WO2011148458A1 - リアクトル - Google Patents
リアクトル Download PDFInfo
- Publication number
- WO2011148458A1 WO2011148458A1 PCT/JP2010/058791 JP2010058791W WO2011148458A1 WO 2011148458 A1 WO2011148458 A1 WO 2011148458A1 JP 2010058791 W JP2010058791 W JP 2010058791W WO 2011148458 A1 WO2011148458 A1 WO 2011148458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron core
- coil
- reactor
- magnetic metal
- containing resin
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/327—Encapsulating or impregnating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F30/00—Fixed transformers not covered by group H01F19/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/30—Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
- H01F27/306—Fastening or mounting coils or windings on core, casing or other support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/255—Magnetic cores made from particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F3/14—Constrictions; Gaps, e.g. air-gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F37/00—Fixed inductances not covered by group H01F17/00
Definitions
- This invention relates to a reactor. More specifically, the present invention relates to a reactor in which two coils are arranged in parallel, and two U-shaped iron cores are inserted into each coil from both sides of the coil in the axial direction of the coil so as to face each other. Is.
- FIG. 11 is an explanatory diagram for explaining the reactor disclosed in Patent Document 1.
- the reactor 110 of Patent Document 1 includes a coil 120 and an iron core 130.
- the state of current flowing through the coil 120 changes, a magnetic flux is generated in the magnetic circuit generated in the iron core 130.
- the inductance changes and an electromotive force is generated.
- FIG. 12 is an explanatory view showing an example of the structure of a conventional reactor.
- FIG. 13 is a diagram schematically showing the main part of the reactor shown in FIG. 12, and is a plan view seen from the C side in FIG.
- FIG. 14 is a side view seen from the D side in FIG.
- the reactor 210 includes two coils 221 and 221 that are electrically connected in series in parallel, and two U-shaped iron cores 230 and 230 are connected to the coils 221.
- the coil 221 is inserted into both ends of the coil 221 in the axial direction of the coil (upper right-lower left direction in FIG.
- the iron core insertion portions 230 ⁇ / b> A and 230 ⁇ / b> A on both sides of the iron core 230 are inserted along the coil 221 while maintaining a constant gap with the coil 221.
- the coil ends (upper and lower sides in FIG. 13, both left and right sides in FIG. 14) on both sides of the coil axis direction the coil 221 and the iron core 230 are not opposed to the coil axis direction.
- an iron core 230 and a thin plate are integrally formed, and stays 225 formed by bending and deforming a part of the thin plate are provided at four locations near the ends of the coil ends of each coil 221.
- Reactor 210 is inserted into a through hole 225H of stay 225, is placed on a housing (not shown), and is fixed to the housing by bolting.
- Patent Document 1 the conventional reactor has the following two problems. (1) The problem that the iron core becomes large (2) The problem that it is difficult to form a miniaturized iron core These problems occur for the following reasons.
- FIG. 15 is a diagram schematically showing a magnetic path in a conventional magnetic circuit of a reactor, and is an explanatory diagram for explaining the relationship between the magnetic path and magnetic saturation.
- the magnetic field is adjacent to the coil in the coil axis direction near the coil end, in addition to the iron core body inside the wound coil diameter and the gap between the coil and the iron core. It is generated around the coil over a range up to.
- the magnetic flux density due to the characteristics of the reactor, when the current flowing through the coil increases, the magnetic flux density also increases, and magnetic saturation occurs when the magnetic field becomes a certain strength. Normally, as the current value increases, the magnetic flux density increases from a shorter magnetic path (thickest arrow) to a longer magnetic path (thinnest arrow) as shown in FIG. Gradually fills and saturates.
- the iron core insertion portion 230A inserted within the diameter of the coil 221 and the iron core insertion portion 230A connecting the iron core insertion portions 230A and 230A outside the coil 221 are positioned in the magnetic field. It is used as a magnetic circuit.
- the iron core coil exterior 230B does not exist up to a position adjacent to the coil ends of the coils 221 and 221 with respect to the coil axial direction, as shown in FIGS.
- the magnetic field of the portion E adjacent to the coils 221 and 221 in the coil axial direction can also be used as a magnetic circuit. 14 and FIG. 15, the coil end adjacent portion E is a dead space.
- the reactor 210 has a U-shaped iron core 230 with a longer circumferential length (full length) and a larger cross-sectional area so that the entire iron core 230 is By increasing the volume, the long path Rm in which the magnetic path MR becomes longer is secured, and the voltage can be boosted to a desired voltage value before magnetic saturation occurs.
- the reactor 210 is formed by connecting two U-shaped iron cores 230 and 230 in a track shape with the gap body 235 interposed therebetween, when one iron core 230 is enlarged, the reactor 210 is formed. As a result, the entire system becomes large, which is a problem in terms of space.
- FIG. 16 is a perspective view which shows the iron core of the reactor which concerns on the reference example examined about the case of the dust iron core.
- the shape of the examined iron core will be described.
- the iron cores 230 and 230 are formed in a U-shape, and iron core insertion portions 230A and 230A on both sides thereof are inserted into the coils 221 and 221, respectively. Yes. If the portion corresponding to the coil end adjacent portion E that was a dead space outside the coil 221 is to be a part of the outside of the iron core coil 332 as shown in FIG. 16, the reference plane of the iron core insertion portion 331 A three-dimensional iron core 330 in which steps R1 and R2 are generated between P1 and P2 and the reference surfaces Q1 and Q2 of the iron core coil outer 332 is required.
- the iron core is a laminated steel sheet type iron core
- a plurality of thin steel sheets are laminated as shown in FIG.
- the iron core 330 having a three-dimensional shape.
- the cost increases considerably, so that the coil end adjacent part is also part of the magnetic circuit. Realization of laminated steel core is quite difficult.
- the compacted iron core is lower in cost than the laminated steel core and is often used for the iron core. Therefore, as for the dust core, the step between the iron core insertion portion 331 and the iron core coil outside 332 is formed by a mold-clamping method with a certain degree of freedom as in the conventional method of molding a dust core.
- the formation of a three-dimensional iron core 330 having R1 and R2 was studied. That is, as shown in FIG. 16, the examined iron core 330 includes iron core insertion portions 331 and 331 inserted into two coils in the coil axial direction from both sides of the coil, and an iron core insertion portion on one coil side. 331 and 331 are connected to each other, and an iron core coil exterior 332 is also disposed at a coil end adjacent portion (see E portion in FIG. 14). The entire iron core 330 is integrally formed by compaction.
- the corner portion 332C of the iron core outer portion 332 does not satisfy the desired mechanical strength, and a normal dust core is formed. It has been found that it is difficult to form the iron core 330 by compacting using the molding equipment. One reason for this is that during molding, the pressing force due to clamping is not evenly transmitted to the corners 332C with respect to the compacted powder, and the metal powders are solidified with sufficient bonding strength at the corners 332C. It is thought that it was not done. Therefore, it was also considered to form the iron core 330 by using a special molding equipment so that the mechanical strength of the corner portion 332C can satisfy the desired strength. It was also found that the cost was high.
- the coil end adjacent portion which has been a dead space, is also used in the magnetic circuit to further reduce the size of the entire iron core. Both cases were examined.
- a step R1 between the reference planes P1, P2 of the iron core insertion portion 331 and the reference planes Q1, Q2 of the iron core outside 332 is provided.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a reactor capable of reducing the size of the entire reactor as compared with a conventional reactor while maintaining performance.
- the reactor according to one aspect of the present invention has the following configuration.
- Two coils electrically connected in series are arranged in parallel, and the two coils are molded by integrating the outer diameter of each coil with resin, and a U-shaped iron
- There are two cores and as cores, the iron core insertion parts on both sides of the iron core are inserted into each coil in the direction of the coil axis from the coil one side to each coil, and the gap body is sandwiched between them.
- the molded coil is formed in a substantially hexagonal shape, and the iron core is an iron that connects both sides of the iron core insertion portion inserted into each coil outside the coils.
- a magnetic metal-containing resin layer made of a magnetic metal-containing resin having a core coil outside and a magnetic metal powder mixed in a binder resin is formed on the outer surface of the iron core coil.
- the magnetic metal-containing resin layer is a coil end of each coil located at both ends of the coil axial direction in the outer side of the iron core coil, with respect to a direction along the radial direction of the coil. In addition, it is preferably formed at least in a portion located outside the diameter.
- the iron core insertion portion and the outside of the iron core coil are formed at the same height, while the cross-sectional area outside the iron core coil is iron.
- the cross-sectional area of the core insertion portion is smaller.
- the binder resin of the magnetic metal-containing resin is preferably an epoxy resin.
- the magnetic metal-containing resin is preferably coated on the iron core insertion portion of the iron core.
- the binder resin of the magnetic metal-containing resin is preferably a thermoplastic resin.
- a fastening member holding portion that holds the reactor in a casing supporting the reactor together with the fastening member in the mold coil. It is preferable to provide.
- the fastening member holding portion is provided at the center in the thickness direction of the molded coil along the coil axial direction.
- the fastening member holding portion is a reactor holding member having a through hole at a position that extends across the mold coil in the radial direction of the coil and is outside the molded coil that is covered and wrapped. It is preferable that the fastening member is inserted into the through hole of the reactor holding member and fastened to the housing.
- the reactor holding member is made of metal and integrated with the mold coil by insert molding.
- the molded coil is formed in a substantially hexahedron shape, and the iron core connects the both sides of the iron core insertion portion inserted into each coil outside the coils.
- the magnetic metal-containing resin layer made of a magnetic metal-containing resin in which a magnetic metal powder is mixed with a binder resin is formed on the outer surface outside the iron core coil, iron inside the coil diameter
- the magnetic field located outside the iron core coil of the core and the iron core coil outside the coil can be used as a magnetic circuit, and in the vicinity of the coil end of the coil,
- the magnetic field located in the adjacent portion (hereinafter referred to as “coil end adjacent portion”) can also be effectively used as a magnetic circuit due to the presence of the magnetic metal-containing resin layer.
- the metal powder mixed in the magnetic metal-containing resin is made of, for example, a ferrite-based metal mainly composed of Fe, a metal such as Zn or Mn, an Fe-C-based, Fe-Si-based Fe-based alloy, or the like.
- the powder has a particle size of several ⁇ m to several tens of ⁇ m.
- Such a metal powder is contained in the magnetic metal-containing resin in a large amount, for example, at a ratio of about 90% by weight with the binder resin, and is formed on the outer surface of the iron core coil by the magnetic metal-containing resin.
- the magnetic metal-containing resin layer is inferior in magnetic permeability to the dust core, it can function as a core and become a magnetic circuit.
- the magnetic metal-containing resin layer is located in the magnetic field generated also in the adjacent part of the coil end, so that the magnetic material formed on the outer surface of the iron core coil in addition to the iron core. Due to the presence of the metal-containing resin layer, it can be effectively used as a magnetic circuit. Therefore, when the magnetic circuit corresponding to the same volume as the conventional iron core is generated by the iron core and the magnetic metal-containing resin layer of the above-described aspect, the iron of the above-described aspect is substantially equivalent to the volume of the magnetic metal-containing resin layer.
- the core can be made smaller than a conventional iron core.
- the iron core insertion parts on both sides of each iron core are inserted into each coil in the direction of the coil axis from the coil one side to face each other, and the track is sandwiched between the gap bodies.
- the reactor of the above-mentioned aspect connected to the shape has an excellent effect that it can be made smaller than a conventional reactor.
- a magnetic metal containing resin layer is a coil end of each coil located in both ends of a coil axial direction among the iron-core coils outside, with respect to the direction along the radial direction of a coil, Since it is formed at least in the portion located outside the diameter, the magnetic metal-containing resin protects the outer surface outside the iron core coil, and the iron core is cracked or chipped at a portion protected by at least the magnetic metal-containing resin. It is possible to prevent the occurrence of damage such as rust and to prevent rust.
- the magnetic metal-containing resin layer by the magnetic metal-containing resin is formed on the outer surface outside the iron core coil, regardless of the case where the iron core of the above aspect is a laminated steel sheet type iron core or a powder iron core, A core that effectively uses the magnetic field located adjacent to the coil end as a part of the magnetic circuit can be formed at a low cost by the iron core and the magnetic metal-containing resin layer.
- the iron core is a laminated steel sheet type iron core
- conventionally refer to a three-dimensional iron core having a step between the iron core insertion portion and the outside of the iron core coil by laminating a plurality of thin steel plates.
- the formation of the iron core using the coil end adjacent part as a part of the magnetic circuit is considerably difficult because the formation as shown in FIG. .
- the iron core of the above-mentioned aspect is a laminated steel sheet type iron core, the iron core can be manufactured by the same manufacturing method as a conventional laminated steel sheet type iron core, and also contains a magnetic metal.
- the resin layer can be formed by a well-known manufacturing method such as a method of fixing with an adhesive on a steel plate constituting an iron core, or a method of integrally forming a magnetic metal-containing resin and an iron core by injection molding. Therefore, in the reactor of the above aspect, even when the iron core is a laminated steel sheet type iron core, the core that effectively uses the magnetic field located in the coil end adjacent portion as a part of the magnetic circuit is the iron core and the magnetic metal.
- the containing resin layer can be formed at low cost.
- the iron core when the iron core is a dust core, a step is formed between the iron core insertion portion and the outside of the core coil as shown in FIG.
- the iron core having a three-dimensional shape When the iron core having a three-dimensional shape is formed, there is a problem that the desired mechanical strength is not satisfied particularly in the corner portion of the outside of the iron core coil.
- the iron core in the reactor of the above-described aspect, can be molded by the same molding method as the conventional powdered iron core, for example, a method of fixing with an adhesive, a magnetic metal-containing resin and an iron core by injection molding.
- the iron core coil exterior of the iron core after molding and the magnetic metal-containing resin layer can be integrally adhered.
- the coil end adjacent part which was a dead space with the conventional iron core can also be easily made into a part of a magnetic circuit. Therefore, in the reactor according to the above-described aspect, even when the iron core is a dust core, the core that effectively uses the magnetic field located in the adjacent portion of the coil end as a part of the magnetic circuit includes the iron core and the magnetic metal.
- the resin layer can be formed at a low cost.
- the iron core of the above-described aspect can be made smaller than the conventional iron core. For this reason, the reactor according to the above-described aspect can be manufactured at a low cost.
- the reactor of the said aspect while the iron core insertion part and the iron core coil exterior are formed in the same height in an iron core, the cross-sectional area of an iron core coil exterior is an iron core insertion part. Therefore, the total length of the reactor according to the above aspect can be made shorter than that of the conventional reactor with respect to the direction along the axial direction of the coil. As a result, when the reactor of the above-described aspect is manufactured with the same specifications as the conventional reactor in terms of the performance of the reactor, the reactor of the above-described aspect can be made more compact than the conventional reactor so that it can be mounted even in a narrow space. Become.
- the reactor of the above-described aspect when the reactor of the above-described aspect is mounted on a drive control system or the like of a hybrid vehicle, an electric vehicle or the like in order to boost the voltage of the system, if the reactor of the above-described aspect is downsized, the reactor is Since the restrictions on the space for mounting are reduced, the reactor having the same specifications can be mounted on more types of vehicles. As a result, the reactor according to the above aspect can be mass-produced with the same specifications, and the reactor according to the above aspect becomes inexpensive.
- the binder resin of magnetic metal containing resin is an epoxy resin
- the epoxy resin has the adhesiveness which couple
- the metal powder when a large amount of metal powder can be contained in the magnetic metal-containing resin by using an epoxy resin as the binder resin, the metal powder has a high thermal conductivity, so the entire magnetic metal-containing resin has a high thermal conductivity. It becomes a physical property.
- the heat generated by the coil in the mold coil is easily transferred to the magnetic metal-containing resin having high thermal conductivity through the iron core, and the heat is efficiently radiated from the magnetic metal-containing resin to the outside. Will be able to.
- each iron core is put on both sides of a gap body.
- the epoxy resin mixed in the magnetic metal-containing resin can be used as an adhesive for fixing the iron core and the gap body. That is, in the reactor, two U-shaped iron cores are inserted into each coil from both sides of the coil in the axial direction of the coil so as to face each other, and are connected to each other in a track shape. A gap body having a magnetic permeability smaller than that of the iron core is interposed between the core insertion portions of the core.
- the iron core and the gap body are separately used in the bonding furnace by using an adhesive in the bonding process. It was fixed with.
- such a bonding furnace is not necessary, and the gap body and the iron core insertion portion of the iron core can be closely adhered and fixed by the magnetic metal-containing resin coated on the iron core insertion portion of the iron core.
- the magnetic metal-containing resin layer is formed outside the iron core coil, if the iron core insertion part is covered with the magnetic metal-containing resin to take protective measures outside the iron core coil, the iron protected by the magnetic metal-containing resin is used.
- the binder resin of the magnetic metal-containing resin is a thermoplastic resin
- the step of forming the magnetic metal-containing resin layer on the outer surface outside the iron core coil The process of covering with a magnetic metal-containing resin can be performed in a high cycle. Therefore, the productivity associated with the formation of the magnetic metal-containing resin layer and the coating of the iron core insertion portion with the magnetic metal-containing resin is increased, so that the cost of the reactor of the above-described aspect can be reduced.
- the thermoplastic resin include, in addition to polyphenylene sulfide (PPS), a polyamide resin that is a material such as nylon or polyamide.
- the mold coil is provided with a fastening member holding portion that holds and fixes the reactor in a casing that supports the reactor, together with the fastening member, when the reactor is operated Even if the iron core vibrates and this vibration propagates to the mold coil which is not the excitation source, vibration propagation can be reduced by the resin mold layer of the mold coil.
- the magnetic flux density changes to generate an electromagnetic attractive force that acts between the iron cores and magnetostriction that occurs in each iron core, and both iron cores are expanded and contracted. Then vibrate.
- the fastening member holding portion is provided in the mold coil that is not such a vibration generation source, even if the iron core vibration propagates to the mold coil, the vibration propagation is the mold of the mold coil.
- the reactor can be fixed to the housing in a state reduced by the layers.
- the fastening member holding portion is provided at the center in the thickness direction of the molded coil along the coil axial direction, and thus the reactor is enclosed by the fastening member holding portion provided at this position. If it is held on the body and fixed with a fastening member, even if the vibration of the iron core propagates to the housing via the mold coil and fastening member during the operation of the reactor, the vibration propagation to the housing can be kept smaller. it can.
- the iron cores expand and contract with each other and vibrate.
- the iron core is roughly divided into a laminated steel plate type iron core formed by laminating a plurality of thin steel plates and a compacted iron core formed of dust, and the compacted iron core is a laminated steel plate type iron core. Since it is low in cost, it is often used for iron cores.
- the Young's modulus of the compacted iron core is smaller than that of the laminated steel core, and the resonant frequency of the compacted iron core Becomes lower than the resonance frequency of the laminated steel sheet type iron core.
- the resonance frequency of the laminated steel sheet type iron core is separated from the driving frequency (about 10 KHz) at which the iron core vibrates when the reactor is operated by several KHz or more.
- the iron core does not vibrate greatly due to the adverse effect of the resonance frequency.
- the driving frequency of the iron core approaches the resonance frequency of the dust core, and the iron core vibrates greatly. It was a problem.
- the vibration of the iron core is mainly a vibration (longitudinal vibration) that repeats expansion and contraction in the direction in which the iron cores face each other regardless of whether the iron core is a dust core or a laminated steel sheet type iron core. Contains the largest “belly” and the smallest “node”.
- the reactor vibrates at a position corresponding to the position of the “antinode” where the iron core vibrates at a driving frequency close to the resonance frequency and has the largest amplitude. If the fastening member is fixed to the casing, a large vibration due to the iron core propagates to the casing, and noise due to the vibration of the iron core is generated and becomes a problem.
- the center in the thickness direction of the mold coil is a position corresponding to a node of this vibration with respect to the longitudinal vibration caused by the two iron cores, and vibration caused by magnetostriction and electromagnetic attraction force in the two iron cores. Is the region where the amplitude of is the smallest.
- the vibration of the iron core is at the center in the thickness direction of the mold coil. Has the smallest amplitude.
- the vibration of the iron core causes the mold coil and the fastening member to be moved during the operation of the reactor. Even if it propagates to the housing through the vibration propagation to the housing can be further suppressed. As a result, since it is possible to reduce the propagation of the iron core vibration generated during the operation of the reactor to the housing, the noise caused by this vibration can be more reliably suppressed.
- maintenance part is a reactor holding member which has a through-hole in the position used as the outer side of the mold coil which extended over the mold coil in the radial direction of the coil, and was covered and wrapped. Since the fastening member is inserted into the through hole of the reactor holding member and fastened to the housing, vibration propagation transmitted from the iron core to the housing through the reactor holding member and fastening member can be suppressed to a small level when the reactor is operated. Can do. Therefore, the loosening of the fastening member to be fastened to the housing due to this vibration propagation is suppressed, and the reactor and the housing can be firmly fixed with a stable fastening force for a long time.
- the reactor holding member is made of metal and integrated with the mold coil by insert molding, the heat generated by the coil in the mold coil is generated by the mold layer of the mold coil. It becomes easy to transfer heat to the reactor holding member having a high thermal conductivity through the heat exchanger, and heat can be efficiently radiated from the reactor holding member to the outside.
- the entire reactor can be made smaller than a conventional reactor while maintaining the performance.
- FIG. 2 is a cross-sectional view taken along arrow AA in FIG. It is the perspective view which shows the principal part of the reactor which concerns on Example 1, 2, and is the figure shown in the state except the mold layer. It is the top view which looked at the principal part of the reactor shown in FIG. 3 from the Z direction, and is a figure which shows the state except the part of magnetic metal containing resin. It is a disassembled perspective view which shows the reactor which concerns on Example 1, 2, and is explanatory drawing which shows the state except the magnetic metal containing resin layer and the iron core protective layer.
- FIG. 1 is a cross-sectional view taken along arrow AA in FIG. It is the perspective view which shows the principal part of the reactor which concerns on Example 1, 2, and is the figure shown in the state except the mold layer. It is the top view which looked at the principal part of the reactor shown in FIG. 3 from the Z direction, and is a figure which shows the state except the part of magnetic metal containing resin. It is a disassembled perspective view which shows the reactor which concerns on Example 1,
- FIG. 6 is a view illustrating a reactor molded coil according to Examples 1 and 2, and is a cross-sectional view taken along line BB in FIG. 5.
- the magnetic circuit of the reactor which concerns on Example 1, 2 it is an image figure explaining the relationship between a magnetic path and magnetic saturation. It is a graph which shows the relationship between the material and BH characteristic about an iron core etc.
- FIG. 10 is a circuit diagram showing a main part of the PCU in FIG. 9. It is explanatory drawing explaining the fixing structure of the reactor disclosed by patent document 1.
- FIG. It is explanatory drawing which shows the conventional reactor as an example. It is the figure which showed roughly the principal part of the reactor shown in FIG.
- FIG. 12 is the top view seen from the C side in FIG. It is the same figure as FIG. 13, and is the side view seen from the D side in FIG. It is the figure which showed typically the magnetic path
- Example 1 the reactor in 1 aspect of this invention is described in detail about Example 1, 2, based on drawing.
- the reactors according to the first and second embodiments are mounted in a hybrid vehicle drive control system for the purpose of boosting the voltage from the voltage of the battery to the voltage applied to the motor generator. Then, after explaining the structure of a drive control system first, the reactor which concerns on an Example is demonstrated.
- FIG. 9 is a block diagram schematically illustrating an example of the structure of the drive control system including the reactors according to the first and second embodiments.
- FIG. 10 is a circuit diagram showing the main part of the PCU in FIG.
- the drive control system 1 includes a PCU 2 (Power Control Unit), a motor generator 6, a battery 7, a terminal block 8, a housing 71, a speed reduction mechanism 72, a differential mechanism 73, a drive It is comprised from the shaft receiving part 74 grade
- PCU2 includes a converter 3, an inverter 4, a control device 5, capacitors C1 and C2, and output lines 6U, 6V, and 6W.
- Converter 3 is connected between battery 7 and inverter 4, and is electrically connected to inverter 4 in parallel.
- Inverter 4 is connected to motor generator 6 via output lines 6U, 6V, 6W.
- the battery 7 is a secondary battery such as a nickel metal hydride or lithium ion battery, for example, and is supplied to the converter 3 through a direct current and charged by the direct current flowing from the converter 3.
- Converter 3 includes power transistors Q1 and Q2, diodes D1 and D2, and a reactor 10 described in detail later.
- the power transistors Q1 and Q2 are connected in series between the power supply lines PL2 and PL3, and supply the control signal of the control device 5 to the base.
- Diodes D1 and D2 are connected between the collector and emitter of power transistors Q1 and Q2 so that current flows from the emitter side to the collector side of power transistors Q1 and Q2, respectively.
- Reactor 10 is arranged with one end connected to power supply line PL1 connected to the positive electrode of battery 7 and the other end connected to the connection point of power transistors Q1 and Q2.
- Converter 3 boosts the DC voltage of battery 7 by reactor 10, and supplies the DC voltage to power supply line PL2 with the boosted voltage.
- Converter 3 steps down the DC voltage received from inverter 4 and charges battery 7.
- the inverter 4 includes a U-phase arm 4U, a V-phase arm 4V, and a W-phase arm 4W.
- Each phase arm 4U, 4V, 4W is connected in parallel between power supply lines PL2, PL3.
- the U-phase arm 4U includes power transistors Q3 and Q4 connected in series
- the V-phase arm 4V includes power transistors Q5 and Q6 connected in series
- the W-phase arm 4W includes power connected in series. It consists of transistors Q7 and Q8.
- the diodes D3 to D8 are respectively connected between the collector and emitter of the power transistors Q3 to Q8 so that current flows from the emitter side to the collector side of the power transistors Q3 to Q8, respectively.
- each phase arm 4U, 4V, 4W the connection point of each power transistor Q3 to Q8 is on the anti-neutral point side of each U phase, V phase, W phase of motor generator 6 via output lines 6U, 6V, 6W. Each is connected.
- Inverter 4 converts a direct current flowing in power supply line PL ⁇ b> 2 into an alternating current based on a control signal from control device 5 and outputs the alternating current to motor generator 6. Inverter 4 rectifies the alternating current generated by motor generator 6 to convert it into a direct current, and supplies the converted direct current to power supply line PL2.
- Capacitor C1 is connected between power supply lines PL1 and PL3, and smoothes the voltage level in power supply line PL1.
- Capacitor C2 is connected between power supply lines PL2 and PL3, and smoothes the voltage level in power supply line PL2.
- control device 5 Based on the rotational angle of the rotor of the motor generator 6, the motor torque command value, the current values in the U phase, V phase and W phase of the motor generator 6, and the input voltage of the inverter 4, the control device 5 The coil voltage in the phase, V phase and W phase is calculated. Further, based on the calculation result, control device 5 generates PWM (Pulse / Width Modulation) for turning on / off power transistors Q ⁇ b> 3 to Q ⁇ b> 8 and outputs the generated PWM to inverter 4.
- PWM Pulse / Width Modulation
- the control device 5 calculates the duty ratio of the power transistors Q1, Q2 based on the motor torque command value and the motor rotational speed described above, and based on the calculation result. Thus, a PWM signal for turning on / off the power transistors Q1, Q2 is generated and output to the converter 3. Further, the control device 5 controls the switching operation of the power transistors Q1 to Q8 in the converter 3 and the inverter 4 in order to convert the alternating current generated by the motor generator 6 into a direct current and charge the battery 7.
- converter 3 boosts the voltage of battery 7 based on the control signal of control device 5 and applies the boosted voltage to power supply line PL2.
- Capacitor C1 smoothes the voltage applied to power supply line PL2.
- Inverter 4 converts the DC voltage smoothed by capacitor C1 into an AC voltage and outputs it to motor generator 6.
- inverter 4 converts the AC voltage generated by the regeneration of motor generator 6 into a DC voltage and outputs it to power supply line PL2.
- Capacitor C2 smoothes the voltage applied to power supply line PL2, and converter 3 steps down the DC voltage smoothed by capacitor C2 and charges battery 7.
- FIG. 1 is a perspective view illustrating a reactor according to the present embodiment, and is an explanatory diagram for explaining attachment to a housing.
- 2 is a cross-sectional view taken along line AA in FIG.
- FIG. 3 is a perspective view showing a main part of the reactor according to the present embodiment, and shows a state in which a mold layer is removed.
- FIG. 4 is a plan view of the main part of the reactor shown in FIG. 3 as viewed from the Z direction, and shows a state in which the magnetic metal-containing resin portion is removed.
- FIG. 1 is a perspective view illustrating a reactor according to the present embodiment, and is an explanatory diagram for explaining attachment to a housing.
- 2 is a cross-sectional view taken along line AA in FIG.
- FIG. 3 is a perspective view showing a main part of the reactor according to the present embodiment, and shows a state in which a mold layer is removed.
- FIG. 4 is a plan view of the main part of the reactor shown in FIG. 3 as
- FIG. 5 is an exploded perspective view showing the reactor according to the present embodiment, and is an explanatory view showing a state in which the magnetic metal-containing resin layer and the iron core protective layer are removed.
- FIG. 6 is a view showing the reactor molded coil according to the present embodiment, and is a cross-sectional view taken along the line BB in FIG.
- the X direction and the Z direction shown in FIG. 1 are defined as the radial direction of the coil
- the Y direction is defined as the coil axial direction and the thickness direction of the molded coil.
- the X direction, the Y direction, and the Z direction shown in the drawings after FIG. 2 conform to the X direction, the Y direction, and the Z direction shown in FIG.
- the reactor 10 is fixed by screw fastening with a casing 60 that supports the reactor 10 and a bolt 50 (fastening member).
- the housing 60 is made of, for example, a metal such as aluminum casting, and has a predetermined shape of the housing main body formed in accordance with the arrangement space of the reactor 10, and a side away from the housing main body (in the Z direction in FIG. 1).
- Two housing fastening portions 61, 61 projecting upward) are provided.
- Each housing fastening portion 61, 61 is formed with a female screw that is screwed into the bolt 50.
- the reactor 10 includes a reactor main body 11, a reactor holding member 25, a magnetic metal-containing resin layer 33, an iron core protective layer 34, and the like. Further, the reactor main body 11 includes a molded coil 20, two U-shaped iron cores 30, and two gap bodies 35. First, the reactor main body 11 will be described. As shown in FIGS. 2 to 6, the molded coil 20 has two coils 21 and 21 that are electrically connected in series arranged in parallel, and the two coils 21 and 21 are arranged outside the diameter of each coil 21. The entirety is integrally formed with a mold layer 20M molded with an epoxy resin or the like, and is formed in a substantially hexahedral shape.
- the mold coil 20 is configured such that an iron core insertion portion 31 of an iron core 30 to be described later is inserted into a penetration portion inside the diameter of each of the coils 21 and 21, and the coil 21,
- the convex part 22 which fixes the iron core insertion part 31 inserted in 21 is formed in the shape which protruded toward the diameter of each coil 21 and 21.
- the mold coil 20 includes a reactor holding member 25 as a fastening member holding portion that holds the reactor 10 in a casing 60 that supports the reactor 10 together with the two bolts 50.
- the reactor holding member 25 is made of a metal plate having a spring property so that the reactor 10 can be fixed with a certain amount of spring force when the reactor 10 is fixed to the housing 60. It is formed in a shape that is bent into a letter shape and its bent ends are further bent by 90 °.
- the reactor holding member 25 is provided at the center of the thickness direction Y of the mold coil 20 along the axial direction Y of the coil 21, extends across the mold coil 20 in the radial direction X of the coil 21, and covers the outer side of the enveloped mold coil 20.
- the reactor holding member 25 has a surface such as undercut and embossing on one surface thereof, and is integrated with the mold coil 20 by insert molding.
- the reactor 10 is fixed to the housing 60 by inserting the two bolts 50 through the through holes 25H and 25H of the reactor holding member 25 and fastening the female screws of the housing fastening portions 61 and 61 of the housing 60. Is done.
- the iron core 30 is a powder iron core formed by compressing and solidifying a magnetic metal powder. As shown in FIGS. 3 and 5, each of the iron cores 30 has two U-shaped shapes. Each iron core 30 connects the iron core insertion portions 31, 31 at the distal ends of both sides and the iron core insertion portions 31, 31 on both sides inserted into the coils 21, 21 of the molded coil 20, outside each coil 21. And an iron core coil exterior 32. In each iron core 30, the cross sections of the iron core insertion portions 31 and 31 and the iron core outside 32 are substantially rectangular, and the iron core insertion portions 31 and 31 and the iron core outside 32 are formed at the same height.
- the cross-sectional area of the iron core coil exterior 32 is smaller than the cross-sectional area of each iron core insertion portion 31.
- the second outer surface 32 b along the X direction and the first outer surface 32 a along the Y direction in the iron core outside 32 are formed at right angles,
- the thickness t2 with respect to the Y direction is smaller than the thickness t1 with respect to the X direction of the iron core insertion portion 31.
- the thickness t1 of the iron core insertion portion 31 is the same as the thickness s1 of the conventional iron core insertion portion 230A shown in FIG. 13, but the thickness t2 of the iron core outer portion 32 is the same as that of the conventional iron core coil. It is smaller than the thickness s2 of the external 230B.
- a magnetic metal-containing resin layer 33 is provided on each iron core 30, as shown in FIGS. 1, 2, and 4.
- the coil ends 21 ⁇ / b> E and 21 ⁇ / b> E are formed in close contact with the first outer surface 32 a on the first outer surface 32 a located on the outer diameter side of the coil 21 with respect to the radial direction X of the coil 21. That is, the magnetic metal-containing resin layer 33 is disposed at a position facing the coil ends 21 ⁇ / b> E and 21 ⁇ / b> E of each coil 21.
- the magnetic metal-containing resin layer 33 is made of a magnetic metal-containing resin in which magnetic metal powder is mixed in a binder resin.
- the binder resin is an epoxy resin.
- the metal powder is, for example, a powder made of a ferrite-based metal mainly containing Fe, a metal such as Zn or Mn, an Fe-C-based, Fe-Si-based Fe-based alloy, or the like.
- the diameter is several ⁇ m to several tens of ⁇ m.
- the magnetic metal-containing resin is configured to contain such a metal powder in a large amount at a ratio of, for example, about 90% by weight with the epoxy resin.
- An iron core protective layer 34 is formed of a magnetic metal-containing resin on the second outer surface 32b of each iron core coil exterior 32.
- the iron core protective layer 34 is connected to the adjacent magnetic metal-containing resin layers 33, 33 by one iron core 30, and is smaller in thickness than the magnetic metal-containing resin layer 33, and is in close contact with the second outer surface 32b. Covered.
- the gap body 35 is connected to the first outer surface 31 a of the iron core insertion portion 31 and the first outer surface 31 a in four directions which are on the same plane as the second outer surface 32 b of the outer core coil 32.
- a magnetic metal-containing resin is also coated on the second outer surface 31b serving as a contact surface.
- the mechanical strength at the corner portions on both surfaces may not be sufficient in the state as it is.
- the magnetic metal-containing resin layer 33 is formed on the first outer surface 32a, and the iron core protective layer 34 is formed in close contact with the second outer surface 32b.
- the corner portion with the second outer surface 32b is not mechanically brittle, and damage such as chipping at the corner portion does not occur.
- the two iron cores 30 and 30 on which the magnetic metal-containing resin layer 33, the iron core protective layer 34, and the coating layers of the first and second outer surfaces 31a and 31b made of the magnetic metal-containing resin are formed.
- the two gap bodies 35 and 35 are comprised as a core.
- the iron core insertion portions 31 and 31 of the iron core 30 are inserted into the respective coils 21 in the respective coil 21 from the coil piece side in the coil axial direction Y so as to face each other, and the gap bodies 35 and 35 are sandwiched therebetween.
- Two iron cores 30 and 30 are connected in a track shape.
- the two iron cores 30 and 30 and the gap bodies 35 and 35 are binder resins included in the magnetic metal-containing resin coated on the first outer surface 31a of the iron core insertion portion 31 of the iron core 30, that is, epoxy. Bonded with resin and fixed in close contact.
- the gap bodies 35 and 35 are inserted into the penetration portions of the molded coil 20, respectively, and are arranged at the center positions in the thickness direction Y of the molded coil 20.
- the iron core insertion portions 31 and 31 side of the iron core 30 are inserted into the coils 21 and 21 of the molded coil 20 together with the iron cores 30 in the axial direction Y of the coil 21 from one end of the coils 21 and 21, respectively.
- the gap body 35 is sandwiched between the iron cores 30 and 30, and the iron cores 30 and 30 are joined in a track shape.
- the iron core insertion portions 31 and 31 of the iron core 30 on one side are inserted into the inner diameter of each coil 21 from two through portions on one side of the molded coil 20.
- the second outer surfaces 31b and 31b of the inserted iron core insertion portions 31 and 31 are brought into contact with and closely contacted with one side plate surface of the gap body 35, and an epoxy resin (included in the magnetic metal-containing resin covering the second outer surfaces 31b and 31b).
- the iron core 30 and the gap body 35 are fixed with a binder resin.
- the iron core insertion portions 31 and 31 of the iron core 30 on the other side are inserted inside the diameters of the coils 21 and 21 from the two through portions on the other side of the molded coil 20.
- the second outer surfaces 31b and 31b of the inserted iron core insertion portions 31 and 31 are brought into contact with and closely contacted with the other side plate surface of the gap body 35, and a binder resin contained in the magnetic metal-containing resin covering the second outer surfaces 31b and 31b.
- the iron core 30 and the gap body 35 are fixed.
- the track-shaped iron cores 30, 30 with the gap body 35 interposed pass through the two coils 21, 21 in the mold coil 20, and the resin mold is not shown.
- the reactor main body 11 in a state, that is, the reactor 10 is obtained. Thereafter, the reactor main body 11 in the state shown in FIG.
- FIG. 3 is set in a resin mold, and a magnetic metal-containing resin is injected to completely overmold the coils 21, 21 and the iron core coils 32, 32.
- a magnetic metal-containing resin is injected to completely overmold the coils 21, 21 and the iron core coils 32, 32.
- the magnetic metal-containing resin layer 33 and the iron core protective layer 34 are formed.
- the molded coil 20 main body portion of the reactor 10 (the coil 21 of the reactor main body portion 11) is disposed between the housing fastening portions 61 and 61 of the housing 60. And a portion where the gap body 35 is located), and both end portions of the reactor holding member 25 are placed on the case fastening portions 61 and 61.
- the main body of the molded coil 20 of the reactor 10 is separated from the housing 60, and a gap is formed between the molded coil 20 and the housing 60.
- the two bolts 50 and 50 are inserted into the through holes 25H and 25H of the reactor holding member 25, and the bolts 50 and 50 are screwed into the housing fastening portions 61 and 61, respectively. And the casing fastening portions 61 and 61 are fastened.
- the reactor 10 is fixed to the housing 60 with the two bolts 50 and 50.
- FIG. 7 is an image diagram for explaining the relationship between the magnetic path and the magnetic saturation in the magnetic circuit of the reactor according to the present embodiment.
- FIG. 8 is a graph showing the relationship between the material constituting the iron core and the BH characteristics.
- the molded coil 20 is formed in a substantially six-face shape, and the iron core 30 is disposed on both sides of the iron core insertion portions 31 and 31 inserted in the coils 21. , 21, and a magnetic metal-containing resin layer 33 made of a magnetic metal-containing resin in which magnetic metal powder is mixed in a binder resin (epoxy resin).
- the coil 21 is adjacent to the portion adjacent to the coil 21 in the axial direction Y (hereinafter referred to as “coil end adjacent portion”).
- the magnetic field also, by magnetic metal-containing resin layer 33 is present, as shown in FIG. 7 reference, it becomes possible to effectively utilize as a magnetic circuit.
- the metal powder mixed in the magnetic metal-containing resin is, for example, a powder made of a Fe-based alloy such as Fe-C-based or Fe-Si-based in addition to a ferrite-based metal mainly composed of Fe, Zn, Mn and the like.
- the powder has a particle size of several ⁇ m to several tens of ⁇ m.
- Such a metal powder is contained in the magnetic metal-containing resin in a large amount at a ratio of, for example, about 90% by weight with the binder resin.
- the magnetic metal-containing resin layer 33 formed on the outer surface 32a can function as a core and become a magnetic circuit, although its permeability is inferior to that of a dust core.
- a general reactor has direct current superposition characteristics, and if a gap body is not provided in the core, a large inductance can be obtained when the current value of the direct current flowing through the coil is low. Will drop rapidly. As a result, magnetic saturation occurs at a low current value, and the voltage cannot be boosted to a desired voltage value. In order to avoid this phenomenon, a gap body having a magnetic permeability smaller than that of the iron core is sandwiched between the iron cores. When there is a gap body, when the current value is low, the inductance is smaller than when there is no gap body, but the DC bias current value at which the inductance starts to decrease tends to be larger than when there is no gap body. is there.
- the inductance changes from level to level until the current value of the current flowing through the coil is low, and then gradually decreases. Therefore, the current value at which magnetic saturation occurs is high, and magnetic saturation does not occur even for the current value necessary for boosting to a desired voltage value.
- Magnetic saturation occurs when the current flowing through the coil increases due to the characteristics of the reactor, the magnetic flux density increases, and the magnetic field becomes a certain strength. Normally, as the current value increases, the magnetic flux density increases from a shorter magnetic path (thickest arrow) to a longer magnetic path (thinnest arrow) as shown in FIG. Gradually fills and saturates.
- the magnetic circuit of the conventional reactor 210 and the magnetic circuit of the reactor 10 of a present Example are compared using FIG.7 and FIG.15.
- the coil end adjacent portion E is a dead space, so that the iron core 230 has a longer circumferential length (full length) and a larger cross-sectional area.
- reactor 10 is mounted for the purpose of boosting the voltage from the battery voltage to the voltage applied to the motor generator in the drive control system of the hybrid vehicle.
- a magnetic metal-containing resin layer 33 is formed on the first outer surface 32 a of the iron core coil exterior 32.
- the iron core is roughly divided into a laminated steel sheet type iron core formed by laminating a plurality of thin steel plates, and a compacted iron core formed by compressing and solidifying magnetic metal powder.
- the magnetic metal containing resin layer 33 which consists of magnetic metal containing resin is formed in the 1st outer surface 32a of the iron core coil exterior 32 of the iron core 30 which is such a powder iron core.
- the magnetic path MR in the magnetic circuit of the conventional reactor 210, instead of the long path Rm, in the reactor 10 of the present embodiment, the long path Rn in which the magnetic path MR becomes longer, as shown in FIG.
- the reactor 10 can be boosted to a desired voltage value before magnetic saturation occurs. Therefore, the current value at which magnetic saturation occurs is high, and even for the current value required for boosting to a desired high voltage value, magnetic saturation does not occur, making it suitable for boosting drive control systems such as hybrid vehicles and electric vehicles.
- the reactor 10 can be obtained.
- the reactor 10 when the reactor 10 is operated, as shown in FIG. 14 and FIG. 15 to be referred to, it is also generated in the coil end adjacent portion corresponding to the coil end adjacent portion E that was a dead space in the conventional reactor 210. Since the magnetic metal-containing resin layer 33 is located in the magnetic field, the magnetic metal-containing resin layer 33 formed on the first outer surface 32a of the iron core coil exterior 32 in addition to the iron core 30 is used as a magnetic circuit. It can be used effectively. Therefore, in addition to the gap body 35, as shown in FIGS. 13 and 4, the magnetic circuit corresponding to the same volume as that of the conventional iron core 230 includes the iron cores 30 and 30 and the magnetic metal contained in this embodiment.
- the iron cores 30, 30 When produced in the resin layer 33, the iron cores 30, 30 can be made smaller than the conventional iron cores 230, 230 by an amount substantially corresponding to the total volume of the magnetic metal-containing resin layer 33. As a result, while maintaining the performance of the conventional reactor 210, the reactor 10 of the present embodiment has an excellent effect that it can be made smaller than the conventional reactor 210.
- the magnetic metal-containing resin layer 33 is formed by the coil ends 21E and 21E of the coils 21 located at both ends of the coil axis direction Y in the iron core coil exterior 32 and the diameter of the coil 21.
- the magnetic metal-containing resin protects the first outer surface 32a of the iron core coil outer 32 and is formed in the adjacent coil end located outside the diameter of the coil 21 with respect to the direction along the direction Y.
- the iron core protective layer 34 protected with the magnetic metal-containing resin and the first outer surface 31a portion of the iron core insertion portion 31 coated with the magnetic metal-containing resin are prevented from being damaged such as cracks and chips. And rust prevention.
- the iron core 30 is a laminated steel sheet core or a dust core.
- the core that effectively uses the magnetic field located adjacent to the coil end as a part of the magnetic circuit can be formed by the iron core 30 and the magnetic metal-containing resin layer 33 at low cost. That is, unlike the reactor 10 of the present embodiment, when the iron core is a laminated steel sheet type iron core, conventionally, a plurality of thin steel plates are laminated, and there is a step between the iron core insertion portion and the outside of the iron core coil. It is technically difficult to form the three-dimensional iron core as shown in FIG.
- the iron core 30 can be manufactured by the same manufacturing method as a conventional laminated steel sheet type iron core, and a magnetic metal
- the containing resin layer 33 can be formed on a steel plate constituting the iron core 30 by a known manufacturing method such as a method of fixing with an adhesive or a method of integrally forming a magnetic metal-containing resin and an iron core by injection molding. .
- the core that effectively uses the magnetic field located at the coil end adjacent portion as a part of the magnetic circuit is the iron core. 30 and the magnetic metal-containing resin layer 33 can be formed at low cost.
- the iron core 30 is a dust core
- a step is formed between the iron core insertion portion and the outside of the core coil by a molding method similar to that of the conventional dust core.
- the iron core having a three-dimensional shape is formed, there is a problem that the desired mechanical strength is not satisfied particularly in the corner portion of the outside of the iron core coil.
- the iron core 30 can be molded by the same molding method as a conventional powder iron core, and for example, a method of fixing with an adhesive, a magnetic metal-containing resin and iron by injection molding
- the iron core coil exterior 32 of the iron core 30 after molding and the magnetic metal-containing resin layer 33 can be integrally adhered by a method of integrally molding the core and the like.
- the coil end adjacent part E which was a dead space in the conventional iron core 230 can also be easily made a part of the magnetic circuit.
- the core that effectively uses the magnetic field located at the coil end adjacent portion as a part of the magnetic circuit is The magnetic metal-containing resin layer can be formed at low cost. Moreover, even if the iron core 30 is formed of a dust core and the magnetic metal-containing resin layer 33 is formed in the coil end adjacent portion, the iron core 30 can be made smaller than the conventional iron core 230. Therefore, the reactor 10 can be manufactured at a low cost.
- the iron core insertion portion 31 and the iron core coil outside 32 are formed at the same height, while the iron core coil outside 32 has a cross-sectional area of iron. Since it is formed smaller than the cross-sectional area of the core insertion portion 31, the total length L of the reactor 10 with respect to the direction along the coil axial direction Y is as shown in FIGS. The total length can be shorter than L0 (L0 ⁇ L).
- L0 L0 ⁇ L
- the reactor 10 of the present embodiment when the reactor 10 of the present embodiment is mounted on a drive control system or the like of a hybrid vehicle, an electric vehicle or the like, for example, to boost the voltage of the system, if the reactor 10 is downsized, the reactor 10 Since the restriction on the space for mounting the reactor becomes smaller, the reactor 10 having the same specification can be mounted on more types of vehicles. As a result, the reactor 10 of the present embodiment can be mass-produced with the same specifications, and the reactor 10 becomes inexpensive.
- the binder resin of the magnetic metal-containing resin is an epoxy resin
- the epoxy resin has an adhesive property that bonds separate members to each other. Even if the metal powder mixed in the magnetic metal-containing resin is contained in a large amount up to, for example, about 90% by weight, the metal powders can be bonded together via the binder resin.
- the metal powder when a large amount of metal powder can be contained in the magnetic metal-containing resin by using an epoxy resin as the binder resin, the metal powder has a high thermal conductivity, so the entire magnetic metal-containing resin has a high thermal conductivity. It becomes a physical property.
- the heat generated by the coils 21 and 21 in the molded coil 20 is easily transferred to the magnetic metal-containing resin having high thermal conductivity through the iron cores 30 and 30, and the magnetic metal-containing resin.
- the heat can be efficiently radiated from the outside to the outside.
- the manufacturing process of the reactor 10 is carried out.
- the epoxy resin mixed in the magnetic metal-containing resin can be used as an adhesive for fixing the iron core 30 and the gap body 35 when the iron cores 30 are connected to each other with the gap body 35 interposed therebetween.
- two U-shaped iron cores are inserted into each coil from both sides of the coil in the axial direction of the coil so as to face each other, and are connected to each other in a track shape.
- a gap body having a magnetic permeability smaller than that of the iron core is interposed between the core insertion portions of the core.
- the core 230 and the gap body 235 are separately used in the bonding process by using an adhesive. Were fixed in a bonding furnace.
- the magnetic core-containing resin coated on the iron core insertion portions 31 and 31 of the iron core 30 is used to insert the gap core 35 and the iron core 30.
- the part 31 can be adhered and fixed.
- the magnetic metal-containing resin is formed on the iron core coil exterior 32, if the iron core insertion portion 31 is covered with the magnetic metal-containing resin and the iron coil outer coil 32 is protected, the magnetic metal-containing resin is protected. Further, damage such as cracks and chips and rusting can be suppressed with respect to the entire iron core 30.
- the protection measures for the iron core 30 can be performed simultaneously with the formation of the magnetic metal-containing resin layer on the first and second outer surfaces 32a and 32b of the iron core coil exterior 32, the protection measures for the iron core 30 are provided. Therefore, the productivity is improved as compared with the conventional protection measures, and as a result, the cost for the protection measures for the iron core 30 can be reduced.
- maintenance part 25 which hold
- an electromagnetic attractive force acting between the iron cores 30 and 30 due to a change in magnetic flux density and a magnetostriction generated in each iron core 30 are generated.
- the iron cores 30, 30 expand and contract and vibrate.
- the fastening member holding portion 25 is provided in the mold coil 20 that is not the vibration source of such vibration, even if the vibration of the iron core 30 propagates to the mold coil 20, vibration is generated.
- the reactor 10 can be fixed to the housing 60 in a state where propagation is reduced by the mold layer 20 ⁇ / b> M of the mold coil 20.
- maintenance part 25 is provided in the thickness direction Y center of the mold coil 20 along the coil axial direction Y, it is the fastening member holding
- the iron cores expand and contract with each other and vibrate.
- the iron core is roughly divided into a laminated steel plate type iron core formed by laminating a plurality of thin steel plates and a compacted iron core formed of dust, and the compacted iron core is a laminated steel plate type iron core. Since it is low in cost, it is often used for iron cores.
- the Young's modulus of the compacted iron core is smaller than that of the laminated steel core, and the resonant frequency of the compacted iron core Becomes lower than the resonance frequency of the laminated steel sheet type iron core.
- the resonance frequency of the laminated steel sheet type iron core is separated from the driving frequency (about 10 KHz) at which the iron core vibrates when the reactor is operated by several KHz or more.
- the iron core does not vibrate greatly due to the adverse effect of the resonance frequency.
- the driving frequency of the iron core approaches the resonance frequency of the dust core, and the iron core vibrates greatly. It was a problem.
- the vibration of the iron core is mainly a vibration (longitudinal vibration) that repeats expansion and contraction in the direction in which the iron cores face each other regardless of whether the iron core is a dust core or a laminated steel sheet type iron core. Contains the largest “belly” and the smallest “node”.
- the reactor vibrates at a position corresponding to the position of the “antinode” where the iron core vibrates at a driving frequency close to the resonance frequency and has the largest amplitude. If the fastening member is fixed to the casing, a large vibration due to the iron core propagates to the casing, and noise due to the vibration of the iron core is generated and becomes a problem.
- the center in the thickness direction Y of the molded coil 20 is a position corresponding to a node of this vibration with respect to the longitudinal vibration caused by the two iron cores 30, 30. , 30 is the portion where the amplitude of vibration due to magnetostriction and electromagnetic attraction force is minimized.
- the iron core 30 is composed of a low-cost powder iron core as in this embodiment, even if the driving frequency of the iron core 30 is close to the resonance frequency of the iron core 30, the molded coil At the center of the thickness direction Y of 20, the vibration of the iron core 30 has the smallest amplitude.
- the vibration of the iron core 30 is caused when the reactor 10 is operated. Even if it propagates to the housing 60 through the mold coil 20 and the bolt 50, the vibration propagation to the housing 60 can be further suppressed. As a result, since it can reduce that the vibration of the iron core 30 produced at the time of the action
- the fastening member holding portion 25 extends through the mold coil 20 in the radial direction X of the coil 21, and is positioned on the outer side of the encapsulated mold coil 20. Since the bolt 50 is inserted into the through holes 25H and 25H of the reactor holding member 25 and fastened to the housing 60, the reactor holding member 25 is moved from the iron core 30 when the reactor 10 is operated. The vibration propagation transmitted to the housing 60 via the bolt 50 can also be suppressed to a small level. Therefore, loosening of the bolts 50 and 50 to be fastened to the housing 60 due to this vibration propagation is suppressed, and the reactor 10 and the housing 60 can be firmly fixed with a stable fastening force for a long period of time.
- the reactor holding member 25 is made of metal and is integrated with the mold coil 20 by insert molding, so the heat generated by the coils 21 and 21 in the mold coil 20 is Heat can be easily transferred to the reactor holding member 25 having a high thermal conductivity through the mold layer 20M of the mold coil 20, and heat can be efficiently radiated from the reactor holding member 25 to the outside.
- Example 2 Hereinafter, Example 2 will be described with reference to FIGS. 1, 2, and 4.
- the binder resin was an epoxy resin.
- the binder resin mixed in the magnetic metal-containing resin was replaced with an epoxy resin, and a thermoplastic resin was used. Therefore, although Example 1 and Example 2 differ in the material of binder resin, the other part is the same as that of Example 1. Accordingly, the same reference numerals as those in the first embodiment are used as the reference numerals in the drawings, and different parts from the first embodiment are mainly described, and the description of the other parts is simplified or omitted.
- the magnetic metal-containing resin layer 33 is positioned on each iron core 30 at both ends in the coil axis direction Y of the iron core coil exterior 32 as shown in FIGS. 1, 2, and 4.
- the coil ends 21E and 21E of each coil 21 are formed in close contact with the first outer surface 32a on the first outer surface 32a located on the outer diameter side of the coil 21 with respect to the direction along the radial direction X of the coil 21. Yes. That is, the magnetic metal-containing resin layer 33 is disposed at a position facing the coil ends 21 ⁇ / b> E and 21 ⁇ / b> E of each coil 21.
- the magnetic metal-containing resin layer 33 is made of a magnetic metal-containing resin in which magnetic metal powder is mixed in a binder resin.
- An iron core protective layer 34 is formed of a magnetic metal-containing resin on the second outer surface 32b of each iron core coil exterior 32.
- the iron core protective layer 34 is connected to the adjacent magnetic metal-containing resin layers 33, 33 by one iron core 30, and is smaller in thickness than the magnetic metal-containing resin layer 33, and is in close contact with the second outer surface 32b. Covered.
- the first outer surface 31a of the iron core insertion portion 31 is also covered with a magnetic metal-containing resin.
- the binder resin of the magnetic metal-containing resin is a thermoplastic resin, and is polyphenylene sulfide (PPS) in this embodiment.
- PPS polyphenylene sulfide
- the molded coil 20 is formed in a substantially hexahedron shape, and the iron core 30 is formed of the iron core insertion portions 31 and 31 inserted into the coils 21.
- a magnetic metal-containing resin layer 33 made of a magnetic metal-containing resin having an iron-coil outer portion 32 that connects both sides to the outside of the coils 21 and 21, and a magnetic metal powder mixed in a binder resin (PPS), Since it is formed on the first outer surface 32a of the iron core coil outer 32, as shown in FIG.
- the iron core insertion portions 31, 31 of the iron core 30 within the diameter of the coil 21 and the outer side of the coil 21 are present.
- the magnetic field located outside the iron core coil 32 of the iron core 30 can be used as a magnetic circuit, and also the magnetic field located adjacent to the coil end can be used as a magnetic circuit by the presence of the magnetic metal-containing resin layer 33. Yes It will be available in. Therefore, in addition to the gap body 35, as shown in FIGS. 13 and 4, the magnetic circuit corresponding to the same volume as that of the conventional iron core 230 includes the iron cores 30 and 30 and the magnetic metal contained in this embodiment.
- the iron cores 30, 30 When produced in the resin layer 33, the iron cores 30, 30 can be made smaller than the conventional iron cores 230, 230 by an amount substantially corresponding to the total volume of the magnetic metal-containing resin layer 33.
- the iron core insertion portions 31, 31 on both sides of each iron core 30 are inserted into the coils 21 from the coil one side in the coil axial direction Y and face each other.
- the reactor 10 connected in a track shape with the gap bodies 35 and 35 sandwiched therebetween has an excellent effect that it can be made smaller than the conventional reactor 210.
- the binder resin of the magnetic metal-containing resin is PPS. Therefore, the process of forming the magnetic metal-containing resin layer 33 on the first outer surface 32a of the iron coil outer portion 31 or the iron core insertion The process etc. which cover the part 31 with magnetic metal containing resin can be implemented by a high cycle. Accordingly, the productivity associated with the formation of the magnetic metal-containing resin layer 33 and the covering of the iron core insertion portion 31 with the magnetic metal-containing resin is increased, and thus the cost of the reactor 10 of this embodiment can be reduced.
- the thermoplastic resin include, in addition to polyphenylene sulfide (PPS), a polyamide resin that is a material such as nylon or polyamide.
- the present invention has been described with reference to the first and second embodiments.
- the present invention is not limited to the first and second embodiments, and may be appropriately changed without departing from the gist thereof.
- the iron core 30 is a dust core, but the iron core may be a laminated steel sheet type iron core formed by laminating a plurality of thin steel plates.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
特許文献1のリアクトル110は、図11に示すように、コイル120と、鉄芯130とを有し、コイル120に流れる電流の状態が変化すると、鉄芯130に生成される磁気回路において、磁束密度の変化に伴ってインダクタンスが変化して、起電力が生じる。
図12乃至図14に示すように、リアクトル210は、電気的に直列に接続した2つのコイル221,221を並列に配置し、2つのU字型形状の鉄芯230,230を、各コイル221内にコイル221両端からコイル軸心方向(図12中、右上-左下方向)にそれぞれ挿入して対向させ、ギャップ体235を挟んでトラック形状に繋ぎ合わされている。
捲回されたコイル221,221径内では、鉄芯230の両側の鉄芯挿入部230A,230Aが、コイル221との隙間を一定に保ちながらコイル221に沿うよう挿入されているが、コイル221のコイル軸心方向両側にあるコイルエンド(図13中、上下両側、図14中、左右両側)では、コイル軸心方向に対し、コイル221と鉄芯230とは対向していない。
(1)鉄芯が大型化する問題
(2)小型化した鉄芯の成形が困難である問題
これらの問題は、次の理由によって生じる。
図15は、従来のリアクトルの磁気回路における磁気経路を模式的に示した図であり、磁気経路と磁気飽和との関係を説明する説明図である。
リアクトルでは、磁場は、捲回されたコイルの径内側にある鉄芯本体、及びコイルと鉄芯との隙間のほか、コイルのコイルエンド付近で、コイル軸心方向に対し、コイルと隣接する部分まで及ぶ範囲にわたって、コイル周辺に生成される。
一方、リアクトルの特性上、コイルに流れる電流が増加すると、磁束密度も増加し、磁場が一定の強さになったところで、磁気飽和が起きる。通常、磁束密度は、電流値の増加に伴って、参照する図15に示すように、磁力線の経路MRがより短い磁気経路(最も太い矢印)からより長くなる磁気経路(最も細い矢印)に向けて徐々に満たされて飽和する。
しかしながら、この鉄芯230では、鉄芯コイル外部230Bが、図13及び図14に示すように、コイル軸心方向に対し、コイル221,221のコイルエンドと隣接する位置まで存在していない。本来、コイル221のコイルエンド付近で、コイル軸心方向に対し、コイル221、221と隣接する部分(以下、単に「コイルエンド隣接部」と称する。)Eの磁場も、磁気回路として利用できる範囲に属するが、図14及び図15に示すように、コイルエンド隣接部Eが、デッドスペースとなっている。
この現象を回避するため、リアクトル210は、図15に示すように、U字型形状の鉄芯230において、その周長(全長)をより長く、断面積をより大きくして、鉄芯230全体の体積を大きくすることで、磁気経路MRがより長くなる長経路Rmを確保して、磁気飽和が起きる前に、所望の電圧値まで昇圧できるようになっていた。
しかしながら、リアクトル210は、2つのU字型形状の鉄芯230,230を、ギャップ体235を挟んでトラック形状に繋ぎ合わせて形成しているため、1つの鉄芯230が大型化すると、リアクトル210全体が大きくなってしまい、スペース等上、問題となっていた。
鉄芯には、大別して、薄い鋼板を複数積層して形成された積層鋼板型鉄芯と、磁性を有する金属粉末を圧縮し一体的に固めて形成された圧粉鉄芯とがある。
前述した(1)の問題を解決するため、本出願人は、デッドスペースとなっていたコイルエンド隣接部Eをも磁気回路に利用して、鉄芯230全体をより小型化することを、積層鋼板型鉄芯の場合と圧粉鉄芯の場合の両方の場合について、検討した。図16は、圧粉鉄芯の場合について検討した参考例に係るリアクトルの鉄芯を示す斜視図である。
鉄芯230,230は、参照する図13及び図14に示すように、U字型形状に形成されており、その両側の鉄芯挿入部230A,230Aが、コイル221,221内に挿入されている。コイル221外側でデッドスペースとなっていたコイルエンド隣接部Eに相当する部分を、図16に示すように、鉄芯コイル332の外部の一部にしようとすると、鉄芯挿入部331の基準面P1,P2と鉄芯コイル外部332の基準面Q1,Q2との間に段差R1,R2が生じた3次元形状の鉄芯330が必要となる。
すなわち、検討した鉄芯330は、図16に示すように、2つのコイル内に、コイル両側からコイル軸心方向にそれぞれ挿入される鉄芯挿入部331,331と、コイル片側で鉄芯挿入部331,331同士を繋ぐと共に、コイルエンド隣接部(図14中、E部参照)にも配置される鉄芯コイル外部332とからなる。この鉄芯330は、その全体を、圧粉により一体に成形したものである。
そこで、角部332Cの機械的強度が所望強度を満たすことができるよう、特殊な成形設備を用いて、鉄芯330を成形することも検討したが、圧粉で成形した鉄芯330は、結果的にコスト高になることも分かった。
(1)電気的に直列に接続した2つのコイルを並列に配置し、2つのコイルに対し、各コイルの径外側を樹脂でモールドして一体化されたモールドコイルと、U字型形状の鉄芯を2つ有し、コアとして、鉄芯の両側にある鉄芯挿入部を、各鉄芯ともそれぞれ、各コイル内にコイル片側からコイル軸心方向に挿入して対向させ、ギャップ体を挟んでトラック形状に繋ぎ合わせたリアクトルにおいて、モールドコイルは、略六面形状に形成されていること、鉄芯は、各コイル内に挿入した鉄芯挿入部の両側を、各コイルの外部で繋ぐ鉄芯コイル外部を有すること、磁性を有する金属粉末をバインダ樹脂に混在させた磁性金属含有樹脂からなる磁性金属含有樹脂層が、鉄芯コイル外部の外面に形成されていることを特徴とする。
(2)(1)に記載するリアクトルにおいて、磁性金属含有樹脂層は、鉄芯コイル外部のうち、コイル軸心方向両端に位置する各コイルのコイルエンドで、コイルの径方向に沿う方向に対し、径外側に位置する部位に、少なくとも形成されていることが好ましい。
(3)(1)または(2)に記載するリアクトルにおいて、鉄芯では、鉄芯挿入部と鉄芯コイル外部とが同じ高さで形成されている一方、鉄芯コイル外部の断面積が鉄芯挿入部の断面積より小さく形成されていることが好ましい。
(4)(1)乃至(3)のいずれか1つに記載するリアクトルにおいて、磁性金属含有樹脂のバインダ樹脂は、エポキシ樹脂であることが好ましい。
(5)(4)に記載するリアクトルにおいて、磁性金属含有樹脂が、鉄芯の鉄芯挿入部に被覆されていることが好ましい。
(7)(1)乃至(6)のいずれか1つに記載するリアクトルにおいて、モールドコイルには、締結部材と共に、当該リアクトルを支持する筐体に当該リアクトルを保持させて固定する締結部材保持部を備えていることが好ましい。
(8)(7)に記載するリアクトルにおいて、締結部材保持部は、コイル軸心方向に沿うモールドコイルの厚み方向中央に設けられていることが好ましい。
(9)(8)に記載するリアクトルにおいて、締結部材保持部は、コイルの径方向にモールドコイルを跨いで延び、覆い包み込んだモールドコイルの外側となる位置に、貫通孔を有するリアクトル保持部材であり、締結部材が、リアクトル保持部材の貫通孔に挿通して筐体と締結されることが好ましい。
(10)(9)に記載するリアクトルにおいて、リアクトル保持部材は、金属製であり、インサート成形によりモールドコイルと一体となっていることが好ましい。
(1)上述態様のリアクトルでは、モールドコイルは、略六面形状に形成されていること、鉄芯は、各コイル内に挿入した鉄芯挿入部の両側を、各コイルの外部で繋ぐ鉄芯コイル外部を有すること、磁性を有する金属粉末をバインダ樹脂に混在させた磁性金属含有樹脂からなる磁性金属含有樹脂層が、鉄芯コイル外部の外面に形成されているので、コイル径内にある鉄芯の鉄芯挿入部、及びコイル外側にある鉄芯の鉄芯コイル外部に位置する磁場が、磁気回路として利用できているほか、コイルのコイルエンド付近で、コイル軸心方向に対し、コイルと隣接する部分(以下、「コイルエンド隣接部」と称す。)に位置する磁場をも、磁性金属含有樹脂層が存在することで、磁気回路として有効に利用できるようになる。
従って、リアクトルの作動時に、コイルエンド隣接部にも生成されている磁場に、磁性金属含有樹脂層が位置していることで、鉄芯のほか、その鉄芯コイル外部の外面に形成された磁性金属含有樹脂層が存在することで、磁気回路として有効に利用できるようになる。
よって、従来の鉄芯と同じ体積に相当する分の磁気回路を、上述態様の鉄芯及び磁性金属含有樹脂層で生成すると、磁性金属含有樹脂層の体積にほぼ相当する分、上述態様の鉄芯は、従来の鉄芯よりも小さくすることができる。
ひいては、従来のリアクトルの性能を維持したまま、各鉄芯の両側にある鉄芯挿入部を、それぞれのコイル内にコイル片側からコイル軸心方向に挿通して対向させ、ギャップ体を挟んでトラック形状に繋ぎ合わせた上述態様のリアクトルは、従来のリアクトルより小型化できる、という優れた効果を奏する。
また、磁性金属含有樹脂による磁性金属含有樹脂層が、鉄芯コイル外部の外面に形成されているため、上述態様の鉄芯が、積層鋼板型鉄芯または圧粉鉄芯の場合に関わらず、コイルエンド隣接部に位置する磁場をも、磁気回路の一部として有効に利用したコアが、鉄芯及び磁性金属含有樹脂層により低コストで形成できる。
これに対し、上述態様のリアクトルでは、上述態様の鉄芯が積層鋼板型鉄芯であっても、鉄芯は、従来の積層鋼板型鉄芯と同様の製造方法で製造できる上、磁性金属含有樹脂層は、鉄芯を構成する鋼板上に、例えば、接着材で固着する方法、射出成形により磁性金属含有樹脂と鉄芯とを一体成形する方法等、周知の製造方法で形成できる。
従って、上述態様のリアクトルでは、鉄芯が積層鋼板型鉄芯である場合でも、コイルエンド隣接部に位置する磁場をも、磁気回路の一部として有効に利用したコアが、鉄芯及び磁性金属含有樹脂層により低コストで形成できる。
これに対し、上述態様のリアクトルでは、鉄芯は、従来の圧粉鉄芯と同じ成形方法で成形できる上、例えば、接着材で固着する方法、射出成形により磁性金属含有樹脂と鉄芯とを一体成形する方法等により、成形後の鉄芯の鉄芯コイル外部と磁性金属含有樹脂層とが、一体的に密着できる。これにより、従来の鉄芯でデッドスペースとなっていたコイルエンド隣接部をも、簡単に磁気回路の一部とすることができる。
従って、上述態様のリアクトルでは、鉄芯が圧粉鉄芯である場合でも、コイルエンド隣接部に位置する磁場をも、磁気回路の一部として有効に利用したコアが、鉄芯及び磁性金属含有樹脂層により低コストで形成できる。
しかも、鉄芯を圧粉鉄芯で構成し、コイルエンド隣接部に磁性金属含有樹脂層が形成されていても、上述態様の鉄芯を、従来の鉄芯よりも小さくすることができていることから、上述態様のリアクトルは、コスト高を抑えて製造することができる。
ひいては、上述態様のリアクトルを、リアクトルの性能上、従来のリアクトルと同じ仕様で製造した場合、上述態様のリアクトルは、従来のリアクトルよりもコンパクトにできるため、スペースがより狭いところでも搭載できるようになる。
特に、上述態様のリアクトルを、例えば、ハイブリッド自動車、電気自動車等の駆動制御システム等に、そのシステムの電圧を昇圧させるために搭載する場合、上述態様のリアクトルが小型化していれば、このリアクトルを搭載するスペースの制約が小さくなるため、同じ仕様の当該リアクトルが、より多くの車種に搭載できるようになる。その結果、上述態様のリアクトルが、同じ仕様で大量生産できるようになり、上述態様のリアクトルは安価になる。
また、バインダ樹脂をエポキシ樹脂にすることにより、磁性金属含有樹脂に多量の金属粉末が含有できるようになると、金属粉末は熱伝導率が高いため、磁性金属含有樹脂全体が、熱伝導率が高い物性となる。そのため、リアクトルの作動時に、モールドコイル内のコイルで発熱した熱は、鉄芯を介して熱伝導率の高い磁性金属含有樹脂に伝熱し易くなり、磁性金属含有樹脂から外部に効率良く放熱することができるようになる。
すなわち、リアクトルでは、2つのU字型形状の鉄芯が、各コイル内にコイル両側からコイル軸心方向にそれぞれ挿入して対向させ、トラック形状に繋ぎ合わされているが、一般的に、向き合う鉄芯の鉄芯挿入部同士の間には、透磁率が鉄芯よりも小さいギャップ体が介在する。
従来のリアクトルでは、その製造工程において、ギャップ体を挟んで各鉄芯同士を繋ぎ合わせてコアを形成するときに、接着工程で、接着剤を別途用いて鉄芯とギャップ体とを接着炉内で固着させていた。
しかしながら、上述態様のリアクトルでは、このような接着炉が不要となり、鉄芯の鉄芯挿入部に被覆した磁性金属含有樹脂により、ギャップ体と鉄芯の鉄芯挿入部とが密着して固着できる。
また、鉄芯コイル外部に磁性金属含有樹脂層を形成するときに、鉄芯挿入部を磁性金属含有樹脂で覆って鉄芯コイル外部の保護対策を行えば、磁性金属含有樹脂で保護された鉄芯全体に対し、割れ、欠け等の損傷や、錆びの発生が抑制できる。
しかも、このような鉄芯の保護対策が、磁性金属含有樹脂層を鉄芯コイル外部の外面に形成するときに同時に実施できるので、鉄芯の保護対策にかかる生産性は従来の保護対策に比して向上し、結果的に鉄芯の保護対策に掛かるコストも低減することができる。
従って、磁性金属含有樹脂層の形成、及び磁性金属含有樹脂による鉄芯挿入部の被覆に伴う生産性が高くなることから、上述態様のリアクトルのコストが低減できる。
なお、熱可塑性樹脂としては、例えば、ポリフェニレンサルファイド(PPS)のほか、ナイロン、ポリアミド等の材料となるポリアミド樹脂等が挙げられる。
リアクトルの作動時では、コイルに流れる電流の状態が変化すると、磁束密度の変化により鉄芯間で作用する電磁吸引力と、各鉄芯で生じる磁歪とが生じて、双方の鉄芯が伸縮変位し振動する。
上述態様のリアクトルでは、このような振動の起振源ではないモールドコイルに、締結部材保持部を設けているので、鉄芯の振動がモールドコイルに伝播しても、振動伝播がモールドコイルのモールド層で低減された状態で、当該リアクトルが筐体に固定できる。
その一方で、積層鋼板型鉄芯と圧粉鉄芯との機械的性質を比較してみると、圧粉鉄芯のヤング率は積層鋼板型鉄芯よりも小さく、圧粉鉄芯の共振周波数は、積層鋼板型鉄芯の共振周波数よりも低くなる。
鉄芯が積層鋼板型鉄芯である場合には、積層鋼板型鉄芯の共振周波数が、リアクトルの作動時に鉄芯が振動する駆動周波数(約10KHz)と、数KHz以上も離れているため、共振周波数の悪影響を受けて鉄芯が、大きく振動してしまうことはない。
ところが、鉄芯が圧粉鉄芯である場合には、リアクトルの作動時には、鉄芯の駆動周波数が、圧粉鉄芯の共振周波数に近づいてしまい、鉄芯が大きく振動する状態となってしまい、問題であった。
特に、鉄芯が圧粉鉄芯である場合には、鉄芯が、その共振周波数に近い駆動周波数で振動し、振幅が最も大きい「腹」の位置に相当するところで、リアクトルが、それを支持する筐体に、締結部材で固定されていると、鉄芯による大きな振動が筐体に伝播してしまい、鉄芯の振動に起因した騒音が発生し問題となる。
また、鉄芯が低コストの圧粉鉄芯で構成されている場合、鉄芯の駆動周波数がたとえ鉄芯の共振周波数の近くにあっても、モールドコイルの厚み方向中央では、鉄芯の振動はその振幅が最も小さくなっている。
そのため、締結部材と共に、モールドコイルの厚み方向中央に設けた締結部材保持部により、当該リアクトルを筐体に保持させて固定すると、リアクトルの作動時に、鉄芯の振動が、モールドコイル、締結部材を介して筐体に伝播したとしても、筐体への振動伝播はより小さく抑えることができる。
ひいては、リアクトルの作動時に生じる鉄芯の振動が筐体に伝播するのを低減できるため、この振動に起因する騒音を、より確かに抑制することができる。
実施例1,2に係るリアクトルは、ハイブリッド自動車の駆動制御システムにおいて、バッテリの電圧値から、モータジェネレータに印加する電圧値まで昇圧させる目的で搭載されている。
そこで、はじめに駆動制御システムの構成について説明した後、実施例に係るリアクトルについて説明する。
図9は、実施例1,2に係るリアクトルを含む駆動制御システムの構造の一例を概略的に示すブロック図である。図10は、図9中、PCUの主要部を示す回路図である。
駆動制御システム1は、図9に示すように、PCU2(Power Control Unit)と、モータジェネレータ6と、バッテリ7と、端子台8と、ハウジング71と、減速機構72と、ディファレンシャル機構73と、ドライブシャフト受け部74等とから構成されている。
PCU2は、図10に示すように、コンバータ3と、インバータ4と、制御装置5と、コンデンサC1,C2と、出力ライン6U,6V,6Wとを含む。
コンバータ3は、バッテリ7とインバータ4との間に接続され、インバータ4と電気的に並列に接続されている。インバータ4は、出力ライン6U,6V,6Wを介してモータジェネレータ6と接続されている。
コンバータ3は、パワートランジスタQ1,Q2と、ダイオードD1,D2と、後に詳述するリアクトル10とからなる。パワートランジスタQ1,Q2は、電源ラインPL2,PL3間に直列に接続され、制御装置5の制御信号をベースに供給する。ダイオードD1,D2は、それぞれパワートランジスタQ1,Q2のエミッタ側からコレクタ側へ電流が流れるよう、パワートランジスタQ1,Q2のコレクタ-エミッタ間に接続されている。
リアクトル10は、その一端を、バッテリ7の正極と接続する電源ラインPL1に接続し、パワートランジスタQ1,Q2の接続点に他端を接続して配置されている。
コンバータ3は、リアクトル10によりバッテリ7の直流電圧を昇圧し、昇圧後の電圧で直流電圧を電源ラインPL2に供給する。また、コンバータ3は、インバータ4から受ける直流電圧を降圧してバッテリ7に充電する。
コンデンサC1は、電源ラインPL1,PL3間に接続され、電源ラインPL1における電圧レベルを平滑化する。また、コンデンサC2は、電源ラインPL2,PL3間に接続され、電源ラインPL2における電圧レベルを平滑化する。
さらに、制御装置5は、モータジェネレータ6で発電された交流電流を直流電流に変換してバッテリ7に充電させるため、コンバータ3及びインバータ4においてパワートランジスタQ1乃至Q8のスイッチング動作を制御する。
その一方で、インバータ4は、モータジェネレータ6の回生で発電された交流電圧を、直流電圧に変換して電源ラインPL2に出力する。コンデンサC2は、電源ラインPL2にかかる電圧を平滑化し、コンバータ3は、コンデンサC2により平滑化された直流電圧を降圧してバッテリ7に充電する。
次に、本実施例に係るリアクトルについて、図1乃至図6を用いて説明する。
図1は、本実施例に係るリアクトルを示す斜視図であり、筐体への取付けを説明する説明図である。図2は、図1中、A-A矢視断面図である。図3は、本実施例に係るリアクトルの要部を示す斜視図であり、モールド層を除いた状態を示す図である。図4は、図3に示すリアクトルの要部を、Z方向から見た平面図であり、磁性金属含有樹脂の部分を除いた状態を示す図である。図5は、本実施例に係るリアクトルを示す分解斜視図であり、磁性金属含有樹脂層及び鉄芯保護層を除いた状態で示した説明図である。図6は、本実施例に係るリアクトルのモールドコイルを示す図であり、図5中、B-B矢視断面図である。
なお、本実施例では、以下、図1に図示するX方向及びZ方向を、コイルの径方向とし、Y方向を、コイル軸心方向及びモールドコイルの厚み方向とする。図2以降の図面に示すX方向、Y方向及びZ方向は、図1に図示するX方向、Y方向及びZ方向に準じる。
筐体60は、例えば、アルミ鋳造等の金属からなり、リアクトル10の配置スペースに合わせて形成された所定形状の筐体本体部と、この筐体本体部と離れる側(図1中、Z方向上側)に突出した筐体締結部61,61を2つ有している。各筐体締結部61,61には、ボルト50と螺合する雌ネジが形成されている。
はじめに、リアクトル本体部11について説明する。
モールドコイル20は、図2乃至図6に示すように、電気的に直列に接続する2つのコイル21,21を並列に配置し、この2つのコイル21,21に対し、各コイル21の径外側全体を、エポキシ樹脂等でモールドされたモールド層20Mで一体成形されており、略六面形状に形成されている。
モールドコイル20は、各コイル21,21の径内側にある貫通部に、後述する鉄芯30の鉄芯挿入部31がそれぞれ挿入されるようになっており、モールド層20Mには、コイル21,21内に挿入された鉄芯挿入部31を固定させる凸部22が、各コイル21,21の径内に向けて突出した形状で形成されている。
モールドコイル20の貫通部には、例えば、厚みがt=2mm程度のセラミック板等、非磁性体の材料からなる板状のギャップ体35が、モールドコイル20の厚み方向Yの中央位置に、それぞれ配設されている。
リアクトル保持部材25は、図1及び図6に示すように、リアクトル10の筐体60への固定時にある程度のバネ力を持ってリアクトル10を固定できるよう、バネ性を備えた金属板をコの字状に屈曲させ、屈曲したその両端部を、さらに90°折り曲げて変形させた形状で形成されている。リアクトル保持部材25は、コイル21の軸心方向Yに沿うモールドコイル20の厚み方向Y中央に設けられ、コイル21の径方向Xにモールドコイル20を跨いで延び、覆い包み込んだモールドコイル20の外側となる位置に、貫通孔25H,25Hを各側1つ有している。リアクトル保持部材25は、その一方側表面に、例えば、アンダーカット、エンボス等の加工が施されており、インサート成形によりモールドコイル20と一体となっている。
リアクトル10は、2本のボルト50を、リアクトル保持部材25の貫通孔25H,25Hに挿通し、筐体60の各筐体締結部61,61の雌ネジと締結させて、筐体60に固定される。
鉄芯30は、本実施例では、磁性を有する金属粉末を圧縮し一体的に固めて形成された圧粉鉄芯である。鉄芯30は、2つ有し、図3及び図5に示すように、それぞれU字型形状に形成されている。各鉄芯30は、両側先端側にある鉄芯挿入部31,31と、モールドコイル20の各コイル21,21内に挿入した両側の鉄芯挿入部31,31を各コイル21の外部で繋ぐ鉄芯コイル外部32と、を有している。
各鉄芯30では、鉄芯挿入部31,31及び鉄芯コイル外部32の断面が略長方形状であり、鉄芯挿入部31,31と鉄芯コイル外部32とが同じ高さで形成されている一方、鉄芯コイル外部32の断面積が各鉄芯挿入部31の断面積より小さく形成されている。
具体的には、図4に示すように、鉄芯コイル外部32におけるX方向に沿う第2外面32bとY方向に沿う第1外面32aとが直角に形成されており、鉄芯コイル外部32のY方向に対する厚みt2が、鉄芯挿入部31のX方向に対する厚みt1よりも小さくなっている。
すなわち、この鉄芯挿入部31の厚みt1は、参照する図13に示す従来の鉄芯挿入部230Aの厚みs1と同じであるものの、鉄芯コイル外部32の厚みt2は、従来の鉄芯コイル外部230Bの厚みs2よりも小さくなっている。
バインダ樹脂は、本実施例では、エポキシ樹脂である。また、金属粉末は、例えば、Feを主とするフェライト系の金属のほか、Zn、Mn等の金属、Fe-C系、Fe-Si系のFe基合金等からなる粉末であり、粉末の粒径が数μm~数十μmの大きさとなっている。磁性金属含有樹脂は、このような金属粉末を、エポキシ樹脂との重量比で、例えば、90%程度の割合で多量に含ませて構成されている。
また、鉄芯保護層34と同様、鉄芯コイル外部32の第2外面32bと同一面上にある鉄芯挿入部31の第1外面31a、及び四方の第1外面31aと繋がり、ギャップ体35との当接面となる第2外面31bにも、磁性金属含有樹脂が被覆されている。
ところで、鉄芯コイル外部32において、第1外面32aと第2外面32bとが直角になっていると、そのままの状態では、本来、両面の角部での機械的強度が十分でない虞がある。しかしながら、本実施例のリアクトル10では、第1外面32aに磁性金属含有樹脂層33が、第2外面32bに鉄芯保護層34が、それぞれ密着して形成されているため、第1外面32aと第2外面32bとの角部が機械的に脆くなっておらず、このような角部での欠け等の損傷は生じない。
2つの鉄芯30,30とギャップ体35,35とは、本実施例では、鉄芯30の鉄芯挿入部31の第1外面31aに被覆された磁性金属含有樹脂に含むバインダ樹脂、すなわちエポキシ樹脂により接着され、密着した状態で固着されている。
まず、リアクトル10の組付けでは、モールドコイル20の貫通部に、それぞれギャップ体35,35を挿入し、モールドコイル20の厚み方向Yの中央位置にそれぞれ配置する。次いで、鉄芯30の鉄芯挿入部31,31側を、各鉄芯30とも、モールドコイル20の各コイル21,21内に、コイル21,21片端からコイル21の軸心方向Yにそれぞれ挿入して対向させ、ギャップ体35を鉄芯30,30間に挟んで、鉄芯30,30をトラック形状に繋ぎ合わせる。
同様に、他方側の鉄芯30の鉄芯挿入部31,31を、モールドコイル20の他方側にある2つの貫通部から各コイル21,21の径内側に挿入する。挿入した鉄芯挿入部31,31の第2外面31b,31bをギャップ体35の他方側板面に当接して密着させ、この第2外面31b,31bを被覆した磁性金属含有樹脂に含むバインダ樹脂で、鉄芯30とギャップ体35とを固着する。
かくして、参照する図3に示すように、ギャップ体35が介在したトラック形状の鉄芯30,30が、モールドコイル20にある2つのコイル21,21を挿通し、樹脂モールドの図示が省略された状態のリアクトル本体部11、すなわちリアクトル10が得られる。
その後、図3に示す状態のリアクトル本体部11を樹脂成形型内にセットし、磁性金属含有樹脂を注入して、コイル21,21及び鉄芯コイル外部32,32に対し、完全にオーバーモールドすることにより、参照する図1に示すように、磁性金属含有樹脂層33と鉄芯保護層34とが形成される。
かくして、リアクトル10が、2本のボルト50,50で筐体60に固定される。
図7は、本実施例に係るリアクトルの磁気回路において、磁気経路と磁気飽和との関係を説明するイメージ図である。図8は、鉄芯等を構成する材質とB-H特性との関係を示すグラフである。
本実施例のリアクトル10では、モールドコイル20は、略六面形状に形成されていること、鉄芯30は、各コイル21内に挿入した鉄芯挿入部31,31の両側を、各コイル21,21の外部で繋ぐ鉄芯コイル外部32を有すること、磁性を有する金属粉末をバインダ樹脂(エポキシ樹脂)に混在させた磁性金属含有樹脂からなる磁性金属含有樹脂層33が、鉄芯コイル外部32の第1外面32aに形成されているので、コイル21径内にある鉄芯30の鉄芯挿入部31,31、及びコイル21外側にある鉄芯30の鉄芯コイル外部32に位置する磁場が、磁気回路として利用できているほか、コイル21のコイルエンド21E付近で、コイル軸心方向Yに対し、コイル21と隣接する部分(以下、「コイルエンド隣接部」と称す。)に位置する磁場をも、磁性金属含有樹脂層33が存在することで、参照する図7に示すように、磁気回路として有効に利用できるようになる。
一般的なリアクトルには、直流重畳特性があり、コアにギャップ体を設けていないと、コイルに流れる直流電流の電流値が低いときに、インダクタンスが大きく得られるが、電流値が大きくなると、インダクタンスは急激に低下してしまう。その結果、低い電流値で磁気飽和が起きてしまい、所望の電圧値にまで昇圧することができない。
この現象を避けるため、透磁率が鉄芯よりも小さいギャップ体が、鉄芯同士の間に挟まれている。ギャップ体があると、電流値が低いときには、インダクタンスは、ギャップ体がない場合に比べて小さくなるが、インダクタンスが低下し始める直流バイアス電流値が、ギャップ体がない場合に比べて大きくなる傾向にある。すなわち、インダクタンスは、ギャップ体がない場合と異なり、コイルに流れる電流の電流値が低いときから高くなるまで、ほぼ横ばいに推移した後、徐々に減少する。そのため、磁気飽和が起きる電流値も高く、所望の電圧値まで昇圧に必要な電流値に対しても、磁気飽和は起きない。
ここで、従来のリアクトル210の磁気回路と本実施例のリアクトル10の磁気回路とを、図7及び図15を用いて対比する。
従来のリアクトル210の鉄芯230では、コイルエンド隣接部Eがデッドスペースになっている分、鉄芯230において、その周長(全長)をより長く、断面積をより大きくして、鉄芯230全体の体積を大きくすることで、磁気経路MRがより長くなる長経路Rmが確保されていた。
これに対し、本実施例のリアクトル10では、その磁気回路が、特性上、従来のリアクトル210の磁気回路と同じであっても、図15に示す磁気経路MRがより長くなる長経路Rmに代えて、磁力線の経路MRがより長くなる長経路(最も細い矢印)(長経路Rn)が、磁性金属含有樹脂層33を通じて確保されている。
鉄芯には、大別して、薄い鋼板を複数積層して形成された積層鋼板型鉄芯と、磁性を有する金属粉末を圧縮し一体的に固めて形成された圧粉鉄芯とがあり、本実施例のリアクトル10では、このような圧粉鉄芯である鉄芯30の鉄芯コイル外部32の第1外面32aに、磁性金属含有樹脂からなる磁性金属含有樹脂層33が形成されている。
従来のリアクトル210の磁気回路における磁気経路MRのうち、長経路Rmに代えて、本実施例のリアクトル10では、磁気経路MRがより長くなる長経路Rnが、図7に示すように、磁性金属含有樹脂層33に確保されている。この磁性金属含有樹脂層33の存在によっても、磁気飽和が起きる前に、リアクトル10は、所望の電圧値まで昇圧できるようになっている。
従って、磁気飽和が起きる電流値も高く、所望とする高電圧値まで昇圧に必要な電流値に対しても、磁気飽和が起きず、ハイブリッド自動車や電機自動車等の駆動制御システムの昇圧に適したリアクトル10を得ることができる。
よって、ギャップ体35のほか、参照する図13及び図4に示すように、従来の鉄芯230と同じ体積に相当する分の磁気回路を、本実施例の鉄芯30,30及び磁性金属含有樹脂層33で生成すると、磁性金属含有樹脂層33の総体積にほぼ相当する分、鉄芯30,30は、従来の鉄芯230,230よりも小さくすることができる。
ひいては、従来のリアクトル210の性能を維持したまま、本実施例のリアクトル10は、従来のリアクトル210より小型化できる、という優れた効果を奏する。
すなわち、本実施例のリアクトル10とは異なり、鉄芯が積層鋼板型鉄芯である場合、従来、薄い鋼板を複数積層して、鉄芯挿入部と鉄芯コイル外部との間で段差を有した3次元形状の鉄芯を、参照する図16に示すように形成することは、技術的に相当困難を伴うと共に、コスト高を招き、コイルエンド隣接部を磁気回路の一部に利用した鉄芯の実現は、かなり困難であった。
これに対し、本実施例のリアクトル10では、鉄芯30が積層鋼板型鉄芯であっても、鉄芯30は、従来の積層鋼板型鉄芯と同様の製造方法で製造できる上、磁性金属含有樹脂層33は、鉄芯30を構成する鋼板上に、例えば、接着材で固着する方法、射出成形により磁性金属含有樹脂と鉄芯とを一体成形する方法等、周知の製造方法で形成できる。
従って、本実施例のリアクトル10では、鉄芯30が積層鋼板型鉄芯である場合でも、コイルエンド隣接部に位置する磁場をも、磁気回路の一部として有効に利用したコアが、鉄芯30及び磁性金属含有樹脂層33により低コストで形成できる。
これに対し、本実施例のリアクトル10では、鉄芯30は、従来の圧粉鉄芯と同じ成形方法で成形できる上、例えば、接着材で固着する方法、射出成形により磁性金属含有樹脂と鉄芯とを一体成形する方法等により、成形後の鉄芯30の鉄芯コイル外部32と磁性金属含有樹脂層33とが、一体的に密着できる。これにより、従来の鉄芯230でデッドスペースとなっていたコイルエンド隣接部Eをも、簡単に磁気回路の一部とすることができる。
従って、本実施例のリアクトル10では、鉄芯30が圧粉鉄芯である場合でも、コイルエンド隣接部に位置する磁場をも、磁気回路の一部として有効に利用したコアが、鉄芯及び磁性金属含有樹脂層により低コストで形成できる。
しかも、鉄芯30を圧粉鉄芯で構成し、コイルエンド隣接部に磁性金属含有樹脂層33が形成されていても、鉄芯30を、従来の鉄芯230よりも小さくすることができていることから、リアクトル10は、コスト高を抑えて製造することができる。
ひいては、本実施例のリアクトル10を、リアクトルの性能上、従来のリアクトル210と同じ仕様で製造した場合、リアクトル10は、従来のリアクトル210よりもコンパクトにできるため、スペースがより狭いところでも搭載できるようになる。
特に、本実施例のリアクトル10を、例えば、ハイブリッド自動車、電気自動車等の駆動制御システム等に、そのシステムの電圧を昇圧させるために搭載する場合、リアクトル10が小型化していれば、このリアクトル10を搭載するスペースの制約が小さくなるため、同じ仕様の当該リアクトル10が、より多くの車種に搭載できるようになる。その結果、本実施例のリアクトル10が同じ仕様で大量生産できるようになり、リアクトル10は安価になる。
また、バインダ樹脂をエポキシ樹脂にすることにより、磁性金属含有樹脂に多量の金属粉末が含有できるようになると、金属粉末は熱伝導率が高いため、磁性金属含有樹脂全体が、熱伝導率が高い物性となる。そのため、リアクトル10の作動時に、モールドコイル20内のコイル21,21で発熱した熱は、鉄芯30,30を介して熱伝導率の高い磁性金属含有樹脂に伝熱し易くなり、磁性金属含有樹脂から外部に効率良く放熱することができるようになる。
従来のリアクトル210では、その製造工程において、ギャップ体235を挟んで各鉄芯230同士を繋ぎ合わせてコアを形成するときに、接着工程で、接着剤を別途用いて鉄芯230とギャップ体235とを接着炉内で固着させていた。
しかしながら、本実施例のリアクトル10では、このような接着炉が不要となり、鉄芯30の鉄芯挿入部31,31に被覆した磁性金属含有樹脂により、ギャップ体35と鉄芯30の鉄芯挿入部31とが密着して固着できる。
また、鉄芯コイル外部32に磁性金属含有樹脂を形成するときに、鉄芯挿入部31を磁性金属含有樹脂で覆って鉄芯コイル外部32の保護対策を行えば、磁性金属含有樹脂で保護された鉄芯30全体に対し、割れ、欠け等の損傷や、錆びの発生が抑制できる。
しかも、このような鉄芯30の保護対策が、磁性金属含有樹脂層を鉄芯コイル外部32の第1,第2外面32a,32bに形成するときに同時に実施できるので、鉄芯30の保護対策にかかる生産性は従来の保護対策に比して向上し、結果的に鉄芯30の保護対策に掛かるコストも低減することができる。
リアクトル10の作動時では、コイル21に流れる電流の状態が変化すると、磁束密度の変化により鉄芯30,30間で作用する電磁吸引力と、各鉄芯30で生じる磁歪とが生じて、双方の鉄芯30,30が伸縮変位し振動する。
本実施例のリアクトル10では、このような振動の起振源ではないモールドコイル20に、締結部材保持部25を設けているので、鉄芯30の振動がモールドコイル20に伝播しても、振動伝播がモールドコイル20のモールド層20Mで低減された状態で、当該リアクトル10が筐体60に固定できる。
その一方で、積層鋼板型鉄芯と圧粉鉄芯との機械的性質を比較してみると、圧粉鉄芯のヤング率は積層鋼板型鉄芯よりも小さく、圧粉鉄芯の共振周波数は、積層鋼板型鉄芯の共振周波数よりも低くなる。
鉄芯が積層鋼板型鉄芯である場合には、積層鋼板型鉄芯の共振周波数が、リアクトルの作動時に鉄芯が振動する駆動周波数(約10KHz)と、数KHz以上も離れているため、共振周波数の悪影響を受けて鉄芯が、大きく振動してしまうことはない。
ところが、鉄芯が圧粉鉄芯である場合には、リアクトルの作動時には、鉄芯の駆動周波数が、圧粉鉄芯の共振周波数に近づいてしまい、鉄芯が大きく振動する状態となってしまい、問題であった。
特に、鉄芯が圧粉鉄芯である場合には、鉄芯が、その共振周波数に近い駆動周波数で振動し、振幅が最も大きい「腹」の位置に相当するところで、リアクトルが、それを支持する筐体に、締結部材で固定されていると、鉄芯による大きな振動が筐体に伝播してしまい、鉄芯の振動に起因した騒音が発生し問題となる。
また、本実施例のように、鉄芯30が低コストの圧粉鉄芯で構成されている場合、鉄芯30の駆動周波数がたとえ鉄芯30の共振周波数の近くにあっても、モールドコイル20の厚み方向Y中央では、鉄芯30の振動はその振幅が最も小さくなっている。
そのため、ボルト50と共に、モールドコイル20の厚み方向中央Yに設けた締結部材保持部25により、当該リアクトル10を筐体60に保持させて固定すると、リアクトル10の作動時に、鉄芯30の振動が、モールドコイル20、ボルト50を介して筐体60に伝播したとしても、筐体60への振動伝播はより小さく抑えることができる。
ひいては、リアクトル10の作動時に生じる鉄芯30の振動が筐体60に伝播するのを低減できるため、この振動に起因する騒音を、より確かに抑制することができる。
以下、実施例2について、参照する図1、図2及び図4を用いて説明する。
実施例1のリアクトル10では、磁性金属含有樹脂層33及び鉄芯保護層34を形成すると共に、鉄芯挿入部31の第1,第2外面31a,31bを被覆した磁性金属含有樹脂に混在するバインダ樹脂を、エポキシ樹脂とした。
これに対し、本実施例のリアクトル10では、磁性金属含有樹脂に混在するバインダ樹脂を、エポキシ樹脂に代えて、熱可塑性樹脂とした。
よって、実施例1と実施例2とは、バインダ樹脂の材質が異なるが、それ以外の部分は、実施例1と同様である。
従って、図面の符号は実施例1と同じ符号を使用し、実施例1とは異なる部分を中心に説明し、その他について説明を簡略または省略する。
磁性金属含有樹脂のバインダ樹脂は、何れも熱可塑性樹脂であり、本実施例では、ポリフェニレンサルファイド(PPS)としている。
但し、本実施例のリアクトル10では、鉄芯30の鉄芯挿入部31の第2外面31bと、ギャップ体35の板面とは、エポキシ樹脂等の接着材で固着されている。
実施例1と同様、本実施例のリアクトル10でも、モールドコイル20は、略六面形状に形成されていること、鉄芯30は、各コイル21内に挿入した鉄芯挿入部31,31の両側を、各コイル21,21の外部で繋ぐ鉄芯コイル外部32を有すること、磁性を有する金属粉末をバインダ樹脂(PPS)に混在させた磁性金属含有樹脂からなる磁性金属含有樹脂層33が、鉄芯コイル外部32の第1外面32aに形成されているので、参照する図7に示すように、コイル21径内にある鉄芯30の鉄芯挿入部31,31、及びコイル21外側にある鉄芯30の鉄芯コイル外部32に位置する磁場が、磁気回路として利用できているほか、コイルエンド隣接部に位置する磁場をも、磁性金属含有樹脂層33が存在することで、磁気回路として有効に利用できるようになる。
よって、ギャップ体35のほか、参照する図13及び図4に示すように、従来の鉄芯230と同じ体積に相当する分の磁気回路を、本実施例の鉄芯30,30及び磁性金属含有樹脂層33で生成すると、磁性金属含有樹脂層33の総体積にほぼ相当する分、鉄芯30,30は、従来の鉄芯230,230よりも小さくすることができる。
ひいては、従来のリアクトル210の性能を維持したまま、各鉄芯30の両側にある鉄芯挿入部31,31を、それぞれのコイル21内にコイル片側からコイル軸心方向Yに挿通して対向させ、ギャップ体35,35を挟んでトラック形状に繋ぎ合わせたリアクトル10は、従来のリアクトル210より小型化できる、という優れた効果を奏する。
従って、磁性金属含有樹脂層33の形成、及び磁性金属含有樹脂による鉄芯挿入部31の被覆に伴う生産性が高くなることから、本実施例のリアクトル10のコストが低減できる。
なお、熱可塑性樹脂としては、例えば、ポリフェニレンサルファイド(PPS)のほか、ナイロン、ポリアミド等の材料となるポリアミド樹脂等が挙げられる。
例えば、実施例1,2では、鉄芯30を圧粉鉄芯としたが、鉄芯は、薄い鋼板を複数積層して形成された積層鋼板型鉄芯であっても良い。
20 モールドコイル
21 コイル
21E コイルエンド
25 リアクトル保持部材
25H 貫通孔
30 鉄芯
31 鉄芯挿入部
32 鉄芯コイル外部
32a 第1外面(外面)
33 磁性金属含有樹脂層
50 ボルト(締結部材)
60 筐体
X,Z コイルの径方向
Y コイル軸心方向、モールドコイルの厚み方向
Claims (10)
- 電気的に直列に接続した2つのコイルを並列に配置し、前記2つのコイルに対し、前記各コイルの径外側を樹脂でモールドして一体化されたモールドコイルと、U字型形状の鉄芯を2つ有し、コアとして、前記鉄芯の両側にある鉄芯挿入部を、前記各鉄芯ともそれぞれ、前記各コイル内に前記コイル片側からコイル軸心方向に挿入して対向させ、ギャップ体を挟んでトラック形状に繋ぎ合わせたリアクトルにおいて、
前記モールドコイルは、略六面形状に形成されていること、
前記鉄芯は、前記各コイル内に挿入した前記鉄芯挿入部の両側を、前記各コイルの外部で繋ぐ鉄芯コイル外部を有すること、
磁性を有する金属粉末をバインダ樹脂に混在させた磁性金属含有樹脂からなる磁性金属含有樹脂層が、前記鉄芯コイル外部の外面に形成されていることを特徴とするリアクトル。 - 請求項1に記載するリアクトルにおいて、
前記磁性金属含有樹脂層は、前記鉄芯コイル外部のうち、前記コイル軸心方向両端に位置する前記各コイルのコイルエンドで、前記コイルの径方向に沿う方向に対し、径外側に位置する部位に、少なくとも形成されていることを特徴とするリアクトル。 - 請求項1または請求項2に記載するリアクトルにおいて、
前記鉄芯では、前記鉄芯挿入部と前記鉄芯コイル外部とが同じ高さで形成されている一方、前記鉄芯コイル外部の断面積が前記鉄芯挿入部の断面積より小さく形成されていることを特徴とするリアクトル。 - 請求項1乃至請求項3のいずれか1つに記載するリアクトルにおいて、
前記磁性金属含有樹脂の前記バインダ樹脂は、エポキシ樹脂であることを特徴とするリアクトル。 - 請求項4に記載するリアクトルにおいて、
前記磁性金属含有樹脂が、前記鉄芯の前記鉄芯挿入部に被覆されていることを特徴とするリアクトル。 - 請求項1乃至請求項3のいずれか1つに記載するリアクトルにおいて、
前記磁性金属含有樹脂の前記バインダ樹脂は、熱可塑性樹脂であることを特徴とするリアクトル。 - 請求項1乃至請求項6のいずれか1つに記載するリアクトルにおいて、
前記モールドコイルには、締結部材と共に、当該リアクトルを支持する筐体に当該リアクトルを保持させて固定する締結部材保持部を備えていることを特徴とするリアクトル。 - 請求項7に記載するリアクトルにおいて、
前記締結部材保持部は、前記コイル軸心方向に沿う前記モールドコイルの厚み方向中央に設けられていることを特徴とするリアクトル。 - 請求項8に記載するリアクトルにおいて、
前記締結部材保持部は、前記コイルの径方向に前記モールドコイルを跨いで延び、覆い包み込んだ前記モールドコイルの外側となる位置に、貫通孔を有するリアクトル保持部材であり、
前記締結部材が、前記リアクトル保持部材の前記貫通孔に挿通して前記筐体と締結されることを特徴とするリアクトル。 - 請求項9に記載するリアクトルにおいて、
前記リアクトル保持部材は、金属製であり、インサート成形により前記モールドコイルと一体となっていることを特徴とするリアクトル。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127030716A KR101478893B1 (ko) | 2010-05-25 | 2010-05-25 | 리액터 |
EP10852129.5A EP2579281A4 (en) | 2010-05-25 | 2010-05-25 | REACTANCE |
US13/634,094 US8922319B2 (en) | 2010-05-25 | 2010-05-25 | Reactor |
PCT/JP2010/058791 WO2011148458A1 (ja) | 2010-05-25 | 2010-05-25 | リアクトル |
CN201080067012.6A CN102918610B (zh) | 2010-05-25 | 2010-05-25 | 电抗器 |
JP2011546500A JP5267680B2 (ja) | 2010-05-25 | 2010-05-25 | リアクトル |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/058791 WO2011148458A1 (ja) | 2010-05-25 | 2010-05-25 | リアクトル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011148458A1 true WO2011148458A1 (ja) | 2011-12-01 |
Family
ID=45003467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058791 WO2011148458A1 (ja) | 2010-05-25 | 2010-05-25 | リアクトル |
Country Status (6)
Country | Link |
---|---|
US (1) | US8922319B2 (ja) |
EP (1) | EP2579281A4 (ja) |
JP (1) | JP5267680B2 (ja) |
KR (1) | KR101478893B1 (ja) |
CN (1) | CN102918610B (ja) |
WO (1) | WO2011148458A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011258608A (ja) * | 2010-06-04 | 2011-12-22 | Nec Tokin Corp | 線輪部品 |
JP2012094560A (ja) * | 2010-10-22 | 2012-05-17 | Toyota Industries Corp | 誘導機器 |
WO2013137019A1 (ja) * | 2012-03-13 | 2013-09-19 | 住友電気工業株式会社 | リアクトル、コンバータ、および電力変換装置 |
JP2014146707A (ja) * | 2013-01-29 | 2014-08-14 | Nec Tokin Corp | 線輪部品 |
JP2016066650A (ja) * | 2014-09-24 | 2016-04-28 | 長野日本無線株式会社 | コイル装置 |
JP2019102558A (ja) * | 2017-11-30 | 2019-06-24 | トヨタ自動車株式会社 | リアクトル |
JP2021034448A (ja) * | 2019-08-20 | 2021-03-01 | 株式会社デンソー | リアクトルとその製造方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6085904B2 (ja) * | 2012-05-31 | 2017-03-01 | ブラザー工業株式会社 | ノイズ低減装置、電源装置、及びノイズ低減装置におけるコアの配置方法 |
JP5782017B2 (ja) * | 2012-12-21 | 2015-09-24 | トヨタ自動車株式会社 | リアクトル及びその製造方法 |
CN104682722B (zh) * | 2013-11-26 | 2018-01-26 | 台达电子企业管理(上海)有限公司 | 电源转换装置及其组装方法 |
KR101426342B1 (ko) * | 2014-05-22 | 2014-08-06 | 주식회사 케이피 일렉트릭 | 몰드식 분로 리액터 |
US9548154B2 (en) | 2014-11-14 | 2017-01-17 | Mte Corporation | Integrated reactors with high frequency optimized hybrid core constructions and methods of manufacture and use thereof |
JP6460329B2 (ja) * | 2015-02-27 | 2019-01-30 | 株式会社オートネットワーク技術研究所 | リアクトル |
JP6528614B2 (ja) * | 2015-09-02 | 2019-06-12 | 富士電機株式会社 | 巻線部品の取付け構造及びこの取付け構造を備えた電力変換装置 |
JP6478065B2 (ja) * | 2016-05-25 | 2019-03-06 | 株式会社オートネットワーク技術研究所 | リアクトル、およびリアクトルの製造方法 |
JP6573079B2 (ja) * | 2016-07-26 | 2019-09-11 | 株式会社オートネットワーク技術研究所 | リアクトル |
JP6610964B2 (ja) * | 2017-03-06 | 2019-11-27 | 株式会社オートネットワーク技術研究所 | コイル成形体、およびリアクトル |
JP6383034B1 (ja) * | 2017-03-13 | 2018-08-29 | ファナック株式会社 | リアクトル |
CN107769059B (zh) * | 2017-11-30 | 2024-03-15 | 安徽广祺智能电器股份有限公司 | 一种实现电缆故障智能快切的环网柜及其制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004327569A (ja) * | 2003-04-23 | 2004-11-18 | Toyota Motor Corp | リアクトル装置 |
JP2007180225A (ja) | 2005-12-27 | 2007-07-12 | Toyota Motor Corp | リアクトルの固定構造および電気機器ユニット |
JP2008042051A (ja) * | 2006-08-09 | 2008-02-21 | Risho Kogyo Co Ltd | リアクトル |
JP2009026995A (ja) * | 2007-07-20 | 2009-02-05 | Toyota Motor Corp | リアクトルコアおよびリアクトル |
JP2009218294A (ja) * | 2008-03-07 | 2009-09-24 | Sumitomo Electric Ind Ltd | リアクトル |
JP2009246221A (ja) * | 2008-03-31 | 2009-10-22 | Sumitomo Electric Ind Ltd | リアクトル |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3031802A1 (de) * | 1979-08-23 | 1981-03-26 | Sanyo Electric Co., Ltd., Moriguchi, Osaka | Ferritkern-transformator |
NL8602302A (nl) * | 1986-09-12 | 1988-04-05 | Philips Nv | Inductieve inrichting met een kern van amorf materiaal. |
JPH02262309A (ja) * | 1989-03-31 | 1990-10-25 | Victor Co Of Japan Ltd | フライバックトランス |
JPH0722258A (ja) * | 1993-06-30 | 1995-01-24 | Matsushita Electric Ind Co Ltd | リアクタ及びその製造方法 |
US6600402B1 (en) * | 1998-10-20 | 2003-07-29 | Vlt Corporation | Bobbins, transformers, magnetic components, and methods |
JP3593986B2 (ja) * | 2001-02-19 | 2004-11-24 | 株式会社村田製作所 | コイル部品及びその製造方法 |
JP2004095570A (ja) * | 2002-08-29 | 2004-03-25 | Toyota Motor Corp | リアクトル装置およびその製造方法 |
JP2006352021A (ja) | 2005-06-20 | 2006-12-28 | Denso Corp | コイル封止型鉄粉混入樹脂成形リアクトル |
JP4768372B2 (ja) | 2005-09-16 | 2011-09-07 | スミダコーポレーション株式会社 | コイル封入型磁性部品及びその製造方法 |
JP2007250978A (ja) | 2006-03-17 | 2007-09-27 | Nec Tokin Corp | 低背型チョークコイル |
JP4858035B2 (ja) * | 2006-09-19 | 2012-01-18 | トヨタ自動車株式会社 | リアクトルのコアおよびリアクトル |
JP2009059954A (ja) | 2007-08-31 | 2009-03-19 | Hitachi Powdered Metals Co Ltd | ディスク型リアクトル |
JP5067544B2 (ja) * | 2007-09-11 | 2012-11-07 | 住友電気工業株式会社 | リアクトル用コアとその製造方法およびリアクトル |
JP2009194198A (ja) * | 2008-02-15 | 2009-08-27 | Sumitomo Electric Ind Ltd | リアクトル |
JP2009224759A (ja) * | 2008-02-18 | 2009-10-01 | Daido Steel Co Ltd | 直流リアクトル用ボンド磁石および直流リアクトル |
JP5598088B2 (ja) | 2010-05-24 | 2014-10-01 | 株式会社豊田自動織機 | リアクトルの固定構造 |
CN102971812B (zh) | 2010-06-22 | 2015-12-16 | 丰田自动车株式会社 | 电抗器以及电抗器的制造方法 |
CN102822914B (zh) | 2010-06-22 | 2015-11-25 | 丰田自动车株式会社 | 电抗器以及电抗器的制造方法 |
-
2010
- 2010-05-25 WO PCT/JP2010/058791 patent/WO2011148458A1/ja active Application Filing
- 2010-05-25 CN CN201080067012.6A patent/CN102918610B/zh not_active Expired - Fee Related
- 2010-05-25 JP JP2011546500A patent/JP5267680B2/ja not_active Expired - Fee Related
- 2010-05-25 KR KR1020127030716A patent/KR101478893B1/ko not_active IP Right Cessation
- 2010-05-25 EP EP10852129.5A patent/EP2579281A4/en not_active Withdrawn
- 2010-05-25 US US13/634,094 patent/US8922319B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004327569A (ja) * | 2003-04-23 | 2004-11-18 | Toyota Motor Corp | リアクトル装置 |
JP2007180225A (ja) | 2005-12-27 | 2007-07-12 | Toyota Motor Corp | リアクトルの固定構造および電気機器ユニット |
JP2008042051A (ja) * | 2006-08-09 | 2008-02-21 | Risho Kogyo Co Ltd | リアクトル |
JP2009026995A (ja) * | 2007-07-20 | 2009-02-05 | Toyota Motor Corp | リアクトルコアおよびリアクトル |
JP2009218294A (ja) * | 2008-03-07 | 2009-09-24 | Sumitomo Electric Ind Ltd | リアクトル |
JP2009246221A (ja) * | 2008-03-31 | 2009-10-22 | Sumitomo Electric Ind Ltd | リアクトル |
Non-Patent Citations (1)
Title |
---|
See also references of EP2579281A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011258608A (ja) * | 2010-06-04 | 2011-12-22 | Nec Tokin Corp | 線輪部品 |
JP2012094560A (ja) * | 2010-10-22 | 2012-05-17 | Toyota Industries Corp | 誘導機器 |
EP2455951A1 (en) * | 2010-10-22 | 2012-05-23 | Kabushiki Kaisha Toyota Jidoshokki | Induction device |
WO2013137019A1 (ja) * | 2012-03-13 | 2013-09-19 | 住友電気工業株式会社 | リアクトル、コンバータ、および電力変換装置 |
JP2013219318A (ja) * | 2012-03-13 | 2013-10-24 | Sumitomo Electric Ind Ltd | リアクトル、コンバータ、および電力変換装置 |
JP2014146707A (ja) * | 2013-01-29 | 2014-08-14 | Nec Tokin Corp | 線輪部品 |
JP2016066650A (ja) * | 2014-09-24 | 2016-04-28 | 長野日本無線株式会社 | コイル装置 |
JP2019102558A (ja) * | 2017-11-30 | 2019-06-24 | トヨタ自動車株式会社 | リアクトル |
JP2021034448A (ja) * | 2019-08-20 | 2021-03-01 | 株式会社デンソー | リアクトルとその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2579281A4 (en) | 2016-10-12 |
CN102918610B (zh) | 2015-11-25 |
JPWO2011148458A1 (ja) | 2013-07-25 |
KR20130033370A (ko) | 2013-04-03 |
EP2579281A1 (en) | 2013-04-10 |
JP5267680B2 (ja) | 2013-08-21 |
US8922319B2 (en) | 2014-12-30 |
CN102918610A (zh) | 2013-02-06 |
US20120326822A1 (en) | 2012-12-27 |
KR101478893B1 (ko) | 2015-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5267680B2 (ja) | リアクトル | |
JP5598088B2 (ja) | リアクトルの固定構造 | |
JP4947503B1 (ja) | リアクトル、コンバータ、および電力変換装置 | |
JP6024878B2 (ja) | リアクトル、リアクトル用コイル部品、コンバータ、及び電力変換装置 | |
JP6176516B2 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
US20140247623A1 (en) | Reactor, reactor-use coil component, converter, and power converter apparatus | |
JP5881015B2 (ja) | リアクトル、コンバータ、および電力変換装置 | |
WO2012114890A1 (ja) | リアクトル | |
JP5983942B2 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
WO2012153619A1 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
JP4947504B1 (ja) | リアクトル、コンバータ、および電力変換装置 | |
WO2013073384A1 (ja) | リアクトル、コイル成形体、コンバータ、及び電力変換装置 | |
JP2009033051A (ja) | リアクトル用コア | |
JP2013135191A (ja) | リアクトル、コンバータ、および電力変換装置 | |
JP2008028290A (ja) | リアクトル装置およびその組立方法 | |
JP2015012147A (ja) | リアクトル | |
JP2013222813A (ja) | リアクトル、コンバータ、および電力変換装置 | |
JP2011165977A (ja) | リアクトル | |
JP2013179186A (ja) | リアクトル、リアクトル用部品、コンバータ、及び電力変換装置 | |
JP2012238659A (ja) | リアクトル、およびリアクトルの製造方法 | |
WO2013118524A1 (ja) | リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア材料 | |
JP2013179184A (ja) | リアクトル、コンバータ、および電力変換装置 | |
JP2015050298A (ja) | リアクトル、コンバータ、及び電力変換装置 | |
US20240029935A1 (en) | Storage choke assembly with cost-optimized housing | |
WO2013118528A1 (ja) | リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080067012.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011546500 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10852129 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010852129 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13634094 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20127030716 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |