車、ブラインドカーテンパーツ、配管ジョイント、カーテンライナー、ブラインド部品、ガスメーター部品、水道メーター部品、湯沸かし器部品、ルーフパネル、断熱壁、アジャスター、プラ束、天井釣り具、階段、ドアー、床などの建築部材、釣り餌袋などの水産関連部材、植生ネット、植生マット、防草袋、防草ネット、養生シート、法面保護シート、飛灰押さえシート、ドレーンシート、保水シート、汚泥・ヘドロ脱水袋、コンクリート型枠などの土木関連部材、エアフローメーター、エアポンプ、サーモスタットハウジング、エンジンマウント、イグニッションホビン、イグニッションケース、クラッチボビン、センサーハウジング、アイドルスピードコントロールバルブ、バキュームスイッチングバルブ、ECU(Electric Control Unit)ハウジング、バキュームポンプケース、インヒビタースイッチ、回転センサー、加速度センサー、ディストリビューターキャップ、コイルベース、ABS用アクチュエーターケース、ラジエータタンクのトップ及びボトム、クーリングファン、ファンシュラウド、エンジンカバー、シリンダーヘッドカバー、オイルキャップ、オイルパン、オイルフィルター、フューエルキャップ、フューエルストレーナー、ディストリビューターキャップ、ベーパーキャニスターハウジング、エアクリーナーハウジング、タイミングベルトカバー、ブレーキブースター部品、各種ケース、各種チューブ、各種タンク、各種ホース、各種クリップ、各種バルブ、各種パイプなどの自動車用アンダーフード部品、トルクコントロールレバー、安全ベルト部品、レジスターブレード、ウオッシャーレバー、ウインドレギュレーターハンドル、ウインドレギュレーターハンドルのノブ、パッシングライトレバー、サンバイザーブラケット、各種モーターハウジングなどの自動車用内装部品、ルーフレール、フェンダー、ガーニッシュ、バンパー、ドアミラーステー、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、グリルエプロンカバーフレーム、ランプリフレクター、ランプベゼル、ドアハンドルなどの自動車用外装部品、ワイヤーハーネスコネクター、SMJコネクター(中継接続用コネクター)、PCBコネクター(ボードコネクター)、ドアグロメットコネクターなど各種自動車用コネクター、歯車、ねじ、バネ、軸受、レバー、キーステム、カム、ラチェット、ローラー、給水部品、玩具部品、ファン、テグス、パイプ、洗浄用治具、モーター部品、顕微鏡、双眼鏡、カメラ、時計などの機械部品、マルチフィルム、トンネル用フィルム、防鳥シート、育苗用ポット、植生杭、種紐テープ、発芽シート、ハウス内張シート、農ビの止め具、緩効性肥料、防根シート、園芸ネット、防虫ネット、幼齢木ネット、プリントラミネート、肥料袋、試料袋、土嚢、獣害防止ネット、誘因紐、防風網などの農業部材、衛生用品、医療用フィルムなどの医療用品、カレンダー、文具、衣料、食品等の包装用フィルム、トレー、ブリスター、ナイフ、フォーク、スプーン、チューブ、プラスチック缶、パウチ、コンテナー、タンク、カゴなどの容器・食器類、ホットフィル容器類、電子レンジ調理用容器類化粧品容器、ラップ、発泡緩衝剤、紙ラミ、シャンプーボトル、飲料用ボトル、カップ、キャンディ包装、シュリンクラベル、蓋材料、窓付き封筒、果物かご、手切れテープ、イージーピール包装、卵パック、HDD用包装、コンポスト袋、記録メディア包装、ショッピングバック、電気・電子部品等のラッピングフィルムなどの容器・包装、各種衣料、インテリア用品、キャリアーテープ、プリントラミ、感熱孔版印刷用フィルム、離型フィルム、多孔性フィルム、コンテナバッグ、クレジットカード、キャッシュカード、IDカード、ICカード、光学素子、導電性エンボステープ、ICトレー、ゴルフティー、ゴミ袋、レジ袋、各種ネット、歯ブラシ、文房具、クリアファイル、カバン、イス、テーブル、クーラーボックス、クマデ、ホースリール、プランター、ホースノズル、食卓、机の表面、家具パネル、台所キャビネット、ペンキャップ、ガスライターなどとして有用である。
 以下、実施例により本発明を具体的に説明する。ここで、実施例中の部数は、重量部を示す。物性等の測定方法は以下のとおりである。なお、成形体の測定部位は、同じ部分を選択して測定を実施している。
(1)分子量および分散度
 重量平均分子量および分散度は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した標準ポリメチルメタクリレート換算の値である。GPCの測定は、検出器にWATERS社示差屈折計WATERS410を用い、ポンプにWATERS社MODEL510を用い、カラムにShodex GPC HFIP-806MとShodex GPC HFIP-LGを直列に接続したものを用いて行った。測定条件は、流速0.5mL/minとし、溶媒にヘキサフルオロイソプロパノールを用い、試料濃度1mg/mLの溶液を0.1mL注入した。
(2)融点、融解温度および融解熱量
 融点、融解終了温度および融解熱量は、パーキンエルマー社示差走査型熱量計(DSC)により測定した。測定条件は、試料5mg、窒素雰囲気下、昇温速度が20℃/minである。
 ここで、融点とは、結晶融解ピークにおけるピークトップの温度のことを指し、また融解終了温度とは結晶融解ピークにおけるピーク終了温度のことを指す。得られた結果において、融点が190℃以上250℃未満に確認されたものは、ポリ乳酸ステレオコンプレックスが形成されたものと判断し、融点が150℃以上190℃未満に確認されたものについてはポリ乳酸ステレオコンプレックスが形成されなかったものと判断した。ここで示す混合物の融点とは、第1昇温時に昇温速度20℃/minで30℃から250℃まで昇温したときに測定される融点であるのに対し、固相重合後のポリ乳酸ブロック共重合体の融点とは、第1昇温時に昇温速度20℃/minで30℃から250℃まで昇温した後、降温速度20℃/minで30℃まで冷却し、さらに第2昇温時に昇温速度20℃/minで30℃から250℃まで昇温したときに測定される融点のことである。
(3)ステレオコンプレックス形成率(Sc)
 ポリ乳酸ブロック共重合体およびポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸の混合物)のステレオコンプレックス形成率(Sc)は、下記式(12)から算出した。
 Sc=ΔHh/(ΔHl+ΔHh)×100  (12)
 ここで、ΔHlは150℃以上190℃未満に現れるポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量を示し、ΔHhは190℃以上250℃未満に現れるステレオコンプレックス結晶の結晶融解に基づく熱量を示す。
 また、混合物におけるステレオコンプレックス形成率は、示差走査型熱量計(DSC)の第1昇温時に測定される結晶融解ピークから算出したものであり、固相重合後のポリ乳酸ブロック共重合体のステレオコンプレックス形成率は、第1昇温時に昇温速度20℃/minで30℃から250℃まで昇温した後、降温速度20℃/minで30℃まで冷却し、さらに第2昇温時に昇温速度20℃/minで30℃から250℃まで昇温したときに測定される結晶融解ピークから算出したものである。
(4)ポリマーの収率
 ポリ乳酸ブロック共重合体の収率(Y)は、下記式(13)から算出した。
 Y=Ws/Wp×100   (13)
 但し、固相重合前の混合物重量をWp、固相重合後のポリ乳酸ブロック共重合体の重量をWsとする。
(5)ポリマーの降温結晶化温度
 ポリ乳酸ブロック共重合体およびポリ-L-乳酸とポリ-D-乳酸の混合物の降温結晶化温度は、パーキンエルマー社示差走査型熱量計(DSC)により測定した。具体的には、試料5mgを示差走査熱量計(DSC)により窒素雰囲気下で昇温速度20℃/minで30℃から250℃まで昇温した後、250℃で3分間恒温状態に維持を行い、冷却速度20℃/minで降温した際に測定される結晶化ピークトップの温度を降温結晶化温度とした。
(6)相対結晶化度
 ポリ乳酸ブロック共重合体およびポリ-L-乳酸とポリ-D-乳酸の混合物の相対結晶化度は、パーキンエルマー社示差走査型熱量計(DSC)により成形体中のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶由来の融解エンタルピーとステレオコンプレックス結晶融解エンタルピーの合計ΔHmと、成形体の昇温時の結晶化エンタルピーΔHcをそれぞれ測定し、下記式(14)から算出した。
 相対結晶化度=[(ΔHm-ΔHc)/ΔHm]×100   (14)
(7)ヘイズ値
 成形体の透明性の指標としてヘイズ値の測定を行った。厚さ0.1mmのシート状成形体につき日本電色工業製ヘイズメーターNDH-300Aを用いて、JIS K 7105に従ってヘイズ値測定を行った。
(8)貯蔵弾性率
 成形体の耐熱性の指標として貯蔵弾性率を測定した。厚さ0.1mmのシート状成形体の中心部を40mm×2mmに切り出して短冊状のサンプルとし、動的粘弾性測定装置(セイコーインストルメンツ製DMS6100)にて窒素雰囲気下で昇温速度2℃/min、周波数3.5Hzにて動的粘弾性測定を行い、130℃における貯蔵弾性率を測定した。弾性率が高いほど耐熱性が高いといえる。
(9)引張強度
 厚さ0.1mmのシート状成形体の中心部を40mm×2mmに切り出して短冊状のサンプルとし、ASTM D882に従い、引張強度を測定した。
(10)耐衝撃性
 厚さ0.1mmのシート状成形体を真空成形して得られた容器に水を入れ、フタをした状態で2mの高さより容器底部からコンクリート上に落下させ、落下衝撃により容器が破損して水が漏れるまでの回数を測定し、下記の方法で評価を行った。
 A:容器が破損して水が漏れるまでの落下回数が5回以上
 B:容器が破損して水が漏れるまでの落下回数が2~4回
 F:容器が破損して水が漏れるまでの落下回数が1回。
[参考例1]
 撹拌装置と還流装置を備えた反応容器中に、90%L-乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行い、ポリ-L-乳酸(PLA1)を得た。PLA1の重量平均分子量は1.8万、分散度は1.5、融点は149℃、融解終了温度は163℃であった。
[参考例2]
 参考例1で得られたPLA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で5時間固相重合を行い、ポリ-L-乳酸(PLA2)を得た。PLA2の重量平均分子量は4.3万、分散度は1.8、融点は159℃、融解終了温度は176℃であった。
[参考例3]
 参考例1で得られたPLA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で12時間固相重合を行い、ポリ-L-乳酸(PLA3)を得た。PLA3の重量平均分子量は13.7万、分散度は1.8、融点は168℃、融解終了温度は189℃であった。
[参考例4]
 参考例1で得られたPLA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で18時間固相重合を行い、ポリ-L-乳酸(PLA4)を得た。PLA4の重量平均分子量は20.3万、分散度は1.9、融点は170℃、融解終了温度は189℃であった。
[参考例5]
 撹拌装置を備えた反応容器中に、L-ラクチドを50部入れ、窒素雰囲気下、120℃で均一に溶解させた後、温度を150℃にし、オクチル酸錫(II)0.003部を添加して2時間反応させることにより、ポリ-L-乳酸(PLA5)を得た。PLA5の重量平均分子量は26.2万、分散度は2.1、融点は171℃、融解終了温度は191℃であった。
[参考例6]
 90wt%のL-乳酸水溶液1kgを150℃、4,000Paで6時間撹拌しながら水を留出させてオリゴマー化した。このオリゴマーに塩化第一錫0.2gとp-トルエンスルホン酸0.2gとを添加し、180℃、1,300Paで6時間溶融重合を行うことによりポリ-L-乳酸プレポリマーを得た。このプレポリマーの固体を粉砕し、140℃で30時間固相重合することによりポリ-L-乳酸(PLA6)を得た。PLA6の重量平均分子量は15.4万、分散度は2.6、融点は172℃、融解終了温度は194℃であった。
[参考例7]
 重合反応触媒を酢酸錫(II)0.02部およびメタンスルホン酸0.13部に変更する以外は参考例1と同様の方法にて重合反応を行い、ポリ-L-乳酸(PLA7)を得た。PLA7の重量平均分子量は1.9万、分散度は1.5、融点は150℃、融解終了温度は164℃であった。
[参考例8]
 参考例1で得られたPLA7を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で12時間固相重合を行い、ポリ-L-乳酸(PLA8)を得た。PLA8の重量平均分子量は14.0万、分散度は1.8、融点は169℃、融解終了温度は189℃であった。
[参考例9]
 参考例1で得られたPLA7を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で12時間固相重合を行い、ポリ-L-乳酸(PLA9)を得た。PLA9の重量平均分子量は22.1万、分散度は1.8、融点は170℃、融解終了温度は191℃であった。
[参考例10]
 撹拌装置と還流装置を備えた反応容器中に、90%D-乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行い、ポリ-D-乳酸(PDA1)を得た。PDA1の重量平均分子量は1.5万、分散度は1.5、融点は147℃、融解終了温度は163℃であった。
[参考例11]
 参考例7で得られたPDA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で3時間固相重合を行い、ポリ-D-乳酸(PDA2)を得た。PDA2の重量平均分子量は2.9万、分散度は1.6、融点は150℃、融解終了温度は168℃であった。
[参考例12]
 参考例7で得られたPDA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で6時間固相重合を行い、ポリ-D-乳酸(PDA3)を得た。PDA3の重量平均分子量は4.2万、分散度は1.6、融点は158℃、融解終了温度は176℃であった。
[参考例13]
 参考例7で得られたPDA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で18時間固相重合を行い、ポリ-D-乳酸(PDA4)を得た。PDA4の重量平均分子量は19.8万、分散度は2.0、融点は170℃、融解終了温度は191℃であった。
[参考例14]
 90wt%のD-乳酸水溶液1kgを150℃、4,000Paで6時間撹拌しながら水を留出させてオリゴマー化した。このオリゴマーに塩化第一錫0.2gとp-トルエンスルホン酸0.2gとを添加し、180℃、1,300Paで3時間溶融重合を行うことによりポリ-L-乳酸(PDA5)を得た。PDA5の重量平均分子量は1.6万、分散度は1.5、融点は144℃、融解終了温度は160℃であった。
[参考例15]
 重合反応触媒を酢酸錫(II)0.02部およびメタンスルホン酸0.13部に変更する以外は参考例10と同様の方法にて重合反応を行い、ポリ-D-乳酸(PDA6)を得た。PDA6の重量平均分子量は1.6万、分散度は1.5、融点は149℃、融解終了温度は162℃であった。
[参考例16]
 参考例15で得られたPDA6を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で3時間固相重合を行い、ポリ-D-乳酸(PDA7)を得た。PDA7の重量平均分子量は3.1万、分散度は1.6、融点は152℃、融解終了温度は170℃であった。
[参考例17]
 参考例15で得られたPDA6を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で6時間固相重合を行い、ポリ-D-乳酸(PDA8)を得た。PDA8の重量平均分子量は5.0万、分散度は1.6、融点は160℃、融解終了温度は177℃であった。
[参考例18]
 参考例7で得られたPDA6を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で18時間固相重合を行い、ポリ-D-乳酸(PDA9)を得た。PDA9の重量平均分子量は20.4万、分散度は2.0、融点は172℃、融解終了温度は193℃であった。
(実施例1~12、比較例1~5)
 (1)ポリ-L-乳酸とポリ-D-乳酸を混合する工程
 ポリ-L-乳酸とポリ-D-乳酸の混合は日本製鋼所社製TEX30型二軸押出機(L/D=45.5)を用いて行った。
 ポリ-L-乳酸とポリ-D-乳酸は混合前にあらかじめ窒素雰囲気下で温度110℃、2時間結晶化処理を行っておき、二軸押出機へのポリ-L-乳酸とポリ-D-乳酸の供給に関しては、ポリ-L-乳酸とポリ-D-乳酸のうち高分子量体の方を樹脂供給口より添加し、もう一方の低分子量体をL/D=30の部分に設けたサイド供給口より添加した。二軸押出機は、樹脂供給口よりL/D=10の部分に温度180℃に設定した可塑化部分を設け、L/D=30の部分にはニーディングディスクを備えてせん断付与できるスクリューとしてせん断付与下で混合できる構造をしており、ポリ-L-乳酸とポリ-D-乳酸の混合はせん断付与下、混合温度200℃で行った。ポリ-L-乳酸とポリ-D-乳酸の混合の組み合わせは表1に示すとおりである。なお、混合後ポリマーについては圧力13.3Pa、110℃で2時間結晶化処理を行った後、物性測定を実施した。
 表1の結果より、実施例1~12および比較例5は、混合時の重量平均分子量は10万以上と高分子量であったのに対して、比較例1~4は混合時の重量平均分子量は10万未満と低かった。混合時の熱特性については、実施例1~7および比較例1~5のすべての水準において混合物の高融点化が観測された。また、ステレオコンプレックス形成率については実施例1~12および比較例1~4で60%以上と高かったが、混合するポリ-L-乳酸とポリ-D-乳酸の分子量がいずれも10万以上の組み合わせである比較例5においてステレオコンプレックス形成率は低かった。
 (2)ポリ-L-乳酸とポリ-D-乳酸の混合物を固相重合する工程
 (1)により得られた混合物を、真空乾燥機中、140℃にて圧力13.3Paで4時間固相重合を行い、次いで150℃に昇温して4時間、さらに160℃に昇温して10時間固相重合を行った。
 表1に示すとおり、実施例1~12(SB1~SB12)および比較例5(SB17)については、いずれも固相重合後に分子量が10万以上と高分子量化していた。また、固相重合後の分散度は混合時の分散度より低くなり、3.0未満であることから重合が進行し、ポリ乳酸ブロック共重合体が得られていることを確認した。これに対して比較例1~4(SB13~SB16)については、固相重合後の分子量が10万以下であった。固相重合後の収率については、混合するポリ乳酸として高分子量セグメントを用いた実施例1~12(SB1~SB12)、比較例1~3(SB13~SB15)および5(SB17)はいずれも90%以上と高かったが、混合するポリ-L-乳酸とポリ-D-乳酸の分子量が10万以下の低分子量の組み合わせである比較例4(SB16)においては、固相重合後の収率が90%以上とならず低い値であった。固相重合後の熱特性については、実施例1~12(SB1~12)および比較例1~5(SB13~SB17)のすべての水準において混合物の高融点化が観測された。また、ステレオコンプレックス形成率については実施例1~12(SB1~SB12)および比較例1~4(SB13~SB16)で80%以上と高かったが、比較例5(SB17)についてはステレオコンプックス形成率が低かった。降温結晶化温度については、実施例1~12(SB1~SB12)および比較例4(SB16)において130℃以上であるのに対し、比較例1~3(SB13~SB15)および5(SB17)については130℃未満と低かった。
(比較例6)
 (1)ポリ-L-乳酸とポリ-D-乳酸を混合する工程
 30gのPLA6と30gのPDA5を、200ccフラスコ中でブレンドしながら常圧で加熱し、室温から190℃まで10分間で昇温させた。昇温過程において160℃で一部の融解が確認された。その後、降温させ混合物を得た。
 表1の結果のとおり、混合時の重量平均分子量は8.4万であった。混合物の熱特性については、ステレオコンプレックス形成により高融点化が一部認められた。しかしながら、混合工程においてPLA6の融解終了温度以下でブレンドしたため、部分的にしかポリマーは融解せず、ポリ乳酸単独結晶が残存し、その結果ステレオコンプレックス形成率は26%と低かった。
 (2)ポリ-L-乳酸とポリ-D-乳酸の混合物を固相重合する工程
 (1)で得られた混合物を圧力66.6Pa、110℃で2時間熱処理を行った後、130℃で5時間、140℃で25時間(合計30時間)加熱し固相重合を行った。
 表1の結果のとおり、固相重合後分子量は15.1万であったが、固相重合後の収率は90%以下と低かった。固相重合後の熱特性についてはステレオコンプレックス形成により高融点化が認められ、ステレオコンプレックス形成率も高かった。しかしながら、固相重合後の降温結晶化温度は124℃であり、実施例に示される130℃以上に比較して低かった。
 次に、実施例1、2および比較例6で得られた混合物(SC1,SC2,SC18)と、これら3種の固相重合後ポリマー(SB1,SB2,SB18)について結晶化特性のばらつきの測定を行った。すなわち、ペレット20個のステレオコンプレックス形成率を比較すると、実施例1、2では差が5%以内であったのに対して、比較例6では15%の差があった。
(比較例7)
 (1)ポリ-L-乳酸とポリ-D-乳酸を混合する工程
 ポリ-L-乳酸とポリ-D-乳酸の混合方法は実施例1と同様である。
 次に、ポリ-L-乳酸とポリ-D-乳酸の混合物については、ガラス容器内にすき間なく充填して密閉し、加熱を行った。加熱温度と時間は実施例1と同様である。
 混合物を加熱しただけでは固相重合は進行せず、加熱後の試料SB19の重量平均分子量は8.1万と実施例1に比較して低かった。この試料SB19の収率は98%、分散度は2.7であり、融点は162℃/215℃と、ステレオコンプレックス形成により高融点化が認められるものの、降温結晶化温度は112℃と減圧下で固相重合を行った実施例1に比較して低かった。
Figure JPOXMLDOC01-appb-T000001
[参考例19]
 L-ラクチド100部、エチレングリコール0.05部を撹拌装置のついた反応容器中で、窒素雰囲気下、150℃で均一に溶解させた後、オクチル酸錫0.003部を加え、3時間重合反応を行った。重合反応終了後、反応物をクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ-L-乳酸(PLA10)を得た。PLA10の重量平均分子量は20.1万、分散度は1.7、融点は173℃、融解終了温度は190℃であった。
[参考例20]
 L-ラクチド100部、エチレングリコール0.1部を撹拌装置のついた反応容器中で、窒素雰囲気下、150℃で均一に溶解させた後、オクチル酸錫0.003重量部を加え、3時間重合反応を行った。その後、反応系内にリン系の触媒失活剤を0.01部添加して10分間撹拌を行い、触媒失活を行った。得られた反応物はクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ-L-乳酸(PLA11)を得た。PLA11の重量平均分子量は12.2万、分散度は1.7、融点は170℃、融解終了温度188℃であった。
[参考例21]
 D-ラクチド100部を撹拌装置のついた反応容器中で、窒素雰囲気下、160℃で均一に溶解させた後、オクチル酸錫0.003部を加え、6時間重合反応を行った。重合反応終了後、反応物をクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ-D-乳酸(PDA10)を得た。PDA10の重量平均分子量は130万、分散度は1.6、融点は180℃、融解終了温度194℃であった。
[参考例22]
 D-ラクチド100部,エチレングリコール0.05部を撹拌装置のついた反応容器中で、窒素雰囲気下、150℃で均一に溶解させた後、オクチル酸錫0.003部を加え、3時間重合反応を行った。重合終了後、反応物をクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ-D-乳酸(PDA11)を得た。PDA11の重量平均分子量は19.8万、分散度は1.7、融点は172℃、融解終了温度190℃であった。
[参考例23]
 D-ラクチド100部,エチレングリコール0.1部を撹拌装置のついた反応容器中で、窒素雰囲気下、150℃で均一に溶解させた後、オクチル酸錫0.003部を加え、3時間重合反応を行った。その後、反応系内にリン系の触媒失活剤を0.01部添加して10分間撹拌を行い、触媒失活を行った。得られた反応物をクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ-D-乳酸(PDA12)を得た。PDA12の重量平均分子量は12.0万、分散度は1.7、融点は169℃、融解終了温度188℃であった。
(比較例8、9、11、12)
 (1)ポリ-L-乳酸とポリ-D-乳酸を混合する工程
 ポリ-L-乳酸とポリ-D-乳酸の混合は東洋精機製バッチ式二軸混練機(ラボプラストミル)を用いて行い、ポリ乳酸混合物を得た。試験条件は、混練温度245℃、混練回転数120rpm、混練時間は比較例8、11が10分、比較例9、12が60分である。ポリ-L-乳酸とポリ-D-乳酸の組み合わせは表2に示すとおりである。
 ポリ乳酸混合物の重量平均分子量は比較例8(SC14)、比較例11(SC17)で10万以上と高かったのに対して、混練時間が60分と長い比較例9(SC15)、比較例12(SC18)では10万以下と低下傾向であった。ポリ乳酸混合物の融点は、ステレオコンプレックス形成によりいずれも200℃以上に観測されたが、ステレオコンプレックス形成率については比較例8および11でともに60%以下と実施例1~8に比較して低かった。ポリ乳酸混合物の降温結晶化温度については、混練時間の長い比較例9、12でそれぞれ105℃と125℃に観測されたが、比較例8、11では降温結晶化温度が観測されず、いずれのサンプルについても結晶化特性は低かった。
(比較例10、13)
 (1)ポリ-L-乳酸とポリ-D-乳酸を混合する工程
 ポリ乳酸混合物は、比較例9、12と同様条件でバッチ式二軸混練機を用いてポリ-L-乳酸とポリ-D-乳酸を60分間混練し、混練後可塑剤を10重量部添加してさらに5分間混練することで作製した。ポリ-L-乳酸、ポリ-D-乳酸、可塑剤の組み合わせは表2に示すとおりである。
 表2に示すとおり、ポリ乳酸混合物の重量平均分子量は比較例10(SC16)、比較例13(SC19)それぞれにつき8.4万と5.1万であり、比較例9、12と同様に長時間の混練により分子量は低下傾向であった。一方、成形体の熱物性については、ポリ乳酸混合物の降温結晶化温度は比較例10(SC16)、比較例13(SC19)それぞれについて103℃と120℃であり、比較例9(SC15)、比較例12(SC18)とほとんど同一であった。
(比較例14~17)
 (1)ポリ-L-乳酸とポリ-D-乳酸を混合する工程
 ポリ-L-乳酸とポリ-D-乳酸の混合は、実施例1~12と同様二軸押出機を用いて混練により作製した。二軸押出機に対するポリ-L-乳酸、ポリ-D-乳酸および結晶核剤の供給に関しては、いずれも樹脂供給口から行い、混練温度は240℃に設定し、混練を行った。ポリ-L-乳酸、ポリ-D-乳酸および結晶核剤の組み合わせは表2に示すとおりである。
 混練により得られたポリ乳酸混合物の重量平均分子量は比較例14~16(SC20~SC22)につき11~12万であるのに対して、比較例17(SC23)では6.5万と分子量が低くなる傾向であった。また、ポリ乳酸混合物の融点はステレオコンプレックス形成により200℃以上に観測されたが、ポリ乳酸混合物の降温結晶化温度は結晶核剤を併用した比較例14~16(SC20~SC22)でのみ観測された。
Figure JPOXMLDOC01-appb-T000002
(実施例13~24、比較例18~24)
 表3に示すとおり、実施例1~12と比較例1~6で得られたポリ乳酸ブロック共重合体(SB1~SB12、SB13~SB18)および比較例7で得られたポリ乳酸混合物(SB19)を、二軸押出機を用いてリン系触媒失活剤0.05部とともに240℃での溶融混練を行い、触媒失活を行った。続いて、240℃で2分間加熱して溶融し、その後プレス温度80℃でプレスすることで厚さ0.1mmのプレスシートを作製した。次いで、プレスシートを窒素雰囲気下、110℃で30分間の熱処理条件にて熱処理を行うことで各種測定用のシート状成形体とした。
 シート状成形体の中心部をサンプリングして測定した各種物性値は表3のとおりである。実施例13~24、比較例18~24のシート状成形体の相対結晶化度はいずれも100%であった。また、シート状成形体の中心部から5cm×5cmの大きさに切り出したサンプルについてヘイズ値を測定したところ、実施例13~24のシート成形体はいずれも10%未満であり、透明性に優れていた。一方、比較例18~24のシート成形体のヘイズ値は、比較例21のシート成形体が10%未満であることを除いて、10%以上であった。
 次に、シート状成形体を中心部より40mm×2mmに切り出して短冊状のサンプルとし、動的粘弾性による130℃での貯蔵弾性率を測定したところ、実施例13~24のシート成形体についてはいずれも2GPa以上であり、耐熱性に優れていた。前記短冊状サンプルにつき引張強度を測定したところ、いずれも60MPa以上であった。それに対して比較例18~24のシート成形体については、130℃における貯蔵弾性率が比較例21、23、24で2GPa以上であるものの、その他については2GPa未満であった。また、短冊状サンプルの引張強度についてはいずれのシート成形体も60MPa未満と実施例に比較して物性が低かった。
 次に、シート状成形体につき、真空成形機を用いて加熱温度100℃、加熱時間60秒の条件で加熱を行い、金型温度40℃で金型に密着させると同時に金型内を減圧することにより内径6cm、深さ10cmの円柱状の容器を得た。この円柱状容器を窒素雰囲気下、110℃で30分間の熱処理条件にて熱処理を行った後、水を充填してフタをした状態で2mの高さより容器底部からコンクリート上に落下させ、落下衝撃により容器が破損して水が漏れるまでの回数を測定した。その結果、実施例13~24いずれのサンプルについても耐衝撃性が良好であることを確認した。しかしながら比較例18~24のサンプルについてはいずれも落下回数5回未満で容器が破損して水が漏れるのを確認した。
(実施例25)
 実施例1で固相重合により得られたポリ乳酸ブロック共重合体SB1について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例13~24と同様である。続いて、触媒失活を行ったポリ乳酸ブロック共重合体は、240℃で2分間加熱して溶融し、その後プレス温度80℃でプレスすることで厚さ0.1mmのプレスシート作製した後、氷水中に冷却することで各種測定用のシート状成形体とした。シート状成形体の各種物性測定方法は実施例13~24と同様である。
 表3に示すとおり、実施例25のシート状成形体の相対結晶化度は、成形体の熱処理を行っていないため10%と低かった。また、シート状成形体のヘイズ値は、成形体が熱処理されていないため2%であり、透明性は高かった。しかしながら、シート状成形体の引張強度および耐衝撃性は実施例13~24に比較して低く、また、130℃における貯蔵弾性率については測定途中の昇温過程にて成形体が破断したため測定不可能であった。
(比較例25)
 実施例1で得られたポリ乳酸混合物SC1について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例13~24と同様である。続いて触媒失活したSC1を用いて各種物性測定用の成形体を作製した。成形体製造方法および物性測定方法は実施例13~24と同様である。
 表3に示すとおり、比較例25のシート状成形体の相対結晶化度は100%であった。また、シート状成形体のヘイズ値は、成形体が14%であり、透明性は高かった。シート状成形体の130℃における貯蔵弾性率は2.4GPaと高いものの、引張強度および耐衝撃性は実施例13~24に比較して劣る結果であった。
(比較例26、27、29、30)
 比較例8、9、11、12で得られたポリ乳酸混合物(SC19、SC20、SC22、SC23)について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例13~24と同様である。続いて触媒失活したポリ乳酸混合物を用いて各種物性測定用の成形体を作製した。各種物性測定用の成形体作製方法、物性測定方法は実施例13~24と同様である。
 表3に示すとおり、各比較例のシート状成形体の相対結晶化度は、比較例27、29、30ではそれぞれ100%であるものの、比較例26では78%と低かった。また、シート状成形体のヘイズ値は、比較例31では22%であったものの、比較例26、27、29は40%以上であり、実施例13~24に比較して透明性は低かった。さらに、シート成形体の130℃における貯蔵弾性率は2GPa以下であり、高温剛性に劣る結果であった。
 シート成形体の引張強度および耐衝撃性については成形体の分子量の高い比較例26では良好であったが、比較例28、30、31については実施例13~24に比較して低かった。
(比較例28、31)
 比較例10、13で得られたポリ乳酸混合物(SC21、SC24)について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例13~24と同様である。続いて触媒失活したポリ乳酸混合物を用いて各種物性測定用の成形体を作製した。各種物性測定用の成形体の製造方法および物性測定方法は実施例13~24と同様である。表3に示すとおり、各比較例のシート状成形体の相対結晶化度はいずれも100%であった。成形体のヘイズ値は、可塑剤を添加することで比較例23、25に比較して低くなり、その結果透明性が向上したが、成形体の引張強度については可塑剤添加により低下する傾向であった。
(比較例32~36)
 参考例20で得られたポリ乳酸(PLA11)および比較例14~17で得られたポリ乳酸混合物(SC25~SC28)について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例13~24と同様である。続いて触媒失活したポリ乳酸混合物を用いて各種物性測定用の成形体を作製した。
 表3に示すとおり、各比較例のシート状成形体の相対結晶化度はいずれも100%であった。成形体のヘイズ値は、比較例32、33で50%以上と透明性が低く、比較例34~36については結晶核剤の併用により13~15%と低くなった。成形体の機械物性については、いずれも実施例13~24に比較して低く、特に分子量の低い比較例36については引張強度、耐衝撃性の両方でさらに物性が低くなる傾向であった。
 以上のとおり、本発明の製造方法により得られるポリ乳酸ブロック共重合体は、成形体においても耐熱性、結晶性ならびに透明性に優れるものであった。
Figure JPOXMLDOC01-appb-T000003
 本発明の製造方法により高分子量かつ高融点のポリ乳酸ブロック共重合体が得られるため、ポリ乳酸ホモポリマーでは使用が困難であった耐熱性が要求される分野に好適に採用できる。

Claims (13)

  1. ポリ-L-乳酸またはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~5万であるポリ-L-乳酸とポリ-D-乳酸を混合し、重量平均分子量が9万以上、かつステレオコンプレックス形成率(Sc)が下記式(1)を満たす混合物を得る工程、次いで、混合物を混合物の融点より低い温度で固相重合する工程からなるL-乳酸単位からなるセグメントとD-乳酸単位からなるセグメントにより構成されるポリ乳酸ブロック共重合体の製造方法。
     Sc=ΔHh/(ΔHl+ΔHh)×100>60   (1)
     ここで、ΔHh:ステレオコンプレックス結晶に基づく熱量(J/g)、ΔHl:ポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
  2. ポリ-L-乳酸とポリ-D-乳酸のうち、重量平均分子量の高い方と重量平均分子量の低い方の比が2以上30未満であるポリ-L-乳酸とポリ-D-乳酸を混合し、重量平均分子量が9万以上、かつステレオコンプレックス形成率(Sc)が下記式(1)を満たす混合物を得る工程、次いで、混合物を混合物の融点より低い温度で固相重合する工程からなるポリ乳酸ブロック共重合体の製造方法。
     Sc=ΔHh/(ΔHl+ΔHh)×100>60   (1)
     ここで、ΔHh:ステレオコンプレックス結晶に基づく熱量(J/g)、ΔHl:ポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
  3. 原料となるポリ-L-乳酸とポリ-D-乳酸のいずれか一方の重量平均/分子量が17万以上であり、かつもう一方の重量平均分子量が2万以上である請求項1または2記載のポリ乳酸ブロック共重合体の製造方法。
  4. ポリ-L-乳酸とポリ-D-乳酸の混合物が下記式(2)を満たす請求項1~3いずれかに記載のポリ乳酸ブロック共重合体の製造方法。
     Sc=ΔHh/(ΔHl+ΔHh)×100>70   (2)
  5. 得られるポリ乳酸ブロック共重合体が下記式(3)を満たす請求項1~4いずれかに記載のポリ乳酸ブロック共重合体の製造方法。
     Sc=ΔHh/(ΔHl+ΔHh)×100>80   (3)
  6. 得られるポリ乳酸ブロック共重合体のDSC測定において、ポリ乳酸ブロック共重合体を250度まで昇温して3分間恒温状態にした後、冷却速度20℃/minで降温した際の降温結晶化温度が130℃以上である請求項1~5いずれかに記載のポリ乳酸ブロック共重合体の製造方法。
  7. 得られるポリ乳酸ブロック共重合体の重量平均分子量と数平均分子量の比で示される分散度が2.7以下である請求項1~6いずれかに記載のポリ乳酸ブロック共重合体の製造方法。
  8. 得られるポリ乳酸ブロック共重合体を含む成形体であって、該成形体が下記式(4)を満たし、かつ厚さ100μmの成形体としたときのヘイズ値が30%以下である請求項1~7いずれかに記載のポリ乳酸ブロック共重合体の製造方法。
     相対結晶化度=[(ΔHm-ΔHc)/ΔHm]×100>90  (4)
     ここで、ΔHm:成形体の結晶融解エンタルピー(J/g)、ΔHc:成形体の昇温時結晶化エンタルピー(J/g)
  9. 混合物に含まれる触媒が、混合物100重量部に対して0.001~0.5重量部である請求項1~8いずれかに記載のポリ乳酸ブロック共重合体の製造方法。
  10. 混合物に含まれる触媒が錫化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物、およびスルホン酸化合物から得られる少なくとも一種である請求項9に記載のポリ乳酸ブロック共重合体の製造方法。
  11. 錫化合物が、酢酸錫(II)、オクチル酸錫(II)、塩化錫(II)、塩化錫(IV)から選ばれる少なくとも一種であり、スルホン酸化合物がメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、プロパンジスルホン酸、ナフタレンジスルホン酸、および2-アミノエタンスルホン酸から選ばれる少なくとも一種である請求項10記載のポリ乳酸ブロック共重合体の製造方法。
  12. 固相重合時の温度を段階的または連続的に昇温する請求項1~11いずれかに記載のポリ乳酸ブロック共重合体の製造方法。
  13. 得られるポリ乳酸ブロック共重合体の重量平均分子量が10万以上である請求項1~12いずれかに記載のポリ乳酸ブロック共重合体の製造方法。
PCT/JP2011/064629 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体の製造方法 WO2012029392A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/819,199 US9150690B2 (en) 2010-08-31 2011-06-27 Method for producing polylactic acid block copolymer
BR112013002442A BR112013002442A2 (pt) 2010-08-31 2011-06-27 método para produzir um copolímero em bloco de ácido poliláctico
KR1020127032740A KR20130113332A (ko) 2010-08-31 2011-06-27 폴리락트산 블록 공중합체의 제조 방법
CN201180042032.2A CN103068880B (zh) 2010-08-31 2011-06-27 聚乳酸嵌段共聚物的制造方法
JP2011535342A JP5630439B2 (ja) 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体の製造方法
EP11821410.5A EP2612877B1 (en) 2010-08-31 2011-06-27 Method for producing polylactic acid block copolymer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010193119 2010-08-31
JP2010-193119 2010-08-31
JP2011-014879 2011-01-27
JP2011014879 2011-01-27
JP2011-075313 2011-03-30
JP2011075313 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012029392A1 true WO2012029392A1 (ja) 2012-03-08

Family

ID=45772504

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/064630 WO2012029393A1 (ja) 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体
PCT/JP2011/064629 WO2012029392A1 (ja) 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064630 WO2012029393A1 (ja) 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体

Country Status (8)

Country Link
US (2) US9150690B2 (ja)
EP (2) EP2612878B1 (ja)
JP (2) JP5957885B2 (ja)
KR (2) KR20130113332A (ja)
CN (2) CN103068880B (ja)
BR (2) BR112013001850A2 (ja)
TW (2) TW201213390A (ja)
WO (2) WO2012029393A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234277A (ja) * 2012-05-10 2013-11-21 Rikkyo Gakuin 乳酸ステレオブロック共重合体組成物およびその製造方法
JP2014221860A (ja) * 2013-05-13 2014-11-27 有限会社Nkリサーチ ステレオコンプレックス結晶性ポリ乳酸プレポリマー組成物
JP5957885B2 (ja) * 2010-08-31 2016-07-27 東レ株式会社 ポリ乳酸ブロック共重合体

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047317A (ja) * 2012-09-03 2014-03-17 Hiroshima Univ 生分解性ブロック共重合体及びその製造方法、並びに成形体
CN102924695A (zh) * 2012-09-19 2013-02-13 上海科院生物材料有限公司 一种高效制备立体嵌段聚乳酸的方法
EP2907849A4 (en) * 2012-10-10 2016-06-08 Toray Industries POLYLACTIC ACID RESIN COMPOSITION AND PROCESS FOR PRODUCING MOLDED ARTICLE AND POLYLACTIC ACID RESIN COMPOSITION
CN102924891A (zh) * 2012-10-26 2013-02-13 上海科院生物材料有限公司 一种制备立体复合聚乳酸的方法
JPWO2014106934A1 (ja) * 2013-01-07 2017-01-19 東レ株式会社 ポリ乳酸系シート、及びその製造方法
CA2895274A1 (en) * 2013-02-19 2014-08-28 Toray Industries, Inc. Polylactic resin composition, molded product, and method for producing polylactic resin composition
JPWO2014148226A1 (ja) * 2013-03-18 2017-02-16 東レ株式会社 成形体、及びその製造方法
JPWO2014189021A1 (ja) * 2013-05-24 2017-02-23 東レ株式会社 ポリ乳酸系シート及びその製造方法
EP3045498A4 (en) * 2013-09-11 2017-07-26 Toray Industries, Inc. Material for fused-deposition-type three-dimensional modeling, and filament for fused-deposition-type 3d printing device
KR101692986B1 (ko) * 2014-08-12 2017-01-05 한국과학기술연구원 스테레오컴플렉스형 유기필러에 의해 향상된 물리적 특성을 갖는 생분해성 고분자 및 이의 제조방법
ES2859599T3 (es) * 2014-08-19 2021-10-04 Purac Biochem Bv Copolímero de bloque de lactida y procedimiento de preparación
ES2775609T3 (es) * 2014-09-17 2020-07-27 Sulzer Management Ag Un procedimiento para estabilizar una composición de fase condensada incluyendo un éster cíclico en un proceso de fabricación de un poliéster o de lactida
KR101711096B1 (ko) * 2014-11-27 2017-02-28 한국화학연구원 펠렛화된 예비중합체를 이용한 다중 입체블록형 폴리락트산의 제조방법
KR101641727B1 (ko) 2014-12-10 2016-07-22 한국화학연구원 입체블록형 폴리락타이드의 제조방법
CN104815667B (zh) * 2015-04-02 2017-05-24 陕西延长石油(集团)有限责任公司炼化公司 一种固体酸催化剂在合成丙烯酸异冰片酯中的应用
CN104801327A (zh) * 2015-04-02 2015-07-29 陕西延长石油(集团)有限责任公司炼化公司 一种固体酸催化剂的制备方法
KR101713215B1 (ko) * 2015-08-11 2017-03-07 롯데케미칼 주식회사 폴리유산의 제조 방법
CN112011848A (zh) * 2020-08-21 2020-12-01 安徽同光邦飞生物科技有限公司 一种医用聚乳酸复合材料纤维的制备方法
CN112280013B (zh) * 2020-11-10 2023-05-02 中北大学 一种可降解耐热性共聚酯的制备方法
CN112920583B (zh) * 2021-04-14 2022-05-06 中国科学院长春应用化学研究所 一种具有快速结晶能力的聚l-乳酸发泡材料及其制备方法
CN115491003B (zh) * 2022-09-14 2023-08-15 包头稀土研究院 稀土氨基酸配合物的用途、聚乳酸组合物及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356543A (ja) * 2001-03-29 2002-12-13 Toray Ind Inc ポリ乳酸ブロック共重合体、その製造方法、成形品およびポリ乳酸組成物
JP2003096285A (ja) * 2001-09-27 2003-04-03 Toray Ind Inc ポリ乳酸樹脂組成物、その製造方法および成形品
JP2003238672A (ja) 2002-02-15 2003-08-27 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
JP2006028336A (ja) 2004-07-15 2006-02-02 Musashino Chemical Laboratory Ltd ポリ乳酸ブロック共重合体の製造方法
JP2006307071A (ja) 2005-04-28 2006-11-09 Musashino Chemical Laboratory Ltd ポリ乳酸の製造方法
JP2008063455A (ja) * 2006-09-07 2008-03-21 Teijin Ltd ポリ乳酸の製造方法
JP2009040997A (ja) 2007-07-17 2009-02-26 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187626A (ja) * 2003-12-25 2005-07-14 Musashino Chemical Laboratory Ltd ポリ乳酸ステレオコンプレックス体の製造方法
JP5175421B2 (ja) * 2004-08-31 2013-04-03 帝人株式会社 ステレオコンプレックスポリ乳酸およびその製造方法
WO2006009285A1 (ja) * 2004-07-22 2006-01-26 Teijin Limited ポリ乳酸およびその製造方法
JP5461755B2 (ja) * 2006-01-20 2014-04-02 帝人株式会社 ポリ乳酸
JP2010059354A (ja) * 2008-09-05 2010-03-18 Kyoto Institute Of Technology ポリ乳酸組成物
JP5429959B2 (ja) * 2008-10-07 2014-02-26 竹本油脂株式会社 ポリ乳酸樹脂組成物の調製方法、ポリ乳酸樹脂成形体の製造方法及びポリ乳酸樹脂成形体
WO2012029393A1 (ja) * 2010-08-31 2012-03-08 東レ株式会社 ポリ乳酸ブロック共重合体
JP2012177011A (ja) * 2011-02-25 2012-09-13 Toray Ind Inc ポリ乳酸組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356543A (ja) * 2001-03-29 2002-12-13 Toray Ind Inc ポリ乳酸ブロック共重合体、その製造方法、成形品およびポリ乳酸組成物
JP2003096285A (ja) * 2001-09-27 2003-04-03 Toray Ind Inc ポリ乳酸樹脂組成物、その製造方法および成形品
JP2003238672A (ja) 2002-02-15 2003-08-27 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
JP2006028336A (ja) 2004-07-15 2006-02-02 Musashino Chemical Laboratory Ltd ポリ乳酸ブロック共重合体の製造方法
JP2006307071A (ja) 2005-04-28 2006-11-09 Musashino Chemical Laboratory Ltd ポリ乳酸の製造方法
JP2008063455A (ja) * 2006-09-07 2008-03-21 Teijin Ltd ポリ乳酸の製造方法
JP2009040997A (ja) 2007-07-17 2009-02-26 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957885B2 (ja) * 2010-08-31 2016-07-27 東レ株式会社 ポリ乳酸ブロック共重合体
JP2013234277A (ja) * 2012-05-10 2013-11-21 Rikkyo Gakuin 乳酸ステレオブロック共重合体組成物およびその製造方法
JP2014221860A (ja) * 2013-05-13 2014-11-27 有限会社Nkリサーチ ステレオコンプレックス結晶性ポリ乳酸プレポリマー組成物

Also Published As

Publication number Publication date
BR112013001850A2 (pt) 2016-05-31
KR20130113332A (ko) 2013-10-15
KR20130118214A (ko) 2013-10-29
EP2612877B1 (en) 2018-03-21
US9150690B2 (en) 2015-10-06
WO2012029393A1 (ja) 2012-03-08
JP5957885B2 (ja) 2016-07-27
EP2612877A1 (en) 2013-07-10
EP2612878A1 (en) 2013-07-10
TW201213400A (en) 2012-04-01
CN103068880A (zh) 2013-04-24
EP2612878A4 (en) 2017-04-05
CN103068881A (zh) 2013-04-24
US20130158209A1 (en) 2013-06-20
BR112013002442A2 (pt) 2016-05-24
EP2612877A4 (en) 2017-06-21
CN103068880B (zh) 2015-11-25
TW201213390A (en) 2012-04-01
US20130165601A1 (en) 2013-06-27
JPWO2012029392A1 (ja) 2013-10-28
CN103068881B (zh) 2015-11-25
JPWO2012029393A1 (ja) 2013-10-28
JP5630439B2 (ja) 2014-11-26
EP2612878B1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP5630439B2 (ja) ポリ乳酸ブロック共重合体の製造方法
US9920181B2 (en) Polylactic acid resin composition, molded product, and method of manufacturing polylactic acid resin composition
JP6341194B2 (ja) ポリ乳酸樹脂からなる繊維およびその製造方法
WO2008102919A1 (ja) ポリ乳酸組成物
JP2008291244A (ja) フラン構造を含むポリエステル樹脂の製造方法
JP5565469B2 (ja) ポリ乳酸樹脂組成物、その製造方法およびそれからなる成形品
JP2007269960A (ja) ポリ乳酸組成物
JP2003192883A (ja) ポリ乳酸系樹脂組成物、成形品及びその製造方法
WO2014129293A1 (ja) ポリ乳酸樹脂組成物、成形体およびポリ乳酸樹脂組成物の製造方法
JP2009040997A (ja) ポリ乳酸ブロック共重合体の製造方法
JP5292775B2 (ja) ポリ乳酸系樹脂の製造方法
JP4766893B2 (ja) 重合体及びその製造方法
JP2015044927A (ja) ポリ乳酸樹脂組成物およびそれからなる成形品
JP2015105302A (ja) 樹脂組成物およびそれからなる成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042032.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011535342

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127032740

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011821410

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13819199

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013002442

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013002442

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130131