JP5957885B2 - ポリ乳酸ブロック共重合体 - Google Patents

ポリ乳酸ブロック共重合体 Download PDF

Info

Publication number
JP5957885B2
JP5957885B2 JP2011535343A JP2011535343A JP5957885B2 JP 5957885 B2 JP5957885 B2 JP 5957885B2 JP 2011535343 A JP2011535343 A JP 2011535343A JP 2011535343 A JP2011535343 A JP 2011535343A JP 5957885 B2 JP5957885 B2 JP 5957885B2
Authority
JP
Japan
Prior art keywords
lactic acid
poly
acid
temperature
block copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011535343A
Other languages
English (en)
Other versions
JPWO2012029393A1 (ja
Inventor
佳丈 高橋
佳丈 高橋
拓磨 直塚
拓磨 直塚
健 須藤
健 須藤
大目 裕千
裕千 大目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2012029393A1 publication Critical patent/JPWO2012029393A1/ja
Application granted granted Critical
Publication of JP5957885B2 publication Critical patent/JP5957885B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、透明性、耐熱性および機械物性に優れたポリ乳酸ステレオコンプレックスを形成するポリ乳酸ブロック共重合体に関する。
ポリ乳酸は、実用上溶融成型可能な高分子であり、生分解性の特徴を有することから使用した後は自然環境中で分解して炭酸ガスや水として放出される生分解性プラスチックとしての開発が進められてきた。一方、近年では、ポリ乳酸自身が二酸化炭素や水を起源とする再生可能資源(バイオマス)を原料としているため、使用後に二酸化炭素が放出されたとしても地球環境中における二酸化炭素は増減しないというカーボンニュートラルの性質が注目され、環境低負荷材料としての利用が期待されている。さらに、ポリ乳酸のモノマーである乳酸は微生物を利用した発酵法により安価に製造されつつあり、石油系プラスチック製の汎用ポリマーの代替素材としても検討されるようになってきた。しかしながら、ポリ乳酸は、石油系プラスチックに比較すると耐熱性や耐久性が低く、結晶化速度が小さいため生産性にも劣っており、実用化の範囲は大幅に限定されているのが現状である。
このような問題点を解決する手段の一つとして、ポリ乳酸ステレオコンプレックスの利用が注目されている。ポリ乳酸ステレオコンプレックスは光学活性なポリ−L−乳酸(以下、PLLAと称する)とポリ−D−乳酸(以下、PDLAと称する)を混合することにより形成され、この融点はポリ乳酸ホモポリマーの融点170℃に比較して50℃高い220℃に達する。このため、高融点および高結晶性の繊維、フィルムおよび樹脂成型品としての適用が試みられている。
従来、ポリ乳酸ステレオコンプレックスはPLLAとPDLAを溶液状態で混合するか、PLLAとPDLAを加熱溶融混合させることで形成される。しかしながら、PLLAとPDLAの溶液混合については、混合後に溶剤を揮発させる必要があることから製造工程が煩雑になり、結果としてポリ乳酸ステレオコンプレックスが高コストになる問題がある。また、PLLAとPDLAの加熱溶融混合の場合には、ポリ乳酸ステレオコンプレックスが十分溶融する温度で混合する必要があり、このような温度ではポリ乳酸の熱分解反応を併発するため、成型品として用いる場合には物性の低下を生じる問題があった。さらに、高分子量のPLLAと高分子量のPDLAを加熱溶融混合した場合には、混合組成比が50:50であってもポリ乳酸ホモポリマーの融点ピークが多く存在するため、耐熱性と耐久性を兼ね備えた材料は得られないのが現状である。
加熱溶融混合で得られるポリ乳酸ステレオコンプレックスの例として、特許文献1には、PLLAとPDLAの重量平均分子量の差が5万以上である高分子量のPLLAと低分子量のPDLAを溶融混練することによりポリ乳酸ステレオコンプレックスを得ている。この技術では、ステレオコンプレックス形成が高くなり、耐熱性および結晶性に優れたポリ乳酸ステレオコンプレックスが得られる。
一方、高分子量においてもステレオコンプレックスを形成する技術としてPLLAセグメントとPDLAセグメントからなるポリ乳酸ブロック共重合体が開示されている(特許文献2〜4)。
特許文献2は、開環重合あるいは直接重縮合にて作製したPLLAとPDLAを加熱下で溶融混練することで混合物を作製した後、この混合物を固相重合することで得られるポリ乳酸ブロック共重合体に関する。
特許文献3は、溶融重合で得られたPLLAとPDLAを加熱下で溶融混合した後、この混合物を固相重合することで得られるポリ乳酸ブロック共重合体に関する。
特許文献4は、分子量の異なるPLLAとPDLAを融点近傍で混合し、ポリ乳酸単独結晶存在下で固相重合することにより得られるポリ乳酸ブロック共重合体に関する。
特開2003−96285号公報 特開2003−238672号公報 特開2006−28336号公報 特開2006−307071号公報
しかしながら、特許文献1記載の技術においては、混練物中に低分子量成分が含まれており、混合物全体として分散度が大きいため、ポリ乳酸ステレオコンプレックスの機械物性が低くなる問題がある。
特許文献2記載の技術において、ポリ乳酸ブロック共重合体を得るためには、溶融混練時にポリ乳酸ステレオコンプレックスの融点以上の温度を加温する必要があり、溶融混練時に混合物の分子量および機械物性の低下が課題となる。
特許文献3記載の技術で得られるポリ乳酸ブロック共重合体は、ステレオコンプレックス結晶由来の融点が観測されることから耐熱性は高いものの、一方で分子量が低いために機械物性が低いことが問題であり、実際の使用にはまだ課題が残る。
特許文献4記載の技術では、混練時には部分的な融解がみられることから混合物の結晶特性にばらつきが存在する。また、固相重合後の重量平均分子量は10万以上と高くなる傾向であるが、ポリ乳酸ブロック共重合体として低分子量成分を含んでおり、分散度が2.7以上と高いため、機械物性が低くなる問題があった。
本発明の課題は、従来技術の問題点を解決し、透明性、耐熱性および機械物性に優れたポリ乳酸ステレオコンプレックスを形成するポリ乳酸ブロック共重合体を提供することにある。
本発明のかかる課題は、
ポリ−L−乳酸の重量平均分子量とポリ−D−乳酸の重量平均分子量の比が2以上30未満であるポリ−L−乳酸とポリ−D−乳酸を、ポリ−L−乳酸とポリ−D−乳酸のうち、融点の高い成分の融解終了温度以上で溶融混合し、重量平均分子量が9万以上、かつ下記式(3)に示すステレオコンプレックス形成率(Sc)が60%を超え99%までの範囲である混合物を得た後、該混合物の融点より低い温度で固相重合する工程からなるL−乳酸を主成分とするポリ−L−乳酸セグメントとD−乳酸を主成分とするポリ−D−乳酸セグメントから構成されるポリ乳酸ブロック共重合体の製造方法であって、ポリ乳酸ブロック共重合体が下記式(1)および(2)を満たすことを特徴とするポリ乳酸ブロック共重合体の製造方法、により解決できる。
Sc=ΔHh/(ΔHl+ΔHh)×100≧80 (1)
ここで、ΔHh:DSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)、ΔHl:DSC測定において昇温速度20℃/minで昇温した際のポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶の結晶融解に基づく熱量(J/g)
1<(Tm−Tms)/(Tme−Tm)<1.8 (2)
ここで、Tm:DSC測定において昇温速度40℃/minで昇温した際のポリ乳酸ブロック共重合体の融点、Tms:DSC測定において昇温速度40℃/minで昇温した際のポリ乳酸ブロック共重合体の融解開始温度、Tme:DSC測定において昇温速度40℃/minで昇温した際のポリ乳酸ブロック共重合体の融解終了温
Sc=ΔHh/(ΔHl+ΔHh)×100 (3)
ここで、Sc:ポリ−L−乳酸またはポリ−D−乳酸を混合した際の混合物のステレオコンプレックス形成率、ΔHh:DSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)、ΔHl:DSC測定において昇温速度20℃/minで昇温した際のポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶の結晶融解に基づく熱量(J/g)
また、本発明のかかる課題は、上記ポリ乳酸ブロック共重合体を含む成形体であって、該成形体の相対結晶化度が90%以上であり、かつ厚さ100μmの成形体としたときのヘイズ値が30%以下の部分を有する成形体により解決できる。
本発明のポリ乳酸ブロック共重合体は、分子量分布において分子量10万以上の割合が40%以上であることが好ましい。
本発明のポリ乳酸ブロック共重合体は、DSC測定において、ポリ乳酸ブロック共重合体を250度まで昇温して3分間恒温状態にした後、冷却速度20℃/minで降温した際の降温結晶化温度が130℃以上であることが好ましい。
重量平均分子量と数平均分子量の比で示される分散度が2.7以下であることが好ましい。
本発明のポリ乳酸ブロック共重合体中のポリ−L−乳酸単位またはポリ−D−乳酸単位の平均連鎖長が20以上であることが好ましい。
本発明のポリ乳酸ブロック共重合体中のL−乳酸成分とD−乳酸成分の重量比が80/20〜60/40または40/60〜20/80の範囲であることが好ましい。
本発明のポリ乳酸ブロック共重合体は、重量平均分子量が10万以上であることが好ましい。
本発明のポリ乳酸ブロック共重合体一分子あたりに含まれるL−乳酸単位からなるセグメントおよびD−乳酸単位からなるセグメントの合計数が3以上であることが好ましい。
本発明によれば、透明性、耐熱性および機械物性に優れた、ポリ乳酸ブロック共重合体を提供することができる。
以下、本発明について詳細に説明する。
本発明において、ポリ乳酸ブロック共重合体とは、L−乳酸単位からなるセグメントとD−乳酸単位からなるセグメントが共有結合したポリ乳酸ブロック共重合体である。
ここで、L−乳酸単位からなるセグメントとは、L−乳酸を主成分とする重合体であり、L−乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることがより好ましく、90mol%以上含有していることがさらに好ましく、95mol%以上含有していることが特に好ましく、98mol%以上含有していることが最も好ましい。
また、D−乳酸単位からなるセグメントとは、D−乳酸を主成分とする重合体であり、D−乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることがより好ましく、90mol%以上含有していることがさらに好ましく、95mol%以上含有していることが特に好ましく、98mol%以上含有していることが最も好ましい。
本発明において、L−乳酸またはD−乳酸単位からなるセグメントは、得られるポリ乳酸ブロック共重合体の性能を損なわない範囲で、他の成分単位を含んでいてもよい。L−乳酸またはD−乳酸単位以外の他の成分単位としては、多価カルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトンなどが挙げられ、具体的には、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、5−ナトリウムスルホイソフタル酸、5−テトラブチルホスホニウムスルホイソフタル酸などの多価カルボン酸類またはそれらの誘導体、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、トリメチロールプロパンまたはペンタエリスリトールにエチレンオキシドまたはプロピレンオキシドを付加した多価アルコール、ビスフェノールにエチレンオキシドを付加反応させた芳香族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの多価アルコール類またはそれらの誘導体、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸類、およびグリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトンなどのラクトン類などが挙げられる。
本発明においてポリ乳酸ブロック共重合体は、ステレオコンプレックス形成によりステレオコンプレックス結晶に基づく融点を190〜230℃の範囲で有するため、ポリ乳酸ホモポリマーに比較して耐熱性に優れる。ステレオコンプレックス結晶由来の融点の好ましい範囲は200℃〜230℃であり、205℃〜230℃の温度範囲がさらに好ましく、210℃〜230℃の温度範囲が特に好ましい。また、150℃〜185℃の範囲でポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶に基づく小さな融解ピークを有する場合もある。
また、ポリ乳酸ブロック共重合体は、耐熱性の観点からステレオコンプレックス形成率(Sc)が80%以上の範囲であることが必要である。さらに好ましくは85〜100%の範囲であり、90〜100%であることが特に好ましい。ここで、ステレオコンプレックス形成率とは、ポリ乳酸中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には、示差走査型熱量計(DSC)で昇温速度20℃/minで30℃から250℃まで昇温した際のポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(4)で算出することができる。
Sc=ΔHh/(ΔHl+ΔHh)×100 (4)
本発明において、ポリ乳酸ブロック共重合体はさらに下記式(5)を満たすことが必要である。
1<(Tm−Tms)/(Tme−Tm)<1.8 (5)
ここで、Tmとは、ポリ乳酸ブロック共重合体を示差走査熱量計(DSC)により昇温速度40℃/minで30℃から250℃まで昇温した際の融点、Tmsとは、ポリ乳酸ブロック共重合体を示差走査熱量計(DSC)により昇温速度40℃/minで30℃から250℃まで昇温した際の融解開始温度、Tmeとは、ポリ乳酸ブロック共重合体を示差走査熱量計(DSC)により昇温速度40℃/minで30℃から250℃まで昇温した際の融解終了温度を示す。好ましい範囲は1<(Tm−Tms)/(Tme−Tm)<1.6であり、1<(Tm−Tms)/(Tme−Tm)<1.4の範囲がさらに好ましい。
本発明において、ポリ乳酸ブロック共重合体は成形性および耐熱性に優れるという点で、降温結晶化温度(Tc)が130℃以上であることが好ましい。ここで、成型体の降温結晶化温度(Tc)とは、示差走査熱量計(DSC)により昇温速度20℃/minで30℃から250℃まで昇温した後、250℃で3分間恒温状態に維持を行い、冷却速度20℃/minで降温した際に測定したポリ乳酸結晶由来の結晶化温度である。結晶化温度(Tc)は、特に限定されるものではないが、耐熱性および透明性の観点から、130℃以上が好ましく、132℃以上がより好ましく、135℃以上が特に好ましい。
本発明においてポリ乳酸ブロック共重合体の重量平均分子量は、特に限定されるものではないが、10万以上30万未満の範囲であることが、成形性および機械物性の点で好ましい。より好ましくは12万以上28万未満の範囲であり、さらに好ましくは13万以上27万未満の範囲であり、14万以上26万未満の範囲であることが特に好ましい。
また、ポリ乳酸ブロック共重合体の分散度は、1.5〜3.0の範囲が機械物性の点で好ましい。分散度の範囲が1.8〜2.7であることがさらに好ましく、2.0〜2.4であることが成形性および機械物性の点で特に好ましい。
さらに、ポリ乳酸ブロック共重合体の分子量分布曲線において、分子量が10万以上である割合は40%以上100%以下であることが機械物性の点で好ましい。さらに好ましくは45%以上100%以下であり、50%以上100%以下が機械物性の点で特に好ましい。なお、分子量10万以上の割合(Mwp)は、分子量分布曲線の全体の面積(c)と分子量10万以上部分の面積(d)としたとき、下記式(6)から算出することができる。
Mwp=(d)/(c)×100 (6)
また、重量平均分子量、分散度および分子量分布は、溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。
本発明において、ポリ乳酸ブロック共重合体の平均連鎖長は20以上が好ましい。さらに好ましくは25以上であり、30以上であることが成形体の機械物性の点で特に好ましい。なお、ポリ乳酸ブロック共重合体の平均連鎖長は13C−NMR測定により、カルボニル炭素に帰属する炭素のピークのうち、170.1〜170.3ppm付近に存在するピークの積分値を(a)、169.8〜170.0ppm付近に存在するピークの積分値を(b)としたとき、下記式(7)で算出することができる。
平均連鎖長=(a)/(b) (7)
本発明において、L−乳酸単位からなるセグメントとD−乳酸単位からなるセグメントのそれぞれの合計の重量比は、90:10〜10:90であることが好ましい。さらに好ましくは80:20〜20:80であり、特に好ましくは75:25〜60:40あるいは40:60〜25:75である。L−乳酸単位からなるセグメントとD−乳酸単位からなるセグメントのそれぞれの合計の重量比が上記好ましい範囲であると、ポリ乳酸ステレオコンプレックスを形成しやすく、その結果、ポリ乳酸ブロック共重合体の融点の上昇が十分に大きくなる。
本発明においては、ポリ乳酸ブロック共重合体一分子あたりに含まれるL−乳酸単位からなるセグメントおよびD−乳酸単位からなるセグメントの合計数が3以上であることが、高融点のポリ乳酸ステレオコンプレックスを形成しやすく、耐熱性の高い成形品が得られる点で好ましい。さらに好ましくは5以上であり、7以上であることが特に好ましい。
(ポリ乳酸ブロック共重合体の製造方法)
ポリ乳酸ブロック共重合体の製造方法については、特に限定されるものではなく、一般のポリ乳酸製造方法を利用することができる。具体的には、原料の乳酸から生成した環状2量体のL−ラクチドまたはD−ラクチドのいずれか一方を触媒存在下で開環重合を行い、さらに該ポリ乳酸の光学異性体であるラクチドを添加して開環重合することでポリ乳酸ブロック共重合体を得るラクチド法(製法1)、当該原料を直接重合またはラクチドを経由した開環重合によりポリ−L−乳酸とポリ−D−乳酸をそれぞれ重合し、次いで、得られたポリ−L−乳酸とポリ−D−乳酸を混合後、固相重合によりポリ乳酸ブロック共重合体を得る方法(製法2)、ポリ−L−乳酸とポリ−D−乳酸を融点の高い方の成分の融解終了温度以上で長時間溶融混練を行うことで、L−乳酸単位のセグメントとD−乳酸単位のセグメントをエステル交換反応させたポリ乳酸ブロック共重合体を得る方法(製法3)、多官能性化合物をポリ−L−乳酸およびポリ−D−乳酸に混合して反応することで、ポリ−L−乳酸とポリ−D−乳酸を多官能性化合物で共有結合させポリ乳酸ブロック共重合体を得る方法(製法4)などがある。製法についてはいずれの方法を利用してもよいが、ポリ−L−乳酸とポリ−D−乳酸を混合後、固相重合する方法が、ポリ乳酸ブロック共重合体一分子あたりに含まれるL−乳酸単位からなるセグメントおよびD−乳酸単位からなるセグメントの合計数が3以上となり、結果的に耐熱性、結晶性および機械物性を兼ね備えたポリ乳酸ブロック共重合体を得られるという点において好ましい。
ここで、ポリ−L−乳酸とは、L−乳酸を主成分とする重合体であり、L−乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることが好ましく、90mol%以上含有していることがより好ましく、95mol%以上含有していることがさらに好ましく、98mol%以上含有していることが特に好ましい。
また、ポリ−D−乳酸とは、D−乳酸を主成分とする重合体であり、D−乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることが好ましく、90mol%以上含有していることがより好ましく、95mol%以上含有していることがさらに好ましく、98mol%以上含有していることが特に好ましい。
次に、各種ポリ乳酸ブロック共重合体の重合方法について詳細に説明する。
開環重合にてポリ乳酸ブロック共重合体を得る方法(製法1)としては、例えば、L−ラクチドまたはD−ラクチドのいずれか一方を触媒存在下で開環重合を行い、次いで他方の光学異性体であるラクチドを添加して開環重合を行うことでポリ乳酸ブロック共重合体を得る方法を挙げることができる。
開環重合で得られるポリ乳酸ブロック共重合体一分子あたりに含まれるL−乳酸単位からなるセグメントの重量平均分子量とD−乳酸単位からなるセグメントの重量平均分子量の比は、2以上30未満であることが、耐熱性および成形体の透明性の観点で好ましい。さらに好ましくは3以上20未満であり、5以上15未満であることが特に好ましい。ここで、L−乳酸単位からなるセグメントの重量平均分子量とおよびD−乳酸単位からなるセグメント重量平均分子量の比は、ポリ乳酸ブロック共重合体を重合する際に用いるL−ラクチドとD−ラクチドの重量比で制御することができる。
開環重合で得られるポリ乳酸ブロック共重合体一分子あたりに含まれるL−乳酸単位からなるセグメントおよびD−乳酸単位からなるセグメントの合計数は3以上であることが、耐熱性および結晶性が向上する点で好ましい。さらに好ましくは5以上であり、7以上であることが特に好ましい。また、1セグメントあたりの重量平均分子量は2,000〜50,000であることが好ましい。さらに好ましくは4,000〜45,000であり、5,000〜40,000であることが特に好ましい。
開環重合法で用いるL−ラクチドおよびD−ラクチドの光学純度は90%ee以上であることがポリ乳酸ブロック共重合体の結晶性および融点を向上できる点で好ましい。さらに好ましくは95%ee以上であり、98%ee以上であることが特に好ましい。
開環重合法でポリ乳酸ブロック共重合体を得る場合、高分子量体を得るという観点から反応系内の水分量はL−ラクチドおよびD−ラクチドの合計量に対して4mol%以下であることが好ましい。さらに好ましくは2mol%以下であり、0.5mol%以下が特に好ましい。なお、水分量とはカールフィッシャー法を用いて電量滴定法により測定した値である。
開環重合法によりポリ乳酸ブロック共重合体を製造する際の重合触媒としては、金属触媒と酸触媒が挙げられる。金属触媒としては錫化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物などの金属触媒が挙げられる。化合物の種類としては、金属アルコキシド、金属ハロゲン化合物、有機カルボン酸塩、炭酸塩、硫酸塩、酸化物などが好ましい。具体的には、錫粉末、塩化錫(II)、塩化錫(IV)、臭化錫(II)、臭化錫(IV)、エトキシ錫(II)、t−ブトキシ錫(IV)、イソプロポキシ錫(IV)、酢酸錫(II)、酢酸錫(IV)、オクチル酸錫(II)、ラウリン酸錫(II)、ミリスチン酸錫(II)、パルミチン酸錫(II)、ステアリン酸錫(II)、オレイン酸錫(II)、リノール酸錫(II)、アセチルアセトン錫(II)、シュウ酸錫(II)、乳酸錫(II)、酒石酸錫(II)、ピロリン酸錫(II)、p−フェノールスルホン酸錫(II)、ビス(メタンスルホン酸)錫(II)、硫酸錫(II)、酸化錫(II)、酸化錫(IV)、硫化錫(II)、硫化錫(IV)、酸化ジメチル錫(IV)、酸化メチルフェニル錫(IV)、酸化ジブチル錫(IV)、酸化ジオクチル錫(IV)、酸化ジフェニル錫(IV)、酸化トリブチル錫、水酸化トリエチル錫(IV)、水酸化トリフェニル錫(IV)、水素化トリブチル錫、モノブチル錫(IV)オキシド、テトラメチル錫(IV)、テトラエチル錫(IV)、テトラブチル錫(IV)、ジブチルジフェニル錫(IV)、テトラフェニル錫(IV)、酢酸トリブチル錫(IV)、酢酸トリイソブチル錫(IV)、酢酸トリフェニル錫(IV)、二酢酸ジブチル錫、ジオクタン酸ジブチル錫、ジラウリン酸ジブチル錫(IV)、マレイン酸ジブチル錫(IV)、ジブチル錫ビス(アセチルアセトナート)、塩化トリブチル錫(IV)、二塩化ジブチル錫、三塩化モノブチル錫、二塩化ジオクチル錫、塩化トリフェニル錫(IV)、硫化トリブチル錫、硫酸トリブチル錫、メタンスルホン酸錫(II)、エタンスルホン酸錫(II)、トリフルオロメタンスルホン酸錫(II)、ヘキサクロロ錫(IV)酸アンモニウム、ジブチル錫スルフィド、ジフェニル錫スルフィドおよび硫酸トリエチル錫、フタロシアニン錫(II)等の錫化合物が挙げられる。また、チタニウムメトキシド、チタニウムプロポキシド、チタニウムイソプロポキシド、チタニウムブトキシド、チタニウムイソブトキシド、チタニウムシクロヘキシド、チタニウムフェノキシド、塩化チタン、二酢酸チタン、三酢酸チタン、四酢酸チタン、酸化チタン(IV)等のチタン化合物、ジイソプロポキシ鉛(II)、一塩化鉛、酢酸鉛、オクチル酸鉛(II)、イソオクタン酸鉛(II)、イソノナン酸鉛(II)、ラウリン酸鉛(II)、オレイン酸鉛(II)、リノール酸鉛(II)、ナフテン酸鉛、ネオデカン酸鉛(II)、酸化鉛、硫酸鉛(II)等の鉛化合物、亜鉛粉末、メチルプロポキシ亜鉛、塩化亜鉛、酢酸亜鉛、オクチル酸亜鉛(II)、ナフテン酸亜鉛、炭酸亜鉛、酸化亜鉛、硫酸亜鉛等の亜鉛化合物、塩化コバルト、酢酸コバルト、オクチル酸コバルト(II)、イソオクタン酸コバルト(II)、イソノナン酸コバルト(II)、ラウリン酸コバルト(II)、オレイン酸コバルト(II)、リノール酸コバルト(II)、ナフテン酸コバルト、ネオデカン酸コバルト(II)、炭酸第一コバルト、硫酸第一コバルト、酸化コバルト(II)等のコバルト化合物、塩化鉄(II)、酢酸鉄(II)、オクチル酸鉄(II)、ナフテン酸鉄、炭酸鉄(II)、硫酸鉄(II)、酸化鉄(II)等の鉄化合物、プロポキシリチウム、塩化リチウム、酢酸リチウム、オクチル酸リチウム、ナフテン酸リチウム、炭酸リチウム、硫酸ジリチウム、酸化リチウム等のリチウム化合物、トリイソプロポキシユウロピウム(III)、トリイソプロポキシネオジム(III)、トリイソプロポキシランタン、トリイソプロポキシサマリウム(III)、トリイソプロポキシイットリウム、イソプロポキシイットリウム、塩化ジスプロシウム、塩化ユウロピウム、塩化ランタン、塩化ネオジム、塩化サマリウム、塩化イットリウム、三酢酸ジスプロシウム(III)、三酢酸ユウロピウム(III)、酢酸ランタン、三酢酸ネオジム、酢酸サマリウム、三酢酸イットリウム、炭酸ジスプロシウム(III)、炭酸ジスプロシウム(IV)、炭酸ユウロピウム(II)、炭酸ランタン、炭酸ネオジム、炭酸サマリウム(II)、炭酸サマリウム(III)、炭酸イットリウム、硫酸ジスプロシウム、硫酸ユウロピウム(II)、硫酸ランタン、硫酸ネオジム、硫酸サマリウム、硫酸イットリウム、二酸化ユウロピウム、酸化ランタン、酸化ネオジム、酸化サマリウム(III)、酸化イットリウム等の希土類化合物が挙げられる。その他にも、カリウムイソプロポキシド、塩化カリウム、酢酸カリウム、オクチル酸カリウム、ナフテン酸カリウム、炭酸t−ブチルカリウム、硫酸カリウム、酸化カリウム等のカリウム化合物、銅(II)ジイソプロポキシド、塩化銅(II)、酢酸銅(II)、オクチル酸銅、ナフテン酸銅、硫酸銅(II)、炭酸二銅等の銅化合物、塩化ニッケル、酢酸ニッケル、オクチル酸ニッケル、炭酸ニッケル、硫酸ニッケル(II)、酸化ニッケル等のニッケル化合物、テトライソプロポキシジルコニウム(IV)、三塩化ジルコニウム、酢酸ジルコニウム、オクチル酸ジルコニウム、ナフテン酸ジルコニウム、炭酸ジルコニウム(II)、炭酸ジルコニウム(IV)、硫酸ジルコニウム、酸化ジルコニウム(II)等のジルコニウム化合物、トリイソプロポキシアンチモン、フッ化アンチモン(III)、フッ化アンチモン(V)、酢酸アンチモン、酸化アンチモン(III)等のアンチモン化合物、マグネシウム、マグネシウムジイソプロポキシド、塩化マグネシウム、酢酸マグネシウム、乳酸マグネシウム、炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム等のマグネシウム化合物、ジイソプロポキシカルシウム、塩化カルシウム、酢酸カルシウム、オクチル酸カルシウム、ナフテン酸カルシウム、乳酸カルシウム、硫酸カルシウム等のカルシウム化合物、アルミニウム、アルミニウムイソプロポキシド、塩化アルミニウム、酢酸アルミニウム、オクチル酸アルミニウム、硫酸アルミニウム、酸化アルミニウム等のアルミニウム化合物、ゲルマニウム、テトライソプロポキシゲルマン、酸化ゲルマニウム(IV)等のゲルマニウム化合物、トリイソプロポキシマンガン(III)、三塩化マンガン、酢酸マンガン、オクチル酸マンガン(II)、ナフテン酸マンガン(II)、硫酸第一マンガン等のマンガン化合物、塩化ビスマス(III)、ビスマス粉末、酸化ビスマス(III)、酢酸ビスマス、オクチル酸ビスマス、ネオデカン酸ビスマス等のビスマス化合物なども挙げることができる。また、錫酸ナトリウム、錫酸マグネシウム、錫酸カリウム、錫酸カルシウム、錫酸マンガン、錫酸ビスマス、錫酸バリウム、錫酸ストロンチウム、チタン酸ナトリウム、チタン酸マグネシウム、チタン酸アルミニウム、チタン酸カリウム、チタン酸カルシウム、チタン酸コバルト、チタン酸亜鉛、チタン酸マンガン、チタン酸ジルコニウム、チタン酸ビスマス、チタン酸バリウム、チタン酸ストロンチウムなどの2種以上の金属元素からなる化合物なども好ましい。また、酸触媒としては、プロトン供与体のブレンステッド酸でもよく、電子対受容体であるルイス酸でもよく、有機酸および無機酸のいずれでもよい。具体的には、ギ酸、酢酸、プロピオン酸、ヘプタン酸、オクタン酸、オクチル酸、ノナン酸、イソノナン酸、トリフルオロ酢酸およびトリクロロ酢酸などのモノカルボン酸化合物、シュウ酸、コハク酸、マレイン酸、酒石酸およびマロン酸などのジカルボン酸化合物、クエン酸およびトリカリバリル酸などのトリカルボン酸化合物、ベンゼンスルホン酸、n−ブチルベンゼンスルホン酸、n−オクチルベンゼンスルホン酸、n−ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、2,5−ジメチルベンゼンスルホン酸、2,5−ジブチルベンゼンスルホン酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、3−アミノ−4−ヒドロキシベンゼンスルホン酸、5−アミノ−2−メチルベンゼンスルホン酸、3,5−ジアミノ−2,4,6−トリメチルベンゼンスルホン酸、2,4−ジニトロベンゼンスルホン酸、p−クロルベンゼンスルホン酸、 2,5−ジクロロベンゼンスルホン酸、p−フェノールスルホン酸、クメンスルホン酸、キシレンスルホン酸、o−クレゾールスルホン酸、m−クレゾールスルホン酸、p−クレゾールスルホン酸、p−トルエンスルホン酸、2−ナフタレンスルホン酸、1−ナフタレンスルホン酸、イソプロピルナフタレンスルホン酸、ドデシルナフタレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、1,5−ナフタレンジスルホン酸、2,7−ナフタレンジスルホン酸、4,4−ビフェニルジスルホン酸、アントラキノン−2−スルホン酸、m−ベンゼンジスルホン酸、2,5−ジアミノ−1,3−ベンゼンジスルホン酸、アニリン−2,4−ジスルホン酸、アントラキノン−1,5−ジスルホン酸、ポリスチレンスルホン酸などの芳香族スルホン酸、メタンスルホン酸、エタンスルホン酸、1−プロパンスルホン酸、n−オクチルスルホン酸、ペンタデシルスルホン酸、トリフルオロメタンスルホン酸、トリクロロメタンスルホン酸、1,2−エタンジスルホン酸、1,3−プロパンジスルホン酸、アミノメタンスルホン酸、2−アミノエタンスルホン酸などの脂肪族スルホン酸、シクロペンタンスルホン酸、シクロヘキサンスルホン酸およびカンファースルホン酸、3−シクロヘキシルアミノプロパンスルホン酸などの脂環式スルホン酸などのスルホン酸化合物、アスパラギン酸やグルタミン酸などの酸性アミノ酸、アスコルビン酸、レチノイン酸、リン酸、メタリン酸、亜リン酸、次亜リン酸、ポリリン酸、リン酸モノドデシルおよびリン酸モノオクタデシルなどのリン酸モノエステル、リン酸ジドデシルおよびリン酸ジオクタデシルなどのリン酸ジエステル、亜リン酸モノエステルおよび亜リン酸ジエステルなどのリン酸化合物、ホウ酸、塩酸、硫酸なども挙げられる。また、酸触媒としては、形状は特に限定されず、固体酸触媒および液体酸触媒のいずれでもよく、例えば、固体酸触媒としては、酸性白土、カオリナイト、ベントナイト、モンモリロナイト、タルク、ケイ酸ジルコニウムおよびゼオライトなどの天然鉱物、シリカ、アルミナ、チタニアおよびジルコニアなどの酸化物またはシリカアルミナ、シリカマグネシア、シリカボリア、アルミナボリア、シリカチタニアおよびシリカジルコニアなどの酸化物複合体、塩素化アルミナ、フッ素化アルミナ、陽イオン交換樹脂などが挙げられる。
本発明において、開環重合法で生成するポリ乳酸の分子量を考慮した場合、開環重合法の重合触媒としては金属触媒が好ましく、中でも錫化合物、チタン化合物、アンチモン化合物、希土類化合物がより好ましく、開環重合法で生成するポリ乳酸の融点を考慮した場合には、錫化合物およびチタン化合物がより好ましい。さらに、開環重合法で生成するポリ乳酸の熱安定性を考慮した場合、錫系の有機カルボン酸塩あるいは錫系のハロゲン化合物が好ましく、特に酢酸錫(II)、オクチル酸錫(II)、および塩化錫(II)がより好ましい。
開環重合法の重合触媒の添加量については特に限定されるものではなく、使用する原料(L−乳酸、D−乳酸など)100重量部に対して0.001重量部以上、2重量部以下が好ましく、とくに0.001重量部以上、1重量部以下がより好ましい。触媒量が上記好ましい範囲であると、重合時間の短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。また、触媒を2種類以上併用する場合は、合計添加量が上記の範囲内であることが好ましい。
開環重合法の重合触媒の添加時期については特に限定されるものではないが、ラクチドを加熱溶解後、触媒を添加することが触媒を系内に均一分散し、重合活性を高める点で好ましい。
次に、ポリ−L−乳酸とポリ−D−乳酸を混合後、固相重合によりポリ乳酸ブロック共重合体を得る方法(製法2)について説明する。本製法においてポリ−L−乳酸とポリ−D−乳酸の製造方法については、開環重合法および直接重合法のいずれの方法も用いることができる。
ポリ−L−乳酸とポリ−D−乳酸を混合後、固相重合によりポリ乳酸ブロック共重合体を製造する場合には、固相重合後の重量平均分子量とステレオコンプレックス形成率が高くなる点で、ポリ−L−乳酸またはポリ−D−乳酸のうちいずれか一方の重量平均分子量が60,000〜300,000以下であり、もう一方の重量平均分子量が10,000〜50,000以下であることが好ましい。さらに好ましくは、一方の重量平均分子量が100,000〜270,000、もう一方の重量平均分子量が15,000〜45,000である。特に好ましくは、一方の重量平均分子量が150,000〜240,000、もう一方の重量平均分子量が20,000〜40,000である。また、ポリ−L−乳酸とポリ−D−乳酸の重量平均分子量の組み合わせとしては混合後の重量平均分子量が90,000以上となるよう、適宜選択することが好ましい。
また、本発明で使用するポリ−L−乳酸とポリ−D−乳酸は、重量平均分子量の高い方と重量平均分子量の低い方のそれぞれの比が、2以上30未満であることが好ましい。さらに好ましくは、3以上20未満であり、5以上15未満であることが最も好ましい。また、ポリ−L−乳酸とポリ−D−乳酸の重量平均分子量の組み合わせとしては混合後の重量平均分子量が9万以上となるよう、適宜選択することが好ましい。
ポリ−L−乳酸またはポリ−D−乳酸に含有するラクチド量およびオリゴマー量は、それぞれ5%以下であることが好ましい。さらに好ましくは3%以下であり、特に好ましくは1%以下である。また、ポリ−L−乳酸またはポリ−D−乳酸に含有する乳酸量は、2%以下であることが好ましい。さらに好ましくは1%以下であり、特に好ましくは0.5%以下である。
混合するポリ−L−乳酸またはポリ−D−乳酸の酸価は、ポリ−L−乳酸またはポリ−D−乳酸の内、いずれか一方の酸価が100eq/tonであることが好ましい。より好ましくは50eq/ton以下であり、さらに好ましくは30eq/ton以下であり、特に好ましくは15eq/ton以下である。また、混合するポリ−L−乳酸またはポリ−D−乳酸の内、もう一方の酸価は600eq/ton以下であることが好ましい。より好ましくは300eq/ton以下であり、さらに好ましくは150eq/ton以下であり、特に好ましくは100eq/ton以下である。
開環重合法を利用してポリ−L−乳酸またはポリ−D−乳酸を製造する方法については、高分子量体を得るという観点から反応系内の水分量はL−ラクチドおよびD−ラクチドの合計量に対して4mol%以下であることが好ましい。さらに好ましくは2mol%以下であり、0.5mol%以下が特に好ましい。なお、水分量とはカールフィッシャー法を用いて電量滴定法により測定した値である。
また、開環重合法によりポリ−L−乳酸またはポリ−D−乳酸を製造する際の重合触媒としては、製法1と同様の金属触媒と酸触媒が挙げられる。
さらに、開環重合法の重合触媒の添加量については特に限定されるものではなく、使用する原料(L−乳酸、D−乳酸など)100重量部に対して0.001重量部以上、2重量部以下が好ましく、とくに0.001重量部以上、1重量部以下がより好ましい。触媒量が上記好ましい範囲であると、重合時間の短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。また、触媒を2種類以上併用する場合は、合計添加量が上記の範囲内であることが好ましい。
開環重合法の重合触媒の添加時期については特に限定されるものではないが、ラクチドを加熱溶解後、触媒を添加することが触媒を系内に均一分散し、重合活性を高める点で好ましい。
また、直接重合法を利用してポリ−L−乳酸またはポリ−D−乳酸を製造する際の重合触媒としては、金属触媒と酸触媒が挙げられる。金属触媒としては錫化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物などの金属触媒が挙げられる。化合物の種類としては、金属アルコキシド、金属ハロゲン化合物、有機カルボン酸塩、炭酸塩、硫酸塩、酸化物などが好ましい。具体的には、錫粉末、塩化錫(II)、塩化錫(IV)、臭化錫(II)、臭化錫(IV)、エトキシ錫(II)、t−ブトキシ錫(IV)、イソプロポキシ錫(IV)、酢酸錫(II)、酢酸錫(IV)、オクチル酸錫(II)、ラウリン酸錫(II)、ミリスチン酸錫(II)、パルミチン酸錫(II)、ステアリン酸錫(II)、オレイン酸錫(II)、リノール酸錫(II)、アセチルアセトン錫(II)、シュウ酸錫(II)、乳酸錫(II)、酒石酸錫(II)、ピロリン酸錫(II)、p−フェノールスルホン酸錫(II)、ビス(メタンスルホン酸)錫(II)、硫酸錫(II)、酸化錫(II)、酸化錫(IV)、硫化錫(II)、硫化錫(IV)、酸化ジメチル錫(IV)、酸化メチルフェニル錫(IV)、酸化ジブチル錫(IV)、酸化ジオクチル錫(IV)、酸化ジフェニル錫(IV)、酸化トリブチル錫、水酸化トリエチル錫(IV)、水酸化トリフェニル錫(IV)、水素化トリブチル錫、モノブチル錫(IV)オキシド、テトラメチル錫(IV)、テトラエチル錫(IV)、テトラブチル錫(IV)、ジブチルジフェニル錫(IV)、テトラフェニル錫(IV)、酢酸トリブチル錫(IV)、酢酸トリイソブチル錫(IV)、酢酸トリフェニル錫(IV)、二酢酸ジブチル錫、ジオクタン酸ジブチル錫、ジラウリン酸ジブチル錫(IV)、マレイン酸ジブチル錫(IV)、ジブチル錫ビス(アセチルアセトナート)、塩化トリブチル錫(IV)、二塩化ジブチル錫、三塩化モノブチル錫、二塩化ジオクチル錫、塩化トリフェニル錫(IV)、硫化トリブチル錫、硫酸トリブチル錫、メタンスルホン酸錫(II)、エタンスルホン酸錫(II)、トリフルオロメタンスルホン酸錫(II)、ヘキサクロロ錫(IV)酸アンモニウム、ジブチル錫スルフィド、ジフェニル錫スルフィドおよび硫酸トリエチル錫、フタロシアニン錫(II)等の錫化合物が挙げられる。また、チタニウムメトキシド、チタニウムプロポキシド、チタニウムイソプロポキシド、チタニウムブトキシド、チタニウムイソブトキシド、チタニウムシクロヘキシド、チタニウムフェノキシド、塩化チタン、二酢酸チタン、三酢酸チタン、四酢酸チタン、酸化チタン(IV)等のチタン化合物、ジイソプロポキシ鉛(II)、一塩化鉛、酢酸鉛、オクチル酸鉛(II)、イソオクタン酸鉛(II)、イソノナン酸鉛(II)、ラウリン酸鉛(II)、オレイン酸鉛(II)、リノール酸鉛(II)、ナフテン酸鉛、ネオデカン酸鉛(II)、酸化鉛、硫酸鉛(II)等の鉛化合物、亜鉛粉末、メチルプロポキシ亜鉛、塩化亜鉛、酢酸亜鉛、オクチル酸亜鉛(II)、ナフテン酸亜鉛、炭酸亜鉛、酸化亜鉛、硫酸亜鉛等の亜鉛化合物、塩化コバルト、酢酸コバルト、オクチル酸コバルト(II)、イソオクタン酸コバルト(II)、イソノナン酸コバルト(II)、ラウリン酸コバルト(II)、オレイン酸コバルト(II)、リノール酸コバルト(II)、ナフテン酸コバルト、ネオデカン酸コバルト(II)、炭酸第一コバルト、硫酸第一コバルト、酸化コバルト(II)等のコバルト化合物、塩化鉄(II)、酢酸鉄(II)、オクチル酸鉄(II)、ナフテン酸鉄、炭酸鉄(II)、硫酸鉄(II)、酸化鉄(II)等の鉄化合物、プロポキシリチウム、塩化リチウム、酢酸リチウム、オクチル酸リチウム、ナフテン酸リチウム、炭酸リチウム、硫酸ジリチウム、酸化リチウム等のリチウム化合物、トリイソプロポキシユウロピウム(III)、トリイソプロポキシネオジム(III)、トリイソプロポキシランタン、トリイソプロポキシサマリウム(III)、トリイソプロポキシイットリウム、イソプロポキシイットリウム、塩化ジスプロシウム、塩化ユウロピウム、塩化ランタン、塩化ネオジム、塩化サマリウム、塩化イットリウム、三酢酸ジスプロシウム(III)、三酢酸ユウロピウム(III)、酢酸ランタン、三酢酸ネオジム、酢酸サマリウム、三酢酸イットリウム、炭酸ジスプロシウム(III)、炭酸ジスプロシウム(IV)、炭酸ユウロピウム(II)、炭酸ランタン、炭酸ネオジム、炭酸サマリウム(II)、炭酸サマリウム(III)、炭酸イットリウム、硫酸ジスプロシウム、硫酸ユウロピウム(II)、硫酸ランタン、硫酸ネオジム、硫酸サマリウム、硫酸イットリウム、二酸化ユウロピウム、酸化ランタン、酸化ネオジム、酸化サマリウム(III)、酸化イットリウム等の希土類化合物が挙げられる。その他にも、カリウムイソプロポキシド、塩化カリウム、酢酸カリウム、オクチル酸カリウム、ナフテン酸カリウム、炭酸t−ブチルカリウム、硫酸カリウム、酸化カリウム等のカリウム化合物、銅(II)ジイソプロポキシド、塩化銅(II)、酢酸銅(II)、オクチル酸銅、ナフテン酸銅、硫酸銅(II)、炭酸二銅等の銅化合物、塩化ニッケル、酢酸ニッケル、オクチル酸ニッケル、炭酸ニッケル、硫酸ニッケル(II)、酸化ニッケル等のニッケル化合物、テトライソプロポキシジルコニウム(IV)、三塩化ジルコニウム、酢酸ジルコニウム、オクチル酸ジルコニウム、ナフテン酸ジルコニウム、炭酸ジルコニウム(II)、炭酸ジルコニウム(IV)、硫酸ジルコニウム、酸化ジルコニウム(II)等のジルコニウム化合物、トリイソプロポキシアンチモン、フッ化アンチモン(III)、フッ化アンチモン(V)、酢酸アンチモン、酸化アンチモン(III)等のアンチモン化合物、マグネシウム、マグネシウムジイソプロポキシド、塩化マグネシウム、酢酸マグネシウム、乳酸マグネシウム、炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム等のマグネシウム化合物、ジイソプロポキシカルシウム、塩化カルシウム、酢酸カルシウム、オクチル酸カルシウム、ナフテン酸カルシウム、乳酸カルシウム、硫酸カルシウム等のカルシウム化合物、アルミニウム、アルミニウムイソプロポキシド、塩化アルミニウム、酢酸アルミニウム、オクチル酸アルミニウム、硫酸アルミニウム、酸化アルミニウム等のアルミニウム化合物、ゲルマニウム、テトライソプロポキシゲルマン、酸化ゲルマニウム(IV)等のゲルマニウム化合物、トリイソプロポキシマンガン(III)、三塩化マンガン、酢酸マンガン、オクチル酸マンガン(II)、ナフテン酸マンガン(II)、硫酸第一マンガン等のマンガン化合物、塩化ビスマス(III)、ビスマス粉末、酸化ビスマス(III)、酢酸ビスマス、オクチル酸ビスマス、ネオデカン酸ビスマス等のビスマス化合物なども挙げることができる。また、錫酸ナトリウム、錫酸マグネシウム、錫酸カリウム、錫酸カルシウム、錫酸マンガン、錫酸ビスマス、錫酸バリウム、錫酸ストロンチウム、チタン酸ナトリウム、チタン酸マグネシウム、チタン酸アルミニウム、チタン酸カリウム、チタン酸カルシウム、チタン酸コバルト、チタン酸亜鉛、チタン酸マンガン、チタン酸ジルコニウム、チタン酸ビスマス、チタン酸バリウム、チタン酸ストロンチウムなどの2種以上の金属元素からなる化合物なども好ましい。また、酸触媒としては、プロトン供与体のブレンステッド酸でもよく、電子対受容体であるルイス酸でもよく、有機酸および無機酸のいずれでもよい。具体的には、ギ酸、酢酸、プロピオン酸、ヘプタン酸、オクタン酸、オクチル酸、ノナン酸、イソノナン酸、トリフルオロ酢酸およびトリクロロ酢酸などのモノカルボン酸化合物、シュウ酸、コハク酸、マレイン酸、酒石酸およびマロン酸などのジカルボン酸化合物、クエン酸およびトリカリバリル酸などのトリカルボン酸化合物、ベンゼンスルホン酸、n−ブチルベンゼンスルホン酸、n−オクチルベンゼンスルホン酸、n−ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、2,5−ジメチルベンゼンスルホン酸、2,5−ジブチルベンゼンスルホン酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、3−アミノ−4−ヒドロキシベンゼンスルホン酸、5−アミノ−2−メチルベンゼンスルホン酸、3,5−ジアミノ−2,4,6−トリメチルベンゼンスルホン酸、2,4−ジニトロベンゼンスルホン酸、p−クロルベンゼンスルホン酸、 2,5−ジクロロベンゼンスルホン酸、p−フェノールスルホン酸、クメンスルホン酸、キシレンスルホン酸、o−クレゾールスルホン酸、m−クレゾールスルホン酸、p−クレゾールスルホン酸、p−トルエンスルホン酸、2−ナフタレンスルホン酸、1−ナフタレンスルホン酸、イソプロピルナフタレンスルホン酸、ドデシルナフタレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、1,5−ナフタレンジスルホン酸、2,7−ナフタレンジスルホン酸、4,4−ビフェニルジスルホン酸、アントラキノン−2−スルホン酸、m−ベンゼンジスルホン酸、2,5−ジアミノ−1,3−ベンゼンジスルホン酸、アニリン−2,4−ジスルホン酸、アントラキノン−1,5−ジスルホン酸、ポリスチレンスルホン酸などの芳香族スルホン酸、メタンスルホン酸、エタンスルホン酸、1−プロパンスルホン酸、n−オクチルスルホン酸、ペンタデシルスルホン酸、トリフルオロメタンスルホン酸、トリクロロメタンスルホン酸、1,2−エタンジスルホン酸、1,3−プロパンジスルホン酸、アミノメタンスルホン酸、2−アミノエタンスルホン酸などの脂肪族スルホン酸、シクロペンタンスルホン酸、シクロヘキサンスルホン酸およびカンファースルホン酸、3−シクロヘキシルアミノプロパンスルホン酸などの脂環式スルホン酸などのスルホン酸化合物、アスパラギン酸やグルタミン酸などの酸性アミノ酸、アスコルビン酸、レチノイン酸、リン酸、メタリン酸、亜リン酸、次亜リン酸、ポリリン酸、リン酸モノドデシルおよびリン酸モノオクタデシルなどのリン酸モノエステル、リン酸ジドデシルおよびリン酸ジオクタデシルなどのリン酸ジエステル、亜リン酸モノエステルおよび亜リン酸ジエステルなどのリン酸化合物、ホウ酸、塩酸、硫酸なども挙げられる。また、酸触媒としては、形状は特に限定されず、固体酸触媒および液体酸触媒のいずれでもよく、例えば、固体酸触媒としては、酸性白土、カオリナイト、ベントナイト、モンモリロナイト、タルク、ケイ酸ジルコニウムおよびゼオライトなどの天然鉱物、シリカ、アルミナ、チタニアおよびジルコニアなどの酸化物またはシリカアルミナ、シリカマグネシア、シリカボリア、アルミナボリア、シリカチタニアおよびシリカジルコニアなどの酸化物複合体、塩素化アルミナ、フッ素化アルミナ、陽イオン交換樹脂などが挙げられる。
直接重合法を利用して生成されるポリ乳酸の分子量を考慮した場合、錫化合物、チタン化合物、アンチモン化合物、希土類化合物、および酸触媒が好ましく、生成されるポリ乳酸の融点を考慮した場合に、錫化合物、チタン化合物、およびスルホン酸化合物がより好ましい。さらに、生成されるポリ乳酸の熱安定性を考慮した場合、金属触媒の場合は、錫系の有機カルボン酸塩あるいは錫系のハロゲン化合物が好ましく、特に酢酸錫(II)、オクチル酸錫(II)、および塩化錫(II)がより好ましく、酸触媒の場合は、モノおよびジスルホン酸化合物が好ましく、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、プロパンジスルホン酸、ナフタレンジスルホン酸、および2−アミノエタンスルホン酸がより好ましい。また、触媒は1種類でもよく、2種類以上併用してもよいが、重合活性を高める点から考えて、2種類以上を併用することが好ましく、着色も抑制することが可能となるという点で、錫化合物から選択される1種類以上および/またはスルホン酸化合物から選択される1種類以上を用いることが好ましく、さらに生産性に優れるという点で、酢酸錫(II)および/またはオクチル酸錫(II)と、メタンスルホン酸、エタンスルホン酸、プロパンジスルホン酸、ナフタレンジスルホン酸、2−アミノエタンスルホン酸のいずれか一種類以上との併用がより好ましく、酢酸錫(II)および/またはオクチル酸錫(II)と、メタンスルホン酸、エタンスルホン酸、プロパンジスルホン酸、2−アミノエタンスルホン酸のいずれか一種との併用がさらに好ましい。
重合触媒の添加量については特に限定されるものではなく、使用する原料(L−乳酸、D−乳酸など)100重量部に対して0.001重量部以上、2重量部以下が好ましく、とくに0.001重量部以上、1重量部以下がより好ましい。触媒量が0.001重量部未満では重合時間の短縮効果が低下し、2重量部を越えると最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなりにくい傾向を生じる。また、触媒を2種類以上併用する場合は、合計添加量が上記の範囲内であることが好ましく、錫化合物から選択される1種類以上および/またはスルホン酸化合物から選択される1種類以上を併用する場合は、高い重合活性を維持し、かつ着色を抑制することが可能であるという点で、錫化合物とスルホン酸化合物の重量比が1:1〜1:30であることが好ましく、生産性に優れるという点で、1:2〜1:15であることがより好ましい。
重合触媒の添加時期については特に限定されるものではないが、特に直接重合法でポリ乳酸を重合する場合においては、酸触媒を原料または原料を脱水する前に添加することが生産性に優れるという点で好ましく、金属触媒については原料を脱水した後に添加することが重合活性を高める点から考えて好ましい。
本発明において、ポリ−L−乳酸とポリ−D−乳酸を混合し、混合物を固相重合してポリ乳酸ブロック共重合体を得る場合、ポリ−L−乳酸とポリ−D−乳酸の混合により、ステレオコンプレックス形成率(Sc)が固相重合直前において60%を越え99%までの範囲となる混合物を得ることが重要である。好ましくは70〜99%の範囲であり、80〜95%の範囲が特に好ましい。ここで、ステレオコンプレックス形成率とは、ポリ乳酸中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には示差走査型熱量計(DSC)で昇温速度20℃/minで30℃から250℃まで昇温した際のポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(8)で算出することができる。
Sc=ΔHh/(ΔHl+ΔHh)×100 (8)
また、混合に用いるポリ−L−乳酸とポリ−D−乳酸の結晶化の有無については特に限定されず、結晶化したポリ−L−乳酸とポリ−D−乳酸を混合してもよいし、溶融状態のポリ−L−乳酸とポリ−D−乳酸を混合することもできる。混合に用いるポリ−L−乳酸とポリ−D−乳酸の結晶化を行う場合、具体的な方法として気相中または液相中において結晶化処理温度で保持する方法および溶融状態のポリ−L−乳酸とポリ−D−乳酸を融点−50℃〜融点+20℃の溶融機内でせん断を付与しながら滞留する方法および溶融状態のポリ−L−乳酸とポリ−D−乳酸を融点−50℃〜融点+20℃の溶融機内で圧力を付与しながら滞留する方法などが挙げられる。
ここでいう結晶化処理温度とは、ガラス転移温度より高く、前記で混合したポリ−L−乳酸またはポリ−D−乳酸のうち、低い融点を有するポリ乳酸の融点よりも低い温度範囲であれば特に限定されるものではないが、予め示差走査型熱量計(DSC)により測定した昇温結晶化温度および降温結晶化温度の範囲内であることがより好ましい。
気相中または液相中において結晶化させる際には、減圧、常圧または加圧のいずれの条件でもよい。
また、気相中または液相中において結晶化させる際の時間については特に限定されるものではないが、3時間以内であれば十分に結晶化されており、2時間以内でも好ましい。
前記の溶融機内でせん断または圧力を付与することでポリ−L−乳酸とポリ−D−乳酸を結晶化する方法において、溶融機はせん断あるいは圧力を付与することができれば限定されず、重合缶、ニーダー、バンバリーミキサー、単軸押出機、二軸押出機、射出成形機などを用いることができ、好ましくは単軸押出機、二軸押出機である。
溶融機内でせん断または圧力を付与することで結晶化する方法において、結晶化処理温度は混合するポリ−L−乳酸とポリ−D−乳酸の融点−50℃〜融点+20℃の範囲が好ましい。結晶化温度のより好ましい範囲は融点−40℃〜融点であり、特に好ましくは融点−30℃〜融点−5℃の温度範囲である。溶融機の温度は通常、樹脂が溶融して良好な流動性を発現するために融点+20℃以上を設定するが、溶融機の温度を上記好ましい範囲とすると、適度な流動性を維持しながら結晶化し、一方、生成した結晶が再融解しにくい。ここで、融点とは、示差熱走査型測定を用いて、昇温速度20℃/minで30℃から250℃まで昇温した際の結晶融解温度のことである。
また、結晶化処理時間は0.1分〜10分であることが好ましく、より好ましくは0.3〜5分、特に好ましくは0.5分〜3分の範囲である。結晶化処理時間が上記好ましい範囲であると、結晶化が十分に起こり、一方、熱分解を生じにくい。
溶融機内でせん断を付与することで溶融樹脂の分子が配向する傾向があり、その結果、著しく結晶化速度を大きくすることができる。このときのせん断速度は10〜400/秒の範囲が好ましい。せん断速度が上記好ましい範囲であると、結晶化速度が十分に大きくなり、一方、せん断発熱による熱分解を生じにくい。
圧力を付与した場合においても結晶化が促進する傾向が見られ、特に0.05〜10MPaの範囲のときに良好な流動性と結晶性を併せ持つ結晶化ポリ乳酸を得ることができるため好ましい。圧力が上記好ましい範囲であると、結晶化速度が十分に大きくなる。
さらにせん断速度10〜400/秒のせん断と0.05〜10MPaの圧力を同時に付与して処理した場合には結晶化速度がより大きくなるため特に好ましい。
ポリ−L−乳酸とポリ−D−乳酸の混合方法としては特に限定されるものではなく、例えばポリ−L−乳酸とポリ−D−乳酸のうち、融点の高い方の成分の融解終了温度以上で溶融混練する方法、溶媒中で混合した後に溶媒を除く方法、あるいは溶融状態のポリ−L−乳酸とポリ−D−乳酸の少なくとも一方を、あらかじめ融点−50℃〜融点+20℃の温度範囲内で溶融機内にてせん断を付与しながら滞留させた後、ポリ−L−乳酸とポリ−D−乳酸からなる混合物の結晶が残存するように混合する方法などが挙げられる。
ここで、融点とは、示差走査型熱量計で(DSC)により測定したポリ乳酸単独結晶融解ピークにおけるピークトップの温度のことを指し、また融解終了温度とは示差走査型熱量計で(DSC)により測定したポリ乳酸単独結晶融解ピークにおけるピーク終了温度のことを指す。
融解終了温度以上で溶融混練する方法としては、ポリ−L−乳酸とポリ−D−乳酸を回分法もしくは連続法で混合する方法が挙げられ、いずれの方法で混合してもよく、混練装置としては例えば、一軸押出機、二軸押出機、プラストミル、ニーダー、および減圧装置付き撹拌槽型反応機が挙げられ、均一かつ十分に混練できる観点においては一軸押出機、二軸押出機を用いることが好ましい。
融解終了温度以上で溶融混練する際の温度条件については、ポリ−L−乳酸とポリ−D−乳酸のうち、融点の高い方の成分の融解終了温度以上で行うことが好ましい。好ましくは140℃〜250℃の範囲であり、さらに好ましくは160℃〜230℃であり、特に好ましくは180〜210℃である。混合温度が上記の好ましい範囲であると、溶融状態で混合が可能であり、混合時における混合物の分子量低下も起きにくい。さらに、混合物の流動性を一定に保持することが可能であり、著しい流動性低下が起きにくい。
また、混合する時間条件については、0.1分〜10分の範囲が好ましく、0.3分〜5分がより好ましく、0.5〜3分の範囲が特に好ましい。混合時間が上記好ましい範囲であると、ポリ−L−乳酸とポリ−D−乳酸を均一に混合することが可能であり、一方、混合による熱分解を生じにくい。
融解終了温度以上で混合する際の圧力条件については特に限定されるものではなく、大気雰囲気下または窒素などの不活性気体雰囲気下のいずれの条件でもよい。
溶融機内でせん断または圧力を付与することでポリ−L−乳酸とポリ−D−乳酸を結晶化したポリ−L−乳酸とポリ−D−乳酸を混合する具体的な方法としては、回分法もしくは連続法で混合する方法が挙げられ、いずれの方法で混合してもよいが、溶融状態のポリ−L−乳酸とポリ−D−乳酸を、ポリ−L−乳酸とポリ−D−乳酸の内、融点の低い方のポリ乳酸の融点−50℃〜融点+20℃の溶融機内でせん断を付与しながら滞留する方法および溶融状態のポリ−L−乳酸とポリ−D−乳酸を、ポリ−L−乳酸とポリ−D−乳酸の内、融点の低い方のポリ乳酸の融点−50℃〜融点+20℃の溶融機内で圧力を付与しながら滞留する方法により、混合後におけるポリ−L−乳酸とポリ−D−乳酸の混合物のステレオコンプレックス形成率を制御できる。
ここで、ステレオコンプレックス形成率とは、ポリ乳酸中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には示差走査型熱量計(DSC)で昇温速度20℃/minで30℃から250℃まで昇温した際のポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(9)で算出することができる。
Sc=ΔHh/(ΔHl+ΔHh)×100 (9)
ステレオコンプレックス形成率(Sc)は、X線回折で測定したポリ乳酸の単独結晶とステレオコンプレックス結晶の割合から算出することも可能であるが、本発明では、上記のDSCで測定した結晶融解熱量から求めた値を用いる。
混合する温度条件については、ポリ−L−乳酸とポリ−D−乳酸の混合物の融点−50℃〜融点+20℃の範囲が好ましい。混合温度のより好ましい範囲は融点−40℃〜融点であり、特に好ましくは融点−30℃〜融点−5℃の温度範囲である。溶融機の温度は通常、樹脂が溶融して良好な流動性を発現するために融点+20℃以上を設定するのが好ましいが、かかる好ましい混合温度とすると、流動性が低下しすぎることはなく、一方、生成した結晶が再融解しにくい。ここで融点は、示差走査型熱量計(DSC)を用いて昇温速度20℃/minで30℃から250℃まで昇温した際の、結晶融解温度のことを指す。
溶融機内でせん断または圧力を付与することでポリ−L−乳酸とポリ−D−乳酸を結晶化したポリ−L−乳酸とポリ−D−乳酸を混合する際のせん断速度は10〜400/秒の範囲が好ましい。せん断速度が上記の好ましい範囲であると、流動性と結晶性を維持しながらポリ−L−乳酸とポリ−D−乳酸を均一に混合することができ、一方、混合時のせん断発熱により熱分解を生じにくい。
また、混合の際の圧力は0.05〜10MPaの範囲が好ましい。圧力が上記の好ましい範囲であると、流動性と結晶性を維持しながらポリ−L−乳酸とポリ−D−乳酸を均一に混合することができる。
押出機を用いた混練において、ポリ乳酸の供給方法は特に限定されず、樹脂供給口からポリ−L−乳酸とポリ−D−乳酸を一括して供給する方法や、必要に応じてサイド供給口を利用し、ポリ−L−乳酸とポリ−D−乳酸を樹脂供給口とサイド供給口にそれぞれ分けて供給する方法が可能である。また、混練機へのポリ乳酸の供給は、ポリ乳酸製造工程から直接溶融状態で行うことも可能である。
押出機におけるスクリューエレメントは、ポリ−L−乳酸とポリ−D−乳酸が均一に混合してステレオコンプレックス形成できるように、混合部にニーディングエレメントを備えるのが好ましい。
混合工程において、L−乳酸単位からなるポリ−L−乳酸とD−乳酸単位からなるポリ−D−乳酸の混合重量比は、90:10〜10:90であることが好ましい。さらに好ましくは80:20〜20:80であり、特に好ましくは75:25〜60:40あるいは40:60〜25:75である。L−乳酸単位からなるセグメントとD−乳酸単位からなるセグメントのそれぞれの合計の重量比が上記好ましい範囲であると、ポリ乳酸ステレオコンプレックスを形成しやすく、その結果、ポリ乳酸ブロック共重合体の融点の上昇が十分に大きくなる。ポリ−L−乳酸とポリ−D−乳酸の混合重量比を50:50以外にする場合は、重量平均分子量の大きい方のポリ−L−乳酸またはポリ−D−乳酸を多く配合することが好ましい。
この混合工程において、次の固相重合を効率的に進めるために、混合物に、触媒を含有させることが好ましい。このとき触媒は、ポリ−L−乳酸および/またはポリ−D−乳酸を製造する際の触媒の残留分であってもよいし、混合工程においてさらに前記触媒から選ばれる一種以上を添加することもできる。
固相重合を効率的に進めるための触媒の含有量は、特に限定されるものではなく、ポリ−L−乳酸とポリ−D−乳酸の混合物100重量部に対して0.001重量部以上、1重量部以下が好ましく、とくに0.001重量部以上、0.5重量部以下がより好ましい。触媒量が上記好ましい範囲であると、固相重合の反応時間短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。
混合後におけるポリ−L−乳酸とポリ−D−乳酸の混合物の重量平均分子量(Mw)は、混合物の機械物性の点から9万以上30万未満であることが好ましい。さらに好ましくは12万以上30万未満であり、14万以上30万未満であることが特に好ましい。
また、混合後におけるポリ−L−乳酸とポリ−D−乳酸の混合物の分散度は1.5〜4.0の範囲が好ましい。さらに好ましくは2.0〜3.7の範囲であり、特に好ましくは2.5〜3.5の範囲である。ここで、分散度とは、混合物の数平均分子量に対する重量平均分子量の割合のことをいい、具体的には溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。
ポリ−L−乳酸またはポリ−D−乳酸に含有するラクチド量およびオリゴマー量は、それぞれ5%以下であることが好ましい。さらに好ましくは3%以下であり、特に好ましくは1%以下である。また、ポリ−L−乳酸またはポリ−D−乳酸に含有する乳酸量は、2%以下であることが好ましい。さらに好ましくは1%以下であり、特に好ましくは0.5%以下である。
混合物を固相重合する際には、ポリ−L−乳酸とポリ−D−乳酸の混合物の形状は、特に限定されるものではなく、塊状、フィルム、ペレットおよび粉末などいずれでもよいが、固相重合を効率的に進めるという観点においては、ペレットまたは粉末を用いることが好ましい。ペレットにする方法としては、混合物をストランド状に押出し、ペレタイズする方法、混合物を水中に押出し、アンダーウォーターカッターを用いてペレット化する方法が挙げられる。また、粉末にする方法としては、ミキサー、ブレンダー、ボールミルおよびハンマーミルなどの粉砕機を用いて粉砕する方法が挙げられる。この固相重合工程を実施する方法については特に限定されるものではなく、回分法でも連続法でもよく、また、反応容器は、撹拌槽型反応器、ミキサー型反応器および塔型反応器などを用いることができ、これらの反応器は2種以上組み合わせて使用することができる。
この固相重合工程を実施する際には、ポリ−L−乳酸とポリ−D−乳酸の混合物が結晶化していることが好ましい。本発明において、ポリ−L−乳酸とポリ−D−乳酸の混合工程で得られた混合物が結晶化状態である場合は、固相重合工程を実施する際にポリ−L−乳酸とポリ−D−乳酸の混合物の結晶化は必ずしも必要ないが、結晶化を行うことで固相重合の効率をさらに高めることもできる。
結晶化させる方法については特に限定されるものではなく、公知の方法を利用することができる。例えば、気相中または液相中において結晶化処理温度で保持する方法およびポリ−L−乳酸とポリ−D−乳酸の溶融混合物を延伸または剪断の操作を行いながら冷却固化させる方法などが挙げられ、操作が簡便であるという観点においては、気相中または液相中において結晶化処理温度で保持する方法が好ましい。
ここでいう結晶化処理温度とは、ガラス転移温度より高く、前記で混合したポリ−L−乳酸またはポリ−D−乳酸のうち、低い融点を有するポリ乳酸の融点よりも低い温度範囲であれば特に限定されるものではないが、予め示差走査型熱量計(DSC)により測定した昇温結晶化温度および降温結晶化温度の範囲内であることがより好ましい。
結晶化させる際には、減圧、常圧または加圧のいずれの条件でもよい。
また、結晶化させる際の時間については特に限定されるものではないが、3時間以内であれば十分に結晶化されており、2時間以内でも好ましい。
この固相重合工程を実施する際の温度条件としては、ポリ−L−乳酸とポリ−D−乳酸の混合物の融点以下の温度が好ましい。ポリ−L−乳酸とポリ−D−乳酸の混合物は、ステレオコンプレックス形成によりステレオコンプレックス結晶に基づく融点を190〜230℃の範囲で有し、また、150〜185℃の範囲でポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶に基づく融点を有するため、これらの融点以下で固相重合することが好ましい。具体的には、100℃以上220℃以下が好ましく、さらに固相重合を効率的に進めるという観点においては、110℃以上200℃以下であることがより好ましく、120℃以上180℃以下であることがさらに好ましく、130℃以上170℃以下であることが特に好ましい。
また、固相重合の反応時間を短縮するために、反応の進行とともに温度を段階的に上げるかあるいは連続的に上げることが好ましい。固相重合時に段階的に昇温するときの温度条件としては、第一段階として120〜145℃で1〜15時間、第二段階として135〜160℃で1〜15時間、第三段階として150〜175℃で10〜30時間と昇温するのが好ましく、さらには第一段階として130〜145℃で2〜12時間、第二段階として140〜160℃で2〜12時間、第三段階として155〜175℃で10〜25時間と昇温するのがより好ましい。固相重合時に連続的に昇温するときの温度条件としては、130℃〜150℃の初期温度より1〜5℃/minの速度で150〜175℃まで連続的に昇温するのが好ましい。また、段階的な昇温と連続的な昇温を組み合わせることも固相重合を効率的に進行する観点から好ましい。
また、この固相重合工程を実施する際には、真空下または乾燥窒素などの不活性気体気流下で行うことが好ましい。真空下で固相重合を行う際の真空度は、150Pa以下であることが好ましく、75Pa以下であることがさらに好ましく、20Pa以下であることが特に好ましい。不活性気体気流下で固相重合を行う際の流量は、混合物1gに対して0.1〜2,000mL/minの範囲が好ましく、0.5〜1,000mL/minの範囲がさらに好ましく、1.0〜500mL/minの範囲が特に好ましい。
固相重合後におけるポリマーの収率は90%以上であることが好ましい。さらに好ましくは93%以上であり、特に好ましくは95%以上である。ここでいうポリマーの収率とは固相重合前の混合物重量に対する固相重合後のポリ乳酸ブロック共重合体の重量の割合である。具体的には固相重合前の混合物重量をWp、固相重合後のポリマーの重量をWsとすると下記式(10)で算出することができる。
Y=Ws/Wp×100 (10)
固相重合工程においては、混合物の分散度が小さくなることが好ましい。具体的には、固相重合前における混合物の分散度が1.5〜4.0の範囲から、固相重合後にはポリ乳酸ブロック共重合体の分散度が1.5〜2.7の範囲になることが好ましい。さらに好ましくは固相重合前における混合物の分散度が2.0〜3.7の範囲が固相重合後にはポリ乳酸ブロック共重合体の分散度が1.8〜2.6の範囲に小さくなることであり、特に好ましくは、固相重合前における混合物の分散度が2.5〜3.5の範囲から固相重合後にはポリ乳酸ブロック共重合体の分散度が2.0〜2.5の範囲になることである。
次に、ポリ−L−乳酸とポリ−D−乳酸を融点の高い方の成分の融解終了温度以上で長時間溶融混練を行うことで、L−乳酸単位のセグメントとD−乳酸単位のセグメントをエステル交換反応させたポリ乳酸ブロック共重合体を得る方法(製法3)について説明する。本製法についても、ポリ−L−乳酸とポリ−D−乳酸の製造方法については、開環重合法および直接重合法のいずれの方法も用いることができる。
本方法にてポリ乳酸ブロック共重合体を得るためには、溶融混練後にステレオコンプレックス形成率が高くなる点で、ポリ−L−乳酸またはポリ−D−乳酸のうちいずれか一方の重量平均分子量が60,000〜300,000以下であり、もう一方の重量平均分子量が10,000〜50,000以下であることが好ましい。さらに好ましくは、一方の重量平均分子量が100,000〜270,000、もう一方の重量平均分子量が15,000〜45,000である。特に好ましくは、一方の重量平均分子量が150,000〜240,000、もう一方の重量平均分子量が20,000〜40,000である。また、ポリ−L−乳酸とポリ−D−乳酸の重量平均分子量の組み合わせとしては混合後の重量平均分子量が90,000以上となるよう、適宜選択することが好ましい。
融解終了温度以上で長時間溶融混練する方法としては、ポリ−L−乳酸とポリ−D−乳酸を回分法もしくは連続法で混合する方法が挙げられ、いずれの方法で混合してもよく、混練装置としては例えば、一軸押出機、二軸押出機、プラストミル、ニーダー、および減圧装置付き撹拌槽型反応機が挙げられ、均一かつ十分に混練できる観点においては一軸押出機、二軸押出機を用いることが好ましい。
混合する温度条件については、ポリ−L−乳酸とポリ−D−乳酸のうち、融点の高い方の成分の融解終了温度以上で行うことが重要である。好ましくは140℃〜250℃の範囲であり、さらに好ましくは160℃〜230℃であり、特に好ましくは180〜210℃である。混合温度が上記好ましい範囲であると、流動性が低下しすぎず、一方、混合物の分子量低下が起きにくい。
混合する時間条件については、0.1分〜30分の範囲が好ましく、0.3分〜20分がより好ましく、0.5分〜10分の範囲が特に好ましい。混合時間が上記好ましい範囲であると、ポリ−L−乳酸とポリ−D−乳酸の混合が均一となり、一方、混合により熱分解を生じにくい。
混合する圧力条件については特に限定されるものではなく、大気雰囲気下または窒素などの不活性気体雰囲気下のいずれの条件でもよい。
混合するL−乳酸単位からなるポリ−L−乳酸とD−乳酸単位からなるポリ−D−乳酸の混合重量比は、80:20〜20:80であることが好ましく、75:25〜25:75であることがより好ましく、さらに70:30〜30:70であることが好ましく、特に60:40〜40:60であることが好ましい。L−乳酸単位からなるポリ−L−乳酸の重量比が上記好ましい範囲であると、ポリ乳酸ステレオコンプレックスを形成しやすく、その結果、最終的に得られるポリ乳酸ブロック共重合体の融点が十分に大きくなる。
この混合工程において、L−乳酸単位のセグメントとD−乳酸単位のセグメントのエステル交換を効率的に進めるために、混合物に、触媒を含有させることが好ましい。このとき触媒は、ポリ−L−乳酸および/またはポリ−D−乳酸を製造する際の触媒の残留分であってもよいし、混合工程においてさらに触媒を添加することもできる。
触媒の含有量は、特に限定されるものではなく、ポリ−L−乳酸とポリ−D−乳酸の混合物100重量部に対して0.001重量部以上、1重量部以下が好ましく、とくに0.001重量部以上、0.5重量部以下がより好ましい。触媒量が上記好ましい範囲であると、混合物のエステル交換の頻度が十分に高く、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。
次に、多官能性化合物をポリ−L−乳酸およびポリ−D−乳酸に混合することで、ポリ−L−乳酸とポリ−D−乳酸を多官能性化合物で共有結合させポリ乳酸ブロック共重合体を得る方法(製法4)について説明する。本製法で用いるポリ−L−乳酸とポリ−D−乳酸の製造方法については、開環重合法および直接重合法のいずれの方法も用いることができる。
本方法にてポリ乳酸ブロック共重合体を得るために用いるポリ−L−乳酸とポリ−D−乳酸の重量平均分子量は、ステレオコンプレックス形成率が高くなる点で、ポリ−L−乳酸またはポリ−D−乳酸のうちいずれか一方の重量平均分子量が30,000〜100,000以下であり、もう一方の重量平均分子量が10,000〜30,000以下であることが好ましい。さらに好ましくは、一方の重量平均分子量が35,000〜90,000、もう一方の重量平均分子量が10,000〜25,000である。特に好ましくは、一方の重量平均分子量が40,000〜80,000、もう一方の重量平均分子量が10,000〜20,000である。
また、上記の混合に使用するポリ−L−乳酸の重量平均分子量とポリ−D−乳酸の重量平均分子量の比は、ステレオコンプレックス形成率が高くなる観点で、2以上10未満であることが好ましい。さらに好ましくは3以上10未満であり、特に好ましくは4以上10未満である。
ここで使用する多官能性化合物としては、特に限定されるものではなく、多価カルボン酸無水物、多価カルボン酸ハロゲン化物、多価カルボン酸、多価イソシアネート、多価アミン、多価アルコールおよび多価エポキシ化合物などが挙げられ、具体的には、1,2−シクロヘキサンジカルボン酸無水物、コハク酸無水物、フタル酸無水物、トリメリット酸無水物、1,8−ナフタレンジカルボン酸無水物、ピロメリット酸無水物などの多価カルボン酸無水物、イソフタル酸クロリド、テレフタル酸クロリド、2,6−ナフタレンジカルボン酸クロリドなどの多価カルボン酸ハロゲン化物、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸などの多価カルボン酸、ヘキサメチレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、トルエン−2,4−ジイソシアネートなどの多価イソシアネート、エチレンジアミン、ヘキサンジアミン、ジエチレントリアミンなどの多価アミン、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトールなどの多価アルコール、およびテレフタル酸ジグリシジルエステル、ナフタレンジカルボン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル、ピロメリット酸テトラグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどの多価エポキシ化合物などが挙げられる。好ましくは、多価カルボン酸無水物、多価イソシアネート、多価アルコールおよび多価エポキシ化合物であり、特に多価カルボン酸無水物、多価イソシアネートおよび多価エポキシ化合物がより好ましい。また、これらは1種または2種以上を併用して使用することができる。
多官能性化合物の混合量については特に限定されるものではなく、ポリ−L−乳酸およびポリ−D−乳酸の合計100重量部に対して、0.01重量部以上、20重量部以下が好ましく、さらに0.1重量部以上、10重量部以下であることがより好ましい。多官能性化合物の添加量が上記好ましい範囲であると、共有結合が生じる効果を十分に発揮できる。
さらに、多官能性化合物を用いる際には、ポリ−L−乳酸およびポリ−D−乳酸と多官能性化合物の反応を促進させるために、反応触媒を添加してもよい。反応触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、水素化ほう素ナトリウム、水素化ほう素リチウム、フェニル化ほう素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、りん酸水素二ナトリウム、りん酸水素二カリウム、りん酸水素二リチウム、ビスフェノールAの二ナトリウム塩、同二カリウム塩、同二リチウム塩、フェノールのナトリウム塩、同カリウム塩、同リチウム塩、同セシウム塩などのアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウムなどのアルカリ土類金属化合物、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、トリアミルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリエチレンジアミン、ジメチルフェニルアミン、ジメチルベンジルアミン、2−(ジメチルアミノメチル)フェノール、ジメチルアニリン、ピリジン、ピコリン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7などの3級アミン、2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、2−エチル−4−メチルイミダゾール、4−フェニル−2−メチルイミダゾールなどのイミダゾール化合物、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、トリプロピルベンジルアンモニウムクロライド、N−メチルピリジニウムクロライドなどの第4級アンモニウム塩、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン化合物、テトラメチルホスホニウムブロマイド、テトラブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、トリフェニルベンジルホスホニウムブロマイドなどのホスホニウム塩、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、トリ(p−ヒドロキシ)フェニルホスフェート、トリ(p−メトキシ)フェニルホスフェートなどのリン酸エステル、シュウ酸、p−トルエンスルホン酸、ジノニルナフタレンジスルホン酸、ドデシルベンゼンスルホン酸などの有機酸、および三フッ化ホウ素、四塩化アルミニウム、四塩化チタン、四塩化錫などのルイス酸などが挙げられ、これらは1種または2種以上を併用して使用することができる。
触媒の添加量は特に限定されるものではなく、ポリ−L−乳酸およびポリ−D−乳酸の合計100重量部に対して、0.001重量部以上、1重量部以下が好ましい。触媒量が上記好ましい範囲であると、反応促進効果が十分であり、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。
ポリ−L−乳酸、ポリ−D−乳酸を多官能性化合物と反応する方法としては特に限定されるものではなく、例えばポリ−L−乳酸とポリ−D−乳酸のうち、融点の高い方の成分の融解終了温度以上で溶融混練する方法が挙げられる。
融解終了温度以上で溶融混練する方法としては、ポリ−L−乳酸とポリ−D−乳酸を回分法もしくは連続法で混合する方法が挙げられ、いずれの方法で混合してもよく、混練装置としては例えば、一軸押出機、二軸押出機、プラストミル、ニーダー、および減圧装置付き撹拌槽型反応機が挙げられ、均一かつ十分に混練できる観点においては一軸押出機、二軸押出機を用いることが好ましい。
溶融混練する温度条件については、ポリ−L−乳酸とポリ−D−乳酸のうち、融点の高い方の成分の融解終了温度以上で行うことが好ましい。好ましくは140℃〜250℃の範囲であり、さらに好ましくは160℃〜230℃であり、特に好ましくは180〜210℃である。混合温度が上記好ましい範囲であると、流動性が低下しすぎず、一方、混合物の分子量低下が起きにくい。
溶融混練する時間条件については、0.1分〜30分の範囲が好ましく、0.3分〜20分がより好ましく、0.5分〜10分の範囲が特に好ましい。混合時間が上記好ましい範囲であると、ポリ−L−乳酸とポリ−D−乳酸の混合が均一となり、一方、混合により熱分解を生じにくい。
溶融混練する圧力条件については特に限定されるものではなく、大気雰囲気下または窒素などの不活性気体雰囲気下のいずれの条件でもよい。
混合するL−乳酸単位からなるポリ−L−乳酸とD−乳酸単位からなるポリ−D−乳酸の混合重量比は、90:10〜10:90であることが好ましく、80:20〜20:80であることがさらに好ましい。特に好ましくは75:25〜60:40あるいは40:60〜25:75である。L−乳酸単位からなるポリ−L−乳酸の重量比が上記好ましい範囲であると、ポリ乳酸ステレオコンプレックスを形成しやすく、その結果、最終的に得られるポリ乳酸ブロック共重合体の融点の上昇が十分に大きくなる。
多官能性化合物をポリ−L−乳酸とポリ−D−乳酸と混合して得られるポリ乳酸ブロック共重合体は、多官能性化合物によりポリ−L−乳酸とポリ−D−乳酸が共有結合されているため高分子量体であるが、混合した後に上述した方法にて固相重合することも可能である。
本発明においては、ポリ乳酸ブロック共重合体を得た後に触媒失活剤を添加することが好ましい。重合触媒が残存している場合、その残存触媒により溶融混練時および溶融成形時にポリ乳酸ブロック共重合体が、熱分解することがあり、触媒失活剤を添加することにより、熱分解を抑制でき、熱安定性を向上することができる。
本発明でいう触媒失活剤としては、ヒンダードフェノール系化合物、チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物、ヒドラジン誘導体系化合物、リン系化合物などが挙げられ、これらを併用して用いてもよい。中でもリン系化合物を少なくとも1種含むことが好ましく、ホスフェート系化合物、ホスファイト系化合物であることがさらに好ましい。具体例のさらなる好ましい例としては(株)ADEKA製“アデカスタブ”AX−71(ジオフタデミルホスフェート)、PEP−8(ジステアリルペンタエリスリトールジホスファイト)、PEP−36(サイクリックネオペンタテトライルビス(2,6―t−ブチル−4−メチルフェニル)ホスファイト)である。
ヒンダードフェノール系化合物の具体例としては、n−オクタデシル−3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)−プロピオネート、n−オクタデシル−3−(3′−メチル−5′−t−ブチル−4′−ヒドロキシフェニル)−プロピオネート、n−テトラデシル−3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)−プロピオネート、1,6−ヘキサンジオール−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、1,4−ブタンジオール−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、2,2′−メチレンビス−(4−メチル−t−ブチルフェノール)、トリエチレングリコール−ビス−[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、テトラキス[メチレン−3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオネート]メタン、3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、N,N′−ビス−3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、N,N′−テトラメチレン−ビス−3−(3′−メチル−5′−t−ブチル−4′−ヒドロキシフェノール)プロピオニルジアミン、N,N′−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェノール)プロピオニル]ヒドラジン、N−サリチロイル−N′−サリチリデンヒドラジン、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、N,N′−ビス[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]オキシアミド、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N′−ヘキサメチレンビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマイド等をあげることができる。好ましくは、トリエチレングリコール−ビス−[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、テトラキス[メチレン−3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオネート]メタン、1,6−ヘキサンジオール−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N′−ヘキサメチレンビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマイドである。ヒンダードフェノール系化合物の具体的な商品名としては、(株)ADEKA製“アデカスタブ”AO−20,AO−30,AO−40,AO−50,AO−60,AO−70,AO−80,AO−330、チバ・スペシャルティ・ケミカルズ(株)製“イルガノックス”245,259,565,1010,1035,1076,1098,1222,1330,1425,1520,3114,5057、住友化学工業(株)製“スミライザー”BHT−R、MDP−S、BBM−S、WX−R、NW、BP−76、BP−101、GA−80、GM、GS、サイアナミド社製“サイアノックス”CY−1790などが挙げられる。
チオエーテル系化合物の具体例としては、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)などが挙げられる。チオエーテル系化合物の具体的な商品名としては、(株)ADEKA製“アデカスタブ”A0−23、AO−412S、AO−503A、チバ・スペシャルティ・ケミカルズ(株)製“イルガノックス”PS802、住友化学工業(株)製“スミライザー”TPL−R、TPM、TPS、TP−D、(株)エーピーアイコーポレーション製DSTP、DLTP、DLTOIB、DMTP、シプロ化成(株)製“シーノックス”412S、サイアナミド社製“サイアノックス”1212などが挙げられる。
多価アミン系化合物の具体例としては、3,9−ビス[2−(3,5−ジアミノ−2,4,6−トリアザフェニル)エチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、エチレンジアミン−テトラアセチックアシッド、エチレンジアミン−テトラアセチックアシッドのアルカリ金属塩(Li,Na,K)塩、N,N′−ジサリシリデン−エチレンジアミン、N,N′−ジサリシリデン−1,2−プロピレンジアミン、N,N′′−ジサリシリデン−N′−メチル−ジプロピレントリアミン、3−サリシロイルアミノ−1,2,4−トリアゾールなどが挙げられる。
ヒドラジン誘導体系化合物の具体例としては、デカメチレンジカルボキシリックアシッド−ビス(N′−サリシロイルヒドラジド)、イソフタル酸ビス(2−フェノキシプロピオニルヒドラジド)、N−ホルミル−N′−サリシロイルヒドラジン、2,2−オキザミドビス−[エチル−3−(3,5−ジ−t−ブチル−4−ハイドロオキシフェニル)プロピオネート]、オギザリル−ビス−ベンジリデン−ヒドラジド、ニッケル−ビス(1−フェニル−3−メチル−4−デカノイル−5−ピラゾレート)、2−エトキシ−2′−エチルオキサニリド、5−t−ブチル−2−エトキシ−2′−エチルオキサニリド、N,N−ジエチル−N′,N′−ジフェニルオキサミド、N,N′−ジエチル−N,N′−ジフェニルオキサミド、オキサリックアシッド−ビス(ベンジリデンヒドラジド)、チオジプロピオニックアシッド−ビス(ベンジリデンヒドラジド)、ビス(サリシロイルヒドラジン)、N−サリシリデン−N′−サリシロイルヒドラゾン、N,N′−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、N,N′−ビス[2−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル]オキサミドなどが挙げられる。
リン系化合物としては、例えば、ホスファイト系化合物、ホスフェート系化合物が挙げられる。かかるホスファイト系化合物の具体例としては、テトラキス[2−t−ブチル−4−チオ(2′−メチル−4′−ヒドロキシ−5′−t−ブチルフェニル)−5−メチルフェニル]−1,6−ヘキサメチレン−ビス(N−ヒドロキシエチル−N−メチルセミカルバジド)−ジホスファイト、テトラキス[2−t−ブチル−4−チオ(2′−メチル−4′−ヒドロキシ−5′−t−ブチルフェニル)−5−メチルフェニル]−1,10−デカメチレン−ジ−カルボキシリックアシッド−ジ−ヒドロキシエチルカルボニルヒドラジド−ジホスファイト、テトラキス[2−t−ブチル−4−チオ(2′−メチル−4′−ヒドロキシ−5′−t−ブチルフェニル)−5−メチルフェニル]−1,10−デカメチレン−ジ−カルボキシリックアシッド−ジ−サリシロイルヒドラジド−ジホスファイト、テトラキス[2−t−ブチル−4−チオ(2′−メチル−4′−ヒドロキシ−5′−t−ブチルフェニル)−5−メチルフェニル]−ジ(ヒドロキシエチルカルボニル)ヒドラジド−ジホスァイト、テトラキス[2−t−ブチル−4−チオ(2′−メチル−4′−ヒドロキシ−5′−t−ブチルフェニル)−5−メチルフェニル]−N,N′−ビス(ヒドロキシエチル)オキサミド−ジホスファイトなどが挙げられるが、少なくとも1つのP−O結合が芳香族基に結合しているものがより好ましく、具体例としては、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)4,4′−ビフェニレンホスフォナイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトール−ジ−ホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、4,4′−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシル)ホスファイト、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−t−ブチル−フェニル)ブタン、トリス(ミックスドモノおよびジ−ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4′−イソプロピリデンビス(フェニル−ジアルキルホスファイト)などが挙げられ、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4′−ビフェニレンホスホナイトなどが好ましく使用できる。ホスファイト系化合物の具体的な商品名としては、(株)ADEKA製“アデカスタブ” C、PEP−4C、PEP−8、PEP−11C、PEP−24G、PEP−36、HP−10、2112、260、522A、329A、1178、1500、C、135A、3010、TPP、チバ・スペシャルティ・ケミカルズ(株)製“イルガフォス”168、住友化学工業(株)製“スミライザー”P−16、クラリアント社製“サンドスタブ”PEPQ、GE社製“ウエストン”618、619G、624などが挙げられる。
ホスフェート系化合物の具体例としては、モノステアリルアシッドホスフェート、ジステアリルアシッドホスフェート、メチルアシッドホスフェート、イソプロピルアシッドホスフェート、ブチルアシッドホスフェート、オクチルアシッドホスフェート、イソデシルアシッドホスフェートなどが挙げられ、中でも、モノステアリルアシッドホスフェート、ジステアリルアシッドホスフェートが好ましい。ホスフェート系化合物の具体的な商品名としては、チバ・スペシャルティ・ケミカルズ(株)製“イルガノックス”MD1024、イーストマン・コダック社製“インヒビター”OABH、(株)ADEKA製“アデカスタブ”CDA−1、CDA−6、AX−71などを挙げることができる。
触媒失活剤の添加量は、特に限定されないが、熱安定性に優れるという点で、ポリ乳酸ブロック共重合体100重量部に対して、0.001〜2重量部であることが好ましく、0.01〜1重量部であることがより好ましく、0.05〜0.5重量部であることがさらに好ましく、0.08〜0.3重量部であることが最も好ましい。
触媒失活剤の添加時期は、高分子量体を保持できる点でポリ乳酸ブロック共重合体を得た後が好ましい。開環重合法もしくは直接重合法でポリ乳酸を製造した後、ポリ乳酸の混合および固相重合によりポリ乳酸ブロック共重合体を得る場合には、高融点、高分子量のポリ乳酸ブロック共重合体を得ることができるという点で、ポリ乳酸混合工程で触媒失活剤を添加することも可能である。なお、ポリ乳酸混合時に触媒失活剤を添加する場合は、触媒失活剤を添加した後に、固相重合用の触媒を添加することが好ましい。
本発明のポリ乳酸ブロック共重合体には、本発明の目的を損なわない範囲で通常の添加剤、例えば、充填剤(ガラス繊維、炭素繊維、金属繊維、天然繊維、有機繊維、ガラスフレーク、ガラスビーズ、セラミックスファイバー、セラミックビーズ、アスベスト、ワラステナイト、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、モンモリロナイト、合成マイカ、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、ケイ酸アルミニウム、酸化ケイ素、石膏、ノバキュライト、ドーソナイトまたは白土など)、紫外線吸収剤(レゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、熱安定剤(ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、滑剤、離形剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(ニグロシンなど)および顔料(硫化カドミウム、フタロシアニンなど)を含む着色剤、着色防止剤(亜リン酸塩、次亜リン酸塩など)、難燃剤(赤燐、燐酸エステル、ブロム化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、水酸化マグネシウム、メラミンおよびシアヌール酸またはその塩、シリコン化合物など)、導電剤あるいは着色剤(カーボンブラックなど)、摺動性改良剤(グラファイト、フッ素樹脂など)、結晶核剤(タルクなどの無機系核剤、エチレンビスラウリン酸アミド、エチレンビス−12−ジヒドロキシステアリン酸アミドおよびトリメシン酸トリシクロヘキシルアミドなどの有機アミド系化合物、銅フタロシアニンおよびピグメントイエロー110などの顔料系核剤、有機カルボン酸金属塩、フェニルホスホン酸亜鉛など)、帯電防止剤などの1種または2種以上を添加することができる。
また、本発明の製造方法により得られるポリ乳酸ブロック共重合体には、本発明の目的を損なわない範囲で他の熱可塑性樹脂(例えば、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、アクリルニトリル・ブタジエン・スチレン共重合体、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミド、セルロースエステルなど)または熱硬化性樹脂(例えば、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコン樹脂、エポキシ樹脂など)または軟質熱可塑性樹脂(例えば、エチレン/グリシジルメタクリレート共重合体、ポリエステルエラストマー、ポリアミドエラストマー、エチレン/プロピレンターポリマー、エチレン/ブテン−1共重合体など)などの少なくとも1種以上をさらに含有することができる。
本発明でアクリル樹脂を使用する場合は、一般に炭素数1〜4のアルキル基を有する(メタ)アクリル酸アルキル単位を主成分とするアクリル樹脂が好ましく挙げられる。また、炭素数1〜4のアルキル基を有する(メタ)アクリル酸アルキルには、炭素数1〜4のアルキル基を有する他のアクリル酸アルキルやスチレンなどの芳香族ビニル化合物を共重合してもよい。
上記のアルキル基を有する(メタ)アクリル酸アルキルの例としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸シクロヘキシルおよびメタクリル酸シクロヘキシルなどが挙げられる。本発明でアクリル樹脂を使用する場合には、特にメタクリル酸メチルからなるポリメチルメタクリレートが好ましい。
本発明のポリ乳酸ブロック共重合体は、成形品などに加工する際に、一旦熱溶融させて固化した後も、高融点のポリ乳酸ステレオコンプレックスを形成しやすい特徴を有する。
(成形体)
本発明のポリ乳酸ブロック共重合体を含む成形体は、相対結晶化度が90%以上で、厚さ100μmの成形体としたときのヘイズ値が30%以下の条件を同時に満たす部分を有することを特徴とする。
ここでいう相対結晶化度とは、成形体の結晶融解エンタルピーをΔHm、成形体の昇温時の結晶化エンタルピーをΔHcとすると、下記式(11)で算出することができる。
相対結晶化度=[(ΔHm−ΔHc)/ΔHm]×100 (11)
相対結晶化度は90%以上であることが好ましく、92%以上であることがより好ましく、94%以上であることが特に好ましい。ここで、ΔHcとは、示差走査熱量計(DSC)により昇温速度20℃/minで測定した成形体の結晶化エンタルピーであり、ΔHmとは、DSCにより昇温速度20℃/minで測定した成形体の結晶融解エンタルピーであるが、第1昇温時に昇温速度20℃/minで30℃から250℃まで昇温した後、降温速度20℃/minで30℃まで冷却し、さらに第2昇温時に昇温速度20℃/minで30℃から250℃まで昇温した際に測定される結晶融解エンタルピーである。
また、ヘイズ値とは、JIS K 7105に従って、厚さ100μmの成形体を測定した値であり、透明性の点で、ヘイズ値が30%以下であることが好ましく、20%以下であることがさらに好ましく、10%以下であることが特に好ましい。下限は特に限定されないが、0%以上である。
本発明の前記成形体は、厚さ250〜750μmとしたときヘイズ値が20%以下であることが好ましい。ヘイズ値は10%以下であることがさらに好ましく、5%以下であることが透明性の点で特に好ましい。下限は特に限定されないが、0%以上である。
さらに、本発明において前記成形体は、厚さ0.75〜1.25mmとしたときヘイズ値が30%以下であることが好ましく、20%以下であることがさらに好ましく、10%以下であることがさらに好ましく、7%以下であることがさらに好ましく、5%以下であることが特に好ましい。また、本発明において前記成型体は、透明性を向上させるために用いられる結晶核剤を含有していなくても、ヘイズ値が30%以下であることが好ましく、20%以下であることがさらに好ましく、10%以下であることが特に好ましい。
本発明のポリ乳酸ブロック共重合体を含む成形体は、耐熱性および透明性に優れるという点で、成形体に含まれるポリ乳酸ブロック共重合体の降温結晶化温度(Tc)が130℃以上であることが好ましい。ここで、成型体の降温結晶化温度(Tc)とは、示差走査熱量計(DSC)により昇温速度20℃/minで30℃から250℃まで昇温した後、250℃で3分間恒温状態に維持を行い、冷却速度20℃/minで降温した際に測定したポリ乳酸結晶由来の結晶化温度である。結晶化温度(Tc)は、特に限定されるものではないが、耐熱性および透明性の観点から、130℃以上が好ましく、132℃以上がより好ましく、135℃以上が特に好ましい。
本発明において前記成形体に含まれるポリ乳酸ブロック共重合体はステレオコンプレックス形成率(Sc)が80%以上が好ましく、さらに好ましくは85〜100%の範囲であり、90〜100%であることが特に好ましい。ここで、ステレオコンプレックス形成率とは、ポリ乳酸中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には示差走査型熱量計(DSC)で測定した際のポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(12)で算出することができる。
Sc=ΔHh/(ΔHl+ΔHh)×100 (12)
本発明において前記成形体に含まれるポリ乳酸ブロック共重合体は、ポリ乳酸ブロック共重合体一分子あたりに含まれるL−乳酸単位からなるセグメントおよびD−乳酸単位からなるセグメントの合計数が3以上であることが、高融点のポリ乳酸ステレオコンプレックスを形成しやすいポリ乳酸ブロック共重合体が得られる点で好ましい。また、1セグメントあたりの分子量は2千〜5万であることが好ましい。さらに好ましくは、4千〜4.5万であり、5千〜4万であることが機械物性の点で特に好ましい。
本発明において前記成形体に含まれるポリ乳酸ブロック共重合体の平均連鎖長は20以上が好ましい。さらに好ましくは25以上であり、30以上であることが成形体の機械物性の点で特に好ましい。なお、成形体の平均連鎖長は13C−NMR測定により、カルボニル炭素に帰属する炭素のピークのうち、170.1〜170.3ppm付近に存在するピークの積分値を(a)と、169.8〜170.0ppm付近に存在するピークの積分値を(b)としたとき、下記式(13)で算出することができる。
平均連鎖長=(a)/(b) (13)
本発明おいて、成形体中のポリ乳酸ブロック共重合体の重量平均分子量は、特に限定されるものではないが、機械物性の点で9万以上30万未満であることが好ましい。10万以上29万未満であることがより好ましく、12万以上28万未満であることがさらに好ましく、14万以上26万未満であることが成形性および機械物性の点で特に好ましい。また、本発明において前記成形体中のポリ乳酸ブロック共重合体の分散度は、1.5〜3.0の範囲が機械物性の点で好ましい。分散度の範囲が1.8〜2.7であることがさらに好ましく、2.0〜2.4であることが成形性および機械物性の点で特に好ましい。なお、重量平均分子量および分散度とは、溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。
本発明において前記成形体を構成するポリ乳酸樹脂組成物は、L−乳酸単位からなるセグメントとD−乳酸単位からなるセグメントにより構成されるポリ乳酸ブロック共重合体を60%以上含有するポリ乳酸樹脂組成物であることが好ましい。さらに好ましくは70%以上であり、80%以上であることが特に好ましい。
本発明において、前記成形体を構成するポリ乳酸ブロック共重合体に含有するラクチド量およびオリゴマー量は、それぞれ5%以下であることが好ましい。さらに好ましくは3%以下であり、特に好ましくは1%以下である。また、ポリ−L−乳酸またはポリ−D−乳酸に含有する乳酸量は、2%以下であることが好ましい。さらに好ましくは1%以下であり、特に好ましくは0.5%以下である。
本発明のポリ乳酸ブロック共重合体を含む成形体の製造方法としては、射出成形、押出成形、ブロー成形、真空成形またはプレス成形など公知の成形方法を挙げることができ、透明性および耐熱性の点で、射出成形、ブロー成形、真空成形およびプレス成形が好ましい。
本発明において前記成形体の製造方法としてシート成形を行う場合には、溶融したポリ乳酸ブロック共重合体を含むポリ乳酸樹脂組成物を所定の厚さのダイを通して押出によりシートを得る方法や溶融したポリ乳酸ブロック共重合体を含むポリ乳酸樹脂組成物を所定の金型で挟んでシートを得る方法を挙げることができる。さらに、得られたシートを所定の温度で所定の時間熱処理を行うことで、結晶化度を上げることもできる。具体的な製造方法としては、240℃で2分間加熱して溶融し、その後プレス金型温度80℃でプレスすることで厚さ100μmのプレスシートを作製し、このプレスシートを窒素雰囲気下、110℃で30分間の熱処理を行う方法や、240℃で2分間加熱して溶融し、その後プレス温度40℃でプレスすることで厚さ1mmのプレスシートを作製し、このプレスシートを窒素雰囲気下、80℃で5分間、110℃で30分間の熱処理を行う方法を挙げることができる。
本発明において前記成形体の製造方法として射出成形を行う場合には、透明性および耐熱性の点で、金型温度をポリ乳酸ブロック共重合体のガラス転移温度以上および融点以下の温度範囲、好ましくは60℃以上、220℃以下の温度範囲、より好ましくは、70℃以上、200℃以下の温度範囲、さらに好ましくは、80℃以上、180℃以下の温度範囲に設定し、成形サイクル150秒以下、好ましくは90秒以下、より好ましくは60秒以下、さらに好ましくは50秒以下で射出成形してなることが好ましい。
本発明において前記成形体の製造方法としてブロー成形を行う場合には、例えば、ポリ乳酸ブロック共重合体を上記の方法で射出成形によりブロー成形可能な結晶化度の有底のチューブ状成形物(パリソン)を成形し、次いでポリ乳酸ブロック共重合体のガラス転移点以上およびガラス転移点+80℃以下の温度範囲、好ましくは60℃以上、140℃以下の温度範囲、さらに好ましくは70℃以上、130℃以下の温度範囲に設定したブロー成形用の金型に移動して、延伸ロッドにより延伸しつつ、エアノズルから圧縮空気を供給して成形体を得る方法が挙げられる。
本発明において前記成形体の製造方法として真空成形を行う場合には、透明性および耐熱性の点で、一旦成形可能な結晶化度のシートやフィルムを得た後、熱板もしくは熱風などのヒーターで60〜150℃、好ましくは65〜120℃、より好ましくは70〜90℃で加熱を行い、そのシートを金型温度30〜150℃、好ましくは40〜100℃、より好ましくは50〜90℃に設定した金型に密着させると同時に、金型内を減圧することで成形する方法が挙げられる。
本発明において前記成形体の製造方法としてプレス成形を行う場合には、一旦成形可能な結晶化度のシートやフィルムを得た後、熱板もしくは熱風などのヒーターで60〜150℃、好ましくは65〜120℃、より好ましくは70〜90℃で加熱を行い、そのシートを金型温度30〜150℃、好ましくは40〜100℃、より好ましくは50〜90℃に設定した雄型と雌型からなる金型に密着して加圧を行い、型締めする方法が挙げられる。
本発明のポリ乳酸ブロック共重合体の製造方法において、得られるポリ乳酸ブロック共重合体を含む成形体は、延伸処理を施さなくても透明性を有することが特徴であるため、透明性を付与するために延伸処理を行う必要はないが、その他必要に応じて延伸処理を施すことが可能である。延伸処理を行う成形体の形状は、フィルムやシート形状であることが好ましい。また、延伸処理を行う場合、ポリ乳酸ステレオコンプレックスのガラス転移点以上のおよび融点以下の温度範囲、好ましくは60℃以上、170℃以下の温度範囲、より好ましくは、70℃以上、150℃以下の温度範囲で延伸することが好ましい。
本発明のポリ乳酸ブロック共重合体やポリ乳酸ブロック共重合体を含む成形体は、例えば、フィルム、シート、繊維・布、不織布、射出成形品、押出成形品、真空圧空成形品、ブロー成形品、および他の材料との複合体などとして用いることができ、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、文具、医療用品、自動車用部品、電気・電子部品、光学フィルムまたはその他の用途として有用である。
具体的には、リレーケース、コイルボビン、光ピックアップシャーシ、モーターケース、ノートパソコンハウジングまたは内部部品、CRTディスプレーハウジングまたは内部部品、プリンターハウジングまたは内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングまたは内部部品、記録媒体(CD、DVD、PD、FDDなど)ドライブのハウジングまたは内部部品、コピー機のハウジングまたは内部部品、ファクシミリのハウジングまたは内部部品、パラボラアンテナなどに代表される電気・電子部品を挙げることができる。更に、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、ビデオカメラ、プロジェクターなどの映像機器部品、レーザーディスク(登録商標)、コンパクトディスク(CD)、CD−ROM、CD−R、CD−RW、DVD−ROM、DVD−R、DVD−RW、DVD−RAM、ブルーレイディスクなどの光記録媒体の基板、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代表される家庭・事務電気製品部品を挙げることができる。また電子楽器、家庭用ゲーム機、携帯型ゲーム機などのハウジングや内部部品、各種ギヤー、各種ケース、センサー、LEPランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドホン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、コイルボビンなどの電気・電子部品、サッシ戸車、ブラインドカーテンパーツ、配管ジョイント、カーテンライナー、ブラインド部品、ガスメーター部品、水道メーター部品、湯沸かし器部品、ルーフパネル、断熱壁、アジャスター、プラ束、天井釣り具、階段、ドアー、床などの建築部材、釣り餌袋などの水産関連部材、植生ネット、植生マット、防草袋、防草ネット、養生シート、法面保護シート、飛灰押さえシート、ドレーンシート、保水シート、汚泥・ヘドロ脱水袋、コンクリート型枠などの土木関連部材、エアフローメーター、エアポンプ、サーモスタットハウジング、エンジンマウント、イグニッションホビン、イグニッションケース、クラッチボビン、センサーハウジング、アイドルスピードコントロールバルブ、バキュームスイッチングバルブ、ECU(Electric Control Unit)ハウジング、バキュームポンプケース、インヒビタースイッチ、回転センサー、加速度センサー、ディストリビューターキャップ、コイルベース、ABS用アクチュエーターケース、ラジエータタンクのトップ及びボトム、クーリングファン、ファンシュラウド、エンジンカバー、シリンダーヘッドカバー、オイルキャップ、オイルパン、オイルフィルター、フューエルキャップ、フューエルストレーナー、ディストリビューターキャップ、ベーパーキャニスターハウジング、エアクリーナーハウジング、タイミングベルトカバー、ブレーキブースター部品、各種ケース、各種チューブ、各種タンク、各種ホース、各種クリップ、各種バルブ、各種パイプなどの自動車用アンダーフード部品、トルクコントロールレバー、安全ベルト部品、レジスターブレード、ウオッシャーレバー、ウインドレギュレーターハンドル、ウインドレギュレーターハンドルのノブ、パッシングライトレバー、サンバイザーブラケット、各種モーターハウジングなどの自動車用内装部品、ルーフレール、フェンダー、ガーニッシュ、バンパー、ドアミラーステー、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、グリルエプロンカバーフレーム、ランプリフレクター、ランプベゼル、ドアハンドルなどの自動車用外装部品、ワイヤーハーネスコネクター、SMJコネクター(中継接続用コネクター)、PCBコネクター(ボードコネクター)、ドアグロメットコネクターなど各種自動車用コネクター、歯車、ねじ、バネ、軸受、レバー、キーステム、カム、ラチェット、ローラー、給水部品、玩具部品、ファン、テグス、パイプ、洗浄用治具、モーター部品、顕微鏡、双眼鏡、カメラ、時計などの機械部品、マルチフィルム、トンネル用フィルム、防鳥シート、育苗用ポット、植生杭、種紐テープ、発芽シート、ハウス内張シート、農ビの止め具、緩効性肥料、防根シート、園芸ネット、防虫ネット、幼齢木ネット、プリントラミネート、肥料袋、試料袋、土嚢、獣害防止ネット、誘因紐、防風網などの農業部材、衛生用品、医療用フィルムなどの医療用品、カレンダー、文具、衣料、食品等の包装用フィルム、トレー、ブリスター、ナイフ、フォーク、スプーン、チューブ、プラスチック缶、パウチ、コンテナー、タンク、カゴなどの容器・食器類、ホットフィル容器類、電子レンジ調理用容器類化粧品容器、ラップ、発泡緩衝剤、紙ラミ、シャンプーボトル、飲料用ボトル、カップ、キャンディ包装、シュリンクラベル、蓋材料、窓付き封筒、果物かご、手切れテープ、イージーピール包装、卵パック、HDD用包装、コンポスト袋、記録メディア包装、ショッピングバック、電気・電子部品等のラッピングフィルムなどの容器・包装、各種衣料、インテリア用品、キャリアーテープ、プリントラミ、感熱孔版印刷用フィルム、離型フィルム、多孔性フィルム、コンテナバッグ、クレジットカード、キャッシュカード、IDカード、ICカード、光学素子、導電性エンボステープ、ICトレー、ゴルフティー、ゴミ袋、レジ袋、各種ネット、歯ブラシ、文房具、クリアファイル、カバン、イス、テーブル、クーラーボックス、クマデ、ホースリール、プランター、ホースノズル、食卓、机の表面、家具パネル、台所キャビネット、ペンキャップ、ガスライターなどとして有用である。
以下、実施例により本発明を具体的に説明する。ここで、実施例中の部数は、重量部を示す。物性等の測定方法は以下のとおりである。なお、成形体の測定部位は、同じ部分を選択して測定を実施している。
(1)分子量
重量平均分子量、分散度、分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した標準ポリメチルメタクリレート換算の値である。GPC測定は、検出器にWATERS社示差屈折計WATERS410を用い、ポンプにWATERS社MODEL510を用い、カラムにShodex GPC HFIP-806MとShodex GPC HFIP-LGを直列に接続したものを用いて行った。測定条件は、流速0.5mL/minとし、測定では溶媒にヘキサフルオロイソプロパノールを用い、試料濃度1mg/mLの溶液を0.1mL注入した。
また、分子量分布については、全体の面積(c)と分子量10万以上部分の面積(d)を算出し、下記式(14)から分子量10万以上の割合(Mwp)を算出した。
Mwp=(d)/(c)×100 (14)
(2)平均連鎖長
ポリ乳酸ブロック共重合体およびポリ−L−乳酸とポリ−D−乳酸の混合物の平均連鎖長は、日本電子社製NMR装置AL-400を用いて13C−NMR測定を行い、カルボニル炭素に帰属する炭素のピークのうち、170.1〜170.3ppm付近に存在するピークの積分値(a)と、169.8〜170.0ppm付近に存在するピークの積分値(b)をそれぞれ測定し、下記式(15)を用いて算出した。
平均連鎖長=(a)/(b) (15)
測定は、溶媒に10%ヘキサフルオロイソプロパノール含有水素化クロロホルムを用い、試料50mgを前記溶媒0.7ml中に溶解させたサンプル溶液を、測定温度27℃、測定周波数125MHzの条件下で行った。
(3)熱的特性
融点、融解終了温度および融解熱量は、パーキンエルマー社示差走査型熱量計(DSC)により測定した。測定条件は、試料5mg、窒素雰囲気下、昇温速度が20℃/minである。
ここで、融点とは、結晶融解ピークにおけるピークトップの温度のことを指し、また融解終了温度とは結晶融解ピークにおけるピーク終了温度のことを指す。得られた結果において、融点が190℃以上250℃未満に確認されたものは、ポリ乳酸ステレオコンプレックスが形成されたものと判断し、融点が150℃以上190℃未満に確認されたものについてはポリ乳酸ステレオコンプレックスが形成されなかったものと判断した。ここで示す混合物の融点とは、第1昇温時に昇温速度20℃/minで30℃から250℃まで昇温したときに測定される融点であるのに対し、固相重合後のポリ乳酸ブロック共重合体の融点とは、第1昇温時に昇温速度20℃/minで30℃から250℃まで昇温した後、降温速度20℃/minで30℃まで冷却し、さらに第2昇温時に昇温速度20℃/minで30℃から250℃まで昇温したときに測定される融点のことである。
また、熱的特性として下記式(16)で示されるパラメータ値の算出を行った。
(Tm−Tms)/(Tme−Tm) (16)
式(16)のパラメータにおいて、Tm:ポリ乳酸ブロック共重合体およびポリ−L−乳酸とポリ−D−乳酸の混合物のステレオコンプレックス結晶由来の融点(結晶融解ピークにおけるピークトップ温度)、Tms:ポリ乳酸ブロック共重合体およびポリ−L−乳酸とポリ−D−乳酸の混合物のステレオコンプレックス結晶融解開始温度、Tme:ポリ乳酸ブロック共重合体およびポリ−L−乳酸とポリ−D−乳酸の混合物の融点終了温度を示しており、それぞれの値はパーキンエルマー社示差走査型熱量計(DSC)を用いて試料5mg、窒素雰囲気下での測定値である。なお、測定値は、第1昇温時に昇温速度40℃/minで30℃から250℃まで昇温した後、降温速度40℃/minで30℃まで冷却し、さらに第2昇温時に昇温速度40℃/minで30℃から250℃まで昇温したときの値を用いている。
(4)ステレオコンプレックス形成率(Sc)
ポリ乳酸ブロック共重合体およびポリ乳酸ステレオコンプレックス(ポリ−L−乳酸とポリ−D−乳酸の混合物)のステレオコンプレックス形成率(Sc)は、下記式(17)から算出した。
Sc=ΔHh/(ΔHl+ΔHh)×100 (17)
ここで、ΔHlは150℃以上190℃未満に現れるポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶の結晶融解に基づく熱量を示し、ΔHhは190℃以上250℃未満に現れるステレオコンプレックス結晶の結晶融解に基づく熱量を示す。
また、混合物におけるステレオコンプレックス形成率は、示差走査型熱量計(DSC)の第1昇温時に測定される結晶融解ピークから算出したものであり、固相重合後のポリ乳酸ブロック共重合体のステレオコンプレックス形成率は、第1昇温時に昇温速度20℃/minで30℃から250℃まで昇温した後、降温速度20℃/minで30℃まで冷却し、さらに第2昇温時に昇温速度20℃/minで30℃から250℃まで昇温したときに測定される結晶融解ピークから算出したものである。
(5)収率
固相重合後のポリ乳酸ブロック共重合体の収率(Y)は、下記式(18)から算出した。
Y=Ws/Wp×100 (18)
但し、固相重合前の混合物重量をWp、固相重合後のポリ乳酸ブロック共重合体の重量をWsとする。
(6)降温結晶化温度
ポリ乳酸ブロック共重合体およびポリ乳酸ステレオコンプレックス(ポリ−L−乳酸とポリ−D−乳酸の混合物)の降温結晶化温度は、パーキンエルマー社示差走査型熱量計(DSC)により測定した。具体的には、試料5mgを示差走査熱量計(DSC)により窒素雰囲気下で昇温速度20℃/minで30℃から250℃まで昇温した後、250℃で3分間恒温状態に維持を行い、冷却速度20℃/minで降温した際に測定される結晶化ピークトップの温度を降温結晶化温度とした。
(7)相対結晶化度
ポリ乳酸ブロック共重合体およびポリ乳酸ステレオコンプレックス(ポリ−L−乳酸とポリ−D−乳酸の混合物)の相対結晶化度は、パーキンエルマー社示差走査型熱量計(DSC)により成形体の結晶融解エンタルピーΔHmと、成形体の昇温時の結晶化エンタルピーΔHcをそれぞれ測定し、下記式(19)から算出した。
相対結晶化度=[(ΔHm−ΔHc)/ΔHm]×100 (19)
(8)ヘイズ値
成形体の透明性の指標としてヘイズ値の測定を行った。厚さ0.1mmのシート状成形体につき日本電色工業製ヘイズメーターNDH-300Aを用いて、JIS K 7105に従ってヘイズ値測定を行った。
(9)貯蔵弾性率
成形体の耐熱性の指標として貯蔵弾性率を測定した。厚さ0.1mmのシート状成形体の中心部を40mm×2mmに切り出して短冊状のサンプルとし、動的粘弾性測定装置(セイコーインストルメンツ製DMS6100)にて窒素雰囲気下で昇温速度2℃/min、周波数3.5Hzにて動的粘弾性測定を行い、130℃における貯蔵弾性率を測定した。弾性率が高いほど耐熱性が高いといえる。
(10)引張強度
厚さ0.1mmのシート状成形体の中心部を40mm×2mmに切り出して短冊状のサンプルとし、ASTM D882に従い、引張強度を測定した。
(11)耐衝撃性
厚さ0.1mmのシート状成形体を真空成形して得られた容器に水を入れ、フタをした状態で2mの高さより容器底部からコンクリート上に落下させ、落下衝撃により容器が破損して水が漏れるまでの回数を測定し、下記の方法で評価を行った。
A:容器が破損して水が漏れるまでの落下回数が5回以上
B:容器が破損して水が漏れるまでの落下回数が2〜4回
F:容器が破損して水が漏れるまでの落下回数が1回。
[参考例1]
撹拌装置と還流装置を備えた反応容器中に、90%L−乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行い、ポリ−L−乳酸(PLA1)を得た。PLA1の重量平均分子量は1.8万、分散度は1.5、融点は149℃、融解終了温度は163℃であった。
[参考例2]
参考例1で得られたPLA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で5時間固相重合を行い、ポリ−L−乳酸(PLA2)を得た。PLA2の重量平均分子量は4.3万、分散度は1.8、融点は159℃、融解終了温度は176℃であった。
[参考例3]
参考例1で得られたPLA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で12時間固相重合を行い、ポリ−L−乳酸(PLA3)を得た。PLA3の重量平均分子量は13.7万、分散度は1.8、融点は168℃、融解終了温度は189℃であった。
[参考例4]
参考例1で得られたPLA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で18時間固相重合を行い、ポリ−L−乳酸(PLA4)を得た。PLA4の重量平均分子量は20.3万、分散度は1.9、融点は170℃、融解終了温度は189℃であった。
[参考例5]
撹拌装置を備えた反応容器中に、L−ラクチドを50部入れ、窒素雰囲気下、120℃で均一に溶解させた後、温度を150℃にし、オクチル酸錫(II)0.003部を添加して2時間反応させることにより、ポリ−L−乳酸(PLA5)を得た。PLA5の重量平均分子量は26.2万、分散度は2.1、融点は171℃、融解終了温度は191℃であった。
[参考例6]
90wt%のL−乳酸水溶液1kgを150℃、4,000Paで6時間撹拌しながら水を留出させてオリゴマー化した。このオリゴマーに塩化第一錫0.2gとp−トルエンスルホン酸0.2gとを添加し、180℃、1,300Paで6時間溶融重合を行うことによりポリ−L−乳酸プレポリマーを得た。このプレポリマーの固体を粉砕し、140℃で30時間固相重合することによりポリ−L−乳酸(PLA6)を得た。PLA6の重量平均分子量は15.4万、分散度は2.6、融点は172℃、融解終了温度は194℃であった。
[参考例7]
撹拌装置と還流装置を備えた反応容器中に、90%D−乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行い、ポリ−D−乳酸(PDA1)を得た。PDA1の重量平均分子量は1.5万、分散度は1.5、融点は147℃、融解終了温度は163℃であった。
[参考例8]
参考例7で得られたPDA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で3時間固相重合を行い、ポリ−D−乳酸(PDA2)を得た。PDA2の重量平均分子量は2.9万、分散度は1.6、融点は150℃、融解終了温度は168℃であった。
[参考例9]
参考例7で得られたPDA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で6時間固相重合を行い、ポリ−D−乳酸(PDA3)を得た。PDA3の重量平均分子量は4.2万、分散度は1.6、融点は158℃、融解終了温度は176℃であった。
[参考例10]
参考例7で得られたPDA1を、窒素雰囲気下110℃で1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で18時間固相重合を行い、ポリ−D−乳酸(PDA4)を得た。PDA4の重量平均分子量は19.8万、分散度は2.0、融点は170℃、融解終了温度は191℃であった。
[参考例11]
90wt%のD−乳酸水溶液1kgを150℃、4,000Paで6時間撹拌しながら水を留出させてオリゴマー化した。このオリゴマーに塩化第一錫0.2gとp−トルエンスルホン酸0.2gとを添加し、180℃、1,300Paで3時間溶融重合を行うことによりポリ−L−乳酸(PDA5)を得た。PDA5の重量平均分子量は1.6万、分散度は1.5、融点は144℃、融解終了温度は160℃であった。
(実施例1〜7、比較例1〜5)
(1)ポリ−L−乳酸とポリ−D−乳酸の混合物
ポリ−L−乳酸とポリ−D−乳酸の混合は日本製鋼所社製TEX30型二軸押出機(L/D=45.5)を用いて行った。
ポリ−L−乳酸とポリ−D−乳酸は混合前にあらかじめ窒素雰囲気下で温度110℃、2時間結晶化処理を行っておき、二軸押出機へのポリ−L−乳酸とポリ−D−乳酸の供給に関しては、ポリ−L−乳酸とポリ−D−乳酸のうち高分子量体の方を樹脂供給口より添加し、もう一方の低分子量体をL/D=30の部分に設けたサイド供給口より添加した。二軸押出機は、樹脂供給口よりL/D=10の部分に温度180℃に設定した可塑化部分を設け、L/D=30の部分にはニーディングディスクを備えてせん断付与できるスクリューとしてせん断付与下で混合できる構造をしており、ポリ−L−乳酸とポリ−D−乳酸の混合はせん断付与下、混合温度200℃で行った。ポリ−L−乳酸とポリ−D−乳酸の混合の組み合わせは表1に示すとおりである。なお、混合後ポリマーについては圧力13.3Pa、110℃で2時間結晶化処理を行った後、物性測定を実施した。
表1の結果より、実施例1〜7および比較例5は、混合物の重量平均分子量は10万以上と高分子量であったのに対して、比較例1〜4は混合時の重量平均分子量は10万未満と低かった。混合物の熱特性については、実施例1〜7および比較例1〜5のすべての水準において混合物の高融点化が観測された。また、ステレオコンプレックス形成率については実施例1〜7および比較例1〜4で60%以上と高かったが、混合するポリ−L−乳酸とポリ−D−乳酸の分子量がいずれも10万以上の組み合わせである比較例5においてステレオコンプレックス形成率は低かった。
(2)ポリ乳酸ブロック共重合体
(1)により得られた混合物につき固相重合を行った。具体的には、真空乾燥機中、140℃にて圧力13.3Paで4時間固相重合を行い、次いで150℃に昇温して4時間、さらに160℃に昇温して10時間固相重合を行うことで、セグメント数が3よりも大きいポリ乳酸ブロック共重合体を得た。
表1に示すとおり、実施例1〜7および比較例5については、いずれも固相重合後に重量平均分子量が10万以上と高分子量化していた。また、分子量分布曲線において分子量が10万以上である割合はいずれも50%以上であった。固相重合後の分散度については混合時の分散度より低くなり、3.0未満であることから重合が進行し、ポリ乳酸ブロック共重合体が得られていることを確認した。これに対して比較例1〜4については、固相重合後の重量平均分子量が10万以下であり、分子量分布曲線において分子量が10万以上である割合は40%未満であった。また、固相重合後のポリマーの平均連鎖長は実施例1〜7および比較例5、6において30以上と高い値を確認した。固相重合後の収率については、混合するポリ乳酸として高分子量セグメントを用いた実施例1〜7、比較例1〜3および5はいずれも90%以上と高かったが、混合するポリ−L−乳酸とポリ−D−乳酸の分子量が10万以下の低分子量の組み合わせである比較例4においては、固相重合後の収率が90%以上とならず低い値であった。固相重合後の熱的特性については、実施例1〜7および比較例1〜5のすべての水準において混合物の高融点化が観測された。また、ステレオコンプレックス形成率については実施例1〜7および比較例1〜4で80%以上であることから耐熱性を有し、比較例5についてはステレオコンプックス形成率が低く、耐熱性が乏しかった。熱的特性のパラメータである(Tm−Tms)/(Tme−Tm)については、実施例1〜7は1.8未満であるのに対し、比較例1〜7はパラメータ値がいずれも1.9以上であった。これらの結果から、実施例で示される高分子量かつ耐熱性を兼ね備えたポリ乳酸ブロック共重合体でのみ熱的特性のパラメータが1.8未満になることが確認された。降温結晶化温度については、実施例1〜7および比較例4において130℃以上と結晶化特性が優れているのに対し、比較例1〜3および5については130℃未満であり、結晶化特性が乏しかった。
(比較例6)
(1)ポリ−L−乳酸とポリ−D−乳酸の混合物
30gのPLA6と30gのPDA5を、200ccフラスコ中でブレンドしながら常圧で加熱し、室温から190℃まで10分間で昇温させた。昇温過程において160℃で一部の融解が確認された。その後、降温させ混合物を得た。
表1の結果のとおり、混合時の重量平均分子量は8.4万であった。混合物の熱特性については、ステレオコンプレックス形成により高融点化が一部認められた。しかしながら、混合工程においてPLA6の融解終了温度以下でブレンドしたため、部分的にしかポリマーは融解せず、ポリ乳酸単独結晶が残存し、その結果ステレオコンプレックス形成率は26%と低かった。
(2)ポリ乳酸ブロック共重合体
(1)で得られた混合物を圧力66.6Pa、110℃で2時間熱処理を行った後、130℃で5時間、140℃で25時間(合計30時間)加熱し固相重合を行い、セグメント数が3以上のポリ乳酸ブロック共重合体を作製した。
表1の結果のとおり、固相重合後分子量は15.1万、平均連鎖長は52であったが、固相重合後の収率は90%以下と低かった。さらに、固相重合後の分散度は2.9と大きく、分子量10万以上の割合が36%と低いため、低分子量体成分を多く含むポリマーであることが確認された。固相重合後の熱特性についてはステレオコンプレックス形成により高融点化が認められ、ステレオコンプレックス形成率も高かった。一方、熱的特性のパラメータである(Tm−Tms)/(Tme−Tm)については2.0であり、固相重合後の分散度が低い実施例のポリ乳酸ブロック共重合体のパラメータ値に比較して高い値であった。また、固相重合後の降温結晶化温度は124℃であり、実施例に示される130℃以上に比較して低かった。
次に、実施例1、2および比較例6で得られた混合物(SC1,SC2,SC13)とこれら3種の固相重合後ポリマー(SB1,SB2,SB13)について結晶化特性のばらつきの測定を行った。すなわち、ペレット20個のステレオコンプレックス形成率を比較すると、実施例1、2では差が5%以内であったのに対して、比較例6では15%の差があった。
(比較例7)
(1)ポリ−L−乳酸とポリ−D−乳酸の混合物
ポリ−L−乳酸とポリ−D−乳酸の混合方法は実施例1と同様である。
次に、ポリ−L−乳酸とポリ−D−乳酸の混合物については、ガラス容器内にすき間なく充填して密閉し、加熱を行った。加熱温度と時間は実施例1と同様である。
混合物を加熱しただけでは固相重合は進行せず、加熱後の試料SB14の重量平均分子量は8.1万と実施例1に比較して低かった。この試料SB14の収率は98%、Mwpは48%、分散度は2.7、平均連鎖長は21であり、減圧下で固相重合を行った実施例1に比較して低い値であった。
融点は162℃/215℃と、ステレオコンプレックス形成(Scは95%)により高融点化が認められたが、熱的特性のパラメータである(Tm−Tms)/(Tme−Tm)については2.2であり実施例1のポリ乳酸ブロック共重合体の値に比較して大きかった。また、降温結晶化温度は112℃と減圧下で固相重合を行った実施例1に比較して低かった。
Figure 0005957885
[参考例12]
L−ラクチド100部、エチレングリコール0.05部を撹拌装置のついた反応容器中で、窒素雰囲気下、150℃で均一に溶解させた後、オクチル酸錫0.003部を加え、3時間重合反応を行った。重合反応終了後、反応物をクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ−L−乳酸(PLA7)を得た。PLA7の重量平均分子量は20.1万、分散度は1.7、融点は173℃、融解終了温度は190℃であった。
[参考例13]
L−ラクチド100部、エチレングリコール0.1部を撹拌装置のついた反応容器中で、窒素雰囲気下、150℃で均一に溶解させた後、オクチル酸錫0.003重量部を加え、3時間重合反応を行った。その後、反応系内にリン系の触媒失活剤を0.01部添加して10分間撹拌を行い、触媒失活を行った。得られた反応物はクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ−L−乳酸(PLA8)を得た。PLA8の重量平均分子量は12.2万、分散度は1.7、融点は170℃、融解終了温度188℃であった。
[参考例14]
D−ラクチド100部を撹拌装置のついた反応容器中で、窒素雰囲気下、160℃で均一に溶解させた後、オクチル酸錫0.003部を加え、6時間重合反応を行った。重合反応終了後、反応物をクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ−D−乳酸(PDA6)を得た。PDA6の重量平均分子量は130万、分散度は1.6、融点は180℃、融解終了温度194℃であった。
[参考例15]
D−ラクチド100部,エチレングリコール0.05部を撹拌装置のついた反応容器中で、窒素雰囲気下、150℃で均一に溶解させた後、オクチル酸錫0.003部を加え、3時間重合反応を行った。重合終了後、反応物をクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ−D−乳酸(PDA7)を得た。PDA7の重量平均分子量は19.8万、分散度は1.7、融点は172℃、融解終了温度190℃であった。
[参考例16]
D−ラクチド100部,エチレングリコール0.1部を撹拌装置のついた反応容器中で、窒素雰囲気下、150℃で均一に溶解させた後、オクチル酸錫0.003部を加え、3時間重合反応を行った。その後、反応系内にリン系の触媒失活剤を0.01部添加して10分間撹拌を行い、触媒失活を行った。得られた反応物をクロロホルムに溶解させ、メタノール(クロロホルムの5倍量)中で撹拌しながら沈殿させ、モノマーを完全に除去することでポリ−D−乳酸(PDA8)を得た。PDA8の重量平均分子量は12.0万、分散度は1.7、融点は169℃、融解終了温度188℃であった。
(比較例8、9、11、12)
(1)ポリ−L−乳酸とポリ−D−乳酸の混合物
ポリ−L−乳酸とポリ−D−乳酸の混合は東洋精機製バッチ式二軸混練機(ラボプラストミル)を用いて行い、ポリ−L−乳酸とポリ−D−乳酸の混合物を得た。試験条件は、混練温度245℃、混練回転数120rpm、混練時間は比較例8、11が10分、比較例9、12が60分である。ポリ−L−乳酸とポリ−D−乳酸の組み合わせは表2に示すとおりである。
ポリ−L−乳酸とポリ−D−乳酸の混合物の重量平均分子量は比較例8、11で10万以上と高かったのに対して混練時間が60分と長い比較例9、12では10万以下と低下傾向であった。また、ポリ−L−乳酸とポリ−D−乳酸の混合物一分子あたりに含まれるL−乳酸単位からなるセグメントおよびD−乳酸単位からなるセグメントの合計数は1である。一方、ポリ−L−乳酸とポリ−D−乳酸の混合物の融点は、ステレオコンプレックス形成によりいずれも200℃以上に観測されたが、ステレオコンプレックス形成率については比較例8および11でともに60%以下と実施例1〜8に比較して低かった。熱的特性のパラメータである(Tm−Tms)/(Tme−Tm)についてはいずれも2.0以上であり、実施例に比較して高い値であった。降温結晶化温度については混練時間の長い比較例9、12でそれぞれ105℃と125℃に観測されたが、比較例8、11では降温結晶化温度が観測されず、いずれのサンプルについても結晶化特性は低かった。
(比較例10、13)
(1)ポリ−L−乳酸とポリ−D−乳酸の混合物
ポリ−L−乳酸とポリ−D−乳酸の混合物は、比較例9、12と同様条件でバッチ式二軸混練機を用いてポリ−L−乳酸とポリ−D−乳酸を60分間混練し、混練後可塑剤を10重量部添加してさらに5分間混練することで作製した。ポリ−L−乳酸、ポリ−D−乳酸、可塑剤の組み合わせは表2に示すとおりである。
表2に示すとおり、ポリ−L−乳酸とポリ−D−乳酸の混合物の重量平均分子量は比較例10、13それぞれにつき8.4万と5.1万であり、比較例9、12と同様に長時間の混練により分子量は低下傾向であった。また、ポリ−L−乳酸とポリ−D−乳酸の混合物一分子あたりに含まれるL−乳酸単位からなるセグメントおよびD−乳酸単位からなるセグメントの合計数は1である。一方、成形体の熱的特性については、熱的特性のパラメータである(Tm−Tms)/(Tme−Tm)についてはいずれも2.0以上と実施例に比較して高く、降温結晶化温度は比較例10、13それぞれについて103℃と120℃であり、比較例9、12とほとんど同一であった。
(比較例14〜17)
(1)ポリ−L−乳酸とポリ−D−乳酸の混合物
ポリ−L−乳酸とポリ−D−乳酸の混合は、実施例1〜7と同様二軸押出機を用いて混練により作製した。二軸押出機に対するポリ−L−乳酸、ポリ−D−乳酸および結晶核剤の供給に関しては、いずれも樹脂供給口から行い、混練温度は240℃に設定し、混練を行った。ポリ−L−乳酸、ポリ−D−乳酸および結晶核剤の組み合わせは表2に示すとおりである。
混練により得られたポリ乳酸混合物の重量平均分子量は比較例14〜16につき11〜12万であるのに対して、比較例17では6.5万と分子量が低くなる傾向であった。また、ポリ乳酸ステレオコンプレックス一分子あたりに含まれるL−乳酸単位からなるセグメントおよびD−乳酸単位からなるセグメントの合計数は1である。ポリ乳酸混合物の融点はステレオコンプレックス形成により200℃以上に観測されたが、降温結晶化温度は結晶核剤を併用した比較例14〜16でのみ観測された。
Figure 0005957885
(実施例8〜14、比較例18〜24)
表3に示すとおり、実施例1〜7と比較例1〜6で得られたポリ乳酸ブロック共重合体(SB1〜SB7、SB8〜SB13)および比較例7で得られたポリ乳酸混合物(SB14)を、二軸押出機を用いてリン系触媒失活剤0.05部とともに240℃での溶融混練を行い、触媒失活を行った。続いて、240℃で2分間加熱して溶融し、その後プレス温度80℃でプレスすることで厚さ0.1mm(100μm)のプレスシートを作製した。次いで、プレスシートを窒素雰囲気下、110℃で30分間の熱処理条件にて熱処理を行うことで各種測定用のシート状成形体とした。
シート状成形体の中心部をサンプリングして測定した各種物性値は表3のとおりである。実施例8〜14、比較例18〜24のシート状成形体の相対結晶化度はいずれも100%であった。また、シート状成形体の中心部から5cm×5cmの大きさに切り出したサンプルについてヘイズ値を測定したところ、実施例8〜14のシート成形体はいずれも10%未満であり、透明性に優れていた。一方、比較例18〜24のシート成形体のヘイズ値は、比較例21のシート成形体が10%未満であることを除いて、10%以上であった。
次に、シート状成形体を中心部より40mm×2mmに切り出して短冊状のサンプルとし、動的粘弾性による130℃での貯蔵弾性率を測定したところ、実施例8〜14のシート成形体についてはいずれも2GPa以上であり、耐熱性に優れていた。前記短冊状サンプルにつき引張強度を測定したところ、いずれも60MPa以上であった。それに対して比較例18〜24のシート成形体については、130℃における貯蔵弾性率が比較例21、23、24で2GPa以上であるものの、その他については2GPa未満であった。また、短冊状サンプルの引張強度についてはいずれのシート成形体も60MPa未満と実施例に比較して物性が低かった。
次に、シート状成形体につき、真空成形機を用いて加熱温度100℃、加熱時間60秒の条件で加熱を行い、金型温度40℃で金型に密着させると同時に金型内を減圧することにより内径6cm、深さ10cmの円柱状の容器を得た。この円柱状容器を窒素雰囲気下、110℃で30分間の熱処理条件にて熱処理を行った後、水を充填してフタをした状態で2mの高さより容器底部からコンクリート上に落下させ、落下衝撃により容器が破損して水が漏れるまでの回数を測定した。その結果、実施例8〜14いずれのサンプルについても耐衝撃性が良好であることを確認した。しかしながら比較例18〜24のサンプルについてはいずれも落下回数5回未満で容器が破損して水が漏れるのを確認した。
また、プレス温度を40℃、シート厚みを1mm、熱処理を80℃5分、110℃30分とする以外は、実施例8〜10と同様にしてシートを得たところ、ヘイズ値はいずれも20%以下であった。
(比較例25)
実施例1で固相重合により得られたポリ乳酸ブロック共重合体について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例8〜14と同様である。続いて、触媒失活を行ったポリ乳酸ブロック共重合体は、240℃で2分間加熱して溶融し、その後プレス温度80℃でプレスすることで厚さ0.1mmのプレスシート作製した後、氷水中に冷却することで各種測定用のシート状成形体とした。シート状成形体の各種物性測定方法は実施例8〜14と同様である。
表3に示すとおり、比較例25のシート状成形体の相対結晶化度は、成形体の熱処理を行っていないため10%と低かった。また、厚さ100μmの成形体としたときのヘイズ値は、成形体が熱処理されていないため2%であり、透明性は高かった。しかしながら、シート状成形体の引張強度および耐衝撃性は実施例8〜14に比較して低く、また、130℃における貯蔵弾性率については測定途中の昇温過程にて成形体が破断したため測定不可能であった。
(比較例26)
実施例1で得られたポリ−L−乳酸とポリ−D−乳酸の混合物SC1について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例8〜14と同様である。続いて触媒失活したSC1を用いて各種物性測定用の成形体を作製した。成形体製造方法および物性測定方法は実施例8〜14と同様である。
表3に示すとおり、比較例26のシート状成形体の相対結晶化度は100%であった。また、厚さ100μmの成形体としたときのヘイズ値は、成形体が14%であり、透明性は高かった。シート状成形体の130℃における貯蔵弾性率は2.4GPaと高いものの、引張強度および耐衝撃性は実施例8〜14に比較して劣る結果であった。
(比較例27、28、30、31)
比較例8、9、11、12で得られたポリ乳酸混合物(SC14、SC15、SC17、SC18)について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例13〜24と同様である。続いて触媒失活したポリ乳酸混合物を用いて各種物性測定用の成形体を作製した。各種物性測定用の成形体作製方法、物性測定方法は実施例8〜14と同様である。
表3に示すとおり、各比較例のシート状成形体の相対結晶化度は、比較例28、30、31ではそれぞれ100%であるものの、比較例27では78%と低かった。また、厚さ100μmの成形体としたときのヘイズ値は、比較例31では22%であったものの、比較例27、28、30は40%以上であり、実施例8〜14に比較して透明性は低かった。さらに、シート成形体の130℃における貯蔵弾性率は2GPa以下であり、高温剛性に劣る結果であった。
シート成形体の引張強度および耐衝撃性については成形体の分子量の高い比較例27では良好であったが、比較例28、30、31については実施例8〜14に比較して低かった。
(比較例29、32)
比較例10、13で得られたポリ乳酸混合物(SC15、SC19)について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例13〜24と同様である。続いて触媒失活したポリ乳酸混合物を用いて各種物性測定用の成形体を作製した。各種物性測定用の成形体の製造方法および物性測定方法は実施例8〜14と同様である。
表3に示すとおり、各比較例のシート状成形体の相対結晶化度はいずれも100%であった。厚さ100μmの成形体としたときのヘイズ値は、可塑剤を添加することで比較例23、26に比較して低くなり、その結果透明性が向上したが、成形体の引張強度については可塑剤添加により低下する傾向であった。
(比較例33〜37)
参考例13で得られたポリ乳酸(PLA8)および比較例14〜17で得られたポリ乳酸混合物(SC20〜SC23)について、シート成形体を作製する前に触媒失活を行った。触媒失活の方法は実施例13〜24と同様である。続いて触媒失活したポリ乳酸混合物を用いて各種物性測定用の成形体を作製した。
表3に示すとおり、各比較例のシート状成形体の相対結晶化度はいずれも100%であった。厚さ100μmの成形体としたときのヘイズ値は、比較例33、34で50%以上と透明性が低く、比較例35〜37については結晶核剤の併用により13〜15%と低くなった。成形体の機械物性については、いずれも実施例8〜14に比較して低く、特に分子量の低い比較例37については引張強度、耐衝撃性の両方でさらに物性が低くなる傾向であった。
Figure 0005957885
[参考例17]
L−ラクチド100部、ラウリルアルコール0.15部を撹拌装置のついた反応容器中で、窒素雰囲気下、160℃で均一に溶解させた後、オクチル酸錫0.01部を加え、2時間開環重合反応を行った。重合反応終了後、反応物をクロロホルムに溶解させ、メタノール(クロロホルム溶液の5倍量)中で撹拌しながら再沈殿させ、未反応のモノマーを除去してポリ−L−乳酸(PLA9)を得た。PLA9の重量平均分子量は7.5万、分散度は1.6、融点は169℃であった。
次に、得られたPLA9の100部を撹拌装置のついた反応容器中で、窒素雰囲気下にて200℃で溶解させた後、D−ラクチド120部を投入し、オクチル酸錫0.01部を加えた後、3時間重合反応させた。その後、反応系内にリン系の触媒失活剤を0.03部添加して10分間撹拌を行い、触媒失活を行った。得られた反応物はクロロホルムに溶解し、メタノール(クロロホルム溶液の5倍量)中で撹拌しながら再沈殿させ、未反応のモノマーを除去して、L−乳酸単位からなるPLA9にD−乳酸単位からなるセグメントが結合したセグメント数が2のポリ乳酸ブロック共重合体(LD−1)を得た。LD−1の分子量は14.8万、融点は210℃であった。また、ポリ乳酸ブロック共重合体を構成するL−乳酸単位からなるセグメントの重量平均分子量とD−乳酸単位からなるセグメントの重量平均分子量の比は1.0であった。
[参考例18]
L−ラクチド100部、エチレングリコール0.2部を撹拌装置のついた反応容器中で、窒素雰囲気下、160℃で均一に溶解させた後、オクチル酸錫0.01部を加え、2時間開環重合反応を行った。重合反応終了後、反応物をクロロホルムに溶解させ、メタノール(クロロホルム溶液の5倍量)中で撹拌しながら再沈殿させ、未反応のモノマーを除去してポリ−L−乳酸(PLA10)を得た。PLA10の重量平均分子量は5万、分散度は1.6、融点は165℃であった。
次に、得られたPLA10の100部を撹拌装置のついた反応容器中で、窒素雰囲気下にて200℃で溶解させた後、D−ラクチド120部を投入し、オクチル酸錫0.01部を加えた後、3時間重合反応させた。その後、反応系内にリン系の触媒失活剤を0.03部添加して10分間撹拌を行い、触媒失活を行った。得られた反応物はクロロホルムに溶解し、メタノール(クロロホルム溶液の5倍量)中で撹拌しながら再沈殿させ、未反応のモノマーを除去して、L−乳酸単位からなるPLA10にD−乳酸単位からなるセグメントが結合したセグメント数が3のポリ乳酸ブロック共重合体(LD−2)を得た。LD−2の分子量は15.0万、融点は210℃であった。また、ポリ乳酸ブロック共重合体を構成するL−乳酸単位からなるセグメントの重量平均分子量とD−乳酸単位からなるセグメントの重量平均分子量の比は1.0であった。
[参考例19]
参考例4で得たポリ−L−乳酸(PLA4)50部と参考例7で得たポリ−D−乳酸(PDA1)50部を二軸押出機で混合を行い、その後、混合物を固相重合することによりセグメント数が3よりも大きいポリ乳酸ブロック共重合体(LD−3)を得た。混合方法および固相重合方法については実施例8〜14と同様である。また、固相重合で得られたポリ乳酸ブロック共重合体については、二軸押出機を用いてリン系触媒失活剤0.05とともに240℃での溶融混練を行い、触媒失活を行った。得られたLD−3の分子量は12.5万、融点は221℃であり、ステレオコンプレックス形成率は100%であった。また、ポリ乳酸ブロック共重合体を構成するL−乳酸単位からなるセグメントの重量平均分子量とD−乳酸単位からなるセグメントの重量平均分子量の比は13.5であった。
(比較例38)
(1)成形体の製造と物性
各種物性測定用の成形体の製造方法、物性測定方法は実施例8〜14と同様である。
参考例13で得られたLD−1の成形体の相対結晶化度は100%であった。成形体の熱物性については208℃の高融点が観測され、ステレオコンプレックス形成率は100%であった。しかしながら、熱的特性のパラメータである(Tm−Tms)/(Tme−Tm)は1.9、降温結晶化温度は110℃であり、実施例1〜7に比較して結晶化特性が低かった。厚さ100μmの成形体としたときのヘイズ値は34%と実施例8〜14に比較して高く、成形体の機械物性については引張強度および耐衝撃性ともに実施例8〜14と同じであった。
(比較例39,40)
(1)ポリ乳酸樹脂組成物の製造
ポリ乳酸とポリ乳酸ブロック共重合体を表4に示すような割合で混合し、40mm径の一軸押出機でシリンダー温度240℃、回転数50rpmの条件で溶融混練することによりポリ乳酸樹脂組成物を得た。
(2)成形体の製造と物性
各種物性測定用の成形体の製造方法および物性測定方法は実施例8〜14と同様である。
比較例39,40の成形体の相対結晶化度はいずれも100%であった。成形体の熱物性については210℃付近に高融点が観測され、ステレオコンプレックス形成率はそれぞれ68%と89%であり、ポリ乳酸ブロック共重合体含量が多いほど高かった。降温結晶化温度は、比較例39,40でそれぞれ103℃と105℃であり、実施例1〜7に比較して結晶化特性が低かった。厚さ100μmの成形体としたときのヘイズ値は比較例39,40でそれぞれ35%と32%であり、実施例8〜14に比較して透明性は劣っていた。成形体の機械物性については引張強度および耐衝撃性ともに実施例8〜14と同じであった。
(実施例15)
(1)ポリ乳酸樹脂組成物の製造
ポリ乳酸ブロック共重合体をLD−3に変更した以外は比較例39と同様の方法で溶融混練を行い、ポリ乳酸樹脂組成物を得た。
(2)成形体の製造と物性
各種物性測定用の成形体の製造方法および物性測定方法は実施例8〜14と同様である。
成形体の相対結晶化度は100%であった。成形体の熱物性については212℃に高融点が観測され、ステレオコンプレックス形成率は92%であった。降温結晶化温度は130℃であり、結晶化特性に優れていた。また、厚さ100μmの成形体としたときのヘイズ値は15%であり、透明性に優れていた。成形体の機械物性については引張強度および耐衝撃性ともに実施例8〜14と同じであった。
(実施例16)
(1)ポリ乳酸樹脂組成物の製造
重量平均分子量10万、ガラス転移点温度90℃、シンジオタクチシティ39%のポリメチルメタクリレート樹脂(住友化学工業(株)製“スミペックス”LG35)、ポリ乳酸樹脂およびポリ乳酸ブロック共重合体を表4に示すとおりの割合で混合し、一軸押出機で溶融混練することでポリ乳酸樹脂組成物を得た。なお、溶融混練の条件は比較例39,40と同様である。
(2)成形体の物性
各種物性測定用の成形体作製方法、物性測定方法は実施例8〜14と同様である。
実施例16の成形体に含まれるポリ乳酸樹脂組成物の相対結晶化度は100%であった。成形体の熱物性については210℃付近に高融点が観測され、ステレオコンプレックス形成率は80%であった。降温結晶化温度は128℃であり、実施例15とほぼ同等であった。厚さ100μmの成形体としたときのヘイズ値は8%であり、透明性に優れていた。また、成形体の機械物性については引張強度および耐衝撃性ともに実施例8〜14と同等であった。
以上のとおり、本発明のポリ乳酸ブロック共重合体は、成形体においても耐熱性、結晶性、透明性および機械物性に優れるものであった。
Figure 0005957885
本発明のポリ乳酸ブロック共重合体は高分子量、高融点であり、また透明性にも優れるため、ポリ乳酸ホモポリマーでは使用が困難であった耐熱性および透明性が要求される分野に好適に採用できる。

Claims (8)

  1. ポリ−L−乳酸の重量平均分子量とポリ−D−乳酸の重量平均分子量の比が2以上30未満であるポリ−L−乳酸とポリ−D−乳酸を、ポリ−L−乳酸とポリ−D−乳酸のうち、融点の高い成分の融解終了温度以上で溶融混合し、重量平均分子量が9万以上、かつ下記式(3)に示すステレオコンプレックス形成率(Sc)が60%を超え99%までの範囲である混合物を得た後、該混合物の融点より低い温度で固相重合する工程からなるL−乳酸を主成分とするポリ−L−乳酸セグメントとD−乳酸を主成分とするポリ−D−乳酸セグメントから構成されるポリ乳酸ブロック共重合体の製造方法であって、ポリ乳酸ブロック共重合体が下記式(1)および(2)を満たすことを特徴とするポリ乳酸ブロック共重合体の製造方法
    Sc=ΔHh/(ΔHl+ΔHh)×100≧80 (1)
    ここで、ΔHh:DSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)、ΔHl:DSC測定において昇温速度20℃/minで昇温した際のポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶の結晶融解に基づく熱量(J/g)
    1<(Tm−Tms)/(Tme−Tm)<1.8 (2)
    ここで、Tm:DSC測定において昇温速度40℃/minで昇温した際の190℃以上250℃未満に観測されるステレオコンプレックス結晶由来の融点、Tms:DSC測定において昇温速度40℃/minで昇温した際の190℃以上250℃未満に観測されるステレオコンプレックス結晶の融解開始温度、Tme:DSC測定において昇温速度40℃/minで昇温した際の190℃以上250℃未満に観測されるステレオコンプレックス結晶の融解終了温度
    Sc=ΔHh/(ΔHl+ΔHh)×100 (3)
    ここで、Sc:ポリ−L−乳酸またはポリ−D−乳酸を混合した際の混合物のステレオコンプレックス形成率、ΔHh:DSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)、ΔHl:DSC測定において昇温速度20℃/minで昇温した際のポリ−L−乳酸単独結晶およびポリ−D−乳酸単独結晶の結晶融解に基づく熱量(J/g)
  2. 得られるポリ乳酸ブロック共重合体の分子量分布において重量平均分子量10万以上の割合が40%以上である請求項1に記載のポリ乳酸ブロック共重合体の製造方法
  3. 得られるポリ乳酸ブロック共重合体のDSC測定において、ポリ乳酸ブロック共重合体を250度まで昇温して3分間恒温状態にした後、冷却速度20℃/minで降温した際の降温結晶化温度が130℃以上である請求項1または2に記載のポリ乳酸ブロック共重合体の製造方法
  4. 重量平均分子量と数平均分子量の比で示される分散度が2.7以下である請求項1〜3いずれかに記載のポリ乳酸ブロック共重合体の製造方法
  5. 得られるポリ乳酸ブロック共重合体中のポリ−L−乳酸単位またはポリ−D−乳酸単位の平均連鎖長が20以上である請求項1〜4いずれかに記載のポリ乳酸ブロック共重合体の製造方法
  6. ポリ乳酸ブロック共重合体中のL−乳酸成分とD−乳酸成分の重量比が80/20〜60/40または40/60〜20/80の範囲である請求項1〜5いずれかに記載のポリ乳酸ブロック共重合体の製造方法
  7. 重量平均分子量が10万以上である請求項1〜6いずれかに記載のポリ乳酸ブロック共重合体の製造方法
  8. 得られるポリ乳酸ブロック共重合体一分子あたりに含まれるL−乳酸単位からなるセグメントおよびD−乳酸単位からなるセグメントの合計数が3以上である請求項1〜7いずれかに記載のポリ乳酸ブロック共重合体の製造方法
JP2011535343A 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体 Expired - Fee Related JP5957885B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2010193119 2010-08-31
JP2010193119 2010-08-31
JP2011014879 2011-01-27
JP2011014879 2011-01-27
JP2011075313 2011-03-30
JP2011075313 2011-03-30
PCT/JP2011/064630 WO2012029393A1 (ja) 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体

Publications (2)

Publication Number Publication Date
JPWO2012029393A1 JPWO2012029393A1 (ja) 2013-10-28
JP5957885B2 true JP5957885B2 (ja) 2016-07-27

Family

ID=45772504

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011535343A Expired - Fee Related JP5957885B2 (ja) 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体
JP2011535342A Expired - Fee Related JP5630439B2 (ja) 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011535342A Expired - Fee Related JP5630439B2 (ja) 2010-08-31 2011-06-27 ポリ乳酸ブロック共重合体の製造方法

Country Status (8)

Country Link
US (2) US20130165601A1 (ja)
EP (2) EP2612878B1 (ja)
JP (2) JP5957885B2 (ja)
KR (2) KR20130113332A (ja)
CN (2) CN103068880B (ja)
BR (2) BR112013001850A2 (ja)
TW (2) TW201213400A (ja)
WO (2) WO2012029392A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2612878B1 (en) * 2010-08-31 2018-07-18 Toray Industries, Inc. Polylactic acid block copolymer
JP6004324B2 (ja) * 2012-05-10 2016-10-05 学校法人立教学院 乳酸ステレオブロック共重合体組成物およびその製造方法
JP2014047317A (ja) * 2012-09-03 2014-03-17 Hiroshima Univ 生分解性ブロック共重合体及びその製造方法、並びに成形体
CN102924695A (zh) * 2012-09-19 2013-02-13 上海科院生物材料有限公司 一种高效制备立体嵌段聚乳酸的方法
KR20150070117A (ko) * 2012-10-10 2015-06-24 도레이 카부시키가이샤 폴리락트산 수지 조성물, 성형체 및 폴리락트산 수지 조성물의 제조 방법
CN102924891A (zh) * 2012-10-26 2013-02-13 上海科院生物材料有限公司 一种制备立体复合聚乳酸的方法
WO2014106934A1 (ja) * 2013-01-07 2014-07-10 東レ株式会社 ポリ乳酸系シート、及びその製造方法
JP6341194B2 (ja) * 2013-02-19 2018-06-13 東レ株式会社 ポリ乳酸樹脂からなる繊維およびその製造方法
JPWO2014148226A1 (ja) * 2013-03-18 2017-02-16 東レ株式会社 成形体、及びその製造方法
JP6189630B2 (ja) * 2013-05-13 2017-08-30 有限会社Nkリサーチ ステレオコンプレックス結晶性ポリ乳酸プレポリマー組成物
JPWO2014189021A1 (ja) * 2013-05-24 2017-02-23 東レ株式会社 ポリ乳酸系シート及びその製造方法
US10179853B2 (en) * 2013-09-11 2019-01-15 Toray Industries, Inc. Material for fused deposition modeling type three-dimensional modeling, and filament for fused deposition modeling type 3D printing device
KR101692986B1 (ko) * 2014-08-12 2017-01-05 한국과학기술연구원 스테레오컴플렉스형 유기필러에 의해 향상된 물리적 특성을 갖는 생분해성 고분자 및 이의 제조방법
EP2987814B1 (en) * 2014-08-19 2021-01-13 PURAC Biochem BV Lactide block copolymer and method of preparation
MY179674A (en) * 2014-09-17 2020-11-11 Sulzer Chemtech Ag A method for stabilizing a condensed phase composition including a cyclic ester in a process of manufacturing a polyester or of lactide
KR101711096B1 (ko) * 2014-11-27 2017-02-28 한국화학연구원 펠렛화된 예비중합체를 이용한 다중 입체블록형 폴리락트산의 제조방법
KR101641727B1 (ko) * 2014-12-10 2016-07-22 한국화학연구원 입체블록형 폴리락타이드의 제조방법
CN104801327A (zh) * 2015-04-02 2015-07-29 陕西延长石油(集团)有限责任公司炼化公司 一种固体酸催化剂的制备方法
CN104815667B (zh) * 2015-04-02 2017-05-24 陕西延长石油(集团)有限责任公司炼化公司 一种固体酸催化剂在合成丙烯酸异冰片酯中的应用
KR101713215B1 (ko) * 2015-08-11 2017-03-07 롯데케미칼 주식회사 폴리유산의 제조 방법
CN112011848A (zh) * 2020-08-21 2020-12-01 安徽同光邦飞生物科技有限公司 一种医用聚乳酸复合材料纤维的制备方法
CN112280013B (zh) * 2020-11-10 2023-05-02 中北大学 一种可降解耐热性共聚酯的制备方法
CN112920583B (zh) * 2021-04-14 2022-05-06 中国科学院长春应用化学研究所 一种具有快速结晶能力的聚l-乳酸发泡材料及其制备方法
CN115491003B (zh) * 2022-09-14 2023-08-15 包头稀土研究院 稀土氨基酸配合物的用途、聚乳酸组合物及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356543A (ja) * 2001-03-29 2002-12-13 Toray Ind Inc ポリ乳酸ブロック共重合体、その製造方法、成形品およびポリ乳酸組成物
JP2003096285A (ja) * 2001-09-27 2003-04-03 Toray Ind Inc ポリ乳酸樹脂組成物、その製造方法および成形品
JP2005187626A (ja) * 2003-12-25 2005-07-14 Musashino Chemical Laboratory Ltd ポリ乳酸ステレオコンプレックス体の製造方法
JP2006070102A (ja) * 2004-08-31 2006-03-16 Musashino Chemical Laboratory Ltd ステレオコンプレックスポリ乳酸およびその製造方法
JP2006307071A (ja) * 2005-04-28 2006-11-09 Musashino Chemical Laboratory Ltd ポリ乳酸の製造方法
JP2007191625A (ja) * 2006-01-20 2007-08-02 Teijin Ltd ポリ乳酸
JP2008063455A (ja) * 2006-09-07 2008-03-21 Teijin Ltd ポリ乳酸の製造方法
JP2009040997A (ja) * 2007-07-17 2009-02-26 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
JP2010059354A (ja) * 2008-09-05 2010-03-18 Kyoto Institute Of Technology ポリ乳酸組成物
JP2010090239A (ja) * 2008-10-07 2010-04-22 Takemoto Oil & Fat Co Ltd ポリ乳酸樹脂組成物及びポリ乳酸樹脂成形体
WO2012029392A1 (ja) * 2010-08-31 2012-03-08 東レ株式会社 ポリ乳酸ブロック共重合体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799796B2 (ja) 2002-02-15 2011-10-26 東レ株式会社 ポリ乳酸ブロック共重合体の製造方法
JP2006028336A (ja) 2004-07-15 2006-02-02 Musashino Chemical Laboratory Ltd ポリ乳酸ブロック共重合体の製造方法
KR101240218B1 (ko) * 2004-07-22 2013-03-07 데이진 가부시키가이샤 폴리락트산 및 그 제조 방법
JP2012177011A (ja) * 2011-02-25 2012-09-13 Toray Ind Inc ポリ乳酸組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356543A (ja) * 2001-03-29 2002-12-13 Toray Ind Inc ポリ乳酸ブロック共重合体、その製造方法、成形品およびポリ乳酸組成物
JP2003096285A (ja) * 2001-09-27 2003-04-03 Toray Ind Inc ポリ乳酸樹脂組成物、その製造方法および成形品
JP2005187626A (ja) * 2003-12-25 2005-07-14 Musashino Chemical Laboratory Ltd ポリ乳酸ステレオコンプレックス体の製造方法
JP2006070102A (ja) * 2004-08-31 2006-03-16 Musashino Chemical Laboratory Ltd ステレオコンプレックスポリ乳酸およびその製造方法
JP2006307071A (ja) * 2005-04-28 2006-11-09 Musashino Chemical Laboratory Ltd ポリ乳酸の製造方法
JP2007191625A (ja) * 2006-01-20 2007-08-02 Teijin Ltd ポリ乳酸
JP2008063455A (ja) * 2006-09-07 2008-03-21 Teijin Ltd ポリ乳酸の製造方法
JP2009040997A (ja) * 2007-07-17 2009-02-26 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
JP2010059354A (ja) * 2008-09-05 2010-03-18 Kyoto Institute Of Technology ポリ乳酸組成物
JP2010090239A (ja) * 2008-10-07 2010-04-22 Takemoto Oil & Fat Co Ltd ポリ乳酸樹脂組成物及びポリ乳酸樹脂成形体
WO2012029392A1 (ja) * 2010-08-31 2012-03-08 東レ株式会社 ポリ乳酸ブロック共重合体の製造方法

Also Published As

Publication number Publication date
US20130165601A1 (en) 2013-06-27
US9150690B2 (en) 2015-10-06
JPWO2012029393A1 (ja) 2013-10-28
EP2612878A4 (en) 2017-04-05
EP2612878A1 (en) 2013-07-10
BR112013001850A2 (pt) 2016-05-31
EP2612877B1 (en) 2018-03-21
KR20130118214A (ko) 2013-10-29
TW201213390A (en) 2012-04-01
EP2612878B1 (en) 2018-07-18
KR20130113332A (ko) 2013-10-15
CN103068880A (zh) 2013-04-24
TW201213400A (en) 2012-04-01
US20130158209A1 (en) 2013-06-20
CN103068881A (zh) 2013-04-24
EP2612877A4 (en) 2017-06-21
WO2012029392A1 (ja) 2012-03-08
JPWO2012029392A1 (ja) 2013-10-28
CN103068881B (zh) 2015-11-25
EP2612877A1 (en) 2013-07-10
JP5630439B2 (ja) 2014-11-26
WO2012029393A1 (ja) 2012-03-08
BR112013002442A2 (pt) 2016-05-24
CN103068880B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5957885B2 (ja) ポリ乳酸ブロック共重合体
JP6191460B2 (ja) ポリ乳酸樹脂組成物、成形体およびポリ乳酸樹脂組成物の製造方法
JP6341194B2 (ja) ポリ乳酸樹脂からなる繊維およびその製造方法
WO2008102919A1 (ja) ポリ乳酸組成物
JP5565469B2 (ja) ポリ乳酸樹脂組成物、その製造方法およびそれからなる成形品
JP2020519745A (ja) ポリエステルコポリマー
JP2003192883A (ja) ポリ乳酸系樹脂組成物、成形品及びその製造方法
JP5504586B2 (ja) ポリ乳酸ブロック共重合体の製造方法
WO2014129293A1 (ja) ポリ乳酸樹脂組成物、成形体およびポリ乳酸樹脂組成物の製造方法
JP2020520405A (ja) ポリエステルコポリマー
JP4766893B2 (ja) 重合体及びその製造方法
JP5139003B2 (ja) 組成物およびフィルム
JP2015044927A (ja) ポリ乳酸樹脂組成物およびそれからなる成形品
CN102485768A (zh) 含有聚碳酸酯单元的聚乳酸共聚物及其制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R151 Written notification of patent or utility model registration

Ref document number: 5957885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees