WO2012026089A1 - SiC半導体素子 - Google Patents

SiC半導体素子 Download PDF

Info

Publication number
WO2012026089A1
WO2012026089A1 PCT/JP2011/004578 JP2011004578W WO2012026089A1 WO 2012026089 A1 WO2012026089 A1 WO 2012026089A1 JP 2011004578 W JP2011004578 W JP 2011004578W WO 2012026089 A1 WO2012026089 A1 WO 2012026089A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
sic
sic semiconductor
insulating film
crystal
Prior art date
Application number
PCT/JP2011/004578
Other languages
English (en)
French (fr)
Inventor
裕司 矢野
義弘 上岡
Original Assignee
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人奈良先端科学技術大学院大学 filed Critical 国立大学法人奈良先端科学技術大学院大学
Priority to EP11819565.0A priority Critical patent/EP2610912A4/en
Priority to JP2012530519A priority patent/JP5761533B2/ja
Priority to US13/818,810 priority patent/US9117740B2/en
Publication of WO2012026089A1 publication Critical patent/WO2012026089A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • the present invention relates to a technique for reducing interface defects between an insulating film of a SiC semiconductor element and a SiC semiconductor and improving channel mobility of a MOS field effect transistor (MOSFET) or the like.
  • MOSFET MOS field effect transistor
  • the SiC semiconductor is a semiconductor made of SiC (Silicon-carbide, silicon carbide) which is a compound of carbon (C) and silicon (Si).
  • SiC semiconductors have physical properties suitable as materials for semiconductor devices (power devices) used in power electronics.
  • the forbidden band width is 3.3 eV, which is three times wider than that of a conventional Si semiconductor
  • the dielectric breakdown electric field strength is 3 MV / cm, which is higher than that of a conventional Si semiconductor.
  • the saturation electron velocity is about 3 times faster than that of a conventional Si semiconductor.
  • SiC semiconductors are characterized by higher thermal conductivity, heat resistance, and chemical resistance than Si semiconductors, and higher resistance to radiation than Si semiconductors. Because of these characteristics, SiC semiconductors, particularly SiC MOSFETs, are suitably used for semiconductor devices used in power electronics.
  • SiC MOSFETs it has been a problem that there are many defects at the interface between the gate insulating film (gate oxide film) and SiC and the channel mobility is low.
  • an insulating film is formed by thermal oxidation or CVD, and the formed insulating film is nitrided at the interface between the insulating film and SiC using NO, NO 2 , NH 3 gas or the like. Therefore, the number of defects at the interface is reduced and the channel mobility is improved.
  • the channel mobility (Si surface) of the SiC MOSFET is as small as 40-50 cm 2 / Vs even when the interface is nitrided, and further improvement in channel mobility is desired.
  • the channel mobility of the SiC MOSFET is small is that there are many defects at the interface of SiC manufactured by the conventional technique, that is, the interface state density is large. Since the channel mobility of the SiC MOSFET is small, the on-resistance value of the MOSFET transistor is increased. As the on-resistance value of the transistor increases, power consumption increases.
  • 4H—SiC originally has a high electron mobility of 800-1000 cm 2 / Vs in the bulk crystal, but when a device such as a SiC MOSFET is realized, the interface between the gate insulating film and the SiC There is a problem in that the channel mobility is reduced due to defects in the.
  • Patent Document 1 the crystal plane tilted (off) within the range of 50 to 65 ° in the ⁇ 01-10> direction from the ⁇ 0001 ⁇ plane can reduce interface defects and improve channel mobility.
  • the ⁇ 03-38 ⁇ plane is a crystal plane inclined by 54.7 ° in the ⁇ 1-100> direction from the ⁇ 0001 ⁇ plane.
  • the channel mobility is about 11 cm 2 / Vs.
  • the crystal plane and direction are indicated by a superscript bar in terms of crystallography, but the crystal plane and direction in the specification, abstract, and claims of the present invention are limited in application notation. Above, instead of adding a bar above the number, it is expressed with a minus sign in front of the number.
  • the individual orientation indicating the direction in the crystal is []
  • the collective orientation indicating all equivalent directions is ⁇ >
  • the individual plane showing the crystal plane is ()
  • the collective surface having equivalent symmetry is ⁇ To express each. Note that the crystal planes and directions in the drawings are expressed in the original notation with a bar on the crystallographic number.
  • an object of the present invention is to provide a SiC semiconductor device in which interface defects between an insulating film in contact with a SiC semiconductor and SiC are reduced and channel mobility is improved.
  • the inventors of the present invention can significantly reduce the interface defect between the insulating film and SiC and greatly improve the channel mobility by using a specific crystal plane of SiC, which has not been known so far, on the trench sidewall of the MOSFET.
  • the present invention was completed.
  • the SiC semiconductor device of the present invention is a semiconductor device having at least an SiC semiconductor substrate and an insulating film in contact with the substrate, wherein the ⁇ 11-20 ⁇ plane is [000] as the crystal plane of the SiC semiconductor substrate.
  • -1] has a structure in which an insulating film is formed on a surface turned off by 10 to 20 ° in the direction, or on a surface turned off by 70 to 80 ° in the ⁇ 11-20> direction of the (000-1) surface. .
  • a surface obtained by turning off the ⁇ 11-20 ⁇ surface by 10 to 20 ° in the [000-1] direction and a surface obtained by turning the (000-1) surface by 70 to 80 ° in the ⁇ 11-20> direction are: “The same plane is shown” means that, in consideration of the correspondence of the angles, “the plane with the ⁇ 11-20 ⁇ plane off by 10 to 20 ° in the [000-1] direction and the (000-1) plane” It can be said that the surface turned 80-70 ° in the ⁇ 11-20> direction is the same surface.
  • the ⁇ 11-20 ⁇ plane means the (11-20) plane, (1-210) plane, and (-2110) plane of individual planes having equivalent symmetry.
  • the (000-1) plane means the C plane.
  • the insulating film includes an oxide film and a nitride film.
  • the “turned-off surface” can also be expressed as a “tilted surface” at a predetermined angle in a predetermined direction from a predetermined surface of the present invention.
  • the crystal plane turned off is a plane inclined at a predetermined angle in a predetermined direction from the predetermined plane of the present invention.
  • the ⁇ 11-20 ⁇ plane is on a plane off by 15 ° in the [000-1] direction, or the (000-1) plane is 75 ° in the ⁇ 11-20> direction. It is particularly preferable to provide a structure in which an insulating film is formed on the surface that is turned off. Interface defects between the SiC semiconductor substrate and the insulating film can be reduced, and the channel mobility of the semiconductor element can be further improved.
  • the SiC semiconductor element of the present invention is a semiconductor element having at least an SiC semiconductor substrate and an insulating film in contact with the substrate, wherein the ⁇ 1-100 ⁇ plane is 10 to 10 in the [000-1] direction as a crystal plane of the SiC semiconductor substrate.
  • a structure in which an insulating film is formed on a surface turned off by 20 ° or on a surface obtained by turning off the (000-1) plane by 70 to 80 ° in the ⁇ 1-100> direction is provided.
  • a plane obtained by turning off the ⁇ 1-100 ⁇ plane by 10 to 20 ° in the [000-1] direction, and a plane obtained by turning off the (000-1) plane by 70 to 80 ° in the ⁇ 1-100> direction. Shows the same side.
  • the ⁇ 1-100 ⁇ plane means (1-100) plane, ( ⁇ 1010) plane, and (01-10) plane of individual planes having equivalent symmetry.
  • the ⁇ 1-100 ⁇ plane is off by 15 ° in the [000-1] direction, or the (000-1) plane is 75 ° in the ⁇ 1-100> direction. It is particularly preferable to provide a structure in which an insulating film is formed on the surface that is turned off. Interface defects between the SiC semiconductor substrate and the insulating film can be reduced, and the channel mobility of the semiconductor element can be further improved.
  • the SiC semiconductor element of the present invention is a semiconductor element having at least an SiC semiconductor substrate and an insulating film in contact with the substrate, wherein the ⁇ -12-10 ⁇ plane is 10 in the [000-1] direction as the crystal plane of the SiC semiconductor substrate.
  • a structure in which an insulating film is formed on a surface turned off by 20 ° or on a surface obtained by turning off the (000-1) plane by 70 ° to 80 ° in the ⁇ -12-10> direction is provided.
  • the ⁇ -12-10 ⁇ plane is turned off by 10-20 ° in the [000-1] direction
  • the (000-1) plane is turned off by 70-80 ° in the ⁇ -12-10> direction.
  • the surface indicates the same surface.
  • the ⁇ -12-10 ⁇ plane means the (-12-10) plane, the (2-1-10) plane, and the (-1-120) plane, which are individual planes having equivalent symmetry.
  • the ⁇ -12-10 ⁇ plane has a similar atomic arrangement compared to the ⁇ 11-20 ⁇ plane. That is, in the SiC unit cell structure, the ⁇ -12-10 ⁇ plane and the ⁇ 11-20 ⁇ plane are symmetrical with respect to the crystal axis of the atomic arrangement and are offset by half the unit cell structure in the axial direction. It is a structure array. This is a similar crystal plane when viewed macroscopically.
  • the ⁇ -12-10 ⁇ plane is off by 15 ° in the [000-1] direction, or the (000-1) plane is in the ⁇ -12-10> direction. It is particularly preferable to provide a structure in which an insulating film is formed on a surface turned off by 75 °. Interface defects between the SiC semiconductor substrate and the insulating film can be reduced, and the channel mobility of the semiconductor element can be further improved.
  • the SiC semiconductor device of the present invention is a semiconductor device having at least an SiC semiconductor substrate and an insulating film in contact with the substrate, wherein the ⁇ 10-10 ⁇ plane is 10 to 10 in the [000-1] direction as the crystal plane of the SiC semiconductor substrate.
  • a structure in which an insulating film is formed on a surface turned off by 20 ° or on a surface obtained by turning off the (000-1) plane by 70 to 80 ° in the ⁇ 10-10> direction is provided.
  • the ⁇ 10-10 ⁇ plane means (10-10) plane, (0-110) plane, and ( ⁇ 1100) plane of individual planes having equivalent symmetry.
  • the ⁇ 10-10 ⁇ plane has a similar atomic arrangement compared to the ⁇ 1-100 ⁇ plane. That is, in the SiC unit cell structure, the ⁇ 10-10 ⁇ plane and the ⁇ 1-100 ⁇ plane are structures in which the atomic structure is symmetrical with respect to the crystal axis and is shifted by half of the unit cell structure in the axial direction. It is an array. This is a similar crystal plane when viewed macroscopically.
  • the ⁇ 10-10 ⁇ plane is on a plane off by 15 ° in the [000-1] direction, or the (000-1) plane is 75 ° in the ⁇ 10-10> direction. It is particularly preferable to provide a structure in which an insulating film is formed on the surface that is turned off. Interface defects between the SiC semiconductor substrate and the insulating film can be reduced, and the channel mobility of the semiconductor element can be further improved.
  • the crystal plane in the SiC semiconductor element of the present invention is used for the crystal plane of the trench sidewall of the MOSFET having the trench gate structure using the SiC semiconductor substrate.
  • the crystal plane of the SiC semiconductor element of the present invention is used as the crystal plane of the trench sidewall of the MOSFET having the trench gate structure, the device characteristics can be greatly improved.
  • a MOSFET having a trench gate structure is actually manufactured, the drain current is measured, and the channel mobility is evaluated.
  • the shape of the trench sidewall is not particularly limited, and may be a stripe shape like a groove or a honeycomb shape like a hexagonal hole.
  • the angle of the side wall with respect to the substrate surface may be formed vertically or obliquely with a predetermined taper angle, and the crystal plane of the present invention may be used as the crystal plane of the side wall. .
  • the insulating film in the SiC semiconductor element of the present invention is used as a gate insulating film or a surface passivation film.
  • the insulating film includes an oxide film and a nitride film. Since interface defects between the insulating film and SiC can be reduced, the use of the insulating film as a gate insulating film can improve channel mobility of a MOSFET or the like, leading to a reduction in on-resistance of the transistor.
  • the crystal structure of the SiC semiconductor may be a hexagonal crystal structure.
  • 4H—SiC, 6H—SiC, 15R—SiC (rhombohedral crystal), or the like can be used.
  • the channel may be either an n-type channel or a p-type channel.
  • channel mobility can be drastically improved as compared with a crystal plane conventionally used.
  • the threshold voltage is lower than the others, and the drain current has a steep rise, if the SiC power MOSFET having the crystal plane as a channel according to the present invention is manufactured, the on-resistance As a result, the power consumption of the power device can be reduced.
  • the crystal plane according to the present invention has fewer interface defects than other crystal planes, the temperature change of the device characteristics is small, and the device characteristics can be improved.
  • Structure diagram of device using crystal plane of the present invention Schematic diagram of DMOSFET which is a typical example of SiC power MOSFET Correlation diagram of MOSFET on-resistance and breakdown voltage with channel mobility as parameter Schematic diagram of the fabricated trench MOSFET Graph showing the measurement results of drain current characteristics of UMOSFET Graph showing the measurement results of channel mobility of UMOSFET It shows a band structure of the SiO 2 / SiC interface determined by the first principle calculation Graph showing the relationship between roughness and mobility on each crystal plane AFM image of each crystal plane, (a) is a crystal plane with the (11-20) plane off by 15 ° in the [000-1] direction, (b) is the (11-20) plane, and (c) is (11) -20) A crystal plane with the plane turned off by 15 ° in the [0001] direction.
  • FIG. 1 shows a unit cell structure of a SiC crystal.
  • the main hexagonal SiC includes 4H—SiC having a structure in which a pair of Si—C layers are laminated in the c-axis direction at a period of 4 layers, and 6H—SiC laminated at a period of 6 layers. is there.
  • the unit cell structure lattice of FIG. 1 includes 4 layers in 4H—SiC and 6 layers in 6H—SiC.
  • FIG. 2 (1) the top surface of the hexagonal column is the (0001) Si surface and the bottom surface is the (000-1) C surface.
  • the side surface of the hexagonal column is the (1-100) plane.
  • FIG. 2 (3) is a (11-20) plane perpendicular to the (1-100) plane of FIG. 2 (2).
  • Fig. 3 shows a plan view of the (000-1) C plane at the bottom of this hexagonal column.
  • the hexagons shown in FIGS. 3 (1) and 3 (2) have directions a1, a2 and a3, the middle direction of a1 and a2 is the [11-20] direction, and the counterclockwise direction of [1-20] is [1-20].
  • -210] direction and [-2110] direction The plane having the [11-20] direction as the normal is the (11-20) plane.
  • the directions of a1, a2, and a3 are the [2-1-10] direction, the [-12-10] direction, and the [-1-120] direction, respectively.
  • the [11-20] direction and the [1-100] direction are orthogonal to each other.
  • FIG. 5 is a schematic diagram of the structure of 4H—SiC.
  • FIG. 5A is a structural schematic diagram of the ⁇ 11-20 ⁇ plane
  • FIG. 5B is a schematic structural diagram of the ⁇ -12-10 ⁇ plane.
  • the ⁇ 11-20 ⁇ plane and the ⁇ -12-10 ⁇ plane are similar in atomic arrangement.
  • the ⁇ 11-20 ⁇ plane and the ⁇ -12-10 ⁇ plane are structures in which the atomic structure is symmetrical with respect to the crystal axis and is shifted by half the unit cell structure in the c-axis direction. It is an array. This is a similar crystal plane when viewed macroscopically.
  • FIG. 6 is a schematic diagram showing an example of the crystal plane of the trench sidewall.
  • a rectangular trench is formed perpendicularly to the (000-1) C-plane SiC substrate.
  • the right side wall in FIG. 6 is the (11-20) plane, the left side wall facing it is ( ⁇ 1-120), the upper side wall is (1-100), and the lower side wall is ( ⁇ 1100). ).
  • FIG. 7 is a schematic cross-sectional view showing a state where trench sidewalls are formed substantially vertically on a substrate in which the (000-1) C plane is inclined (off) from 0 ° to 15 ° horizontally. This is equivalent to the (11-20) plane inclined by 15 ° (off) in the [000-1] direction, as shown in the structural schematic diagram of the SiC crystal of FIG. That is, in a MOSFET having a trench gate structure, a surface obtained by turning off the (11-20) plane by 15 ° in the [000-1] direction is used as the crystal plane of the trench sidewall.
  • FIG. 9 shows, in hatched notation, a plane in which the (11-20) plane is inclined (off) by 15 ° in the [000-1] direction in the unit cell structure of the SiC crystal.
  • This surface has excellent channel mobility as shown in Example 1 described later, and is in contact with the gate insulating film of the DMOSFET or UMOSFET as shown in FIG. 10, that is, the insulating film on the SiC semiconductor substrate. If it is used as a crystal plane to form, the device characteristics can be greatly improved.
  • FIG. 11 shows a schematic diagram of a SiC MOSFET.
  • the gate insulating film 20 is formed on the substrate of the SiC semiconductor 10, and the terminals of the gate electrode 11, the source electrode 12, and the drain electrode 13 are provided.
  • the SiC semiconductor 10 is divided into several layers such as an n + layer, a p body layer, an n ⁇ drift layer, and an n + substrate layer. Then, there is a portion that becomes a current resistance from the source electrode 12 to the drain electrode 13.
  • the channel resistance value R ch of the interface 21 is particularly dominant.
  • FIG. 12 shows a correlation diagram between channel mobility ( ⁇ ch ) and on-resistance of the transistor, and the horizontal axis shows the breakdown voltage, that is, the breakdown voltage of the semiconductor element.
  • the on-resistance value for a semiconductor element having the same breakdown voltage is lower than that of Si. limit) and the drift layer of SiC semiconductor and the substrate (drift + sub.limit), it is shown that it is as small as about 1/1000 in the vicinity of the dielectric breakdown voltage of 10 3 V. It is also shown that the on-resistance value is reduced in inverse proportion to the channel mobility ( ⁇ ch ).
  • resistance values other than the channel resistance, the resistance of the n ⁇ drift layer, and the resistance of the n + substrate layer are negligible.
  • reduction of the channel resistance value is indispensable for improving the performance of the SiC semiconductor device.
  • Example 1 a trench type MOSFET (UMOSFET) device is manufactured, and a trench having a substantially vertical side wall is formed on a (000-1) C-plane SiC substrate having various off angles, thereby improving the device characteristics. The results of the investigation are shown.
  • FIG. 13 shows a structural schematic diagram of a trench MOSFET (UMOSFET) fabricated this time. A trench MOSFET having a substantially vertical side wall is formed on a (000-1) C-plane SiC substrate having various off angles, and a trench MOSFET in which current flows only on one side of the trench side wall is manufactured.
  • the off-angle is 0 ° (ie, on-axis), 4 ° in the [ ⁇ 1-120] direction, 8 ° in the [ ⁇ 1-120] direction, [ ⁇ 1 A product of 15 ° in the ⁇ 120] direction and 8 ° in the [1-100] direction was produced.
  • the trench is rectangular in shape so that adjacent side walls are orthogonal to each other.
  • the four side walls are (11-20) plane, (-1-120) plane, (1-100) plane, (-1100). ) Trench was formed so as to be a surface. Since the substrate has an off angle, the off angle is actually formed with respect to the (11-20) plane, for example, as shown in FIG. For this reason, in the following embodiments, for example, even though (11-20) is indicated, the inclination is actually derived from the substrate off-angle from the (11-20) plane.
  • the acceptor density of the channel portion of the manufactured UMOSFET is 1 to 2 ⁇ 10 17 cm ⁇ 3 for Na. Instead of acceptor density that is easy to move, acceptor density close to devices in practical use is used.
  • the gate insulating film is formed by wet oxidation of a Si oxide film, and heat-treated using nitric oxide (NO) gas after oxidation (nitrided oxide film).
  • the manufactured UMOSFET used aluminum as a gate electrode, an aluminum-titanium alloy as a source electrode, and nickel as a drain electrode.
  • the graph in FIG. 14 shows the measurement results of the drain current characteristics of the manufactured UMOSFET.
  • 14 (1) to (5) are on-axis, 4 ° off in the [1-120] direction (a-plane direction in the figure), and 8 ° off in the [-1-120] direction, respectively.
  • the measurement results are plotted with 15 ° off in the [1-120] direction and 8 ° off in the [1-100] direction (m-plane direction in the figure).
  • 14 (1) to (5) which is fabricated on a substrate turned off by 15 ° in the [-1-120] direction of FIG. 14 (3), and has an off angle on the (11-20) plane. It can be confirmed that the drain current value is the largest.
  • the graph of FIG. 15 shows the measurement result of the channel mobility of the manufactured UMOSFET.
  • (1) to (5) in FIG. 15 are, similarly to FIG. 14, turned off by 4 ° in the on-axis, [ ⁇ 1-120] direction (a-plane direction in the figure), and [ ⁇ 1-120], respectively.
  • the measurement results are plotted with 8 ° off in the direction, 15 ° off in the [1-120] direction, and 8 ° off in the [1-100] direction (m-plane direction in the figure).
  • 15 (1) to (5) which is fabricated on a substrate turned off by 15 ° in the [-1-120] direction of FIG. 15 (3), and has an off angle on the (11-20) plane. It can be confirmed that the connected channel has the highest channel mobility.
  • Table 1 below shows 4 ° off in the [-1-120] direction, 8 ° off in the [1-1-120] direction, 15 ° off in the [-1-120] direction, and 8 ° in the [1-100] direction.
  • Table 1 shows 4 ° off in the [-1-120] direction, 8 ° off in the [1-1-120] direction, 15 ° off in the [-1-120] direction, and 8 ° in the [1-100] direction.
  • the (11-20) plane is used among the trench sidewalls formed substantially perpendicularly on the (000-1) C plane substrate off by 15 ° in the [-1-120] direction.
  • the channel mobility is as high as 103 cm 2 / Vs, and it can be confirmed that the device characteristics are excellent.
  • the crystal plane of this side wall is precisely a crystal plane obtained by turning off the (11-20) plane by 15 ° in the [000-1] direction, as shown in FIG.
  • the leftmost column indicates the type of substrate on which the trench MOSFET is formed, and shows the substrate with the (000-1) plane turned off in a predetermined angle / predetermined direction.
  • the uppermost row shows the crystal plane of the trench sidewall where the mobility was measured.
  • “(11-20)” means that “(11-20) plane is turned off by a predetermined angle in the [000-1] direction. Crystal plane ".
  • FIG. 16 shows the band structure of the SiO 2 / SiC interface obtained by the first principle calculation.
  • Each point on the horizontal axis of the graph shown in FIG. 16 is Y (0.0, 0.5, 0.0), T (0.0, 0.5, 0.5), ⁇ (0.0, 0.0, 0.0), Z (0.0, 0.0, 0.5).
  • Structure 1 is a band structure of a crystal plane with the (11-20) plane turned off by 15 ° in the [000-1] direction
  • Structure 2 has the (11-20) plane turned off by 15 ° in the [0001] direction.
  • the band structure of the crystal plane is shown.
  • Structure 2 it can be seen that in the band structure of FIG. 16, there is a level that is a straight line from Y to ⁇ at the bottom of the conduction band (indicated by an arrow in the figure).
  • the smaller the curvature of the band curve the greater the effective mass. From this, it is considered that the effective mass of electrons is infinite at the level that is a straight line, and the electrons are localized and become trap levels. For this reason, in Structure 2, the interface state increases and the mobility decreases.
  • Structure 1 does not have a level that is a straight line in the conduction band as in Structure 2. That is, in Structure 1, there is no structure in which electrons are localized to form a trap level, and it is considered that mobility is increased because there are few interface states.
  • FIG. 17 is a graph showing the relationship between roughness and mobility in each crystal plane.
  • the horizontal axis of the graph is the tilt angle
  • the (11-20) plane is tilted at 0 °
  • the (11-20) plane tilted in the [000-1] direction is the minus angle
  • the (11-20) plane Is tilted in the [0001] direction as a positive angle.
  • the vertical axis (Max of Peak-to-Valley) on the left side of the graph represents the roughness, that is, the maximum difference between the maximum and minimum height of the waviness of the interface in nanometers.
  • the vertical axis on the right side of the graph represents field effect mobility.
  • the black circle is a roughness plot
  • the hollow circle is a field effect mobility plot.
  • FIG. 18 shows an AFM image of each crystal plane.
  • FIG. 18A shows a crystal plane in which the (11-20) plane is turned off by 15 ° in the [000-1] direction
  • FIG. 18B shows the (11-20) plane
  • FIG. 18A that is, the crystal plane in which the (11-20) plane is turned off by 15 ° in the [000-1] direction has small roughness.
  • FIGS. 18B and 18C it can be seen that the roughness gradually increases. From these facts, it can be seen that a uniform inversion layer channel is formed on the surface with high mobility due to low roughness. However, as the roughness increases, the inversion layer becomes non-uniform, the channel is interrupted, and the drain current hardly flows. As a result, the mobility is considered to be small.
  • the reason why the mobility of the crystal plane with the (11-20) plane turned off by 15 ° in the [000-1] direction is particularly excellent is that the interface state is small, the roughness is small and uniform. This is the point that a simple inversion layer can be formed.
  • Example 1 In Example 1, it was shown that the channel mobility of the crystal plane obtained by turning off the ⁇ 11-20 ⁇ plane by 15 ° in the [000-1] direction is excellent. From the above results, it can be seen that, similarly, a crystal plane in which the ⁇ 10-10 ⁇ plane is turned off by 15 ° in the [000-1] direction also exhibits excellent channel mobility. That is, according to the result of the substrate at the bottom of the above table, which is turned off by 8 ° in the [1-100] direction, when the ( ⁇ 1100) plane is used, the channel is higher than that of the (1-100) plane. Mobility was obtained.
  • the ( ⁇ 1100) plane shown here is precisely the ( ⁇ 1100) plane, that is, a crystal plane obtained by turning off the ⁇ 10-10 ⁇ plane by 8 ° in the [000-1] direction.
  • the ⁇ 10-10 ⁇ plane and the ⁇ 11-20 ⁇ plane are both crystal planes perpendicular to the (000-1) plane, and have similar properties such that carbon and silicon atoms appear at a ratio of 1: 1. have.
  • the following can be easily inferred from the results of the substrate turned off by 8 ° in the [ ⁇ 1-120] direction and the substrate turned off by 15 °. That is, when a substrate turned off by 15 ° in the [1-100] direction is used, the mobility of the ( ⁇ 1100) plane can be higher than that obtained by turning off by 8 °. That is, it can be said that a higher channel mobility can be realized in the crystal plane in which the ⁇ 10-10 ⁇ plane is turned off by 15 ° in the [000-1] direction than in the crystal plane turned off by 8 °.
  • the ⁇ -12-10 ⁇ plane and the ⁇ 11-20 ⁇ plane, and the ⁇ 10-10 ⁇ plane and the ⁇ 1-100 ⁇ plane are such that the atomic structural arrangement is a unit cell in the axial direction.
  • the structure arrangement is half the structure and similar to each other, and both can achieve higher channel mobility.
  • the present invention is useful for MIS (MOS) type field effect transistors (MIS (MOS) FETs) used in inverter switches of electric vehicles, hybrid vehicles, railways, home appliances, power systems, and the like. It can also be used for an insulated gate bipolar transistor (IGBT) used in a higher breakdown voltage region than the MIS (MOS) FET.
  • MIS MOS
  • IGBT insulated gate bipolar transistor
  • GTO gate turn-off
  • BJT junction bipolar transistors
  • JFET junction field effect transistors
  • SBD Schottky barrier diodes
  • a lateral power MOSFET can be manufactured and used for an integrated power IC, IPM, or the like.

Abstract

 SiC半導体の絶縁膜とSiCとの界面の界面欠陥を低減させ、チャネル移動度を向上させたSiC半導体素子を提供する。SiC半導体基板と基板に接する絶縁膜を少なくとも備える半導体素子において、SiC半導体基板の結晶面として、{11-20}面を[000-1]方向に10~20°のオフ角を有する面上、若しくは、(000-1)面を<11-20>方向に70~80°のオフ角を有する面上、に絶縁膜を形成した構造を備える。従来知られていかった特定の結晶面を用いることにより、SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度を向上させることができる。各種の結晶面を側壁に有するトレンチ30を形成したデバイスを作製し、ドレイン電流ならびにチャネル移動度を測定した。

Description

SiC半導体素子
 本発明は、SiC半導体素子の絶縁膜とSiC半導体における界面欠陥を低減し、MOS型電界効果トランジスタ(MOSFET)等のチャネル移動度を向上させる技術に関する。
 SiC半導体とは炭素(C)とケイ素(Si)の化合物であるSiC(Silicon carbide,炭化ケイ素)からなる半導体である。SiC半導体の最大の特徴は、パワーエレクトロニクスに用いる半導体デバイス(パワーデバイス)の材料として適した物性値を有することである。例えば、市販されている単結晶の4H-SiCの場合、禁制帯幅が3.3eVと従来のSi半導体に比べて3倍と広く、絶縁破壊電界強度が3MV/cmと従来のSi半導体に比べて10倍程度大きく、また飽和電子速度が従来のSi半導体に比べて3倍と速い。また、SiC半導体は、Si半導体よりも、熱伝導性,耐熱性,耐薬品性に優れており、放射線に対する耐性もSi半導体より高いという特徴を備えている。このような特徴から、SiC半導体、特に、SiCのMOSFETは、パワーエレクトロニクスに用いられる半導体デバイスに好適に使用されている。
 しかし、SiCのMOSFETでは、ゲート絶縁膜(ゲート酸化膜)とSiCの界面における欠陥が多く、チャネル移動度が小さいことが、従来から問題とされていた。特に、4H-SiCでは、バルク結晶中の電子移動度が800-1000cm/Vsと高いのに対し、SiCのMOSFETのチャネル移動度(Si面)は、10cm/Vsと小さいことが問題として挙げられていた。
 また従来から、熱酸化やCVD法を用いて絶縁膜を形成したり、また、形成した絶縁膜をNO,NO,NHガスなどにより絶縁膜とSiCの界面を窒化することなどが行われており、界面における欠陥を少なくして、チャネル移動度を向上させている。しかしながら、SiCのMOSFETのチャネル移動度(Si面)は、界面を窒化した場合でも、40-50cm/Vsと小さく、更なるチャネル移動度の向上が切望されている。
 SiCのMOSFETのチャネル移動度が小さい理由は、従来技術で作製されるSiCの界面には欠陥が多い、すわなち、界面準位密度が大きいためである。SiCのMOSFETのチャネル移動度が小さいことによって、MOSFETのトランジスタのオン抵抗値が大きくなる。トランジスタのオン抵抗値が大きくなれば消費電力が多くなってしまう。
 上述したように、4H-SiCでは、本来、バルク結晶中の電子移動度が800-1000cm/Vsと高いにも関わらず、SiCのMOSFETといったデバイス化を図ると、ゲート絶縁膜とSiCの界面における欠陥のためにチャネル移動度が小さくなってしまうといった問題がある。
 従来、上記問題に関して、熱酸化法、CVD法および界面窒化法などによるゲート絶縁膜の形成方法を工夫することにより界面欠陥を低減し、チャネル移動度を向上させてきた。
 一方、上記問題に関して、SiCの結晶面に着目し、チャネル移動度を向上させる技術がある。このSiC結晶面に着目した技術を幾つか紹介する。
 先ず、DMOSFET(Double implanted MOSFET)やUMOSFET(トレンチ型MOSFET)といったデバイスを作製する際は、一般的に、標準のSiCウェハのSi面の(0001)面あるいはC面の(000-1)面を、<11-20>方向に4°または8°の傾斜(オフ)させた結晶面が用いられている。しかし、(0001)面あるいは(000-1)面は、チャネル移動度がさほど高くない。
 (0001)面あるいは(000-1)面よりも、{0001}面に垂直な{11-20}面で高いチャネル移動度が報告されているが、結晶面がずれると移動度は低下してしまうことが知られている。{11-20}面を用いることでチャネル移動度が向上するものの、チャネル移動度は6cm/Vs程度である。
 また、{0001}面から<01-10>方向に50~65°の範囲内で傾斜(オフ)させた結晶面により、界面欠陥の低減が図れ、チャネル移動度が向上することが知られている(特許文献1)。
 また、{03-38}面を用いることでチャネル移動度が向上することが知られている(特許文献2)。ここで、{03-38}面は、{0001}面から<1-100>方向に54.7°傾斜した結晶面である。
 しかしながら、{03-38}面を用いることでチャネル移動度が向上するものの、チャネル移動度は11cm/Vs程度である。
 なお、結晶面および方向の表記は、結晶学上、数字に上付きのバーを付すが、本発明の明細書、要約書、特許請求の範囲における結晶面および方向の表記は、出願表記の制約上、数字の上にバーを付す代わりに、数字の前に-(マイナス符号)を付して表現する。また、結晶内の方向を示す個別方位は[ ]で、等価な方向すべてを示す集合方位は< >で、結晶面を示す個別面は( )で、等価な対称性を有する集合面は{ }でそれぞれ表現する。なお、図面における結晶面および方向の表記は、結晶学上の数字の上にバーを付した本来の表記で行っている。
特開2010-040564号公報 特開2002-261275号公報
 上記状況に鑑みて、本発明は、SiC半導体に接する絶縁膜とSiCとの界面欠陥を低減させ、チャネル移動度を向上させたSiC半導体素子を提供することを目的とする。
 本発明者らは、従来知られていなかったSiCの特定の結晶面をMOSFETのトレンチ側壁などに用いることにより、絶縁膜とSiCの界面欠陥が大幅に低減でき、チャネル移動度を大幅に向上できることを見出し、本発明を完成させた。
 すなわち、上記目的を達成すべく、本発明のSiC半導体素子は、SiC半導体基板と基板に接する絶縁膜を少なくとも備える半導体素子において、SiC半導体基板の結晶面として、{11-20}面を[000-1]方向に10~20°オフさせた面上、若しくは、(000-1)面を<11-20>方向に70~80°オフさせた面上、に絶縁膜を形成した構造を備える。
 特定の結晶面を用いることにより、SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度を向上させることができる。
 ここで、{11-20}面を[000-1]方向に10~20°オフさせた面と、(000-1)面を<11-20>方向に70~80°オフさせた面とは、同じ面を示している。すなわち、一例として、「{11-20}面を[000-1]方向に10°オフさせた面」は、「(000-1)面を<11-20>方向に80°オフさせた面」と同じ面を示す。「{11-20}面を[000-1]方向に10~20°オフさせた面と、(000-1)面を<11-20>方向に70~80°オフさせた面とは、同じ面を示している」とは、角度の対応関係を考慮すると、「{11-20}面を[000-1]方向に10~20°オフさせた面と、(000-1)面を<11-20>方向に80~70°オフさせた面とは、同じ面を示している」ということができる。{11-20}面は、等価な対称性を有する個別面の(11-20)面,(1-210)面,(-2110)面を意味している。また、(000-1)面は、C面を意味している。なお、絶縁膜には酸化膜や窒化膜が含まれる。
 なお、「オフさせた面」とは、本発明の所定の面から、所定の方向に所定の角度で「傾斜させた面」と表現することもできる。オフさせた結晶面は、本発明の所定の面から、所定の方向に所定の角度で傾いている面である。
 上記のSiC半導体基板の結晶面として、{11-20}面を[000-1]方向に15°オフさせた面上、若しくは、(000-1)面を<11-20>方向に75°オフさせた面上、に絶縁膜を形成した構造を備えることが特に好ましい。SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度をより向上させることができる。
 また、本発明のSiC半導体素子は、SiC半導体基板と基板に接する絶縁膜を少なくとも備える半導体素子において、SiC半導体基板の結晶面として、{1-100}面を[000-1]方向に10~20°オフさせた面上、若しくは、(000-1)面を<1-100>方向に70~80°オフさせた面上、に絶縁膜を形成した構造を備える。
 特定の結晶面を用いることにより、SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度を向上させることができる。
 ここで、{1-100}面を[000-1]方向に10~20°オフさせた面と、(000-1)面を<1-100>方向に70~80°オフさせた面とは、同じ面を示している。{1-100}面は、等価な対称性を有する個別面の(1-100)面,(-1010)面,(01-10)面を意味している。
 上記のSiC半導体基板の結晶面として、{1-100}面を[000-1]方向に15°オフさせた面上、若しくは、(000-1)面を<1-100>方向に75°オフさせた面上、に絶縁膜を形成した構造を備えることが特に好ましい。SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度をより向上させることができる。
 また、本発明のSiC半導体素子は、SiC半導体基板と基板に接する絶縁膜を少なくとも備える半導体素子において、SiC半導体基板の結晶面として、{-12-10}面を[000-1]方向に10~20°オフさせた面上、若しくは、(000-1)面を<-12-10>方向に70~80°オフさせた面上、に絶縁膜を形成した構造を備える。
 特定の結晶面を用いることにより、SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度を向上させることができる。
 ここで、{-12-10}面を[000-1]方向に10~20°オフさせた面と、(000-1)面を<-12-10>方向に70~80°オフさせた面とは、同じ面を示している。{-12-10}面は、等価な対称性を有する個別面の(-12-10)面,(2-1-10)面,(-1-120)面を意味している。
 また、{-12-10}面は、{11-20}面と比較すると、原子の構造配列が類似している。すなわち、SiCの単位セル構造においては、{-12-10}面と{11-20}面は、原子の構造配列が結晶軸に対称で、かつ、軸方向に単位セル構造の半分だけずれた構造配列になっている。これは、マクロ的に見れば、類似した結晶面となる。
 上記のSiC半導体基板の結晶面として、{-12-10}面を[000-1]方向に15°オフさせた面上、若しくは、(000-1)面を<-12-10>方向に75°オフさせた面上、に絶縁膜を形成した構造を備えることが特に好ましい。SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度をより向上させることができる。
 また、本発明のSiC半導体素子は、SiC半導体基板と基板に接する絶縁膜を少なくとも備える半導体素子において、SiC半導体基板の結晶面として、{10-10}面を[000-1]方向に10~20°オフさせた面上、若しくは、(000-1)面を<10-10>方向に70~80°オフさせた面上、に絶縁膜を形成した構造を備える。
 特定の結晶面を用いることにより、SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度を向上させることができる。
 ここで、{10-10}面を[000-1]方向に10~20°オフさせた面と、(000-1)面を<10-10>方向に70~80°オフさせた面とは、同じ面を示している。{10-10}面は、等価な対称性を有する個別面の(10-10)面,(0-110)面,(-1100)面を意味している。
 また、{10-10}面は、{1-100}面と比較すると、原子の構造配列が類似している。すなわち、SiCの単位セル構造においては、{10-10}面と{1-100}面は、原子の構造配列が結晶軸に対称で、かつ、軸方向に単位セル構造の半分だけずれた構造配列になっている。これは、マクロ的に見れば、類似した結晶面となる。
 上記のSiC半導体基板の結晶面として、{10-10}面を[000-1]方向に15°オフさせた面上、若しくは、(000-1)面を<10-10>方向に75°オフさせた面上、に絶縁膜を形成した構造を備えることが特に好ましい。SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度をより向上させることができる。
 本発明のSiC半導体基板の特定の結晶面を用いることにより、SiC半導体基板と絶縁膜との界面欠陥を低減し、半導体素子のチャネル移動度を向上させることができ、そのチャネル移動度は90cm/Vs以上のものを得ることができる。
 また、上記の本発明のSiC半導体素子における結晶面が、SiC半導体基板を用いたトレンチゲート構造のMOSFETのトレンチ側壁の結晶面に用いられることが好ましい態様である。
 上記の本発明のSiC半導体素子の結晶面を、トレンチゲート構造のMOSFETのトレンチ側壁の結晶面として用いることにより、デバイス特性を大幅に改善することができる。これについては、後述の実施例において、実際にトレンチゲート構造のMOSFETを作製して、ドレイン電流を測定し、チャネル移動度を評価している。
 ここで、トレンチ側壁の形状としては、特に限定されるものではなく、溝のようなストライプ状や、六角形状の穴のようなハニカム状でもよい。また、側壁の基板面に対する角度は、垂直に形成されるものでも、所定のテーパー角度で斜めに形成されるものでもよく、側壁の結晶面として、本発明の結晶面が用いられていればよい。
 また、上記の本発明のSiC半導体素子における絶縁膜が、ゲート絶縁膜、或いは、表面パッシベーション膜として用いられることが好ましい態様である。なお、絶縁膜には酸化膜や窒化膜が含まれる。
 絶縁膜とSiCの界面欠陥が低減できているため、ゲート絶縁膜として用いることで、MOSFET等のチャネル移動度の向上が図れ、トランジスタのオン抵抗の低減につながることになる。また、表面パッシベーション膜として用いることで、SiC表面、すなわちSiCと絶縁膜の界面におけるキャリアの再結合が押さえられ、リーク電流の低減やバイポーラトランジスタおよびサイリスタなどにおける増幅率の向上につながることになる。
 SiC半導体の結晶構造は、六方晶系の結晶構造であればよく、例えば、4H-SiC、6H-SiC、15R-SiC(菱面体晶)などを用いることができる。また、本発明の半導体素子として、FETを採用する場合、チャネルはn型チャネルであっても、p型チャネルであっても、いずれでもよい。
 本発明によれば、従来から用いている結晶面と比べ、飛躍的にチャネル移動度を向上させることができる。また、しきい値電圧も他のものに比べて低く、ドレイン電流の立ち上がりが急峻であるといった特性を有することから、本発明による結晶面をチャネルとしたSiCのパワーMOSFETを作製すれば、オン抵抗の低減につながり、パワーデバイスの消費電力低減が図れるといった効果を有する。
 また、本発明による結晶面は、他の結晶面よりも界面欠陥が少ないことから、デバイス特性の温度変化も小さく、デバイス特性の改善が図れる効果もある。
4H-SiC単位セルの結晶面の説明図1 4H-SiC単位セルの結晶面の説明図2 4H-SiC単位セルの結晶面と方向の説明図1 4H-SiC単位セルの結晶面と方向の説明図2 4H-SiCの構造模式図 トレンチ側壁の結晶面の一例を示す模式図 トレンチ側壁の結晶面の説明図 本発明の結晶面の説明図1 本発明の結晶面の説明図2 本発明の結晶面を利用するデバイスの構造模式図 SiCのパワーMOSFETの代表例であるDMOSFETの模式図 チャネル移動度をパラメータとしたMOSFETのオン抵抗と絶縁破壊電圧の相関図 作製したトレンチ型MOSFETの構造模式図 UMOSFETのドレイン電流特性の測定結果を示すグラフ UMOSFETのチャネル移動度の測定結果を示すグラフ 第一原理計算により求めたSiO/SiC界面のバンド構造を示す図 各結晶面におけるラフネスと移動度の関係を表すグラフ 各結晶面のAFM像、(a)は(11-20)面を[000-1]方向に15°オフさせた結晶面、(b)は(11-20)面、(c)は(11-20)面を[0001]方向に15°オフさせた結晶面である。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。
 先ず、図1と図2を参照して、4H-SiC単位セルの結晶面の説明を行う。図1にSiCの結晶の単位セル構造を示す。主な六方晶SiCには、一対のSi-Cから成る層がc軸方向に4層周期で積層された構造になっている4H-SiCと、6層周期で積層されている6H-SiCがある。図1の単位セル構造の格子内に、4H-SiCでは4層、6H-SiCでは6層含まれている。
 図2(1)は、六角柱の上面が(0001)Si面、底面が(000-1)C面である。図2(2)は、六角柱の側面が(1-100)面である。図2(3)は、図2(2)の(1-100)面と垂直な面の(11-20)面である。
 この六角柱の底面の(000-1)C面の平面図を図3に示す。図3(1)(2)に示す六角には、a1,a2,a3の方向があり、a1とa2の真ん中の方向が[11-20]方向、その反時計周りに120°毎に[1-210]方向、[-2110]方向となっている。[11-20]方向を法線とする面が、(11-20)面である。また、a1,a2,a3の方向が、それぞれ、[2-1-10]方向、[-12-10]方向、[-1-120]方向となっている。
 また、図4に示すように、[11-20]方向と[1-100]方向とは互いに直交している。
 また、図5は、4H-SiCの構造模式図を示している。図5(1)は{11-20}面の構造模式図であり、図5(2)は{-12-10}面の構造模式図である。{11-20}面と{-12-10}面は、原子の構造配列が類似している。SiCの単位セル構造においては、{11-20}面と{-12-10}面とは原子の構造配列が結晶軸に対称で、かつ、c軸方向に単位セル構造の半分だけずれた構造配列になっている。これは、マクロ的に見れば、類似した結晶面となる。
 図6は、トレンチ側壁の結晶面の一例を示す模式図である。図6では、(000-1)C面のSiC基板に垂直に長方形のトレンチを形成した場合を想定している。4つの側壁は、図6の右の側壁が(11-20)面、その対向する左の側壁が(-1-120)、上の側壁が(1-100)、下の側壁が(-1100)である。
 図7は、(000-1)C面を水平0°から15°傾斜(オフ)させた基板に略垂直にトレンチ側壁を形成した様子の断面模式図を示している。これは図8のSiC結晶の構造模式図に示すように、(11-20)面を[000-1]方向に15°傾斜(オフ)させたものと同等である。すなわち、トレンチゲート構造のMOSFETにおいて、トレンチ側壁の結晶面として、(11-20)面を[000-1]方向に15°オフさせた面が用いられている。
 図9は、SiC結晶の単位セル構造に、(11-20)面を[000-1]方向に15°傾斜(オフ)させた面をハッチング表記で示したものである。
 この面は、後述の実施例1で示すように優れたチャネル移動度を持つものであり、図10に示すようなDMOSFETやUMOSFETのゲート絶縁膜と接触する部分、すなわち、SiC半導体基板に絶縁膜を形成する結晶面として用いれば、それらのデバイス特性を大幅に改善することが可能である。
 これについて、下記に詳細に説明する。
 図11に、SiCのMOSFETの模式図を示す。SiCのMOSFETは、SiC半導体10の基板上にゲート絶縁膜20を形成し、ゲート電極11、ソース電極12、ドレイン電極13の端子を設ける。ここで、SiC半導体10は図に示すように、n層、pボディ層、nドリフト層、n基板層などいくつかの層に分けられる。そして、ソース電極12からドレイン電極13にかけて、電流抵抗となる部位が存在する。
 例えば、ソース電極12とn層の間の抵抗値Rcs、n層の抵抗値R、ゲート絶縁膜20とSiC半導体10の界面21のチャネル抵抗値Rch、pボディ層に挟まれたnドリフト層のJFET抵抗値R、nドリフト層の抵抗値R、n基板層の抵抗値Rsub、n基板層とドレイン電極13の間の抵抗値Rcdである。これらの抵抗値のうち、特に支配的なのが、界面21のチャネル抵抗値Rchである。
 上述したように、4H-SiCでは、バルク中の電子移動度が800-1000cm/Vsと高いのに対し、SiCのMOSFETの界面のチャネル移動度は、10cm/Vsと小さいことが問題として挙げられている。これについて、図12を用いて説明する。図12は、チャネル移動度(μch)とトランジスタのオン抵抗の相関図を示しており、横軸は絶縁破壊電圧、すなわち半導体素子の耐圧を示している。
 図12において、4H-SiCの場合、Siの場合と比べて、同一耐圧の半導体素子に対するオン抵抗値は、シリコン単体(Si
limit)とSiC半導体のドリフト層と基板(drift+sub. limit)を比較すると、絶縁破壊電圧10V付近においては、1000分の1程度と小さいことが示されている。また、チャネル移動度(μch)に反比例してオン抵抗値が低減されることが示されている。
 なお、SiC半導体において、チャネル抵抗、n-ドリフト層の抵抗およびn+基板層の抵抗以外の抵抗値は無視できる大きさである。特にチャネル抵抗値の低減がSiC半導体デバイスの性能向上に不可欠である。SiCのMOSFETの界面のチャネル移動度(μch)を従来の10cm/Vs程度から100cm/Vs程度まで性能向上することで、本来の4H-SiCの高いポテンシャルを活用できることとなる。
 実施例1では、トレンチ型MOSFET(UMOSFET)デバイスを作製し、種々のオフ角を有する(000-1)C面のSiC基板上に、略垂直の側壁を有するトレンチを形成して、デバイス特性を調べた結果を示す。
 図13は、今回作製したトレンチ型MOSFET(UMOSFET)の構造模式図を示している。種々のオフ角を有する(000-1)C面のSiC基板上に、略垂直の側壁を有するトレンチを形成し、トレンチ側壁の片側のみ電流の流れるトレンチ型MOSFETを作製したものである。
 基板について(000-1)面を用い、オフ角は、0°(すなわち、on-axis)、[-1-120]方向に4°、[-1-120]方向に8°、[-1-120]方向に15°,[1-100]方向に8°のものを作製した。また、トレンチの形状は長方形とし、隣接する側壁同士が直交するようにし、側壁の4面は、(11-20)面,(-1-120)面,(1-100)面,(-1100)面となるようにトレンチを形成した。基板にはオフ角があるため、実際には図7に示すように、例えば(11-20)面に対してオフ角がつくようになる。このため、以下の実施例では、例えば(11-20)と表記してあっても、実際には(11-20)面から基板オフ角に由来する傾斜がついている。
 ここで、作製したUMOSFETのチャネル部のアクセプタ密度は、Naが1~2×1017cm-3である。移動度のでやすいアクセプタ密度ではなく、実用化されているデバイスに近いアクセプタ密度を用いている。また、ゲート絶縁膜は、Si酸化膜をウェット酸化で形成し、酸化後に一酸化窒素(NO)ガスを用いて熱処理したものである(酸化膜を窒化させたもの)。
 また、作製したUMOSFETは、ゲート電極としてアルミニウムを使用し、ソース電極としてアルミニウム-チタン合金を使用し、ドレイン電極としてニッケルを使用した。
 図14のグラフは、作製したUMOSFETのドレイン電流特性の測定結果を示すものである。図14の(1)~(5)は、それぞれ、on-axis、[-1-120]方向(図中のa面方向)に4°オフ、[-1-120]方向に8°オフ、[-1-120]方向に15°オフ、[1-100]方向(図中のm面方向)に8°オフさせたものの測定結果をプロットしている。図14の(1)~(5)の内、図14(3)の[-1-120]方向に15°オフさせた基板上に作製したもので、(11-20)面にオフ角がついたものが、最もドレイン電流値が大きいことが確認できる。
 また、図15のグラフは、作製したUMOSFETのチャネル移動度の測定結果を示すものである。図15の(1)~(5)は、図14と同様に、それぞれ、on-axis、[-1-120]方向(図中のa面方向)に4°オフ、[-1-120]方向に8°オフ、[-1-120]方向に15°オフ、[1-100]方向(図中のm面方向)に8°オフさせたものの測定結果をプロットしている。図15の(1)~(5)の内、図15(3)の[-1-120]方向に15°オフさせた基板上に作製したもので、(11-20)面にオフ角がついたものが、最もチャネル移動度が大きいことが確認できる。
 下表1は、[-1-120]方向に4°オフ、[-1-120]方向に8°オフ、[-1-120]方向に15°オフ、[1-100]方向に8°オフさせた基板上に作製したトレンチMOSFETにおいて、(11-20)面,(-1-120)面,(1-100)面,(-1100)面に対して、チャネル移動度の測定最大値をまとめたものである。
 下表1から、(000-1)C面の基板を[-1-120]方向に15°オフさせた基板上にほぼ垂直に形成させたトレンチ側壁のうち、(11-20)面を用いた時のチャネル移動度が103cm/Vsと最も高く、デバイス特性が優れていることが確認できる。この側壁の結晶面は、正確には、図7に示すように、(11-20)面を[000-1]方向に15°オフさせた結晶面である。
Figure JPOXMLDOC01-appb-T000001
 ここで、上記表1中、最左列は、トレンチ型MOSFETを作成した基板の種類を表し、それぞれ(000-1)面を所定角/所定方向にオフした基板を示す。表1中、最上段は、移動度を測定したトレンチ側壁の結晶面を示す。一例として、オフ方向が[-1-120]方向の基板を用いた場合、「(11-20)」とは、「(11-20)面を[000-1]方向に所定角度だけオフさせた結晶面」を示す。
 (11-20)面を[000-1]方向に15°オフさせた結晶面の移動度が特に優れている理由について以下に説明する。
 図16に、第一原理計算により求めたSiO/SiC界面のバンド構造を示す。図16に示すグラフの横軸の各点は、Y(0.0, 0.5, 0.0)、T(0.0, 0.5, 0.5)、Γ(0.0, 0.0, 0.0)、Z(0.0, 0.0, 0.5) である。図16において、Structure1は(11-20)面を[000-1]方向に15°オフさせた結晶面のバンド構造、Structure2は(11-20)面を[0001]方向に15°オフさせた結晶面のバンド構造を示している。
 Structure2では、図16のバンド構造において、伝導帯の下部にYからΓにかけて直線となる準位が存在することがわかる(図中の矢印で示したもの)。ここで、バンド曲線の曲率が小さいほど有効質量が大きいことを表す。このことから、直線となる準位では、電子の有効質量が無限大となり、電子が局在してトラップ準位となっていると考えられる。このため、Structure2では界面準位が多くなり、移動度が小さくなっている。
 一方、Structure1では、Structure2のように伝導帯に直線となる準位は存在しない。すなわち、Structure1では、電子が局在してトラップ準位を形成しているものはなく、界面準位が少ないために移動度が大きくなったと考えられる。
 (11-20)面を所定角度だけオフさせた各種の結晶面について、酸化膜形成後に酸化膜をエッチングしてSiC表面の形状をAFM(原子間力顕微鏡)で測定し、その時のラフネス(最大と最小の差の最大値)と移動度とを対応付けした。
 図17は、各結晶面におけるラフネスと移動度の関係を表すグラフである。グラフの横軸は傾斜角度であり、(11-20)面を傾斜角度0°、(11-20)面を[000-1]方向に傾斜させたものをマイナス角度、(11-20)面を[0001]方向に傾斜させたものをプラス角度として示している。グラフの左側の縦軸(Max of Peak-to-Valley)はラフネス、すなわち界面のうねりの高さの最大と最小の差の最大値をナノメートルで表している。また、グラフの右側の縦軸は電界効果移動度を表している。図17のグラフ中、黒塗り円はラフネスのプロットであり、中抜き円は電界効果移動度のプロットである。
 図18に各結晶面のAFM像を示す。ここで、図18(a)は(11-20)面を[000-1]方向に15°オフさせた結晶面、図18(b)は(11-20)面、図18(c)は(11-20)面を[0001]方向に15°オフさせた結晶面である。
 図17および図18から、各結晶面のSiO/SiC界面におけるラフネスには大きな差異があることが確認できる。
 具体的には、図18(a)に示したもの、すなわち、(11-20)面を[000-1]方向に15°オフさせた結晶面が、ラフネスが小さいことがわかる。図18(b)、図18(c)になると、だんだんとラフネスが大きくなることがわかる。
 これらのことから、移動度の大きい面では、ラフネスが小さいために均一な反転層チャネルが形成されていることがわかる。しかし、ラフネスが大きくなるにつれ反転層が不均一になり、チャネルが途切れ途切れになり、ドレイン電流が流れにくくなる。この結果として移動度が小さくなると考えられる。
 以上のことから、(11-20)面を[000-1]方向に15°オフさせた結晶面の移動度が特に優れている理由としては、界面準位が小さいこと、ラフネスが小さく、均一な反転層が形成できること、の2点である。
(他の実施例)
 実施例1では、{11-20}面を[000-1]方向に15°オフさせた結晶面のチャネル移動度が優れていることを示した。上記結果より、同様に、{10-10}面を[000-1]方向に15°オフさせた結晶面も、優れたチャネル移動度を示すことがわかる。すなわち、上記表1の最下段、 [1-100]方向に8°オフさせた基板の結果によると、(-1100)面を用いた場合、(1-100)面に比較してより高いチャネル移動度が得られた。
 ここで示した(-1100)面は、正確には(-1100)面、すなわち{10-10}面を[000-1]方向に8°オフした結晶面となる。{10-10}面と{11-20}面は、ともに(000-1)面に垂直な結晶面であり、炭素とケイ素の原子が1:1の割合で表面に現れるなど、類似した性質を持っている。
 また、[-1-120]方向に8°オフさせた基板および15°オフさせた基板の結果から、以下のことが容易に類推できる。すなわち、[1-100]方向に15°オフさせた基板を用いると、(-1100)面の移動度は8°オフしたものに比べてより高いチャネル移動度を実現することができる。これは、すなわち{10-10}面を[000-1]方向に15°オフさせた結晶面において、8°オフさせた結晶面より、より高いチャネル移動度を実現することができるといえる。
 さらに、上述の通り、{-12-10}面と{11-20}面、および、{10-10}面と{1-100}面とは、原子の構造配列が、軸方向に単位セル構造の半分ずれた構造配列となっており、互いに類似しており、いずれもより高いチャネル移動度を実現することができる。
 本発明は、電気自動車、ハイブリッド自動車、鉄道、家電、電力系統などのインバータのスイッチで用いられるMIS(MOS)型電界効果トランジスタ(MIS(MOS)FET)に有用である。また、MIS(MOS)FETよりも高耐圧領域で用いられる絶縁ゲート型バイポーラトランジスタ(IGBT)にも利用できる。
 また、ゲートターンオフ(GTO)サイリスタ,接合型バイポーラトランジスタ(BJT),接合型電界効果トランジスタ(JFET),P(i)Nダイオード,ショットキーバリアダイオード(SBD)などの表面パッシベーション膜に適用可能である。
 さらに、横型のパワーMOSFET(RESURF MOSFET)が作製でき、集積化したパワーIC,IPMなどに利用可能である。
  10 SiC半導体
  11 ゲート電極
  12 ソース電極
  13 ドレイン電極
  20 ゲート絶縁膜
  21 界面
  30 トレンチ
 

Claims (11)

  1.  SiC半導体基板と、基板に接する絶縁膜を少なくとも備える半導体素子において、
     前記SiC半導体基板の結晶面として、{11-20}面を[000-1]方向に10~20°オフさせた面上、若しくは、(000-1)面を<11-20>方向に70~80°オフさせた面上、に絶縁膜を形成した構造を備えることを特徴とするSiC半導体素子。
  2.  前記SiC半導体基板の結晶面として、{11-20}面を[000-1]方向に15°オフさせた面上、若しくは、(000-1)面を<11-20>方向に75°オフさせた面上、に絶縁膜を形成した構造を備えることを特徴とする請求項1に記載のSiC半導体素子。
  3.  SiC半導体基板と、基板に接する絶縁膜を少なくとも備える半導体素子において、
     前記SiC半導体基板の結晶面として、{1-100}面を[000-1]方向に10~20°オフさせた面上、若しくは、(000-1)面を<1-100>方向に70~80°オフさせた面上、に絶縁膜を形成した構造を備えることを特徴とするSiC半導体素子。
  4.  前記SiC半導体基板の結晶面として、{1-100}面を[000-1]方向に15°オフさせた面上、若しくは、(000-1)面を<1-100>方向に75°オフさせた面上、に絶縁膜を形成した構造を備えることを特徴とする請求項3に記載のSiC半導体素子。
  5.  SiC半導体基板と、基板に接する絶縁膜を少なくとも備える半導体素子において、
     前記SiC半導体基板の結晶面として、{-12-10}面を[000-1]方向に10~20°オフさせた面上、若しくは、(000-1)面を<-12-10>方向に70~80°オフさせた面上、に絶縁膜を形成した構造を備えることを特徴とするSiC半導体素子。
  6.  前記SiC半導体基板の結晶面として、{-12-10}面を[000-1]方向に15°オフさせた面上、若しくは、(000-1)面を<-12-10>方向に75°オフさせた面上、に絶縁膜を形成した構造を備えることを特徴とする請求項5に記載のSiC半導体素子。
  7.  SiC半導体基板と、基板に接する絶縁膜を少なくとも備える半導体素子において、
     前記SiC半導体基板の結晶面として、{10-10}面を[000-1]方向に10~20°オフさせた面上、若しくは、(000-1)面を<10-10>方向に70~80°オフさせた面上、に絶縁膜を形成した構造を備えることを特徴とするSiC半導体素子。
  8.  前記SiC半導体基板の結晶面として、{10-10}面を[000-1]方向に15°オフさせた面上、若しくは、(000-1)面を<10-10>方向に75°オフさせた面上、に絶縁膜を形成した構造を備えることを特徴とする請求項7に記載のSiC半導体素子。
  9.  前記SiC半導体素子のチャネル移動度が90cm/Vs以上であることを特徴とする請求項1~8のいずれかに記載のSiC半導体素子。
  10.  前記結晶面が、SiC半導体基板を用いたトレンチゲート構造のMOSFETのトレンチ側壁の結晶面に用いられることを特徴とする請求項1~8のいずれかに記載のSiC半導体素子。
  11.  前記絶縁膜が、ゲート絶縁膜、或いは、表面パッシベーション膜として用いられることを特徴とする請求項1~8のいずれかに記載のSiC半導体素子。
PCT/JP2011/004578 2010-08-27 2011-08-12 SiC半導体素子 WO2012026089A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11819565.0A EP2610912A4 (en) 2010-08-27 2011-08-12 SIC SEMICONDUCTOR ELEMENT
JP2012530519A JP5761533B2 (ja) 2010-08-27 2011-08-12 SiC半導体素子
US13/818,810 US9117740B2 (en) 2010-08-27 2011-08-12 SiC semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-191438 2010-08-27
JP2010191438 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012026089A1 true WO2012026089A1 (ja) 2012-03-01

Family

ID=45723111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004578 WO2012026089A1 (ja) 2010-08-27 2011-08-12 SiC半導体素子

Country Status (4)

Country Link
US (1) US9117740B2 (ja)
EP (1) EP2610912A4 (ja)
JP (1) JP5761533B2 (ja)
WO (1) WO2012026089A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201308A (ja) * 2012-03-26 2013-10-03 Toshiba Corp 半導体装置及びその製造方法
JP2013214661A (ja) * 2012-04-03 2013-10-17 Denso Corp 炭化珪素半導体装置およびその製造方法
WO2014178094A1 (ja) * 2013-04-30 2014-11-06 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
JP2015043453A (ja) * 2014-10-15 2015-03-05 株式会社東芝 半導体装置
JP5893172B2 (ja) * 2012-12-28 2016-03-23 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
US9825121B2 (en) 2014-12-26 2017-11-21 Kabushiki Kaisha Toshiba Semiconductor device
JP2019091754A (ja) * 2017-11-13 2019-06-13 株式会社日立製作所 炭化ケイ素半導体装置、電力変換装置および炭化ケイ素半導体装置の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2750198A4 (en) 2011-08-26 2015-04-15 Nat Univ Corp Nara Inst SiC SEMICONDUCTOR ELEMENT AND METHOD FOR MANUFACTURING THE SAME
JP2014007310A (ja) * 2012-06-26 2014-01-16 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP2014120669A (ja) 2012-12-18 2014-06-30 Toshiba Corp 半導体発光素子
JP6696499B2 (ja) * 2015-11-24 2020-05-20 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP7331393B2 (ja) * 2019-03-14 2023-08-23 富士電機株式会社 炭化珪素半導体装置の製造方法
JP7292175B2 (ja) * 2019-10-16 2023-06-16 株式会社東芝 半導体装置
DE102019129412A1 (de) 2019-10-31 2021-05-06 Infineon Technologies Ag Siliziumcarbid-vorrichtung mit graben-gatestruktur und herstellungsverfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144288A (ja) * 1999-11-17 2001-05-25 Denso Corp 炭化珪素半導体装置
JP2002261275A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk Mosデバイス
JP2004281875A (ja) * 2003-03-18 2004-10-07 National Institute Of Advanced Industrial & Technology 炭化珪素半導体装置及びその製造方法
JP2007080971A (ja) * 2005-09-12 2007-03-29 Fuji Electric Holdings Co Ltd 半導体素子およびその製造方法
WO2010116886A1 (ja) * 2009-04-10 2010-10-14 住友電気工業株式会社 絶縁ゲート型バイポーラトランジスタ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257727A (ja) 1986-05-01 1987-11-10 Fujitsu Ltd 半導体装置の製造方法
JP4765211B2 (ja) 2001-07-06 2011-09-07 住友電気工業株式会社 pin型受光素子
JP4360085B2 (ja) * 2002-12-25 2009-11-11 株式会社デンソー 炭化珪素半導体装置
JP4694144B2 (ja) * 2004-05-14 2011-06-08 住友電気工業株式会社 SiC単結晶の成長方法およびそれにより成長したSiC単結晶
JP4375242B2 (ja) 2005-02-02 2009-12-02 株式会社デンソー 半導体用の放熱器
JP2006269534A (ja) 2005-03-22 2006-10-05 Eudyna Devices Inc 半導体装置及びその製造方法、その半導体装置製造用基板及びその製造方法並びにその半導体成長用基板
JP5052007B2 (ja) 2005-12-28 2012-10-17 住友電工デバイス・イノベーション株式会社 半導体装置
JP5229845B2 (ja) * 2006-03-07 2013-07-03 独立行政法人産業技術総合研究所 炭化ケイ素mosfetの製造方法および炭化ケイ素mosfet
JP2008010835A (ja) * 2006-05-31 2008-01-17 Sumitomo Electric Ind Ltd 窒化物結晶の表面処理方法、窒化物結晶基板、エピタキシャル層付窒化物結晶基板および半導体デバイス、ならびにエピタキシャル層付窒化物結晶基板および半導体デバイスの製造方法
JP2008193005A (ja) 2007-02-07 2008-08-21 Eudyna Devices Inc 半導体装置の製造方法
JP5298691B2 (ja) 2008-07-31 2013-09-25 住友電気工業株式会社 炭化ケイ素半導体装置およびその製造方法
JP5721351B2 (ja) * 2009-07-21 2015-05-20 ローム株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144288A (ja) * 1999-11-17 2001-05-25 Denso Corp 炭化珪素半導体装置
JP2002261275A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk Mosデバイス
JP2004281875A (ja) * 2003-03-18 2004-10-07 National Institute Of Advanced Industrial & Technology 炭化珪素半導体装置及びその製造方法
JP2007080971A (ja) * 2005-09-12 2007-03-29 Fuji Electric Holdings Co Ltd 半導体素子およびその製造方法
WO2010116886A1 (ja) * 2009-04-10 2010-10-14 住友電気工業株式会社 絶縁ゲート型バイポーラトランジスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI YANO ET AL.: "Anomalously anisotropic channel mobility on trench sidewalls in 4H-SiC trench-gate metal-oxide-semiconductor field-effect transistors fabricated on 8 off substrates", APPLIED PHYSICS LETTERS, vol. 90, 2007, pages 042102-1 - 042102-3, XP012095686 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201308A (ja) * 2012-03-26 2013-10-03 Toshiba Corp 半導体装置及びその製造方法
US8941120B2 (en) 2012-03-26 2015-01-27 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US9269781B2 (en) 2012-03-26 2016-02-23 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2013214661A (ja) * 2012-04-03 2013-10-17 Denso Corp 炭化珪素半導体装置およびその製造方法
JP5893172B2 (ja) * 2012-12-28 2016-03-23 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
US9337271B2 (en) 2012-12-28 2016-05-10 Mitsubishi Electric Corporation Silicon-carbide semiconductor device and manufacturing method therefor
JPWO2014103257A1 (ja) * 2012-12-28 2017-01-12 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
WO2014178094A1 (ja) * 2013-04-30 2014-11-06 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
US9130036B2 (en) 2013-04-30 2015-09-08 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and method for manufacturing same
JP2015043453A (ja) * 2014-10-15 2015-03-05 株式会社東芝 半導体装置
US9825121B2 (en) 2014-12-26 2017-11-21 Kabushiki Kaisha Toshiba Semiconductor device
JP2019091754A (ja) * 2017-11-13 2019-06-13 株式会社日立製作所 炭化ケイ素半導体装置、電力変換装置および炭化ケイ素半導体装置の製造方法

Also Published As

Publication number Publication date
JP5761533B2 (ja) 2015-08-12
US9117740B2 (en) 2015-08-25
JPWO2012026089A1 (ja) 2013-10-28
US20130285069A1 (en) 2013-10-31
EP2610912A4 (en) 2014-10-22
EP2610912A1 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5761533B2 (ja) SiC半導体素子
JP5613995B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5017768B2 (ja) 炭化珪素半導体素子
US7407837B2 (en) Method of manufacturing silicon carbide semiconductor device
US8686435B2 (en) Silicon carbide semiconductor device
JP5167593B2 (ja) 半導体装置
KR101261962B1 (ko) 고 이동도 전압 금속 산화물 반도체 전계-효과 트랜지스터
JP4064436B2 (ja) パワー素子
JP6017127B2 (ja) 炭化珪素半導体装置
US9269781B2 (en) Semiconductor device and method for manufacturing the same
JP2006100593A (ja) 高耐圧半導体装置
CN102484124A (zh) 氮化物半导体装置
JP2013219161A (ja) 半導体装置および半導体装置の製造方法
US9825121B2 (en) Semiconductor device
JPWO2010116886A1 (ja) 絶縁ゲート型バイポーラトランジスタ
JP4957005B2 (ja) 炭化珪素半導体素子の製造方法
JP5630552B2 (ja) 炭化珪素半導体装置およびその製造方法
Wada et al. Fast switching 4H-SiC V-groove trench MOSFETs with buried P+ structure
JP6550869B2 (ja) 半導体装置
JP7166053B2 (ja) 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
Tanaka et al. 1200 V, 35 A SiC-BGSIT with improved blocking gain of 480
JP2004311815A (ja) 半導体装置およびその製造方法
Mikamura et al. 4H-SiC V-groove trench MOSFETs with low specific on-state resistance and high reliability
JP2020047782A (ja) 半導体装置、インバータ回路、駆動装置、車両、および昇降機
WO2023106087A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012530519

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13818810

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011819565

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE