WO2013118528A1 - リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア部品 - Google Patents

リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア部品 Download PDF

Info

Publication number
WO2013118528A1
WO2013118528A1 PCT/JP2013/050228 JP2013050228W WO2013118528A1 WO 2013118528 A1 WO2013118528 A1 WO 2013118528A1 JP 2013050228 W JP2013050228 W JP 2013050228W WO 2013118528 A1 WO2013118528 A1 WO 2013118528A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
core portion
magnetic
composite material
reactor
Prior art date
Application number
PCT/JP2013/050228
Other languages
English (en)
French (fr)
Inventor
和宏 稲葉
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所 filed Critical 住友電気工業株式会社
Publication of WO2013118528A1 publication Critical patent/WO2013118528A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating

Definitions

  • the present invention relates to a reactor used for a component of a power conversion device such as an in-vehicle DC-DC converter mounted on a vehicle that uses electric power as a drive source such as a hybrid vehicle and an electric vehicle, a converter including the reactor, and
  • the present invention relates to a power conversion device including the converter, and a reactor core component that constitutes a magnetic core included in the reactor.
  • the present invention relates to a reactor that is highly manufacturable and can reduce noise caused by vibration.
  • Patent Documents 1 and 2 disclose a reactor used in a converter mounted on a vehicle such as a hybrid vehicle.
  • the reactor includes a cylindrical coil formed by winding a winding, and a magnetic core that is disposed inside and outside the coil to form a closed magnetic circuit.
  • Examples of the shape of the magnetic core include combining a plurality of core parts into an annular core, or combining a plurality of core parts into a pot-type core.
  • the core components that make up the magnetic core include laminated steel sheets laminated with magnetic steel sheets, compacted compacts formed by pressing magnetic powder having an insulating coating on the surface, and composite materials in which magnetic powder and binder resin are mixed. Is being used.
  • the portion of the magnetic core that covers the outside of the coil is formed of a mixture (composite material) of magnetic powder and resin.
  • the reactor is housed in a case, for example, and housed in a converter case and fixed.
  • an epoxy resin or a silicone resin is used as a composite material resin.
  • a part of a magnetic core is formed of a composite material containing such a resin, there are the following problems.
  • the reactor vibrates when the coil is energized, and the vibration is transmitted from the magnetic core to another constituent member such as the case, and noise due to the vibration may be generated. Furthermore, since the reactor becomes hot during energization, there is a risk that cracks will occur in the composite material due to the difference in thermal expansion coefficient between the magnetic powder and the resin.
  • one of the objects of the present invention is to provide a reactor and a core component for the reactor that are highly manufacturable and can reduce noise caused by vibration.
  • Another object of the present invention is to provide a converter including the reactor and a power conversion device including the converter.
  • the present invention achieves the above object by using millable silicone rubber as a resin as a binder for composite materials.
  • the reactor of the present invention includes a cylindrical coil and a magnetic core that is disposed inside and outside the coil to form a closed magnetic circuit. At least a part of the magnetic core is composed of a composite material in which magnetic powder and resin are mixed.
  • the resin is millable silicone rubber.
  • the core component for a reactor of the present invention constitutes a magnetic core included in the reactor.
  • the core part for reactors of this invention is comprised with the composite material which mixed magnetic powder and resin, and resin is millable type silicone rubber, It is characterized by the above-mentioned.
  • the resin of the composite material is a millable silicone rubber
  • the fluidity is low before curing, and the viscosity is higher than that of conventionally used resins. Therefore, after the magnetic powder and the resin (rubber) are kneaded, the magnetic powder is unlikely to settle, and the state in which the magnetic powder is uniformly dispersed in the composite material can be maintained. Therefore, manufacturability is high while realizing the inductance as designed.
  • the resin in the composite material is rubber, the composite material has elasticity and is soft even after being cured. Therefore, the composite material can absorb vibration and reduce noise due to vibration.
  • the resin of the composite material is a millable type silicone rubber, it has high heat resistance and hardly deteriorates even at high temperatures.
  • At least a part of the magnetic core is formed of the composite material
  • at least a part of the magnetic core disposed at the outside of the coil may be formed of the composite material.
  • the portion disposed inside the coil may be formed of this composite material, and the entire magnetic core may be formed of this composite material.
  • a millable silicone rubber is substantially used as the resin serving as the binder of the composite material.
  • the millable silicone rubber in the composite material is a rubber (polymer polymer) having an elasticity of 100% or more after curing, and the Young's modulus at room temperature (25 ° C.) is about 0.1 to 50 MPa. By satisfying this range, it is possible to obtain a vibration absorbing effect and a crack suppressing effect while maintaining the shape as a composite material.
  • the resin used for the conventional composite material has a Young's modulus after curing of about 3.0 to 30 GPa in the case of an epoxy resin.
  • the cured millable silicone rubber is mainly composed of a linear polymer having a polymerization degree of 3000 to 10000, while the conventional cured silicone resin is mainly composed of a linear polymer having a polymerization degree of 100 to 2000. .
  • the composite material can be obtained by blending magnetic powder and millable silicone rubber before curing and kneading. Moreover, in order to bridge
  • vulcanizing agent for example, a peroxide vulcanizing agent can be used.
  • the curing temperature is usually 150 to 200 ° C., and the curing time is usually 5 to 60 minutes.
  • Low molecular weight siloxane is known to cause contact failure, and if low molecular weight siloxane remains in the composite material, low molecular weight siloxane is generated from the composite material, and the electronic components placed around the reactor May cause problems such as contact failure. Therefore, by reducing the amount of low molecular siloxane in the composite material, it is possible to suppress the generation of low molecular siloxane and avoid problems such as contact failure. Moreover, crosslinking can be promoted by heat treatment, and the strength can be further increased.
  • the molding method compression molding, injection molding, transfer molding, extrusion molding, or the like can be used. In this case, it can be cured simultaneously with molding.
  • the heat treatment may be performed after the composite material is disposed (attached) to the coil and a part of the magnetic core is formed of the composite material, or may be performed on a molded body of the composite material.
  • Examples of the heat treatment include holding for 30 minutes to 4 hours in a state heated to 150 ° C. or higher and 220 ° C. or lower.
  • the heating temperature is set to 150 ° C. or more and the holding time to 30 minutes or more.
  • the heating temperature is set to 220 ° C. or lower, when heat treatment is performed including other components such as a coil, the influence on other components can be suppressed.
  • the holding time is preferably 4 hours or less.
  • the content of the magnetic powder in the composite material is 30 volume% or more and 75 volume% or less.
  • the magnetic properties such as saturation magnetic flux density can be easily ensured because the content of the magnetic powder is 30% by volume or more.
  • the content of the magnetic powder is 75% by volume or less, mixing with a resin (millable silicone rubber) can be easily performed, the productivity can be improved, and the magnetic powder can be easily dispersed uniformly.
  • the lower limit of the content of the magnetic powder in the composite material is more preferably 40% by volume or more, the upper limit is more preferably 65% by volume or less, and further preferably 60% by volume or less.
  • the reactor can be downsized.
  • a part of the magnetic core (placed outside the coil) can be formed by pasting or arranging the composite material on the outside of the coil.
  • the portion disposed on the outer peripheral side of the coil is, for example, a composite material pasted on the outer peripheral side of the coil, or a cylindrical body formed in advance in a cylindrical shape from a composite material. It is also possible to form by attaching to the.
  • a portion of the magnetic core that is disposed inside the coil may be formed of a composite material. In this case, for example, the magnetic material is formed by inserting a columnar body formed by columnar composite material into the coil. It is possible.
  • positioned inside a coil among magnetic cores is comprised by the compacting body.
  • the magnetic core can have a gapless structure. Leakage magnetic flux can be reduced by using a gapless structure.
  • the entire magnetic core is composed of the composite material.
  • not only the outer core portion but also the inner core portion is composed of the composite material, so that vibration transmitted from the inner core portion to another component member such as a case via the coil can be transmitted to the inner core portion. It absorbs itself and noise caused by vibration can be reduced more effectively.
  • the composite material since only the composite material is used as the material of the magnetic core, it is not necessary to use another material, and the manufacturing cost can be reduced.
  • the reactor of the present invention can be suitably used as a component part of a converter.
  • the converter of the present invention includes the reactor of the present invention described above.
  • the converter includes a switching element, a drive circuit that controls the operation of the switching element, and a reactor that smoothes the switching operation, and converts the input voltage by the operation of the switching element.
  • the converter of the present invention can be suitably used as a component part of a power conversion device.
  • the power converter of the present invention includes the above-described converter of the present invention.
  • Examples of the power conversion device include a converter that converts an input voltage and an inverter that is connected to the converter and converts DC and AC to each other, and a load is driven by the power converted by the inverter. .
  • the converter and the power conversion device of the present invention include the above-described reactor of the present invention that can reduce noise due to vibration, and thus are excellent in quietness and can be suitably used for in-vehicle components.
  • the reactor and the core part for the reactor of the present invention are highly manufacturable because the composite resin is a millable silicone rubber. Moreover, the converter and power converter device of this invention can be suitably utilized for the vehicle-mounted components etc. to which cost reduction is calculated
  • FIG. 1 is a schematic perspective view of a reactor according to a first embodiment.
  • 1 is a schematic exploded perspective view of a reactor according to a first embodiment.
  • FIG. 3 is a schematic perspective view of a coil molded body provided in the reactor according to the first embodiment. It is a schematic perspective view of the reactor which concerns on Embodiment 2.
  • FIG. 5 is a schematic exploded perspective view of a reactor according to a second embodiment. 6 is a schematic perspective view of a coil molded body included in a reactor according to Embodiment 2.
  • FIG. It is a schematic perspective view of the reactor which concerns on Embodiment 3.
  • FIG. FIG. 5 is a schematic exploded perspective view of a reactor according to a third embodiment.
  • FIG. 1 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle. It is a schematic circuit diagram which shows an example of this invention power converter device which provides this invention converter.
  • the reactor 1a includes a coil 2 (see FIG. 3) formed by winding a winding 2w, and a magnetic core 3 disposed inside and outside the coil 2 to form a closed magnetic circuit.
  • the reactor 1a is typically used by being installed on an installation target such as a cooling base, and stored in a case (not shown) as necessary.
  • the cooling base typically includes a cooling mechanism such as a circulation path through which a fluid refrigerant such as cooling water is circulated.
  • the magnetic core 3 includes a columnar inner core portion 31 disposed inside the coil 2 and an outer core portion 32 disposed outside the coil 2.
  • This reactor 1a is characterized in that at least a part of the magnetic core 3 is composed of a composite material in which magnetic powder and a resin are mixed, and this resin is a millable silicone rubber.
  • each component will be described in more detail.
  • the coil 2 is a cylindrical body formed by spirally winding a single continuous winding 2w, and is composed of one coil element.
  • the winding 2w is preferably a coated wire having an insulating coating made of an insulating material (typically an enamel material such as polyamideimide) on the outer periphery of a conductor made of a conductive material such as copper, aluminum, or an alloy thereof.
  • the conductor may have various shapes such as a rectangular wire having a rectangular cross section, a round wire having a circular shape, and a deformed wire having a polygonal shape.
  • the coil (coil element) 2 is an edgewise coil formed by edgewise winding a coated rectangular wire whose conductor is made of a copper rectangular wire and whose insulating coating is made of enamel.
  • the edgewise coil is easy to make a small coil by increasing the space factor, and contributes to the miniaturization of the reactor.
  • the end face shape of the coil 2 may be non-circular. For example, combining a straight line and a curve such as an ellipse or the like, a shape consisting essentially only of a curve, a shape obtained by rounding each corner of a polygon (for example, a rectangle), or a racetrack shape formed by combining a straight line and an arc. And the like.
  • both end portions of the winding 2w forming the coil 2 are appropriately extended from the turn portion and pulled out from the outer core portion 32, and the exposed conductor is peeled off from the insulation coating.
  • a terminal member (not shown) made of a conductive material such as copper or aluminum is connected.
  • An external device (not shown) such as a power source for supplying power is connected to the coil 2 via the terminal member, and the coil 2 can be energized.
  • welding such as TIG welding or crimping can be used for connection between the conductor of the winding 2w and the terminal member.
  • both ends of the winding 2w are bent so that both ends of the winding 2w are pulled out in parallel with the axial direction of the coil 2 at one end of the coil 2. It should be noted that the drawing direction of both ends of the winding 2w is an example, and can be changed as appropriate.
  • the reactor 1a When the reactor 1a is installed on an installation target such as a cooling base or a case, the reactor 1a can be placed horizontally (horizontal arrangement form) so that the axial direction of the coil 2 is substantially parallel to the installation target installation surface.
  • the coil 2 can be placed vertically (vertical arrangement form) so that the axial direction of the coil 2 is substantially orthogonal to the installation surface.
  • the coil 2 can be used as it is, a coil molded body 20 in which the surface of the coil 2 is covered with a resin mold portion 21 made of an insulating resin is used here.
  • the resin mold portion 21 has a function of holding the coil 2 in a certain shape, and the coil 2 does not expand and contract during assembly of the reactor and the handling of the coil 2 becomes easy. Further, the resin mold part 21 has a function of improving the insulation between the coil 2 and other constituent members (magnetic core 3) disposed in the periphery thereof.
  • the resin mold portion 21 is provided at a location where the winding 2w that forms the coil 2 is in contact with the magnetic core 3, and the entire turn portion (the inner peripheral surface and the outer peripheral surface of the winding 2w). , As well as both end faces) and both ends of the winding 2w (excluding the part pulled out from the outer core part 32).
  • the covering region of the coil 2 by the resin mold portion 21 can be appropriately selected. For example, a part of the turn portion of the winding 2w is not covered with the resin mold portion 21, and may be exposed.
  • the coil 2 and the inner core part 31 or between the coil 2 and the outer core part 32 are used. Insulating resin can be surely interposed between the coil 2 and the insulation against the coil 2 can be improved.
  • the resin mold part 21 has a function of holding the coil 2 and the inner core part 31 together.
  • the coil molded body 20 is formed by integrally molding the coil 2 and the inner core part 31 by the resin mold part 21. Yes.
  • the number of parts can be reduced and the assembly workability is excellent.
  • the inner core portion 31 of the coil 2 Positioning can also be performed.
  • the thickness of the resin mold part 21 interposed between the coil 2 and the inner core part 31 is uniform, and the coil 2 and the inner core part 31 are arranged coaxially by this insulating resin. .
  • the thickness of the resin mold portion 21 covering the outer peripheral surface and end surface of the coil 2 is also substantially uniform.
  • the thickness of the resin mold portion 21 can be selected as appropriate, for example, about 0.1 mm to 10 mm. As the thickness of the resin mold portion 21 is increased, the insulation can be improved, and as the thickness is reduced, the heat dissipation can be improved. The thickness is preferably about 0.1 mm to 3 mm.
  • the outer shape of the resin mold portion 21 is a shape along the outer shape of the coil 2, that is, a shape similar to that of the coil 2, and the insulating resin has a substantially uniform thickness over the entire coil molded body 20. It exists. Note that the thickness of the resin mold portion 21 may be partially different as long as a desired function (insulation characteristics, shape retention, etc.) is satisfied.
  • the coil 2 is cylindrical, and the outer shape of the resin mold portion 21 can be a prismatic shape (in this case, the thickness of the insulating resin at the corner portion tends to be thick).
  • the resin mold part 21 has a function of holding the coil 2 in a compressed state from the free length as necessary, so the length of the coil 2 can be made shorter than the natural length, contributing to the downsizing of the reactor. To do.
  • both end surfaces 31e of the inner core portion 31 and the vicinity thereof are exposed without being covered with the resin mold portion 21, and both end surfaces 31e of the inner core portion 31 are in contact with the outer core portion 32. At least one end face 31e of 31 may be covered with the resin mold part 21. At this time, the resin mold portion 21 covering the end surface 31e of the inner core portion 31 functions as a gap.
  • the insulating resin that forms the resin mold part 21 has insulation properties that can sufficiently insulate the coil 2 and the magnetic core 3, and heat resistance that does not soften against the maximum temperature when the reactor 1a is used.
  • Resin that can be used for transfer molding or injection molding can be suitably used.
  • thermosetting resins such as epoxy resins, silicone resins, and unsaturated polyesters
  • thermoplastic resins such as polyphenylene sulfide (PPS) resins and liquid crystal polymers (LCP) can be suitably used.
  • the resin mold portion 21 is made by mixing a filler made of at least one ceramic selected from silicon nitride, alumina, aluminum nitride, boron nitride, and silicon carbide with an insulating resin, an insulating property is obtained.
  • a material having a thermal conductivity of 1 W / m ⁇ K or more, more preferably 2 W / m ⁇ K or more is preferred because of its excellent heat dissipation.
  • an epoxy resin thermal conductivity: 2 W / m ⁇ K
  • the coil molded body 20 including the resin mold portion 21 for example, a production method described in Japanese Patent Application Laid-Open No. 2009-218293 can be used, and various methods such as injection molding, transfer molding, and cast molding can be used.
  • the molding method can be used.
  • the coil molded body 20 including the coil 2 By disposing the inner core portion 31 together with the coil 2 in the molding die, the coil molded body 20 including the coil 2, the resin mold portion 21, and the inner core portion 31 can be manufactured.
  • it can be set as the coil molded object which has the coil 2 and the resin mold part 21 which does not have the inner core part 31, ie, the coil 2.
  • FIG. In this case, it is good to manufacture a coil molded object using a core instead of the inner core part 31.
  • FIG. In the coil molded body, by adjusting the thickness of the resin mold portion 21 provided inside the coil 2, the resin mold portion 21 can be used for positioning the inner core portion 31 as described above.
  • a high voltage may be applied to the end (extracted portion) of the winding 2w extended from the turn portion of the winding 2w as compared with the turn portion. Therefore, at least the contact portion with the magnetic core 3 (outer core portion 32) among the lead-out portions of the winding 2w is covered with the resin mold portion 21, or is made of insulating paper, insulating tape (for example, polyimide tape), insulating film.
  • the insulating material such as polyimide film
  • the insulating material is dip-coated, or an insulating tube (either a heat-shrinkable tube or a room-temperature-shrinkable tube) is placed, the coil 2 and the magnetic core 3 (especially here, the outer core portion 32) can be improved in insulation.
  • the magnetic core 3 includes a columnar inner core portion 31 inserted inside the cylindrical coil 2 and at least one end surface 31e (here, both end surfaces) of the inner core portion 31. And an outer core portion 32 disposed on the outer peripheral side of the coil 2 to form a closed magnetic circuit when the coil 2 is excited.
  • at least a part of the magnetic core 3 is a mixture of magnetic powder and resin. Consists of composite materials. In addition, millable silicone rubber is used for the resin of the composite material.
  • the magnetic core 3 can be made of a uniform material as a whole or can be made of a material that is partially different. Here, the magnetic core 3 is partially formed of different materials, and the inner core portion 31 is formed of a compacted body.
  • the green compact is typically made of an insulating material (eg, silicone resin or phosphorous) on the surface of soft magnetic particles made of a soft magnetic material (eg, iron-based material (iron group metal or iron alloy), rare earth metal, etc.).
  • soft magnetic powder having an insulating coating made of acid salt, etc., or mixed powder in which a binder (for example, a resin such as a thermoplastic resin or higher fatty acid) is appropriately mixed in addition to this soft magnetic powder It can be produced by appropriately performing a heat treatment. Distortion introduced into the soft magnetic particles during molding can be removed by heat treatment, and a low-loss compact can be obtained. The higher the heat treatment temperature, the more the strain can be removed.
  • a binder for example, a resin such as a thermoplastic resin or higher fatty acid
  • the compacted body can be molded relatively easily even in a complicated three-dimensional shape, and it is easier to increase the saturation magnetic flux density than the composite material constituting the outer core portion 32.
  • the material of the soft magnetic material, the mixing ratio of the soft magnetic powder and the binder, the amount of various coatings including the insulating coating, etc., or adjusting the molding pressure Magnetic characteristics (especially saturation magnetic flux density) can be changed.
  • soft magnetic powder with high saturation magnetic flux density iron-based material is preferred over ferrite
  • increasing the proportion of soft magnetic material by reducing the amount of binder, etc., or increasing the molding pressure A green compact with a high saturation magnetic flux density is obtained.
  • the content of the magnetic powder in the green compact is preferably more than 75% by volume and more preferably 80% by volume or more when the green compact is 100%.
  • the magnetic core 3 can be in a form in which a gap material made of a nonmagnetic material such as an alumina plate or an air gap is interposed.
  • the outer core portion 32 (the connecting core portion 32c and the end core portion 32e) is composed of a composite material obtained by mixing magnetic powder and resin.
  • the resin that composes the composite material is millable silicone rubber and functions as a binder.
  • This composite material can be typically obtained by blending magnetic powder and a millable silicone rubber before curing, kneading, and curing.
  • the connecting core portion 32c is formed by sticking a composite material obtained by kneading magnetic powder and millable silicone rubber to the outer peripheral surface of the coil molded body 20. Specifically, as shown in FIG. 2, it was formed by winding the composite material so that the lower side of the outer peripheral surface of the coil molded body 20 was exposed.
  • the connecting core portion 32c so that a part of the outer peripheral surface of the coil molded body 20 (here, the lower side) is exposed, it is easy to dissipate heat from this surface to the heat dissipation object, and heat dissipation from the coil 2 is improved. Can be improved.
  • the composite material may be cured after being attached to the outer peripheral surface of the coil molded body 20 in a state before curing, or the composite material may be cured and molded and then applied to the outer peripheral surface of the coil molded body 20. Also good. Further, the inner peripheral surface of the composite material is provided with irregularities corresponding to the outer shape of the coil molded body 20 (cross-sectional outer shape in the direction perpendicular to the axis of the coil 2). The connection core portion 32c is in close contact with the inner peripheral surface so as not to form a gap.
  • the connecting core portion 32c is formed of one composite material.
  • the connecting core portion 32c may be divided in the axial direction or the circumferential direction. When the connecting core portion 32c is divided in the axial direction, the bonding material is bonded so as to be connected in the axial direction. It is better to connect with agents, primers and adhesive tape.
  • the composite material when dividing in the circumferential direction, it is easy to arrange the composite material in close contact with the outer shape of the coil molded body 20, and the adjacent composite materials in the circumferential direction may or may not be connected.
  • the average thickness of the connecting core portion 32c is 2 mm or more and 20 mm or less.
  • the connecting core portion 32c Since the composite material itself has adhesiveness with a resin (millable silicone rubber), it is possible to form the connecting core portion 32c by pasting it on the outer peripheral surface of the coil molded body 20, In order to tightly fix the core portion 32c to the coil molded body 20, the core portion 32c may be fixed with an adhesive, a primer, an adhesive tape, or the like. In addition, the periphery of the connecting core portion 32c may be fastened and fixed with a band or the like. In addition, the connecting core portion 32c is slightly shorter than the axial length of the coil 2, and in a state where the connecting core portion 32c is disposed on the outer peripheral surface of the coil molded body 20, both end surfaces of the coil molded body 20 and the outer peripheral surface in the vicinity thereof are connected cores. It slightly protrudes from the end face of the portion 32c.
  • the end core portion 32e is a composite material molded body (reactor core component) obtained by pressing the composite material against a mold and press-molding the composite material into a predetermined shape.
  • the molding method compression molding, injection molding, transfer molding, extrusion molding, or the like can be used.
  • the end core portion 32e is formed in a substantially disc shape.
  • an inner core portion placement groove 321 and a coil placement groove 322 are formed on the end face of the coil molded body 20 and the inner face of the end core portion 32 e facing the end face 31 e of the inner core portion 31. ing.
  • the inner core portion arrangement groove 321 is fitted with a protruding portion of the inner core portion 31 protruding from the end surface of the coil 2 (coil molded body 20).
  • the coil placement groove 322 is fitted with a protruding portion of the coil molded body 20 protruding from the end surface of the connecting core portion 32c. Accordingly, the end core portion 32e can be easily positioned and the assembly workability is excellent.
  • the end core portion 32e disposed on one end side of the coil molded body 20 (that is, the side from which both end portions of the winding 2w are pulled out) is provided with a drawing hole 323 for pulling out both end portions of the winding 2w. It has been.
  • the connecting core portion 32c may be a molded body of a composite material that is press-formed into a predetermined shape (for example, a substantially cylindrical shape).
  • both end surfaces of the connecting core portion 32 c and the inner surface edge of the end core portion 32 e are connected so as to be connected, and the connecting core portion 32 c is integrated.
  • the outer shape of the end core portion 32e (the sectional outer shape in the direction orthogonal to the axis of the coil 2) is the same.
  • at least one end portion of the connecting core portion 32c protrudes from the end surface of the coil (coil molded body), a recess is formed inside the protruding portion, and the end core portion 32e is formed in the recess. Can be integrated by connecting the inner peripheral surface of the end portion of the connecting core portion 32c and the outer peripheral surface of the end core portion 32e.
  • the connecting core portion 32c and the end core portion 32e may be connected by an adhesive, a primer, an adhesive tape, or the like, and the periphery of the connecting core portion 32c and the end core portion 32e is fastened with a band or the like. Also good.
  • the connecting core portion 32c and the end core portion 32e are both formed of a composite material, and have adhesiveness with a resin (millable silicone rubber), so that they are connected by bonding them together. It is also possible.
  • the end core portion 32e and the inner core portion 31 can be connected with an adhesive or the like.
  • the outer core portion 32 also has no gap material or air gap, and the magnetic core 3 has a gapless structure in which no gap is provided over the entire core portion 32.
  • the connecting core portion 32c and the end core portion 32e are separate members, and the two are connected and integrated to constitute the outer core portion 32, but when the reactor 1a includes a case,
  • the outer core portion 32 may be formed by using this case as a molding die (casting) for the outer core portion 32. Specifically, in a state where the coil molded body 20 in which the coil 2 and the inner core portion 31 are integrated is disposed at a predetermined position of the case, the case is filled with the composite material, thereby connecting the connecting core portion 32c and the end. It is possible to form the outer core part 32 in which the part core part 32e is integrated. In this case, the outer core portion 32 and the inner core portion 31 can be joined with the composite resin simultaneously with the molding of the outer core portion 32.
  • a vulcanizing agent is added to the composite material in order to improve the elasticity and strength of the millable silicone rubber.
  • heat treatment is preferably performed after curing in order to remove the low molecular siloxane. Examples of the heat treatment include holding for 30 minutes to 4 hours in a state heated to 150 ° C. or higher and 220 ° C. or lower. This heat treatment may be performed with the connecting core portion 32c and the end core portion 32e attached to the coil molded body 20, that is, with the magnetic core 3 assembled, or may be performed on a composite material molded body. Good.
  • the composite magnetic powder may have the same or different composition as the soft magnetic powder constituting the inner core portion 31 described above. Since the composite material contains a non-magnetic resin (here, a millable silicone rubber), even if the soft magnetic powder in the composite material and the soft magnetic powder constituting the green compact have the same composition, The saturation magnetic flux density is lower than that of the powder molded body, and the relative magnetic permeability is also lowered. Therefore, the relative permeability of the outer core portion 32 can be made lower than that of the inner core portion 31.
  • a non-magnetic resin here, a millable silicone rubber
  • the magnetic powder of the composite material may be a single type or a mixture of multiple types of powders of different materials.
  • the magnetic powder in the composite material constituting the outer core portion 32 is preferably made of an iron-based material such as pure iron powder or iron alloy powder.
  • the magnetic powder of the composite material is also composed of a metal material, such as an iron-based material, the coating powder having the above-described insulating coating as in the case of the compacted body, Insulation can be enhanced and eddy current loss can be reduced.
  • the average particle diameter of the magnetic powder in the composite material is 1 ⁇ m or more and 1000 ⁇ m or less, particularly 10 ⁇ m or more and 500 ⁇ m or less.
  • the magnetic powder may contain a plurality of types of powders having different particle sizes.
  • a saturation magnetic flux density is high and a low-loss reactor is easily obtained.
  • the magnetic powder in the composite material and the powder used for the raw material are substantially the same size (maintained), and if the magnetic powder satisfying the above range is used as the raw material, the flowability is reduced.
  • the magnetic powder is easily dispersed uniformly in the composite material, and the composite material is excellent in manufacturability.
  • the content of the magnetic powder in the composite material is desirably 30% by volume or more and 75% by volume or less in terms of volume ratio when the composite material is 100%.
  • the magnetic powder is 30% by volume or more, it is easy to ensure magnetic characteristics such as the saturation magnetic flux density of the outer core portion 32, and hence the entire magnetic core 3.
  • the magnetic powder is 75% by volume or less, it is easy to mix with the resin, and the productivity of the composite material is excellent.
  • a coating powder having an insulating coating on the surface of particles made of an iron-based material (pure iron) having an average particle diameter of 75 ⁇ m or less is used as the magnetic powder of the composite material, and the content of the magnetic powder in the composite material is 40%. Volume%.
  • the millable silicone rubber is used as the resin as the binder of the composite material.
  • the composite material is obtained by blending magnetic powder and millable silicone rubber (including peroxide vulcanizing agent) before curing at a volume ratio of 40:60 and kneading.
  • the composite material was cured by heating at 180 ° C. for 20 minutes and finally subjected to heat treatment.
  • the heat treatment conditions were a heating temperature of 180 ° C. and a holding time of 2 hours.
  • the outer core portion 32 is not particularly limited as long as a closed magnetic circuit can be formed.
  • the coil 2 coil molded body 20
  • the composite material outer core portion 32
  • a part of the coil molded body 20 is exposed from the connecting core portion 32c, and heat can be easily transferred from the exposed surface to the heat radiating target, thereby improving heat dissipation.
  • the magnetic core 3 is partially made of different materials and has different magnetic characteristics.
  • the inner core portion 31 has a higher saturation magnetic flux density than the outer core portion 32, and the outer core portion 32 has a lower relative permeability than the inner core portion 31.
  • the inner core portion 31 has a saturation magnetic flux density of 1.0 T or more, more preferably 1.2 times or more of the outer core portion 32, a relative permeability of 50 to 500, and the outer core portion 32 has a saturation magnetic flux density.
  • the form with a high saturation magnetic flux density of the inner core portion contributes to the downsizing of the reactor because the cross-sectional area of the inner core portion can be reduced when the same saturation magnetic flux density as the magnetic core is obtained. .
  • the saturation magnetic flux density of the inner core portion 31 is preferably 1.8 T or more, more preferably 2 T or more, more preferably 1.5 times or more, and more preferably 1.8 times or more of the saturation magnetic flux density of the outer core portion 32, and no upper limit is provided. If a laminated body of electromagnetic steel sheets typified by silicon steel sheets is used instead of the green compact, the saturation magnetic flux density of the inner core portion can be further increased. On the other hand, if the relative magnetic permeability of the outer core portion 32 is lower than that of the inner core portion 31, magnetic flux can be easily passed through the inner core portion 31. By the way, if the relative magnetic permeability of the outer core portion 32 is made higher than that of the inner core portion 31, the leakage magnetic flux to the outside can be easily reduced.
  • each said core part here means what was calculated
  • a ring-shaped test piece having an outer diameter of 34 mm, an inner diameter of 20 mm, and a thickness of 5 mm is made of the same material as the core portion.
  • a BH curve tracer “BHS-40S10K” manufactured by Riken Denshi Co., Ltd. can be used.
  • the maximum value of the gradient (B / H) of the obtained BH initial magnetization curve is obtained and used as the relative permeability of the core portion.
  • the magnetization curve here is a so-called DC magnetization curve.
  • the reactor 1a may include a case, and a combination of the coil 2 and the magnetic core 3 may be housed in the case.
  • the shape and size of the case may be appropriately set according to, for example, the above arrangement form.
  • the case has a function of protecting stored items (such as the coil 2 and the magnetic core 3) from the external environment and mechanical stress, and can also be used as a heat dissipation path. Therefore, a material having excellent thermal conductivity, preferably a material having higher thermal conductivity than magnetic powder such as iron, for example, a metal such as aluminum, aluminum alloy, magnesium, magnesium alloy can be suitably used as the case material.
  • Aluminum, magnesium, and their alloys are lightweight, which contributes to reducing the weight of the reactor.
  • the case can be easily manufactured by casting, cutting, plastic working, or the like.
  • the case can be made of resin.
  • resin for example, polybutylene terephthalate (PBT) resin, urethane resin, PPS resin, acrylic-butadiene-styrene (ABS) resin, or the like can be used.
  • PBT polybutylene terephthalate
  • urethane resin urethane resin
  • PPS resin acrylic-butadiene-styrene
  • ABS acrylic-butadiene-styrene
  • a ceramic filler having excellent thermal conductivity such as alumina or silica may be mixed.
  • Reactor 1a having the above-described configuration is representative of applications in which energization conditions for coil 2 are, for example, maximum current (DC): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz
  • DC maximum current
  • it can be suitably used as a component of an in-vehicle power conversion device such as a hybrid vehicle or an electric vehicle.
  • reactor size If the reactor 1a and the vehicle component, reactor 1a in the case comprising a case, it is preferable capacity, including the case is 0.2 liters (200cm 3) ⁇ 0.8 liters (800 cm 3) approximately. More specifically, in the case of a coil having a circular end face shape, the inner diameter: 20 mm to 80 mm, the number of turns: 30 to 70, and in the case of a cylindrical inner core, the diameter: 10 mm to 70 mm, the length (coil axis Length along the direction): 20 mm to 120 mm.
  • Reactor 1a is composed of a composite material in which a part of magnetic core 3 (here, outer core portion 32) is a mixture of magnetic powder and resin, and uses a millable silicone rubber as a resin that serves as a binder for the composite material. Yes. Since the resin of the composite material is a millable silicone rubber, the fluidity is low and the viscosity is low. Therefore, the magnetic powder is unlikely to settle after mixing the magnetic powder and the resin. A uniformly dispersed state can be maintained, and the manufacturability is high while realizing the inductance as designed.
  • the resin in the composite material is rubber, it has elasticity and is soft, so the composite material can absorb vibration and reduce noise caused by vibration, and thermal expansion between the magnetic powder and the resin Even if the coefficient difference occurs, it is possible to suppress the occurrence of cracks in the composite material due to the deformation of the resin. Furthermore, if it is a millable silicone rubber, it has high heat resistance and hardly deteriorates even at high temperatures.
  • the reactor core component composed of the reactor 1a and the composite material has high manufacturability and can reduce noise caused by vibration.
  • Embodiment 2 A reactor according to the second embodiment will be described with reference to FIGS.
  • the basic configuration of the reactor 1b according to the second embodiment is the same as that of the reactor 1a according to the first embodiment, and the differences will be mainly described below.
  • the coil 2 is a coil molded body 20 whose surface is covered with the resin mold portion 21 and whose shape is maintained.
  • the outer core portion 32 covers substantially all of the coil molded body 20 as shown in FIGS.
  • the connecting core portion 32 c constituting the outer core portion 32 is formed by winding a composite material so as to cover the outer peripheral surface of the coil molded body 20.
  • the inner peripheral surface of the composite material is provided with irregularities according to the outer shape of the coil molded body 20 so that no gap is formed between the coil molded body 20 and the connecting core portion 32c. I have to.
  • the end core portion 32e has an inner core portion disposition groove 321 on the inner surface facing the end surface of the coil molded body 20 and the end surface 31e of the inner core portion 31, as shown in FIG. A coil arrangement groove 322 is formed. Further, on the inner surface of the end core portion 32e disposed on one end side of the coil molded body 20 (that is, the side on which both end portions of the winding 2w are pulled out), a drawing groove 324 for pulling out both end portions of the winding 2w. Is provided.
  • Embodiment 3 A reactor according to Embodiment 3 will be described with reference to FIGS.
  • the basic configuration of the reactor 1c according to the third embodiment is the same as that of the reactor 1a according to the first embodiment, and the differences will be mainly described below.
  • the method of pulling out both ends of the winding 2w forming the coil 2 is different. As shown in FIG. 9, both ends of the winding 2w are pulled out from the turn portions in the radial direction of the coil 2 at both ends of the coil 2, respectively. ing.
  • the coil 2 is a coil molded body 20 whose surface is covered with the resin mold portion 21 and whose shape is maintained.
  • the outer core portion 32 covers substantially all of the coil molded body 20 as shown in FIGS.
  • the connecting core portion 32 c constituting the outer core portion 32 is formed by winding a composite material so as to cover the outer peripheral surface of the coil molded body 20.
  • the inner peripheral surface of the composite material is provided with irregularities according to the outer shape of the coil molded body 20 so that no gap is formed between the coil molded body 20 and the connecting core portion 32c. I have to.
  • the end core portion 32e has an inner core portion arrangement groove 321 on the inner surface facing the end surface of the coil molded body 20 and the end surface 31e of the inner core portion 31, as shown in FIG. A coil arrangement groove 322 is formed.
  • a lead groove 324 for pulling out each end portion of the winding 2w is provided on the inner surface of each end core portion 32e disposed on both ends of the coil molded body 20 .
  • Embodiment 4 >> In Embodiment 1 described above, the coil 2 is provided with the coil molded body 20 whose surface is covered with the resin mold portion 21, and the insulation between the coil 2 and the magnetic core 3 is enhanced by the resin mold portion 21. did. In addition, for example, by attaching an insulating tape to the outer surface (including the end surface) or inner peripheral surface of the coil 2, or covering the outer surface (including the end surface) or inner peripheral surface of the coil 2 with insulating paper or an insulating sheet. The effect of improving the above-described insulation can be obtained. Or it can be set as the form which has arrange
  • the content of the magnetic powder of the composite material constituting each core part is 30 volume% or more and 75 volume% or less, the saturation magnetic flux density of each core part is 0.6 T or more, preferably 1.0 T or more, and the relative permeability is 5 Or more, 50 or less, preferably 10 or more and 35 or less, more preferably 20 or more and 30 or less.
  • the relative permeability of the entire magnetic core is 5 or more and 50 or less.
  • a coil molded body having no inner core portion that is, a coil molded body including a coil and a resin mold portion and having a hollow hole in which the inner core portion is disposed is prepared.
  • molded the inner core part and the outer core part in the respectively predetermined shape For example, an inner core portion made of a composite material molded body formed into a predetermined shape is prepared, and the inner core portion is arranged inside the coil to produce an integrated coil molded body. And this coil molded object is arrange
  • an outer core portion made of a molded body of a composite material molded into a predetermined shape is produced, and the outer core portion is arranged outside the coil molded body so as to form a closed magnetic path between the inner core portion and the outer core portion.
  • an insulating tape is attached to the outer surface (including the end surface) or the inner peripheral surface of the coil, or the outer surface (including the end surface) or the inner peripheral surface of the coil is insulated paper or the like. If it is set as the form covered with the insulating sheet, the insulation between a coil and a magnetic core (an inner core part and an outer core part) can be improved.
  • the insulator may be disposed on the contact portion between the coil and the magnetic core, specifically, on the inner peripheral surface of the coil or the outer surface (outer periphery or end surface) of the inner core portion, or on the outer surface (including the end surface) of the coil. Good.
  • the inner core portion and the outer core portion can be composed of composite materials having different magnetic powder materials and contents.
  • the saturation magnetic flux density and the relative magnetic permeability can be adjusted by changing the content of the magnetic powder, and a composite material having desired characteristics can be easily obtained.
  • the inner core portion and the outer core portion are made of composite materials having different magnetic powder materials and contents, and the inner core portion has a high saturation magnetic flux density as in the first embodiment, and the outer core portion It is mentioned that it is set as the form with low relative magnetic permeability.
  • the reverse configuration that is, a configuration in which the relative permeability of the inner core portion is low and the saturation magnetic flux density of the outer core portion is high
  • Increasing the blending amount of the magnetic powder in the composite material makes it easy to obtain a composite material having a high saturation magnetic flux density and a high relative magnetic permeability, and reducing the blending amount reduces the composite material having a low saturation magnetic flux density and a low relative magnetic permeability. Is easy to obtain.
  • a columnar or block-shaped core component made of a molded body of a composite material can be separately prepared, and this core component can be used for the inner core portion and the outer core portion.
  • Each of the composite materials constituting the inner core portion and the outer core portion has a magnetic powder content of 30 vol% or more and 75 vol% or less, and the saturation magnetic flux density of each core portion is 0.6 T or more, preferably 1.0 T or more.
  • the relative magnetic permeability is 5 or more and 50 or less, preferably 10 or more and 35 or less, and more preferably 20 or more and 30 or less.
  • the relative permeability of the entire magnetic core is 5 or more and 50 or less.
  • connection core portion 32c and the end core portion 32e are described as separate members.
  • connection core portion and the end core portion are integrally formed of the same composite material.
  • it may be composed of composite materials having different magnetic powder materials and contents.
  • the end core portion may be formed of a compacted body, or may be formed of a conventional composite material in which magnetic powder and a resin (such as an epoxy resin) are mixed.
  • a part of the magnetic core (for example, the inner core part) is made of a magnetic body having a high relative permeability such as a compacted body or a laminate of electromagnetic steel sheets, the inductance is adjusted between the adjacent core pieces or
  • a gap material made of a material having a lower relative permeability than the magnetic body typically a nonmagnetic material such as alumina
  • the gap material a magnetic material having a relative magnetic permeability of 1.05 or more and 2 or less can be used in addition to a nonmagnetic material.
  • gap material made of a magnetic material is a mixture containing a non-magnetic material such as PPS resin and a magnetic material such as iron powder.
  • the magnetic core includes a gap material
  • the relative magnetic permeability of the entire magnetic core is the relative permeability including the gap material.
  • Embodiment 6 In the first embodiment, the form in which one cylindrical coil 2 is provided (that is, the coil 2 has one coil element) has been described. In addition, it can be set as the form which provides a pair of coil element formed by winding a coil
  • TIG welding crimping, soldering, etc.
  • the coil 2 is composed of a pair of coil elements 2a and 2b, and is arranged side by side (in parallel) so that the axes of the coil elements are parallel to each other.
  • This coil 2 (coil elements 2a, 2b) is formed by one continuous winding 2w. Specifically, after one coil element 2a is formed from one end side to the other end side, the other end On the side, the winding 2w is bent in a U shape and folded, and the other coil element 2b is formed from the other end side toward the one end side.
  • the winding directions of both coil elements 2a and 2b are the same. Both coil elements 2a and 2b are electrically connected in series.
  • both end portions of the winding 2w are drawn out from the one end side of the coil 2 (coil elements 2a, 2b) in the radial direction of the coil 2 (upward in FIG. 11).
  • the end surfaces of the coil elements 2a and 2b are rectangular with rounded corners. As described above, the end surfaces of the coil elements 2a and 2b can be selected as appropriate, such as a circular shape or a racetrack shape.
  • Inner core portions 31 are disposed inside the coil elements 2a and 2b, respectively.
  • the coil 2 has a coil molded body 20 whose surface is covered with the resin mold portion 21, and the coil 2 and the inner core portion 31 are integrally molded by the resin mold portion 21.
  • the coil 2 may have a form in which the surface thereof is not a coil molded body covered with a resin mold portion.
  • an insulating tape is attached to the outer surface (including the end surface) or the inner peripheral surface of the coil 2, or the outer surface (including the end surface) or the inner peripheral surface of the coil 2 is insulated. If the form is covered with paper or an insulating sheet, the insulation between the coil 2 and the magnetic core 3 (an inner core part 31 and an outer core part 32 described later) can be enhanced.
  • an insulator is provided on a contact portion between the coil 2 and the magnetic core 3, specifically, on the inner peripheral surface of the coil 2 or the outer surface (outer periphery or end surface) of the inner core portion 31 or on the outer surface (including the end surface) of the coil 2. It is good also as the form which arrange
  • the inner core portion 31 is a prismatic body that is disposed inside each of the coil elements 2a and 2b and extends along the inner peripheral shape of each of the coil elements 2a and 2b.
  • the inner core portion 31 is formed of a composite material molded body in which magnetic powder and a resin (millable silicone rubber) are mixed.
  • the outer core portion 32 has a block shape and is disposed at both ends of the inner core portions 31 so as to sandwich the inner core portions 31.
  • the outer core portion 32 is formed of a composite material molded body, like the inner core portion 31.
  • the outer core portion 32 is connected to the end faces 31e of the inner core portions 31, whereby the inner core portion 31 and the outer core portion 32 form an annular magnetic core 3, and the magnetic core 3 has a closed magnetic path. It is formed.
  • the inner core portion 31 and the outer core portion 32 are formed of the above-mentioned composite material, and since they themselves have adhesiveness, it is possible to connect the two by attaching the outer core portion 32 to the inner core portion 31. it can.
  • the inner core portion 31 and the outer core portion 32 may be connected by, for example, an adhesive.
  • the entire magnetic core is composed of a composite material in which magnetic powder and resin (millable silicone rubber) are mixed.
  • an inner core part and an outer core part can be comprised with the composite material from which the material and content of magnetic powder are the same or different.
  • both the inner core portion and the outer core portion may be integrally formed using a molding die, or as a composite material molded body in which the inner core portion and the outer core portion are separately molded into predetermined shapes, respectively. Also good.
  • the composite material is filled into the molding die, and the inner core portion and the outer core portion are integrated.
  • a magnetic core can be formed by molding.
  • the composite is the same as or different from the inner core portion.
  • a magnetic core can be formed by filling a mold with a material and molding an outer core portion made of a composite material.
  • the reactor includes a case, the case may be used for the mold.
  • the saturation magnetic flux density of the inner core portion is high and the relative permeability of the outer core portion is low
  • the reverse configuration that is, a configuration in which the relative permeability of the inner core portion is low and the saturation magnetic flux density of the outer core portion is high
  • Increasing the blending amount of the magnetic powder in the composite material makes it easy to obtain a composite material having a high saturation magnetic flux density and a high relative magnetic permeability, and reducing the blending amount reduces the composite material having a low saturation magnetic flux density and a low relative magnetic permeability. Is easy to obtain.
  • the saturation magnetic flux density and the relative magnetic permeability can be adjusted by changing the content of the magnetic powder, and a composite material having desired characteristics can be easily obtained.
  • one of the inner core portion 31 and the outer core portion 32 may be formed of a powder compact, or may be formed of a composite material in which magnetic powder and a resin (such as an epoxy resin) are mixed. May be.
  • a part of the magnetic core (for example, the inner core part) is made of a magnetic material having a high relative permeability such as a compacted body or a laminate of electromagnetic steel sheets, as described in the fifth embodiment, they are adjacent to each other.
  • a gap material may be interposed between the core pieces or between the core portions.
  • Embodiment 7 is a form including a case 4 in which the assembly of the coil 2 and the magnetic core 3 is accommodated in the reactor 1A of Embodiment 6 described above.
  • the case 4 is filled with the sealing resin 6, and the assembly of the coil 2 and the magnetic core 3 is sealed with the sealing resin 6. Also good.
  • the coil 2 (coil molded body 20) and the magnetic core 3 (outer core portion 32) can be covered with the sealing resin 6, and these members can be protected from the external environment and mechanical stress.
  • the sealing resin 6 for example, an epoxy resin, a polyurethane resin, a silicone resin, an unsaturated polyester resin, a PPS resin, or the like can be suitably used. From the viewpoint of improving heat dissipation, the sealing resin 6 may be mixed with a high ceramic filler such as alumina or silica that has excellent thermal conductivity.
  • Embodiments 1 to 7 [Converters, power converters]
  • the reactors of Embodiments 1 to 7 according to the present invention described above can be used, for example, as a component part of a converter mounted on a vehicle or the like, or a component part of a power conversion device including this converter.
  • a vehicle 1200 such as a hybrid vehicle or an electric vehicle is driven by a main battery 1210, a power converter 1100 connected to the main battery 1210, and power supplied from the main battery 1210, as shown in FIG. A motor (load) 1220 used.
  • the motor 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration.
  • the vehicle 1200 includes an engine in addition to the motor 1220.
  • an inlet is shown as a charge location of the vehicle 1200, the form which provides a plug may be sufficient.
  • the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L.
  • the converter 1110 repeats ON / OFF (switching operation) to change the input voltage. Conversion (step-up / step-down in this case) is performed.
  • a power device such as an FET or an IGBT is used.
  • the reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that tends to prevent the change of the current to flow through the circuit.
  • the reactor L includes the reactors of the first to seventh embodiments. By including the reactor 1a capable of reducing noise caused by vibration, the power conversion device 1100 and the converter 1110 are excellent in quietness.
  • Vehicle 1200 is connected to converter 1110, power supply converter 1150 connected to main battery 1210, sub-battery 1230 as a power source for auxiliary devices 1240, and main battery 1210.
  • Auxiliary power converter 1160 for converting high voltage to low voltage is provided.
  • the converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some converters 1150 for power feeding devices perform DC-DC conversion.
  • the reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 have the same configuration as the reactors of the first to seventh embodiments, and a reactor whose size and shape are appropriately changed can be used.
  • the reactors of the first to seventh embodiments can also be used for converters that perform input power conversion and that only perform step-up or converters that perform only step-down.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
  • the composition of the composite material the content of magnetic powder and resin (millable silicone rubber), etc.
  • the material and particle size of the magnetic powder the shape and size of the coil and magnetic core.
  • Appendix 3 A magnetic component comprising a coil and a magnetic member on which the coil is disposed, wherein at least a part of the magnetic member is made of the composite material according to appendix 1.
  • the magnetic component examples include a reactor, a choke coil, a transformer, a magnetic sensor, a current sensor, an electromagnetic wave noise countermeasure component (for example, an electromagnetic wave absorbing sheet), and the like.
  • the composite material molded body may be used as a part of a magnetic core of a choke coil, a transformer, a magnetic sensor, or a current sensor, or a composite material molded into a sheet shape may be used for an electromagnetic wave absorbing sheet. It is done.
  • the resin of the composite material is a millable silicone rubber, as described above, it is easy to realize the intended magnetic characteristics and manufacture. High nature.
  • the resin of the composite material is a millable silicone rubber
  • the composite material can absorb vibrations to reduce noise due to vibrations, or even if a difference in thermal expansion coefficient occurs between the magnetic powder and the resin. By deforming, it is possible to suppress the occurrence of cracks in the composite material.
  • the reactor of the present invention can be used for components of power conversion devices such as DC-DC converters and air conditioner converters mounted on vehicles such as hybrid vehicles, plug-in hybrid vehicles, electric vehicles, and fuel cell vehicles.
  • the core part for reactors of this invention can be utilized for the magnetic core provided in a reactor.

Abstract

 本発明のリアクトル1aは、巻線2wを巻回して形成した筒状のコイルを樹脂モールド部21によって覆ったコイル成形体20と、コイルの内外に配置されて閉磁路を形成する磁性コア3とを具える。磁性コア3は、コイルの内側に配置される内側コア部31と、コイルの外周側に配置される外側コア部32とを具え、外側コア部32は、連結コア部32cと端部コア部32eとを有する。そして、磁性コア3の少なくとも一部(連結コア部32c)は、磁性粉末とミラブル型シリコーンゴムとを混合した複合材料で構成されている。

Description

リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア部品
 本発明は、ハイブリッド自動車や電気自動車などの駆動源に電力を利用する車両に搭載される車載用DC-DCコンバータといった電力変換装置の構成部品などに利用されるリアクトル、このリアクトルを具えるコンバータ及びこのコンバータを具える電力変換装置、並びにリアクトルに具える磁性コアを構成するリアクトル用コア部品に関する。特に、製造性が高く、振動による騒音を低減することができるリアクトルに関する。
 電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。例えば特許文献1、2には、ハイブリッド自動車などの車両に搭載されるコンバータに利用されるリアクトルが開示されている。リアクトルは、巻線を巻回してなる筒状のコイルと、コイルの内外に配置されて閉磁路を形成する磁性コアとを具える。磁性コアの形状としては、複数のコア部品を組み合わせて環状コアとしたり、複数のコア部品を組み合わせてポット型コアとすることが挙げられる。磁性コアを構成するコア部品には、電磁鋼板を積層した積層鋼板、表面に絶縁被膜を有する磁性粉末を加圧成形した圧粉成形体、磁性粉末とバインダとなる樹脂とを混合した複合材料などが利用されている。特許文献1、2では、磁性コアのうち、コイルの外側を覆う箇所を磁性粉末と樹脂との混合物(複合材料)により形成している。
 また、リアクトルは、例えばケースに収納され、コンバータケースに収容されて固定される。
特開2011-124310号公報 特開2011-199257号公報
 一般的に複合材料の樹脂には、エポキシ樹脂やシリコーン樹脂が用いられており、磁性コアの一部をこのような樹脂を含む複合材料で形成した場合、次のような問題がある。
 従来では、磁性コアの一部を複合材料で形成する際、磁性粉末と流動性のある上記樹脂とを混合し、この混合流体を成形型(ケース)に注入して、成形・硬化させている。硬化前は、樹脂が流動性のある液状のため、磁性粉末が沈降したりするなど、磁性粉末を均一に分散させた状態で硬化させることが難しい。そのため、複合材料における磁性粉末の分布が不均一になり、設計値通りのインダクタンスを実現することが難しくなる場合がある。このような磁性粉末の分布が不均一になる問題を解消するため、例えば、非磁性粉末のフィラーを混合流体に添加して磁性粉末の沈降を抑制したり、混合流体を少量ずつ注入し、複数回に分けて硬化させて形成することが考えられるが、製造性の低下を招く。
 また、リアクトルでは、コイルへの通電時に振動し、磁性コアからケースなどの別の構成部材に振動が伝わって、振動に起因する騒音が発生する虞がある。さらに、通電時にリアクトルが高温になることから、磁性粉末と樹脂の熱膨張係数差に起因して、複合材料にクラックが生じる虞がある。
 そこで、本発明の目的の一つは、製造性が高く、振動による騒音を低減することができるリアクトル及びリアクトル用コア部品を提供することにある。また、本発明の別の目的は、このリアクトルを具えるコンバータ及びこのコンバータを具える電力変換装置を提供することにある。
 本発明は、複合材料のバインダとなる樹脂にミラブル型シリコーンゴムを用いることで上記目的を達成する。
 本発明のリアクトルは、筒状のコイルと、このコイルの内外に配置されて閉磁路を形成する磁性コアとを具える。上記磁性コアの少なくとも一部は、磁性粉末と樹脂とを混合した複合材料で構成されている。そして、上記樹脂は、ミラブル型シリコーンゴムであることを特徴とする。
 本発明のリアクトル用コア部品は、リアクトルに具える磁性コアを構成するものである。そして、本発明のリアクトル用コア部品は、磁性粉末と樹脂とを混合した複合材料で構成され、樹脂がミラブル型シリコーンゴムであることを特徴とする。
 本発明のリアクトル及びリアクトル用コア部品によれば、複合材料の樹脂がミラブル型シリコーンゴムであるので、硬化前では流動性が低く、従来用いられていた樹脂に比較して高い粘性を有しているため、磁性粉末と上記樹脂(ゴム)とを混練した後に磁性粉末が沈降などし難く、複合材料中に磁性粉末を均一に分散させた状態を維持することができる。よって、設計値通りのインダクタンスを実現しながら、製造性が高い。また、複合材料における樹脂がゴムであるので、硬化後であっても弾性を有し、軟らかいため、複合材料が振動を吸収して、振動による騒音を低減することができる。また、磁性粉末と樹脂との間で熱膨張係数差が生じても、樹脂が変形することにより、複合材料にクラックが生じることを抑制できる。さらに、複合材料の樹脂がミラブル型シリコーンゴムであれば、耐熱性が高く、高温でも劣化し難い。
 上記複合材料で磁性コアの少なくとも一部を形成する場合、磁性コアのうち、コイルの外側に配置される箇所(即ち、コイルから露出する部分)の少なくとも一部をこの複合材料で形成してもよいし、コイルの内側に配置される箇所をこの複合材料で形成してもよく、磁性コア全体をこの複合材料で形成することも可能である。
 本発明では、複合材料のバインダとなる樹脂として、実質的にミラブル型シリコーンゴムを使用している。複合材料におけるミラブル型シリコーンゴムは、硬化後の伸び率100%以上の弾性を有するゴム(高分子ポリマー)であり、室温(25℃)でのヤング率が0.1~50MPa程度である。この範囲を満たすことで、複合材料としての形状を保持しながら、振動吸収効果やクラック抑制効果が得られる。これに対し、従来の複合材料に用いられている樹脂は、硬化後のヤング率が、エポキシ樹脂の場合、3.0~30GPa程度である。また、硬化後のミラブル型シリコーンゴムは、重合度3000~10000の線状ポリマーを主成分とし、他方、従来の硬化後のシリコーン樹脂は、重合度100~2000の線状ポリマーを主成分とする。
 複合材料は、磁性粉末と硬化前のミラブル型シリコーンゴムとを配合し、混練することにより得ることができる。また、鎖状高分子間を架橋して弾性や強度を向上させるために、硬化剤(加硫剤)を添加し、加熱することにより硬化させる。加硫剤としては、例えばパーオキサイド系の加硫剤を用いることができる。硬化温度は、通常、150~200℃、硬化時間は、通常、5~60分間である。ただし、加硫剤を添加した場合は、硬化後に低分子シロキサンがゴム成分内に残留することから、低分子シロキサンを除去するために、硬化後に熱処理を施すことが好ましい。低分子シロキサンは、接点障害の原因となることが知られており、複合材料に低分子シロキサンが残留していると、複合材料から低分子シロキサンが発生し、リアクトルの周囲に配置された電子部品などに接点障害などの不具合を生じさせる虞がある。そこで、複合材料の低分子シロキサン量を低減することで、低分子シロキサンの発生を抑制し、接点障害などの不具合を回避することができる。また、熱処理により、架橋を促進させることができ、強度をより高めることができる。
 磁性コアにおけるコイルの外側に配置される箇所を複合材料で形成する場合、例えば、成形型(ケース)の所定の位置にコイルを配置した状態で、磁性粉末とミラブル型シリコーンゴムとを混合した複合材料を充填することで形成したり、或いは、コイルの外側に複合材料を貼り付けることで形成することが挙げられる。前者の場合、複合材料を充填した後、硬化させる。後者の場合、硬化前の複合材料を貼り付けた後、硬化させてもよいし、硬化成形後の複合材料を貼り付けてもよい。また、リアクトル用コア部品は、例えば、複合材料を金型に押し付けて所定の形状にプレス成形した複合材料の成形体とすることが挙げられる。成形方法には、コンプレッション成形、インジェクション成形、トランスファー成形や、押出成形なども利用することができる。この場合、成形と同時に硬化させることができる。上記熱処理は、複合材料をコイルに配置(取り付け)して複合材料で磁性コアの一部を形成した後に行ってもよいし、複合材料の成形体に対して行ってもよい。
 上記熱処理としては、例えば、150℃以上220℃以下に加熱した状態で30分以上4時間以下に保持することが挙げられる。加熱温度を150℃以上及び保持時間を30分以上とすることで、複合材料に残存する低分子シロキサンを低減する効果が得られ易い。また、加熱温度を220℃以下とすることで、コイルなどの他の構成部材も含めて熱処理する場合に、他の構成部材に与える影響を抑制することができる。一方、製造効率の観点から、保持時間は4時間以下とすることが好ましい。
 本発明のリアクトル及びリアクトル用コア部品の一形態としては、複合材料中の磁性粉末の含有量が、30体積%以上75体積%以下であることが挙げられる。
 複合材料を100%とするとき、磁性粉末の含有量が30体積%以上であることで、飽和磁束密度などの磁気特性を確保し易い。一方、磁性粉末の含有量が75体積%以下であることで、樹脂(ミラブル型シリコーンゴム)との混合が行い易く、製造性を高めることができ、また、磁性粉末を均一に分散させ易い。複合材料中の磁性粉末の含有量は、下限がより好ましくは40体積%以上であり、上限がより好ましくは65体積%以下であり、更に好ましくは60体積%以下である。例えば磁性粉末として鉄を主成分とする磁性粉末を用いた場合、複合材料中の磁性粉末の含有量を30体積%以上とすることで、0.6T以上の飽和磁束密度を得易く、40体積%以上とすることで、0.8T以上の飽和磁束密度を得易い。一方、複合材料中の磁性粉末の含有量を65体積%以下とすることで、磁性粉末と樹脂との混合がより行い易く、かつ、磁性粉末をより均一に分散させ易い。さらに、60体積%以下とすることで、磁性粉末と樹脂との混合がより一層行い易く、かつ、磁性粉末をより一層均一に分散させ易い。
 本発明のリアクトルの一形態としては、コイルが、横並びに配置された一対のコイル素子を具えることが挙げられる。
 この形態によれば、巻線を螺旋状に巻回してコイル(コイル素子)を形成した場合、直線状の一つのコイル素子で構成されたコイルに比較して、同じ巻数(ターン数)とするとき、コイル(両コイル素子)の一端側から他端側までの長さを短くできる。したがって、リアクトルの小型化を図ることができる。
 本発明のリアクトルの一形態としては、磁性コアのうち、コイルの外側に配置される箇所の少なくとも一部が、上記複合材料で構成されていることが挙げられる。
 この場合、複合材料をコイルの外側に貼り付けたり、配置することで、磁性コアの一部(コイルの外側の配置される箇所)を形成することができる。ここで、磁性コアのうち、コイルの外周側に配置される箇所は、例えば、複合材料をコイルの外周側に貼り付けたり、複合材料を予め筒状に成形した筒状体をコイルの外周側に装着することで形成することも可能である。一方、磁性コアのうち、コイルの内側に配置される箇所を複合材料で形成してもよく、この場合、例えば、複合材料を柱状に成形した柱状体をコイルの内側に挿通することで形成することが可能である。このように、複合材料で筒状体や柱状体のコア部品を予め作製しておくことで、リアクトルの製造工程を簡略化することができる。また、磁性コアにおいて、コイルの外側に配置される箇所(以下、外側コア部と呼ぶ)が上記複合材料で構成されていることで、外側コア部からケースなどの別の構成部材に伝わる振動を外側コア部自体が吸収して、振動に起因する騒音を効果的に低減することができる。
 本発明のリアクトルの一形態としては、磁性コアのうち、コイルの内側に配置される箇所が、圧粉成形体で構成されていることが挙げられる。
 この形態によれば、磁性コアにおいて、コイルの内側に配置される箇所(以下、内側コア部と呼ぶ)が圧粉成形体で構成され、コイルの外側に配置される箇所の少なくとも一部が上記複合材料で構成されていることで、内側コア部の飽和磁束密度が外側コア部よりも高くなるように設計し易い。内側コア部の飽和磁束密度を高くすることで、内側コア部の断面積を小さくできるため、リアクトルを小型にすることができる。また、外側コア部の比透磁率が内側コア部よりも低くなるように設計し易く、外側コア部の比透磁率を低くすることで、磁性コア全体の比透磁率を調整して、例えば、磁性コアをギャップレス構造とすることができる。ギャップレス構造とすることで、漏れ磁束を低減することができる。
 本発明のリアクトルの一形態としては、磁性コアの全体が、上記複合材料で構成されていることが挙げられる。
 この形態によれば、外側コア部だけでなく、内側コア部も上記複合材料で構成されていることで、内側コア部からコイルを介してケースなどの別の構成部材に伝わる振動を内側コア部自体が吸収して、振動に起因する騒音をより効果的に低減することができる。また、磁性コアの材料として上記複合材料のみを用いることから、別の材料を用いる必要がなく、製造コストの削減を図ることが可能である。
 本発明のリアクトルは、コンバータの構成部品に好適に利用することができる。本発明のコンバータは、上記した本発明のリアクトルを具える。コンバータとしては、スイッチング素子と、スイッチング素子の動作を制御する駆動回路と、スイッチング動作を平滑にするリアクトルとを具え、スイッチング素子の動作により、入力電圧を変換する形態が挙げられる。
 また、本発明のコンバータは、電力変換装置の構成部品に好適に利用することができる。本発明の電力変換装置は、上記した本発明のコンバータを具える。電力変換装置としては、入力電圧を変換するコンバータと、コンバータに接続されて、直流と交流とを相互に変換するインバータとを具え、このインバータで変換された電力により負荷を駆動する形態が挙げられる。
 本発明のコンバータ及び電力変換装置は、振動による騒音を低減することが可能な上記した本発明のリアクトルを具えることで、静粛性に優れ、車載部品などに好適に利用することができる。
 本発明のリアクトル及びリアクトル用コア部品は、複合材料の樹脂がミラブル型シリコーンゴムであるので、製造性が高い。また、本発明のコンバータ及び電力変換装置は、上記した本発明のリアクトルを具えることで、低コスト化が求められる車載部品などに好適に利用することができる。
実施形態1に係るリアクトルの概略斜視図である。 実施形態1に係るリアクトルの概略分解斜視図である。 実施形態1に係るリアクトルに具えるコイル成形体の概略斜視図である。 実施形態2に係るリアクトルの概略斜視図である。 実施形態2に係るリアクトルの概略分解斜視図である。 実施形態2に係るリアクトルに具えるコイル成形体の概略斜視図である。 実施形態3に係るリアクトルの概略斜視図である。 実施形態3に係るリアクトルの概略分解斜視図である。 実施形態3に係るリアクトルに具えるコイル成形体の概略斜視図である。 実施形態6に係るリアクトルの概略斜視図である。 実施形態6に係るリアクトルの概略分解斜視図である。 実施形態7に係るリアクトルの概略斜視図である。 ハイブリッド自動車の電源系統を模式的に示す概略構成図である。 本発明コンバータを具える本発明電力変換装置の一例を示す概略回路図である。
 以下、図面を参照して、本発明の実施形態を説明する。図中の同一符号は同一名称物を示す。なお、以下の説明では、リアクトルを設置対象に設置したときに設置側を下側、その対向側(反対側)を上側として説明する。
 《実施形態1》
 図1~図3を参照して、実施形態1に係るリアクトルを説明する。リアクトル1aは、巻線2wを巻回してなるコイル2(図3参照)と、コイル2の内外に配置されて閉磁路を形成する磁性コア3とを具える。リアクトル1aは、代表的には、冷却ベースなどの設置対象に設置して使用され、必要に応じてケース(図示せず)に収納する。冷却ベースは、代表的には、冷却水などの流動性のある冷媒が循環される循環経路などといった冷却機構を具える。磁性コア3は、コイル2の内側に配置される柱状の内側コア部31と、コイル2の外側に配置される外側コア部32とを具える。このリアクトル1aの特徴とするところは、磁性コア3の少なくとも一部が、磁性粉末と樹脂とを混合した複合材料で構成されており、この樹脂がミラブル型シリコーンゴムである点にある。以下、各構成部材をより詳細に説明する。
 [コイル]
 コイル2は、図3に示すように、1本の連続する巻線2wを螺旋状に巻回してなる筒状体であり、一つのコイル素子で構成されている。巻線2wは、銅やアルミニウム、その合金といった導電性材料からなる導体の外周に、絶縁性材料(代表的にはポリアミドイミドといったエナメル材料)からなる絶縁被覆を具える被覆線が好適である。導体は、断面形状が長方形状である平角線、円形状である丸線、多角形状である異形線などの種々の形状のものを利用できる。ここでは、コイル(コイル素子)2は、導体が銅製の平角線からなり、絶縁被覆がエナメルからなる被覆平角線をエッジワイズ巻きにして形成されたエッジワイズコイルである。エッジワイズコイルは、占積率を高めて小型なコイルとし易く、リアクトルの小型化に寄与する。
 コイル2の端面形状(=コイル2の軸に直交する方向の断面形状)は、図3に示すように、円形状が代表的である。円筒状のコイルは、巻線に平角線を用いた場合でも巻回し易く、コイルの製造性に優れる上に、小型なコイルにし易い。コイル2の端面形状は、非円形状とすることも可能である。例えば、楕円などの実質的に曲線のみからなる形状、多角形(例えば、長方形など)の各角部を丸めた形状や直線と円弧とを組み合わせてなるレーストラック形状といった直線と曲線とを組み合わせてなる形状などが挙げられる。
 コイル2を形成する巻線2wの両端部は、図1などに示すように、ターン部分から適宜引き延ばされて外側コア部32から引き出されており、絶縁被覆が剥がされて露出した導体に銅やアルミニウムなどの導電性材料からなる端子部材(図示せず)が接続される。この端子部材を介して、コイル2に電力供給を行う電源などの外部装置(図示せず)が接続され、コイル2への通電可能となる。巻線2wの導体と端子部材との接続には、TIG溶接などの溶接、圧着などが利用できる。ここでは、巻線2wの両端部がコイル2の一端側において、コイル2の軸方向に平行に引き出されるように、巻線2wの両端部を折り曲げている。なお、巻線2wの両端部の引き出し方向は一例であり、適宜変更することが可能である。
 リアクトル1aは、冷却ベースやケースなどの設置対象に設置したとき、設置対象の設置面に対してコイル2の軸方向が略平行となるように横置き(横型配置形態)としたり、設置対象の設置面に対してコイル2の軸方向が略直交となるように縦置き(縦型配置形態)とすることができる。
 [コイル成形体]
 コイル2は、そのままでも利用できるが、ここでは、コイル2の表面を絶縁性樹脂からなる樹脂モールド部21によって覆ったコイル成形体20としている。樹脂モールド部21は、コイル2を一定の形状に保持する機能を有しており、リアクトルの組み立て時などにおいて、コイル2が伸縮せず、コイル2の取り扱いが容易になる。また、樹脂モールド部21は、コイル2とその周辺に配置される他の構成部材(磁性コア3)との間の絶縁性を高める機能を有する。
 樹脂モールド部21は、図1などに示すように、コイル2を形成する巻線2wにおける磁性コア3と接触する箇所に設けられており、巻線2wのターン部分全体(内周面及び外周面、並びに両端面)と巻線2wの両端部(外側コア部32から引き出される部分を除く)とを覆う。ただし、樹脂モールド部21によるコイル2の被覆領域は適宜選択することが可能である。例えば、巻線2wのターン部分の一部が樹脂モールド部21によって覆われず、露出した形態とすることができる。しかし、本例のように、巻線2wのターン部分の表面全体を実質的に樹脂モールド部21によって被覆した形態とすると、コイル2と内側コア部31との間やコイル2と外側コア部32との間に絶縁性樹脂を確実に介在させることができ、コイル2に対する絶縁性を高められる。
 この樹脂モールド部21は、コイル2と内側コア部31とを一体に保持する機能を有し、コイル成形体20は、コイル2と内側コア部31とが樹脂モールド部21によって一体にモールドされている。このようなコイル成形体20を利用することで、リアクトル1aの組み立てにあたり、部品点数を削減でき、組立作業性に優れる。また、コイル2の内周面と内側コア部31の外周面との間に介在する樹脂モールド部21の厚さを調整することで、絶縁性の向上の他、コイル2に対する内側コア部31の位置決めも行うことができる。ここでは、コイル2と内側コア部31との間に介在する樹脂モールド部21の厚さが均一的であり、この絶縁性樹脂によって、コイル2と内側コア部31とが同軸に配置されている。また、コイル2の外周面や端面を覆う樹脂モールド部21の厚さも概ね均一的である。
 樹脂モールド部21の厚さは、適宜選択することができ、例えば、0.1mm~10mm程度が挙げられる。樹脂モールド部21の厚さは、厚いほど絶縁性の向上を図ることができ、薄いほど放熱性の向上を図ることができ、0.1mm~3mm程度が好ましい。ここでは、樹脂モールド部21の外形をコイル2の外形に沿った形状、つまり、コイル2と相似形状としており、絶縁性樹脂は、コイル成形体20の全体に亘って、実質的に均一な厚さで存在する。なお、所望の機能(絶縁特性、形状保持など)を満たせば、樹脂モールド部21の厚さが部分的に異なっていてもよい。例えば、コイル2が円筒状で、樹脂モールド部21の外形を角柱状などとすることができる(この場合、角部における絶縁性樹脂の厚さが厚くなり易い)。
 また、樹脂モールド部21は、必要に応じて、コイル2を自由長よりも圧縮した状態に保持する機能を有するため、コイル2の長さを自然長よりも短くでき、リアクトルの小型化に寄与する。
 その他、内側コア部31の両端面31e及びその近傍が樹脂モールド部21によって覆われず露出しており、内側コア部31の両端面31eが外側コア部32に接する形態としているが、内側コア部31の少なくとも一方の端面31eが樹脂モールド部21によって覆われた形態とすることができる。このとき、内側コア部31の端面31eを覆う樹脂モールド部21は、ギャップとして機能する。
 樹脂モールド部21を形成する絶縁性樹脂は、コイル2と磁性コア3との間を十分に絶縁可能な程度の絶縁特性と、リアクトル1aの使用時における最高到達温度に対して軟化しない程度の耐熱性とを有し、トランスファー成形や射出成形などが可能な樹脂が好適に利用できる。例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどの熱硬化性樹脂や、ポリフェニレンスルフィド(PPS)樹脂、液晶ポリマー(LCP)などの熱可塑性樹脂が好適に利用できる。また、樹脂モールド部21には、窒化珪素、アルミナ、窒化アルミニウム、窒化ほう素、及び炭化珪素から選択される少なくとも1種のセラミックスからなるフィラーを絶縁性樹脂に混合したものを利用すると、絶縁性に優れる上に放熱性にも優れる。例えば、熱伝導率が1W/m・K以上、更に2W/m・K以上を満たすものが放熱性に優れて好ましい。ここでは、樹脂モールド部21にフィラーを含有したエポキシ樹脂(熱伝導率:2W/m・K)を利用している。
 樹脂モールド部21を具えるコイル成形体20の製造には、例えば、特開2009-218293号公報に記載された製造方法を利用することができ、射出成形やトランスファー成形、注型成形などの種々の成形方法を利用することができる。成形用金型には、コイル2と共に内側コア部31を配置することで、コイル2、樹脂モールド部21及び内側コア部31を具えるコイル成形体20を製造することができる。なお、内側コア部31を有していないコイル成形体、つまり、コイル2と樹脂モールド部21とを具えるコイル成形体とすることができる。この場合、内側コア部31に代わって中子を利用して、コイル成形体を製造するとよい。このコイル成形体では、コイル2の内側に設ける樹脂モールド部21の厚さを調整することで、上述のように当該樹脂モールド部21を内側コア部31の位置決めに利用できる。
 コイル2における巻線2wのターン部分から引き延ばされた巻線2wの端部(引出箇所)には、ターン部分に比較して、高電圧が加わる場合がある。よって、巻線2wの引出箇所のうち、少なくとも磁性コア3(外側コア部32)との接触箇所には、樹脂モールド部21で覆ったり、絶縁紙や絶縁テープ(例えば、ポリイミドテープ)、絶縁フィルム(例えば、ポリイミドフィルム)などの絶縁材を適宜巻き付けたり、絶縁材をディップコーティングしたり、絶縁性チューブ(熱収縮チューブ及び常温収縮チューブのいずれでもよい)を配置したりすると、コイル2と磁性コア3(特にここでは外側コア部32)との間の絶縁性を高められる。
 [磁性コア]
 磁性コア3は、図1、図2に示すように、筒状のコイル2の内側に挿通された柱状の内側コア部31と、内側コア部31の少なくとも一方の端面31e(ここでは両端面)及びコイル2の外周側に配置された外側コア部32とを具え、コイル2を励磁した際に閉磁路を形成する。リアクトル1aでは、磁性コア3の少なくとも一部(この例では、磁性コア3のうち、コイル2の外周側に配置される外側コア部32の少なくとも一部)が、磁性粉末と樹脂とを混合した複合材料で構成されている。また、この複合材料の樹脂には、ミラブル型シリコーンゴムが用いられている。
 (内側コア部)
 内側コア部31は、コイル2の内周形状に沿った円柱体である。内側コア部31は、コイル2の軸方向の長さよりも若干長く、コイル2内に挿通配置された状態において、内側コア部31の両端面31e及びその近傍の外周面がコイル2の端面から若干突出しており、この状態が樹脂モールド部21によって維持されている。内側コア部31において、コイル2の各端面から突出する長さ(以下、突出長さと呼ぶ)は、適宜選択することができる。ここでは、突出長さを等しくしているが、異ならせてもよいし、コイル2のいずれか一方の端面からのみ突出部分が存在するように、内側コア部の長さやコイルに対する内側コア部の配置位置を調整することができる。例えば、内側コア部31の一端面側の突出長さを長くして、この一端面が外側コア部32から露出した形態とすることができる。内側コア部の長さとコイルの長さとが等しい形態、内側コア部の長さがコイルの長さよりも短い形態とすることもできるが、内側コア部31の長さがコイル2の長さと同等以上であると、コイル2がつくる磁束を内側コア部31に十分に通過させることができて好ましい。
 磁性コア3は、その全体が一様な材質から構成される形態としたり、部分的に材質が異なる形態とすることができる。ここでは、磁性コア3は部分的に材質が異なる形態としており、内側コア部31が圧粉成形体で構成されている。
 圧粉成形体は、代表的には、軟磁性材料(例えば、鉄基材料(鉄族金属や鉄合金)、希土類金属など)からなる軟磁性粒子の表面に絶縁材料(例えば、シリコーン樹脂やリン酸塩など)からなる絶縁被覆を具える軟磁性粉末や、この軟磁性粉末に加えて適宜結合剤(例えば、熱可塑性樹脂などの樹脂や高級脂肪酸など)を混合した混合粉末を加圧成形後、適宜熱処理を施すことで製造することができる。熱処理によって成形時に軟磁性粒子に導入された歪みを除去することができ、低損失な圧粉成形体とすることができる。熱処理温度は、高いほど歪みを除去できるが、絶縁被覆を熱により損傷しない温度以下が好ましい。上記結合剤は、この熱処理により消失したり、シリカなどの絶縁物に変化したりする。上記製造方法によって、軟磁性粒子の周囲が絶縁被覆(例えば、リン酸化合物、珪素化合物、ジルコニウム化合物、アルミニウム化合物、硼素化合物など)で覆われ、当該粒子間に絶縁物が介在する圧粉成形体が得られる。絶縁被覆を具える圧粉成形体は、絶縁性に優れ、渦電流損を低減することができる。軟磁性材料をフェライトとする場合、絶縁被覆を具えていなくても、絶縁性に優れる。
 圧粉成形体は、複雑な立体形状であっても比較的容易に成形可能である上に、外側コア部32を構成する複合材料よりも飽和磁束密度を高め易い。例えば、軟磁性材料の材質や、軟磁性粉末と結合剤との混合比、絶縁被覆を含む種々の被膜の量などを調整したり、成形圧力を調整したりすることで、圧粉成形体の磁気特性(特に、飽和磁束密度)を変化させることができる。飽和磁束密度が高い軟磁性粉末(フェライトよりも鉄基材料が好ましい)を用いたり、結合剤の配合量などを低減して軟磁性材料の割合を高めたり、成形圧力を高くしたりすることで、飽和磁束密度が高い圧粉成形体が得られる。圧粉成形体には、公知のものを利用することができる。圧粉成形体における磁性粉末の含有量は、圧粉成形体を100%とするとき、体積割合で75体積%超が望ましく、80体積%以上がより望ましい。
 柱状の内側コア部31は、所望の形状の金型を用いて成形した一体物としたり、圧粉成形体からなる複数のコア片を積層した積層体としたりすることができる。積層体は、接着剤や接着テープなどで固定して一体物とすることができる。ここでは、内側コア部31は、ギャップ材やエアギャップが介在していない中実体である。ギャップを有さないことで小型にできる上に、ギャップ部分の漏れ磁束がコイル2に影響を及ぼさないため、コイル2と内側コア部31とを近接でき(樹脂モールド部21の厚さを薄くでき)、この点からもリアクトル1aを小型にできる。さらに、ギャップの省略により、損失の低減や、大電流の通電時におけるインダクタンスの低下の低減を図ることができる。なお、磁性コア3は、アルミナ板などの非磁性材料からなるギャップ材やエアギャップを介在した形態とすることができる。
 (外側コア部)
 外側コア部32は、図1、図2に示すように、コイル成形体20(具体的には、コイル2の端面を覆う樹脂モールド部21から構成される両端面及びコイル2の外周面を覆う樹脂モールド部21から構成される外周面、内側コア部31の両端面31e及びその近傍)を覆っている。外側コア部32は、連結コア部32cと、端部コア部32eとを有する。連結コア部32cは、コイル2の外周面を覆う樹脂モールド部21から構成される外周面に配置される。端部コア部32eは、コイル2の端面を覆う樹脂モールド部21から構成される両端面及び内側コア部31の両端面31e及びその近傍に配置される。そして、外側コア部32の一部が内側コア部31の両端面31eに連結するように設けられていることで、磁性コア3は閉磁路を形成する。
 この外側コア部32(連結コア部32c及び端部コア部32e)は、磁性粉末と樹脂とを混合した複合材料で構成されている。
 複合材料を構成する樹脂は、ミラブル型シリコーンゴムであり、バインダとして機能する。この複合材料は、代表的には、磁性粉末と硬化前のミラブル型シリコーンゴムとを配合し、混練した後、硬化させることにより得ることができる。
 連結コア部32cは、磁性粉末とミラブル型シリコーンゴムとを混練した複合材料をコイル成形体20の外周面に貼り付けることで形成している。具体的には、図2に示すように、コイル成形体20の外周面下側が露出するように、複合材料を巻き付けることで形成した。コイル成形体20の外周面の一部(ここでは下側)が露出するように連結コア部32cを形成することで、この面から放熱対象に放熱し易くして、コイル2からの放熱性を向上させることができる。このとき、複合材料を硬化前の状態でコイル成形体20の外周面に貼り付けた後、硬化させてもよいし、複合材料を硬化成形した後、コイル成形体20の外周面に貼り付けてもよい。また、複合材料の内周面には、コイル成形体20の外形(コイル2の軸に直交する方向の断面外形)に応じた凹凸が設けられており、コイル成形体20の外周面とこの面に接する連結コア部32cの内周面との間に隙間が形成されないよう密着させている。或いは、コイル成形体20の外形が平滑となるようにコイル成形体20の外周面の凹部を複合材料で埋めた後、その上から更に複合材料を巻き付けて連結コア部32cを形成することで、コイル成形体20と連結コア部32cとの間に隙間が形成されないようにしてもよい。ここでは、連結コア部32cが1つの複合材料で形成されているが、軸方向や周方向に分割されていてもよく、軸方向に分割する場合、複合材料が軸方向に連結するように接着剤やプライマー、接着テープなどで接続するとよい。一方、周方向に分割する場合は、コイル成形体20の外形に合わせて複合材料を密着するように配置し易く、周方向に隣り合う複合材料同士を接続しても接続しなくてもよい。連結コア部32cの厚さは、例えば平均で2mm以上20mm以下とすることが挙げられる。
 複合材料は、それ自体が樹脂(ミラブル型シリコーンゴム)による粘着性を有することから、コイル成形体20の外周面に貼り付けることで、連結コア部32cを形成することが可能であるが、連結コア部32cをコイル成形体20に密着固定するため、接着剤やプライマー、接着テープなどで固定してもよい。その他、連結コア部32cの周囲をバンドなどで締め付けて固定してもよい。また、連結コア部32cは、コイル2の軸方向の長さよりも若干短く、コイル成形体20の外周面に配置された状態において、コイル成形体20の両端面及びその近傍の外周面が連結コア部32cの端面から若干突出している。
 端部コア部32eは、上記複合材料を金型に押し付けて所定の形状にプレス成形した複合材料の成形体(リアクトル用コア部品)である。成形方法には、コンプレッション成形、インジェクション成形、トランスファー成形や、押出成形なども利用することができる。端部コア部32eは、略円板状に成形されている。端部コア部32eにおけるコイル成形体20の端面及び内側コア部31の端面31eに対向する内面には、図2に示すように、内側コア部配置溝321、並びに、コイル配置溝322が形成されている。内側コア部配置溝321には、コイル2(コイル成形体20)の端面から突出する内側コア部31の突出部分が嵌合される。コイル配置溝322には、連結コア部32cの端面から突出するコイル成形体20の突出部分が嵌合される。これにより端部コア部32eの位置決めが行い易く、組立作業性に優れる。また、コイル成形体20の一端側(即ち、巻線2wの両端部が引き出される側)に配置される端部コア部32eには、巻線2wの両端部を引き出すための引出孔323が設けられている。連結コア部32cも端部コア部32eと同様に、所定の形状(例えば略筒状)にプレス成形した複合材料の成形体としてもよい。
 ここでは、図1、図2に示すように、連結コア部32cの両端面と端部コア部32eの内面縁部とを連結するように接続することで一体化しており、連結コア部32cと端部コア部32eの外形(コイル2の軸に直交する方向の断面外形)が一致している。別の形態としては、連結コア部32cの少なくとも一方の端部をコイル(コイル成形体)の端面から突出させて、その突出個所の内側に凹部を形成し、この凹部内に端部コア部32eを嵌合して、連結コア部32cの端部内周面と端部コア部32eの外周面とを接続して一体化することも可能である。連結コア部32cと端部コア部32eとは、接着剤やプライマー、接着テープなどで接続してもよいし、連結コア部32c及び端部コア部32eの周囲をバンドなどで締め付けて接続してもよい。なお、連結コア部32c及び端部コア部32eは、いずれも複合材料で形成されており、それ自体が樹脂(ミラブル型シリコーンゴム)による粘着性を有することから、両者を貼り合わせることで接続することも可能である。端部コア部32eと内側コア部31との接続も同様に、接着剤などで接続することが可能である。外側コア部32もギャップ材やエアギャップが介在しておらず、磁性コア3は、その全体に亘ってギャップが設けられていないギャップレス構造である。
 また、連結コア部32cと端部コア部32eとを別部材とし、両者を接続して一体化することで、外側コア部32を構成しているが、リアクトル1aがケースを具える場合は、このケースを外側コア部32の成形型(注型)に利用して、外側コア部32を形成してもよい。具体的には、コイル2と内側コア部31とを一体化したコイル成形体20をケースの所定の位置に配置した状態で、上記複合材料をケースに充填することで、連結コア部32cと端部コア部32eとが一体になった外側コア部32を形成することが可能である。この場合、外側コア部32の成形と同時に、外側コア部32と内側コア部31とを複合材料の樹脂により接合することができる。
 複合材料には、ミラブル型シリコーンゴムの弾性や強度を向上させるために、加硫剤を添加している。ただし、加硫剤を添加した場合は、硬化後に低分子シロキサンがゴム成分内に残留することから、低分子シロキサンを除去するために、硬化後に熱処理を施すとよい。熱処理としては、例えば、150℃以上220℃以下に加熱した状態で30分以上4時間以下に保持することが挙げられる。この熱処理は、連結コア部32cや端部コア部32eをコイル成形体20に取り付けた状態、即ち磁性コア3を組み上げた状態で行ってもよいし、複合材料の成形体に対して行ってもよい。
 複合材料の磁性粉末は、上述した内側コア部31を構成する軟磁性粉末と同様の組成でも異なる組成でもよい。複合材料は、非磁性の樹脂(ここではミラブル型シリコーンゴム)を含有することから、複合材料における軟磁性粉末と圧粉成形体を構成する軟磁性粉末とが同じ組成であっても、当該圧粉成形体よりも飽和磁束密度が低く、かつ比透磁率も低くなる。よって、外側コア部32の比透磁率を内側コア部31よりも低くすることができる。
 複合材料の磁性粉末は、単一種でも、材質の異なる複数種の粉末を混合したものでもよい。外側コア部32を構成する複合材料における磁性粉末は、純鉄粉や鉄合金粉末といった鉄基材料からなるものが好ましい。鉄基材料などのように、複合材料の磁性粉末も金属材料で構成される場合には、圧粉成形体の場合と同様に上述した絶縁被覆を具える被覆粉末であると、磁性粒子間の絶縁性を高められ、渦電流損を低減できる。
 複合材料における磁性粉末の平均粒径は、1μm以上1000μm以下、特に10μm以上500μm以下が挙げられる。磁性粉末は、粒径が異なる複数種の粉末を含んでいてもよい。微細な粉末と粗大な粉末とを混合した磁性粉末を複合材料の原料に用いた場合、飽和磁束密度が高く、低損失なリアクトルが得られ易い。なお、複合材料における磁性粉末と原料に用いる粉末とは、その大きさが実質的に同じであり(維持されており)、平均粒径が上記範囲を満たす磁性粉末を原料に用いると、流動性が高く、複合材料中に磁性粉末を均一に分散させ易く、複合材料の製造性に優れる。
 複合材料における磁性粉末の含有量は、複合材料を100%とするとき、体積割合で30体積%以上75体積%以下が望ましい。磁性粉末が30体積%以上であると、外側コア部32、延いては磁性コア3全体の飽和磁束密度といった磁気特性を確保し易い。磁性粉末が75体積%以下であると、樹脂との混合が行い易く、複合材料の製造性に優れる。
 その他、複合材料に、磁性粉末及び樹脂(ミラブル型シリコーンゴム)に加えてフィラー、代表的には、アルミナやシリカなどのセラミックスといった非磁性材料の粉末を混合してもよい。セラミックスなどの熱伝導性に優れるフィラーを混合することで、放熱性の向上に寄与することができる。フィラーの含有量は、複合材料を100質量%とするとき、0.2質量%以上、更に0.3質量%以上、特に0.5質量%以上とすると、放熱性の向上効果を得易く、20質量%以下、更に15質量%以下、特に10質量%以下とすると、磁性粉末や樹脂の割合の低下を抑制できる。フィラーは、磁性粉末よりも微粒にすると磁性粒子間に介在させ易く、当該フィラーの含有による磁性粉末の割合の低下を抑制し易い。
 ここでは、複合材料の磁性粉末に、平均粒径75μm以下の鉄基材料(純鉄)からなる粒子の表面に絶縁被覆を具える被覆粉末を用い、複合材料中の磁性粉末の含有量を40体積%としている。また、複合材料のバインダとなる樹脂には、ミラブル型シリコーンゴムのみ使用している。そして、複合材料は、磁性粉末と硬化前のミラブル型シリコーンゴム(パーオキサイド系の加硫剤を含む)とを体積比で40:60の割合で配合し、混練することにより得ている。複合材料は、180℃で20分間加熱して硬化させた後、最終的に熱処理を施しており、熱処理条件は、加熱温度180℃、保持時間2時間とした。
 外側コア部32は、閉磁路が形成できればよく、その形状は特に問わない。上述のように、コイル成形体20を複合材料によって覆う形態では、当該複合材料(外側コア部32)によって、コイル2(コイル成形体20)を外部環境や機械的応力から保護することができる。また、連結コア部32cからコイル成形体20の一部が露出するようにしており、この露出面から熱を放熱対象に伝え易くして、放熱性を高めることができる。
 (磁気特性)
 上述のように、磁性コア3は、部分的に異なる材料で構成されており、磁気特性が異なる。具体的には、内側コア部31は、外側コア部32よりも飽和磁束密度が高く、外側コア部32は、内側コア部31よりも比透磁率が低い。より具体的には、内側コア部31は、飽和磁束密度:1.0T以上、より好ましくは外側コア部32の1.2倍以上、比透磁率:50以上500以下、外側コア部32は、飽和磁束密度:0.6T以上、かつ内側コア部31の飽和磁束密度未満、比透磁率:5以上50以下、内側コア部31及び外側コア部32からなる磁性コア3全体の比透磁率は10以上50以下が望ましい。一定の磁束を得る場合、内側コア部の飽和磁束密度の絶対値が高いほど、また、内側コア部の飽和磁束密度が外側コア部よりも相対的に大きいほど、内側コア部の断面積を小さくし易い。そのため、内側コア部の飽和磁束密度が高い形態は、全体の飽和磁束密度が均一的な磁性コアと同じ磁束を得る場合、内側コア部の断面積を小さくできるため、リアクトルの小型化に寄与する。内側コア部31の飽和磁束密度は、1.8T以上、更に2T以上が好ましく、外側コア部32の飽和磁束密度の1.5倍以上、更に1.8倍以上が好ましく、いずれも上限は設けない。圧粉成形体に代えて、珪素鋼板に代表される電磁鋼板の積層体を利用すると、内側コア部の飽和磁束密度を更に高め易い。一方、外側コア部32の比透磁率を内側コア部31よりも低くすると、内側コア部31に磁束を通し易い。ところで、外側コア部32の比透磁率を内側コア部31よりも高くすれば、外部への漏れ磁束を低減し易くなる。
 なお、ここでいう上記各コア部の比透磁率とは、次のようにして求めたものをいう。コア部と同じ材料で、外径34mm、内径20mm、厚さ5mmのリング状試験片を作製する。この試験片に、一次側300巻き、二次側20巻きの巻線を施して、試験片のB‐H初磁化曲線をH=0~100エルステッド(Oe)の範囲で測定する。この測定には、例えば、理研電子株式会社製BHカーブトレーサ「BHS‐40S10K」を使用することができる。そして、得られたB‐H初磁化曲線の勾配(B/H)の最大値を求め、それをコア部の比透磁率とする。ここでの磁化曲線とは、いわゆる直流磁化曲線である。
 一方、上記各コア部の飽和磁束密度は、上記試験片に対して電磁石で10000(Oe)の磁界を印加し、十分に磁気飽和させたときの磁束密度とする。
 [ケース]
 リアクトル1aは、ケースを具え、コイル2と磁性コア3との組物がケースに収納された形態としてもよい。ケースの形状や大きさは、例えば、上述の配置形態に応じて適宜設定すればよい。ケースは、収納物(コイル2や磁性コア3など)を外部環境や機械的応力から保護する機能を有する他、放熱経路として利用することができる。そのため、ケースの材料には、熱伝導性に優れる材料、好ましくは鉄などの磁性粉末よりも熱伝導率が高い材料、例えば、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金といった金属を好適に利用できる。アルミニウムやマグネシウム、その合金は、軽量であることから、リアクトルの軽量化に寄与する。また、アルミニウムやマグネシウム、その合金は、非磁性材料かつ導電性材料であることから、ケース外部への漏れ磁束も効果的に抑制できる。金属から構成される場合、ケースは、鋳造や切削加工、塑性加工などにより、容易に製造できる。その他、ケースは樹脂で構成することも可能である。ケースを樹脂で構成する場合は、例えば、ポリブチレンテレフタレート(PBT)樹脂、ウレタン樹脂、PPS樹脂、アクリル‐ブタジエン‐スチレン(ABS)樹脂などが利用できる。この場合、放熱性を高める観点から、アルミナやシリカなどの熱伝導性に優れるセラミックスのフィラーを混合してもよい。ケースを樹脂で構成することで、軽量で安価に製造できる。
 [用途]
 上記構成を具えるリアクトル1aは、コイル2への通電条件が、例えば、最大電流(直流):100A~1000A程度、平均電圧:100V~1000V程度、使用周波数:5kHz~100kHz程度である用途、代表的にはハイブリッド自動車や電気自動車などの車載用電力変換装置の構成部品に好適に利用できる。
 [リアクトルの大きさ]
 リアクトル1aを車載部品とする場合、リアクトル1aは、ケースを具える場合は、ケースを含めた容量が0.2リットル(200cm3)~0.8リットル(800cm3)程度であることが好ましい。より具体的には、端面形状が円形状のコイルの場合、内径:20mm~80mm、巻き数:30~70、円柱状の内側コア部の場合、直径:10mm~70mm、長さ(コイルの軸方向に沿った長さ):20mm~120mmが挙げられる。
 [効果]
 リアクトル1aは、磁性コア3の一部(ここでは外側コア部32)が磁性粉末と樹脂とを混合した複合材料で構成され、複合材料のバインダとなる樹脂として、ミラブル型シリコーンゴムを使用している。複合材料の樹脂がミラブル型シリコーンゴムであるので、流動性が低く、粘性を有しているため、磁性粉末と樹脂とを混合した後に磁性粉末が沈降などし難く、複合材料中に磁性粉末を均一に分散させた状態を維持することができ、設計値通りのインダクタンスを実現しながら、製造性が高い。また、複合材料における樹脂がゴムであるので、弾性を有し、軟らかいため、複合材料が振動を吸収して、振動による騒音を低減することができると共に、磁性粉末と樹脂との間で熱膨張係数差が生じても、樹脂が変形することにより、複合材料にクラックが生じることを抑制できる。さらに、ミラブル型シリコーンゴムであれば、耐熱性が高く、高温でも劣化し難い。
 したがって、リアクトル1a、及び上記複合材料で構成されたリアクトル用コア部品は、製造性が高く、振動による騒音を低減することができる。
 《実施形態2》
 図4~図6を参照して、実施形態2に係るリアクトルを説明する。実施形態2のリアクトル1bは、上記実施形態1のリアクトル1aと基本的な構成は同様であり、以下では相違点を中心に説明する。
 コイル2を形成する巻線2wの両端部の引き出し方法が異なり、図6に示すように、コイル2の一端側において、巻線2wの一方の端部がコイル2の径方向に引き出されると共に、他方の端部がコイル2の軸方向に平行に引き延ばされ、かつ、コイル2の径方向に引き出されるように折り曲げている。コイル2は、実施形態1と同様に、その表面が樹脂モールド部21によって覆われて、その形状が保持されたコイル成形体20としている。
 外側コア部32は、図4、図5に示すように、コイル成形体20の実質的に全てを覆っている。外側コア部32を構成する連結コア部32cは、図5に示すように、コイル成形体20の外周面を覆うように、複合材料を巻き付けることで形成されている。複合材料の内周面には、実施形態1と同様に、コイル成形体20の外形に応じた凹凸が設けられており、コイル成形体20と連結コア部32cとの間に隙間が形成されないようにしている。
 一方、端部コア部32eは、実施例1と同様に、図5に示すように、コイル成形体20の端面及び内側コア部31の端面31eに対向する内面に内側コア部配置溝321、並びに、コイル配置溝322が形成されている。また、コイル成形体20の一端側(即ち、巻線2wの両端部が引き出される側)に配置される端部コア部32eの内面には、巻線2wの両端部を引き出すための引出溝324が設けられている。
 《実施形態3》
 図7~図9を参照して、実施形態3に係るリアクトルを説明する。実施形態3のリアクトル1cは、上記実施形態1のリアクトル1aと基本的な構成は同様であり、以下では相違点を中心に説明する。
 コイル2を形成する巻線2wの両端部の引き出し方法が異なり、図9に示すように、コイル2の両端部において、巻線2wの両端部がそれぞれターン部分からコイル2の径方向に引き出されている。コイル2は、実施形態1と同様に、その表面が樹脂モールド部21によって覆われて、その形状が保持されたコイル成形体20としている。
 外側コア部32は、図7、図8に示すように、コイル成形体20の実質的に全てを覆っている。外側コア部32を構成する連結コア部32cは、図8に示すように、コイル成形体20の外周面を覆うように、複合材料を巻き付けることで形成されている。複合材料の内周面には、実施形態1と同様に、コイル成形体20の外形に応じた凹凸が設けられており、コイル成形体20と連結コア部32cとの間に隙間が形成されないようにしている。
 一方、端部コア部32eは、実施例1と同様に、図8に示すように、コイル成形体20の端面及び内側コア部31の端面31eに対向する内面に内側コア部配置溝321、並びに、コイル配置溝322が形成されている。また、コイル成形体20の両端側に配置される各端部コア部32eの内面には、巻線2wの各端部を引き出すための引出溝324が設けられている。
 《実施形態4》
 上記実施形態1では、コイル2の表面が樹脂モールド部21で覆われたコイル成形体20を具え、樹脂モールド部21によって、コイル2と磁性コア3との間の絶縁性を高めた形態を説明した。その他、例えば、コイル2の外面(端面を含む)や内周面に絶縁テープを貼り付けたり、コイル2の外面(端面を含む)や内周面を絶縁紙や絶縁シートで覆ったりすることでも、上述の絶縁性を高める効果が得られる。或いは、内側コア部31の外周やコイル2の外周に筒状のインシュレータを配置した形態とすることができる。インシュレータの構成材料には、PPS樹脂、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)樹脂などの絶縁性樹脂が好適に利用できる。このインシュレータは、内側コア部31やコイル2の径方向に分割可能な分割片とすると、内側コア部31の外周やコイル2の外周に容易に配置でき、組立作業性に優れる。内側コア部31の外周に配置する筒状体として、両端の周縁から外方に突出する環状のフランジを具える形態とすると、このフランジによりコイル2の端面を覆うことが可能であり、好ましい。
 《実施形態5》
 上記実施形態1では、内側コア部31が圧粉成形体で構成され、外側コア部32が複合材料で構成された形態を説明した。その他、内側コア部も磁性粉末と樹脂(ミラブル型シリコーンゴム)とを混合した複合材料で構成された形態とすることができる。つまり、磁性コアの全体が上記複合材料で構成された形態とすることができる。この場合、内側コア部と外側コア部とは、同じ複合材料で構成することができる。そして、各コア部を構成する複合材料の磁性粉末の含有量は30体積%以上75体積%以下とし、各コア部の飽和磁束密度は0.6T以上、好ましくは1.0T以上、比透磁率は5以上50以下、好ましくは10以上35以下、より好ましくは20以上30以下とすることが挙げられる。磁性コア全体の比透磁率は5以上50以下とすることが挙げられる。この構成では、成形型を用いて内側コア部と外側コア部の双方を一体に形成してもよい。例えば、内側コア部を有していないコイル成形体、即ち、コイルと樹脂モールド部とを具え、内側コア部が配置される中空孔が形成されたコイル成形体を用意する。そして、このコイル成形体を成形型の所定の位置に配置した後、複合材料を成形型に充填して、コイル成形体の中空孔及びその外側(コイル成形体とケースとの間の空間)に複合材料を流し込み、硬化させる。このように成形型を用いて内側コア部と外側コア部とを一体に成形することで、内側コア部と外側コア部とが一体になった複合材料からなる磁性コアが得られる。内側コア部と外側コア部とを一体に成形すると、内側コア部と外側コア部とを別々に成形する必要がなく、内側コア部と外側コア部との接合作業を省略できる。又は、内側コア部と外側コア部とをそれぞれ所定の形状に別途成形した複合材料の成形体としてもよい。例えば、所定の形状に成形した複合材料の成形体からなる内側コア部を用意し、この内側コア部をコイルの内側に配置して一体化したコイル成形体を作製する。そして、このコイル成形体を成形型の所定の位置に配置し、複合材料を成形型に充填して、複合材料からなる外側コア部を成形する。或いは、所定の形状に成形した複合材料の成形体からなる外側コア部を作製し、内側コア部と外側コア部とで閉磁路を形成するように、外側コア部をコイル成形体の外側に配置して、磁性コアを構成してもよい。これにより、内側コア部と外側コア部とを同じ複合材料で形成すれば、各コア部を別々に形成しても、各コア部を同じ複合材料で構成することができる。リアクトルがケースを具える場合は、上記成形型にケースを利用してもよい。
 上記の例では、コイル成形体を用いる場合を例に説明したが、コイルをそのまま利用するなど、コイル成形体としない形態とすることも可能である。この場合、例えば、実施形態4で説明したように、コイルの外面(端面を含む)や内周面に絶縁テープを貼り付けたり、コイルの外面(端面を含む)や内周面を絶縁紙や絶縁シートで覆った形態とすると、コイルと磁性コア(内側コア部や外側コア部)との間の絶縁性を高められる。或いは、コイルと磁性コアとの接触箇所、具体的には、コイルの内周面又は内側コア部の外面(外周や端面)や、コイルの外面(端面を含む)にインシュレータを配置した形態としてもよい。
 また、内側コア部と外側コア部とは、磁性粉末の材質や含有量が異なる複合材料で構成することもできる。この構成では、例えば、磁性粉末の材質を同じとする場合、磁性粉末の含有量を変更することで、飽和磁束密度や比透磁率を調整することができ、所望の特性の複合材料を得易いという利点もある。具体的な形態としては、内側コア部と外側コア部とが磁性粉末の材質や含有量が異なる複合材料で構成され、実施形態1と同様に内側コア部の飽和磁束密度が高く、外側コア部の比透磁率が低い形態とすることが挙げられる。或いは逆の形態、つまり内側コア部の比透磁率が低く、外側コア部の飽和磁束密度が高い形態とすることが挙げられる。複合材料における磁性粉末の配合量を多くすると、飽和磁束密度が高くかつ比透磁率が高い複合材料が得られ易く、上記配合量を少なくすると、飽和磁束密度が低くかつ比透磁率が低い複合材料が得られ易い。所望の組成の原料によって、例えば、複合材料の成形体からなる柱状やブロック状のコア部品を別途作製しておき、このコア部品を内側コア部や外側コア部に利用することができる。内側コア部及び外側コア部を構成する各複合材料はいずれも、磁性粉末の含有量を30体積%以上75体積%以下とし、各コア部の飽和磁束密度は0.6T以上、好ましくは1.0T以上、比透磁率は5以上50以下、好ましくは10以上35以下、より好ましくは20以上30以下とすることが挙げられる。磁性コア全体の比透磁率は5以上50以下とすることが挙げられる。
 なお、上記実施形態1では、連結コア部32cと端部コア部32eとを別部材とした形態を説明したが、連結コア部と端部コア部とは、同じ複合材料で一体に形成してもよいし、磁性粉末の材質や含有量が異なる複合材料で構成してもよい。さらに、端部コア部を圧粉成形体で構成してもよいし、磁性粉末と樹脂(エポキシ樹脂など)とを混合した従来の複合材料で構成してもよい。
 ところで、磁性コアの一部(例えば、内側コア部)を圧粉成形体や電磁鋼板の積層体といった比透磁率が高い磁性体で構成した場合、インダクタンスを調整するため、隣り合うコア片間又はコア部間に上記磁性体よりも比透磁率が低い材料(代表的にはアルミナなどの非磁性材料)からなるギャップ材を介在させてもよい。ギャップ材には、非磁性材料の他、比透磁率が1.05以上2以下の磁性材料を用いることも可能である。このような磁性材料からなるギャップ材の一例としては、PPS樹脂などの非磁性材料と鉄粉などの磁性材料とを含む混合物が挙げられる。磁性コアがギャップ材を具える場合、磁性コア全体の比透磁率は、ギャップ材も含めた比透磁率とする。
 《実施形態6》
 上記実施形態1では、筒状のコイル2を一つ具える(即ち、コイル2が一つのコイル素子を具える)形態を説明した。その他、巻線を螺旋状に巻回してなる一対のコイル素子を具える形態とすることができる。一対のコイル素子は、各素子の軸が平行するように横並び(並列配置)され、巻線の一部を折り返してなる連結部により連結された形態が挙げられる。各コイル素子を別々の巻線によって形成し、両コイル素子を形成する巻線の一端部同士をTIG溶接などの溶接、圧着、半田付けなどで接合した形態、一端部同士を別途用意した連結部材を介して連結した形態とすることもできる。
 図10、図11を参照して、実施形態6に係るリアクトルを説明する。実施形態6のリアクトル1Aは、コイル2及び磁性コア3の構成が上記実施形態1のリアクトル1aと異なる。以下では、説明を簡略化するために相違点を中心に説明する。
 コイル2は、図11に示すように、一対のコイル素子2a,2bで構成され、各コイル素子の軸が平行となるように横並び(並列)に配置されている。このコイル2(コイル素子2a,2b)は、1本の連続する巻線2wにより形成され、具体的には、一方のコイル素子2aを一端側から他端側に向かって形成した後、他端側で巻線2wをU字状に屈曲させて折り返し、他方のコイル素子2bを他端側から一端側に向かって形成している。両コイル素子2a,2bの巻回方向は同一である。両コイル素子2a,2bは電気的には直列に接続されている。そして、コイル2(コイル素子2a,2b)の一端側から巻線2wの両端部をコイル2の径方向(図11では上方)に引き出している。また、コイル素子2a,2bの端面形状が各角部を丸めた長方形状であるが、上述したようにコイル素子2a,2bの端面形状は円形状やレーストラック形状など、適宜選択できる。各コイル素子2a,2bの内側にはそれぞれ、内側コア部31が配置される。
 また、コイル2は、実施形態1と同様に、その表面が樹脂モールド部21によって覆われたコイル成形体20としており、コイル2と内側コア部31とが樹脂モールド部21によって一体にモールドされている。勿論、コイル2は、その表面を樹脂モールド部によって覆われたコイル成形体としない形態とすることも可能である。この場合、例えば、実施形態4で説明したように、コイル2の外面(端面を含む)や内周面に絶縁テープを貼り付けたり、コイル2の外面(端面を含む)や内周面を絶縁紙や絶縁シートで覆った形態とすると、コイル2と磁性コア3(後述する内側コア部31や外側コア部32)との間の絶縁性を高められる。或いは、コイル2と磁性コア3との接触箇所、具体的には、コイル2の内周面又は内側コア部31の外面(外周や端面)や、コイル2の外面(端面を含む)にインシュレータを配置した形態としてもよい。
 内側コア部31は、各コイル素子2a,2bの内側にそれぞれ配置され、各コイル素子2a,2bの内周形状に沿った角柱体である。この例では、内側コア部31は、磁性粉末と樹脂(ミラブル型シリコーンゴム)とを混合した複合材料の成形体で構成されている。一方、外側コア部32は、図10及び図11に示すように、ブロック状であり、両内側コア部31を挟むように両内側コア部31の両端にそれぞれ配置されている。この例では、外側コア部32は、内側コア部31と同じように、複合材料の成形体で構成されている。そして、外側コア部32が両内側コア部31の各端面31eに連結されることで、内側コア部31と外側コア部32とにより環状の磁性コア3が構成され、磁性コア3に閉磁路が形成される。内側コア部31及び外側コア部32は、上記複合材料で形成されており、それ自体が粘着性を有することから、外側コア部32を内側コア部31に貼り付けることで両者を接続することができる。内側コア部31と外側コア部32とは、例えば接着剤などで接続してもよい。
 上記した例では、磁性コアの全体が、磁性粉末と樹脂(ミラブル型シリコーンゴム)とを混合した複合材料で構成されている。そして、実施形態5で説明したように、内側コア部と外側コア部とは、磁性粉末の材質や含有量が同じ又は異なる複合材料で構成することができる。この場合、成形型を用いて内側コア部と外側コア部の双方を一体に形成してもよいし、内側コア部と外側コア部とをそれぞれ所定の形状に別途成形した複合材料の成形体としてもよい。前者の場合、例えば、内側コア部を有していないコイル成形体を成形型の所定の位置に配置した後、複合材料を成形型に充填して、内側コア部と外側コア部とを一体に成形することで磁性コアを構成することが挙げられる。後者の場合、例えば、複合材料の成形体からなる内側コア部をコイルの内側に配置して一体化したコイル成形体を成形型の所定の位置に配置した後、内側コア部と同じ又は異なる複合材料を成形型に充填して、複合材料からなる外側コア部を成形することで磁性コアを構成することが挙げられる。或いは、内側コア部と同じ又は異なる複合材料の成形体からなる外側コア部を閉磁路を形成するように所定の位置に配置することで磁性コアを構成してもよい。リアクトルがケースを具える場合は、上記成形型にケースを利用してもよい。
 ここで、内側コア部と外側コア部とを上記複合材料で構成する場合、実施形態5で説明したように、各コア部を構成する複合材料はいずれも、磁性粉末の含有量を30体積%以上75体積%以下とし、各コア部の飽和磁束密度は0.6T以上、好ましくは1.0T以上、比透磁率は5以上50以下、好ましくは10以上35以下、より好ましくは20以上30以下とすることが挙げられる。磁性コア全体の比透磁率は5以上50以下とすることが挙げられる。また、内側コア部と外側コア部とを磁性粉末の材質や含有量が異なる複合材料で構成する場合、内側コア部の飽和磁束密度が高く、外側コア部の比透磁率が低い形態としたり、或いは逆の形態、つまり内側コア部の比透磁率が低く、外側コア部の飽和磁束密度が高い形態とすることが挙げられる。複合材料における磁性粉末の配合量を多くすると、飽和磁束密度が高くかつ比透磁率が高い複合材料が得られ易く、上記配合量を少なくすると、飽和磁束密度が低くかつ比透磁率が低い複合材料が得られ易い。例えば、磁性粉末の材質を同じとする場合、磁性粉末の含有量を変更することで、飽和磁束密度や比透磁率を調整することができ、所望の特性の複合材料を得易い。
 上記したリアクトル1Aにおいて、内側コア部31と外側コア部32のうち一方を、圧粉成形体で構成してもよいし、磁性粉末と樹脂(エポキシ樹脂など)とを混合した複合材料で構成してもよい。なお、磁性コアの一部(例えば、内側コア部)を圧粉成形体や電磁鋼板の積層体といった比透磁率が高い磁性体で構成した場合は、実施形態5で説明したように、隣り合うコア片間又はコア部間にギャップ材を介在させてもよい。
 《実施形態7》
 次に、ケースを具えるリアクトルの一実施形態を、図12を参照して説明する。図12に示す実施形態7は、上記実施形態6のリアクトル1Aにおいて、コイル2と磁性コア3との組物が収納されるケース4を具える形態である。このようにケース4を具える場合は、図12に示すように、ケース4に封止樹脂6を充填して、コイル2と磁性コア3との組物を封止樹脂6で封止してもよい。これにより、コイル2(コイル成形体20)や磁性コア3(外側コア部32)を封止樹脂6で覆うことができ、これら部材を外部環境や機械的応力から保護することができる。封止樹脂6としては、例えば、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、PPS樹脂などが好適に利用できる。封止樹脂6には、放熱性を高める観点から、アルミナやシリカなどの熱伝導性に優れる高いセラミックスのフィラーを混合してもよい。
 〔コンバータ、電力変換装置〕
 上記した本発明に係る実施形態1~7のリアクトルは、例えば、車両などに搭載されるコンバータの構成部品や、このコンバータを具える電力変換装置の構成部品に利用することができる。
 例えば、ハイブリッド自動車や電気自動車といった車両1200は、図13に示すように、メインバッテリ1210と、メインバッテリ1210に接続される電力変換装置1100と、メインバッテリ1210からの供給電力により駆動して走行に利用されるモータ(負荷)1220とを具える。モータ1220は、代表的には、3相交流モータであり、走行時、車輪1250を駆動し、回生時、発電機として機能する。ハイブリッド自動車の場合、車両1200は、モータ1220に加えてエンジンを具える。なお、図13では、車両1200の充電箇所としてインレットを示すが、プラグを具える形態であってもよい。
 電力変換装置1100は、メインバッテリ1210に接続されるコンバータ1110と、コンバータ1110に接続されて、直流と交流との相互変換を行うインバータ1120とを有する。この例に示すコンバータ1110は、車両1200の走行時、200V~300V程度のメインバッテリ1210の直流電圧(入力電圧)を400V~700V程度にまで昇圧して、インバータ1120に給電する。また、コンバータ1110は、回生時、モータ1220からインバータ1120を介して出力される直流電圧(入力電圧)をメインバッテリ1210に適合した直流電圧に降圧して、メインバッテリ1210に充電させている。インバータ1120は、車両1200の走行時、コンバータ1110で昇圧された直流を所定の交流に変換してモータ1220に給電し、回生時、モータ1220からの交流出力を直流に変換してコンバータ1110に出力している。
 コンバータ1110は、図14に示すように、複数のスイッチング素子1111と、スイッチング素子1111の動作を制御する駆動回路1112と、リアクトルLとを具え、ON/OFFの繰り返し(スイッチング動作)により入力電圧の変換(ここでは昇降圧)を行う。スイッチング素子1111には、FET、IGBTなどのパワーデバイスが利用される。リアクトルLは、回路に流れようとする電流の変化を妨げようとするコイルの性質を利用し、スイッチング動作によって電流が増減しようとしたとき、その変化を滑らかにする機能を有する。このリアクトルLとして、上記実施形態1~7のリアクトルを具える。振動による騒音を低減することが可能なリアクトル1aなどを具えることで、電力変換装置1100やコンバータ1110は静粛性に優れる。
 なお、車両1200は、コンバータ1110の他、メインバッテリ1210に接続された給電装置用コンバータ1150や、補機類1240の電力源となるサブバッテリ1230とメインバッテリ1210とに接続され、メインバッテリ1210の高圧を低圧に変換する補機電源用コンバータ1160を具える。コンバータ1110は、代表的には、DC-DC変換を行うが、給電装置用コンバータ1150や補機電源用コンバータ1160は、AC-DC変換を行う。給電装置用コンバータ1150の中には、DC-DC変換を行うものもある。給電装置用コンバータ1150や補機電源用コンバータ1160のリアクトルに、上記実施形態1~7のリアクトルなどと同様の構成を具え、適宜、大きさや形状などを変更したリアクトルを利用することができる。また、入力電力の変換を行うコンバータであって、昇圧のみを行うコンバータや降圧のみを行うコンバータに、上記実施形態1~7のリアクトルなどを利用することもできる。
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、複合材料の配合(磁性粉末及び樹脂(ミラブル型シリコーンゴム)の含有量など)、磁性粉末の材質や粒径、コイル及び磁性コアの形状やサイズなどを適宜変更することが可能である。
 (付記1)
 磁性粉末と樹脂とを混合した複合材料であって、前記樹脂がミラブル型シリコーンゴムである複合材料。
 この複合材料は、これまでの本発明の説明で述べたように、リアクトルに具える磁性コアに用いる他、各種磁気部品に具える磁性部材(磁性体)として利用することが可能である。この複合材料は、上述したように、樹脂がミラブル型シリコーンゴムであるので、磁性粉末と樹脂とを混練した後に磁性粉末が沈降などし難く、複合材料中に磁性粉末を均一に分散させた状態を維持することができる。よって、狙い通りの磁気特性を実現し易く、製造性が高い。また、複合材料における樹脂がゴムであるので、硬化後であっても弾性を有し、軟らかい。そのため、複合材料が振動を吸収して、振動による騒音を低減したり、磁性粉末と樹脂との間で熱膨張係数差が生じても、樹脂が変形することにより、複合材料にクラックが生じることを抑制できる。
 (付記2)
 磁性部材を具える磁気部品であって、前記磁性部材の少なくとも一部が付記1に記載の複合材料で構成されている磁気部品。
 (付記3)
 コイルと、このコイルが配置される磁性部材を具える磁気部品であって、前記磁性部材の少なくとも一部が付記1に記載の複合材料で構成されている磁気部品。
 上記磁気部品としては、リアクトルの他、例えば、チョークコイル、トランス、磁気センサ、電流センサ、電磁波ノイズ対策部品(例えば、電磁波吸収シート)などが挙げられる。具体例としては、上記複合材料の成形体をチョークコイル、トランス、磁気センサ、電流センサの磁性コアの一部に利用したり、シート状に成形した複合材料を電磁波吸収シートに利用することが挙げられる。上記磁気部品は、磁性部材の少なくとも一部が上記複合材料で構成されており、複合材料の樹脂がミラブル型シリコーンゴムであるので、上述したように、狙い通りの磁気特性を実現し易く、製造性が高い。また、複合材料の樹脂がミラブル型シリコーンゴムであれば、複合材料が振動を吸収して、振動による騒音を低減したり、磁性粉末と樹脂との間で熱膨張係数差が生じても、樹脂が変形することにより、複合材料にクラックが生じることを抑制できる。特に、磁性部材の全てが上記複合材料で構成されていることが好ましく、これにより、製造性を高めたり、磁性部材にクラックが生じることを抑制したりできる。
 本発明のリアクトルは、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車といった車両に搭載されるDC-DCコンバータや空調機のコンバータといった電力変換装置の構成部品に利用することができる。本発明のリアクトル用コア部品は、リアクトルに具える磁性コアに利用することができる。
 1a,1b,1c,1A リアクトル
 2 コイル  2w 巻線
 20 コイル成形体  21 樹脂モールド部
 2a,2b コイル素子
 3 磁性コア
  31 内側コア部 31e 端面
  32 外側コア部 32c 連結コア部  32e 端部コア部
  321 内側コア部配置溝  322 コイル配置溝
  323 引出孔  324 引出溝
 4 ケース
 6 封止樹脂
 1100 電力変換装置  1110 コンバータ  1120 インバータ
 1200 車両
 1111 スイッチング素子  1112 駆動回路  L リアクトル
 1150 給電装置用コンバータ  1160 補機電源用コンバータ
 1210 メインバッテリ  1220 モータ
 1230 サブバッテリ  1240 補機類  1250 車輪

Claims (9)

  1.  筒状のコイルと、
     前記コイルの内外に配置されて閉磁路を形成する磁性コアとを具えるリアクトルであって、
     前記磁性コアの少なくとも一部は、磁性粉末と樹脂とを混合した複合材料で構成されており、
     前記樹脂は、ミラブル型シリコーンゴムであるリアクトル。
  2.  前記複合材料中の前記磁性粉末の含有量が、30体積%以上75体積%以下である請求項1に記載のリアクトル。
  3.  前記コイルが、横並びに配置された一対のコイル素子を具える請求項1又2に記載のリアクトル。
  4.  前記磁性コアのうち、前記コイルの外側に配置される箇所の少なくとも一部が、前記複合材料で構成されている請求項1~3のいずれか一項に記載のリアクトル。
  5.  前記磁性コアのうち、前記コイルの内側に配置される箇所が、圧粉成形体で構成されている請求項1~4のいずれか一項に記載のリアクトル。
  6.  前記磁性コアの全体が、前記複合材料で構成されている請求項1~3のいずれか一項に記載のリアクトル。
  7.  請求項1~6のいずれか一項に記載のリアクトルを具えるコンバータ。
  8.  請求項7に記載のコンバータを具える電力変換装置。
  9.  リアクトルに具える磁性コアを構成するリアクトル用コア部品であって、
     磁性粉末と樹脂とを混合した複合材料で構成され、前記樹脂がミラブル型シリコーンゴムであるリアクトル用コア部品。
PCT/JP2013/050228 2012-02-08 2013-01-09 リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア部品 WO2013118528A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012024952 2012-02-08
JP2012-024952 2012-02-08
JP2012252670A JP2013179258A (ja) 2012-02-08 2012-11-16 リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア部品
JP2012-252670 2012-11-16

Publications (1)

Publication Number Publication Date
WO2013118528A1 true WO2013118528A1 (ja) 2013-08-15

Family

ID=48947297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050228 WO2013118528A1 (ja) 2012-02-08 2013-01-09 リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア部品

Country Status (2)

Country Link
JP (1) JP2013179258A (ja)
WO (1) WO2013118528A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315256B2 (ja) * 2013-12-26 2018-04-25 住友電装株式会社 リアクトル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251245A (ja) * 1992-03-06 1993-09-28 Sony Corp 収縮性被覆材、インダクタンス素子、並びに配線材又は/及び回路部品
JP2007227426A (ja) * 2006-02-21 2007-09-06 Nec Tokin Corp 磁性混和物及びそれを用いたインダクタ
JP2008053670A (ja) * 2006-08-25 2008-03-06 Taiyo Yuden Co Ltd ドラム型コアを用いたインダクタ及びドラム型コアを用いたインダクタの製造方法
JP2008112935A (ja) * 2006-10-31 2008-05-15 Sumitomo Electric Ind Ltd リアクトル
JP2008173405A (ja) * 2006-12-18 2008-07-31 Pip Fujimoto Co Ltd 磁気治療器具および磁気治療器具製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251245A (ja) * 1992-03-06 1993-09-28 Sony Corp 収縮性被覆材、インダクタンス素子、並びに配線材又は/及び回路部品
JP2007227426A (ja) * 2006-02-21 2007-09-06 Nec Tokin Corp 磁性混和物及びそれを用いたインダクタ
JP2008053670A (ja) * 2006-08-25 2008-03-06 Taiyo Yuden Co Ltd ドラム型コアを用いたインダクタ及びドラム型コアを用いたインダクタの製造方法
JP2008112935A (ja) * 2006-10-31 2008-05-15 Sumitomo Electric Ind Ltd リアクトル
JP2008173405A (ja) * 2006-12-18 2008-07-31 Pip Fujimoto Co Ltd 磁気治療器具および磁気治療器具製造方法

Also Published As

Publication number Publication date
JP2013179258A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
JP6048910B2 (ja) リアクトル、コイル成形体、コンバータ、及び電力変換装置
JP5867677B2 (ja) リアクトル、コンバータ及び電力変換装置
JP6065609B2 (ja) リアクトル、コンバータ、及び電力変換装置
US20140140111A1 (en) Reactor, converter and power conversion device
WO2013051421A1 (ja) リアクトル、リアクトル用コイル部品、コンバータ、及び電力変換装置
JP5983942B2 (ja) リアクトル、コンバータ、及び電力変換装置
WO2012008329A1 (ja) リアクトル及びコイル部品
JP2009033051A (ja) リアクトル用コア
JP6024886B2 (ja) リアクトル、コンバータ、及び電力変換装置
JP6229319B2 (ja) リアクトル、リアクトル用のコア片、コンバータ、および電力変換装置
JP6048652B2 (ja) リアクトル、コンバータ、および電力変換装置
JP2013143454A (ja) リアクトル、コア部品、リアクトルの製造方法、コンバータ、及び電力変換装置
JP5958792B2 (ja) リアクトル、コンバータ、及び電力変換装置
WO2013118524A1 (ja) リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア材料
JP2013179186A (ja) リアクトル、リアクトル用部品、コンバータ、及び電力変換装置
JP2013162069A (ja) リアクトル、コンバータ、及び電力変換装置
WO2013168538A1 (ja) リアクトル、コンバータ、電力変換装置、および樹脂コア片の製造方法
JP5945906B2 (ja) リアクトルの収納構造体、および電力変換装置
JP6070928B2 (ja) リアクトル、コンバータ、及び電力変換装置
WO2013118528A1 (ja) リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア部品
JP2015050298A (ja) リアクトル、コンバータ、及び電力変換装置
JP2013106004A (ja) リアクトル、コンバータ、および電力変換装置
JP5305118B2 (ja) リアクトル、及び昇圧コンバータ
WO2014112480A1 (ja) コア部材、リアクトル、コンバータ、および電力変換装置
JP5195891B2 (ja) リアクトル用コア、リアクトル、及びリアクトルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746583

Country of ref document: EP

Kind code of ref document: A1