WO2012017854A1 - 衝撃吸収式ステアリング装置 - Google Patents

衝撃吸収式ステアリング装置 Download PDF

Info

Publication number
WO2012017854A1
WO2012017854A1 PCT/JP2011/066883 JP2011066883W WO2012017854A1 WO 2012017854 A1 WO2012017854 A1 WO 2012017854A1 JP 2011066883 W JP2011066883 W JP 2011066883W WO 2012017854 A1 WO2012017854 A1 WO 2012017854A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
outer column
steering device
pair
portions
Prior art date
Application number
PCT/JP2011/066883
Other languages
English (en)
French (fr)
Inventor
典智 成田
恒 山本
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP11743174.2A priority Critical patent/EP2439126B1/en
Priority to JP2011531695A priority patent/JP5293825B2/ja
Priority to US13/202,461 priority patent/US8590933B2/en
Priority to CN201180001211.1A priority patent/CN102438878B/zh
Publication of WO2012017854A1 publication Critical patent/WO2012017854A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/184Mechanisms for locking columns at selected positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/19Steering columns yieldable or adjustable, e.g. tiltable incorporating energy-absorbing arrangements, e.g. by being yieldable or collapsible
    • B62D1/195Yieldable supports for the steering column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/123Deformation involving a bending action, e.g. strap moving through multiple rollers, folding of members

Definitions

  • the present invention relates to an improvement of an impact absorption type steering device that enables displacement of the steering wheel forward while absorbing impact energy applied to the steering wheel from a driver's body in the event of a collision.
  • the automobile steering device transmits the rotation of the steering wheel 1 to the input shaft 3 of the steering gear unit 2, and pushes and pulls the pair of left and right tie rods 4 as the input shaft 3 rotates. And it is comprised so that a steering angle may be provided to a front wheel.
  • the steering wheel 1 is supported and fixed to the rear end portion of the steering shaft 5, and the steering shaft 5 is rotatably supported by the steering column 6 with the cylindrical steering column 6 inserted in the axial direction. Is done.
  • the front end portion of the steering shaft 5 is connected to the rear end portion of the intermediate shaft 8 via a universal joint 7, and the front end portion of the intermediate shaft 8 is connected to the input shaft 3 via another universal joint 9. Connected.
  • Patent Documents 1 to 5 support a steering column that supports a steering wheel with respect to a vehicle body so that it can be removed forward by an impact load applied forward due to a secondary collision.
  • a structure is disclosed in which an energy absorbing member that absorbs the impact load by plastic deformation is provided between a vehicle body and a member that is displaced forward together with the column, and such a structure has already been widely implemented. .
  • FIG. 21 to FIG. 24 show an example of the structure of an automobile steering device having such an impact absorbing function.
  • This structure includes a tilt mechanism for adjusting the vertical position of the steering wheel 1 (see FIG. 20) and a telescopic mechanism for adjusting the front-rear position thereof.
  • the steering column 6a, the support bracket 10 and A pair of left and right sandwiched wall portions 11 provided on the steering column 6a side and a vehicle body side bracket 12 are provided.
  • the steering column 6a is configured such that the entire length thereof can be expanded and contracted by fitting the front portion of the rear outer column 13 and the rear portion of the front inner column 14 so as to allow relative displacement in the axial direction.
  • a steering shaft 5a is rotatably supported on the inner diameter side of the steering column 6a.
  • the steering shaft 5a is also configured to be extendable and contractible by combining an outer shaft and an inner shaft.
  • the housing 16 is supported on a part of the vehicle body by a bolt (not shown) that passes through a support tube 17 provided in the upper portion in the width direction so as to be able to swing and displace.
  • the steering wheel 1 is fixed to a portion protruding rearward from the steering column 6a at the rear end portion of the steering shaft 5a. Further, the portion of the front end portion of the steering shaft 5a that protrudes forward from the steering column 6a is connected to the intermediate shaft 8 (see FIG. 20) via the universal joint 7.
  • the width direction means the width direction of the vehicle when the steering device is assembled to the vehicle.
  • the support bracket 10 is coupled and supported to the vehicle body side bracket 12 so that it can be displaced and detached forward by an impact load based on a secondary collision.
  • the support bracket 10 is formed by joining and fixing a top plate 18 and a pair of left and right side plates 19a and 19b made of a metal plate having sufficient strength and rigidity, such as a steel plate, by welding or the like. Of these, both ends in the width direction of the top plate 18 serve as coupling plate portions 20 for coupling and supporting the support bracket 10 to the vehicle body side bracket 12.
  • a notch 21 opening at the rear end edge of the coupling plate part 20 is formed in the center part in the width direction of these coupling plate parts 20, respectively. 22 are respectively mounted.
  • These capsules 22 are made of a material that is slippery with respect to the metal plate constituting the top plate 18, such as a soft metal such as a synthetic resin or an aluminum alloy. In a normal state, these capsules 22 do not come out of the notches 21, but when a large impact load directed forward is applied to the support bracket 10, the support brackets 10 are moved into these notches 21.
  • a member for locking, for example, a set pin spanned between the top plate 18 and the capsules 22 is torn off and comes out of the notches 21 backward.
  • through holes 23 for inserting bolts or studs for connecting and supporting the support bracket 10 to the vehicle body side bracket 12 are provided.
  • the support bracket 10 In order to connect and support the support bracket 10 to the vehicle body side bracket 12, bolts inserted through the through holes 23 of these capsules 22 from below to above are supported by nuts 24 supported and fixed to the vehicle body side bracket 12 by welding or the like. Screw together and tighten further. Since the vehicle body side bracket 12 is fixed to the vehicle body side in advance, the support bracket 10 can be removed forward only when a large impact load directed forward is applied by tightening the bolt. The joint will be supported.
  • the support bracket 10 can also be obtained by inserting a stud fixed to the lower surface of the vehicle body side bracket 12 through the through hole 23 of the capsule 22 from top to bottom, screwing a nut into the lower end of the stud, and further tightening. Can be coupled and supported to the vehicle body side bracket 12.
  • vertically elongated holes 26 are formed at positions where a pair of sandwiching plate portions 25a and 25b provided on the side plates 19a and 19b are aligned with each other with the outer column 13 sandwiched from both sides. These vertically elongated holes 26 have a partial arc shape with the center axis of the support tube 17 as the center.
  • the outer column 13 is supported between the side plates 19a and 19b by a fastening rod 27 inserted through the vertically elongated holes 26.
  • the to-be-clamped wall part 11 is provided above the front part of the outer column 13, and the longitudinal direction long hole 28 (refer FIG. 4, FIG. 6) long in the axial direction of the outer column 13 is provided in these to-be-clamped wall parts 11.
  • the outer column 13 is supported with respect to the support bracket 10 by a fastening rod 27 that is inserted through the vertical slot 26 and the longitudinal slot 28. Therefore, the outer column 13 is swingable in the vertical direction around the bolt inserted into the support tube 17 within a range in which the fastening rod 27 can be displaced in the vertical long hole 26. Further, the tightening rod 27 can be displaced in the front-rear direction (axial direction) within a range in which it can be displaced in the front-rear direction long hole 28.
  • the fastening rod 27 has an outward flange-shaped flange portion 29 fixed to one end portion (the right end portion in FIG. 22), and a cam composed of a driving cam 30 and a driven cam 31 at the other end portion.
  • a device 32 is provided.
  • the distance between the driven cam 31 and the flange 29 is shortened by rotating the adjustment lever 33 upward.
  • the inner side surfaces of the sandwiching plate portions 25a and 25b and the respective outer surfaces of the sandwiched wall portion 11 strongly come into contact with each other, and the vertical position of the steering wheel 1 is fixed by frictional engagement therebetween.
  • the diameter of the front end portion of the outer column 13 provided with these sandwiched wall portions 11 is reduced, and the inner peripheral surface of the front end portion of the outer column 13 and the outer peripheral surface of the rear end portion of the inner column 14 are in strong contact with each other, Due to these frictional engagements, the steering column 6a cannot be expanded and contracted. As a result, the front and rear positions of the steering wheel 1 are fixed.
  • the automobile steering apparatus having such a configuration displaces the support bracket 10 forward while leaving the capsule 22 on the side of the vehicle body side bracket 12 in the event of a secondary collision resulting from a collision accident. That is, along with the secondary collision, a large impact load directed forward is applied to the support bracket 10 from the steering wheel 1 through the steering shaft 5a, the outer column 13, and the tightening rod 27. And the member which has latched the capsule 22 to the coupling plate part 20 is torn, and the support bracket 10 is displaced forward while the capsule 22 is pulled out from the notch 21. As a result, the steering wheel 1 is also displaced forward, and the impact on the driver's body that collides with the steering wheel 1 can be reduced.
  • the steering wheel 1 when the steering wheel 1 is displaced forward with a secondary collision, the steering wheel 1 is displaced forward while absorbing the impact energy applied to the steering wheel 1 from the driver's body.
  • the frictional force acting on the contact portion between the outer surface of each of the sandwiched wall portions 11 and the inner surface of each of the sandwiching plate portions 25a and 25b, and the outer column The frictional force acting on the abutting portion between the front inner peripheral surface of 13 and the rear outer peripheral surface of the inner column 14 serves as a resistance against the forward displacement of the steering wheel 1 and contributes to the absorption of impact energy.
  • the energy absorption performance based on the frictional force is unstable, and it is difficult to improve the driver protection by itself.
  • Patent Document 2 proposes a structure in which an energy absorbing member is provided between a steering column and a vehicle body that are displaced forward during a secondary collision.
  • an energy absorbing member 36 formed by bending a plastically deformable wire is fixed to a support pin 38 fixed on the upper surface of the steering column 6b and the vehicle body side. It is installed between the holding case 39.
  • the energy absorbing member 36 extends from the state shown in FIG. 26A to the state shown in FIG. The energy required for the extension is absorbed from the impact energy applied to the steering wheel from the driver's body, and the impact applied to the driver's body is alleviated.
  • the energy absorbing member 36 and the fastening rod 27 may be shifted in a direction perpendicular to the central axis of the outer column 13. If such a deviation exists, a moment in the swinging direction is generated during the secondary collision.
  • the energy absorbing member 36 acts as a resistance against the forward displacement of the outer column 13 during the secondary collision.
  • Such instability in energy absorption performance is due to the fact that the energy absorption member 36 and the fastening rod 27 are both installed on the same side with respect to the vertical direction of the steering columns 6a, 6b, and between these members 36, 27. If the deviation in the direction perpendicular to the central axis of the steering columns 6a and 6b is reduced, it can be reduced or eliminated. However, the tightening rod 27 is often provided below the steering columns 6a and 6b. In this case, as shown in FIGS. 25 to 26, depending on the structure in which the energy absorbing member 36 is provided between the steering column 6b and the vehicle body 37 provided above the steering column 6b, the moment may be reduced. It cannot be reduced, and the energy absorption performance cannot be prevented from becoming unstable.
  • an object of the present invention is to realize a structure of an impact-absorbing steering device that has low-cost and better performance while ensuring a degree of freedom in design.
  • the shock absorbing steering device of the present invention is An inner column arranged on the front side in a state where the front-rear position is regulated, and an outer portion of the inner column that is externally fitted so as to allow relative displacement in the axial direction, and an axial direction at a front portion that is a fitting portion with the inner column
  • a pair of sandwiched wall portions provided at a position sandwiching the slit from the left and right sides on the lower surface or upper surface of the front portion, and sandwiching these
  • a steering column including an outer column having a pair of first through holes formed at positions where the wall portions are aligned with each other;
  • An inner shaft and a rear portion of the inner shaft are fitted so as to allow relative displacement in the axial direction, a rear end portion projects rearward from a rear end opening of the outer column, and a steering wheel is supported and fixed to the rear end portion.
  • a support bracket comprising a mounting plate portion supported by the vehicle body so as to be able to drop forward based on impact energy applied to the outer column from the steering wheel during a secondary collision;
  • a tightening rod that is inserted into the first through hole and the second through hole and has a pair of pressing portions at both ends, An interval between the pair of pressing portions is expanded and contracted, and a diameter of the front portion of the outer column is reduced when the interval is contracted, and an outer peripheral surface of the front portion of the outer column and an outer peripheral surface of the rear portion of the inner column
  • An energy absorbing member that absorbs a part of the impact energy by a relative movement of the plastic deformation, Is provided.
  • the energy absorbing member is provided in the rear portion of the substrate portion and the substrate portion, or extends rearward from the substrate portion, with respect to the substrate portion.
  • An energy absorbing part having a folded part folded in a U-shape upward or downward, a rear end side mounting part provided at the front end part of the folded part, and a front end side provided in front of the substrate part And an attachment portion.
  • returning part and the said rear-end side attaching part are arrange
  • the front end side mounting portion is fixed to a portion that is not displaced forward even during the secondary collision.
  • a guide that guides the movement of the folded portion when the folded portion moves as the rear end mounting portion moves forward together with the outer column at the time of the secondary collision. It is preferable to provide a part.
  • a portion that is displaced forward together with the outer column, to which the rear end side mounting portion is fixed, is the fastening rod.
  • the portion where the front end side mounting portion is fixed and not displaced forward is a member fixed to the front end portion of the inner column or the front end portion of the inner column.
  • the front end side is fixed to the front end portion of the inner column
  • the front end side mounting portion is fixed to the front end portion of the inner column.
  • the mounting portion includes a butting plate portion bent at right angles in opposite directions from a front end edge of the base portion or a portion projecting forward from the front end edge of the base portion, and these butting plate portions are mounted on the housing. It can be coupled and fixed to the housing in a state of being in contact with the rear end face.
  • the front end side mounting portion is fixed, and the portion that does not displace toward the front is defined as the front end portion of the inner column. It is constituted by members extending in the same direction upward or downward from the left and right side edges of the portion protruding forward from the front end edge, and each member is curved so as to be curved along the shape of the outer peripheral surface of the inner column. And a front end portion provided with a mounting hole, and with the curved portion fitted to the front end portion of the inner column, a bolt inserted through the mounting hole is screwed with a nut and further tightened. These tip portions can be coupled and fixed.
  • the energy absorbing portion extends rearward from the substrate portion, the folded portion is provided in an intermediate portion, and the rear end mounting portion is the tip of the folded portion.
  • the fastening rod is inserted into the third through hole.
  • the shock absorbing steering device includes a mounting plate portion, a hanging plate portion bent at a right angle from the mounting plate portion, and a guide bent at a right angle from the hanging plate portion toward the opposite side of the mounting plate portion.
  • a guide space is formed between the upper surface or the lower surface of the front portion of the outer column so as to face the space between the sandwiched wall portions.
  • the energy absorbing portion of the energy absorbing member is disposed in the guide space, and the guide plate moves together with the outer column and the rear end side attaching portion forward during the secondary collision.
  • the guide plate moves together with the outer column and the rear end side attaching portion forward during the secondary collision.
  • the folded portion extends rearward from the intermediate portion in the width direction of the rear end edge of the substrate portion, and the rear end edge of the substrate portion is provided on the substrate portion.
  • a pair of left and right thin portions extending forward from the portion sandwiched from the left and right sides of the base end portion of the folded portion to the middle portion of the substrate portion, A portion sandwiched between the pair of thin portions constitutes a part of the energy absorbing portion.
  • the energy absorbing member is further provided with a pair of bent plate portions bent in the same direction from left and right side edges of the substrate portion, and at least a rearward portion of the upper end edge or the lower end edge of the bent plate portion, It is preferable that the lower surface or the upper surface of the sandwiched wall portion is in contact with or in close proximity.
  • the first through hole is a longitudinal long hole that is long in the axial direction of the outer column, and the front and rear of the outer column are within a range in which the clamping rod can be displaced within the first through hole.
  • the position can be adjusted, and the interval between the pair of pressing portions is enlarged or reduced based on the operation of an adjustment lever provided at the proximal end portion of the clamping rod, and when the interval is contracted, the front portion of the outer column It is preferable to provide a telescopic structure in which the diameter of the outer column is reduced to fix the front and rear positions of the outer column.
  • the front end portion of the inner column is supported with respect to the vehicle body so as to be capable of swinging displacement about the horizontal axis, and the second through hole is a part centered on the horizontal axis.
  • the vertical position of the steering wheel can be adjusted within a range in which the clamping rod can be displaced within the vertical elongated hole.
  • the distance between the pair of pressing parts is expanded and contracted, and when the distance contracts, the distance between the pair of sandwiching plate parts is shortened. It is preferable to provide a tilt structure in which the vertical position of the outer column is fixed by frictional engagement between the outer wall and the outer surface of the sandwiched wall portion.
  • a plurality of elongated ridges are formed on the outer peripheral surface of the inner column, each of which is long in the axial direction, and the outer peripheral surface of the inner column and the inner peripheral surface of the outer column are formed at the tops of these ridges. It is preferable to make contact.
  • the spline shaft can be expanded and contracted by spline engagement between the male spline teeth formed on the outer peripheral surface of the end portion of the inner shaft and the female spline teeth formed on the inner peripheral surface of the end portion of the outer shaft.
  • a synthetic resin coating layer having a low friction coefficient on the surface of at least one of the male spline teeth and the female spline teeth.
  • a cam member is externally fitted to an intermediate portion of the tightening rod, and the cam member is rotated in a direction in which the diameter of the front portion of the outer column is increased. It is preferable that the slit is formed in the front portion of the column and enters the engagement hole formed in the rear portion of the inner column.
  • the fastening rod and the energy absorbing member can be arranged in series with respect to the axial direction of the outer column. It is possible to prevent or reduce the moment in the swinging direction from being applied to the outer column during the next collision. This stabilizes the friction engagement state of the fitting part between the front part of the outer column and the rear part of the inner column, stabilizes the sliding of this fitting part, and stabilizes the absorption of impact energy at the time of the secondary collision. Can be For this reason, it is possible to improve the impact absorbing performance without hindering the degree of freedom of design.
  • the folded portion in the energy absorbing portion of the energy absorbing member, is configured to bend inward between the substrate portion and the sandwiched wall portion of the outer column.
  • the front end portion of the folded portion and the rear end side mounting portion provided at the front end portion can be disposed in the space.
  • the energy absorbing member can be arranged in a compact manner, and when a harness or column cover of an electrical component arranged in the vicinity of the energy absorbing member is deformed at the time of collision, it is difficult to receive interference due to the deformation. Energy absorption is performed stably.
  • a guide plate is provided separately, or a guide space is formed by the guide portion by providing a substrate portion of the energy absorbing member and bent plate portions on both side edges thereof, and the energy absorbing portion of the energy absorbing member is connected to this guide portion.
  • the energy absorbing portion is covered at the time of a secondary collision, and a failure at the time of occurrence of an impact load is similarly prevented, so that the impact energy absorption performance can be further stabilized.
  • FIG. 1 is a perspective view showing a normal state of an example of a steering device according to a first embodiment of the present invention as seen from the front upper side.
  • FIG. 2 is a perspective view showing the normal state of the apparatus of FIG. 1 as seen from the rear lower side.
  • FIG. 3 is a side view of the normal state of the apparatus of FIG. 4 is a cross-sectional view taken along the line aa in FIG.
  • FIG. 5 is an orthographic projection showing the normal state of the apparatus of FIG. 1 as seen from below.
  • FIG. 8 is a cross-sectional view taken along the line bb of FIG. 5 showing the normal state (A) and the state (B) after the occurrence of the secondary collision in the apparatus of FIG.
  • FIG. 9 is a perspective view of the vehicle body side bracket of the apparatus of FIG.
  • FIG. 10 is a perspective view showing a normal state of the steering apparatus as an example of the second embodiment of the present invention as seen from the front upper side.
  • FIG. 11 is a perspective view showing the normal state of the apparatus of FIG. 10 as seen from the rear lower side.
  • FIG. 12 is a side view of the normal state of the apparatus of FIG.
  • FIG. 13 is a cross-sectional view taken along the line cc of FIG.
  • FIG. 14 is an orthographic view showing the normal state of the apparatus of FIG. 10 as seen from below.
  • FIG. 15 is an exploded perspective view showing a mechanism portion for adjusting the front and rear position and the vertical position of the outer column of the apparatus of FIG.
  • FIG. 16 is a perspective view (A) showing the energy absorbing member of the apparatus of FIG. 10 as viewed from the front lower side, a perspective view (B) as seen from the front upper side, and e- e is a cross-sectional view (C) and a perspective view (D) showing another example of the energy absorbing member as seen from the front lower side.
  • FIG. 17 is a cross-sectional view taken along the line dd of FIG.
  • FIG. 18 is a perspective view showing a normal state of another example of the steering apparatus according to the second embodiment of the present invention as seen from the lower rear side.
  • FIG. 19 is a perspective view (A) showing the energy absorbing member of the apparatus of FIG. 18 as viewed from the front upper side, and a perspective view (B) as seen from the rear lower side.
  • FIG. 20 is a partially cut side view showing an example of a conventional steering device.
  • FIG. 21 is a perspective view showing an example of a conventional shock absorption type steering device as seen from the front upper side.
  • 22 is a cross-sectional view of the apparatus of FIG.
  • FIG. 23 is a view similar to FIG. 21, showing the apparatus of FIG.
  • FIG. 21 with the vehicle body side bracket omitted.
  • 24 is a perspective view showing the support bracket of the apparatus of FIG. 21 as seen from the rear lower side.
  • FIG. 25 is a partial side view (A) and a ff cross-sectional view (B) of a steering column portion of an impact absorption type steering apparatus incorporating a conventional energy absorbing member.
  • FIG. 26 is a cross-sectional view taken along the line gg of FIG. 25A, showing the normal state (A) and the state (B) after the occurrence of the secondary collision in the steering column portion of the apparatus of FIG.
  • the shock absorbing steering device of this example includes an inner column 14a, an outer column 13a, a steering shaft 5b, a pair of sandwiched wall portions 11a, a pair of longitudinal slots 28, a support bracket 10a, A pair of vertical elongated holes 26a and 26b, a fastening rod 27a, a cam device 32a constituting a fixing means, and an energy absorbing member 36a are provided.
  • the longitudinal long hole 28 corresponds to the first through hole
  • the vertical long holes 26a and 26b correspond to the second through hole, respectively.
  • first through hole and the second through hole can be changed depending on whether or not the steering device includes a telescopic mechanism and / or a tilt mechanism.
  • the first through hole and the second through hole may be a simple circular hole.
  • the inner column 14a is arranged in front of the outer column 13a in a state where the front-rear position is restricted, that is, in a state where it is prevented from being displaced forward even during a secondary collision.
  • the front end portion of the inner column 14a is coupled and fixed to the rear end portion of a housing 41 that houses components such as a speed reducer constituting the electric power steering device 40.
  • the housing 41 is formed, for example, by die-casting an aluminum alloy, and a through hole for inserting the front end portion of the steering shaft 5b is formed in the rear wall portion. And the cylindrical wall part protrudes and forms in the peripheral part of this through-hole toward back.
  • the front end portion of the inner column 14a is externally fitted to the cylindrical wall portion with an interference fit, and is joined and fixed to the housing 41 by abutting the front end edge against the rear wall portion.
  • the inner column 14a has a tubular shape as a whole, and a plurality of protrusions 42 (preferably an even number, six in the illustrated example), each of which is long in the axial direction, are provided on the outer peripheral surface excluding the front end. They are formed at equal intervals in the circumferential direction.
  • the outer column 13a is integrally formed, for example, by die-casting an aluminum alloy.
  • the front column of the outer column 13a is externally fitted to the rear portion of the inner column 14a to constitute a telescopic steering column 6c.
  • the inner peripheral surface of the outer column 13 a and the outer peripheral surface of the inner column 14 a are brought into contact with each top portion of the protrusion 42.
  • the front and rear positions of the outer column 13a can be adjusted and fixed with respect to the inner column 14a.
  • the slit 43 is provided in the front part which is a fitting part with the inner column 14a among this outer column 13a, and the diameter of this front part can be elastically expanded / contracted.
  • the contact portion between the outer peripheral surface of the inner column 14a and the inner peripheral surface of the outer column 13a is substantially line contact.
  • the sliding resistance between the outer column 13a and the inner column 14a is reduced, and the change in the contact surface is reduced.
  • the impact energy is absorbed by these contacts. Variation is suppressed.
  • the outer column 13a is tightened and reduced in diameter, its shape is slightly deformed, so that it is prevented from rotating between the outer column 13a and the inner column 14a. The position 43 is stabilized.
  • the steering shaft 5b is a spline engagement between a female spline tooth formed on the inner peripheral surface of the front half of the outer shaft 44 constituting the rear half and a male spline tooth formed on the outer peripheral surface of the rear half of the inner shaft 45 constituting the front half.
  • a synthetic material having a low friction coefficient such as polyamide resin (nylon), polytetrafluoroethylene resin (PTFE), polyacetal resin, etc.
  • a resin coating layer is formed. Therefore, the outer shaft 44 and the inner shaft 45 are combined so as to be able to transmit torque and extend and contract with a light force.
  • Such a steering shaft 5b is rotatably supported on the inner diameter side of the steering column 6c. Specifically, a portion closer to the rear end of the middle portion of the outer shaft 44 is provided on the inner diameter side of the rear end portion of the outer column 13a by a rolling bearing that can support a radial load and an axial load, such as a single row deep groove type ball bearing. Supports only rotation. Therefore, the outer shaft 44 moves as the outer column 13a moves in the axial direction, and the steering shaft 5b expands and contracts.
  • the pair of sandwiched wall portions 11a are provided integrally with the outer column 13a at a position where the slit 43 is sandwiched from the left and right sides on the lower surface of the front portion of the outer column 13a.
  • Longitudinal holes 28 in the front-rear direction are formed in the axial direction of the outer column 13a at positions where these sandwiched wall portions 11a are aligned with each other.
  • the slit 43 and the sandwiched wall portion 11a are provided on the lower side of the outer column 13a, and the fastening means 27a and a fixing means for expanding and contracting the front portion of the outer column 13a are provided in the outer column.
  • the present invention is not limited to this mode, the present invention is not limited to this mode.
  • a slit and a sandwiched wall portion are provided on the upper side of the outer column.
  • the present invention can also be applied to a structure in which a fixing means for expanding / reducing the front portion of the outer column is provided.
  • the support bracket 10a has a pair of left and right clamping plate portions 25c, 25d and a mounting plate portion 48. These sandwiching plate portions 25c and 25d and the mounting plate portion 48 are formed by pressing metal plates having sufficient strength and rigidity, such as carbon steel plates, and are joined together by means such as welding. It is fixed.
  • the sandwiching plate portions 25c and 25d sandwich the sandwiched wall portion 11a provided on the lower surface of the outer column 13a (upper surface in the case where there is a slit on the upper side of the outer column) from both the left and right sides.
  • the mounting plate portion 48 supports the outer column 13a with respect to the vehicle body via the sandwiched wall portion 11a, and allows the outer column 13a to be displaced forward during a secondary collision.
  • the capsule 22a is impacted at the time of the secondary collision in each of the pair of notches 21a formed on the left and right ends of the mounting plate 48, respectively. It is installed so that it can drop off based on the load.
  • the vertically long holes 26a and 26b have a partial arc shape centering on the central axis of the support tube 17a provided in the front upper portion of the housing 41, and are the longitudinal lengths of the sandwiching plate portions 25c and 25d.
  • the hole 28 is formed in a portion that matches a part of the length direction.
  • the tightening rod 27a is inserted through the longitudinal direction long holes 28 and the vertical direction long holes 26a and 26b.
  • the tightening rod 27a has a tilt spacer 47, a spacer 48, a washer 49, and a thrust bearing in order from the center of the tightening rod 27a at a portion near the tip of the intermediate portion (the right-side portion in FIGS. 4 and 6). 50 and the outer fitting.
  • the members 47 to 50 are prevented from coming out of the tightening rod 27a by the nut 51 screwed to the tip of the tightening rod 27a. Further, after the nut 51 is screwed into a necessary portion, any portion is caulked and deformed to prevent loosening.
  • These members 47 to 50 are arranged so that the position of the steering wheel 1 (see FIG. 20) is adjusted by the displacement of the tightening rod 27a and the displacement along the vertical slot 26a at the tip of the tightening rod 27a. Are provided so as to be performed smoothly.
  • a cam device 32a including a driving side cam 30a and a driven side cam 31a is provided at the proximal end portion of the fastening rod 27a.
  • the driven cam 31a and the nut 51 form a pair of pressing portions in the present invention.
  • the driving cam 30a is rotationally driven by the adjusting lever 33a so that the distance between the driven cam 31a and the nut 51 can be increased or decreased.
  • the driven cam 31a is engaged with the vertical long hole 26b from the outer surface side of the clamping plate portion 25d in a state in which displacement (lifting) along the vertical long hole 26b is possible and rotation is prevented. is doing.
  • the distance between the driven cam 31 a and the nut 51 is increased by rotating the adjustment lever 33 a downward.
  • the contact pressure between the inner side surfaces of the sandwiching plate portions 25c and 25d and the left and right side surfaces of the outer column 13a including the sandwiched wall portion 11a is reduced or lost.
  • the diameter of the front portion of the outer column 13a is elastically expanded, and the contact pressure between the front inner peripheral surface of the outer column 13a and the rear outer peripheral surface of the inner column 14a is reduced.
  • the outer column 13a is displaced within a range in which the tightening rod 27a can be displaced in the vertical elongated holes 26a, 26b and the longitudinal longitudinal hole 28. Then, the position of the steering wheel 1 supported and fixed to the rear end portion of the outer shaft 44, which is rotatably supported in the outer column 13a, that is, at least one of the front-rear direction position and the vertical position is adjusted. To do. During this adjustment operation, the weight of the portion that moves up and down together with the outer column 13 is set between the housing 41 and the mounting plate portion 46 that constitutes the support bracket 10a. It is supported by 35a. For this reason, even when the position of the steering wheel 1 is adjusted, the driver does not need to support the entire weight of the portion.
  • the adjustment lever 33a is rotated upward to shorten the distance between the driven cam 31a and the nut 51.
  • the contact pressure between the inner side surfaces of the clamping plate portions 25c and 25d and the left and right side surfaces of the outer column 13a, and the contact pressure between the front inner peripheral surface of the outer column 13a and the rear outer peripheral surface of the inner column 14a. Becomes higher, and the position of the outer column 13a is fixed at the desired position.
  • the energy absorbing member 36a which is a characteristic part of this example, is a portion that is displaced forward together with the outer column 13a in the event of a secondary collision, and the axially intermediate portion of the tightening rod 27a, and the housing of the electric power steering device 40 41 is provided between the rear end surface of 41.
  • the energy absorbing member 36a is subjected to punching and bending by pressing or the like on a metal plate such as a mild steel plate that has an appropriate strength and rigidity for absorbing impact energy and is capable of plastic deformation.
  • a metal plate such as a mild steel plate that has an appropriate strength and rigidity for absorbing impact energy and is capable of plastic deformation.
  • FIG. 7 they are formed so as to be integrated as a whole.
  • the energy absorbing member 36 a includes a tension beam portion 52, an energy absorbing portion 53, and a pair of left and right front end side attaching portions 54.
  • the tension beam portion 52 has high bending rigidity in the axial direction of the outer column 13a. That is, it has a bending rigidity that does not cause buckling deformation due to an impact load applied in the axial direction of the outer column 13a during a secondary collision.
  • the folding beam portion 52 is formed by folding the substrate portion 55 and one side edge of the substrate portion 55 in the width direction at right angles to the substrate portion 55.
  • the section modulus of the tension beam section 52 is increased by forming the section 56 into an L-shaped section.
  • the strut beam portion 52 may be configured by only the substrate portion 55 without providing the folded plate portion 56. Conversely, the side edges of the substrate portion 55 can be folded so that the cross-sectional shape of the stretched beam portion 52 can be substantially U-shaped.
  • the energy absorbing portion 53 is provided on the rear side of the tension beam portion 52 and has a U-shaped folded portion 57 in the middle portion.
  • the folded portion 57 has a structure in which there is a slit on the upper side of the outer column (upper side of the outer column) from the rear end edge of the portion extending backward from the substrate portion 55 of the tension beam portion 52. When applied, it is folded 180 ° so as to be U-shaped downward. Therefore, the tip of the energy absorbing portion 53 is positioned above (or below) the tension beam portion 52.
  • a pair of left and right protrusions 58 are formed at the front end of the energy absorbing portion 53 and bent at a right angle from both side edges in the width direction upward (or downward).
  • a circular insertion hole 59 through which the tightening rod 27a is inserted is formed in each of the protrusions 58.
  • these protruding portions correspond to the rear end side attaching portions
  • the insertion holes 57 correspond to the third through holes.
  • the structure of the rear end side mounting portion is not limited to the illustrated structure.
  • the front end portion of the bent portion 53 is formed in an annular shape, and the fastening rod 27a is inserted into the ring, or the protruding portion 58 is fixed to the inner side surface of the outer wall 11a of the outer column. It is also possible to take measures.
  • the pair of left and right front end side mounting portions 54 are provided at the front end portions of the bent portions 52 bent forward from the left and right side edge portions of the rising plate portion 60 bent at a right angle with the front end portion of the stretched beam portion 52 upward (or downward). Further, it is formed as a butt plate portion by bending at right angles toward opposite sides. And the attachment hole 61 is formed in the front-end
  • a guide plate 63 is fixed to a portion facing the slit 43 on the lower surface of the front portion of the outer column 13a.
  • the guide plate 63 corresponds to a guide portion.
  • the guide plate 63 is formed by bending a metal plate having sufficient strength and rigidity into a crank-shaped cross section.
  • the guide plate 63 has a mounting plate portion 64 provided on the upper side and a side edge of the mounting plate portion 64 downward.
  • a hanging plate portion 65 bent at a right angle toward the direction and a guide plate portion 66 bent at a right angle from the lower end edge of the hanging plate portion 65 toward the opposite side to the mounting plate portion 64 are provided.
  • an abutting plate portion 67 bent at a right angle from the mounting plate portion 64 upward (or downward) is provided at the rear edge of the mounting plate portion 64.
  • a guide plate 63 abuts the mounting plate portion 64 against the lower surface of one of the sandwiched plate portions 11a of the sandwiched plate portion 11a, and the abutment plate portion 67 of the one sandwiched plate portion 11a. In a state where it abuts against the rear end surface of 11a, it is fixed to this one sandwiched plate portion 11a with a screw 68.
  • the guide plate 63 has a structure extending in the axial direction of the outer column 13a.
  • the guide plate 63 is not limited to such a structure, and a rib structure having a structure short in the axial direction is used. Alternatively, a plurality of guide plates having this rib structure may be arranged in the axial direction of the outer column 13a.
  • a guide space 69 is provided between the center portion in the width direction of the lower surface of the outer column 13a (the portion between the sandwiched plate portions 11a on both sides) and the upper surface of the guide plate portion 66.
  • the central portion in the width direction of the lower surface of the outer column 13a and the upper surface of the guide plate portion 66 are parallel to each other, and the height dimension of the guide space 69 is made uniform in the front-rear direction.
  • the energy absorbing member 36 a is provided between the outer column 13 a and the housing 41 in a state where the energy absorbing portion 53 is disposed in the guide space 69.
  • the tightening rod 27 a is inserted through the insertion hole 59 provided in the protrusion 58.
  • the rear part of the energy absorbing member 36a is coupled to the outer column 13a through the fastening rod 27a, and the rear part of the energy absorbing member 36a is displaced forward together with the outer column 13a in the event of a secondary collision. ing.
  • the rear end portion of the energy absorbing member 36a is fixed to the tightening rod 27a.
  • the tightening rod 27a is formed by the vertical elongated holes 26a and 26b of the outer column 13a. Since the clamping rod 27a is supported by both of them and is repeatedly used to operate the tilt mechanism, it is hardened by heat treatment, so that it has high bending resistance and the energy absorbing member 36a absorbs impact energy. There is an advantage that no variation occurs.
  • the bolt 70 inserted into the mounting hole 61 of the front end side mounting portion 54 is screwed into a screw hole opened in the rear end surface of the housing 41 and further tightened, whereby the front portion of the energy absorbing member 36a is attached to the housing 41. It is fixed to the connection.
  • the housing 41 is formed of an aluminum die-cast rigid body, so even when an impact load is applied. Since the deformation of the mounting portion is prevented, similarly, variation in absorption of impact energy can be suppressed. Further, by configuring the front end side attachment portion 54 as an abutting plate portion, the rigidity of this portion is improved, and in this respect as well, the impact energy absorption performance can be stabilized.
  • the energy absorbing member 36a having such a configuration and assembled between the fastening rod 27a and the housing 41 as described above is shown in FIGS. 2, 5, and 8 as the secondary collision progresses.
  • Plastic deformation occurs from the state shown in FIG. 8A to the state shown in FIG. That is, at the time of the secondary collision, energy absorption is performed in a direction in which the folded portion 57 is moved forward as the outer column 13a is displaced from the state where the outer column 13a is displaced to the front end of the range in which the front / rear position can be adjusted. While the portion 53 is plastically deformed, the forward displacement of the fastening rod 27a is allowed. At this time, the impact energy transmitted from the steering wheel 1 to the fastening rod 27a via the outer shaft 44 and the outer column 13a is absorbed based on the plastic deformation.
  • the folded portion 58 is configured to bend inward between the substrate portion 55 and the sandwiched wall portion 11a of the outer column 13a.
  • the tip of the portion 58 and the protruding portion 58 can be disposed in the guide space.
  • the guide space is covered, so that the energy absorbing member 36a can be arranged in a compact manner, and it is also subject to interference due to deformation at the time of collision of the harness or column cover of the electrical parts arranged in the vicinity of the energy absorbing member 36a. It becomes difficult.
  • the energy absorbing portion 53 is There is no deformation in the direction of expansion, and the movement of the folded portion 57 proceeds smoothly without variation. Therefore, energy absorption based on plastic deformation of the energy absorption portion 53 is stably performed. Furthermore, since the energy absorbing portion 58 is disposed in the guide space, the energy absorbing portion 58 is covered by the guide plate 63 at the time of a secondary collision, so that a failure when an impact load occurs is similarly prevented. In particular, in this example, since the guide plate 63 extends in the axial direction of the outer column 13a, the movement of the folded portion 57 is restrained by the guide plate 63 and does not vary, so that the absorption of impact energy is stable. Done.
  • a cam member 86 is externally fitted to the intermediate portion of the fastening rod 27a.
  • the cam member 86 rotates the adjustment lever 33 a downward and loosens the cam device 32 a, so that the tip end is upward (there is a slit above the outer column). In the structure, it is displaced downward). Then, the front end portion protrudes upward (or downward) from the inner peripheral surface of the outer column 13a through a slit 43 formed in the front portion of the outer column 13a, and an engagement hole 87 formed in the rear portion of the inner column 14a. (See FIG. 8).
  • a structure for increasing the support strength for holding the steering wheel 1 at the adjusted height position is incorporated.
  • the base of the swing arm 88 is fitted on the intermediate portion of the tightening rod 27a so as to be swingably displaceable, and the swing arm 88 is moved as the adjustment lever 33a is rotated upward. It is made to swing upward.
  • a male gear 89 is provided at the tip of the swing arm 88
  • a female gear 90 is provided at the upper portion of the outer surface of the clamping plate portion 25d.
  • These gears 89 and 90 are engaged with each other.
  • the fastening rod 27a is coupled to the clamping plate portion 25d via the swinging arm 88, and the height position of the steering wheel 1 is greatly shifted regardless of the large impact load accompanying the secondary collision. I try not to move.
  • the driven cam 31a can rotate relative to the swing arm 88 at the base of the swing arm 88, that is, in a state in which relative rotation with respect to the sandwiching plate portion 25d is prevented, and to the swing arm 88. It is assembled so that a slight vertical displacement is possible.
  • the tilt spacer 47a assembled to the driven cam 31a so as not to rotate relative to the driven cam 31a is engaged with the vertically elongated hole 26b so as to be only movable up and down.
  • a return spring 91 is provided between the driven cam 31a and the swinging arm 88 so that the driven cam 31a can be lifted and lowered slightly with respect to the swinging arm 88 around the neutral position. I support it.
  • the reason why such a slight elevation is possible is that the height position of the steering wheel 1 can be adjusted steplessly, whereas the meshing positions of the gears 89 and 90 are stepped, so this difference is absorbed. It is to do.
  • the fastening rod 27a is arranged below the outer column 13a, and the fastening rod 27a and the energy absorbing member 36a are connected to each other with respect to the axial direction of the outer column 13a. Can be placed in series. Needless to say, even in the structure in which the fastening rod is arranged on the upper side of the outer column, the fastening rod and the energy absorbing member can be arranged in series with each other in the axial direction of the outer column.
  • a mounting bracket 92 is fixed to a portion near the rear end of the upper surface center portion of the mounting plate portion 46 constituting the support bracket 10a.
  • the front half of the mounting bracket 92 is an elastic locking portion 93, and the latter half is a guide collar 94.
  • the wide portion 96 is formed in a bent portion 98 where the rear end portion of the vehicle body side bracket 12a is bent upward.
  • the housing 41 When the steering device including the steering column 6c is assembled on the vehicle body side, the housing 41 is first supported on the vehicle body so as to be swingable and displaceable by a bolt inserted through the support tube 17a.
  • the support bracket 10a When the support bracket 10a is displaced upward together with the steering column 6c from this state, the elastic locking portion 93 elastically contracts the width dimension, while the rear end portion of the narrow width portion 95 of the locking hole 97. It is locked to.
  • the support bracket 10a since the support bracket 10a is temporarily fixed to the vehicle body side bracket 12a, the work of fixing the support bracket 10a to the vehicle body side bracket 12a with screws can be easily performed.
  • the guide flange 94 enters the narrow portion 95 from the wide portion 96 before the capsule 22a comes out of the notch 21a and the support force of the support bracket 10a by these capsules 22a is lost. .
  • the support bracket 10a is prevented from falling downward by engagement between both side portions of the guide flange 94 and both side portions of the narrow portion 95 of the vehicle body side bracket 12a.
  • the steering wheel 1 is prevented from descending excessively as the secondary collision progresses, and the positional relationship between the airbag opened behind the steering wheel 1 and the driver's body remains appropriate. Can be maintained. In the case of a minor collision accident, the steering wheel can be operated even after the accident, and the effort required to remove the accident vehicle can be reduced.
  • a second embodiment of the present invention will be described with reference to FIGS.
  • the shock absorbing steering device of the second embodiment differs from the first embodiment only in the structure for absorbing the impact energy at the time of the secondary collision, that is, the structure of the energy absorbing member.
  • the description of the configuration similar to that of the first embodiment is omitted or simplified, and the energy absorbing member that is the characteristic portion will be described below.
  • the description is based on the structure in which the fastening rod is disposed on the lower side of the outer column.
  • this aspect can also be applied to the structure in which the clamping rod is disposed on the upper side of the outer column. Needless to say.
  • the vertical direction of the members and the positional relationship therebetween may be reversed.
  • the energy absorbing member 36b which is a characteristic part of the present example, is a portion that is displaced forward together with the outer column 13a in the event of a secondary collision, and an axially intermediate portion of the fastening rod 27a, and a housing 41 of the electric power steering device 40. It is provided between the rear end face.
  • the energy absorbing member 36b has an appropriate strength and rigidity for absorbing impact energy, such as a mild steel plate, and further requires punching and bending by pressing or the like on a metal plate capable of plastic deformation. As shown in FIG. 16 and FIG. 19, it is integrally formed as a whole by machining.
  • the energy absorbing member 36b is made of a metal plate that can be plastically deformed and torn, such as a mild steel plate, and includes a substrate portion 71, a pair of bent plate portions 72, a folded portion 73, and a rear end side attachment. A portion 74, a pair of left and right thin portions 75, and a pair of left and right front end side attachment portions 76 are provided.
  • the bent plate portion 72 is bent at a right angle from the left and right side edges of the substrate portion 71 upward (downward when the slit of the outer column 13a is on the upper side).
  • the folded portion 73 is formed by folding a belt-like portion extending rearward from the intermediate portion in the width direction of the rear end edge of the substrate portion 71 into a U shape 180 degrees upward (or downward).
  • the rear end side attaching portion 74 includes a pair of left and right projecting portions 77 formed by bending a portion projecting laterally from both side edges of the front end portion of the folded portion 73 upward (or downward) at a right angle.
  • An insertion hole 78 through which the tightening rod 27a can be inserted is formed at a position where these protrusions 77 are aligned with each other.
  • the insertion hole 78 corresponds to a third through hole.
  • the thin-walled portion 75 is disposed from the rear end edge of the substrate portion 71 toward the front from the portion sandwiching the base end portion of the folded portion 73 from both the left and right sides, and each of them is shaved or crushed by a press Etc. are provided corresponding to the bottom of the groove formed by, for example.
  • the front end side attachment portion 76 is configured to bend the portions projecting forward from the front end edge of the substrate portion 71 at the front end portion of the bent plate portion 72 at right angles in opposite directions to each other, whereby the front end portion of the energy absorbing member 36a. Is provided.
  • the attachment hole 79 is formed in the center part of the front-end side attachment part 76, respectively.
  • the energy absorbing member 36b as described above is provided between the outer column 13a and the housing 41.
  • the tightening rod 27a is inserted into the insertion hole 78 provided in the protruding portion 77 constituting the rear end side mounting portion 74.
  • the rear end side of the energy absorbing member 36b is coupled to the outer column 13a via the fastening rod 27a, and is provided at the front end of the folded portion 73 constituting the energy absorbing member 36b at the time of a secondary collision.
  • the attachment portion 74 is combined with the outer column 13a so as to be displaced forward.
  • the bolt 80 inserted through the mounting hole 79 of the front end side mounting portion 76 is screwed into a screw hole opened in the rear end surface of the housing 41 and further tightened, whereby the front portion of the energy absorbing member 36b is It is fixedly coupled to the housing 41.
  • the upper end edge of the bent plate portion 72 near the rear end abuts or faces the lower end surface of the sandwiched wall portion 11a.
  • the energy absorbing member 36b assembled between the fastening rod 27a and the housing 41 has the folded portion 73 as shown in FIG. From the state shown in FIG. 14 and FIG. 17A to the state shown in FIG. 17B, the thin portion 75 is plastically deformed while tearing. That is, when a secondary collision occurs, the outer column 13a first moves until the tightening rod 27a is positioned at the rear end of the longitudinal slot 28, that is, to the foremost position of the steering wheel 1 in the longitudinal position adjustment. . This movement is performed against the frictional force acting on the abutting portion between the inner surface of the sandwiching plate portions 25c and 25d and the outer surface of the sandwiched wall portion 11a.
  • the impact energy applied from the steering wheel 1 to the outer column 13a is absorbed to some extent based on this frictional force.
  • the fastening rod 27a moves to the rear end of the longitudinal slot 28 before the impact energy is sufficiently absorbed.
  • the outer column 13a moves further forward from this state, but in this further movement, the fastening rod 27a moves forward together with the outer column 13a.
  • the rear end mounting portion 74 of the energy absorbing member 36b is displaced forward.
  • the U-shaped folded portion 73 is moved along the original strip-shaped portion and the portion that has been stripped by the thin-walled portion 75 being cut while the thin-walled portion 75 is cut.
  • it is necessary to overcome the plastic resistance that opposes the movement of the curved portion of the band-shaped portion and the shear resistance that opposes the tearing of the thin-walled portion 75. is there.
  • the upper end edge of the bent plate portion 72 near the rear end is in contact with or in close proximity to the lower end surface of the sandwiched wall portion 11a. It is possible to stabilize the posture of the energy absorbing member 36b. That is, when the rear end attaching portion 74 is displaced forward with the progress of the secondary collision and the folded portion 73 is displaced forward while tearing the thin portion 75, the rear end portion of the energy absorbing member 36b is moved upward. Pulled on. By such a pulling-up force, the upper end edge of the bent plate portion 72 near the rear end portion is strongly pressed against the lower end surface of the sandwiched wall portion 11a. At this time, the energy absorbing member 36b has a posture. It does not change, or even if it changes, the degree stops slightly. For this reason, it can prevent that the said plastic resistance and the said shear resistance become unstable.
  • the values of the plastic resistance and the shear resistance can be adjusted not only by the material, thickness, thickness and width of the thin portion constituting the energy absorbing member, but also by the planar shape of the thin portion.
  • the thin portions 75a are torn. Can be gradually increased as the secondary collision progresses.
  • the characteristic of absorbing impact energy can be gradually increased at the final stage of the secondary collision, and it becomes easy to enhance the protection of the driver. Further, as shown in FIG.
  • the energy absorbing members 36a to 36c are fixed to the housing 41 made of a rigid body of aluminum die cast. Even when an impact load is applied, deformation of the mounting portion is prevented, variation in absorption of impact energy is suppressed, and stabilization thereof is achieved.
  • the present invention is not limited to such an embodiment.
  • the structure of the front end side mounting portion 82 of the energy absorbing member 36 d is not the housing 41 but the front end portion is coupled and fixed to the housing 41.
  • the inner column 14a may be structured to be coupled and fixed to the outer peripheral surface of the front end portion.
  • the front end side attachment portion 84 extends upward (downward in the structure in which the slit 43 of the outer column 13a is on the upper side) from the front end portion of the bent plate portion 72a at the left and right side edges of the front end portion of the substrate portion 71.
  • the bent plate portion 72a is formed at the same time as being bent at a right angle in the same direction from the substrate portion 71, and is bent along the shape of the outer peripheral surface of the front end portion of the inner column 14a.
  • a curved portion 83 fitted to the front end portion of the inner column 14a is provided, a mounting hole 84 is provided at the front end portion of the front end side mounting portion 84, a bolt is inserted into the mounting hole 84, and screwed by a nut (not shown). Further, the front end side mounting portion 84 can be coupled and fixed to the inner column 14a by further tightening. In addition, you may comprise the curved part 83 using the fastening band generally used.
  • the portion sandwiched between the pair of left and right thin portions 75 and 75a extending to the intermediate portion of the substrate portion 71 together with the folded portion 73 is the energy absorbing portion in the definition of the present invention.
  • the guide part in the definition of this invention is comprised by the thin part 75, 75a, the part in the both sides of the thin part 75, 75a, and the bending board part 72 among the board
  • this guide portion serves as a cover, when a harness or a column cover of an electrical component disposed in the vicinity of the energy absorbing members 36b and 36c is deformed at the time of collision, it is difficult to receive interference due to the deformation. Therefore, the impact energy is stably absorbed.
  • shock absorbing steering device of the second embodiment having such a configuration, it is possible to obtain the same operational effects as those of the device of the first embodiment.
  • this invention is not restrict
  • the present invention is preferably applied to a steering apparatus having a structure including both a telescopic mechanism and a tilt mechanism.
  • the present invention can also be applied to a structure including only one of the mechanisms or a steering apparatus not including any of the mechanisms.
  • the present invention when the present invention is implemented with a structure having only a telescopic mechanism, the second through holes formed in the sandwiching plate portions 25c and 25d are replaced with the vertically elongated holes 26a and 26b from the illustrated embodiment.
  • it is a simple hole that only allows the fastening rod 27a to be inserted.
  • the first through holes formed in the pair of sandwiched wall portions 11a are replaced with the longitudinal elongated holes 28 from the illustrated embodiment, and tightened. It is a simple hole that only allows the attachment rod 27a to be inserted. Further, in the case where the structure is not provided with the steering wheel position adjusting device, both the first through hole and the second through hole are simply circular holes.
  • the tightening rod is a bolt, and the pair of pressing portions can be constituted by a head of the bolt and a nut screwed to the bolt. . In this case, this nut functions as one pressing portion and as a fixing means. As described above, the present invention is widely applied to the shock absorbing steering apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Steering Controls (AREA)

Abstract

 設計の自由度を確保しつつ、低コストで、より優れた性能を得られる衝撃吸収式ステアリング装置の構造を実現する。エネルギ吸収部材は、基板部55,71と、基板部の後半部に設けられ、または、基板部から後方に延在し、基板部に対して上方または下方に向けて、U字形に折り返された折り返し部57,73を有するエネルギ吸収部53,73と、折り返し部の先端部に設けられた後端側取付部58,74と、基板部の前方に設けられた前端側取付部54,76とを備え、折り返し部57,73の先端部および後端側取付部58,74は、1対の被挟持壁部11aの間の空間に配置され、締付杆27aに固定され、前端側取付部54,76は、インナコラム14aの前端部または電動式パワーステアリング装置のハウジング16に固定される。エネルギ吸収部53,73の近傍に、二次衝突時にアウタコラム13aとともに後端側取付部58,74が前方に移動するに伴って、折り返し部57,73が移動する際に、折り返し部57,73の移動を案内するガイド部を備える。

Description

衝撃吸収式ステアリング装置
 この発明は、衝突事故の際に、運転者の身体からステアリングホイールに加わった衝撃エネルギを吸収しつつ、このステアリングホイールの前方への変位を可能とする、衝撃吸収式ステアリング装置の改良に関する。
 自動車用ステアリング装置は、図20に示すように、ステアリングホイール1の回転をステアリングギヤユニット2の入力軸3に伝達し、この入力軸3の回転に伴って、左右1対のタイロッド4を押し引きして、前輪に舵角を付与するように構成されている。このため、ステアリングホイール1は、ステアリングシャフト5の後端部に支持固定され、このステアリングシャフト5は、円筒状のステアリングコラム6を軸方向に挿通した状態で、このステアリングコラム6に回転自在に支持される。そして、ステアリングシャフト5の前端部は、自在継手7を介して、中間シャフト8の後端部に接続され、この中間シャフト8の前端部は、別の自在継手9を介して、入力軸3に接続される。
 衝突事故の際には、自動車が別の自動車などと衝突する一次衝突に続いて、運転者の身体がステアリングホイールに衝突する二次衝突が発生する。このため、このような自動車用ステアリング装置には、衝突事故の際に、衝撃エネルギを吸収しつつ、ステアリングホイールを前方に変位させる構造が、運転者の保護のために必要とされる。このような構造として、特許文献1~5には、ステアリングホイールを支持したステアリングコラムを、二次衝突に伴う前方への衝撃荷重により前方に脱落可能に、車体に対して支持するとともに、このステアリングコラムと共に前方に変位する部材と車体との間に、塑性変形することにより前記衝撃荷重を吸収するエネルギ吸収部材を設けた構造が開示されており、このような構造は、すでに広く実施されている。
 図21~図24は、このような衝撃吸収機能を備えた自動車用ステアリング装置の構造の1例を示している。この構造は、ステアリングホイール1(図20参照)の上下位置を調節するためのチルト機構と、その前後位置を調節するためのテレスコピック機構とを備えたもので、ステアリングコラム6aと、支持ブラケット10と、このステアリングコラム6a側に設けた左右1対の被挟持壁部11と、車体側ブラケット12とを備える。このうちのステアリングコラム6aは、後側のアウタコラム13の前部と、前側のインナコラム14の後部とを軸方向の相対変位を可能に嵌合させることにより、全長を伸縮可能に構成されている。このようなステアリングコラム6aの内径側には、ステアリングシャフト5aが、回転自在に支持されている。このステアリングシャフト5aも、アウタシャフトとインナシャフトとを組み合わせることにより、全長を伸縮可能に構成されている。
 ステアリングコラム6aの前端部には、電動式パワーステアリング装置の構成部品である電動モータ15(図20参照)や減速機などを設置するためのハウジング16が結合固定されている。このハウジング16は、上部に幅方向に設けた支持管17を挿通する図示しないボルトによって、揺動変位を可能に、車体の一部に支持されている。ステアリングシャフト5aの後端部でステアリングコラム6aよりも後方に突出した部分に、ステアリングホイール1が固定される。また、ステアリングシャフト5aの前端部でステアリングコラム6aよりも前方に突出した部分は、自在継手7を介して中間シャフト8(図20参照)に連結される。なお、幅方向とは、ステアリング装置が車両に組み付けられた状態での、この車両の幅方向を意味する。
 また、支持ブラケット10は、車体側ブラケット12に対して、二次衝突に基づく衝撃荷重により前方への変位および離脱を可能に、結合支持されている。支持ブラケット10は、鋼板などの十分な強度および剛性を有する金属板からなる、天板18と左右1対の側板19a、19bを溶接などにより結合固定して形成したものである。このうちの天板18の幅方向両端部を、支持ブラケット10を車体側ブラケット12に結合支持するための結合板部20としている。これらの結合板部20の幅方向中央部には、図24に示すように、結合板部20の後端縁に開口する切り欠き21がそれぞれ形成されており、これらの切り欠き21に、カプセル22がそれぞれ装着される。
 これらのカプセル22は、合成樹脂やアルミニウム系合金などの軟質金属といった、天板18を構成する金属板に対し滑りやすい材料により形成されている。これらのカプセル22は、通常状態では、切り欠き21から抜け出ることはないが、支持ブラケット10に前方に向いた大きな衝撃荷重が加わった場合には、この支持ブラケット10をこれらの切り欠き21内へ係止するための部材、たとえば、天板18とこれらのカプセル22との間に掛け渡された止めピンを裂断して、これらの切り欠き21から後方に抜け出る。これらのカプセル22の中央部には、支持ブラケット10を車体側ブラケット12に結合支持するためのボルトまたはスタッドを挿通するための通孔23が、それぞれ設けられている。支持ブラケット10を車体側ブラケット12に結合支持するためには、これらのカプセル22の通孔23を下から上に向けて挿通したボルトを、車体側ブラケット12に溶接などにより支持固定したナット24に螺合し、さらに締め付ける。この車体側ブラケット12は、あらかじめ車体側に固定されているので、ボルトの締め付けにより、支持ブラケット10が、前方に向いた大きな衝撃荷重が加わった場合にのみ前方に脱落可能に、車体に対して結合支持されることになる。なお、車体側ブラケット12の下面に固定したスタッドをカプセル22の通孔23を上から下に向けて挿通し、このスタッドの下端部にナットを螺合し、さらに締め付けることによっても、支持ブラケット10を車体側ブラケット12に結合支持することが可能である。
 また、アウタコラム13を両側から挟む状態で側板19a、19bに設けた、1対の挟持板部25a、25bの互いに整合する位置に、上下方向長孔26がそれぞれ形成されている。これらの上下方向長孔26は、支持管17の中心軸をその中心とする部分円弧形状となっている。アウタコラム13は、これらの上下方向長孔26に挿通された締付杆27により、側板19a、19bの間に支持される。このため、アウタコラム13の前部上方に、被挟持壁部11を設け、これらの被挟持壁部11に、アウタコラム13の軸方向に長い前後方向長孔28(図4、図6参照)が形成されている。アウタコラム13は、支持ブラケット10に対して、上下方向長孔26および前後方向長孔28に挿通された締付杆27により支承されている。したがって、アウタコラム13は、この締付杆27が上下方向長孔26内で変位できる範囲で、支持管17に挿通されたボルトを中心として、上下方向に揺動変位可能となっている。また、締付杆27が、前後方向長孔28内で変位できる範囲で、前後方向(軸方向)に変位可能である。
 締付杆27は、一端部(図22の右端部)に、外向フランジ状の鍔部29が固設されるとともに、他端部に、駆動側カム30と被駆動側カム31とからなるカム装置32が設けられている。調節レバー33を用いて駆動側カム30を回転駆動させることにより、被駆動側カム31と鍔部29との距離を拡縮可能としている。ステアリングホイール1の位置を調節する際には、調節レバー33を下方に回動させることにより、被駆動側カム31と鍔部29との距離を拡げる。この状態で、締付杆27が上下方向長孔26および前後方向長孔28内で変位できる範囲で、アウタコラム13を変位させる。そして、このアウタコラム13内に回転自在に支持されたステアリングシャフト5aの後端部に支持固定されたステアリングホイール1の位置を調節する。アウタコラム13とともに昇降する部分の重量は、締付杆27と、支持ブラケット10に設けた係止部34との間に設けた釣合ばね35により支承される。このため、ステアリングホイール1の位置の調節時にも、運転者がこれらの重量全部を支える必要がない。
 そして、ステアリングホイール1の位置を調節した後、調節レバー33を上方に回動させることにより、被駆動側カム31と鍔部29との距離を縮める。この結果、挟持板部25a、25bの内側面と被挟持壁部11のそれぞれの外側面とが強く当接し、これらの摩擦係合により、ステアリングホイール1の上下位置が固定される。また、これらの被挟持壁部11が設けられた、アウタコラム13の前端部の直径が縮まり、このアウタコラム13の前端部内周面とインナコラム14の後端部外周面とが強く当接し、これらの摩擦係合により、ステアリングコラム6aが伸縮不能になる。この結果、ステアリングホイール1の前後位置が固定される。
 このような構成を備えた自動車用ステアリング装置は、衝突事故に伴う二次衝突の際に、カプセル22を車体側ブラケット12の側に残したまま、支持ブラケット10を前方に変位させる。すなわち、二次衝突に伴って、この支持ブラケット10に、前方に向いた大きな衝撃荷重が、ステアリングホイール1から、ステアリングシャフト5a、アウタコラム13、締付杆27を介して加えられる。そして、カプセル22を結合板部20に係止している部材が裂断し、これらのカプセル22を切り欠き21から抜け出させつつ、支持ブラケット10が前方に変位する。この結果、ステアリングホイール1も前方に変位し、このステアリングホイール1に衝突した運転者の身体に加わる衝撃を緩和できる。
 このように、二次衝突に伴ってステアリングホイール1を前方に変位させる際に、運転者の身体からこのステアリングホイール1に加わった衝撃エネルギを吸収しつつ、このステアリングホイール1を前方に変位させることが、運転者保護の面から好ましい。たとえば、図21~図24に示した構造でも、被挟持壁部11のそれぞれの外側面と挟持板部25a、25bのそれぞれの内側面との当接部に作用する摩擦力、ならびに、アウタコラム13の前部内周面とインナコラム14の後部外周面との当接部に作用する摩擦力が、ステアリングホイール1を前方に変位させることに対する抵抗となり、衝撃エネルギの吸収に寄与する。ただし、摩擦力に基づくエネルギ吸収性能は不安定であり、それだけでは、運転者保護の充実を図ることは難しい。
 これに対して、特許文献2では、二次衝突時に前方に変位するステアリングコラムと車体との間に、エネルギ吸収部材を設けた構造が、提案されている。この構造では、図25~図26に示すように、塑性変形可能な線材を曲げ成形によって形成したエネルギ吸収部材36が、ステアリングコラム6bの上面に固設した支持ピン38と、車体側に固定した保持ケース39との間に設置される。二次衝突に伴って、ステアリングコラム6bが前方に変位すると、エネルギ吸収部材36が、図26(A)に示した状態から図26(B)に示した状態まで伸長する。この伸長に要するエネルギが、運転者の身体からステアリングホイールに加わった衝撃エネルギのうちから吸収されて、この運転者の身体に加わる衝撃が緩和されることになる。
 このようなエネルギ吸収部材36を使用した衝撃吸収構造を、図21~図24に示した衝撃吸収式ステアリング装置に組み込んで、エネルギの吸収特性を向上させることは可能であるが、設計の自由度を確保しつつ、低コストで、より優れた性能を得るためには、以下の点で、改良が望まれる。
 まず、二次衝突時に、ステアリングコラム6aを構成するアウタコラム13に加わる、揺動方向のモーメントを低減ないしは解消することが望まれる。すなわち、図25~図26に示した構造を、ステアリング装置に組み込んだ場合、チルト機構やテレスコピック機構などのステアリングホイールの位置調節装置の有無にかかわらず、エネルギ吸収部材36と締付杆27(図22参照)との設置位置が、アウタコラム13の中心軸に対し直角方向にずれる場合がある。そして、このようなズレが存在すると、二次衝突時に揺動方向のモーメントが発生する。つまり、二次衝突時にエネルギ吸収部材36は、アウタコラム13が前方への変位に対する抵抗として働く。この結果、このステアリングコラム13に、締付杆27を支点とし、エネルギ吸収部材36を入力部とするモーメントが加わる。このため、二次衝突の進行に伴って、アウタコラム13の前部外周面とインナコラム14の後部内周面との嵌合部の摩擦状態が不安定となり、この嵌合部でのエネルギ吸収性能が不安定となってしまう。
 このようなエネルギ吸収性能の不安定さは、エネルギ吸収部材36と締付杆27とを、いずれもステアリングコラム6a、6bの上下方向に関して同じ側に設置し、これらの部材36、27の間に存在する、このステアリングコラム6a、6bの中心軸に対する直角方向のズレを小さくすれば、低減ないしは解消できる。ただし、締付杆27は、ステアリングコラム6a、6bの下側に設ける場合が多い。この場合には、図25~図26に示したように、エネルギ吸収部材36を、ステアリングコラム6bと、このステアリングコラム6bの上側に設けられる車体37との間に設ける構造によっては、前記モーメントを小さくすることができず、エネルギ吸収性能が不安定になることを防止できない。言い換えれば、図25~図26に示した構造では、前記モーメントを小さく抑えてエネルギ吸収性能が不安定になるのを防止することを意図した場合に、締付杆27をステアリングコラムの下側に配置する構造を採用できず、設計の自由度が限られてしまう。しかも、図25~図26に示した構造では、支持ピン38および保持ケース39が、エネルギ吸収部材36を設置するための専用の部品として必要になるため、コストが嵩むことが避けられない。
特開2000-095116号公報 特開昭63-046972号公報 特開2001-080527号公報 特開2006-312360号公報 実開平2-132576号公報
 本発明は、上述のような事情に鑑みて、設計の自由度を確保しつつ、低コストで、より優れた性能を備えた衝撃吸収式ステアリング装置の構造を実現することを目的とする。
 本発明の衝撃吸収式ステアリング装置は、
 前後位置を規制された状態で前側に配置されたインナコラムと、該インナコラムの後部に軸方向の相対変位を可能に外嵌され、該インナコラムとの嵌合部である前部に軸方向に設けられ、該前部の直径を拡縮可能とするスリット、該前部の下面または上面で該スリットを左右両側から挟む位置に設けられた1対の被挟持壁部、および、これらの被挟持壁部の互いに整合する位置に形成された1対の第1通孔を有するアウタコラムとを備えるステアリングコラムと、
 インナシャフトと、該インナシャフトの後部に軸方向の相対変位を可能に外嵌され、後端部が前記アウタコラムの後端開口よりも後方に突出し、該後端部にステアリングホイールが支持固定されているアウタシャフトとを備え、前記ステアリングコラムの内径側に回転自在に支持されているステアリングシャフトと、
 左右1対の挟持板部と、これらの挟持板部の前記第1通孔のうちの少なくとも一部に整合する部分に形成された1対の第2通孔と、前記挟持板部を支持するとともに、二次衝突時に前記ステアリングホイールから前記アウタコラムに加えられた衝撃エネルギに基づいて、前方へ脱落することが可能なように、車体に支持される取付板部とを備える支持ブラケットと、
 前記第1通孔と前記第2通孔とに挿通され、両端部に1対の押圧部を備える締付杆と、
 前記1対の押圧部の間隔を拡縮し、該間隔の収縮時に前記アウタコラムの前記前部の直径を縮め、該アウタコラムの前記前部の内周面と前記インナコラムの前記後部の外周面とを摩擦係合させる固定手段と、
 前記二次衝突時に前記アウタコラムとともに前方に変位する部分と、該二次衝突時にも前方に向けて変位しない部分との間に設けられ、該二次衝突に伴う前記アウタコラムの前方への変位に伴って塑性変形する部材からなり、該塑性変形の相対移動により、前記衝撃エネルギの一部を吸収するエネルギ吸収部材と、
を備える。
 特に、本発明の衝撃吸収式ステアリング装置では、前記エネルギ吸収部材は、基板部と、該基板部の後半部に設けられ、または、該基板部から後方に延在し、該基板部に対して上方または下方に向けて、U字形に折り返された折り返し部を有するエネルギ吸収部と、該折り返し部の先端部に設けられた後端側取付部と、前記基板部の前方に設けられた前端側取付部とを備える。
 そして、前記折り返し部の先端部および前記後端側取付部は、前記1対の被挟持壁部の間の空間に配置され、かつ、前記二次衝突時に前記アウタコラムとともに前方に変位する部分に固定され、前記前端側取付部は、該二次衝突時にも前方に向けて変位しない部分に固定されていることを特徴とする。
 前記エネルギ吸収部の近傍に、前記二次衝突時に前記アウタコラムとともに前記後端側取付部が前方に移動するに伴って、前記折り返し部が移動する際に、この折り返し部の移動を案内するガイド部を備えることが好ましい。
 前記後端側取付部が固定される、前記アウタコラムとともに前方に変位する部分が、前記締付杆であることが好ましい。
 また、前記前端側取付部が固定される、前記前方に向けて変位しない部分が、前記インナコラムの前端部または前記インナコラムの前端部に固定した部材であることが好ましい。
 この場合、前記前端側取付部が固定される、前記前方に向けて変位しない部分を、前記インナコラムの前端部に固定した、電動式パワーステアリング装置の構成部品を収納したハウジングとして、前記前端側取付部が、前記基部の前端縁または前記基部の前端縁から前方に突出した部分から、互いに反対方向に直角に折り曲げられた突き合わせ板部を備えるようにして、これらの突き合わせ板部を前記ハウジングの後端面に突き合わせた状態で、該ハウジングに結合固定することができる。
 または、前記前端側取付部が固定される、前記前方に向けて変位しない部分を、前記インナコラムの前端部として、前記前端側取付部が、前記基部の前端部の左右両側縁または前記基部の前端縁から前方に突出した部分の左右両側縁から、上方または下方に向けて同方向に延在する部材により構成し、それぞれの部材が、前記インナコラムの外周面の形状に沿って湾曲する湾曲部と、取付孔が設けられた先端部を備え、該湾曲部を前記インナコラムの前端部に外嵌した状態で、前記取付孔に挿通したボルトを、ナットで螺合し、さらに締め付けることにより、これらの先端部を結合固定することもできる。
 エネルギ吸収部材のより具体的な構成として、前記エネルギ吸収部が、前記基板部から後方に延在し、前記折り返し部を中間部に備え、前記後端側取付部が、前記折り返し部の前記先端部に設けた1対の突出部と、これらの突出部に設けられた第3通孔とを備え、この第3通孔に前記締付杆を挿通している態様がある。
 この態様において、衝撃吸収式ステアリング装置に、取付板部と、該取付板部から直角に折れ曲がった垂下板部と、該垂下板部から前記取付板部と反対側に向けて直角に折れ曲がったガイド板部とを備え、断面クランク形のガイドプレートを設けて、前記取付板部を、前記被挟持壁部の一方の下面に突き当てた状態で固定し、前記ガイド板部を、前記1対の被挟持壁部の間の空間に対向させ、前記アウタコラムの前部の上面または下面との間にガイド空間を形成することが好ましい。
 この構成により、前記エネルギ吸収部材の前記エネルギ吸収部は、前記ガイド空間内に配置され、前記ガイドプレートが、前記二次衝突時に前記アウタコラムとともに前記後端側取付部が前方に移動するに伴って、該エネルギ吸収部の前記折り返し部が移動する際に、この折り返し部の移動を案内することができる。
 本発明の衝撃吸収式ステアリング装置の別の態様では、前記折り返し部を、前記基板部の後端縁の幅方向中間部から後方に延出させ、前記基板部に、該基板部の後端縁のうちで、前記折り返し部の基端部の左右両側から挟む部分から前方に向けて該基板部の中間部まで伸長する左右1対の薄肉部を設けて、該基板部のうち、該左右1対の薄肉部に挟まれた部分を、前記エネルギ吸収部の一部を構成するようにしている。
 また、前記エネルギ吸収部材に、前記基板部の左右両側縁から同方向に折れ曲がった1対の折れ曲がり板部をさらに設けて、該折れ曲がり板部の上端縁または下端縁のうち少なくとも後方寄り部分を、前記被挟持壁部の下面または上面に当接または近接対向するようにすることが好ましい。
 本発明の装置では、前記第1通孔を、前記アウタコラムの軸方向に長い前後方向長孔として、前記締付杆がこれらの第1通孔内で変位できる範囲で、前記アウタコラムの前後位置を調節可能と、前記締付杆の基端部に設けられた調節レバーの操作に基づいて、前記1対の押圧部の間隔を拡縮し、該間隔の収縮時に、前記アウタコラムの前部の直径を縮めて、該アウタコラムの前後位置を固定するようにした、テレスコピック構造を備えることが好ましい。
 また、本発明の装置では、前記インナコラムの前端部を、横軸を中心とする揺動変位を可能に車体に対して支持し、前記第2通孔を、該横軸を中心とする部分円弧形を有する上下方向に長い上下方向長孔として、前記締付杆がこれらの上下方向長孔内で変位できる範囲で、前記ステアリングホイールの上下位置を調節可能とし、前記締付杆の基端部に設けられた調節レバーの操作に基づいて前記1対の押圧部の間隔を拡縮し、該間隔の収縮時に前記1対の挟持板部の間隔を縮め、これらの挟持板部の内側面と前記被挟持壁部の外側面とを摩擦係合させて、前記アウタコラムの上下位置を固定するようにした、チルト構造を備えることが好ましい。
 さらに、前記インナコラムの外周面に、それぞれが軸方向に長い複数本の突条を形成して、該インナコラムの外周面と前記アウタコラムの内周面とが、これらの突条の頂部で当接するようにすることが好ましい。
 また、前記インナシャフトの端部外周面に形成した雄スプライン歯と、前記アウタシャフトの端部内周面に形成した雌スプライン歯とをスプライン係合させることで、前記スプラインシャフトの全長を伸縮可能とした構造において、前記雄スプライン歯と前記雌スプライン歯とのうちの少なくとも一方の歯の表面に、摩擦係数が低い合成樹脂製のコーティング層を形成することが好ましい。
 加えて、前記締付杆の中間部に、カム部材を外嵌し、前記アウタコラムの前部の直径を拡げる方向に前記締付杆を回動させた状態で、前記カム部材を、該アウタコラムの前部に形成した前記スリットを通じて、前記インナコラムの後部に形成した係合孔内に進入させるようにすることが好ましい。
 本発明により、設計の自由度を確保しつつ、低コストで、より優れた性能を得られる衝撃吸収式ステアリング装置の実現が可能となる。すなわち、締付杆がアウタコラムの上側および下側のいずれの側に配置されている場合でも、締付杆とエネルギ吸収部材とを、このアウタコラムの軸方向に関して互いに直列に配置できるので、二次衝突時にアウタコラムに揺動方向のモーメントが加わることを防止ないしは低減することができる。これにより、アウタコラムの前部とインナコラムの後部との嵌合部の摩擦係合状態を安定させて、この嵌合部の摺動を安定させ、二次衝突時の衝撃エネルギの吸収を安定化することができる。このため、設計の自由度を阻害することなく、衝撃吸収性能の向上を図ることができる。
 また、二次衝突時の衝撃エネルギを吸収するために、前記アウタコラムの前部内周面とインナコラムの後部外周面との嵌合部の摩擦抵抗だけでなく、前記エネルギ吸収部材の塑性変形、もしくは、前記エネルギ吸収部材のうちの折り返し部を前方に変位させつつ、1対の薄肉部を切り裂く、塑性抵抗および剪断抵抗も利用するため、前記衝撃エネルギを吸収する性能を安定させやすく、さらには、この吸収性能のチューニングも容易に行うことができる。
 特に、本発明の衝撃吸収式ステアリング装置では、エネルギ吸収部材のエネルギ吸収部において、折り返し部が、基板部からアウタコラムの被挟持壁部の間で内側に向かって湾曲するように構成されており、この折り返し部の先端部とこの先端部に設けられた後端側取付部を前記空間内に配置することができる。これにより、エネルギ吸収部材をコンパクトに配置できるとともに、このエネルギ吸収部材の近傍に配される電装部品のハーネスやコラムカバーなどが衝突時に変形した場合に、その変形による干渉を受けにくくなるため、衝撃エネルギの吸収が安定的に行われることとなる。
 さらに、ガイドプレートを別途設置するか、またはエネルギ吸収部材の基板部とその両側縁に折り曲がり板部を設けることにより、ガイド部によるガイド空間を形成し、エネルギ吸収部材のエネルギ吸収部をこのガイド空間に配置した場合、二次衝突時にこのエネルギ吸収部がカバーされ、衝撃荷重発生時の障害が同様に防止されるため、衝撃エネルギの吸収性能のさらなる安定化を図ることができる。
図1は、本発明の第1の実施形態の1例のステアリング装置の通常時の状態について、前上方から見た状態で示す斜視図である。 図2は、図1の装置の通常時の状態について、後下方から見た状態で示す斜視図である。 図3は、図1の装置の通常時の状態についての側面図である。 図4は、図3のa-a断面図である。 図5は、図1の装置の通常時の状態について、下方から見た状態で示す正投影図である。 図6は、図1の装置のアウタコラムの前後位置および上下位置を調節するための機構部分について、後下方から見た状態で示す分解斜視図である。 図7は、図1の装置のエネルギ吸収部材について、前上方から見た状態で示す斜視図(A)と、前下方から見た状態で示す斜視図(B)である。 図8は、図1の装置について、通常時の状態(A)と、二次衝突発生後の状態(B)とを示す、図5のb-b断面図である。 図9は、図1の装置の車体側ブラケットを前上方から見た斜視図である。 図10は、本発明の第2の実施形態の1例のステアリング装置の通常時の状態について、前上方から見た状態で示す斜視図である。 図11は、図10の装置の通常時の状態について、後下方から見た状態で示す斜視図である。 図12は、図10の装置の通常時の状態についての側面図である。 図13は、図12のc-c断面図である。 図14は、図10の装置の通常時の状態について、下方から見た状態で示す正投影図である。 図15は、図10の装置のアウタコラムの前後位置および上下位置を調節するための機構部分について、後下方から見た状態で示す分解斜視図である。 図16は、図10の装置のエネルギ吸収部材について、前下方から見た状態で示す斜視図(A)と、前上方から見た状態で示す斜視図(B)と、(A)のe-e断面図(C)と、エネルギ吸収部材の別例について、前下方から見た状態で示す斜視図(D)である。 図17は、図10の装置について、通常時の状態(A)と、二次衝突発生後の状態(B)とを示す、図14のd-d断面図である。 図18は、本発明の第2の実施形態の別例のステアリング装置の通常時の状態について、後下方から見た状態で示す斜視図である。 図19は、図18の装置のエネルギ吸収部材について、前上方から見た状態で示す斜視図(A)と,後下方から見た状態で示す斜視図(B)である。 図20は、従来のステアリング装置の1例を示す、部分切断側面図である。 図21は、従来の衝撃吸収式ステアリング装置の1例を、前上方から見た状態で示す斜視図である。 図22は、図21の装置についての断面図である。 図23は、図21の装置について、車体側ブラケットを省略して示す、図21と同様の図である。 図24は、図21の装置の支持ブラケットについて、後下方から見た状態で示す斜視図である。 図25は、従来のエネルギ吸収部材を組み込んだ衝撃吸収式ステアリング装置のステアリングコラム部分についての、部分側面図(A)と、そのf-f断面図(B)である。 図26は、図25の装置のステアリングコラム部分について、通常時の状態(A)と二次衝突発生後の状態(B)とを示す、図25(A)のg-g断面図である。
 以下、本発明を説明するにあたって、具体的な実施形態をいくつか提示し、この実施形態について、図面を参照しつつ詳細に説明する。しかしながら、本発明は、これらの実施形態に制限されることはない。
 [第1の実施形態]
 本発明の第1の実施形態の1例について、図1~図9を参照しながら説明する。本例の衝撃吸収式ステアリング装置は、インナコラム14aと、アウタコラム13aと、ステアリングシャフト5bと、1対の被挟持壁部11aと、1対の前後方向長孔28と、支持ブラケット10aと、1対の上下方向長孔26a、26bと、締付杆27aと、固定手段を構成するカム装置32aと、エネルギ吸収部材36aとを備える。なお、本発明の定義において、前後方向長孔28は第1通孔に、上下方向長孔26a、26bは第2通孔に、それぞれ相当する。これらの第1通孔および第2通孔の形状は、ステアリング装置が、テレスコピック機構および/またはチルト機構を具備するものであるか否かによって、変更されうる。これらの機構を具備しない構造では、たとえば、第1通孔と第2通孔の一方または両方を単なる円孔とすることもできる。
 インナコラム14aは、前後位置を規制された状態、すなわち、二次衝突時にも前方に変位しないようにされた状態で、アウタコラム13aよりも前側に配置されている。具体的には、インナコラム14aの前端部を、電動式パワーステアリング装置40を構成する減速機などの構成部品を収納したハウジング41の後端部に、結合固定している。このハウジング41は、たとえばアルミニウム合金をダイキャスト成形することにより形成されており、後壁部にステアリングシャフト5bの前端部を挿通するための通孔が形成されている。そして、この通孔の周縁部に円筒壁部を、後方に向け突出形成している。インナコラム14aの前端部は、この円筒壁部に締り嵌めで外嵌されるとともに、その前端縁を前記後壁部に突き当てるなどして、ハウジング41に対して結合固定される。インナコラム14aは、全体が円管状で、外周面のうちで前端部を除く部分に、それぞれが軸方向に長い複数本(好ましくは偶数本、図示の例では6本)の突条42を、円周方向に関して等間隔に形成している。
 また、アウタコラム13aは、たとえばアルミニウム合金をダイキャスト成形することにより一体に形成されている。そして、このアウタコラム13aの前部をインナコラム14aの後部に外嵌して、伸縮可能なステアリングコラム6cを構成している。本例の場合には、アウタコラム13aの内周面とインナコラム14aの外周面とを、突条42のそれぞれの頂部で当接させている。また、この状態で、このインナコラム14aに対するアウタコラム13aの前後位置の調節および固定を可能としている。このため、このアウタコラム13aのうち、インナコラム14aとの嵌合部である前部にスリット43を、軸方向に設けて、この前部の直径を弾性的に拡縮可能としている。この構成では、インナコラム14aに設けられた突条が、軸方向に一定の突起形状を備えるため、インナコラム14aの外周面とアウタコラム13aの内周面との接触部が、略線接触となる。この構成により、アウタコラム13aとインナコラム14aの摺動抵抗が低減されるとともに、接触面の変化が少なくなり、アウタコラム13aに衝撃荷重が掛かった場合に、これらの接触による衝撃エネルギの吸収のバラツキが抑制される。また、アウタコラム13aは締め付けられ縮径する際に、その形状が若干変形するため、アウタコラム13aとインナコラム14aの間で相互に回転することが防止されるため、アウタコラム13aの軸方向スリット43の位置が安定する。
 ステアリングシャフト5bは、後半部を構成するアウタシャフト44の前半部内周面に形成した雌スプライン歯と、前半部を構成するインナシャフト45の後半部外周面に形成した雄スプライン歯とをスプライン係合させることにより、全長を伸縮可能に形成されている。そして、これらの雄スプライン歯と雌スプライン歯とのうちの少なくとも一方の歯の表面には、ポリアミド樹脂(ナイロン)、ポリ四フッ化エチレン樹脂(PTFE)、ポリアセタール樹脂などの、摩擦係数が低い合成樹脂製のコーティング層が形成されている。したがって、アウタシャフト44とインナシャフト45とは、トルクの伝達を可能に、かつ、軽い力で伸縮可能に組み合わされている。この構成により、アウタシャフト44とインナシャフト45の摺動抵抗が低減される。このようなステアリングシャフト5bは、ステアリングコラム6cの内径側に回転自在に支持されている。具体的には、アウタシャフト44の中間部後端寄り部分を、アウタコラム13aの後端部の内径側に、単列深溝型玉軸受などの、ラジアル荷重およびアキシアル荷重を支承可能な転がり軸受により、回転のみ自在に支持している。したがって、アウタシャフト44は、アウタコラム13aの軸方向移動に伴って移動し、ステアリングシャフト5bが伸縮する。
 1対の被挟持壁部11aは、アウタコラム13aの前部の下面でスリット43を左右両側から挟む位置に、このアウタコラム13aと一体に設けられている。これらの被挟持壁部11aの互いに整合する位置に、前後方向長孔28が、それぞれアウタコラム13aの軸方向に形成されている。なお、図示の例では、アウタコラム13aの下側にスリット43および被挟持壁部11aが設けられ、締付杆27aとこのアウタコラム13aの前部を拡縮するための固定手段が、このアウタコラム13aの下側に配置されることになるが、本発明はこの態様に限定されることなく、アウタコラムの上側にスリットおよび被挟持壁部を設け、アウタコラムの上側に、締付杆とこのアウタコラムの前部を拡縮するための固定手段を設ける構造にも適用することは可能である。
 支持ブラケット10aは、左右1対の挟持板部25c、25dおよび取付板部48を有する。これらの挟持板部25c、25dおよび取付板部48は、それぞれが炭素鋼板などの、十分な強度および剛性を有する金属板にプレス加工を施すことにより形成されており、互いに溶接などの手段によって接合固定されている。挟持板部25c、25dは、アウタコラム13aの下面(アウタコラムの上側にスリットがある構造では、上面)に設けた被挟持壁部11aを、左右両側から挟持する。また、取付板部48は、これらの被挟持壁部11aを介して、アウタコラム13aを車体に対して支持するとともに、二次衝突時に、このアウタコラム13aが前方に変位することを許容する。このため、図21~図24に示した従来の構造と同様に、取付板部48の左右両端部にそれぞれ形成した1対の切り欠き21aのそれぞれに、カプセル22aを、二次衝突時に加わる衝撃荷重に基づいて脱落を可能に、設置している。
 上下方向長孔26a、26bは、ハウジング41の前上方部分に設けた支持管17aの中心軸をその中心とする部分円弧形状となっており、挟持板部25c、25dのうちの、前後方向長孔28の長さ方向の一部に整合する部分に形成している。そして、締付杆27aを、これらの前後方向長孔28と上下方向長孔26a、26bとに挿通している。締付杆27aは、中間部先端寄り部分(図4、図6の右寄り部分)に、この締付杆27aの中央寄りから順番に、チルトスペーサ47と、スペーサ48と、ワッシャ49と、スラスト軸受50とを外嵌している。そして、締付杆27aの先端部に螺着したナット51により、これらの部材47~50が、この締付杆27aから抜け出ることを防止している。また、ナット51は、必要箇所に螺着後、いずれかの部分をかしめ変形することにより、緩み止めを図っている。なお、これらの部材47~50は、ステアリングホイール1(図20参照)の位置調節の際に、締付杆27aの変位、ならびに、締付杆27aの先端部の上下方向長孔26aに沿う変位が、それぞれ円滑に行われるように、設けられている。
 一方、締付杆27aの基端部には、駆動側カム30aと被駆動側カム31aとからなるカム装置32aが設けられている。本例の場合には、この被駆動側カム31aとナット51とによって、本発明における1対の押圧部が形成される。カム装置32aは、調節レバー33aにより駆動側カム30aを回転駆動させて、被駆動側カム31aとナット51との距離を拡縮可能としている。被駆動側カム31aは、挟持板部25dの外側面側から上下方向長孔26bに、この上下方向長孔26bに沿う変位(昇降)を可能に、かつ、回転を阻止された状態で係合している。ステアリングホイール1の位置を調節する際には、調節レバー33aを下方に回動させることにより、被駆動側カム31aとナット51との距離を拡げる。この距離が拡がる結果、挟持板部25c、25dの内側面と、被挟持壁部11aを含む、アウタコラム13aの左右両側面との当接圧が、低下ないしは喪失する。同時に、このアウタコラム13aの前部の直径が弾性的に拡がり、このアウタコラム13aの前部内周面とインナコラム14aの後部外周面との当接圧が低下する。
 この状態で、締付杆27aが、上下方向長孔26a、26bおよび前後方向長孔28内で変位できる範囲で、アウタコラム13aを変位させる。そして、このアウタコラム13a内に回転自在に支持された、アウタシャフト44の後端部に支持固定されたステアリングホイール1の位置、すなわち、前後方向位置と上下方向位置とのうちの少なくとも一方を調節する。この調節作業の間、アウタコラム13と共に昇降する部分の重量は、ハウジング41と、支持ブラケット10aを構成する取付板部46との間に設けた、それぞれが引っ張りばねである1対の釣合ばね35aにより支承される。このため、ステアリングホイール1の位置の調節時にも、運転者が前記部分の重量の全部を支える必要はない。このステアリングホイール1を所望の位置に移動させた後、調節レバー33aを上方に回動させて、被駆動側カム31aとナット51との距離を縮める。この結果、挟持板部25c、25dの内側面とアウタコラム13aの左右両側面との当接圧、ならびに、このアウタコラム13aの前部内周面とインナコラム14aの後部外周面との当接圧が高くなって、このアウタコラム13aの位置が、前記所望の位置に固定される。
 さらに、本例の特徴部分であるエネルギ吸収部材36aが、二次衝突時にアウタコラム13aとともに前方に変位する部分である、締付杆27aの軸方向中間部と、電動式パワーステアリング装置40のハウジング41の後端面との間に、設けられている。エネルギ吸収部材36aは、軟鋼板などの、衝撃エネルギ吸収のために適切な強度および剛性を有し、かつ、塑性変形が可能である金属板に、プレス加工などによる打ち抜き加工および曲げ加工を施すことにより、図7に示すように、全体で一体となるように形成されている。なお、以下の説明は、本例の構成に基づいているが、図21~図24に示す従来の構造と同様に、締付杆や前記固定手段が、ステアリングコラムの上方に設置される構造においては、以下の説明において、各部材の上下方向の位置関係が逆となる。
 具体的には、エネルギ吸収部材36aは、突っ張り梁部52と、エネルギ吸収部53と、左右1対の前端側取付部54とを備える。突っ張り梁部52は、アウタコラム13aの軸方向に関する曲げ剛性が高い。すなわち、二次衝突時に、このアウタコラム13aの軸方向に加わる衝撃荷重により座屈変形しない程度の曲げ剛性を有する。このため、本例の場合には、突っ張り梁部52を、基板部55と、この基板部55の幅方向片側縁をこの基板部55に対し直角に折り立てることにより形成される、折り立て板部56とを備えて、断面L字形に形成することにより、突っ張り梁部52の断面係数を高くしている。なお、突っ張り梁部52に、折り立て板部56を設けずに、基板部55のみによって構成することもできる。逆に、基板部55の両側縁を折り立てて、この突っ張り梁部52の断面形状を略U字形とすることもできる。
 エネルギ吸収部53は、突っ張り梁部52よりも後側に設けられ、中間部にU字形の折り返し部57を有する。本例の場合、この折り返し部57が、突っ張り梁部52の基板部55から後方に延在する部分の後端縁から、基板部55に対して上方(アウタコラムの上側にスリットがある構造に適用する場合には、下方)に向け、U字形となるように、180°折り返されている。したがって、エネルギ吸収部53の先端部が、突っ張り梁部52よりも上方(もしくは下方)に位置する。そして、このエネルギ吸収部53の先端部に、幅方向両側縁から上方(もしくは下方)に向け直角に折れ曲がった、左右1対の突出部58を形成している。さらに、これらの突出部58のそれぞれに、締付杆27aを挿通する円形の挿通孔59を形成している。なお、本発明の定義において、これらの突出部が後端側取付部に相当し、挿通孔57は第3通孔に相当する。ただし、後端側取付部の構造は、図示の構造に限定されない。たとえば、折り曲がり部53の先端部を円環状に構成し、この円環の中に締付杆27aを挿通したり、突出部58をアウタコラムの被挟持壁部11aの内側面に固定したりする手段も採ることは可能である。
 左右1対の前端側取付部54は、突っ張り梁部52の前端部を上方(もしくは下方)に向け直角に折り立てた立ち上がり板部60の左右両側縁部から前方に折れ曲がった部分の先端部を、さらに互いに反対側に向け直角に折り曲げることにより、突き合わせ板部として形成されている。そして、前端側取付部54の先端部に、取付孔61をそれぞれ形成している。突っ張り梁部52に対する、これらの取付孔61の偏心量と、挿通孔59の偏心量とは、互いにほぼ同じとしている。なお、本例では、突っ張り梁部52と立ち上がり板部60との連続部に補強ビード62を形成して、この連続部の曲げ剛性を向上させている。
 一方、アウタコラム13aの前部の下面で、スリット43に対向する部分に、ガイドプレート63を固定している。本発明の定義では、このガイドプレート63がガイド部に相当する。ガイドプレート63は、十分な強度および剛性を有する金属板を、曲げ成形により断面クランク型に形成されたもので、上側に設けた取付板部64と、この取付板部64の側縁から下方に向け直角に折れ曲がった垂下板部65と、この垂下板部65の下端縁から、取付板部64と反対側に向け直角に折れ曲がったガイド板部66とを備える。また、この取付板部64の後端縁部に、この取付板部64から上方(もしくは下方)に向け直角に折れ曲がった突き当て板部67を設けている。このようなガイドプレート63は、取付板部64を、被挟持板部11aのうちの一方の被挟持板部11aの下面に突き当てるとともに、突き当て板部67を、この一方の被挟持板部11aの後端面に突き当てた状態で、ねじ68により、この一方の被挟持板部11aに対し固定している。なお、図示の例では、このガイドプレート63は、アウタコラム13aの軸方向に伸長する構造であるが、このような構造に限定されることなく、上記軸方向に短い構造のリブ構造とすることもでき、このリブ構造のガイドプレートをアウタコラム13aの軸方向に複数配置するようにしてもよい。
 この状態で、アウタコラム13aの下面の幅方向中央部(両側の被挟持板部11aの間部分)と、ガイド板部66の上面との間に、ガイド空間69が設けられる。本例の場合、これらアウタコラム13aの下面の幅方向中央部とガイド板部66の上面とを互いに平行にして、ガイド空間69の高さ寸法を、前後方向に関して均一にしている。
 エネルギ吸収部材36aは、エネルギ吸収部53をガイド空間69内に配置した状態で、アウタコラム13aとハウジング41との間に設けている。このために、突出部58に設けた挿通孔59に締付杆27aを挿通している。そして、エネルギ吸収部材36aの後部をアウタコラム13aに対し、締付杆27aを介して結合し、二次衝突時に、このエネルギ吸収部材36aの後部が、アウタコラム13aと共に前方に変位するように組み合わせている。このように、本例では、エネルギ吸収部材36aの後端部を締付杆27aに固定しているが、この構成では、締付杆27aが、アウタコラム13aの上下方向長孔26a、26bの両方に支持されるとともに、この締付杆27aはチルト機構を作動させるために繰り返し使用されることから、熱処理によって硬化されているため、曲げ耐性が高く、エネルギ吸収部材36aの衝撃エネルギの吸収性能にバラツキを発生させないというという利点がある。
 一方、前端側取付部54の取付孔61に挿通したボルト70を、ハウジング41の後端面に開口したねじ孔に螺合し、さらに締め付けることにより、エネルギ吸収部材36aの前部を、ハウジング41に対し結合固定している。このように、エネルギ吸収部材36aの前端部を、電動式パワーステアリング装置40のハウジング41に支持する場合、このハウジング41はアルミダイキャストの剛体から形成されているため、衝撃荷重が加わった場合でも、その取付部の変形が防止されるため、同様に、衝撃エネルギの吸収のバラツキを抑えることができる。また、前端側取付部54を突き当て板部として構成することによって、この部分の剛性が向上し、この点でも、衝撃エネルギの吸収性能の安定化を図ることができる。
 このような構成を備え、上述のように、締付杆27aとハウジング41との間に組み付けられた、エネルギ吸収部材36aは、二次衝突の進行に伴って、図2、図5および図8(A)に示す状態から、図8(B)に示す状態にまで塑性変形する。すなわち、この二次衝突時に、アウタコラム13aが前後位置調節可能な範囲の前端部まで変位した状態から、さらに前方に変位するのに伴って、折り返し部57を前方に移動させる方向に、エネルギ吸収部53を塑性変形させながら、締付杆27aの前方への変位を許容する。この際、この塑性変形に基づき、ステアリングホイール1から、アウタシャフト44およびアウタコラム13aを介して締付杆27aに伝達された衝撃エネルギを吸収する。
 この場合、エネルギ吸収部材36aのエネルギ吸収部53において、折り返し部58が、基板部55からアウタコラム13aの被挟持壁部11aの間で内側に向かって湾曲するように構成されており、この折り返し部58の先端部と突出部58をガイド空間内に配置することができる。これにより、ガイド空間がカバーされるので、エネルギ吸収部材36aをコンパクトに配置できるとともに、このエネルギ吸収部材36aの近傍に配される電装部品のハーネスやコラムカバーなどの衝突時の変形による干渉を受けにくくなる。
 また、エネルギ吸収部53が配置されたガイド空間69の上下両側は、アウタコラム13aの下面の幅方向中央部とガイド板部66の上面とにより仕切られているため、エネルギ吸収部53が、上下方向に拡がる方向に変形することはなく、折り返し部57の移動がバラツキなくスムーズに進行するため、このエネルギ吸収部53の塑性変形に基づくエネルギ吸収が、安定して行われる。さらに、エネルギ吸収部58がこのガイド空間に配置されることにより、二次衝突時にこのエネルギ吸収部58がガイドプレート63によりカバーされるので、衝撃荷重発生時の障害が同様に防止される。特に、本例では、ガイドプレート63が、アウタコラム13aの軸方向に伸長しているため、折り返し部57の移動がこのガイドプレート63により拘束されて、ばらつかなくなるため、衝撃エネルギの吸収が安定的に行われる。
 また、本例の場合には、締付杆27aの中間部に、カム部材86を外嵌している。このカム部材86は、ステアリングホイール1の前後位置を調節すべく、調節レバー33aを下方に回動させ、カム装置32aを緩めることに伴って、先端部を上方(アウタコラムの上側にスリットがある構造では、下方)に変位する。そして、この先端部を、アウタコラム13aの前部に形成したスリット43を通じて、このアウタコラム13aの内周面から上方(もしくは下方)に突出させ、インナコラム14aの後部に形成した係合孔87(図8参照)内に進入させる。この状態で、ステアリングホイール1およびステアリングシャフト5bを介して、アウタコラム13aを前方に向いた力を付与し、このアウタコラム13aが前方に変位すると、カム部材86の先端部前縁が、係合孔87の前端縁に係合する。この状態で、前記前方に向いた力は、インナコラム14aを介して車体に支承され、締付杆27aを介して、支持ブラケット10aに伝わることがなくなる。このため、カム装置32aを緩めた状態で、ステアリングホイール1およびアウタシャフト44を介して、アウタコラム13aを前方に強く押しても、カプセル22aが切り欠き21aから抜け出ることはなく、支持ブラケット10aが車体から前方に脱落することはなくなる。
 さらに、本例の場合には、ステアリングホイール1を調節後の高さ位置に保持するための支持強度を大きくする構造を組み込んでいる。すなわち、締付杆27aの中間部基端寄り部分に揺動腕88の基部を揺動変位可能に外嵌し、調節レバー33aを上方に回動させることに伴って、この揺動腕88を上方に揺動させるようにしている。また、この揺動腕88の先端部に雄側ギヤ89を、挟持板部25dの外側面の上部に雌側ギヤ90を、それぞれ設けて、揺動腕88の上方への揺動に伴って、これらのギヤ89、90を噛合させるようにしている。そして、噛合した状態では、揺動腕88を介して、締付杆27aを挟持板部25dに結合し、二次衝突に伴う大きな衝撃荷重に拘らず、ステアリングホイール1の高さ位置が大きくずれ動かないようにしている。
 なお、被駆動側カム31aは、揺動腕88の基部に、この揺動腕88に対する相対回転を可能に、すなわち挟持板部25dに対する相対回転を阻止した状態で、かつ、揺動腕88に対する若干の上下方向の変位を可能に、組み付けられている。このために、被駆動側カム31aに相対回転を不能に組み付けたチルトスペーサ47aを、上下方向長孔26bに、昇降のみ可能に係合させている。また、被駆動側カム31aと揺動腕88との間に復位ばね91を設けて、この被駆動側カム31aをこの揺動腕88に対し、中立位置を中心とする若干の昇降を可能に支持している。このような若干の昇降を可能にする理由は、ステアリングホイール1の高さ位置が無段階で調節できるのに対して、ギヤ89、90の噛合位置は有段であることから、この差を吸収するためである。
 上述のように構成する本例の構造によれば、設計の自由度を確保しつつ、低コストで、より優れた性能を得られる衝撃吸収式ステアリング装置を実現できる。まず、締付杆27aを、図示の例のように、アウタコラム13aの下側に配置した構造で、この締付杆27aとエネルギ吸収部材36aとを、このアウタコラム13aの軸方向に関して、互いに直列に配置できる。なお、締付杆をアウタコラムの上側に配置した構造でも、この締付杆とエネルギ吸収部材とを、そのアウタコラムの軸方向に関して、互いに直列に配置できることはいうまでもない。これらの部材27a、36aをこのように配置すると、二次衝突時に、アウタコラム13aを前方に変位させることに対する抵抗となる力、すなわち、エネルギ吸収部材36aが塑性変形することに対する抵抗が、二次衝突時にアウタコラム13aが揺動変位する際にその中心となる、締付杆27aに向けて加わる。この結果、このアウタコラム13aに対して、この締付杆27aを中心として揺動させる方向のモーメントが加わることがなくなる。そして、アウタコラム13aの前部とインナコラム14aの後部との嵌合部の摩擦係合状態を安定させて、この嵌合部の摺動を安定させ、二次衝突時の衝撃エネルギの吸収状態を安定させることができる。
 また、二次衝突時の衝撃エネルギを吸収するために、アウタコラム13aの前部内周面とインナコラム14aの後部外周面との嵌合部の摩擦抵抗だけでなく、エネルギ吸収部材36aの塑性変形も利用するため、衝撃エネルギを吸収する性能を安定させやすく、また、この吸収性能のチューニングも任意に行える。さらに、エネルギ吸収部材36aの前後両端部のうち、後端部を締付杆27aにより、前端部をハウジング41により、それぞれ支持している。これらの部材27a、41は、もともとステアリング装置に組み込まれていたものであり、エネルギ吸収部材36aを設置するために、新たに設置する必要がある部材ではない。このため、このエネルギ吸収部材36aを設けることに伴うコスト上昇を抑えられる。
 加えて、図示の例の場合には、支持ブラケット10aを構成する取付板部46の上面中央部後端寄り部分に、取付用ブラケット92を固定している。この取付用ブラケット92の前半部は弾性係止部93とし、同じく後半部はガイド鍔部94としている。一方、支持ブラケット10aを取り付けるため、あらかじめ車体に固定しておく車体側ブラケット12aには、図9に示すように、幅狭部95と幅広部96とからなる係止孔97を形成している。このうちの幅広部96は、車体側ブラケット12aの後端部を上方に曲げ起こした、折り曲げ部98に形成している。ステアリングコラム6cを含むステアリング装置を、車体側に組み付ける場合には、まず、ハウジング41を車体に対し、支持管17aを挿通したボルトにより、揺動変位可能に支持する。この状態から、ステアリングコラム6cとともに、支持ブラケット10aを上方に変位させると、弾性係止部93が、幅寸法を弾性的に縮めつつ、係止孔97のうちの幅狭部95の後端部に係止される。この状態で、支持ブラケット10aが車体側ブラケット12aに対し仮止めされるため、この支持ブラケット10aをこの車体側ブラケット12aにねじ止め固定する作業を容易に行うことができる。
 二次衝突時には、カプセル22aが、切り欠き21aから抜け出して、これらのカプセル22aによる支持ブラケット10aの支持力が喪失する以前に、ガイド鍔部94が、幅広部96から幅狭部95内に入り込む。そして、このガイド鍔部94の両側部分と、車体側ブラケット12aのうちの幅狭部95の両側部分との係合により、支持ブラケット10aが下方に落下するのを防止する。この結果、二次衝突の進行に伴って、ステアリングホイール1が過度に下降することを防止して、このステアリングホイール1の後方で開いたエアバッグと運転者の身体との位置関係を適正のままに維持できる。また、軽度の衝突事故の場合には、事故後にもステアリングホイールを操作可能にできて、事故車両の撤去に要する手間の軽減を図ることができる。
 [第2の実施形態]
 本発明の第2の実施形態について、図10~図19を参照しながら説明する。第2の実施形態の衝撃吸収式ステアリング装置は、二次衝突時の衝撃エネルギを吸収するための構造、すなわち、エネルギ吸収部材の構造においてのみ、第1の実施形態と異なる。このため、第1の実施形態と同様の構成については、その説明を省略ないしは簡略化し、以下、その特徴部分であるエネルギ吸収部材について説明する。なお、本例の説明でも、締付杆をアウタコラムの下側に配置した構造に基づいた説明がなされるが、この態様についても、締付杆をアウタコラムの上側に配置した構造に適用できることはいうまでもない。この場合、第1の実施形態における説明と同様に、部材およびその間の位置関係について、上下方向を逆とすればよい。
 本例の特徴部分である、エネルギ吸収部材36bは、二次衝突時にアウタコラム13aとともに前方に変位する部分である、締付杆27aの軸方向中間部と、電動式パワーステアリング装置40のハウジング41の後端面との間に設けている。エネルギ吸収部材36bは、軟鋼板などの、衝撃エネルギ吸収のために適切な強度および剛性を備えるとともに、塑性変形が可能である金属板に、プレス加工などによる打ち抜き加工および曲げ加工、さらに必要とする削り加工などを施すことにより、図16および図19に示すように、全体として一体に形成されている。
 具体的には、エネルギ吸収部材36bは、軟鋼板などの、塑性変形および切り裂き可能な金属板製で、基板部71と、1対の折れ曲がり板部72と、折り返し部73と、後端側取付部74と、左右1対の薄肉部75と、左右1対の前端側取付部76とを備える。
 折れ曲がり板部72は、基板部71の左右両側縁から上方(アウタコラム13aのスリットが上側にある場合には、下方)に向け直角に折れ曲がっており、前後方向に関しても、上下方向に関しても、互いに平行である。折り返し部73は、基板部71の後端縁の幅方向中間部から後方に延出した帯状部分を、上方(または下方)に向けて180°、U字形に折り返して形成されている。後端側取付部74は、折り返し部73の先端部両側縁から側方に突出した部分を上方(もしくは下方)に向け直角に折り曲げて形成された、左右1対の突出部77を備える。そして、これらの突出部77の互いに整合する位置に、締付杆27aを挿通可能な挿通孔78を形成している。なお、本発明の定義において、この挿通孔78は、第3通孔に相当する。
 薄肉部75は、基板部71の後端縁のうちで、折り返し部73の基端部を左右両側から挟む部分から前方に向けて配置されたもので、それぞれが削り加工、あるいはプレスによる潰し加工などによって形成された凹溝の底部に対応して設けられている。さらに、前端側取付部76は、折れ曲がり板部72の前端部で基板部71の前端縁よりも前方に突出した部分を、互いに反対方向に向け直角に折り曲げることにより、エネルギ吸収部材36aの前端部に設けられている。そして、前端側取付部76の中央部には、取付孔79がそれぞれ形成されている。
 上述のようなエネルギ吸収部材36bは、アウタコラム13aとハウジング41との間に設けられている。このために、後端側取付部74を構成する突出部77に設けた挿通孔78に締付杆27aを挿通している。そして、エネルギ吸収部材36bの後部をアウタコラム13aに対し、締付杆27aを介して結合し、二次衝突時に、このエネルギ吸収部材36bを構成する折り返し部73の先端部に設けた後端側取付部74が、アウタコラム13aとともに前方に変位するように組み合わせている。これに対して、前端側取付部76の取付孔79に挿通したボルト80を、ハウジング41の後端面に開口したねじ孔に螺合し、さらに締め付けることにより、エネルギ吸収部材36bの前部を、ハウジング41に対し結合固定している。なお、このように、このエネルギ吸収部材36bを組み付けた状態で、折れ曲がり板部72のうちの後端寄り部分の上端縁が、被挟持壁部11aの下端面に、当接もしくは近接対向する。
 このような構成を備え、上述のように、締付杆27aとハウジング41との間に組み付けられた、エネルギ吸収部材36bは、二次衝突の進行に伴って、折り返し部73を、図11、14および図17(A)に示す状態から、図17(B)に示す状態にまで、薄肉部75を裂断しつつ塑性変形する。すなわち、二次衝突の発生時に、アウタコラム13aは、まず、締付杆27aが前後方向長孔28の後端に位置するまで、すなわち、ステアリングホイール1の前後位置調節の最前位置まで、移動する。この移動は、挟持板部25c、25dの内側面と被挟持壁部11aの外側面との当接部に作用する摩擦力に抗して行われる。このような移動の際に、この摩擦力に基づいて、ステアリングホイール1からアウタコラム13aに加えられた衝撃エネルギが、ある程度、吸収される。ただし、前記摩擦力は限られているため、一般的には、この衝撃エネルギを十分に吸収し切る以前に、締付杆27aが前後方向長孔28の後端にまで移動する。
 アウタコラム13aは、この状態からさらに前方に移動するが、このさらなる移動の際には、締付杆27aがアウタコラム13aとともに前方に移動する。この締付杆27aの前方への移動に伴って、エネルギ吸収部材36bの後端取付部74が前方に変位する。そして、薄肉部75を切り裂きつつ、U字形の折り返し部73を、もともとの帯状部分およびこれらの薄肉部75が切り裂かれることで帯状となった部分に沿って、移動させる。この際、U字形の折り返し部73を移動させるためには、この帯状部分の湾曲部を移動させることに対抗する塑性抵抗、および、薄肉部75を切り裂くことに対抗する剪断抵抗に、打ち勝つ必要がある。そして、アウタコラム13aを前方に変位させるために、前記摩擦抵抗に加えて、前記塑性抵抗および剪断抵抗に打ち勝つ必要がある。これらの塑性抵抗および剪断抵抗の値は、任意に、かつ安定して調節できる。そして、前記さらなる移動の際には、前記摩擦抵抗に加えて、前記塑性抵抗および剪断抵抗によっても、前記衝撃エネルギが吸収される。このため、この衝撃エネルギを吸収する性能を安定させやすく、また、この吸収性能のチューニングも任意に行うことができる。
 特に本例の構造の場合には、折れ曲がり板部72のうちの後端寄り部分の上端縁が、被挟持壁部11aの下端面に、当接もしくは近接対向しているため、二次衝突の際のエネルギ吸収部材36bの姿勢を安定させることができる。すなわち、二次衝突の進行に伴って後端取付部74が前方に変位し、薄肉部75を切り裂きつつ、折り返し部73を前方に変位させる際には、エネルギ吸収部材36bの後端部が上方に引っ張られる。このような引っ張り上げる方向の力により、折れ曲がり板部72のうちの後端寄り部分の上端縁が被挟持壁部11aの下端面に強く押し付けられるが、この際、エネルギ吸収部材36bは、姿勢が変化しないか、仮に変化してもその程度はわずかに止まる。このため、前記塑性抵抗や前記剪断抵抗が不安定になることを防止できる。
 なお、前記塑性抵抗および剪断抵抗の値は、エネルギ吸収部材を構成する金属板の材質、厚さ、薄肉部の厚さや幅などにより調節できることに加えて、薄肉部の平面形状によっても調節できる。たとえば、図7(D)に示すエネルギ吸収部材36cのように、薄肉部75aの前端部を、前方に向うに従って互いの間隔が広くなる方向に傾斜させれば、これらの薄肉部75aを引き裂くために要する力を、二次衝突の進行に伴って漸次大きくできる。この結果、このエネルギ吸収部材36cでは、衝撃エネルギを吸収する特性を、二次衝突の終段で漸次大きくできて、運転者の保護充実を図りやすくなる。また、図7(D)に示すように、折れ曲がり板部72の後端部に取付部81を形成し、これらの取付部81を被挟持壁部11aにねじ止めなどによって結合固定すれば、二次衝突進行時におけるエネルギ吸収部材36cの姿勢を、より安定させることができる。
 本発明では、エネルギ吸収部材の前端部を、電動式パワーステアリング装置用のハウジング41に支持することによって、このエネルギ吸収部材36a~36cが、アルミダイキャストの剛体からなるハウジング41に固定されるため、衝撃荷重が加わった場合でも、その取付部の変形を防止し、衝撃エネルギの吸収のバラツキを抑え、その安定化を図っている。ただし、本発明は、このような態様に限定されるわけではない。たとえば、第2の実施形態において、図18および図19に示すように、エネルギ吸収部材36dの前端側取付部82の構造を、前記ハウジング41ではなく、このハウジング41に前端部が結合固定されているインナコラム14aの前端部の外周面に結合固定される構造とすることもできる。この場合、前端側取付部84を、基板部71の前端部の左右両側縁で、折れ曲がり板部72aの前端部から上方(アウタコラム13aのスリット43が上側にある構造では、下方)に伸長するように、この折れ曲がり板部72aの形成と同時に、基板部71から同方向に直角に折れ曲げることにより形成し、その中間にインナコラム14aの前端部の外周面の形状に沿って湾曲し、このインナコラム14aの前端部に外嵌される湾曲部83を設け、前端側取付部84の先端部に取付孔84を設け、この取付孔84にボルトを挿通しナット(図示せず)により螺合し、さらに締め付けることによって、この前端側取付部84をインナコラム14aに結合固定することも可能である。なお、湾曲部83は、一般的に用いられる締付バンドを用いて構成してもよい。
 なお、この第2の実施形態において、折り返し部73とともに、基板部71の中間部まで伸長する左右の1対の薄肉部75、75aに挟まれた部分が、本発明の定義におけるエネルギ吸収部に相当する。また、基板部71のうち、薄肉部75、75aと、薄肉部75、75aの両側にある部分と、折れ曲がり板部72とにより、本発明の定義におけるガイド部が構成される。この構成により、折り返し部73の移動が、このガイド部により案内されることで、スムーズに進行するため、衝撃エネルギの吸収性能がばらつくことが抑制される。また、このガイド部がカバーの役目をなすことから、エネルギ吸収部材36b、36cの近傍に配される電装部品のハーネスやコラムカバーなどが衝突時に変形した場合に、その変形による干渉を受けにくくなるため、衝撃エネルギの吸収が安定的に行われることとなる。
 このような構成の第2の実施形態の衝撃吸収式ステアリング装置においても、第1の実施形態の装置と同様の作用効果を得ることが可能である。なお、本発明は、上記の態様の特定例の具体的な構成によって制限されるものではない。
 本発明は、テレスコピック機構およびチルト機構の両方を備えた構造のステアリング装置に好適に適用される。ただし、いずれか一方の機構のみを備える構造や、いずれの機構も備えていないステアリング装置にも適用することは可能である。たとえば、テレスコピック機構のみを備えた構造で本発明を実施する場合には、図示の実施の形態から、挟持板部25c、25dに形成する第2通孔を、上下方向長孔26a、26bに代えて、締付杆27aを挿通可能とするだけの単なる円孔とする。一方、チルト機構のみを備えた構造で実施する場合には、図示の実施の形態から、1対の被挟持壁部11aに形成する第1通孔を、前後方向長孔28に代えて、締付杆27aを挿通可能とするだけの単なる円孔とする。さらに、ステアリングホイールの位置調節装置を備えない構造で実施する場合には、第1通孔および第2通孔のいずれも単なる円孔とする。このような位置調節装置を備えない構造で実施する場合に、締付杆をボルトとし、1対の押圧部を、このボルトの頭部と、このボルトに螺合したナットにより構成することもできる。この場合、このナットが一方の押圧部として、かつ、固定手段として機能する。このように、本発明は、衝撃吸収式ステアリング装置に広く適用される。
  1  ステアリングホイール
  2  ステアリングギヤユニット
  3  入力軸
  4  タイロッド
  5、5a、5b ステアリングシャフト
  6、6a、6b、6c ステアリングコラム
  7  自在継手
  8  中間シャフト
  9  自在継手
 10、10a 支持ブラケット
 11、11a 被挟持壁部
 12、12a 車体側ブラケット
 13、13a アウタコラム
 14、14a インナコラム
 15  電動モータ
 16  ハウジング
 17、17a 支持管
 18  天板
 19a、19b 側板
 20  結合板部
 21、21a 切り欠き
 22、22a カプセル
 23  通孔
 24  ナット
 25a、25b、25c、25d 挟持板部
 26、26a、26b 上下方向長孔
 27、27a 締付杆
 28  前後方向長孔
 29  鍔部
 30、30a 駆動側カム
 31、31a 被駆動側カム
 32、32a カム装置
 33、33a 調節レバー
 34  係止部
 35、35a 釣合ばね
 36、36a、36b エネルギ吸収部材
 37  車体
 38  支持ピン
 39  保持ケース
 40  電動式パワーステアリング装置
 41  ハウジング
 42  突条
 43  スリット
 44  アウタシャフト
 45  インナシャフト
 46  取付板部
 47、47a チルトスペーサ
 48  スペーサ
 49  ワッシャ
 50  スラスト軸受
 51  ナット
 52  突っ張り梁部
 53  エネルギ吸収部
 54  前端側取付部
 55  基板部
 56  折り立て板部
 57  折り返し部
 58  突出部
 59  挿通孔
 60  立ち上がり板部
 61  取付孔
 62  補強ビード
 63  ガイドプレート
 64  取付板部
 65  垂下板部
 66  ガイド板部
 67  突き当て板部
 68  ねじ
 69  ガイド空間
 70  ボルト
 71  基板部
 72  折れ曲がり板部
 73  折り返し部
 74  後端側取付部
 75、75a 薄肉部
 76  前端側取付部
 77  突出部
 78  挿通孔
 79  取付孔
 80  ボルト
 81  取付部
 82  前端側取付部
 83  湾曲部
 84  取付孔
 85  ボルト
 86  カム部材
 87  係合孔
 88  揺動腕
 89  雄側ギヤ
 90  雌側ギヤ
 91  復位ばね
 92  取付用ブラケット
 93  弾性係止部
 94  ガイド鍔部
 95  幅狭部
 96  幅広部
 97  係止孔
 98  折り曲げ部

Claims (15)

  1.  前後位置を規制された状態で前側に配置されたインナコラムと、該インナコラムの後部に軸方向の相対変位を可能に外嵌され、該インナコラムとの嵌合部である前部に軸方向に設けられ、該前部の直径を拡縮可能とするスリット、該前部の下面または上面で該スリットを左右両側から挟む位置に設けられた1対の被挟持壁部、および、これらの被挟持壁部の互いに整合する位置に形成された1対の第1通孔を有するアウタコラムとを備えるステアリングコラムと、
     インナシャフトと、該インナシャフトの後部に軸方向の相対変位を可能に外嵌され、後端部が前記アウタコラムの後端開口よりも後方に突出し、該後端部にステアリングホイールが支持固定されているアウタシャフトとを備え、前記ステアリングコラムの内径側に回転自在に支持されているステアリングシャフトと、
     左右1対の挟持板部と、これらの挟持板部の前記第1通孔のうちの少なくとも一部に整合する部分に形成された1対の第2通孔と、前記挟持板部を支持するとともに、二次衝突時に前記ステアリングホイールから前記アウタコラムに加えられた衝撃エネルギに基づいて、前方へ脱落することが可能なように、車体に支持される取付板部とを備える支持ブラケットと、
     前記第1通孔と前記第2通孔とに挿通され、両端部に1対の押圧部を備える締付杆と、
     前記1対の押圧部の間隔を拡縮し、該間隔の収縮時に前記アウタコラムの前記前部の直径を縮め、該アウタコラムの前記前部の内周面と前記インナコラムの前記後部の外周面とを摩擦係合させる固定手段と、
     前記二次衝突時に前記アウタコラムとともに前方に変位する部分と、該二次衝突時にも前方に向けて変位しない部分との間に設けられ、該二次衝突に伴う前記アウタコラムの前方への変位に伴って塑性変形する部材からなり、該塑性変形の相対移動により、前記衝撃エネルギの一部を吸収するエネルギ吸収部材と、
    を備え、
     前記エネルギ吸収部材は、基板部と、該基板部の後半部に設けられ、または、該基板部から後方に延在し、該基板部に対して上方または下方に向けて、U字形に折り返された折り返し部を有するエネルギ吸収部と、該折り返し部の先端部に設けられた後端側取付部と、前記基板部の前方に設けられた前端側取付部とを備え、
     前記折り返し部の先端部および前記後端側取付部は、前記1対の被挟持壁部の間の空間に配置され、かつ、前記二次衝突時に前記アウタコラムとともに前方に変位する部分に固定され、前記前端側取付部は、該二次衝突時にも前方に向けて変位しない部分に固定されていることを特徴とする、衝撃吸収式ステアリング装置。
  2.  前記エネルギ吸収部の近傍に、前記二次衝突時に前記アウタコラムとともに前記後端側取付部が前方に移動するに伴って、前記折り返し部が移動する際に、この折り返し部の移動を案内するガイド部を備える、請求項1に記載した衝撃吸収式ステアリング装置。
  3.  前記後端側取付部が固定される、前記アウタコラムとともに前方に変位する部分が、前記締付杆である、請求項1に記載した衝撃吸収式ステアリング装置。
  4.  前記前端側取付部が固定される、前記前方に向けて変位しない部分が、前記インナコラムの前端部または前記インナコラムの前端部に固定した部材である、請求項1に記載した衝撃吸収式ステアリング装置。
  5.  前記前端側取付部が固定される、前記前方に向けて変位しない部分が、前記インナコラムの前端部に固定した、電動式パワーステアリング装置の構成部品を収納したハウジングであり、前記前端側取付部が、前記基部の前端縁または前記基部の前端縁から前方に突出した部分から、互いに反対方向に直角に折り曲げられた突き合わせ板部を備え、これらの突き合わせ板部を前記ハウジングの後端面に突き合わせた状態で、該ハウジングに結合固定している、請求項4に記載した衝撃吸収式ステアリング装置。
  6.  前記前端側取付部が固定される、前記前方に向けて変位しない部分が、前記インナコラムの前端部であり、前記前端側取付部が、前記基部の前端部の左右両側縁または前記基部の前端縁から前方に突出した部分の左右両側縁から、上方または下方に向けて同方向に延在する部材からなり、それぞれの部材は、前記インナコラムの外周面の形状に沿って湾曲する湾曲部と、取付孔が設けられた先端部を備え、該湾曲部を前記インナコラムの前端部に外嵌した状態で、前記取付孔に挿通したボルトを、ナットで螺合し、さらに締め付けることにより、これらの先端部を結合固定している、請求項4に記載した衝撃吸収式ステアリング装置。
  7.  前記エネルギ吸収部が、前記基板部から後方に延在し、前記折り返し部を中間部に備え、前記後端側取付部が、前記折り返し部の前記先端部に設けた1対の突出部と、これらの突出部に設けられた第3通孔とを備え、この第3通孔に前記締付杆を挿通している、請求項3に記載した衝撃吸収式ステアリング装置。
  8.  取付板部と、該取付板部から直角に折れ曲がった垂下板部と、該垂下板部から前記取付板部と反対側に向けて直角に折れ曲がったガイド板部とを備え、断面クランク形のガイドプレートを備え、前記取付板部は、前記被挟持壁部の一方の下面に突き当てた状態で固定され、前記ガイド板部は、前記1対の被挟持壁部の間の空間に対向し、前記アウタコラムの前部の上面または下面との間にガイド空間を形成し、
     前記エネルギ吸収部材の前記エネルギ吸収部は、該ガイド空間内に配置され、該ガイドプレートが、前記二次衝突時に前記アウタコラムとともに前記後端側取付部が前方に移動するに伴って、該エネルギ吸収部の前記折り返し部が移動する際に、この折り返し部の移動を案内する、請求項7に記載した衝撃吸収式ステアリング装置。
  9.  前記折り返し部は、前記基板部の後端縁の幅方向中間部から後方に延出しており、前記基板部は、該基板部の後端縁のうちで、前記折り返し部の基端部の左右両側から挟む部分から前方に向けて該基板部の中間部まで伸長する左右1対の薄肉部を備え、該基板部のうち、該左右1対の薄肉部に挟まれた部分は、前記エネルギ吸収部の一部を構成する、請求項3に記載した衝撃吸収式ステアリング装置。
  10.  前記エネルギ吸収部材は、前記基板部の左右両側縁から同方向に折れ曲がった1対の折れ曲がり板部をさらに備え、該折れ曲がり板部の上端縁または下端縁のうち少なくとも後方寄り部分は、前記被挟持壁部の下面または上面に当接または近接対向する、請求項3または9に記載した衝撃吸収式ステアリング装置。
  11.  前記第1通孔が、前記アウタコラムの軸方向に長い前後方向長孔であって、前記締付杆がこれらの第1通孔内で変位できる範囲で、前記アウタコラムの前後位置を調節可能としており、前記締付杆の基端部に設けられた調節レバーの操作に基づいて、前記1対の押圧部の間隔を拡縮し、該間隔の収縮時に、前記アウタコラムの前部の直径を縮めて、該アウタコラムの前後位置を固定する、請求項1に記載した衝撃吸収式ステアリング装置。
  12.  前記インナコラムの前端部が、横軸を中心とする揺動変位を可能に車体に対して支持されており、前記第2通孔が、該横軸を中心とする部分円弧形を有する上下方向に長い上下方向長孔であって、前記締付杆がこれらの上下方向長孔内で変位できる範囲で、前記ステアリングホイールの上下位置を調節可能としており、前記締付杆の基端部に設けられた調節レバーの操作に基づいて前記1対の押圧部の間隔を拡縮し、該間隔の収縮時に前記1対の挟持板部の間隔を縮め、これらの挟持板部の内側面と前記被挟持壁部の外側面とを摩擦係合させて、前記アウタコラムの上下位置を固定する、請求項1に記載した衝撃吸収式ステアリング装置。
  13.  前記インナコラムの外周面に、それぞれが軸方向に長い複数本の突条が形成されており、該インナコラムの外周面と前記アウタコラムの内周面とが、これらの突条の頂部で当接している、請求項1に記載した衝撃吸収式ステアリング装置。
  14.  前記インナシャフトの端部外周面に形成した雄スプライン歯と、前記アウタシャフトの端部内周面に形成した雌スプライン歯とをスプライン係合させることで、前記スプラインシャフトの全長を伸縮可能としており、前記雄スプライン歯と前記雌スプライン歯とのうちの少なくとも一方の歯の表面に、摩擦係数が低い合成樹脂製のコーティング層が形成されている、請求項1に記載した衝撃吸収式ステアリング装置。
  15.  前記締付杆の中間部に、カム部材が外嵌されており、前記アウタコラムの前部の直径を拡げる方向に前記締付杆を回動させた状態で、前記カム部材を、該アウタコラムの前部に形成した前記スリットを通じて、前記インナコラムの後部に形成した係合孔内に進入させる、請求項1に記載した衝撃吸収式ステアリング装置。
PCT/JP2011/066883 2010-08-06 2011-07-25 衝撃吸収式ステアリング装置 WO2012017854A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11743174.2A EP2439126B1 (en) 2010-08-06 2011-07-25 Shock-absorbing steering device
JP2011531695A JP5293825B2 (ja) 2010-08-06 2011-07-25 衝撃吸収式ステアリング装置
US13/202,461 US8590933B2 (en) 2010-08-06 2011-07-25 Impact absorbing steering apparatus
CN201180001211.1A CN102438878B (zh) 2010-08-06 2011-07-25 冲击吸收式转向装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010176970 2010-08-06
JP2010-176970 2010-08-06
JP2010-183753 2010-08-19
JP2010183753 2010-08-19

Publications (1)

Publication Number Publication Date
WO2012017854A1 true WO2012017854A1 (ja) 2012-02-09

Family

ID=45559357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066883 WO2012017854A1 (ja) 2010-08-06 2011-07-25 衝撃吸収式ステアリング装置

Country Status (5)

Country Link
US (1) US8590933B2 (ja)
EP (1) EP2439126B1 (ja)
JP (1) JP5293825B2 (ja)
CN (1) CN102438878B (ja)
WO (1) WO2012017854A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010641A2 (ja) 2012-07-12 2014-01-16 日本精工株式会社 チルトステアリング装置
WO2014038398A1 (ja) * 2012-09-05 2014-03-13 カヤバ工業株式会社 ステアリング装置
JP2016002800A (ja) * 2014-06-13 2016-01-12 株式会社ジェイテクト ステアリングコラム装置
JP2016175486A (ja) * 2015-03-19 2016-10-06 株式会社山田製作所 ステアリング装置
US10093341B2 (en) * 2015-01-13 2018-10-09 Nsk Ltd. Steering device
US10377408B2 (en) 2014-09-22 2019-08-13 Nsk Americas, Inc. Energy absorption module for vehicle steering column assembly
WO2020075639A1 (ja) * 2018-10-09 2020-04-16 日本精工株式会社 ステアリングコラムおよびステアリング装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438878B (zh) * 2010-08-06 2015-02-25 日本精工株式会社 冲击吸收式转向装置
JP5327165B2 (ja) * 2010-08-26 2013-10-30 日本精工株式会社 電動式パワーステアリング装置を備えた衝撃吸収式ステアリング装置
CN104908801B (zh) * 2011-02-25 2017-08-01 日本精工株式会社 伸缩式转向装置
US9016722B2 (en) * 2011-11-18 2015-04-28 Toyota Jidosha Kabushiki Kaisha Steering column device
GB201206307D0 (en) * 2012-04-10 2012-05-23 Trw Ltd Improvements relating to steering assemblies
JP5949922B2 (ja) * 2012-07-23 2016-07-13 トヨタ自動車株式会社 ステアリングコラム装置
JP5783327B2 (ja) * 2013-04-24 2015-09-24 日本精工株式会社 ステアリング装置
CN105324290B (zh) * 2013-09-30 2017-07-14 日本精工株式会社 方向盘的位置调节装置
CN105473415B (zh) * 2013-11-20 2017-04-05 日本精工株式会社 转向装置
WO2015076225A1 (ja) * 2013-11-20 2015-05-28 日本精工株式会社 ステアリング用ブラケットの支持装置及びステアリング装置
DE102014102661B3 (de) * 2014-02-28 2015-04-02 Thyssenkrupp Presta Ag Lenksäule für ein Kraftfahrzeug
WO2016076266A1 (ja) 2014-11-10 2016-05-19 日本精工株式会社 衝撃吸収式ステアリング装置
JP2016185719A (ja) * 2015-03-27 2016-10-27 富士機工株式会社 ステアリングコラム装置
JP6508518B2 (ja) * 2015-03-31 2019-05-08 株式会社ジェイテクト ステアリング装置
JP2016203911A (ja) * 2015-04-27 2016-12-08 株式会社山田製作所 ステアリング装置
EP3187393B1 (en) * 2015-10-23 2019-05-08 FUJI KIKO Co., Ltd. Steering column apparatus
CN106828587A (zh) * 2015-12-04 2017-06-13 博世华域转向系统有限公司 一种防止转向管柱被动溃缩的锁紧限位式手柄组件
DE102016202465B4 (de) * 2016-02-18 2019-05-29 Thyssenkrupp Ag Motorisch verstellbare Lenksäule für ein Kraftfahrzeug
CN109070929A (zh) 2016-02-19 2018-12-21 Nsk美国有限公司 用于转向柱组件的引导和限制单元子组件
JP6701519B2 (ja) * 2016-04-27 2020-05-27 株式会社ジェイテクト ステアリング装置
JP6923390B2 (ja) * 2017-08-09 2021-08-18 株式会社山田製作所 ステアリング装置
DE102017120669A1 (de) * 2017-09-07 2019-03-07 Trw Automotive Gmbh Lenksäulenbaugruppe für ein Kraftfahrzeug sowie Lenkungssystem
WO2019189473A1 (ja) * 2018-03-27 2019-10-03 日本精工株式会社 ステアリング装置
KR102149205B1 (ko) * 2019-06-12 2020-08-28 남양넥스모 주식회사 차량용 충격흡수식 스티어링 컬럼
GB2620542A (en) * 2022-04-13 2024-01-17 Zf Automotive Uk Ltd A steering column assembly for a vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575057U (ja) * 1992-03-13 1993-10-12 日本精工株式会社 衝撃吸収式ステアリングコラム装置
JPH08295251A (ja) * 1995-04-26 1996-11-12 Nippon Seiko Kk 衝撃吸収式ステアリングコラム装置
JPH10315986A (ja) * 1997-05-14 1998-12-02 Nippon Seiko Kk 電動パワーステアリング装置付衝撃吸収式ステアリング装置
JP2000006820A (ja) * 1998-06-19 2000-01-11 Nippon Seiko Kk 衝撃吸収式ステアリングコラム装置
JP2004299489A (ja) * 2003-03-31 2004-10-28 Fuji Kiko Co Ltd 衝撃吸収式ステアリング装置
JP2008013110A (ja) * 2006-07-07 2008-01-24 Nsk Ltd 衝撃吸収式ステアリングコラム装置
JP2008018820A (ja) * 2006-07-12 2008-01-31 Nsk Ltd 衝撃吸収式ステアリングコラム装置
EP1992544A2 (en) 2007-05-17 2008-11-19 NSK Ltd. Steering system
JP2010155485A (ja) * 2008-12-26 2010-07-15 Fuji Kiko Co Ltd ステアリングコラム装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723099B2 (ja) 1986-08-14 1995-03-15 日本精工株式会社 エネルギ吸収形ステアリング装置
JPH02132576A (ja) 1988-11-14 1990-05-22 Oki Electric Ind Co Ltd 手書文字認識表示装置における文字訂正方式
JPH0575057A (ja) 1991-07-17 1993-03-26 Sharp Corp 半導体記憶装置
JP2935950B2 (ja) * 1993-12-03 1999-08-16 株式会社山田製作所 ステアリングシャフト及びその製造装置
JP3783429B2 (ja) 1998-09-25 2006-06-07 スズキ株式会社 自動車のステアリング装置
JP3727004B2 (ja) 1999-09-10 2005-12-14 光洋精工株式会社 衝撃吸収式ステアリング装置及びこれに用いる取付部材
DE10297302B4 (de) * 2001-10-01 2012-07-12 Nsk Ltd. Teleskopwelle für eine Fahrzeuglenkung
CN100387472C (zh) * 2002-06-11 2008-05-14 日本精工株式会社 车辆转向用伸缩轴以及带万向轴节的车辆转向用伸缩轴
FR2855140B1 (fr) * 2003-05-19 2006-05-26 Nacam Dispositif d'absorption modulable d'energie a charges pyrotechniques d'une colonne de direction de vehicule automobile
US7784830B2 (en) * 2003-10-23 2010-08-31 Chrysler Group Llc Axially adjustable steering column assembly with flexible bearing sleeve
US20050225903A1 (en) * 2004-04-02 2005-10-13 Sprankle Matthew S Tolerance ring with debris-reducing profile
JP4609203B2 (ja) * 2004-08-05 2011-01-12 日本精工株式会社 ステアリングコラム装置
JP4770193B2 (ja) * 2005-02-16 2011-09-14 日本精工株式会社 車両ステアリング用伸縮軸
JP4507974B2 (ja) 2005-05-09 2010-07-21 日本精工株式会社 ステアリング装置
US8127639B2 (en) * 2005-08-16 2012-03-06 Steering Solutions IP Holding Company, a Delaware corporation Sleeve bearing for collapsible steering column
US7699344B2 (en) * 2006-02-21 2010-04-20 Nsk Ltd. Steering device
US20070228716A1 (en) * 2006-03-31 2007-10-04 Ratko Menjak Collapsible steering column assembly and method of operation
KR100848497B1 (ko) * 2007-01-19 2008-07-28 주식회사 만도 와이어 블록 어셈블리를 구비한 자동차의 충격 흡수식조향컬럼
DE102008034807B3 (de) * 2008-07-24 2009-10-01 Thyssenkrupp Presta Ag Lenksäule für ein Kraftfahrzeug
JP5662115B2 (ja) * 2010-01-20 2015-01-28 株式会社山田製作所 ステアリング装置
KR20110096805A (ko) * 2010-02-23 2011-08-31 주식회사 만도 자동차의 조향 컬럼 및 이를 포함하는 자동차의 조향장치
CN102438879B (zh) * 2010-08-05 2014-06-18 日本精工株式会社 冲击吸收式转向装置
CN102438878B (zh) * 2010-08-06 2015-02-25 日本精工株式会社 冲击吸收式转向装置
JP5327164B2 (ja) * 2010-08-24 2013-10-30 日本精工株式会社 電動式パワーステアリング装置を備えた衝撃吸収式ステアリング装置
US8622427B2 (en) * 2010-11-12 2014-01-07 Nsk Ltd. Steering column support apparatus
EP2657104B1 (en) * 2010-12-21 2017-04-26 NSK Ltd. Support device for steering column
JP5664523B2 (ja) * 2011-01-19 2015-02-04 日本精工株式会社 ステアリング装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575057U (ja) * 1992-03-13 1993-10-12 日本精工株式会社 衝撃吸収式ステアリングコラム装置
US5378021A (en) 1992-03-13 1995-01-03 Nsk Ltd. Collapsible steering column apparatus
JPH08295251A (ja) * 1995-04-26 1996-11-12 Nippon Seiko Kk 衝撃吸収式ステアリングコラム装置
JPH10315986A (ja) * 1997-05-14 1998-12-02 Nippon Seiko Kk 電動パワーステアリング装置付衝撃吸収式ステアリング装置
JP2000006820A (ja) * 1998-06-19 2000-01-11 Nippon Seiko Kk 衝撃吸収式ステアリングコラム装置
JP2004299489A (ja) * 2003-03-31 2004-10-28 Fuji Kiko Co Ltd 衝撃吸収式ステアリング装置
JP2008013110A (ja) * 2006-07-07 2008-01-24 Nsk Ltd 衝撃吸収式ステアリングコラム装置
JP2008018820A (ja) * 2006-07-12 2008-01-31 Nsk Ltd 衝撃吸収式ステアリングコラム装置
EP1992544A2 (en) 2007-05-17 2008-11-19 NSK Ltd. Steering system
JP2010155485A (ja) * 2008-12-26 2010-07-15 Fuji Kiko Co Ltd ステアリングコラム装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2439126A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010641A2 (ja) 2012-07-12 2014-01-16 日本精工株式会社 チルトステアリング装置
WO2014010641A3 (ja) * 2012-07-12 2014-03-06 日本精工株式会社 チルトステアリング装置
WO2014038398A1 (ja) * 2012-09-05 2014-03-13 カヤバ工業株式会社 ステアリング装置
JP2014051130A (ja) * 2012-09-05 2014-03-20 Kayaba Ind Co Ltd ステアリング装置
US9533699B2 (en) 2012-09-05 2017-01-03 Kyb Corporation Steering device
JP2016002800A (ja) * 2014-06-13 2016-01-12 株式会社ジェイテクト ステアリングコラム装置
US10377408B2 (en) 2014-09-22 2019-08-13 Nsk Americas, Inc. Energy absorption module for vehicle steering column assembly
US10093341B2 (en) * 2015-01-13 2018-10-09 Nsk Ltd. Steering device
JP2016175486A (ja) * 2015-03-19 2016-10-06 株式会社山田製作所 ステアリング装置
WO2020075639A1 (ja) * 2018-10-09 2020-04-16 日本精工株式会社 ステアリングコラムおよびステアリング装置

Also Published As

Publication number Publication date
JPWO2012017854A1 (ja) 2013-10-03
JP5293825B2 (ja) 2013-09-18
CN102438878B (zh) 2015-02-25
EP2439126A1 (en) 2012-04-11
EP2439126A4 (en) 2013-07-31
US20120080874A1 (en) 2012-04-05
US8590933B2 (en) 2013-11-26
EP2439126B1 (en) 2015-08-12
CN102438878A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
JP5293825B2 (ja) 衝撃吸収式ステアリング装置
JP5293824B2 (ja) 衝撃吸収式ステアリング装置
JP5850115B2 (ja) 自動車用ステアリング装置
JP5327164B2 (ja) 電動式パワーステアリング装置を備えた衝撃吸収式ステアリング装置
US20070068311A1 (en) Steering apparatus
WO2012060193A1 (ja) ステアリングコラム用支持装置
US11148703B2 (en) Support bracket for steering apparatus and steering apparatus
JP5950072B1 (ja) 衝撃吸収式ステアリング装置
JP5076673B2 (ja) ステアリング装置
WO2012090616A1 (ja) ステアリングコラム用支持装置およびその組立方法
US9096260B1 (en) Impact absorbing steering apparatus
JP5267528B2 (ja) 衝撃吸収式ステアリング装置
JP5229279B2 (ja) 衝撃吸収式ステアリング装置
JPH082026Y2 (ja) 衝撃吸収式ステアリングコラム装置
JP5120115B2 (ja) ステアリングコラムの支持装置
JP2008114837A (ja) 衝撃吸収式ステアリングコラム装置
JP4207799B2 (ja) 衝撃吸収式ステアリングコラム装置
WO2020075639A1 (ja) ステアリングコラムおよびステアリング装置
JP2009262596A (ja) ステアリング装置とその製造方法
JP7375768B2 (ja) ステアリングコラムおよびステアリング装置
JP5708839B2 (ja) ステアリングコラム用支持装置
JP2023019570A (ja) ステアリングコラム装置
JP2015214320A (ja) テレスコピック式ステアリング装置
JP2015214319A (ja) テレスコピック式ステアリング装置
JP2012140066A (ja) ステアリングコラム用支持装置及びその組立方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001211.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011531695

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011743174

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13202461

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11743174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE