WO2012008186A1 - シフトレジスタおよびこれを備えた表示装置 - Google Patents

シフトレジスタおよびこれを備えた表示装置 Download PDF

Info

Publication number
WO2012008186A1
WO2012008186A1 PCT/JP2011/058555 JP2011058555W WO2012008186A1 WO 2012008186 A1 WO2012008186 A1 WO 2012008186A1 JP 2011058555 W JP2011058555 W JP 2011058555W WO 2012008186 A1 WO2012008186 A1 WO 2012008186A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
signal
shift register
buffer control
potential
Prior art date
Application number
PCT/JP2011/058555
Other languages
English (en)
French (fr)
Inventor
山本 薫
小川 康行
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/805,769 priority Critical patent/US9330782B2/en
Publication of WO2012008186A1 publication Critical patent/WO2012008186A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/18Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
    • G11C19/182Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
    • G11C19/184Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit

Definitions

  • the present invention relates to a shift register and a display device, and more particularly to a shift register suitably used for a display device and the like, and a display device including the shift register.
  • the active matrix type display device displays an image by selecting pixel circuits arranged in a two-dimensional manner in units of rows and writing a gradation voltage corresponding to a video signal to the selected pixel circuits.
  • a display device is provided with a scanning signal line driver circuit including a shift register in order to select pixel circuits in units of rows.
  • a scanning signal line driving circuit is integrally formed on a display panel together with a pixel circuit by using a manufacturing process for forming a TFT (Thin Film Transistor) in the pixel circuit.
  • the scanning signal line driving circuit is formed using, for example, an amorphous silicon TFT.
  • a TFT made of an oxide semiconductor such as IGZO Indium Gallium Zinc Oxide
  • IGZO Indium Gallium Zinc Oxide
  • an m-stage shift register can be configured by connecting m unit circuits 111 shown in FIG. 18 in multiple stages.
  • Patent Document 1 describes a shift register in which unit circuits 121 shown in FIG. 19 are connected in multiple stages (see FIG. 20). This shift register is characterized in that the unit circuit 121 includes a carry buffer unit 122.
  • a method of driving a plurality of scanning signal lines in one horizontal period is known.
  • triple scanning for driving three scanning signal lines in one horizontal period will be described.
  • a shift register having the same number of stages as the number of scanning signal lines is provided in the scanning signal line driving circuit.
  • one 3m-stage shift register may be provided in order to drive 3m scanning signal lines.
  • a second method there is a method of dividing the shift register into three. Specifically, in order to drive 3m scanning signal lines, three m-stage shift registers may be provided, and the three shift registers may be operated with a delay of 1/3 horizontal period.
  • FIG. 21 is a diagram showing a configuration of a conventional scanning signal line driving circuit using the third method.
  • the circuit 131 at each stage of the shift register is associated with three scanning signal lines GLRi, GLGi, and GLBi.
  • Each scanning signal line is provided with an analog switch 132 and a potential fixing circuit 133.
  • the buffer control signals CR, CG, and CB are sequentially set to the high level every 1/3 horizontal period.
  • the potential fixing circuit 133 When the buffer control signal CR is at a low level, the potential fixing circuit 133 operates, and a low level potential is fixedly applied to the scanning signal line GLRi. When the buffer control signal CR is at a high level, the potential fixing circuit 133 does not operate, and the signal output from the circuit 131 at each stage is given to the scanning signal line GLRi via the analog switch 132.
  • the number of data signal lines arranged in the pixel region is 1/3, and the number of output terminals of the data signal line driving circuit is also 1 / compared to a display device that does not perform triple scanning. It becomes 3. Thereby, the circuit amount of the data signal line driving circuit can be reduced, and the power consumption of the display device can be reduced.
  • a scanning signal line driving circuit for performing triple scanning on a display panel.
  • a circuit of 3 m stages is arranged in a frame portion (a portion around the pixel region) of the display panel in order to drive 3 m scanning signal lines. This increases the area of the frame portion. Further, since the circuit for 3 m stages operates, the power consumption of the scanning signal line driving circuit increases. For this reason, when the triple scan is realized, it is preferable to use the third method. In addition, when the scanning signal line driver circuit is formed over the display panel, it is preferable to use the same channel type TFT for cost reduction.
  • the scanning signal line driver circuit illustrated in FIG. 21 is configured using the same channel type TFT, in order to turn on the analog switch 132, a potential higher than the potential applied to the scanning signal line is set to the analog switch 132. Must be applied to the gate. Therefore, it is necessary to newly provide a power supply circuit that generates the potential. In addition, there is a problem that the reliability of the circuit is lowered due to voltage stress caused by the potential fixing circuit 133.
  • an object of the present invention is to provide a shift register having a structure suitable for being integrally formed on a display panel, a small circuit amount, and low power consumption.
  • a first aspect of the present invention is a shift register having a configuration in which a plurality of unit circuits are connected in multiple stages, and outputting one or more signals from each stage according to a buffer control signal,
  • Each of the unit circuits includes a shift unit and one or more buffer units controlled by the buffer control signal
  • the shift unit is A first transistor for applying an ON potential to the first node in accordance with the set signal;
  • a second transistor for applying an off potential to the first node according to a reset signal;
  • a third transistor provided between a clock signal input node and a second node and having a control terminal connected to the first node;
  • the buffer unit is An output node;
  • a fifth transistor for applying an ON potential to the output node based on the potential of the first node and the buffer control signal;
  • a sixth transistor that applies an off potential to the output node in accordance with the reset signal.
  • the fifth transistor is provided between an input node and an output node of the buffer control signal, and has a control terminal connected to the first node.
  • the shift unit may further include a capacitor between the first node and the second node.
  • the buffer unit may further include a capacitor between the first node and the output node.
  • Each of the unit circuits includes a plurality of the buffer units.
  • a sixth aspect of the present invention is the fifth aspect of the present invention, A buffer control circuit is further provided for controlling the plurality of buffer control signals to the on level for each time shorter than a half cycle of the clock signal.
  • a seventh aspect of the present invention is the sixth aspect of the present invention,
  • the buffer control circuit controls the buffer control signals to an on level in a period that does not overlap each other.
  • the buffer control circuit controls the buffer control signal to an on level at the same timing.
  • the buffer control circuit controls the buffer control signal to an off level before the clock signal changes to an off level.
  • the buffer control circuit has a function of fixing the buffer control signal to an off level during a specified period.
  • An eleventh aspect of the present invention is the sixth aspect of the present invention,
  • the buffer control circuit has a function of controlling the buffer control signal to an on level in different periods, and a function of controlling the buffer control signal to an on level in the same period.
  • the shift unit may further include a circuit that applies an off potential to the first node in accordance with a signal other than the reset signal.
  • the shift unit may further include a transistor that applies an off potential to the second node in accordance with a signal other than the reset signal.
  • the buffer unit may further include a transistor that applies an off potential to the output node in accordance with a signal other than the reset signal.
  • the shift unit may further include a transistor that applies an off potential to the first node in accordance with a clear signal.
  • the shift unit is A seventh transistor provided between a power supply node having an on-potential and a third node and having a control terminal connected to the first node; And an eighth transistor provided between the power supply node having an off potential and the third node and having a control terminal to which the reset signal is applied.
  • a display panel including a pixel region provided with a plurality of scanning signal lines;
  • a display device including a shift register according to any one of the first to sixteenth inventions and a scanning signal line driving circuit integrally formed on the display panel.
  • each stage is provided with a shift unit and one or more buffer units, and a signal that changes based on the potential of the first node in the shift unit, the buffer control signal, and the reset signal is output from the buffer unit.
  • a shift register that outputs one or more signals from each stage according to the buffer control signal can be configured.
  • the circuit amount is smaller and the power consumption is smaller than a shift register that outputs one signal from each stage.
  • a transistor is provided between the input node and the output node of the buffer control signal, and the control terminal of the transistor is connected to the first node, whereby the first node in the shift unit is connected.
  • a buffer unit that applies an ON potential to the output node based on the potential and the buffer control signal can be configured.
  • the third aspect of the present invention by providing a capacitor between the first node and the second node, when the clock signal is turned on, a sufficient on potential is applied to the first node by bootstrap. And distortion of the clock signal passing through the third transistor can be prevented.
  • the buffer control signal when the buffer control signal is turned on, a sufficient on potential is applied to the first node by bootstrap. And distortion of the buffer control signal passing through the fifth transistor can be prevented.
  • a shift unit and a plurality of buffer units are provided in each stage, and a signal that changes based on the potential of the first node in the shift unit, the buffer control signal, and the reset signal is output from each buffer unit.
  • a shift register that outputs a plurality of signals from each stage can be configured.
  • This shift register has a smaller circuit amount and consumes less power than a shift register that outputs one signal from each stage.
  • the buffer control circuit is used to control the plurality of buffer control signals to the on level for each time shorter than the half cycle of the clock signal, thereby shortening the time shorter than the half cycle of the clock signal. Signals that are turned on at a time can be output from each buffer unit.
  • the buffer control circuit to control the buffer control signals to the on level in a period that does not overlap each other, the signals that are turned on in the periods that do not overlap each other are output from each buffer unit. can do.
  • the eighth aspect of the present invention by controlling the buffer control signal to the on level at the same timing using the buffer control circuit, the potential of the first node is greatly changed, and the drive capability of the fifth transistor is increased.
  • the signal output from each buffer unit can be changed to the on level in a short time.
  • a sufficient on potential is applied to the first node by controlling the buffer control signal to the off level before the clock signal changes to the off level using the buffer control circuit.
  • the buffer control signal can be controlled to the off level, and the signal output from each buffer unit can be changed to the off level in a short time.
  • a buffer control circuit having a function of fixing the buffer control signal to an off level in a specified period, a shift suitable for a scanning signal line drive circuit of a display device that performs partial drive. Registers can be configured. By performing partial drive in the display device, the drive circuit of the display panel can be partially operated to reduce power consumption.
  • a buffer control circuit having a function of controlling the buffer control signal to the on level in different periods and a function of controlling the buffer control signal to the on level in the same period.
  • a shift register suitable for a scanning signal line driver circuit of a display device that switches between color display and monochrome display can be configured.
  • the potential of the first node is reliably controlled to the off level and shifted. A malfunction of the register can be prevented.
  • the potential of the second node is reliably controlled to the off level and shifted. A malfunction of the register can be prevented.
  • the buffer unit by providing the buffer unit with a transistor that applies an off potential to the output node according to a signal other than the reset signal, the signal output from the buffer unit is reliably controlled to the off level, A malfunction of the shift register can be prevented.
  • the fifteenth aspect of the present invention by providing a transistor that applies an off potential to the first node in accordance with the clear signal in the shift unit, the potential of the first node is reliably controlled to the off level at the time of clear, and the shift register The initial operation can be stabilized.
  • the shift register can be prevented from malfunctioning by supplying the signal output from the third node to the preceding and succeeding unit circuits.
  • the area of the frame portion of the display panel is reduced by integrally forming the scanning signal line driving circuit including the shift register with a small circuit amount and low power consumption on the display panel,
  • a display device with low power consumption can be configured.
  • FIG. 3 is a circuit diagram of a unit circuit of the shift register shown in FIG. 2.
  • 3 is a timing chart of the shift register shown in FIG. 6 is a timing chart of the shift register according to the second embodiment of the present invention. It is a figure which shows the example of the display screen by partial drive.
  • 6 is a timing chart of a shift register according to a third embodiment of the present invention. It is a timing chart of the shift register which concerns on the 4th Embodiment of this invention.
  • FIG. 10 is a circuit diagram of a unit circuit of the shift register shown in FIG. 9. 10 is a timing chart of the shift register shown in FIG. 9.
  • FIG. 7 is a circuit diagram of a unit circuit of a shift register according to a first modification example of the present invention. It is a circuit diagram of a unit circuit of a shift register concerning the 2nd modification of the present invention. It is a circuit diagram of the unit circuit of the shift register concerning the 3rd modification of the present invention. It is a circuit diagram of a unit circuit of a shift register concerning the 4th modification of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a liquid crystal display device according to an embodiment of the present invention.
  • the liquid crystal display device shown in FIG. 1 includes a display control circuit 1, a scanning signal line driving circuit 2, a data signal line driving circuit 3, and a pixel region 4.
  • the pixel region 4 includes a plurality of pixel circuits 5 arranged two-dimensionally and is formed on the liquid crystal panel 6.
  • the scanning signal line driving circuit 2 is integrally formed on the liquid crystal panel 6 together with the pixel circuit 5.
  • the scanning signal line driving circuit 2 is formed using a TFT made of an oxide semiconductor such as IGZO, for example. Note that all or part of the display control circuit 1 and the data signal line driving circuit 3 may be integrally formed on the liquid crystal panel 6.
  • m and n are integers of 2 or more, and i is an integer of 1 to m.
  • the pixel area 4 includes 3m scanning signal lines GLR1 to GLRm, GLG1 to GLGm, GLB1 to GLBm, n data signal lines SL1 to SLn, and (3m ⁇ n) pixel circuits 5.
  • the 3m scanning signal lines are arranged in parallel to each other, and the n data signal lines are arranged in parallel to each other so as to be orthogonal to the scanning signal lines.
  • (3m ⁇ n) pixel circuits 5 are provided in the vicinity of each intersection of 3m scanning signal lines and n data signal lines. Each pixel circuit 5 functions as one subpixel.
  • the pixel circuit 5 in the (3i-2) th row is connected to the scanning signal line GLRi and functions as a red sub-pixel.
  • the pixel circuit 5 in the (3i-1) th row is connected to the scanning signal line GLGi and functions as a green sub-pixel.
  • the pixel circuit 5 in the 3i-th row is connected to the scanning signal line GLBi and functions as a blue sub-pixel.
  • Three sub-pixels arranged in the extending direction of the data signal line constitute one color pixel.
  • the display control circuit 1 outputs a timing control signal TC1 to the scanning signal line driving circuit 2, and outputs a timing control signal TC2 and a video signal VD to the data signal line driving circuit 3.
  • the timing control signal TC1 includes a gate start pulse GSP, a gate end pulse GEP, and two-phase gate clocks GCK1 and GCK2.
  • the timing control signal TC2 includes a source start pulse, a source clock, and a latch pulse.
  • the display control circuit 1 includes a buffer control circuit 7 that outputs buffer control signals CR, CG, and CB to the scanning signal line drive circuit 2.
  • the scanning signal line driving circuit 2 drives 3m scanning signal lines based on the timing control signal TC1 and the buffer control signals CR, CG, and CB.
  • the data signal line drive circuit 3 applies a potential corresponding to the video signal VD to the n data signal lines based on the timing control signal TC2.
  • the scanning signal line driving circuit 2 has a configuration in which m unit circuits are connected in multiple stages, and includes a shift register that outputs three signals from each stage according to the buffer control signals CR, CG, and CB, and a total of 3m signals. It is out.
  • the liquid crystal display device shown in FIG. 1 is characterized by a circuit configuration and a control method of a shift register included in the scanning signal line driving circuit 2. Therefore, the details of this shift register will be described below. Note that not only a circuit composed of m unit circuits but also a circuit composed of m unit circuits and the buffer control circuit 7 is called a shift register.
  • FIG. 2 is a block diagram showing the configuration of the shift register according to the first embodiment of the present invention.
  • the shift register 10 shown in FIG. 2 has a configuration in which m unit circuits 11 are connected in multiple stages. Each unit circuit 11 includes a shift unit 12 and three buffer units 13r, 13g, and 13b.
  • the shift register 10 is supplied with a gate start pulse GSP, a gate end pulse GEP, and two-phase gate clocks GCK 1 and GCK 2 from the display control circuit 1.
  • the shift register 10 is supplied with buffer control signals CR, CG, and CB from the buffer control circuit 7.
  • the m shift units 12 are connected in multiple stages.
  • the m shift units 12 connected in multiple stages perform a shift operation and output the first signal Y from each stage. More specifically, the clock signal CK, the set signal S, and the reset signal R are input to each shift unit 12, and the first signal Y and the second signal Z are output from each shift unit 12.
  • a gate clock GCK1 is input to the odd-numbered shift unit 12 as the clock signal CK.
  • the gate clock GCK2 is input to the even-numbered shift unit 12 as the clock signal CK.
  • a gate start pulse GSP is input as a set signal S to the first stage shift unit 12.
  • the second signal Z output from the preceding shift unit 12 as the set signal S is input to the other shift units 12.
  • a gate end pulse GEP is input to the m-th shift unit 12 as the reset signal R.
  • the second signal Z output from the next-stage shift unit 12 is input as the reset signal R to the other shift units 12.
  • the buffer control signal CR is supplied to the m buffer units 13r, the buffer control signal CG is supplied to the m buffer units 13g, and the buffer control signal CB is supplied to the m buffer units 13b.
  • the buffer unit 13r outputs an output signal YR based on the buffer control signal CR, the first signal Y (the first signal Y output from the shift unit 12 in the same unit circuit 11), and the reset signal R.
  • the buffer unit 13g outputs an output signal YG based on the buffer control signal CG, the first signal Y and the reset signal R
  • the buffer unit 13b outputs an output signal based on the buffer control signal CB, the first signal Y and the reset signal R.
  • YB is output.
  • the output signals YR, YG, YB of the i-th unit circuit 11 are applied to the scanning signal lines GLRi, GLGi, GLBi, respectively.
  • the shift register 10 has a configuration in which m unit circuits 11 are connected in multiple stages, and outputs three output signals YR, YG, YB from each stage according to three buffer control signals CR, CG, CB. To do.
  • FIG. 3 is a circuit diagram of the unit circuit 11.
  • the shift unit 12 includes TFTs Q1 to Q4 and a capacitor Cap1.
  • the buffer unit 13r includes TFTs Q5r and Q6r
  • the buffer unit 13g includes TFTs Q5g and Q6g
  • the buffer unit 13b includes TFTs Q5b and Q6b. All TFTs included in the unit circuit 11 are N-channel type. In an N-channel TFT, a high level potential is an on potential and a low level potential is an off potential. The high level signal corresponds to the on state, and the low level signal corresponds to the off state.
  • the source of TFT: Q1, the drain of TFT: Q2, the gate of TFT: Q3, and one electrode of the capacitor Cap1 are connected to the node N1.
  • the source of TFT: Q3, the drain of TFT: Q4, and the other electrode of capacitor Cap1 are connected to node N2.
  • a set signal S is applied to the drain and gate of the TFT: Q1.
  • the clock signal CK is given to the drain of the TFT: Q3.
  • a reset signal R is applied to the gates of the TFTs Q2 and Q4.
  • the low level power supply potential VSS is applied to the sources of the TFTs Q2 and Q4.
  • the first signal Y is output from the node N1, and the second signal Z is output from the node N2.
  • the source of TFT: Q5r and the drain of TFT: Q6r are connected to the first output node.
  • the source of TFT: Q5g and the drain of TFT: Q6g are connected to the second output node.
  • the source of TFT: Q5b and the drain of TFT: Q6b are connected to the third output node.
  • the drains of TFTs Q5r, Q5g, and Q5b are supplied with buffer control signals CR, CG, and CB, respectively.
  • the gates of the TFTs: Q5r, Q5g, and Q5b are all connected to the node N1.
  • a reset signal R is applied to the gates of the TFTs Q6r, Q6g, and Q6b.
  • TFTs: Q6r, Q6g, and Q6b are supplied with a low-level power supply potential VSS.
  • Output signals YR, YG, YB are output from the first to third output nodes, respectively.
  • the buffer control circuit 7 controls the buffer control signals CR, CG, and CB to high level for each time shorter than a half cycle of the clock signal supplied to the shift unit 12. As will be described below, the buffer control circuit 7 according to the present embodiment controls the buffer control signals CR, CG, and CB to a high level in a period that does not overlap each other.
  • FIG. 4 is a timing chart of the shift register 10.
  • the gate clock GCK1 is a clock signal having a period of two horizontal periods. However, the high level period of the gate clock GCK1 is shorter than the low level period of the gate clock GCK1.
  • the gate clock GCK2 is a signal obtained by delaying the gate clock GCK1 by one horizontal period.
  • the buffer control signals CR, CG, and CB are sequentially set to a high level in a period that does not overlap each other in one horizontal period. The length of the period during which the buffer control signals CR, CG, CB are at the high level is approximately 1/3 horizontal period.
  • the clock signal CK (gate clock GCK1) changes to a high level.
  • the potential of the node N2 (second signal Z) becomes a high level as the clock signal CK changes.
  • the capacitor Cap1 is provided between the node N1 and the node N2, and the potential difference held in the capacitor Cap1 hardly changes before and after the time t3. Therefore, when the potential of the node N2 changes from the low level to the high level, the potential of the node N1 changes by the same amount and becomes higher than the normal high level (bootstrap). This state continues until time t7 when the clock signal CK changes to the low level.
  • the buffer control signal CR becomes high level from time t3 to t4, the buffer control signal CG becomes high level from time t4 to t5, and the buffer control signal CB becomes high level from time t5 to t6.
  • the TFTs: Q5r, Q5g, and Q5b are in the on state. Therefore, the output signal YR becomes high level from time t3 to t4, the output signal YG becomes high level from time t4 to t5, and the output signal YB becomes high level from time t5 to t6.
  • the clock signal CK changes to low level at time t7, the potential of the node N2 becomes low level, and the potential of the node N1 becomes normal high level.
  • the TFTs Q2, Q4, Q6r, Q6g, and Q6b are turned on.
  • the TFT: Q2 is turned on, the potential of the node N1 becomes low level, and the TFTs: Q3, Q5r, Q5g, Q5b are turned off.
  • the TFT Q4 is turned on, the low-level power supply potential VSS is applied to the node N2.
  • the TFTs Q6r, Q6g, and Q6b are turned on, the low-level power supply potential VSS is applied to the first to third output nodes.
  • the TFTs Q2, Q4, Q6r, Q6g, and Q6b are turned off.
  • the output signal YR becomes high level.
  • the output signal YR becomes a high level lower than normal due to a voltage drop in the TFT Q5r.
  • writing to the pixel circuit 5 may be performed twice in succession.
  • subsequent writing becomes effective. Therefore, even if the output signal YR becomes high level twice in two consecutive horizontal periods, there is no problem in the operation of the display device. The same applies to the output signals YG and YB.
  • the TFT: Q1 functions as a first transistor that applies a high-level potential to the node N1 in accordance with the set signal S.
  • the TFT Q2 functions as a second transistor that applies a low level potential to the node N1 in accordance with the reset signal R.
  • the TFT Q3 is provided between the input node of the clock signal CK and the node N2, and functions as a third transistor having a control terminal connected to the node N1.
  • the TFT Q4 functions as a fourth transistor that applies a low level potential to the node N2 in accordance with the reset signal R.
  • the TFT Q5r functions as a fifth transistor that applies a high level potential to the first output node based on the potential of the node N1 and the buffer control signal CR.
  • the TFTs Q5g and Q5b also function as fifth transistors in the same manner.
  • the TFT Q6r functions as a sixth transistor that applies a low level potential to the first output node in accordance with the reset signal R.
  • TFTs Q6g and Q6b also function as the sixth transistor.
  • a shift register (hereinafter referred to as a conventional shift register) having a configuration in which unit circuits 111 shown in FIG. 18 are connected in multiple stages and outputting one signal from each stage.
  • the effect of the register 10 will be described.
  • 3m unit circuits 111 are required.
  • the unit circuit 111 includes four TFTs and one capacitor. Therefore, a conventional shift register for driving 3m scanning signal lines includes 12m TFTs and 3m capacitors.
  • the shift register 10 in order to drive 3m scanning signal lines with the shift register 10 according to the present embodiment, m unit circuits 11 are required.
  • the unit circuit 11 includes ten TFTs and one capacitor. Therefore, the shift register 10 that drives 3m scanning signal lines includes 10m TFTs and m capacitors.
  • the circuit amount can be reduced as compared with the conventional shift register.
  • the frequency of the gate clocks GCK1 and GCK2 is 1/3 of the conventional one, and the number of TFTs connected to one gate clock line is 1/3 of the conventional one. Assuming that the wiring capacity is sufficiently smaller than the TFT load capacity, the load capacity per gate clock line is about 1/3 of the conventional one.
  • the frequency of the buffer control signals CR, CG, and CB is twice that of the gate clocks GCK1 and GCK2.
  • the number of TFTs connected to one control line is twice that of the gate clock line.
  • the power consumption P2 of the shift register 10 according to the present embodiment is given by the following equation (2).
  • the power consumption can be reduced by about 22% compared to the conventional shift register.
  • the size of the TFT: Q3 can be reduced.
  • the size of TFT: Q3 is set to 1/5 of the normal size, the load capacity of the two gate clock lines becomes 1/5 of the above. Accordingly, the power consumption P3 in this case is given by the following equation (3).
  • the power consumption can be reduced by about 31% compared to the conventional shift register.
  • the shift register 10 does not include a potential fixing circuit. Therefore, the reliability of the circuit does not deteriorate due to voltage stress caused by the potential fixing circuit. Further, it is not necessary to newly provide a power supply circuit for generating a potential applied to the gate of the analog switch.
  • the shift unit 12 and the plurality of buffer units 13r, 13g, and 13b are provided in each stage, the potential of the node N1 in the shift unit 12, and the buffer control signal
  • the buffer control signal By outputting the output signals YR, YG, YB that change based on the CR, CG, CB, and the reset signal R from the buffer units 13r, 13g, 13b, three signals are output from each stage, and a total of 3m signals are output.
  • a shift register can be configured.
  • TFTs Q5r, Q5g, and Q5b are provided between the input node of the buffer control signals CR, CG, and CB and the first to third output nodes, respectively, and the gates of these three TFTs are connected to the node N1.
  • the buffer units 13r, 13g, and 13b that apply the high-level potential to the first to third output nodes based on the potential of the node N1 in the shift unit 12 and the buffer control signals CR, CG, and CB can be configured.
  • the shift register 10 configured in this way has a smaller circuit amount and lower power consumption than a shift register that outputs one signal from each stage. Further, by integrally forming the scanning signal line driver circuit including the shift register 10 on the liquid crystal panel, the area of the frame portion of the liquid crystal panel can be reduced, and the power consumption of the liquid crystal display device can be reduced.
  • the buffer control signals CR, CG, and CB are controlled to a high level by a time shorter than the half cycle of the clock signal CK by using the buffer control circuit 7, so that the buffer control signals CR, CG and CB are at a high level by a time shorter than the half cycle of the clock signal CK
  • the output signals YR, YG, and YB can be output from the buffer units 13r, 13g, and 13b.
  • the buffer control circuit 7 controls the buffer control signals CR, CG, and CB to a high level in a period that does not overlap with each other, the output signals YR, YG, and YB that become a high level in a period that does not overlap each other are buffered. It can be output from 13r, 13g, 13b.
  • a liquid crystal display device with a small frame area and a low power consumption can be obtained. Can be configured.
  • the shift register according to the second embodiment of the present invention has the same circuit configuration as the shift register 10 according to the first embodiment (see FIGS. 2 and 3).
  • the buffer control signals CR, CG, and CB change at timings different from those in the first embodiment.
  • differences from the first embodiment will be described.
  • FIG. 5 is a timing chart of the shift register according to this embodiment.
  • the buffer control signals CR, CG, and CB change to high level at times t3, t4, and t5, respectively.
  • the buffer control signals CR, CG, and CB all change to high level at time t3. Therefore, the output signal YR becomes high level from time t3 to t4, the output signal YG becomes high level from time t3 to t5, and the output signal YB becomes high level from time t3 to t6.
  • the clock signal CK changes to a low level at time t7, and the buffer control signals CR, CG, and CB change to a low level before that.
  • the buffer control circuit 7 controls the buffer control signals CR, CG, and CB to the high level at the same timing, and controls them to the low level at different timings. Further, the buffer control circuit 7 controls the buffer control signals CR, CG, CB to the low level before the clock signal supplied to the shift unit 12 changes to the low level.
  • the boost voltage ⁇ V1 at the node N1 is given by the following equation (4).
  • the clock signal CK and the buffer control signals CR, CG, and CB change to a high level at the same timing.
  • the boost voltage ⁇ V2 at the node N1 is given by the following equation (5).
  • ⁇ V1 ⁇ CK ⁇ (Ct0 + Ct3) / (Ct0 + Ct1 + Ct2 + Ct3 + Ct5)
  • ⁇ V2 ⁇ CK ⁇ (Ct0 + Ct3 + Ct5) / (Ct0 + Ct1 + Ct2 + Ct3 + Ct5)
  • ⁇ CK is the voltage amplitude of the clock signal CK
  • Ct0 is the capacitance value of the capacitor Cap1
  • Ct1 to Ct3 are the capacitance values of TFTs Q1 to Q3
  • Ct5 is the TFTs: Q5r and Q5g, respectively.
  • Q5b represents the total capacity value.
  • the buffer control circuit 7 is used to control the buffer control signals CR, CG, and CB to the high level at the same timing, thereby increasing the potential of the node N1.
  • the driving capability of the TFTs Q5r, Q5g, and Q5b is increased, and the output signals YR, YG, and YB output from the buffer units 13r, 13g, and 13b can be changed to a high level in a short time.
  • the buffer control signals CR, CG and CB can be controlled to a low level, and the output signals YR, YG, and YB output from the buffer units 13r, 13g, and 13b can be changed to a low level in a short time.
  • the shift register according to the third embodiment of the present invention has the same configuration as the shift register 10 according to the first embodiment (see FIGS. 2 and 3).
  • the shift register according to the present embodiment is obtained by adding a function for performing partial drive to the shift register according to the second embodiment.
  • differences from the second embodiment will be described.
  • FIG. 6 is a diagram showing an example of a display screen by partial driving.
  • a display area 9 is set on the display screen 8 shown in FIG.
  • the scanning signal line drive circuit 2 drives only the scanning signal line corresponding to the display area 9 (scanning signal line in the range A1) among the plurality of scanning signal lines arranged in the pixel area.
  • the data signal line drive circuit 3 drives only the data signal line (data signal line in the range A2) corresponding to the display area 9 among the plurality of data signal lines arranged in the pixel area.
  • FIG. 7 is a timing chart of the shift register according to this embodiment.
  • a portion before the scanning signal line GLBi corresponds to a display region
  • a portion after the scanning signal line GLRi + 1 corresponds to a non-display region.
  • the buffer control signals CR, CG, and CB change at the same timing as in the second embodiment (see FIG. 5). For this reason, the potentials of the scanning signal lines GLRi, GLGi, and GLBi are at a high level for a predetermined time.
  • the buffer control circuit 7 has a function of fixing the buffer control signals CR, CG, and CB at a low level in a designated period (horizontal period corresponding to the non-display area). Even in the horizontal period corresponding to the non-display area, the second signal Z output from the shift unit 12 is at the high level for a predetermined time, so that the shift operation is performed correctly.
  • partial driving is performed by providing the buffer control circuit 7 having a function of fixing the buffer control signals CR, CG, and CB to a low level in a specified period.
  • a shift register suitable for a scanning signal line driver circuit of a liquid crystal display device can be formed. Further, by performing partial driving in the liquid crystal display device, the driving circuit of the display panel can be partially operated to reduce power consumption.
  • the shift register according to the fourth embodiment of the present invention has the same configuration as the shift register 10 according to the first embodiment (see FIGS. 2 and 3).
  • the shift register according to this embodiment is obtained by adding a function that operates in the monochrome mode to the shift register according to the second embodiment.
  • differences from the second embodiment will be described.
  • FIG. 8 is a timing chart of the shift register according to this embodiment.
  • the shift register according to the present embodiment operates in either a color mode or a monochrome mode.
  • the buffer control signals CR, CG, and CB change at the same timing as in the second embodiment (see FIG. 5). Therefore, the output signal YR becomes high level from time t3 to t4, the output signal YG becomes high level from time t3 to t5, and the output signal YB becomes high level from time t3 to t6.
  • the buffer control signals CR, CG, and CB all become high level from time t3 to t4 (see FIG. 8). For this reason, the output signals YR, YG, YB all become high level from time t3 to t4.
  • the buffer control circuit 7 has a function of controlling the buffer control signals CR, CG, and CB to a high level in different periods, and sets the buffer control signals CR, CG, and CB to a high level in the same period. And a function to control.
  • the function of controlling the buffer control signals CR, CG, CB to high level in different periods and the buffer control signals CR, CG, CB in the same period By providing the buffer control circuit 7 having a function of controlling to a high level, a shift register suitable for a scanning signal line driving circuit of a liquid crystal display device that switches between color display and monochrome display can be configured. By performing monochrome display in the liquid crystal display device, the number of times of charging / discharging the data signal lines can be reduced and power consumption can be reduced.
  • FIG. 9 is a block diagram showing a configuration of a shift register according to the fifth embodiment of the present invention.
  • the shift register 20 shown in FIG. 9 has a configuration in which m unit circuits 21 are connected in multiple stages.
  • Each unit circuit 21 includes a shift unit 22 and three buffer units 23r, 23g, and 23b.
  • the shift unit 22 and the buffer units 23r, 23g, and 23b are connected in the same form as in the first embodiment.
  • the gate clock GCK2 is input as the clock signal CKB to the odd-numbered shift unit 22
  • the gate clock GCK1 is input to the even-numbered shift unit 22 as the clock signal CKB.
  • the clear signal CLR output from the display control circuit 1 is input to each shift unit 22.
  • FIG. 10 is a circuit diagram of the unit circuit 21.
  • the shift unit 22 is obtained by adding TFTs Q11 to Q16 to the shift unit 12 according to the first embodiment.
  • the buffer unit 23r is obtained by adding TFT: Q7r to the buffer unit 13r according to the first embodiment.
  • the buffer units 23g and 23b have the same configuration as the buffer unit 23r. All TFTs included in the unit circuit 21 are N-channel type.
  • the TFTs Q1 to Q4 and the capacitor Cap1 are connected in the same form as the shift unit 12.
  • the gate of TFT: Q12 and the drains of TFTs: Q14, Q16 are connected to node N1.
  • the drain of the TFT: Q15 is connected to the node N2.
  • the source of TFT: Q11, the drains of TFT: Q12, Q13, and the gate of TFT: Q14 are connected to node N3.
  • the clock signal CK is given to the gate of TFT: Q13.
  • the clock signal CKB is applied to the drain of the TFT: Q11 and the gates of the TFTs: Q11, Q15.
  • a clear signal CLR is given to the gate of TFT: Q16.
  • the low level power supply potential VSS is applied to the sources of the TFTs Q12 to Q16.
  • TFT: Q12 has a higher driving capability than TFT: Q11.
  • TFTs Q5r and Q6r are connected in the same form as the buffer unit 13r.
  • the drain of the TFT: Q7r is connected to the first output node.
  • a clock signal CKB is applied to the gate of TFT: Q7.
  • a low level power supply potential VSS is applied to the source of the TFT: Q7r.
  • FIG. 11 is a timing chart of the shift register 20.
  • the timing chart shown in FIG. 11 is obtained by adding a change in the potential of the node N3 to the timing chart shown in FIG.
  • the TFT Q1 is turned on, and the potential of the node N1 (first signal Y) becomes high level. Accordingly, TFT: Q12 is turned on.
  • the TFTs Q11 and Q15 are turned on. Since the TFT: Q12 has a higher driving capability than the TFT: Q11, when both of the TFTs: Q11, Q12 are in the ON state, the potential of the node N3 is almost at a low level. Therefore, TFT: Q14 remains off.
  • the TFT: Q1 is turned off and the node N1 is placed in a high impedance state.
  • the clock signal CKB is turned off, so that the TFTs Q11 and Q15 are turned off.
  • the potential of the node N2 (second signal Z) becomes high level as in the second embodiment, and the potential of the node N1 is normally increased by bootstrap. Higher than the high level.
  • the TFT Q13 is turned on, and the potential of the node N3 becomes low level.
  • the TFT: Q14 remains off.
  • the shift register 20 operates in the same manner as the shift register according to the second embodiment from time t3 to t7.
  • the TFTs Q2, Q4, Q6r, Q6g, and Q6b are turned on, and the potentials of the nodes N1 and N2 and the first to third output nodes are low level. become.
  • the TFT: Q11 is turned on.
  • the potential of the node N1 decreases and the TFT: Q12 is turned off
  • the potential of the node N3 becomes high level
  • the TFT: Q14 is turned on. Therefore, the low-level power supply potential VSS is applied to the node N1.
  • TFTs Q7r, Q7g, Q7b, and Q15 are turned on.
  • the low-level power supply potential VSS is applied to the node N2.
  • the TFTs Q7r, Q7g, and Q7b are turned on, the low-level power supply potential VSS is applied to the first to third output nodes.
  • the TFTs Q2, Q4, Q6r, Q6g, and Q6b are turned off.
  • the clock signal CKB changes to the low level
  • the TFTs Q7r, Q7g, Q7b, Q11, and Q15 are turned off.
  • the clock signal CK changes to a high level.
  • the TFT: Q13 is turned on, and the potential of the node N3 becomes low level.
  • the TFTs Q11 to Q14 constitute a circuit for applying a low level potential to the node N1 in accordance with a signal (clock signal CKB) other than the reset signal R.
  • the TFT Q15 functions as a transistor that applies a low-level potential to the node N2 in accordance with a signal (clock signal CKB) other than the reset signal R.
  • the TFTs Q7r, Q7g, and Q7b function as transistors that apply a low-level potential to the first to third output nodes in accordance with a signal (clock signal CKB) other than the reset signal R, respectively.
  • the shift unit 22 is provided with a circuit that applies a low-level potential to the node N1 in accordance with a signal other than the reset signal R, thereby ensuring the potential of the node N1. Therefore, the shift register 20 can be prevented from malfunctioning. Further, by providing the shift unit 22 with a TFT: Q15 that applies a low level potential to the node N2 in accordance with a signal other than the reset signal, the potential of the node N2 is reliably controlled to a low level, and malfunction of the shift register 20 is prevented. be able to.
  • TFTs Q7r, Q7g, Q7b that apply a low level potential to the first to third output nodes according to signals other than the reset signal are provided in the buffer units 23r, 23g, 23b, so that the output signals YR, YG, YB are provided. It is possible to reliably control the shift register 20 to a low level and prevent malfunction of the shift register 20. Further, by providing the shift unit 22 with a TFT: Q16 that applies a low level potential to the node N1 in accordance with the clear signal CLR, the potential of the node N1 is reliably controlled to a low level at the time of clear, and the initial operation of the shift register 20 is stabilized. Can be made.
  • a unit circuit 31 shown in FIG. 12 includes a shift unit 32 and three buffer units 13r, 13g, and 13b.
  • the shift unit 32 is obtained by adding TFTs Q21 and Q22 to the shift unit 12 according to the first embodiment.
  • the source of TFT: Q21 and the drain of TFT: Q22 are connected to a node N3 that outputs the second signal Z.
  • a high level power supply potential VDD is applied to the drain of the TFT: Q21, and the gate of the TFT: Q21 is connected to the node N1.
  • a low level power supply potential VSS is applied to the source of the TFT Q22, and a reset signal R is applied to the gate of the TFT Q22.
  • the TFT Q21 is provided between a power supply node having a high level potential and the node N3, and functions as a seventh transistor having a control terminal connected to the node N1.
  • the TFT Q22 is provided between a power supply node having a low level potential and the node N3, and functions as an eighth transistor having a control terminal to which a reset signal R is applied.
  • the shift register of the first modified example by providing two TFTs Q21 and Q22 connected to the power supply node in the shift unit 32, the on potential and the off potential supplied from the power supply are applied to the node N3. can do. By supplying the second signal Z output from the node N3 to the unit circuit of the previous stage and the subsequent stage, it is possible to prevent the malfunction of the shift register.
  • the unit circuit 41 shown in FIG. 13 includes a shift unit 12 and three buffer units 43r, 43g, and 43b.
  • the buffer unit 43r is obtained by adding a capacitor CapR to the buffer unit 13r according to the first embodiment.
  • One electrode of the capacitor CapR is connected to the node N1, and the other electrode is connected to the first output node.
  • the buffer units 43g and 43b have the same configuration as the buffer unit 43r.
  • the shift register of the second modified example by providing the capacitors CapR, CapG, and CapB between the node N1 and the first to third output nodes, the buffer control signals CR, CG, and CB are set to the high level. When this happens, a sufficient high level potential is applied to the node N1 by bootstrap, and distortion of the buffer control signals CR, CG, and CB passing through the TFTs Q5r, Q5g, and Q5b can be prevented.
  • the unit circuit 51 shown in FIG. 14 includes a shift unit 12 and one buffer unit 13p.
  • the buffer unit 13p outputs an output signal YP based on the first signal Y, the buffer control signal CP, and the reset signal R.
  • m unit circuits 51 By connecting m unit circuits 51 in multiple stages, it is possible to configure a shift register that outputs m signals, one from each stage.
  • This shift register can be used in a scanning signal line driver circuit that performs a single scan for driving one scanning signal line in one horizontal period.
  • the 15 includes a shift unit 12 and two buffer units 13p and 13q.
  • the buffer unit 13q outputs an output signal YQ based on the first signal Y, the buffer control signal CQ, and the reset signal R.
  • m unit circuits 61 By connecting m unit circuits 61 in multiple stages, it is possible to configure a shift register that outputs 2 m signals in total, 2 m from each stage.
  • This shift register can be used in a scanning signal line driving circuit that performs double scanning for driving two scanning signal lines in one horizontal period.
  • the 16 includes a shift unit 12 and four buffer units 13r, 13g, 13b, and 13w.
  • the buffer unit 13w outputs an output signal YW based on the first signal Y, the buffer control signal CW, and the reset signal R.
  • m unit circuits 71 By connecting m unit circuits 71 in multiple stages, it is possible to configure a shift register that outputs a total of 4 m signals from each stage.
  • This shift register can be used in a scanning signal line driving circuit that performs quad scanning for driving four scanning signal lines in one horizontal period.
  • the number of buffer units included in the unit circuit may be arbitrary.
  • FIG. 17 is a block diagram showing a configuration of a shift register according to a sixth modification of the present invention.
  • the shift register 80 shown in FIG. 17 has a configuration in which unit circuits 81 are connected in multiple stages, and outputs three signals from each stage, for a total of 3 m signals.
  • the shift register 80 operates in accordance with the three-phase gate clocks GCK1, GCK2, and GCK3.
  • the unit circuit 81 includes a shift unit and three buffer units (all not shown).
  • a circuit for one stage of a shift register that operates according to a three-phase clock signal (the circuit configuration may be arbitrary) is used for the shift unit.
  • the buffer unit the same circuit as any of the buffer units 13r and 23r described above is used.
  • the shift register of the present invention may operate according to clock signals having three or more phases.
  • shift registers can be configured by appropriately combining the features of the shift registers according to the above-described embodiments and modifications.
  • the shift register 20 according to the fifth embodiment may operate according to the timing chart shown in FIG.
  • a function for performing partial driving or a function for operating in the monochrome mode may be added to the shift register 20 according to the fifth embodiment.
  • TFTs Q21, Q22 (FIG. 12) and capacitors CapR, CapG, CapB (FIG. 13) may be added to the unit circuit 21 according to the fifth embodiment.
  • a display device other than the liquid crystal display device can be configured in a similar manner.
  • a shift register having a configuration suitable for being integrally formed on a display panel, having a small circuit amount, and low power consumption is provided.
  • the area of the frame portion can be reduced, and a display device with reduced power consumption can be provided.
  • the cyst register of the present invention has a feature that the circuit amount is small and the power consumption is small, it can be suitably used for a display device, for example.
  • the display device of the present invention is characterized in that the area of the frame portion of the display panel is small and the power consumption is small, so that it can be used for various display devices including liquid crystal display devices.

Abstract

 シフト部12と3個のバッファ部13r、13g、13bを含む単位回路11をm個多段接続して、各段から3個、全部で3m個の信号を出力するシフトレジスタ10を構成する。m個のシフト部12は、シフト動作を行い、各段から第1信号Yを出力する。クロック信号CKがハイレベルのときに、第1信号Yはブートストラップにより通常よりも高いハイレベルになる。バッファ部13rは、バッファ制御信号CRと第1信号Yに基づき、出力信号YRをハイレベルに制御する。バッファ制御回路7は、バッファ制御信号CR、CG、CBをクロック信号の半周期よりも短い時間ずつハイレベルに制御する。これにより、回路量が少なく、低消費電力のシフトレジスタを提供する。

Description

シフトレジスタおよびこれを備えた表示装置
 本発明は、シフトレジスタおよび表示装置に関し、特に、表示装置などに好適に用いられるシフトレジスタ、および、シフトレジスタを備えた表示装置に関する。
 アクティブマトリクス型の表示装置は、2次元状に配置された画素回路を行単位で選択し、選択した画素回路に対して映像信号に応じた階調電圧を書き込むことにより、画像を表示する。このような表示装置には、画素回路を行単位で選択するために、シフトレジスタを含む走査信号線駆動回路が設けられる。
 また、表示装置を小型化する方法として、画素回路内のTFT(Thin Film Transistor)を形成するための製造プロセスを用いて、走査信号線駆動回路を画素回路と共に表示パネル上に一体形成する方法が知られている。走査信号線駆動回路は、例えば、アモルファスシリコンTFTを用いて形成される。あるいは、アモルファスシリコンTFTに代えて、IGZO(Indium Gallium Zinc Oxide )などの酸化物半導体によるTFTを用いれば、より高速に動作する走査信号線駆動回路を構成することができる。走査信号線駆動回路を一体形成した表示パネルは、ゲートドライバモノリシックパネルとも呼ばれる。
 走査信号線駆動回路に含まれるシフトレジスタについては、従来から各種の回路が知られている。例えば、図18に示す単位回路111をm個多段接続することにより、m段のシフトレジスタを構成することができる。また、特許文献1には、図19に示す単位回路121を多段接続したシフトレジスタが記載されている(図20を参照)。このシフトレジスタは、単位回路121がキャリーバッファ部122を含むことを特徴とする。
 また、表示装置を小型・低消費電力化する別の方法として、1水平期間に複数の走査信号線を駆動する方法が知られている。以下、1水平期間に3本の走査信号線を駆動するトリプルスキャンについて説明する。トリプルスキャンを実現する第1の方法として、走査信号線の本数と同じ段数のシフトレジスタを走査信号線駆動回路に設ける方法がある。例えば、3m本の走査信号線を駆動するためには、3m段のシフトレジスタを1個設ければよい。また、第2の方法として、シフトレジスタを3個に分ける方法がある。具体的には、3m本の走査信号線を駆動するためには、m段のシフトレジスタを3個設け、3個のシフトレジスタを1/3水平期間ずつ遅らせて動作させればよい。
 あるいは、第3の方法として、走査信号線に1個のシフトレジスタを設け、シフトレジスタの各段の出力を3本の走査信号線に時分割で与える方法もある。図21は、第3の方法を用いた従来の走査信号線駆動回路の構成を示す図である。図21において、シフトレジスタの各段の回路131は、3本の走査信号線GLRi、GLGi、GLBiに対応づけられる。各走査信号線には、アナログスイッチ132と電位固定回路133が設けられる。バッファ制御信号CR、CG、CBは、1/3水平期間ずつ順にハイレベルになる。バッファ制御信号CRがローレベルのときには、電位固定回路133が動作し、走査信号線GLRiにはローレベル電位が固定的に印加される。バッファ制御信号CRがハイレベルのときには、電位固定回路133は動作せず、走査信号線GLRiには各段の回路131から出力された信号がアナログスイッチ132を介して与えられる。
 トリプルスキャンを行う表示装置では、トリプルスキャンを行わない表示装置と比べて、画素領域に配設されるデータ信号線の本数は1/3になり、データ信号線駆動回路の出力端子数も1/3になる。これにより、データ信号線駆動回路の回路量を削減し、表示装置の消費電力を削減することができる。
日本国特開2004-78172号公報
 上記2つの技術を組合せて、トリプルスキャンを行う走査信号線駆動回路を表示パネル上に一体形成することを考える。トリプルスキャンを上記第1または第2の方法で実現する場合、3m本の走査信号線を駆動するためには、表示パネルの額縁部分(画素領域の周囲の部分)に3m段分の回路を配置する必要があるので、額縁部分の面積が増大する。また、3m段分の回路が動作するので、走査信号線駆動回路の消費電力が増大する。このため、トリプルスキャンを実現するときには、上記第3の方法を用いることが好ましい。また、走査信号線駆動回路を表示パネル上に一体形成するときには、コスト低減のために、同じチャネル型のTFTを用いることが好ましい。
 しかしながら、図21に示す走査信号線駆動回路を同じチャネル型のTFTを用いて構成する場合、アナログスイッチ132をオン状態にするために、走査信号線に印加する電位よりも高い電位をアナログスイッチ132のゲートに印加する必要がある。このため、当該電位を生成する電源回路を新たに設ける必要がある。また、電位固定回路133による電圧ストレスによって、回路の信頼性が低下するという問題もある。
 それ故に、本発明は、表示パネル上に一体形成するのに好適な構成を有し、回路量が少なく、低消費電力のシフトレジスタを提供することを目的とする。
 本発明の第1の局面は、複数の単位回路を多段接続した構成を有し、バッファ制御信号に従い各段から1個以上の信号を出力するシフトレジスタであって、
 前記単位回路のそれぞれは、シフト部と、前記バッファ制御信号によって制御される1個以上のバッファ部とを含み、
 前記シフト部は、
  セット信号に従い第1ノードにオン電位を印加する第1トランジスタと、
  リセット信号に従い前記第1ノードにオフ電位を印加する第2トランジスタと、
  クロック信号の入力ノードと第2ノードとの間に設けられ、前記第1ノードに接続された制御端子を有する第3トランジスタと、
  前記リセット信号に従い前記第2ノードにオフ電位を印加する第4トランジスタとを含み、
 前記バッファ部は、
  出力ノードと、
  前記第1ノードの電位と前記バッファ制御信号とに基づき、前記出力ノードにオン電位を印加する第5トランジスタと、
  前記リセット信号に従い前記出力ノードにオフ電位を印加する第6トランジスタとを含むことを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記第5トランジスタは、前記バッファ制御信号の入力ノードと前記出力ノードとの間に設けられ、前記第1ノードに接続された制御端子を有することを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記シフト部は、前記第1ノードと前記第2ノードとの間に容量をさらに含むことを特徴とする。
 本発明の第4の局面は、本発明の第3の局面において、
 前記バッファ部は、前記第1ノードと前記出力ノードとの間に容量をさらに含むことを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記単位回路のそれぞれは、前記バッファ部を複数個含むことを特徴とする。
 本発明の第6の局面は、本発明の第5の局面において、
 複数のバッファ制御信号を前記クロック信号の半周期よりも短い時間ずつオンレベルに制御するバッファ制御回路をさらに備える。
 本発明の第7の局面は、本発明の第6の局面において、
 前記バッファ制御回路は、前記バッファ制御信号を互いに重複しない期間でオンレベルに制御することを特徴とする。
 本発明の第8の局面は、本発明の第6の局面において、
 前記バッファ制御回路は、前記バッファ制御信号を同じタイミングでオンレベルに制御することを特徴とする。
 本発明の第9の局面は、本発明の第6の局面において、
 前記バッファ制御回路は、前記クロック信号がオフレベルに変化するより前に、前記バッファ制御信号をオフレベルに制御することを特徴とする。
 本発明の第10の局面は、本発明の第6の局面において、
 前記バッファ制御回路は、指定期間において前記バッファ制御信号をオフレベルに固定する機能を有することを特徴とする。
 本発明の第11の局面は、本発明の第6の局面において、
 前記バッファ制御回路は、前記バッファ制御信号を互いに異なる期間でオンレベルに制御する機能と、前記バッファ制御信号を同じ期間でオンレベルに制御する機能とを有することを特徴とする。
 本発明の第12の局面は、本発明の第1の局面において、
 前記シフト部は、前記リセット信号以外の信号に従い、前記第1ノードにオフ電位を印加する回路をさらに含むことを特徴とする。
 本発明の第13の局面は、本発明の第1の局面において、
 前記シフト部は、前記リセット信号以外の信号に従い、前記第2ノードにオフ電位を印加するトランジスタをさらに含むことを特徴とする。
 本発明の第14の局面は、本発明の第1の局面において、
 前記バッファ部は、前記リセット信号以外の信号に従い、前記出力ノードにオフ電位を印加するトランジスタをさらに含むことを特徴とする。
 本発明の第15の局面は、本発明の第1の局面において、
 前記シフト部は、クリア信号に従い前記第1ノードにオフ電位を印加するトランジスタをさらに含むことを特徴とする。
 本発明の第16の局面は、本発明の第1の局面において、
 前記シフト部は、
  オン電位を有する電源ノードと第3ノードとの間に設けられ、前記第1ノードに接続された制御端子を有する第7トランジスタと、
  オフ電位を有する電源ノードと前記第3ノードとの間に設けられ、前記リセット信号が与えられた制御端子を有する第8トランジスタとをさらに含むことを特徴とする。
 本発明の第17の局面は、複数の走査信号線を配設した画素領域を含む表示パネルと、
 第1~第16のいずれかの発明に係るシフトレジスタを含み、前記表示パネル上に一体形成された走査信号線駆動回路とを備えた表示装置である。
 本発明の第1の局面によれば、各段にシフト部と1個以上のバッファ部を設け、シフト部内の第1ノードの電位、バッファ制御信号およびリセット信号に基づき変化する信号をバッファ部から出力することにより、バッファ制御信号に従い各段から1個以上の信号を出力するシフトレジスタを構成することができる。この方式で各段から複数の信号を出力するシフトレジスタを構成した場合、各段から1個の信号を出力するシフトレジスタよりも回路量が少なく、消費電力も少なくなる。このシフトレジスタを含む走査信号線駆動回路を表示パネル上に一体形成することにより、表示パネルの額縁部分の面積を削減し、表示装置の消費電力を削減することができる。
 本発明の第2の局面によれば、バッファ制御信号の入力ノードと出力ノードとの間にトランジスタを設け、当該トランジスタの制御端子を第1ノードに接続することにより、シフト部内の第1ノードの電位とバッファ制御信号とに基づき出力ノードにオン電位を印加するバッファ部を構成することができる。このバッファ部を1個以上、各段に設けることにより、各段から1個以上の信号を出力するシフトレジスタを構成することができる。
 本発明の第3の局面によれば、第1ノードと第2ノードとの間に容量を設けることにより、クロック信号がオンレベルになったときに、ブートストラップによって第1ノードに十分なオン電位を与えて、第3トランジスタを通過するクロック信号の歪みを防止することができる。
 本発明の第4の局面によれば、第1ノードと出力ノードとの間に容量を設けることにより、バッファ制御信号がオンレベルになったときに、ブートストラップによって第1ノードに十分なオン電位を与えて、第5トランジスタを通過するバッファ制御信号の歪みを防止することができる。
 本発明の第5の局面によれば、各段にシフト部と複数のバッファ部を設け、シフト部内の第1ノードの電位、バッファ制御信号およびリセット信号に基づき変化する信号を各バッファ部から出力することにより、各段から複数の信号を出力するシフトレジスタを構成することができる。このシフトレジスタは、各段から1個の信号を出力するシフトレジスタよりも回路量が少なく、消費電力も少ない。このシフトレジスタを含む走査信号線駆動回路を表示パネル上に一体形成することにより、表示パネルの額縁部分の面積を削減し、表示装置の消費電力を削減することができる。
 本発明の第6の局面によれば、バッファ制御回路を用いて複数のバッファ制御信号をクロック信号の半周期よりも短い時間ずつオンレベルに制御することにより、クロック信号の半周期よりも短い時間ずつオンレベルになる信号を各バッファ部から出力することができる。
 本発明の第7の局面によれば、バッファ制御回路を用いてバッファ制御信号を互いに重複しない期間でオンレベルに制御することにより、互いに重複しない期間でオンレベルになる信号を各バッファ部から出力することができる。
 本発明の第8の局面によれば、バッファ制御回路を用いてバッファ制御信号を同じタイミングでオンレベルに制御することにより、第1ノードの電位を大きく変化させ、第5トランジスタの駆動能力を高くして、各バッファ部から出力される信号を短時間でオンレベルに変化させることができる。
 本発明の第9の局面によれば、バッファ制御回路を用いてクロック信号がオフレベルに変化するより前にバッファ制御信号をオフレベルに制御することにより、第1ノードに十分なオン電位が印加されている間にバッファ制御信号をオフレベルに制御し、各バッファ部から出力される信号を短時間でオフレベルに変化させることができる。
 本発明の第10の局面によれば、指定期間においてバッファ制御信号をオフレベルに固定する機能を有するバッファ制御回路を設けることにより、パーシャル駆動を行う表示装置の走査信号線駆動回路に好適なシフトレジスタを構成することができる。表示装置においてパーシャル駆動を行うことにより、表示パネルの駆動回路を部分的に動作させて、消費電力を削減することができる。
 本発明の第11の局面によれば、バッファ制御信号を互いに異なる期間でオンレベルに制御する機能と、バッファ制御信号を同じ期間でオンレベルに制御する機能とを有するバッファ制御回路を設けることにより、カラー表示とモノクロ表示を切り替えて行う表示装置の走査信号線駆動回路に好適なシフトレジスタを構成することができる。表示装置においてモノクロ表示を行うことにより、データ信号線の充放電回数を減らし、消費電力を削減することができる。
 本発明の第12の局面によれば、リセット信号以外の信号に従い第1ノードにオフ電位を印加する回路をシフト部に設けることにより、第1ノードの電位を確実にオフレベルに制御し、シフトレジスタの誤動作を防止することができる。
 本発明の第13の局面によれば、リセット信号以外の信号に従い第2ノードにオフ電位を印加するトランジスタをシフト部に設けることにより、第2ノードの電位を確実にオフレベルに制御し、シフトレジスタの誤動作を防止することができる。
 本発明の第14の局面によれば、リセット信号以外の信号に従い出力ノードにオフ電位を印加するトランジスタをバッファ部に設けることにより、バッファ部から出力される信号を確実にオフレベルに制御し、シフトレジスタの誤動作を防止することができる。
 本発明の第15の局面によれば、クリア信号に従い第1ノードにオフ電位を印加するトランジスタをシフト部に設けることにより、クリア時に第1ノードの電位を確実にオフレベルに制御し、シフトレジスタの初期動作を安定させることができる。
 本発明の第16の局面によれば、電源ノードに接続された2個のトランジスタをシフト部に設けることにより、電源から供給されたオン電位とオフ電位を第3ノードに印加することができる。したがって、第3ノードから出力された信号を前段および後段の単位回路に供給することにより、シフトレジスタの誤動作を防止することができる。
 本発明の第17の局面によれば、回路量が小さく、低消費電力のシフトレジスタを含む走査信号線駆動回路を表示パネル上に一体形成することにより、表示パネルの額縁部分の面積が小さく、低消費電力の表示装置を構成することができる。
本発明の実施形態に係る液晶表示装置の構成を示すブロック図である。 本発明の第1の実施形態に係るシフトレジスタの構成を示すブロック図である。 図2に示すシフトレジスタの単位回路の回路図である。 図2に示すシフトレジスタのタイミングチャートである。 本発明の第2の実施形態に係るシフトレジスタのタイミングチャートである。 パーシャル駆動による表示画面の例を示す図である。 本発明の第3の実施形態に係るシフトレジスタのタイミングチャートである。 本発明の第4の実施形態に係るシフトレジスタのタイミングチャートである。 本発明の第5の実施形態に係るシフトレジスタの構成を示すブロック図である。 図9に示すシフトレジスタの単位回路の回路図である。 図9に示すシフトレジスタのタイミングチャートである。 本発明の第1変形例に係るシフトレジスタの単位回路の回路図である。 本発明の第2変形例に係るシフトレジスタの単位回路の回路図である。 本発明の第3変形例に係るシフトレジスタの単位回路の回路図である。 本発明の第4変形例に係るシフトレジスタの単位回路の回路図である。 本発明の第5変形例に係るシフトレジスタの単位回路の回路図である。 本発明の第6変形例に係るシフトレジスタの構成を示すブロック図である。 従来のシフトレジスタに含まれる単位回路の回路図である。 従来のシフトレジスタに含まれる単位回路の回路図である。 図19に示す単位回路の接続形態を示すブロック図である。 トリプルスキャンを行う従来の走査信号線駆動回路の構成を示す図である。
 図1は、本発明の実施形態に係る液晶表示装置の構成を示すブロック図である。図1に示す液晶表示装置は、表示制御回路1、走査信号線駆動回路2、データ信号線駆動回路3、および、画素領域4を備えている。画素領域4は、2次元状に配置された複数の画素回路5を含み、液晶パネル6上に形成される。走査信号線駆動回路2は、画素回路5と共に液晶パネル6上に一体形成される。走査信号線駆動回路2は、例えば、IGZOなどの酸化物半導体によるTFTを用いて形成される。なお、表示制御回路1およびデータ信号線駆動回路3の全部または一部を液晶パネル6上に一体形成してもよい。以下、mおよびnは2以上の整数、iは1以上m以下の整数であるとする。
 画素領域4は、3m本の走査信号線GLR1~GLRm、GLG1~GLGm、GLB1~GLBm、n本のデータ信号線SL1~SLn、および、(3m×n)個の画素回路5を含んでいる。3m本の走査信号線は互いに平行に配設され、n本のデータ信号線は走査信号線と直交するように互いに平行に配設される。(3m×n)個の画素回路5は、3m本の走査信号線とn本のデータ信号線の各交点近傍に設けられる。各画素回路5は、1個のサブ画素として機能する。(3i-2)行目の画素回路5は、走査信号線GLRiに接続され、赤色サブ画素として機能する。(3i-1)行目の画素回路5は、走査信号線GLGiに接続され、緑色サブ画素として機能する。3i行目の画素回路5は、走査信号線GLBiに接続され、青色サブ画素として機能する。データ信号線の伸延方向に並んだ3個のサブ画素が、1個のカラー画素を構成する。
 表示制御回路1は、走査信号線駆動回路2に対してタイミング制御信号TC1を出力し、データ信号線駆動回路3に対してタイミング制御信号TC2と映像信号VDを出力する。タイミング制御信号TC1には、ゲートスタートパルスGSP、ゲートエンドパルスGEP、および、2相のゲートクロックGCK1、GCK2が含まれる。タイミング制御信号TC2には、ソーススタートパルス、ソースクロック、および、ラッチパルスが含まれる。表示制御回路1は、走査信号線駆動回路2に対してバッファ制御信号CR、CG、CBを出力するバッファ制御回路7を含んでいる。走査信号線駆動回路2は、タイミング制御信号TC1とバッファ制御信号CR、CG、CBに基づき、3m本の走査信号線を駆動する。データ信号線駆動回路3は、タイミング制御信号TC2に基づき、n本のデータ信号線に対して映像信号VDに応じた電位を印加する。
 走査信号線駆動回路2は、m個の単位回路を多段接続した構成を有し、バッファ制御信号CR、CG、CBに従い各段から3個、全部で3m個の信号を出力するシフトレジスタを含んでいる。図1に示す液晶表示装置は、走査信号線駆動回路2に含まれるシフトレジスタの回路構成および制御方法に特徴を有する。そこで以下では、このシフトレジスタの詳細について説明する。なお、m個の単位回路で構成した回路だけでなく、m個の単位回路とバッファ制御回路7で構成した回路もシフトレジスタと呼ぶ。
 (第1の実施形態)
 図2は、本発明の第1の実施形態に係るシフトレジスタの構成を示すブロック図である。図2に示すシフトレジスタ10は、m個の単位回路11を多段接続した構成を有する。各単位回路11は、シフト部12、および、3個のバッファ部13r、13g、13bを含んでいる。シフトレジスタ10には、表示制御回路1からゲートスタートパルスGSP、ゲートエンドパルスGEP、および、2相のゲートクロックGCK1、GCK2が供給される。また、シフトレジスタ10には、バッファ制御回路7からバッファ制御信号CR、CG、CBが供給される。
 m個のシフト部12は、多段接続される。多段接続されたm個のシフト部12は、シフト動作を行い、各段から第1信号Yを出力する。より詳細には、各シフト部12にはクロック信号CK、セット信号Sおよびリセット信号Rが入力され、各シフト部12からは第1信号Yと第2信号Zが出力される。奇数段目のシフト部12には、クロック信号CKとしてゲートクロックGCK1が入力される。偶数段目のシフト部12には、クロック信号CKとしてゲートクロックGCK2が入力される。1段目のシフト部12には、セット信号SとしてゲートスタートパルスGSPが入力される。これ以外のシフト部12には、セット信号Sとして前段のシフト部12から出力された第2信号Zが入力される。m段目のシフト部12には、リセット信号RとしてゲートエンドパルスGEPが入力される。これ以外のシフト部12には、リセット信号Rとして次段のシフト部12から出力された第2信号Zが入力される。
 m個のバッファ部13rにはバッファ制御信号CRが供給され、m個のバッファ部13gにはバッファ制御信号CGが供給され、m個のバッファ部13bにはバッファ制御信号CBが供給される。バッファ部13rは、バッファ制御信号CR、第1信号Y(同じ単位回路11内のシフト部12から出力された第1信号Y)、および、リセット信号Rに基づき、出力信号YRを出力する。同様に、バッファ部13gはバッファ制御信号CG、第1信号Yおよびリセット信号Rに基づき出力信号YGを出力し、バッファ部13bはバッファ制御信号CB、第1信号Yおよびリセット信号Rに基づき出力信号YBを出力する。走査信号線GLRi、GLGi、GLBiには、i段目の単位回路11の出力信号YR、YG、YBがそれぞれ印加される。このようにシフトレジスタ10は、m個の単位回路11を多段接続した構成を有し、3本のバッファ制御信号CR、CG、CBに従い各段から3個の出力信号YR、YG、YBを出力する。
 図3は、単位回路11の回路図である。図3に示すように、シフト部12は、TFT:Q1~Q4とコンデンサCap1を含んでいる。バッファ部13rはTFT:Q5r、Q6rを含み、バッファ部13gはTFT:Q5g、Q6gを含み、バッファ部13bはTFT:Q5b、Q6bを含んでいる。単位回路11に含まれるすべてのTFTは、Nチャネル型である。Nチャネル型TFTでは、ハイレベル電位がオン電位になり、ローレベル電位がオフ電位になる。また、ハイレベル信号はオン状態に対応し、ローレベル信号はオフ状態に対応する。
 シフト部12において、TFT:Q1のソース、TFT:Q2のドレイン、TFT:Q3のゲート、および、コンデンサCap1の一方の電極は、ノードN1に接続される。TFT:Q3のソース、TFT:Q4のドレイン、および、コンデンサCap1の他方の電極は、ノードN2に接続される。TFT:Q1のドレインとゲートには、セット信号Sが与えられる。TFT:Q3のドレインには、クロック信号CKが与えられる。TFT:Q2、Q4のゲートには、リセット信号Rが与えられる。TFT:Q2、Q4のソースには、ローレベル電源電位VSSが与えられる。ノードN1からは第1信号Yが出力され、ノードN2からは第2信号Zが出力される。
 バッファ部13rにおいて、TFT:Q5rのソースとTFT:Q6rのドレインは第1出力ノードに接続される。バッファ部13gにおいて、TFT:Q5gのソースとTFT:Q6gのドレインは第2出力ノードに接続される。バッファ部13bにおいて、TFT:Q5bのソースとTFT:Q6bのドレインは第3出力ノードに接続される。TFT:Q5r、Q5g、Q5bのドレインには、それぞれ、バッファ制御信号CR、CG、CBが与えられる。TFT:Q5r、Q5g、Q5bのゲートは、いずれも、ノードN1に接続される。TFT:Q6r、Q6g、Q6bのゲートには、いずれも、リセット信号Rが与えられる。TFT:Q6r、Q6g、Q6bのソースには、ローレベル電源電位VSSが与えられる。第1~第3出力ノードからは、出力信号YR、YG、YBがそれぞれ出力される。
 バッファ制御回路7は、シフト部12に与えられるクロック信号の半周期よりも短い時間ずつ、バッファ制御信号CR、CG、CBをハイレベルに制御する。以下に示すように、本実施形態に係るバッファ制御回路7は、バッファ制御信号CR、CG、CBを互いに重複しない期間でハイレベルに制御する。
 図4は、シフトレジスタ10のタイミングチャートである。図4に示すように、ゲートクロックGCK1は、周期が2水平期間のクロック信号である。ただし、ゲートクロックGCK1のハイレベル期間は、ゲートクロックGCK1のローレベル期間よりも短い。ゲートクロックGCK2は、ゲートクロックGCK1を1水平期間遅延させた信号である。バッファ制御信号CR、CG、CBは、1水平期間内の互いに重複しない期間で順にハイレベルになる。バッファ制御信号CR、CG、CBがハイレベルになる期間の長さは、ほぼ1/3水平期間である。
 時刻t1において、セット信号S(前段のシフト部12から出力された第2信号Zi-1)がハイレベルに変化すると、TFT:Q1はオン状態になり、ノードN1の電位(第1信号Y)はハイレベルになる。これに伴い、TFT:Q3、Q5r、Q5g、Q5bはオン状態になる。次に時刻t2において、セット信号Sがローレベルに変化すると、TFT:Q1はオフ状態になり、ノードN1はハイインピーダンス状態になる。
 次に時刻t3において、クロック信号CK(ゲートクロックGCK1)がハイレベルに変化する。このときTFT:Q3はオン状態であるので、クロック信号CKの変化に伴い、ノードN2の電位(第2信号Z)はハイレベルになる。また、ノードN1とノードN2の間にはコンデンサCap1が設けられており、コンデンサCap1に保持された電位差は時刻t3の前後でほとんど変化しない。したがって、ノードN2の電位がローレベルからハイレベルに変化すると、ノードN1の電位は同じ量だけ変化して、通常のハイレベルよりも高くなる(ブートストラップ)。この状態は、クロック信号CKがローレベルに変化する時刻t7まで続く。
 バッファ制御信号CRは時刻t3~t4でハイレベルになり、バッファ制御信号CGは時刻t4~t5でハイレベルになり、バッファ制御信号CBは時刻t5~t6でハイレベルになる。このとき、TFT:Q5r、Q5g、Q5bはオン状態である。したがって、出力信号YRは時刻t3~t4でハイレベルになり、出力信号YGは時刻t4~t5でハイレベルになり、出力信号YBは時刻t5~t6でハイレベルになる。次に時刻t7において、クロック信号CKがローレベルに変化すると、ノードN2の電位はローレベルになり、ノードN1の電位は通常のハイレベルになる。
 次に時刻t8において、リセット信号R(後段のシフト部12から出力された第2信号Zi+1)がハイレベルに変化すると、TFT:Q2、Q4、Q6r、Q6g、Q6bはオン状態になる。TFT:Q2がオン状態になると、ノードN1の電位はローレベルになり、TFT:Q3、Q5r、Q5g、Q5bはオフ状態になる。TFT:Q4がオン状態になると、ノードN2にはローレベル電源電位VSSが印加される。TFT:Q6r、Q6g、Q6bがオン状態になると、第1~第3出力ノードにはいずれもローレベル電源電位VSSが印加される。次に時刻t9において、リセット信号Rがローレベルに変化すると、TFT:Q2、Q4、Q6r、Q6g、Q6bはオフ状態になる。
 なお、時刻t1~t2では、ノードN1の電位はハイレベルである。このため、この期間でバッファ制御信号CRがハイレベルになると、出力信号YRはハイレベルになる。ただし、この期間ではノードN1の電位は通常のハイレベルであるので、TFT:Q5rにおける電圧降下によって、出力信号YRは通常よりも低いハイレベルになる。このように出力信号YRが連続した2水平期間において2回ハイレベルになると、画素回路5に対する書き込みが2回続けて行われることがある。画素回路5に書き込みを2回続けて行った場合、後の書き込みが有効になる。したがって、出力信号YRが連続した2水平期間において2回ハイレベルになっても、表示装置の動作に支障は生じない。出力信号YG、YBについても、これと同様である。
 このようにTFT:Q1は、セット信号Sに従いノードN1にハイレベル電位を印加する第1トランジスタとして機能する。TFT:Q2は、リセット信号Rに従いノードN1にローレベル電位を印加する第2トランジスタとして機能する。TFT:Q3は、クロック信号CKの入力ノードとノードN2との間に設けられ、ノードN1に接続された制御端子を有する第3トランジスタとして機能する。TFT:Q4は、リセット信号Rに従いノードN2にローレベル電位を印加する第4トランジスタとして機能する。TFT:Q5rは、ノードN1の電位とバッファ制御信号CRに基づき、第1出力ノードにハイレベル電位を印加する第5トランジスタとして機能する。TFT:Q5g、Q5bも、同様に第5トランジスタとして機能する。TFT:Q6rは、リセット信号Rに従い第1出力ノードにローレベル電位を印加する第6トランジスタとして機能する。TFT:Q6g、Q6bも、同様に第6トランジスタとして機能する。
 以下、図18に示す単位回路111を多段接続した構成を有し、各段から1個の信号を出力するシフトレジスタ(以下、従来のシフトレジスタという)と対比して、本実施形態に係るシフトレジスタ10の効果を説明する。従来のシフトレジスタで3m本の走査信号線を駆動するためには、3m個の単位回路111が必要となる。単位回路111は、4個のTFTと1個のコンデンサを含んでいる。したがって、3m本の走査信号線を駆動する従来のシフトレジスタには、12m個のTFTと3m個のコンデンサが含まれる。
 これに対して、本実施形態に係るシフトレジスタ10で3m本の走査信号線を駆動するためには、m個の単位回路11が必要となる。単位回路11は、10個のTFTと1個のコンデンサを含んでいる。したがって、3m本の走査信号線を駆動するシフトレジスタ10には、10m個のTFTとm個のコンデンサが含まれる。このように、本実施形態に係るシフトレジスタ10によれば、従来のシフトレジスタよりも回路量を削減することができる。
 また、シフトレジスタを含む走査信号線駆動回路を液晶パネル上に一体形成する場合を考える。この場合には、各段の単位回路にゲートクロックGCK1、GCK2を供給するために、液晶パネルの一辺に沿って2本のゲートクロック線を配設する必要がある。従来のシフトレジスタについて、動作周波数をf、ゲートクロック線1本あたりの負荷容量(配線容量とTFT負荷容量を含む)をC、信号振幅電圧をVとすると、従来のシフトレジスタの消費電力P1は、次式(1)で与えられる。
  P1=2・f・C・V2   …(1)
 本実施形態に係るシフトレジスタ10では、2本のゲートクロック線に加えて、バッファ制御信号CR、CG、CBを供給する3本の制御線を配設する必要がある。本実施形態では、ゲートクロックGCK1、GCK2の周波数は従来の1/3になり、1本のゲートクロック線に接続されるTFTの個数は従来の1/3になる。配線容量はTFT負荷容量と比べて十分に小さいと仮定すると、ゲートクロック線1本あたりの負荷容量は従来の約1/3になる。バッファ制御信号CR、CG、CBの周波数は、ゲートクロックGCK1、GCK2の2倍である。また、1本の制御線に接続されるTFTの個数は、ゲートクロック線の場合の2倍である。したがって、本実施形態に係るシフトレジスタ10の消費電力P2は、次式(2)で与えられる。このように本実施形態に係るシフトレジスタ10によれば、従来のシフトレジスタよりも消費電力を約22%削減することができる。
  P2= 2・(1/3)f・(1/3)C・V2
     +3・(2/3)f・(2/3)C・V2
    =(14/9)・f・C・V2   …(2)
 また、本実施形態に係るシフトレジスタ10では、TFT:Q3は走査信号線を駆動しないので、TFT:Q3のサイズを小さくすることができる。例えば、TFT:Q3のサイズを通常の1/5にした場合、2本のゲートクロック線の負荷容量は上記の1/5になる。したがって、この場合の消費電力P3は、次式(3)で与えられる。このようにTFT:Q3のサイズを1/5にした場合には、従来のシフトレジスタよりも消費電力を約31%削減することができる。
  P3= 2・(1/3)f・(1/3)・(1/5)C・V2
     +3・(2/3)f・(2/3)C・V2
    =(62/45)・f・C・V2   …(3)
 また、本実施形態に係るシフトレジスタ10は、図21に示す走査信号線駆動回路とは異なり、電位固定回路を含んでいない。したがって、電位固定回路による電圧ストレスによって、回路の信頼性が低下することがない。また、アナログスイッチのゲートに印加する電位を生成する電源回路を新たに設ける必要もない。
 以上に示すように、本実施形態に係るシフトレジスタ10によれば、各段にシフト部12と複数のバッファ部13r、13g、13bを設け、シフト部12内のノードN1の電位、バッファ制御信号CR、CG、CB、および、リセット信号Rに基づき変化する出力信号YR、YG、YBをバッファ部13r、13g、13bから出力することにより、各段から3個、全部で3m個の信号を出力するシフトレジスタを構成することができる。特に、バッファ制御信号CR、CG、CBの入力ノードと第1~第3出力ノードとの間にそれぞれTFT:Q5r、Q5g、Q5bを設け、これら3個のTFTのゲートをノードN1に接続することにより、シフト部12内のノードN1の電位とバッファ制御信号CR、CG、CBに基づき第1~第3出力ノードにハイレベル電位を印加するバッファ部13r、13g、13bを構成することができる。このように構成されたシフトレジスタ10は、各段から1個の信号を出力するシフトレジスタよりも回路量が少なく、消費電力も小さい。また、シフトレジスタ10を含む走査信号線駆動回路を液晶パネル上に一体形成することにより、液晶パネルの額縁部分の面積を削減し、液晶表示装置の消費電力を削減することができる。
 また、ノードN1とノードN2との間にコンデンサCap1を設けることにより、クロック信号CKがオンレベルになったときに、ブートストラップによってノードN1に十分なハイレベル電位を与えて、TFT:Q3を通過するクロック信号CKの歪みを防止することができる。また、バッファ制御回路7を用いてバッファ制御信号CR、CG、CBをクロック信号CKの半周期よりも短い時間ずつハイレベルに制御することにより、クロック信号CKの半周期よりも短い時間ずつハイレベルになる出力信号YR、YG、YBをバッファ部13r、13g、13bから出力することができる。特に、バッファ制御回路7を用いてバッファ制御信号CR、CG、CBを互いに重複しない期間でハイレベルに制御することにより、互いに重複しない期間でハイレベルになる出力信号YR、YG、YBをバッファ部13r、13g、13bから出力することができる。
 また、回路量が小さく、低消費電力のシフトレジスタ10を含む走査信号線駆動回路を液晶パネル上に一体形成することにより、液晶パネルの額縁部分の面積が小さく、低消費電力の液晶表示装置を構成することができる。
 (第2の実施形態)
 本発明の第2の実施形態に係るシフトレジスタは、第1の実施形態に係るシフトレジスタ10と同じ回路構成を有する(図2および図3を参照)。本実施形態では、バッファ制御信号CR、CG、CBが、第1の実施形態とは異なるタイミングで変化する。以下、第1の実施形態との相違点を説明する。
 図5は、本実施形態に係るシフトレジスタのタイミングチャートである。第1の実施形態(図4)では、バッファ制御信号CR、CG、CBは、それぞれ、時刻t3、t4、t5でハイレベルに変化する。これに対して本実施形態(図5)では、バッファ制御信号CR、CG、CBは、いずれも、時刻t3でハイレベルに変化する。このため、出力信号YRは時刻t3~t4でハイレベルになり、出力信号YGは時刻t3~t5でハイレベルになり、出力信号YBは時刻t3~t6でハイレベルになる。クロック信号CKは時刻t7でローレベルに変化し、バッファ制御信号CR、CG、CBはそれよりも前にローレベルに変化する。
 このように本実施形態に係るバッファ制御回路7は、バッファ制御信号CR、CG、CBを同じタイミングでハイレベルに制御し、互いに異なるタイミングでローレベルに制御する。また、バッファ制御回路7は、シフト部12に与えられるクロック信号がローレベルに変化するより前に、バッファ制御信号CR、CG、CBをローレベルに制御する。
 ここで、クロック信号CKとバッファ制御信号CR、CG、CBが、異なるタイミングでハイレベルに変化する場合を考える。この場合のノードN1のブースト電圧ΔV1は、次式(4)で与えられる。これに対して、本実施形態に係るシフトレジスタでは、クロック信号CKとバッファ制御信号CR、CG、CBは、同じタイミングでハイレベルに変化する。この場合のノードN1のブースト電圧ΔV2は、次式(5)で与えられる。
  ΔV1=ΔCK×(Ct0+Ct3)
      /(Ct0+Ct1+Ct2+Ct3+Ct5) …(4)
  ΔV2=ΔCK×(Ct0+Ct3+Ct5)
      /(Ct0+Ct1+Ct2+Ct3+Ct5) …(5)
 ただし、式(4)および(5)において、ΔCKはクロック信号CKの電圧振幅、Ct0はコンデンサCap1の容量値、Ct1~Ct3はそれぞれTFT:Q1~Q3の容量値、Ct5はTFT:Q5r、Q5g、Q5bの容量値の合計を表す。
 式(4)および(5)より、ΔV1<ΔV2であることが分かる。本実施形態に係るシフトレジスタでは、バッファ制御信号CR、CG、CBが同じタイミングでハイレベルに変化するので、ノードN1のブースト電圧が高くなり、TFT:Q5r、Q5g、Q5bの駆動能力が高くなる。したがって、出力信号YR、YG、YBを短時間でハイレベルに変化させ、走査信号線の電位を短時間でハイレベルに変化させることができる。
 以上に示すように、本実施形態に係るシフトレジスタによれば、バッファ制御回路7を用いてバッファ制御信号CR、CG、CBを同じタイミングでハイレベルに制御することにより、ノードN1の電位を大きく変化させ、TFT:Q5r、Q5g、Q5bの駆動能力を高くして、バッファ部13r、13g、13bから出力される出力信号YR、YG、YBを短時間でハイレベルに変化させることができる。
 また、バッファ制御回路7を用いてクロック信号CKがローレベルに変化するより前にバッファ制御信号CR、CG、CBをローレベルに制御することにより、ノードN1に十分なハイレベル電位が印加されている間にバッファ制御信号CR、CG、CBをローレベルに制御し、バッファ部13r、13g、13bから出力される出力信号YR、YG、YBを短時間でローレベルに変化させることができる。
 (第3の実施形態)
 本発明の第3の実施形態に係るシフトレジスタは、第1の実施形態に係るシフトレジスタ10と同じ構成を有する(図2および図3を参照)。本実施形態に係るシフトレジスタは、第2の実施形態に係るシフトレジスタにパーシャル駆動を行うための機能を追加したものである。以下、第2の実施形態との相違点を説明する。
 図6は、パーシャル駆動による表示画面の例を示す図である。図6に示す表示画面8には、表示領域9が設定されている。走査信号線駆動回路2は、画素領域に配設された複数の走査信号線のうち、表示領域9に対応した走査信号線(範囲A1内の走査信号線)だけを駆動する。データ信号線駆動回路3は、画素領域に配設された複数のデータ信号線のうち、表示領域9に対応したデータ信号線(範囲A2内のデータ信号線)だけを駆動する。このようにパーシャル駆動を行うことにより、表示領域9に対応して表示パネルの駆動回路を部分的に動作させて、表示装置の消費電力を削減することができる。
 図7は、本実施形態に係るシフトレジスタのタイミングチャートである。ここでは、走査信号線GLBiより前の部分は表示領域に対応し、走査信号線GLRi+1より後の部分は非表示領域に対応する場合について説明する。この場合、走査信号線GLRi、GLGi、GLBiに対応した水平期間では、バッファ制御信号CR、CG、CBは、第2の実施形態と同じタイミングで変化する(図5を参照)。このため、走査信号線GLRi、GLGi、GLBiの電位は、所定時間だけハイレベルになる。これに対して、走査信号線GLRi+1、GLGi+1、GLBi+1に対応した水平期間では、バッファ制御信号CR、CG、CBはローレベルに固定される(図7を参照)。このため、走査信号線GLRi+1、GLGi+1、GLBi+1の電位はローレベルのままである。
 このように本実施形態に係るバッファ制御回路7は、指定期間(非表示領域に対応した水平期間)においてバッファ制御信号CR、CG、CBをローレベルに固定する機能を有する。なお、非表示領域に対応した水平期間でも、シフト部12から出力される第2信号Zは所定時間だけハイレベルになるので、シフト動作は正しく行われる。
 以上に示すように、本実施形態に係るシフトレジスタによれば、指定期間においてバッファ制御信号CR、CG、CBをローレベルに固定する機能を有するバッファ制御回路7を設けることにより、パーシャル駆動を行う液晶表示装置の走査信号線駆動回路に好適なシフトレジスタを構成することができる。また、液晶表示装置においてパーシャル駆動を行うことにより、表示パネルの駆動回路を部分的に動作させて、消費電力を削減することができる。
 (第4の実施形態)
 本発明の第4の実施形態に係るシフトレジスタは、第1の実施形態に係るシフトレジスタ10と同じ構成を有する(図2および図3を参照)。本実施形態に係るシフトレジスタは、第2の実施形態に係るシフトレジスタにモノクロモードで動作する機能を追加したものである。以下、第2の実施形態との相違点を説明する。
 図8は、本実施形態に係るシフトレジスタのタイミングチャートである。本実施形態に係るシフトレジスタは、カラーモードおよびモノクロモードのいずれかで動作する。カラーモードでは、バッファ制御信号CR、CG、CBは、第2の実施形態と同じタイミングで変化する(図5を参照)。このため、出力信号YRは時刻t3~t4でハイレベルになり、出力信号YGは時刻t3~t5でハイレベルになり、出力信号YBは時刻t3~t6でハイレベルになる。これに対して、モノクロモードでは、バッファ制御信号CR、CG、CBは、いずれも時刻t3~t4でハイレベルになる(図8を参照)。このため、出力信号YR、YG、YBは、いずれも時刻t3~t4でハイレベルになる。
 このように本実施形態に係るバッファ制御回路7は、バッファ制御信号CR、CG、CBを互いに異なる期間でハイレベルに制御する機能と、バッファ制御信号CR、CG、CBを同じ期間でハイレベルに制御する機能とを有する。
 以上に示すように、本実施形態に係るシフトレジスタによれば、バッファ制御信号CR、CG、CBを互いに異なる期間でハイレベルに制御する機能と、バッファ制御信号CR、CG、CBを同じ期間でハイレベルに制御する機能とを有するバッファ制御回路7を設けることにより、カラー表示とモノクロ表示を切り替えて行う液晶表示装置の走査信号線駆動回路に好適なシフトレジスタを構成することができる。液晶表示装置においてモノクロ表示を行うことにより、データ信号線の充放電回数を減らし、消費電力を削減することができる。
 (第5の実施形態)
 図9は、本発明の第5の実施形態に係るシフトレジスタの構成を示すブロック図である。図9に示すシフトレジスタ20は、m個の単位回路21を多段接続した構成を有する。各単位回路21は、シフト部22、および、3個のバッファ部23r、23g、23bを含んでいる。シフト部22とバッファ部23r、23g、23bは、第1の実施形態と同様の形態に接続される。ただし、シフトレジスタ20では、奇数段目のシフト部22にはクロック信号CKBとしてゲートクロックGCK2が入力され、偶数段目のシフト部22にはクロック信号CKBとしてゲートクロックGCK1が入力される。また、各シフト部22には、表示制御回路1から出力されたクリア信号CLRが入力される。
 図10は、単位回路21の回路図である。図10に示すように、シフト部22は、第1の実施形態に係るシフト部12にTFT:Q11~Q16を追加したものである。バッファ部23rは、第1の実施形態に係るバッファ部13rにTFT:Q7rを追加したものである。バッファ部23g、23bは、バッファ部23rと同様の構成を有する。単位回路21に含まれるすべてのTFTは、Nチャネル型である。
 シフト部22において、TFT:Q1~Q4とコンデンサCap1は、シフト部12と同じ形態に接続される。TFT:Q12のゲートとTFT:Q14、Q16のドレインは、ノードN1に接続される。TFT:Q15のドレインは、ノードN2に接続される。TFT:Q11のソース、TFT:Q12、Q13のドレイン、および、TFT:Q14のゲートは、ノードN3に接続される。TFT:Q13のゲートには、クロック信号CKが与えられる。TFT:Q11のドレインとTFT:Q11、Q15のゲートには、クロック信号CKBが与えられる。TFT:Q16のゲートには、クリア信号CLRが与えられる。TFT:Q12~Q16のソースには、ローレベル電源電位VSSが与えられる。TFT:Q12は、TFT:Q11よりも高い駆動能力を有する。
 バッファ部23rにおいて、TFT:Q5r、Q6rは、バッファ部13rと同じ形態に接続される。TFT:Q7rのドレインは、第1出力ノードに接続される。TFT:Q7のゲートには、クロック信号CKBが与えられる。TFT:Q7rのソースには、ローレベル電源電位VSSが与えられる。
 図11は、シフトレジスタ20のタイミングチャートである。図11に示すタイミングチャートは、図5に示すタイミングチャートにノードN3の電位の変化を追加したものである。時刻t1においてセット信号Sがハイレベルに変化すると、TFT:Q1はオン状態になり、ノードN1の電位(第1信号Y)はハイレベルになる。これに伴い、TFT:Q12はオン状態になる。また、時刻t1において、クロック信号CKBがハイレベルに変化するので、TFT:Q11、Q15はオン状態になる。TFT:Q12はTFT:Q11よりも高い駆動能力を有するので、TFT:Q11、Q12が共にオン状態のときには、ノードN3の電位はほぼローレベルになる。したがって、TFT:Q14はオフ状態のままである。
 次に時刻t2において、セット信号Sがローレベルに変化すると、TFT:Q1はオフ状態になり、ノードN1はハイインピーダンス状態になる。また、時刻t2において、クロック信号CKBがオフ状態になるので、TFT:Q11、Q15はオフ状態になる。
 次に時刻t3において、クロック信号CKがハイレベルに変化すると、第2の実施形態と同様に、ノードN2の電位(第2信号Z)はハイレベルになり、ノードN1の電位はブートストラップによって通常のハイレベルよりも高くなる。また、時刻t3において、TFT:Q13はオン状態になり、ノードN3の電位はローレベルになる。このとき、TFT:Q14はオフ状態のままである。シフトレジスタ20は、時刻t3~t7では、第2の実施形態に係るシフトレジスタと同様に動作する。
 次に時刻t7において、クロック信号CKがローレベルに変化すると、ノードN2の電位はローレベルになり、ノードN1の電位は通常のハイレベルになる。また、時刻t7において、TFT:Q13はオフ状態になり、ノードN3はハイインピーダンス状態になる。
 次に時刻t8において、リセット信号Rがハイレベルに変化すると、TFT:Q2、Q4、Q6r、Q6g、Q6bはオン状態になり、ノードN1、N2と第1~第3出力ノードの電位はローレベルになる。また、時刻t8において、クロック信号CKBがハイレベルになるので、TFT:Q11はオン状態になる。したがって、ノードN1の電位が低下し、TFT:Q12がオフ状態になると、ノードN3の電位はハイレベルになり、TFT:Q14はオン状態になる。よって、ノードN1にはローレベル電源電位VSSが印加される。また、クロック信号CKBがハイレベルになると、TFT:Q7r、Q7g、Q7b、Q15がオン状態になる。TFT:Q15がオン状態になると、ノードN2にはローレベル電源電位VSSが印加される。TFT:Q7r、Q7g、Q7bがオン状態になると、第1~第3出力ノードにはローレベル電源電位VSSが印加される。
 次に時刻t9において、リセット信号Rがローレベルに変化すると、TFT:Q2、Q4、Q6r、Q6g、Q6bはオフ状態になる。また、時刻t9において、クロック信号CKBがローレベルに変化するので、TFT:Q7r、Q7g、Q7b、Q11、Q15はオフ状態になる。次に時刻t10において、クロック信号CKがハイレベルに変化する。これに伴い、TFT:Q13はオン状態になり、ノードN3の電位はローレベルになる。
 このようにTFT:Q11~Q14は、リセット信号R以外の信号(クロック信号CKB)に従い、ノードN1にローレベル電位を印加する回路を構成する。TFT:Q15は、リセット信号R以外の信号(クロック信号CKB)に従い、ノードN2にローレベル電位を印加するトランジスタとして機能する。TFT:Q7r、Q7g、Q7bは、それぞれ、リセット信号R以外の信号(クロック信号CKB)に従い、第1~第3出力ノードにローレベル電位を印加するトランジスタとして機能する。
 以上に示すように、本実施形態に係るシフトレジスタ20によれば、リセット信号R以外の信号に従いノードN1にローレベル電位を印加する回路をシフト部22に設けることにより、ノードN1の電位を確実にオフレベルに制御し、シフトレジスタ20の誤動作を防止することができる。また、リセット信号以外の信号に従いノードN2にローレベル電位を印加するTFT:Q15をシフト部22に設けることにより、ノードN2の電位を確実にローレベルに制御し、シフトレジスタ20の誤動作を防止することができる。また、リセット信号以外の信号に従い第1~第3出力ノードにローレベル電位を印加するTFT:Q7r、Q7g、Q7bをバッファ部23r、23g、23bに設けることにより、出力信号YR、YG、YBを確実にローレベルに制御し、シフトレジスタ20の誤動作を防止することができる。また、クリア信号CLRに従いノードN1にローレベル電位を印加するTFT:Q16をシフト部22に設けることにより、クリア時にノードN1の電位を確実にローレベルに制御し、シフトレジスタ20の初期動作を安定させることができる。
 本発明の実施形態に係るシフトレジスタについては、各種の変形例を構成することができる。図12~図16は、本発明の第1~第5変形例に係るシフトレジスタに含まれる単位回路の回路図である。図12に示す単位回路31は、シフト部32と3個のバッファ部13r、13g、13bを含んでいる。シフト部32は、第1の実施形態に係るシフト部12にTFT:Q21、Q22を追加したものである。TFT:Q21のソースとTFT:Q22のドレインは、第2信号Zを出力するノードN3に接続される。TFT:Q21のドレインにはハイレベル電源電位VDDが与えられ、TFT:Q21のゲートはノードN1に接続される。TFT:Q22のソースにはローレベル電源電位VSSが与えられ、TFT:Q22のゲートにはリセット信号Rが与えられる。TFT:Q21は、ハイレベル電位を有する電源ノードとノードN3との間に設けられ、ノードN1に接続された制御端子を有する第7トランジスタとして機能する。TFT:Q22は、ローレベル電位を有する電源ノードとノードN3との間に設けられ、リセット信号Rが与えられた制御端子を有する第8トランジスタとして機能する。第1変形例に係るシフトレジスタによれば、電源ノードに接続された2個のTFT:Q21、Q22をシフト部32に設けることにより、電源から供給されたオン電位とオフ電位をノードN3に印加することができる。ノードN3から出力された第2信号Zを前段および後段の単位回路に供給することにより、シフトレジスタの誤動作を防止することができる。
 図13に示す単位回路41は、シフト部12と3個のバッファ部43r、43g、43bを含んでいる。バッファ部43rは、第1の実施形態に係るバッファ部13rにコンデンサCapRを追加したものである。コンデンサCapRの一方の電極はノードN1に接続され、他方の電極は第1出力ノードに接続される。バッファ部43g、43bは、バッファ部43rと同様の構成を有する。第2変形例に係るシフトレジスタによれば、ノードN1と第1~第3出力ノードとの間にそれぞれコンデンサCapR、CapG、CapBを設けることにより、バッファ制御信号CR、CG、CBがハイレベルになったときに、ブートストラップによってノードN1に十分なハイレベル電位を与えて、TFT:Q5r、Q5g、Q5bを通過するバッファ制御信号CR、CG、CBの歪みを防止することができる。
 図14に示す単位回路51は、シフト部12と1個のバッファ部13pを含んでいる。バッファ部13pは、第1信号Y、バッファ制御信号CPおよびリセット信号Rに基づき、出力信号YPを出力する。単位回路51をm個多段接続することにより、各段から1個、全部でm個の信号を出力するシフトレジスタを構成することができる。このシフトレジスタは、1水平期間に1本の走査信号線を駆動するシングルスキャンを行う走査信号線駆動回路に用いることができる。
 図15に示す単位回路61は、シフト部12と2個のバッファ部13p、13qを含んでいる。バッファ部13qは、第1信号Y、バッファ制御信号CQおよびリセット信号Rに基づき、出力信号YQを出力する。単位回路61をm個多段接続することにより、各段から2個、全部で2m個の信号を出力するシフトレジスタを構成することができる。このシフトレジスタは、1水平期間に2本の走査信号線を駆動するダブルスキャンを行う走査信号線駆動回路に用いることができる。
 図16に示す単位回路71は、シフト部12と4個のバッファ部13r、13g、13b、13wを含んでいる。バッファ部13wは、第1信号Y、バッファ制御信号CWおよびリセット信号Rに基づき、出力信号YWを出力する。単位回路71をm個多段接続することにより、各段から4個、全部で4m個の信号を出力するシフトレジスタを構成することができる。このシフトレジスタは、1水平期間に4本の走査信号線を駆動するクアッドスキャンを行う走査信号線駆動回路に用いることができる。このように本発明のシフトレジスタでは、単位回路に含まれるバッファ部の個数は任意でよい。
 図17は、本発明の第6変形例に係るシフトレジスタの構成を示すブロック図である。図17に示すシフトレジスタ80は、単位回路81を多段接続した構成を有し、各段から3本、全部で3m本の信号を出力する。シフトレジスタ80は、3相のゲートクロックGCK1、GCK2、GCK3に従い動作する。単位回路81は、第1の実施形態に係る単位回路11と同様に、シフト部と3個のバッファ部(いずれも図示せず)を含んでいる。シフト部には、3相のクロック信号に従い動作するシフトレジスタの1段分の回路(回路構成は任意でよい)を使用する。バッファ部には、上述したバッファ部13r、23rのいずれかと同じ回路を使用する。このように本発明のシフトレジスタは、3相以上のクロック信号に従い動作してもよい。
 また、上述した実施形態および変形例に係るシフトレジスタの特徴を適宜組合せて、各種のシフトレジスタを構成することができる。例えば、第5の実施形態に係るシフトレジスタ20は、図1に示すタイミングチャートに従い動作してもよい。また、第5の実施形態に係るシフトレジスタ20に、パーシャル駆動を行うための機能や、モノクロモードで動作する機能を追加してもよい。また、第5の実施形態に係る単位回路21に対して、TFT:Q21、Q22(図12)や、コンデンサCapR、CapG、CapB(図13)を追加してもよい。また、同様の方法で液晶表示装置以外の表示装置を構成することもできる。
 以上に示すように、本発明によれば、表示パネル上に一体形成するのに好適な構成を有し、回路量が少なく、低消費電力のシフトレジスタを提供し、これを用いて、表示パネルの額縁部分の面積を削減し、消費電力を削減した表示装置を提供することができる。
 本発明のシストレジスタは、回路量が少なく消費電力が小さいという特徴を有するので、例えば表示装置などに好適に利用することができる。本発明の表示装置は、表示パネルの額縁部分の面積が小さく消費電力が小さいという特徴を有するので、液晶表示装置を始めとする各種の表示装置に利用することができる。
 1…表示制御回路
 2…走査信号線駆動回路
 3…データ信号線駆動回路
 4…画素領域
 5…画素回路
 6…液晶パネル
 7…バッファ制御回路
 8…表示画面
 9…表示領域
 10、20、80…シフトレジスタ
 11、21、31、41、51、61、71、81…単位回路
 12、22、32…シフト部
 13、23、43…バッファ部

Claims (17)

  1.  複数の単位回路を多段接続した構成を有し、バッファ制御信号に従い各段から1個以上の信号を出力するシフトレジスタであって、
     前記単位回路のそれぞれは、シフト部と、前記バッファ制御信号によって制御される1個以上のバッファ部とを含み、
     前記シフト部は、
      セット信号に従い第1ノードにオン電位を印加する第1トランジスタと、
      リセット信号に従い前記第1ノードにオフ電位を印加する第2トランジスタと、
      クロック信号の入力ノードと第2ノードとの間に設けられ、前記第1ノードに接続された制御端子を有する第3トランジスタと、
      前記リセット信号に従い前記第2ノードにオフ電位を印加する第4トランジスタとを含み、
     前記バッファ部は、
      出力ノードと、
      前記第1ノードの電位と前記バッファ制御信号とに基づき、前記出力ノードにオン電位を印加する第5トランジスタと、
      前記リセット信号に従い前記出力ノードにオフ電位を印加する第6トランジスタとを含むことを特徴とする、シフトレジスタ。
  2.  前記第5トランジスタは、前記バッファ制御信号の入力ノードと前記出力ノードとの間に設けられ、前記第1ノードに接続された制御端子を有することを特徴とする、請求項1に記載のシフトレジスタ。
  3.  前記シフト部は、前記第1ノードと前記第2ノードとの間に容量をさらに含むことを特徴とする、請求項2に記載のシフトレジスタ。
  4.  前記バッファ部は、前記第1ノードと前記出力ノードとの間に容量をさらに含むことを特徴とする、請求項3に記載のシフトレジスタ。
  5.  前記単位回路のそれぞれは、前記バッファ部を複数個含むことを特徴とする、請求項1に記載のシフトレジスタ。
  6.  複数のバッファ制御信号を前記クロック信号の半周期よりも短い時間ずつオンレベルに制御するバッファ制御回路をさらに備えた、請求項5に記載のシフトレジスタ。
  7.  前記バッファ制御回路は、前記バッファ制御信号を互いに重複しない期間でオンレベルに制御することを特徴とする、請求項6に記載のシフトレジスタ。
  8.  前記バッファ制御回路は、前記バッファ制御信号を同じタイミングでオンレベルに制御することを特徴とする、請求項6に記載のシフトレジスタ。
  9.  前記バッファ制御回路は、前記クロック信号がオフレベルに変化するより前に、前記バッファ制御信号をオフレベルに制御することを特徴とする、請求項6に記載のシフトレジスタ。
  10.  前記バッファ制御回路は、指定期間において前記バッファ制御信号をオフレベルに固定する機能を有することを特徴とする、請求項6に記載のシフトレジスタ。
  11.  前記バッファ制御回路は、前記バッファ制御信号を互いに異なる期間でオンレベルに制御する機能と、前記バッファ制御信号を同じ期間でオンレベルに制御する機能とを有することを特徴とする、請求項6に記載のシフトレジスタ。
  12.  前記シフト部は、前記リセット信号以外の信号に従い、前記第1ノードにオフ電位を印加する回路をさらに含むことを特徴とする、請求項1に記載のシフトレジスタ。
  13.  前記シフト部は、前記リセット信号以外の信号に従い、前記第2ノードにオフ電位を印加するトランジスタをさらに含むことを特徴とする、請求項1に記載のシフトレジスタ。
  14.  前記バッファ部は、前記リセット信号以外の信号に従い、前記出力ノードにオフ電位を印加するトランジスタをさらに含むことを特徴とする、請求項1に記載のシフトレジスタ。
  15.  前記シフト部は、クリア信号に従い前記第1ノードにオフ電位を印加するトランジスタをさらに含むことを特徴とする、請求項1に記載のシフトレジスタ。
  16.  前記シフト部は、
      オン電位を有する電源ノードと第3ノードとの間に設けられ、前記第1ノードに接続された制御端子を有する第7トランジスタと、
      オフ電位を有する電源ノードと前記第3ノードとの間に設けられ、前記リセット信号が与えられた制御端子を有する第8トランジスタとをさらに含むことを特徴とする、請求項1に記載のシフトレジスタ。
  17.  複数の走査信号線を配設した画素領域を含む表示パネルと、
     請求項1~16のいずれかに記載のシフトレジスタを含み、前記表示パネル上に一体形成された走査信号線駆動回路とを備えた、表示装置。
PCT/JP2011/058555 2010-07-13 2011-04-04 シフトレジスタおよびこれを備えた表示装置 WO2012008186A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/805,769 US9330782B2 (en) 2010-07-13 2011-04-04 Shift register and display device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-158675 2010-07-13
JP2010158675 2010-07-13

Publications (1)

Publication Number Publication Date
WO2012008186A1 true WO2012008186A1 (ja) 2012-01-19

Family

ID=45469200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058555 WO2012008186A1 (ja) 2010-07-13 2011-04-04 シフトレジスタおよびこれを備えた表示装置

Country Status (2)

Country Link
US (1) US9330782B2 (ja)
WO (1) WO2012008186A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102982760A (zh) * 2012-02-23 2013-03-20 友达光电股份有限公司 用于液晶显示器的栅极驱动器
KR20140120825A (ko) * 2013-04-04 2014-10-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 펄스 생성 회로 및 반도체 장치
CN104282687A (zh) * 2013-07-10 2015-01-14 株式会社半导体能源研究所 半导体装置、驱动电路及显示装置
WO2015059966A1 (ja) * 2013-10-21 2015-04-30 シャープ株式会社 表示装置およびその駆動方法
JP2015184610A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 ドライバーの作動方法、ドライバー、電気光学装置及び電子機器
CN108122529A (zh) * 2018-01-25 2018-06-05 京东方科技集团股份有限公司 栅极驱动单元及其驱动方法和栅极驱动电路
CN109166542A (zh) * 2018-09-26 2019-01-08 合肥鑫晟光电科技有限公司 移位寄存器单元及驱动方法、栅极驱动电路、显示装置
US10546520B2 (en) 2017-08-04 2020-01-28 Lg Display Co., Ltd. Gate driver and flat panel display device including the same
WO2020058799A1 (ja) * 2018-09-21 2020-03-26 株式会社半導体エネルギー研究所 フリップ・フロップ回路、駆動回路、表示パネル、表示装置、入出力装置、情報処理装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254473B1 (ko) * 2010-03-15 2013-04-12 샤프 가부시키가이샤 주사 신호선 구동 회로 및 그것을 구비한 표시 장치
TWI436332B (zh) * 2011-11-30 2014-05-01 Au Optronics Corp 顯示面板及其中之閘極驅動器
US9495929B2 (en) * 2012-03-12 2016-11-15 Sharp Kabushiki Kaisha Shift register, driver circuit and display device
KR101992889B1 (ko) * 2012-08-08 2019-06-25 엘지디스플레이 주식회사 쉬프트 레지스터
US20150255171A1 (en) * 2012-10-05 2015-09-10 Sharp Kabushiki Kaisha Display device
TWI611567B (zh) * 2013-02-27 2018-01-11 半導體能源研究所股份有限公司 半導體裝置、驅動電路及顯示裝置
CN103208251B (zh) * 2013-04-15 2015-07-29 京东方科技集团股份有限公司 一种移位寄存器单元、栅极驱动电路及显示装置
CN104424876B (zh) * 2013-08-22 2018-07-20 北京京东方光电科技有限公司 一种goa单元、goa电路及显示装置
KR102314071B1 (ko) * 2014-12-26 2021-10-19 삼성디스플레이 주식회사 게이트 구동부 및 그것을 포함하는 표시 장치
CN105204249B (zh) * 2015-10-29 2018-07-17 深圳市华星光电技术有限公司 阵列基板上的扫描驱动电路及阵列基板
CN105957485A (zh) * 2016-07-01 2016-09-21 深圳市华星光电技术有限公司 扫描驱动电路及平面显示装置
CN108319385B (zh) * 2016-12-23 2021-06-25 鸿富锦精密工业(深圳)有限公司 移位寄存器及具有移位寄存器的触控显示装置
CN108694894B (zh) * 2017-04-05 2020-07-07 京东方科技集团股份有限公司 移位缓存及栅极驱动电路、显示面板及设备和驱动方法
KR102410631B1 (ko) * 2017-08-30 2022-06-17 엘지디스플레이 주식회사 Oled 표시 장치
CN107331348B (zh) * 2017-08-31 2019-11-08 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、阵列基板和显示装置
CN107507599B (zh) * 2017-10-09 2020-09-04 京东方科技集团股份有限公司 移位寄存单元及其驱动方法、栅极驱动电路和显示装置
CN108877627B (zh) * 2018-07-13 2021-01-26 京东方科技集团股份有限公司 移位寄存器单元及驱动方法、栅极驱动电路、显示装置
KR102652889B1 (ko) * 2018-08-23 2024-03-29 삼성디스플레이 주식회사 게이트 구동 회로, 이를 포함하는 표시 장치 및 표시 장치의 구동 방법
CN108877662B (zh) * 2018-09-13 2020-03-31 合肥鑫晟光电科技有限公司 栅极驱动电路及其控制方法、显示装置
KR102522804B1 (ko) * 2018-10-12 2023-04-19 엘지디스플레이 주식회사 시프트 레지스터 및 이를 이용한 표시장치
KR20200074364A (ko) * 2018-12-14 2020-06-25 삼성디스플레이 주식회사 표시 장치
CN110136653B (zh) * 2019-05-29 2022-05-13 合肥京东方卓印科技有限公司 移位寄存器、栅极驱动电路及显示装置
KR20210056758A (ko) * 2019-11-11 2021-05-20 엘지디스플레이 주식회사 에미션 구동 회로를 포함한 전계발광 표시패널
KR20220069365A (ko) * 2020-11-20 2022-05-27 엘지디스플레이 주식회사 게이트 드라이버 회로 및 그를 포함하는 표시장치
KR20220085927A (ko) * 2020-12-15 2022-06-23 삼성디스플레이 주식회사 주사구동부 및 이를 포함하는 표시장치
KR20220094957A (ko) * 2020-12-29 2022-07-06 엘지디스플레이 주식회사 게이트 구동부 및 이를 포함하는 표시 장치
KR20220096088A (ko) * 2020-12-30 2022-07-07 엘지디스플레이 주식회사 게이트 구동부 및 이를 포함하는 표시 장치
CN113963652B (zh) * 2021-11-12 2023-08-18 武汉天马微电子有限公司 显示面板及其驱动方法
CN114495833B (zh) * 2022-03-21 2023-07-04 上海中航光电子有限公司 驱动电路及其驱动方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282295A (ja) * 1988-09-20 1990-03-22 Fujitsu Ltd マトリクス表示装置のデータドライバ
JP2005234057A (ja) * 2004-02-17 2005-09-02 Sharp Corp 画像表示装置
JP2006058770A (ja) * 2004-08-23 2006-03-02 Toshiba Matsushita Display Technology Co Ltd 表示装置の駆動回路
JP2008140490A (ja) * 2006-12-04 2008-06-19 Seiko Epson Corp シフトレジスタ、走査線駆動回路、電気光学装置及び電子機器
JP2010092545A (ja) * 2008-10-08 2010-04-22 Nec Lcd Technologies Ltd シフトレジスタ及び表示装置並びにシフトレジスタの駆動方法
WO2010050262A1 (ja) * 2008-10-30 2010-05-06 シャープ株式会社 シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845140B2 (en) 2002-06-15 2005-01-18 Samsung Electronics Co., Ltd. Method of driving a shift register, a shift register, a liquid crystal display device having the shift register
KR101160836B1 (ko) * 2005-09-27 2012-06-29 삼성전자주식회사 시프트 레지스터 및 이를 포함하는 표시 장치
KR101272337B1 (ko) * 2006-09-01 2013-06-07 삼성디스플레이 주식회사 부분 화면 표시가 가능한 표시장치 및 그 구동방법
JP4990034B2 (ja) * 2006-10-03 2012-08-01 三菱電機株式会社 シフトレジスタ回路およびそれを備える画像表示装置
TW200830247A (en) * 2007-01-09 2008-07-16 Denmos Technology Inc Gate driver
TWI360094B (en) * 2007-04-25 2012-03-11 Wintek Corp Shift register and liquid crystal display
RU2443071C1 (ru) * 2008-01-24 2012-02-20 Шарп Кабусики Кайся Дисплейное устройство и способ для возбуждения дисплейного устройства
TW201040912A (en) * 2009-05-12 2010-11-16 Chi Mei Optoelectronics Corp Flat display and driving method thereof
TWI402817B (zh) * 2009-09-07 2013-07-21 Au Optronics Corp 移位暫存器電路與其閘極訊號產生方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282295A (ja) * 1988-09-20 1990-03-22 Fujitsu Ltd マトリクス表示装置のデータドライバ
JP2005234057A (ja) * 2004-02-17 2005-09-02 Sharp Corp 画像表示装置
JP2006058770A (ja) * 2004-08-23 2006-03-02 Toshiba Matsushita Display Technology Co Ltd 表示装置の駆動回路
JP2008140490A (ja) * 2006-12-04 2008-06-19 Seiko Epson Corp シフトレジスタ、走査線駆動回路、電気光学装置及び電子機器
JP2010092545A (ja) * 2008-10-08 2010-04-22 Nec Lcd Technologies Ltd シフトレジスタ及び表示装置並びにシフトレジスタの駆動方法
WO2010050262A1 (ja) * 2008-10-30 2010-05-06 シャープ株式会社 シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102982760A (zh) * 2012-02-23 2013-03-20 友达光电股份有限公司 用于液晶显示器的栅极驱动器
US9978329B2 (en) 2013-04-04 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Pulse generation circuit and semiconductor device
KR20140120825A (ko) * 2013-04-04 2014-10-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 펄스 생성 회로 및 반도체 장치
JP2014211621A (ja) * 2013-04-04 2014-11-13 株式会社半導体エネルギー研究所 パルス生成回路および半導体装置
KR102314689B1 (ko) 2013-04-04 2021-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 펄스 생성 회로 및 반도체 장치
KR20210049054A (ko) * 2013-04-04 2021-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 펄스 생성 회로 및 반도체 장치
KR102246146B1 (ko) * 2013-04-04 2021-04-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 펄스 생성 회로 및 반도체 장치
TWI709956B (zh) * 2013-04-04 2020-11-11 日商半導體能源研究所股份有限公司 脈衝產生電路及半導體裝置
DE102014206535B4 (de) 2013-04-04 2020-07-30 Semiconductor Energy Laboratory Co., Ltd. Impulserzeugungsschaltung und Halbleitervorrichtung
JP2016053719A (ja) * 2013-04-04 2016-04-14 株式会社半導体エネルギー研究所 ゲートドライバ
US9478187B2 (en) 2013-04-04 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Pulse generation circuit and semiconductor device
JP2019070805A (ja) * 2013-07-10 2019-05-09 株式会社半導体エネルギー研究所 駆動回路
CN104282687A (zh) * 2013-07-10 2015-01-14 株式会社半导体能源研究所 半导体装置、驱动电路及显示装置
US11869453B2 (en) 2013-07-10 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Display device comprising semiconductor layer having LDD regions
US11308910B2 (en) 2013-07-10 2022-04-19 Semiconductor Energy Laboratory Co., Ltd. Display device comprising a transistor with LDD regions
US10629149B2 (en) 2013-07-10 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device
KR102187047B1 (ko) 2013-07-10 2020-12-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 구동 회로, 및 표시 장치
JP2015034977A (ja) * 2013-07-10 2015-02-19 株式会社半導体エネルギー研究所 半導体装置、駆動回路及び表示装置
KR20150007217A (ko) * 2013-07-10 2015-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 구동 회로, 및 표시 장치
US9959801B2 (en) 2013-10-21 2018-05-01 Sharp Kabushiki Kaisha Display device and method for driving same with light-emission enable signal switching unit
WO2015059966A1 (ja) * 2013-10-21 2015-04-30 シャープ株式会社 表示装置およびその駆動方法
JP2015184610A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 ドライバーの作動方法、ドライバー、電気光学装置及び電子機器
US10546520B2 (en) 2017-08-04 2020-01-28 Lg Display Co., Ltd. Gate driver and flat panel display device including the same
CN108122529B (zh) * 2018-01-25 2021-08-17 京东方科技集团股份有限公司 栅极驱动单元及其驱动方法和栅极驱动电路
CN108122529A (zh) * 2018-01-25 2018-06-05 京东方科技集团股份有限公司 栅极驱动单元及其驱动方法和栅极驱动电路
US11232846B2 (en) 2018-01-25 2022-01-25 Boe Technology Group Co., Ltd. Gate drive unit and driving method thereof and gate drive circuit
WO2020058799A1 (ja) * 2018-09-21 2020-03-26 株式会社半導体エネルギー研究所 フリップ・フロップ回路、駆動回路、表示パネル、表示装置、入出力装置、情報処理装置
US11562675B2 (en) 2018-09-21 2023-01-24 Semiconductor Energy Laboratory Co., Ltd. Flip-flop circuit, driver circuit, display panel, display device, input/output device, and data processing device
US11094389B2 (en) 2018-09-26 2021-08-17 Hefei Xinsheng Optoelectronics Technolog Co., Ltd. Shift register unit and driving method, gate driving circuit, and display device
CN109166542A (zh) * 2018-09-26 2019-01-08 合肥鑫晟光电科技有限公司 移位寄存器单元及驱动方法、栅极驱动电路、显示装置

Also Published As

Publication number Publication date
US20130100007A1 (en) 2013-04-25
US9330782B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
WO2012008186A1 (ja) シフトレジスタおよびこれを備えた表示装置
US11361728B2 (en) Gate driving circuit and display apparatus having the same
US8531224B2 (en) Shift register, scanning signal line drive circuit provided with same, and display device
JP4480944B2 (ja) シフトレジスタおよびそれを用いる表示装置
US8519764B2 (en) Shift register, scanning signal line drive circuit provided with same, and display device
WO2009104322A1 (ja) 表示装置および表示装置の駆動方法ならびに走査信号線駆動回路
KR100847091B1 (ko) 시프트 레지스터 회로 및 그것을 구비한 화상표시장치
JP5132884B2 (ja) シフトレジスタ回路およびそれを備える画像表示装置
WO2018030207A1 (ja) 表示装置
KR100838653B1 (ko) 시프트 레지스터 회로 및 그것을 구비한 화상표시장치
KR101385478B1 (ko) 게이트 드라이버
WO2009084267A1 (ja) シフトレジスタおよび表示装置
WO2012161042A1 (ja) 走査信号線駆動回路、それを備えた表示装置、および走査信号線の駆動方法
WO2011080936A1 (ja) シフトレジスタ
WO2011148655A1 (ja) シフトレジスタ
WO2014092011A1 (ja) 表示装置およびその駆動方法
US9336736B2 (en) Liquid crystal display device and method for driving auxiliary capacitance lines
JP2004199066A (ja) 表示装置の駆動装置
WO2015163305A1 (ja) アクティブマトリクス基板、及びそれを備えた表示装置
JP2007207411A (ja) シフトレジスタ回路およびそれを備える画像表示装置
WO2015163306A1 (ja) アクティブマトリクス基板、及びそれを備えた表示装置
US20150255171A1 (en) Display device
WO2018230456A1 (ja) 表示装置
KR100308115B1 (ko) 액정표시소자의 게이트 구동회로
KR100940999B1 (ko) 디스플레이용 시프트 레지스터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13805769

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP