WO2012027917A1 - 共混聚酰亚胺纳米纤维及其在电池隔膜中的应用 - Google Patents

共混聚酰亚胺纳米纤维及其在电池隔膜中的应用 Download PDF

Info

Publication number
WO2012027917A1
WO2012027917A1 PCT/CN2010/077514 CN2010077514W WO2012027917A1 WO 2012027917 A1 WO2012027917 A1 WO 2012027917A1 CN 2010077514 W CN2010077514 W CN 2010077514W WO 2012027917 A1 WO2012027917 A1 WO 2012027917A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
blended
dianhydride
temperature
nanofiber
Prior art date
Application number
PCT/CN2010/077514
Other languages
English (en)
French (fr)
Inventor
侯豪情
程楚云
陈水亮
周小平
吕晓义
何平
匡晓明
任金生
Original Assignee
江西先材纳米纤维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西先材纳米纤维科技有限公司 filed Critical 江西先材纳米纤维科技有限公司
Priority to KR1020137007326A priority Critical patent/KR101504245B1/ko
Priority to DE112010005835T priority patent/DE112010005835T5/de
Priority to JP2013526298A priority patent/JP2013544323A/ja
Priority to US13/819,960 priority patent/US9209444B2/en
Publication of WO2012027917A1 publication Critical patent/WO2012027917A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/96Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from other synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/33Ultrafine fibres, e.g. microfibres or nanofibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Definitions

  • the invention relates to an electrostatically mixed polyimide nanofiber and an application thereof, in particular to a high temperature resistant and high porosity blended polyimide nanofiber which can be used for a battery separator.
  • lithium ion secondary batteries have become one of the main energy sources for communication electronic products due to their high specific energy, high voltage, small size, light weight, and no memory.
  • lithium-ion secondary batteries due to human misuse, lithium-ion secondary batteries are prone to smoke, fire, and even explosions that threaten the safety of users, so that such high-capacity and high-power lithium-ion batteries have not yet been Automotive power and other fields are widely used. Therefore, improving the safety of lithium-ion batteries is the key to the development and promotion of lithium-ion batteries in applications such as automotive power.
  • Polyimide (PI) is a class of aromatic polymers containing an imide ring in the main chain. It has excellent heat resistance, chemical stability, good mechanical properties and high electrical insulation properties. It can be used as a special engineering. Plastics, high performance fibers, selective permeable membranes, high temperature coatings and high temperature composites. Therefore, polyimide is a class of materials that are very suitable for use as a high temperature resistant safe battery separator.
  • the blended polyimide nanofibers are obtained by high-pressure electrostatic blending of two polyimide precursors and high.
  • the blended polyimide precursor is made of a polyimide which is not melted at a high temperature. Body and one in the 300 ⁇ 400.
  • the precursor of the C meltable polyimide is composed of two components.
  • the blended polyimide precursor is converted into a two-component blended polyimide after high temperature imidization, and the transformation process is as follows:
  • R is a residue structure of an aromatic ring-containing dianhydride
  • R 2 and R 3 are a residue structure of an aromatic ring-containing diamine
  • the structures of R 2 and R 3 may be the same or different.
  • n is the number of repeating units of the polymer, between 50 and 150. The larger the value of n, the larger the molecular weight of the polymer;
  • X is a positive number less than or equal to 1, X represents the composition of the precursor of the non-melting polyimide in the blend, and ( 1 - X ) represents the fusible poly The composition of the precursor of the imine in the blend.
  • R 2 is one of the following structures:
  • the phenylenediamine residue of the biphenyldiamine residue diphenyl ether diamine residue is one of the following structures:
  • the blended polyimide nanofibers are made of a precursor of polyimide which is not melted at a high temperature and one is in the range of 300 to 400.
  • the precursor two components of the C meltable polyimide are subjected to electrostatic blending and high temperature imidization.
  • the key is that the non-melting component at high temperature acts as a nanofiber structure support, maintaining the high porosity network structure formed by the nanofibers at high temperatures, and the fusible component acts as a bond due to melting at high temperatures.
  • the majority of the nanofibers are interlaced to form a good bond, as shown in Figure 1, thereby imparting good resistance to friction, high temperature, and high porosity to the resulting blended polyimide nanofiber film or nonwoven fabric.
  • certain mechanical strength and other characteristics overcome the Achilles heel of the electrospun nanofiber membrane friction, fluffing, easy delamination and low mechanical strength.
  • Figure 1 is a scanning electron microscope comparative photograph of a porous polyimide nanofiber porous membrane and a one-component polyimide nanofiber porous membrane of Examples 2 and 11 of the present invention.
  • a and B are blended polyimide electrospun nanofiber porous membrane structures, and the fibers are intertwined with obvious adhesion (see the ring mark in Figure B);
  • the blended polyimide nanofiber of the present invention has the following characteristics: a fiber diameter of 50 to 1000 nm and a decomposition temperature of more than 500. C, melting temperature greater than 300 ° C, porosity greater than 75 %, mechanical strength of 10 ⁇ 50 MPa, completely insoluble in organic solvents, electrical breakdown strength is higher than lO V / ⁇ and other characteristics. Electrostatically blended polyimide nanofiber porous film or nonwoven fabric with such characteristics is resistant to high temperature, heat shrinkage, chemical corrosion resistance, high voltage and high current overcharge, and is suitable for safety battery separators and safety supercapacitor separators. Used in a variety of high-capacity and high-power applications, such as in the automotive power industry. DRAWINGS
  • FIG. 1 is a scanning electron microscope comparative photograph of a porous polyimide nanofiber porous membrane and a one-component polyimide nanoporous membrane of the present invention.
  • a and B show the scanning electron imaging photograph of the two-component blended polyimide nanofiber porous film of the present invention;
  • Example 1 Biphenyl dianhydride / p-phenylenediamine / / triphenyl diether dianhydride / diphenyl ether diamine blend polyimide (BPDA / PPD / / HQDPA / ODA PI blend) Nanofiber battery separator Preparation
  • the polyamic acid solution AM and A 1-2 were mixed at a ratio of 8:2, and mechanically stirred uniformly to form a blending solution of two precursors having an absolute viscosity of 4.3 Pa S and an electric field strength of 200 kV/m. Electrospinning was carried out in an electric field, and a stainless steel roller having a diameter of 0.3 m was used as a collector to collect a blended polyamic acid nanofiber membrane.
  • the fiber diameter is 100 300 nm
  • the tensile strength of the nanofiber membrane is 18 MPa
  • the elongation at break is 12%
  • the glass transition temperature is 292 °C
  • the thermal decomposition temperature is 540.
  • the porosity of the nanofiber membrane is 85.6%
  • the specific surface area of the nanofiber membrane is 38.6 m 2 /g.
  • Example 2 Biphenyl dianhydride / biphenyl diamine / / triphenyl diether dianhydride / diphenyl ether diamine blend polyimine (BPDA / Bz / / HQDPA / ODA PI blend) Nanofiber battery separator preparation
  • BPDA biphenyl dianhydride
  • Bz p-diphenyldiamine
  • DMF diphenyl ether diamine blend polyimine
  • the polyamic acid solutions Aw and k 2 - 2 were 7 : 3 ratio mixing, mechanical agitation uniform, forming a blend solution of two precursors with an absolute viscosity of 5.2 Pa.S, and electrospinning in an electric field with an electric field strength of 200 kV/m, with a diameter of 0.3 m
  • the stainless steel drum is a collector that collects the blended polyamic acid nanofiber membrane.
  • Polyamic acid Solution A 3-1 and A 3-2 were mixed at a ratio of 8:2, and mechanically stirred uniformly to form a blend solution of two precursors having an absolute viscosity of 4.5 Pa ⁇ s, and an electric field strength of 200 kV/m. Electrospinning was carried out in an electric field, and a stainless steel roller having a diameter of 0.3 m was used as a collector to collect a blended polyamic acid nanofiber membrane.
  • the fiber diameter is 100 ⁇ 300 nm
  • the tensile strength of the nanofiber membrane is 14 MPa
  • the elongation at break is 8%
  • the glass transition temperature is 288.
  • the thermal decomposition temperature is 508.
  • the porosity of the nanofiber membrane is 84.2%
  • the specific surface area of the nanofiber membrane is 38.4 m 2 /g.
  • Example 4 Diphenyl sulfone dianhydride / diphenyl ether diamine / / triphenyl diether dianhydride / 4,4 '-diphenoxy diphenyl sulfone diamine blend polyimide (DSDA / ODA / / HQDPA/BAPS PI blend ) Preparation of nanofiber battery separator
  • the polyamic acid solution 4-1 and A 4-2 were mixed at a ratio of 7:3, and mechanically stirred uniformly to form a blend solution of two precursors having an absolute viscosity of 4.8 Pa ⁇ s, and the electric field strength was 200 kV. Electrospinning was carried out in an electric field of /m, and a stainless steel roller having a diameter of 0.3 m was used as a collector to collect a blended polyamic acid nanofiber membrane.
  • the porosity of the nanofiber membrane is 83.5%, and the specific surface area of the nanofiber membrane is 37.4 m 2 /g.
  • Example 5 Biphenyl dianhydride / pyrimidine diphenyl diamine / / triphenyl diether dihepatic / diphenyl ether diamine blend polyimide (BPDA / PRM / / HQDPA / ODA PI blend ) Nanofiber battery Preparation of diaphragm
  • a fusible polyimide precursor (polyamic acid) solution (A 5-2 ) having a mass concentration of 5% and an absolute viscosity of 3.8 Pa S .
  • the polyamic acid solution Aw and A 5-2 were mixed at a ratio of 7:3, and mechanically stirred uniformly to form a blend solution of two precursors having an absolute viscosity of 5.8 Pa ⁇ s, and the electric field strength was 200 kV/m.
  • Electrospinning was carried out in an electric field, and a polyamic acid nanofiber membrane was collected by using a stainless steel drum having a diameter of 0.3 m as a collector.
  • the polyamic acid solution Aw and A were mixed at a ratio of 7:3, and mechanically stirred uniformly to form a blended solution of two precursors having an absolute viscosity of 4.8 Pa S, and was carried out in an electric field having an electric field strength of 200 kV/m. Electrospinning was carried out using a stainless steel drum having a diameter of 0.3 m as a collector to collect a blended polyamic acid nanofiber membrane.
  • Fiber diameter is 100 ⁇ 300 nm
  • nanofiber membrane tensile strength is 16 MPa
  • elongation at break is 8%
  • glass transition temperature is 292 °C
  • thermal decomposition temperature is 518 °C
  • nanometer The porosity of the fiber membrane was 85.1%, and the specific surface area of the nanofiber membrane was 39.0 m 2 /g.
  • Example 7 benzophenone dianhydride/biphenylenediamine//triphenyldiether dianhydride/diphenyl ether diamine blended polyimide (BTDA/Bz//HQDPA/ODA PI blend) nanofiber battery separator Preparation
  • meltable polyimide precursor polyamic acid
  • DMF solvent hydrazine, hydrazine-dihydrazinamide
  • a 7 Polyamic acid solution Aw Mix with ⁇ - 2 in a ratio of 7:3, mechanically agitate to form a blend of two precursors with an absolute viscosity of 3.9 Pa.S.
  • the solution was electrospun in an electric field having an electric field strength of 200 kV/m, and a stainless steel roller having a diameter of 0.3 m was used as a collector to collect a blended polyamic acid nanofiber membrane.
  • Fiber diameter is 80 ⁇ 250 nm
  • nanofiber membrane tensile strength is 12 MPa
  • elongation at break is 11%
  • glass transition temperature is 276 °C
  • thermal decomposition temperature is 509 °C
  • nanometer The porosity of the fiber membrane was 82.5%, and the specific surface area of the nanofiber membrane was 40.0 m 2 /g.
  • Example 8 Diphenyl ether dianhydride / p-phenylenediamine / / triphenyl diether dianhydride / diphenyl ether diamine blend polyimide (ODPA / PPD / / HQDPA / ODA PI blend ) Nanofiber battery separator Preparation
  • the polyamic acid solution A and A 8-2 were mixed at a ratio of 7:3, and mechanically stirred uniformly to form a blend solution of two precursors having an absolute viscosity of 3.8 Pa.S, and the electric field strength was 200 kV/m.
  • the electrospinning was carried out in an electric field, and a stainless steel roller having a diameter of 0.3 m was used as a collector to collect a blended poly- succinic acid nanofiber membrane.
  • Example 9 Pyromellitic dianhydride/3,3'-dimercaptodiphenylmethanediamine//triphenyldiether dianhydride/diphenylether diamine blend polyimide (PMDA/OTOL// HQDPA/ODA PI blend ) Preparation of nanofiber battery separators ( 1 ) Polymer synthesis and electrospinning: a certain amount of purified pyromellitic dianhydride (PMDA) and 3,3'-two in a molar ratio of 1:1 Hydryldiphenylnonanediamine (OTOL) and an appropriate amount of solvent hydrazine, hydrazine-dihydrazinamide (DMF), were stirred in a polymerization vessel at 5 ° C for 12 hours to obtain a mass concentration of 5%.
  • PMDA purified pyromellitic dianhydride
  • OTOL Hydryldiphenylnonanediamine
  • DMF solvent hydrazine, hydrazine
  • HQDPA purified triphenyldiether dianhydride
  • ODA diphenyl ether diamine
  • DMF solvent ⁇ , ⁇ -dimercaptoamide
  • the polyaminic acid solution ⁇ 9-1 and A 9-2 were mixed at a ratio of 7:3, and mechanically stirred uniformly to form a blend solution of two precursors having an absolute viscosity of 4.2 Pa-S, and the electric field strength was Electrospinning was carried out in an electric field of 200 kV/m, and a stainless steel roller having a diameter of 0.3 m was used as a collector to collect a blended polyamic acid nanofiber membrane.
  • An infusible polyimide precursor (polyamic acid) solution having an absolute viscosity of 5.5 Pa S A 1 ( ); a certain amount of purified triphenyldiether dianhydride (HQDPA) and 4, 4' -Diphenoxydiphenyl sulfone diamine (BAPS) and an appropriate amount of solvent hydrazine, hydrazine-dihydrazinamide (DMF), stirred in a polymerization vessel at 5 ° C for 12 hours to give a mass concentration of 5 %, a fusible polyimide precursor (polyamic acid) solution (A 10-2 ) having an absolute viscosity of 4.1 Pa S.
  • a 1 ( ) An infusible polyimide precursor (polyamic acid) solution having an absolute viscosity of 5.5 Pa S
  • HQDPA purified triphenyldiether dianhydride
  • BAPS 4' -Diphenoxydiphenyl sulfone diamine
  • a polyamic acid solution A 1 (M and A 1 ( ⁇ 2 by 8:2) The ratio is mixed, mechanically stirred to form a blending solution of two precursors with an absolute viscosity of 4.8 Pa S, and electrospinning is carried out in an electric field with an electric field strength of 200 kV/m, using a stainless steel having a diameter of 0.3 m.
  • the drum is a collector, and the blended polyamic acid nanofiber membrane is collected.
  • Fiber diameter is 100 ⁇ 300 nm
  • nanofiber membrane tensile strength is 15 MPa
  • elongation at break is 10%
  • glass transition temperature is 290 °C
  • thermal decomposition temperature is 510 °C
  • nanometer The porosity of the fiber membrane was 84.8%, and the specific surface area of the nanofiber membrane was 39.3 m 2 /g.
  • Example 11 Preparation of biphenyl di Sf/p-phenylenediamine polyimide (BPDA/PPD PI ) nanofiber battery separator
  • Fiber diameter is 10 (T300 nm, nanofiber membrane tensile strength is 12 MPa, elongation at break is 15%, glass transition temperature is 298 °C, thermal decomposition temperature is 580 ° (:, 2 m 2 / ⁇ The nanofiber membrane has a specific surface area of 38. 2 m 2 /g.
  • Biphenyl dianhydride [CAS No.: 2420-87-3], purchased from Changzhou Sunshine Pharmaceutical Co., Ltd.;
  • Triphenyldiether dianhydride (Experimental product, no CAS number], purchased from Changchun Gaoqi Polyimide Material Co., Ltd.;
  • Diphenylmethanediamine also known as: 4,4,-diaminodiphenylmethane [CAS No.: 101-77-9], purchased from Bailingwei Technology Co., Ltd.;
  • Biphenyldiamine (aka: 4, 4, -diaminobiphenyl) [CAS No. 92-87-5], purchased from China Penny Chemical Reagent Factory;
  • the diameter of electrospun nanofibers is determined by scanning electron microscope VEGA 3 SBU (Czech Republic); ) The thermal decomposition temperature of blended polyimide nanofibers is measured by WRT-3P thermogravimetric analyzer (TGA) (Shanghai Precision Scientific Instruments) Limited)
  • the mechanical properties (strength, elongation at break, etc.) of the blended polyimide nanofiber porous film or nonwoven fabric are determined by CMT8102 £-type control electronic universal testing machine (Shenzhen SANS Material Testing Co., Ltd.); The glass transition temperature of the imine nanofiber porous film or nonwoven fabric is measured using a Diamond Dynamic Mechanical Analyzer (DMA) (Perkin-Elmer, USA);
  • DMA Diamond Dynamic Mechanical Analyzer
  • the porosity of the blended polyimide nanofiber porous film or nonwoven fabric is calculated by the following formula:
  • is the density (g/cm3) of the blended polyimide nanofiber porous film or nonwoven fabric
  • po is the density (g/cm3) of the mixed polyimide solid film (prepared by solution casting method);
  • the specific surface area of the blended polyimide nanofiber porous film or nonwoven fabric was measured by a JW-K type pore distribution and specific surface area measuring instrument (Beijing Jingwei Gaobo Science and Technology Co., Ltd.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Nonwoven Fabrics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Cell Separators (AREA)
  • Artificial Filaments (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Description

共混聚酰亚胺纳米纤维及其在电池隔膜中的应用 技术领域
本发明涉及一种静电混纺聚酰亚胺纳米纤维及其应用, 具体是一种可用于 电池隔膜的耐高温、 高孔隙率的共混聚酰亚胺纳米纤维。 背景技术
在近几十年中, 锂离子二次电池以其高比能量、 高电压、 小体积、 轻质量, 无记忆等优点, 成为通讯类电子产品的主要能源之一。 但在很多情况下, 由于 人为的误用, 锂离子二次电池容易出现冒烟、 着火、 甚至爆炸等危及使用者安 全的隐患, 从而使这种高容量高动力的锂离子电池至今还没有在汽车动力等领 域得到广泛的应用。 因此, 提高锂离子电池的安全性是研发和推广锂离子电池 在汽车动力等领域应用的关键。
现有的锂离子电池隔膜, 如聚乙烯(PE ), 聚丙烯(PP )等都 ^艮难保证在高 温下的完整性, 过热、 过充电等安全测试也经常出现由于电池隔膜收缩造成电 池内部短路引发热失控的问题。 因此, 选用高耐热性的电池隔膜成为解决锂离 子电池安全性的关键之一。
聚酰亚胺( PI )是主链上含有酰亚胺环的一类芳香聚合物, 具有优异的耐热 性、 化学稳定性、 良好的机械性能和极高的电绝缘性能, 可作为特种工程塑料, 高性能纤维、 选择性透过膜、 高温涂料及高温复合材料等。 因此, 聚酰亚胺是 一类非常适合于用作耐高温的安全电池隔膜的材料。 之前有文献报道公开过一 些解决电池隔膜耐热性的方案, 但因机械强度不够或是孔隙率过低或是内阻过 高等诸多原因而没有从根本上解决问题。 明内
本发明的目的在于提供一种耐高温、 高孔隙率的共混聚酰亚胺纳米纤维及 其在电池隔膜中的应用。 该共混聚酰亚胺纳米纤维, 是将两种聚酰亚胺前体经 高压静电混纺和高 该共混聚酰亚胺前体是由一种高温下 不熔融的聚酰亚胺的前体和一种在 300~400。C可熔融的聚酰亚胺的前体双组分 组成。 该共混聚酰亚胺前体经高温亚胺化后转变成双组分的共混聚酰亚胺, 转 变过程如下式所示:
Figure imgf000004_0001
共混聚酰亚胺双組分结构式
其中, R 是含芳环的二酐的残基结构, R2和 R3是含芳环的二胺的残基结构, R2和 R3的结构可以相同, 也可以不同。 n是聚合物重复单元数, 在 50至 150 之间。 n值越大, 聚合物分子量越大; X为小于等于 1的正数, X代表不熔融聚 酰亚胺的前体在共混物中的组成, ( 1 - X )代表可熔性聚酖亚胺的前体在共混物 中的组成。
具体地, 是如下结构中的一种:
Figure imgf000005_0001
均苯四酸二酐残基 联苯二酐残基 二苯砜二酐残基
Figure imgf000005_0002
三 二醚二酐残基 苯醚二酐残基 环丁二酐残基
Figure imgf000005_0003
2, 6-嘧啶双联二苯二酐残基 二苯酮二酐残基 3, 6桥烯环己四酸二酐残基
Figure imgf000005_0004
双三氟甲基二苯甲烷四酸二酐残基 三联苯四酸二酐残基 萘四酸二酐残基
Figure imgf000005_0005
硫醚四酸二酐残基 环己四酸二酐残基 二苯氧基联苯四酸二酐残基
Figure imgf000005_0006
二甲基二苯甲烷四酸二酐残基 二氟均苯四酸二酐残基二甲基二苯硅烷四酸二酐残基
R2是如下结构中的一种:
Figure imgf000005_0007
2- 基醚二胺残基 3, 3'-二羟基联苯二胺残基 对苯二胺残基
Figure imgf000005_0008
二苯曱烷二胺残基 硫醚二胺残基 3, 3'-二甲氧基联苯二胺残基
Figure imgf000006_0001
三联苯二胺残基 3, 3'-二甲基二苯甲烷二胺残基 2, 6-吡啶二胺残基
Figure imgf000006_0002
联苯二胺残基 二苯醚二胺残基 间苯二胺残基 是如下结构中的一种:
Figure imgf000006_0003
三苯二醚二胺残基 4, 4'-二苯氧基二苯甲酮二胺残基
Figure imgf000006_0004
4, 4 '-二苯氧基双酚 A二胺残基 二苯醚二胺残基
Figure imgf000006_0005
4, 4'-二苯氧基二苯砜二胺残基 二苯氧基三苯氧膦二胺残基 本发明共混聚酰亚胺纳米纤维以含芳环的二胺和二酐为原料, 分别合成出 两种具有适当特性粘度的聚酰胺酸, 通过溶液共混的方法, 将两种结构的聚酰 胺酸(聚酖亚胺前体) 溶液在机械搅拌下按一定比例混合均勾, 并通过高压静 电纺丝技术将混合液制备成共混聚酰胺酸纳米纤維多孔膜或非织造布,在 300。C 以上高温下亚胺化得到共混聚酰亚胺纳米纤维多孔膜或非织造布, 以此作为锂 离子电池的电池隔膜。
该共混聚酰亚胺纳米纤维是由一种高温下不熔融的聚酰亚胺的前体和一种 在 300~400。C可熔融的聚酰亚胺的前体双组分经静电混纺和高温亚胺化处理而 成。 其关键在于高温下不熔融的组分起到纳米纤维结构支撑作用, 在高温下保 持了纳米纤维所形成的高孔隙率网络结构, 可熔组分则由于在高温下熔融起到 了粘结作用, 使大部分纳米纤维交错处形成了良好的粘结, 见图 1所示, 从而 赋予所形成的共混聚酰亚胺纳米纤维膜或非织造布具有良好的耐摩擦、 耐高温、 高孔隙率和一定的机械强度等特性, 克服了电纺纳米纤维膜摩擦起毛、 易分层 和机械强度小等致命弱点。
图 1所示为本发明实例 2和实例 11共混聚酰亚胺纳米纤维多孔膜与单组分 聚酰亚胺纳米纤维多孔膜的扫描电子显微镜对比照片。 其中, A和 B为共混聚 酰亚胺电纺纳米纤维多孔膜结构, 纤维交错处有明显的粘结 (见图 B内圆环标 识处); C和 D为上述结构式中 X = 1时的非熔融性聚酰亚胺单组分电纺纳米纤 维多孔膜结构。
本发明共混聚酰亚胺纳米纤维具有如下特性: 纤维直径是 50~1000 nm, 分 解温度大于 500。C, 熔融温度大于 300°C, 孔隙率大于 75 % , 机械强度在 10~50 MPa、 在有机溶剂中完全不溶解, 电击穿强度高于 lO V/μηι等特性。 具有这种 特性的静电混纺聚酰亚胺纳米纤维多孔膜或非织造布耐高温、 抗热收缩、 耐化 学腐蚀、 耐高压高电流过充电, 适合于做安全电池隔膜和安全超级电容器隔膜, 广泛应用于各种高容量和高动力场合, 如汽车动力行业中。 附图说明
图 1所示为本发明共混聚酰亚胺纳米纤维多孔膜与单组分聚酰亚胺纳米多 孔膜的扫描电子显微镜对比照片。 A和 B所示为本发明双组分共混聚酰亚胺纳 米纤维多孔膜的扫描电子显孩£镜照片; C和 D所示为本发明在双组分共混结构 式中 X=l时,非熔融性聚酖亚胺单组分纳米纤维多孔膜的扫描电子显 镜照片。 具体实施方式
以下实施例将有助于本领域的普通技术人员进一步理解本发明, 但不以任 何形式限制本发明。
实施例 1 : 联苯二酐 /对苯二胺 //三苯二醚二酐 /二苯醚二胺共混聚酰亚胺 ( BPDA/PPD//HQDPA/ODA PI blend ) 纳米纤维电池隔膜的制备
( 1 )聚合物合成及电纺:按 1 :1摩尔比取一定量提纯后的联苯二酐(BPDA) 和对苯二胺(PPD )及适量的溶剂 Ν,Ν-二甲基甲酰胺(DMF ), 在 5°C的聚合反 应釜中, 搅拌反应 12小时, 得到质量浓度为 5%, 绝对粘度为 4.7 Pa.S的不熔性 聚酰亚胺前体 (聚酰胺酸) 溶液 (Aw); 同样取一定量提纯后的三苯二醚二酐 ( HQDPA )和二苯醚二胺( ODA )及适量的溶剂 Ν,Ν-二甲基曱酰胺( DMF ), 在 5°C的聚合反应釜中,搅拌反应 12小时,得到质量浓度为 5%,绝对粘度为 3.8 Pa S的可熔性聚酰亚胺前体(聚酰胺酸 )溶液 (Aw)。将聚酰胺酸溶液 AM和 A1-2 按 8:2的比例混合, 机械搅拌均匀, 形成绝对粘度为 4.3 Pa S的两种前体的共混 溶液, 并在电场强度为 200 kV/m的电场中实施静电纺丝, 用直径为 0.3米的不 锈钢滚筒为收集器, 收集共混聚酰胺酸纳米纤維膜。
( 2 ) 亚胺化: 将上面所得共混聚酰胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C, 并在 370°C 下停留 30min, 然后切断电源, 自然冷却至室温。
( 3 )性能表征: 纤维直径为 100 300 nm、 纳米纤维膜拉伸强度为 18 MPa, 断裂伸长率为 12%、 玻璃化转变温度为 292°C、 热分解温度为 540。C、 纳米纤维 膜的孔隙率为 85.6%、 纳米纤维膜的比表面积为 38.6 m2/g。 实施例 2 : 联苯二酐 /联苯二胺 //三苯二醚二酐 /二苯醚二胺共混聚酖亚胺 ( BPDA/Bz//HQDPA/ODA PI blend ) 纳米纤维电池隔膜的制备 ( 1 )聚合物合成及电纺:按 1 :1摩尔比取一定量提纯后的联苯二酐(BPDA) 和对联苯二胺( Bz )及适量的溶剂 Ν,Ν-二曱基曱酰胺( DMF ), 在 5。C的聚合 反应釜中, 搅拌反应 12小时, 得到质量浓度为 5%, 绝对粘度为 6.1 Pa-S的不熔 性聚酰亚胺前体(聚醜胺酸) 溶液 (Aw); 同样取一定量提纯后的三苯二醚二酐 ( HQDPA )和二苯醚二胺( ODA )及适量的溶剂 Ν,Ν-二曱基曱酰胺( DMF ), 在 5°C的聚合反应釜中,搅拌反应 12小时,得到质量浓度为 5%,绝对粘度为 3.7 Pa S的可熔性聚酰亚胺前体(聚酰胺酸)溶液 (A2 。将聚酰胺酸溶液 Aw和 k2-2 按 7:3的比例混合, 机械搅拌均匀, 形成绝对粘度为 5.2 Pa.S的两种前体的共混 溶液, 并在电场强度为 200 kV/m的电场中实施静电纺丝, 用直径为 0.3米的不 锈钢滚筒为收集器, 收集共混聚酰胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酖胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C, 并在 370°C 下停留 30min, 然后切断电源, 自然冷却至室温。
( 3 ) 性能表征: 纤维直径为 150〜400 nm、 纤维膜的拉伸强度为 21 MPa、 断裂伸长率为 10%、 玻璃化转变温度为 285。C、 热分解温度为 526。C、 纳米纤维 膜的孔隙率为 83.5%、 纳米纤维膜的比表面积为 37.9 m2/g。 实施例 3 : 均笨四酸二酐 /二苯醚二胺 //三笨二醚二奸/二苯醚二胺共混聚酰亚胺 ( PMDA/ODA//HQDPA/ODA PI blend ) 纳米纤维电池隔膜的制备
( 1 ) 聚合物合成及电纺: 按 1 : 1摩尔比取一定量提纯后的均苯四酸二酐 ( PMDA ) 和二苯醚二胺(ODA )及适量的溶剂 N,N-二曱基甲酰胺( DMF ), 在 5°C的聚合反应釜中,搅拌反应 12小时,得到质量浓度为 5%,绝对粘度为 5.4 Pa.S的不熔性聚酰亚胺前体(聚酰胺酸) 溶液 (Aw); 同样取一定量提纯后的三 苯二醚二酐(HQDPA )和二苯醚二胺(ODA )及适量的溶剂 Ν,Ν-二曱基曱酰胺 ( DMF ), 在 5°C的聚合反应釜中, 搅拌反应 12小时, 得到质量浓度为 5%,绝 对粘度为 3.8 Pa.S的可熔性聚酰亚胺前体 (聚酰胺酸) 溶液 (Aw)。 将聚酰胺酸 溶液 A3-1和 A3-2按 8:2的比例混合, 机械搅拌均匀, 形成绝对粘度为 4.5 Pa.S的 两种前体的共混溶液, 并在电场强度为 200 kV/m的电场中实施静电紡丝, 用直 径为 0.3米的不锈钢滚筒为收集器, 收集共混聚酰胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酖胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C, 并在 370°C 下停留 30 min, 然后切断电源, 自然冷却至室温。
( 3 )性能表征: 纤维直径为 100~300 nm、 纳米纤维膜拉伸强度为 14 MPa, 断裂伸长率为 8%、 玻璃化转变温度为 288。C、 热分解温度为 508。C、 纳米纤维 膜的孔隙率为 84.2%、 纳米纤维膜的比表面积为 38.4 m2/g。 实施例 4:二苯砜二酐 /二苯醚二胺 //三苯二醚二酐 /4,4'-二苯氧基二苯砜二胺共混 聚酰亚胺( DSDA/ODA//HQDPA/BAPS PI blend ) 纳米纤维电池隔膜的制备
( 1 ) 聚合物合成及电纺: 按 1 : 1摩尔比取一定量提纯后的二苯砜二酐 ( DSDA )和二苯醚二胺( ODA )及适量的溶剂 N,N-二曱基甲酰胺( DMF ), 在
5°C的聚合反应釜中,搅拌反应 12小时,得到质量浓度为 5%,绝对粘度为 5.5 Pa S 的不熔性聚酰亚胺前体(聚酰胺酸)溶液 (A«); 同样取一定量提纯后的三苯二 醚二酐(HQDPA ) 和 4,4'-二苯氧基二苯砜二胺(BAPS )及适量的溶剂 Ν,Ν-二 甲基甲酰胺 (DMF ), 在 5°C的聚合反应釜中, 搅拌反应 12小时, 得到质量浓 度为 5%, 绝对粘度为 4.0 Pa.S的可熔性聚酰亚胺前体 (聚酰胺酸)溶液 (A4-2)。 将聚酰胺酸溶液 4-1和 A4-2按 7:3的比例混合, 机械搅拌均匀, 形成绝对粘度为 4.8 Pa.S的两种前体的共混溶液, 并在电场强度为 200 kV/m的电场中实施静电 纺丝, 用直径为 0.3米的不锈钢滚筒为收集器, 收集共混聚酰胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酰胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C , 并在 370°C 下停留 30 min, 然后切断电源, 自然冷却至室温。 ( 3 )性能表征: 纤维直径为 150〜400 nm、 纳米纤维膜拉伸强度为 18 MPa, 断裂伸长率为 12%、 玻璃化转变温度为 280。C、 热分解温度为 520。C、 纳米纤维 膜的孔隙率为 83.5%、 纳米纤维膜的比表面积为 37.4 m2/g。 实施例 5 : 联苯二酐 /嘧啶联二苯二胺 //三苯二醚二肝/二苯醚二胺共混聚酰亚胺 ( BPDA/PRM//HQDPA/ODA PI blend ) 纳米纤维电池隔膜的制备
( 1 )聚合物合成及电纺:按 1 : 1摩尔比取一定量提纯后的联苯二酐(BPDA) 和 2,6-嘧啶联二苯二胺 ( PRM )及适量的溶剂 Ν,Ν-二曱基曱酰胺 ( DMF ), 在 5°C的聚合反应釜中,搅拌反应 12小时,得到质量浓度为 5%,绝对粘度为 7.2 Pa S 的不熔性聚酰亚胺前体(聚酰胺酸)溶液 (Aw); 同样取一定量提纯后的三苯二 醚二酐( HQDPA )和二苯醚二胺( ODA )及适量的溶剂 Ν,Ν-二曱基曱酰胺( DMF ), 在 5。C的聚合反应釜中,搅拌反应 12小时,得到质量浓度为 5%,绝对粘度为 3.8 Pa S的可熔性聚酰亚胺前体(聚酰胺酸 )溶液 (A5-2)。将聚酰胺酸溶液 Aw和 A5-2 按 7:3的比例混合, 机械搅拌均匀, 形成绝对粘度为 5.8 Pa.S的两种前体的共混 溶液, 并在电场强度为 200 kV/m的电场中实施静电纺丝, 用直径为 0.3米的不 锈钢滚筒为收集器, 收集共混聚酰胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酰胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C, 并在 370°C 下停留 30 min, 然后切断电源, 自然冷却至室温。
( 3 )性能表征: 纤维直径为 150~400 nm、 纳米纤维膜拉伸强度为 26 MPa, 断裂伸长率为 14%、 玻璃化转变温度为 286。C、 热分解温度为 528。C、 纳米纤维 膜的孔隙率为 84.4%、 纳米纤维膜的比表面积为 37.8 m2/g。 实施例 6:均苯四酸二酐 /二羟基联苯二胺 //三苯二醚二酐 /二苯醚二胺共混聚酰亚 胺( PMDA/DHB//HQDPA/ODA PI blend ) 纳米纤维电池隔膜的制备
( 1 ) 聚合物合成及电纺: 按 1 : 1摩尔比取一定量提纯后的均苯四酸二酐 ( PMDA ) 和 3,3,-二羟基联苯二胺 (DHB )及适量的溶剂 Ν,Ν-二曱基甲酰胺 ( DMF ), 在 5°C的聚合反应釜中, 搅拌反应 12小时, 得到质量浓度为 5%,绝 对粘度为 5.8 Pa.S的不熔性聚酰亚胺前体 (聚酰胺酸) 溶液 (A6-1) ; 同样取一定 量提纯后的三苯二醚二酐( HQDPA )和二苯醚二胺( ODA )及适量的溶剂 Ν,Ν- 二曱基曱酰胺(DMF ), 在 5°C的聚合反应釜中, 搅拌反应 12小时, 得到质量 浓度为 5%,绝对粘度为 3.7 Pa.S的可熔性聚酰亚胺前体(聚酰胺酸)溶液 (A6-2)。 将聚酰胺酸溶液 Aw和 A 按 7:3的比例混合, 机械搅拌均匀, 形成绝对粘度为 4.8 Pa S的两种前体的共混溶液, 并在电场强度为 200 kV/m的电场中实施静电 纺丝, 用直径为 0.3米的不锈钢滚筒为收集器, 收集共混聚酰胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酰胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C , 并在 370°C 下停留 30 min, 然后切断电源, 自然冷却至室温。
( 3 )性能表征: 纤维直径为 100~300 nm、 纳米纤维膜拉伸强度为 16 MPa, 断裂伸长率为 8%、 玻璃化转变温度为 292°C、 热分解温度为 518°C、 纳米纤维 膜的孔隙率为 85.1%、 纳米纤维膜的比表面积为 39.0 m2/g。 实施例 7 : 二苯酮二酐 /联苯二胺 //三苯二醚二酐 /二苯醚二胺共混聚酰亚胺 ( BTDA/Bz//HQDPA/ODA PI blend ) 纳米纤维电池隔膜的制备
( 1 ) 聚合物合成及电纺: 按 1 : 1摩尔比取一定量提纯后的二苯酮二酐 ( BTDA )和联苯二胺 ( Bz )及适量的溶剂 Ν,Ν-二曱基曱酰胺 ( DMF ), 在 5°C 的聚合反应釜中, 搅拌反应 12小时, 得到质量浓度为 5%, 绝对粘度为 4.7 Pa-S 的不熔性聚酰亚胺前体(聚酰胺酸)溶液 (Aw); 同样取一定量提纯后的三苯二 醚二酐( HQDPA )和二苯醚二胺( ODA )及适量的溶剂 Ν,Ν-二曱基曱酰胺( DMF ), 在 5°C的聚合反应釜中,搅拌反应 12小时,得到质量浓度为 5%,绝对粘度为 3.6 Pa S的可熔性聚酰亚胺前体(聚酰胺酸 )溶液 (A7 。将聚酰胺酸溶液 Aw和 Κη-2 按 7:3的比例混合, 机械搅拌均匀, 形成绝对粘度为 3.9 Pa.S的两种前体的共混 溶液, 并在电场强度为 200 kV/m的电场中实施静电纺丝, 用直径为 0.3米的不 锈钢滚筒为收集器, 收集共混聚酰胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酰胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C, 并在 370°C 下停留 30 min, 然后切断电源, 自然冷却至室温。
( 3 ) 性能表征: 纤维直径为 80〜250 nm、 纳米纤维膜拉伸强度为 12 MPa、 断裂伸长率为 11%、 玻璃化转变温度为 276°C、 热分解温度为 509°C、 纳米纤維 膜的孔隙率为 82.5%、 纳米纤维膜的比表面积为 40.0 m2/g。 实施例 8 : 二苯醚二酐 /对苯二胺 //三苯二醚二酐 /二苯醚二胺共混聚酰亚胺 ( ODPA/PPD//HQDPA/ODA PI blend ) 纳米纤维电池隔膜的制备
( 1 ) 聚合物合成及电纺: 按 1 :1摩尔比取一定量提纯后的二苯醚二酐 ( ODPA )和对苯二胺( PPD )及适量的溶剂 Ν,Ν-二曱基曱酰胺 ( DMF ), 在 5。C 的聚合反应釜中, 搅拌反应 12小时, 得到质量浓度为 5%, 绝对粘度为 4.9 Pa-S 的不熔性聚酰亚胺前体(聚酰胺酸)溶液 (Aw); 同样取一定量提纯后的三苯二 醚二酐( HQDPA )和二苯醚二胺( ODA )及适量的溶剂 Ν,Ν-二曱基曱酰胺( DMF ), 在 5°C的聚合反应釜中,搅拌反应 12小时,得到质量浓度为 5%,绝对粘度为 3.4 Pa S的可熔性聚酰亚胺前体(聚酰胺酸)溶液 (AM)。将聚酰胺酸溶液 A 和 A8-2 按 7:3的比例混合, 机械搅拌均匀, 形成绝对粘度为 3.8 Pa.S的两种前体的共混 溶液, 并在电场强度为 200 kV/m的电场中实施静电纺丝, 用直径为 0.3米的不 锈钢滚筒为收集器, 收集共混聚醜胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酰胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C, 并在 370°C 下停留 30 min, 然后切断电源, 自然冷却至室温。
( 3 ) 性能表征: 纤维直径为 50~200 nm、 纳米纤维膜拉伸强度为 10 MPa、 断裂伸长率为 8%、 玻璃化转变温度为 272。C、 热分解温度为 506。C、 纳米纤维 膜的孔隙率为 81.2%、 纳米纤维膜的比表面积为 41.3 m2/g。 实施例 9: 均苯四酸二酐 /3,3'-二曱基二苯甲烷二胺 //三苯二醚二酐 /二苯醚二胺共 混聚酰亚胺( PMDA/OTOL//HQDPA/ODA PI blend )纳米纤维电池隔膜的制备 ( 1 ) 聚合物合成及电纺: 按 1 : 1摩尔比取一定量提纯后的均苯四酸二酐 ( PMDA )和 3,3'-二曱基二苯曱烷二胺( OTOL )及适量的溶剂 Ν,Ν-二曱基曱酰 胺(DMF ), 在 5°C的聚合反应釜中, 搅拌反应 12小时, 得到质量浓度为 5%, 绝对粘度为 4.8 Pa-S的不熔性聚酰亚胺前体(聚酰胺酸) 溶液 (Aw); 同样取一 定量提纯后的三苯二醚二酐( HQDPA )和二苯醚二胺( ODA )及适量的溶剂 Ν,Ν- 二曱基曱酰胺(DMF ), 在 5。C的聚合反应釜中, 搅拌反应 12小时, 得到质量 浓度为 5%,绝对粘度为 3.8 Pa.S的可熔性聚酖亚胺前体(聚酰胺酸)溶液 (A9-2)。 将聚酖胺酸溶液 Α9-1和 A9-2按 7:3的比例混合, 机械搅拌均匀, 形成绝对粘度为 4.2 Pa-S的两种前体的共混溶液, 并在电场强度为 200 kV/m的电场中实施静电 纺丝, 用直径为 0.3米的不锈钢滚筒为收集器, 收集共混聚酰胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酰胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C, 并在 370°C 下停留 30 min, 然后切断电源, 自然冷却至室温。
( 3 ) 性能表征: 纤维直径为 80~250 nm、 纳米纤维膜拉伸强度为 12 MPa、 断裂伸长率为 8%、 玻璃化转变温度为 282。C、 热分解温度为 505。C、 纳米纤维 膜的孔隙率为 81.1 %、 纳米纤维膜的比表面积为 40.2 m2/g。 实施例 10: 均苯四酸二酐 /二苯曱烷二胺 //三苯二醚二酐 /4,4'-二苯氧基二苯砜二 胺共混聚酰亚胺( PMDA/MDA//HQDPA/BAPS PI blend )纳米纤维电池隔膜的 制备
( 1 ) 聚合物合成及电纺: 按 1 : 1摩尔比取一定量提纯后的均苯四酸二酐 ( PMDA )和二苯甲烷二胺( MDA )及适量的溶剂 Ν,Ν-二甲基曱酰胺 ( DMF ), 在 5°C的聚合反应釜中,搅拌反应 12小时,得到质量浓度为 5%,绝对粘度为 5.5 Pa S的不熔性聚酰亚胺前体(聚酰胺酸)溶液 (A1( ); 同样取一定量提纯后的三 苯二醚二酐( HQDPA )和 4,4'-二苯氧基二苯砜二胺 ( BAPS )及适量的溶剂 Ν,Ν- 二曱基曱酰胺(DMF ), 在 5°C的聚合反应釜中, 搅拌反应 12小时, 得到质量 浓度为 5%,绝对粘度为 4.1 Pa S的可熔性聚酰亚胺前体(聚酰胺酸)溶液 (A10-2)。 将聚酰胺酸溶液 A1(M和 A1(^2按 8:2的比例混合, 机械搅拌均勾, 形成绝对粘度 为 4.8 Pa S的两种前体的共混溶液, 并在电场强度为 200 kV/m的电场中实施静 电紡丝,用直径为 0.3米的不锈钢滚筒为收集器,收集共混聚酰胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酰胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C /min的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C, 并在 370°C 下停留 30 min, 然后切断电源, 自然冷却至室温。
( 3 )性能表征: 纤维直径为 100~300 nm、 纳米纤维膜拉伸强度为 15 MPa, 断裂伸长率为 10%、 玻璃化转变温度为 290°C、 热分解温度为 510°C、 纳米纤维 膜的孔隙率为 84.8%、 纳米纤维膜的比表面积为 39.3 m2/g。
实施例 11 : 联苯二 Sf/对苯二胺聚酰亚胺(BPDA/PPD PI ) 纳米纤维电池隔膜的 制备
( 1 )聚合物合成及电纺:按 1 :1摩尔比取一定量提纯后的联苯二酐(BPDA) 和对苯二胺(PPD )及适量的溶剂 Ν,Ν-二曱基曱酰胺(DMF ), 在 5°C的聚合反 应釜中, 搅拌反应 12小时, 得到质量浓度为 5%, 绝对粘度为 4.7 Pa.S的不熔性 聚酰亚胺前体(聚醜胺酸)溶液, 在电场强度为 300 kV/m的电场中实施静电纺 丝, 用直径为 0.3米的不锈钢滚筒为收集器, 收集共混聚酰胺酸纳米纤维膜。
( 2 ) 亚胺化: 将上面所得共混聚酰胺酸纳米纤维膜置于高温炉中, 在氮气 氛中加热亚胺化。 升温程序为: 以 20°C Zmin的升温速度从室温加热到 250°C, 在该温度下停留 30min, 然后以 5°C /min的升温速度加热至 370°C, 并在 370°C 下停留 30min, 然后切断电源, 自然冷却至室温。
( 3 ) 性能表征: 纤维直径为 10(T300 nm、 纳米纤维膜拉伸强度为 12 MPa, 断裂伸长率为 15 %、 玻璃化转变温度为 298°C、 热分解温度为 580° (:、 纳米纤維 膜的孔隙率为 86. 9%、 纳米纤维膜的比表面积为 38. 2 m2/g。
以上实验材料和结果测试
(一) 实验材料:
本发明的 1 1个实验实例中使用了 6种二酐和 8种二胺, 共 14种单体, 通 过商业渠道购买。
1 )联苯二酐 [CAS号: 2420-87-3] , 购自常州市阳光药业有限公司;
2 ) 三苯二醚二酐 [实验产品, 暂无 CAS号], 购自长春高琦聚酰亚胺材料有限公 司;
3 ) 均苯四酸二酐 [CAS号: 89-32-7] , 购自武汉汉南同心化工有限公司;
4 )二苯砜二酐 [CAS号: 2540-99-0] ,购自梯希爱(上海)化成工业发展有限公司;
5 )二苯酮二酐 [CAS号: 2421-28-5] , 购自百灵威科技有限公司;
6 )二苯醚二酐 [CAS号: 1823-59-2] ,购自常州市尚科医药化工材料有限公司;
7 ) 3, 3'-二曱基二苯曱烷二胺(又名: 4, 4' -二氨基- 3, 3' -二曱基二苯曱烷) [CAS 号: 838-88-0], 购自百灵威科技有限公司;
8 )二苯甲烷二胺(又名: 4, 4, -二氨基二苯甲烷) [CAS号: 101-77-9] ,购自百 灵威科技有限公司;
9 )对苯二胺 [CAS号: 106-50-3], 购自浙江富盛控股集团有限公司;
10 ) 二苯醚二胺 [CAS号: 101-80-4] ,购自常州市阳光药业有限公司;
11 ) 联苯二胺(又名: 4, 4, -二氨基联苯 ) [CAS号 92-87-5], 购自中国派尼 化学试剂厂;
12 ) 4, 4'-二苯氧基二苯砜二胺 (又名: 4, 4' -双(氨基苯氧基)二苯砜) [CAS 号: 13080-89-2] , 购自苏州市寅生化工有限公司;
1 3 ) 嘧啶联二苯二胺 [实验产品, 暂无 CAS号] , (本实验室合成) ;
14 ) 二羟基联苯二胺(又名: 3, 3, -二羟基联苯胺 ) [CAS号: 2373-98-0] ,购 自张家口艾科精细化工有限责任公司。
(二) 实验结果测试与表征
本发明中 11个实验实例的实验结果是通过以下仪器设备进行常规性测试和 表征。 ) 聚合物溶液和纺丝液绝对粘度用 NDJ-8S粘度计(上海精密科学仪器公司) 测 定;
) 电纺纳米纤维的直径是用扫描电子显微镜 VEGA 3 SBU (捷克共和国)测定; )共混聚酰亚胺纳米纤维的热分解温度用 WRT-3P热失重分析仪( TGA ) (上海 精密科学仪器有限公司)测定;
)共混聚酰亚胺纳米纤维多孔膜或非织造布的机械性质 (强度、 断裂伸长等) 用 CMT8102 £型控制电子万能试验机 (深圳 SANS材料检测有限公司)测定;)共混聚酰亚胺纳米纤维多孔膜或非织造布的玻璃化温度是使用 Diamond动态 机械分析仪(DMA ) ( Perkin-Elmer , 美国) 测定;
)共混聚酰亚胺纳米纤维多孔膜或非织造布的孔隙率是通过下列算式计算得 到:
孔隙率 β = [ 1 - (ρ/ρο) ] χ 100
其中 ρ为共混聚酰亚胺纳米纤维多孔膜或非织造布的密度 (克 /cm3), po为共 混聚酰亚胺实体薄膜(通过溶液浇铸法制备) 的密度 (克 /cm3) ;
)共混聚酰亚胺纳米纤维多孔膜或非织造布的比表面积是用 JW-K型孔分布及 比表面积测定仪(北京精微高博科学技术有限公司) 测定。

Claims

权 利 要 求 书
1、 聚酰亚胺纳米纤维, 是将两种聚酰亚胺前体经高压静电混纺和 高温亚胺化处理制得, 其特征在于, 所述共混聚酰亚胺前体是由一种高温下不 熔融聚酰亚胺的前体和一种在 300~400。C间可熔融聚酰亚胺的前体双组分组成。
2、 如权利要求 1所述的共混聚酰亚胺纳米纤维, 其特征在于, 所述共混聚 酰亚胺双组分的结构单元如下:
Figure imgf000018_0001
其中, 是含芳环的二酐的残基结构; R2 和 R3是含芳环的二胺的残基结 构。
3、 如权利要求 2所述的共混聚酰亚胺纳米纤维, 其特征在于, 所述 是如 下结构
Figure imgf000018_0002
Figure imgf000019_0001
Figure imgf000019_0002
5、 如权利要求 2所述的共混聚酰亚胺纳米纤维, 其特征在于, 所述 R3是如 下结构
Figure imgf000019_0003
Figure imgf000020_0001
6、 如权利要求 1所述的共混聚酰亚胺纳米纤维, 其特征在于, 所述纤维的 直径是 50-1000 nm。
7、 如权利要求 1所述的共混聚酰亚胺纳米纤维, 其特征在于, 所述纤维的 分解温度大于 500 °C, 熔融温度大于 300°C。
8、 如权利要求 1所述的共混聚酰亚胺纳米纤维, 其特征在于, 所述纤维构 成的多孔膜或非织造布的孔隙率大于 75 % 。
9、 如权利要求 1所述的共混聚酰亚胺纳米纤维, 其特征在于, 所述纤维构 成的多孔膜或非织造布的机械强度是 10 50 MPa, 电击穿强度高于 10 ν/μηι。
10、 如权利要求 1所述的共混聚酰亚胺纳米纤维构成的多孔膜或非织造布 在电池隔膜中的应用。
PCT/CN2010/077514 2010-09-01 2010-09-30 共混聚酰亚胺纳米纤维及其在电池隔膜中的应用 WO2012027917A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137007326A KR101504245B1 (ko) 2010-09-01 2010-09-30 폴리이미드 블렌드 나노섬유 및 배터리 분리막에 있어 이의 용도
DE112010005835T DE112010005835T5 (de) 2010-09-01 2010-09-30 Nanofaser aus Polyimidgemisch und deren Verwendung in Batterieseparatoren
JP2013526298A JP2013544323A (ja) 2010-09-01 2010-09-30 ポリイミドブレンド・ナノファイバーおよびその電池セパレータにおける応用
US13/819,960 US9209444B2 (en) 2010-09-01 2010-09-30 Polymide blend nanofiber and its use in battery separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010272414.1 2010-09-01
CN2010102724141A CN102383222B (zh) 2010-09-01 2010-09-01 共混聚酰亚胺纳米纤维及其在电池隔膜中的应用

Publications (1)

Publication Number Publication Date
WO2012027917A1 true WO2012027917A1 (zh) 2012-03-08

Family

ID=45772096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077514 WO2012027917A1 (zh) 2010-09-01 2010-09-30 共混聚酰亚胺纳米纤维及其在电池隔膜中的应用

Country Status (7)

Country Link
US (1) US9209444B2 (zh)
JP (1) JP2013544323A (zh)
KR (1) KR101504245B1 (zh)
CN (1) CN102383222B (zh)
CZ (1) CZ306811B6 (zh)
DE (1) DE112010005835T5 (zh)
WO (1) WO2012027917A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122555A (zh) * 2012-12-25 2013-05-29 浙江大东南集团有限公司 一种基于pet无纺布的纳米纤维膜的制备方法
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666848B2 (en) 2011-05-20 2017-05-30 Dreamweaver International, Inc. Single-layer lithium ion battery separator
US10700326B2 (en) 2012-11-14 2020-06-30 Dreamweaver International, Inc. Single-layer lithium ion battery separators exhibiting low shrinkage rates at high temperatures
CN103147253B (zh) * 2013-03-05 2015-03-04 中国科学院理化技术研究所 一种高强度聚酰亚胺纳米纤维多孔膜及其制备方法和应用
US10607790B2 (en) 2013-03-15 2020-03-31 Dreamweaver International, Inc. Direct electrolyte gelling via battery separator composition and structure
CN103343423B (zh) * 2013-06-27 2016-04-13 北京化工大学常州先进材料研究院 一种可用作锂电隔膜的交联聚醚酰亚胺纤维膜及其制备
CN104342850B (zh) * 2013-08-08 2017-03-15 北京纳迅科技股份有限公司 含纳米晶体纤维素的聚酰亚胺膜及其制备方法
JP6111171B2 (ja) * 2013-09-02 2017-04-05 東京エレクトロン株式会社 成膜方法及び成膜装置
US9419265B2 (en) * 2013-10-31 2016-08-16 Lg Chem, Ltd. High-strength electrospun microfiber non-woven web for a separator of a secondary battery, a separator comprising the same and a method for manufacturing the same
KR101451566B1 (ko) * 2014-02-25 2014-10-22 코오롱패션머티리얼 (주) 다공성 지지체, 이의 제조방법 및 이를 포함하는 강화막
CN104213333A (zh) * 2014-09-05 2014-12-17 北京化工大学常州先进材料研究院 一种具有交联结构的聚酰亚胺/聚烯烃复合纤维膜及制备方法
WO2016105008A1 (ko) * 2014-12-24 2016-06-30 코오롱패션머티리얼 (주) 이온전도체의 충진 특성이 우수한 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막
CN105019141A (zh) * 2015-06-08 2015-11-04 江西先材纳米纤维科技有限公司 聚酰亚胺纳米纤维絮片、其制备方法及应用
JPWO2018105338A1 (ja) * 2016-12-08 2019-10-24 東レ株式会社 蓄電素子用バインダー組成物、蓄電素子用スラリー組成物、電極、電極の製造方法、二次電池および電気二重層キャパシタ
CN109666980B (zh) * 2017-10-17 2020-12-29 中国石油化工股份有限公司 聚酰亚胺纤维的制备方法
CN109666979B (zh) * 2017-10-17 2021-05-28 中国石油化工股份有限公司 聚酰亚胺纳米纤维的制备方法
CN107675274B (zh) * 2017-10-27 2020-06-16 长沙新材料产业研究院有限公司 一种聚酰亚胺纳米纤维膜及其制备方法
CN107780052B (zh) * 2017-10-27 2020-09-04 长沙新材料产业研究院有限公司 一种聚酰亚胺纳米纤维膜及其制备方法
US20210167463A1 (en) * 2018-04-11 2021-06-03 Cornell University Polymer-ceramic hybrid separator membranes, precursors, and manufacturing processes
KR102080577B1 (ko) * 2018-06-04 2020-02-24 (주)씨오알엔 나노 섬유 분리막의 제조 방법 및 전해액용 첨가제의 제조 방법
CN109295512B (zh) * 2018-09-28 2019-05-21 青岛大学 一种含氟封端结构的聚碳酸酯/聚酰亚胺复合纤维膜的制备方法
TWI709592B (zh) * 2018-11-22 2020-11-11 達勝科技股份有限公司 聚醯亞胺膜以及聚醯亞胺膜的製造方法
CN109860485B (zh) * 2018-12-19 2022-06-07 长沙新材料产业研究院有限公司 一种聚酰亚胺纳米纤维隔膜及其制造方法
CN110195278B (zh) * 2019-05-21 2021-04-06 江西先材纳米纤维科技有限公司 一种超高支pi-psa电纺纤维长线纱的制备工艺及应用
CN110565269A (zh) * 2019-09-10 2019-12-13 西京学院 一种同轴静电纺丝制备锂电池隔膜的方法
CN113494020B (zh) * 2020-04-05 2022-11-25 北京化工大学 一种在聚酰亚胺纳米纤维膜表面包覆勃姆石陶瓷层的方法
CN113529272B (zh) * 2020-04-17 2023-04-28 北京化工大学 一种表面具有羧基功能基元的聚酰亚胺纳米纤维膜及其制备方法
JP2022165325A (ja) * 2021-04-19 2022-10-31 日東電工株式会社 多孔質ポリイミドフィルム
CN113817216B (zh) * 2021-09-08 2023-04-28 北京化工大学常州先进材料研究院 一种聚酰亚胺纳米纤维气凝胶及其制备方法
CN113897775A (zh) * 2021-11-04 2022-01-07 北京化工大学 一种二氧化铈包覆聚酰亚胺复合纳米纤维膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314617A (ja) * 1989-06-12 1991-01-23 Asahi Chem Ind Co Ltd 高強度、高弾性率ポリイミド成形物の製造方法
JPH03152211A (ja) * 1989-11-07 1991-06-28 Asahi Chem Ind Co Ltd ポリイミド分子複合糸及び製造方法
JPH06207315A (ja) * 1993-01-08 1994-07-26 Mitsubishi Rayon Co Ltd 複合材料補強用繊維
US6294049B1 (en) * 1992-06-09 2001-09-25 Unitika Ltd. Polyimide precursor fibrid, polyimide paper, polyimide composite paper and polyimide composite board obtained therefrom, and process for producing the fibrid and the paper products
CN101139746A (zh) * 2006-09-04 2008-03-12 哈尔滨理工大学 一种聚酰亚胺(pi)无纺布的制备方法
JP2009243031A (ja) * 2008-03-11 2009-10-22 Tokyo Metropolitan Univ ナノファイバー、電解質膜、膜電極接合体及び燃料電池
CN101589110A (zh) * 2006-11-22 2009-11-25 沙伯基础创新塑料知识产权有限公司 聚酰亚胺树脂组合物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612361A (en) * 1985-09-23 1986-09-16 General Electric Company Poly(etherimides) and compositions containing the same
JP2728495B2 (ja) * 1989-04-17 1998-03-18 帝人株式会社 コポリイミド繊維の製造法
JPH0315221A (ja) * 1989-06-09 1991-01-23 Takenaka Komuten Co Ltd 分電制御装置
TW396178B (en) * 1998-07-10 2000-07-01 Nat Science Council Colorless organic-soluble aromatic poly (ether-imide)s, the organic solutions and preparation thereof
JP2004308031A (ja) * 2003-04-03 2004-11-04 Teijin Ltd ポリアミド酸不織布、それから得られるポリイミド不織布およびそれらの製造方法
JP2008002011A (ja) * 2006-06-22 2008-01-10 Toyobo Co Ltd ポリイミド不織布およびその製造方法
KR100820162B1 (ko) * 2006-08-07 2008-04-10 한국과학기술연구원 내열성 초극세 섬유상 분리막 및 그 제조 방법과, 이를 이용한 이차전지
JP2009024303A (ja) 2007-07-23 2009-02-05 Dainippon Printing Co Ltd 離型紙の製造方法および離型紙の製造装置
CN101393976B (zh) * 2007-09-19 2011-01-12 比亚迪股份有限公司 一种电池隔膜及其制备方法
US8273279B2 (en) * 2007-09-28 2012-09-25 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
CN101412817B (zh) * 2007-10-19 2011-12-14 比亚迪股份有限公司 一种聚酰亚胺多孔膜的制备方法
JP5047921B2 (ja) * 2007-11-12 2012-10-10 株式会社カネカ 貯蔵弾性率の低下温度が異なる2種以上のポリイミド繊維からなる繊維集合体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314617A (ja) * 1989-06-12 1991-01-23 Asahi Chem Ind Co Ltd 高強度、高弾性率ポリイミド成形物の製造方法
JPH03152211A (ja) * 1989-11-07 1991-06-28 Asahi Chem Ind Co Ltd ポリイミド分子複合糸及び製造方法
US6294049B1 (en) * 1992-06-09 2001-09-25 Unitika Ltd. Polyimide precursor fibrid, polyimide paper, polyimide composite paper and polyimide composite board obtained therefrom, and process for producing the fibrid and the paper products
JPH06207315A (ja) * 1993-01-08 1994-07-26 Mitsubishi Rayon Co Ltd 複合材料補強用繊維
CN101139746A (zh) * 2006-09-04 2008-03-12 哈尔滨理工大学 一种聚酰亚胺(pi)无纺布的制备方法
CN101589110A (zh) * 2006-11-22 2009-11-25 沙伯基础创新塑料知识产权有限公司 聚酰亚胺树脂组合物
JP2009243031A (ja) * 2008-03-11 2009-10-22 Tokyo Metropolitan Univ ナノファイバー、電解質膜、膜電極接合体及び燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN JUAN: "Preparation and Characterization of Polyimide Blend Nanofibers", 15 July 2010 (2010-07-15), pages 17 - 19 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122555A (zh) * 2012-12-25 2013-05-29 浙江大东南集团有限公司 一种基于pet无纺布的纳米纤维膜的制备方法
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof
US10103384B2 (en) 2013-07-09 2018-10-16 Evonik Degussa Gmbh Electroactive polymers, manufacturing process thereof, electrode and use thereof

Also Published As

Publication number Publication date
CZ306811B6 (cs) 2017-07-19
KR101504245B1 (ko) 2015-03-20
CN102383222A (zh) 2012-03-21
JP2013544323A (ja) 2013-12-12
US20130164629A1 (en) 2013-06-27
KR20130086350A (ko) 2013-08-01
DE112010005835T5 (de) 2013-06-20
CN102383222B (zh) 2013-05-01
US9209444B2 (en) 2015-12-08
CZ2013198A3 (cs) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2012027917A1 (zh) 共混聚酰亚胺纳米纤维及其在电池隔膜中的应用
Yao et al. Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend
CN101974828B (zh) 一种共聚聚酰亚胺纳米纤维非织造布及其制备方法和应用
Kong et al. Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries
Ding et al. Electrospun polyimide nanofibers and their applications
JP2013540208A (ja) 共重合ポリイミド・ナノファイバー不織布、その製造方法および応用
CN102251307B (zh) 聚酰亚胺基纳米纤维膜及制法和应用
Sun et al. Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator
Wang et al. Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer
Miao et al. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries
He et al. Highly strong and highly tough electrospun polyimide/polyimide composite nanofibers from binary blend of polyamic acids
CN103147253B (zh) 一种高强度聚酰亚胺纳米纤维多孔膜及其制备方法和应用
Byun et al. A crosslinked nonwoven separator based on an organosoluble polyimide for high-performance lithium-ion batteries
CN104309232B (zh) 聚酰亚胺纳米纤维增强的耐酸耐碱多孔薄膜及其制备方法和用途
KR20150096446A (ko) 방사를 통한 고온 용융 완전형 배터리 세퍼레이터
CN113969006B (zh) 一种聚酰亚胺涂覆改性的聚烯烃复合隔膜及其制备方法
CN103422253A (zh) 一种含苯并咪唑和苯侧基的高强度聚酰亚胺多孔膜及其制备方法
Hou et al. Rapid formation of polyimide nanofiber membranes via hot-press treatment and their performance as Li-ion battery separators
KR101096952B1 (ko) 나노 웹 및 그 제조방법
KR20140096364A (ko) 전기화학 전지에서 자가 방전을 감소시키는 방법
CN109680552B (zh) 聚酰亚胺/纳米纤维复合纸及其制备方法
Zhu et al. Nanofibre preparation of non-processable polymers by solid-state polymerization of molecularly self-assembled monomers
CN102816431B (zh) 一种超细纤维多孔膜及其制备方法和应用
CN113718536B (zh) 一种具有交联形貌的聚酰亚胺隔膜及其制备方法
CN113708007A (zh) 一种聚酰亚胺/聚醚酰亚胺复合膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13819960

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013526298

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112010005835

Country of ref document: DE

Ref document number: 1120100058350

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: PV2013-198

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 20137007326

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10856604

Country of ref document: EP

Kind code of ref document: A1