WO2011126056A1 - 含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法 - Google Patents

含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法 Download PDF

Info

Publication number
WO2011126056A1
WO2011126056A1 PCT/JP2011/058736 JP2011058736W WO2011126056A1 WO 2011126056 A1 WO2011126056 A1 WO 2011126056A1 JP 2011058736 W JP2011058736 W JP 2011058736W WO 2011126056 A1 WO2011126056 A1 WO 2011126056A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
vinyl ether
fluorine
vinyl alcohol
group
Prior art date
Application number
PCT/JP2011/058736
Other languages
English (en)
French (fr)
Inventor
俊一 児玉
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201180014589.5A priority Critical patent/CN102812059B/zh
Priority to EP11765956.5A priority patent/EP2557097B1/en
Priority to JP2012509690A priority patent/JP5796571B2/ja
Publication of WO2011126056A1 publication Critical patent/WO2011126056A1/ja
Priority to US13/564,128 priority patent/US20120296040A1/en
Priority to US14/246,791 priority patent/US9290595B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • C08F214/267Tetrafluoroethene with non-fluorinated comonomers with non-fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/24Trifluorochloroethene
    • C08F214/245Trifluorochloroethene with non-fluorinated comonomers
    • C08F214/247Trifluorochloroethene with non-fluorinated comonomers with non-fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1416Monomers containing oxygen in addition to the ether oxygen, e.g. allyl glycidyl ether
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/16Monomers containing no hetero atoms other than the ether oxygen
    • C08F216/18Acyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/50Chemical modification of a polymer wherein the polymer is a copolymer and the modification is taking place only on one or more of the monomers present in minority

Definitions

  • the present invention relates to a fluorine-containing olefin / vinyl alcohol copolymer and a method for producing the same.
  • the fluorine-containing olefin / vinyl alcohol copolymer which is a copolymer of fluorine-containing olefin and vinyl alcohol, is a raw material for coating resins, gas / liquid separation membrane materials, gas barrier materials, solar cell sealing materials, and various surface protection sheets. It is used for materials and hydrophilic porous materials (Patent Documents 1 and 2).
  • a method for producing a fluorinated olefin / vinyl alcohol copolymer As a method for producing a fluorinated olefin / vinyl alcohol copolymer, a method is known in which a fluorinated olefin and vinyl acetate are copolymerized and then hydrolyzed under acidic or basic conditions (patent) References 1, 2 and Non-Patent Reference 3).
  • a fluorine-containing olefin and vinyl acetate are used as raw materials, and in a fluorine-containing olefin / vinyl acetate copolymer obtained by copolymerizing them, a hydroxyl group is generated by hydrolyzing the ester portion of the polymerization unit based on vinyl acetate. And converted into polymerized units based on vinyl alcohol.
  • the method of hydrolyzing the fluorinated olefin / vinyl acetate copolymer under basic conditions although the reaction rate is fast, the resulting copolymer is colored yellow and the quality is lowered.
  • the method of hydrolyzing a fluorinated olefin / vinyl acetate copolymer under acidic conditions has a slow reaction rate and low productivity.
  • the obtained fluorinated olefin / vinyl alcohol copolymer generally has a low thermal decomposition starting temperature, and has a problem in thermal stability.
  • the present invention relates to a method for producing a fluorinated olefin / vinyl alcohol copolymer that has sufficiently high productivity and heat resistance, and in which deterioration in quality due to coloring is suppressed, and a fluorinated olefin / vinyl alcohol copolymer obtained by the production method.
  • the purpose is to provide coalescence.
  • the present invention provides a method for producing a fluorinated olefin / vinyl alcohol copolymer and a fluorinated olefin / vinyl alcohol copolymer having the following constitutions.
  • CF 2 CFX (1)
  • CH 2 CHOR 1 (2)
  • X is fluorine atom, chlorine atom, trifluoromethyl group or -OC a F 2a + 1 (a , a is an integer of 1-3.).
  • R 1 is a deprotection reaction (This is a protecting group substituted by a hydrogen atom.)
  • R 1 in the formula (2) is —CR 2 R 3 R 4 (wherein R 2 , R 3 and R 4 are each independently an alkyl group having 1 to 3 carbon atoms), 6 an alkoxymethyl group, a tetrahydrofuryl group, a tetrahydropyranyl group, or a trialkylsilyl group (-Si (R 5 ) 3 , R 5 is an alkyl group or aryl group having 1 to 6 carbon atoms).
  • the method for producing a fluorine-containing olefin / vinyl alcohol copolymer according to [1].
  • the fluorine-containing olefin represented by the formula (1) and the vinyl ether represented by the formula (2) have a molar ratio of (fluorine-containing olefin) / (vinyl ether) of 45 /
  • the above [1] to [5], wherein a vinyl ether represented by the following formula (3) is copolymerized The manufacturing method of the fluorine-containing olefin / vinyl alcohol copolymer in any one of.
  • CF 2 CFX (1) (Wherein, X is a fluorine atom, a chlorine atom, a trifluoromethyl group, or —OC a F 2a + 1 (a is an integer of 1 to 3).) [8] The fluorine-containing olefin / vinyl alcohol copolymer according to the above [7], wherein the thermal decomposition starting temperature is 10% by mass or higher.
  • a fluorine-containing olefin / vinyl alcohol copolymer excellent in heat resistance can be produced with sufficiently high productivity, suppressed quality deterioration due to coloring.
  • the fluorine-containing olefin / vinyl alcohol copolymer of the present invention has excellent heat resistance with reduced quality deterioration due to coloring.
  • FIG. 3 is a 13 C NMR chart of copolymer B1 (upper) and copolymer A1 (lower) in Example 1.
  • FIG. It is IR chart (A) of copolymer B1 in Example 1, and IR chart (B) of copolymer A1.
  • the method for producing a fluorinated olefin / vinyl alcohol copolymer (hereinafter referred to as “copolymer (A)”) of the present invention has the following steps.
  • Polymerization step a fluorine-containing olefin represented by the following formula (1) (hereinafter referred to as “fluorine-containing olefin (a)”) and a vinyl ether represented by the following formula (2) (hereinafter “vinyl ether (b)”).
  • Deprotection step a step of generating a hydroxyl group by substituting R 1 of the polymer unit based on vinyl ether (b) in the copolymer obtained in the polymerization step with a hydrogen atom.
  • CF 2 CFX (1)
  • CH 2 CHOR 1 (2)
  • X is fluorine atom, chlorine atom, trifluoromethyl group or -OC a F 2a + 1 (a , a is an integer of 1-3.).
  • R 1 is a deprotection reaction (This is a protecting group substituted by a hydrogen atom.)
  • the production method of the present invention comprises a fluorine-containing olefin / vinyl ether copolymer (hereinafter referred to as “copolymer”) having a polymer unit based on the fluorine-containing olefin (a) and a polymer unit based on the vinyl ether (b) in the polymerization step. B) ”)), and then by substituting R 1 of the polymer unit based on the vinyl ether (b) in the copolymer (B) with a hydrogen atom by a deprotection reaction, the polymer unit based on the fluorinated olefin and And a copolymer (A) having a polymer unit based on vinyl alcohol.
  • copolymer fluorine-containing olefin / vinyl ether copolymer
  • the fluorine-containing olefin (a) represented by the formula (1) and the vinyl ether (b) represented by the formula (2) are copolymerized, thereby being based on the fluorine-containing olefin (a).
  • a copolymer (B) having polymerized units and polymerized units based on vinyl ether (b) is obtained.
  • Specific examples of the fluorinated olefin (a) include tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, perfluoro (alkyl vinyl ether) and the like.
  • perfluoro (alkyl vinyl ether) include perfluoro (propyl vinyl ether).
  • fluorine-containing olefin (a) since it is excellent in heat resistance, tetrafluoroethylene or chlorotrifluoroethylene is preferable and tetrafluoroethylene is especially preferable.
  • a fluorine-containing olefin (a) may be used individually by 1 type, and may use 2 or more types together.
  • Vinyl ether (b) is a vinyl ether in which the hydrogen atom of the hydroxyl group of vinyl alcohol is substituted with a deprotectable protecting group.
  • R 1 is a protecting group that protects a hydroxyl group as an ether and is substituted with a hydrogen atom by a deprotection reaction to generate a hydroxyl group.
  • a protecting group usually used in the field of organic chemistry can be used.
  • CR 2 R 3 R 4 (R 2 , R 3 and R 4 are each independently an alkyl group having 1 to 3 carbon atoms), an alkoxymethyl group having 1 to 6 carbon atoms, a tetrahydrofuryl group, a tetrahydropyranyl group Group or a trialkylsilyl group (-Si (R 5 ) 3 , R 5 is an alkyl group having 1 to 6 carbon atoms or an aryl group) is preferred, and -CR 2 R 3 R 4 is more preferred.
  • vinyl ether (b) t-butyl vinyl ether, 1,1-dimethylpropyl vinyl ether, methoxymethyl vinyl ether, tetrahydrofuryl vinyl ether, tetrahydropyranyl vinyl ether, vinyloxytrimethylsilane, or vinyloxydimethylphenylsilane is preferable and easily available. From this point, t-butyl vinyl ether is particularly preferable. Vinyl ether (b) may be used individually by 1 type, and may use 2 or more types together.
  • the alternating copolymerization ratio of the resulting copolymer (B) is calculated from the copolymerization reactivity ratio of both monomers. 95% or more.
  • the alternating copolymerization ratio is the ratio of the number of combinations in which polymer units based on different monomers are adjacent to the total number of combinations of two adjacent polymer units.
  • the copolymer (B) is a copolymer represented by abbabababab (where a represents a polymer unit based on the fluorinated olefin (a) and b represents a polymer unit based on the vinyl ether (b)).
  • abbabababab where a represents a polymer unit based on the fluorinated olefin (a) and b represents a polymer unit based on the vinyl ether (b).
  • the number of combinations of two adjacent polymerization units is 10
  • the number of combinations of adjacent polymerization units based on different monomers is 9, so that the alternating copolymerization ratio
  • the copolymer (A) obtained from the copolymer (B) has an alternating copolymerization ratio of the fluorinated olefin (a) and vinyl alcohol. Is 95% or more.
  • the copolymer (A) having a high alternating copolymerization ratio since the polymer units based on the fluorinated olefin (a) and the polymer units based on vinyl alcohol are uniformly arranged, the weather resistance and water resistance are improved. .
  • a cured product is formed by reacting a hydroxyl group of the copolymer (A) with a curing agent, the hydroxyl group is uniformly distributed, and thus the reactivity of the hydroxyl group becomes more stable.
  • a vinyl ether (c) represented by the following formula (3) may be further copolymerized.
  • CH 2 CHOR 3 (3) (However, in the formula (3), R 3 is a group which does not deprotection reaction in the deprotection step.)
  • Vinyl ether (c) is a vinyl ether in which R 3 does not undergo a deprotection reaction in the deprotection step.
  • the R 3 does not deprotection reaction in the deprotection step, which means that R 3 is not deprotection reaction under the reaction conditions to replace R 1 vinyl ether (b) a hydrogen atom by deprotection reaction. That is, R 3 may be a group that undergoes a deprotection reaction as long as it is conditions other than the reaction conditions for substituting R 1 with a hydrogen atom by a deprotection reaction.
  • R 3 of the polymer unit based on vinyl ether (c) in copolymer (B) is not eliminated, and vinyl ether (c) is converted into copolymer (A).
  • the polymerized units based are maintained as they are.
  • R 3 in the vinyl ether (c) is preferably a primary or secondary alkyl group having 1 to 6 carbon atoms, or a group in which one or more hydrogen atoms of the alkyl group are substituted with a substituent.
  • substituent functional groups, such as a hydroxyl group, an amino group, and a glycidyl group, a fluorine atom, etc. are mentioned.
  • vinyl ether (c) examples include alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, and cyclohexyl vinyl ether; functional groups such as hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, aminopropyl vinyl ether, and glycidyl vinyl ether Vinyl ether; fluorine-containing vinyl ether such as heptafluoropentyl vinyl ether.
  • alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, and cyclohexyl vinyl ether
  • functional groups such as hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, aminopropyl vinyl ether, and glycidyl vinyl ether Vinyl ether
  • fluorine-containing vinyl ether such as heptafluoropent
  • any one of vinyl ether (b) and vinyl ether (c) and fluorine-containing olefin (a) are alternately copolymerized to obtain copolymer (B). Since the polymerization reactivity of the vinyl ether (b) and the vinyl ether (c) is almost equal, both sides of the polymer unit based on the fluorinated olefin (a) in the copolymer (B) are separated from the polymer unit based on the vinyl ether (b) and the vinyl ether ( Which of the polymerized units based on c) is a problem of probability.
  • the deprotection reaction does not occur in the polymer unit based on the vinyl ether (c) in the copolymer (B). Therefore, the ratio of the polymerization units based on vinyl alcohol in the copolymer (A) after the deprotection step can be adjusted by adjusting the ratio of the vinyl ether (b) and the vinyl ether (c). Thereby, the hydrophilicity of a copolymer (A) can be adjusted by adjusting the quantity of the hydroxyl group in a copolymer (A).
  • the copolymer (B) is obtained by radical polymerization of the fluorine-containing olefin (a), the vinyl ether (b), and the vinyl ether (c) used as necessary.
  • Monomers having a vinyl ether group may cause isomerization, decomposition or homocation polymerization under acidic conditions. Therefore, from the viewpoint of allowing the polymerization to proceed stably, radical polymerization is preferably performed under basic conditions, and the pH is more preferably 8-9.
  • a method for adjusting the pH in the polymerization to basic conditions a method of adding potassium carbonate, ammonium carbonate or the like to the polymerization medium is preferable.
  • the molar ratio (a / b) of fluorine-containing olefin (a) to vinyl ether (b) used for copolymerization is preferably 40/60 to 60/40, and 45/55 to 55 / 45 is more preferable, and 50/50 is particularly preferable.
  • the molar ratio (a / b) is within the above range, an alternating copolymer in which the fluorinated olefin (a) and the vinyl ether (b) are alternately copolymerized is easily obtained.
  • the total molar ratio (a / (b + c)) of the fluorinated olefin (a) used for copolymerization and vinyl ether (b) and vinyl ether (c) is 40/60 to 60 / 40 is preferable, 45/55 to 55/45 is more preferable, and 50/50 is particularly preferable.
  • the molar ratio (a / (b + c)) is within the above range, an alternating copolymer in which the fluorinated olefin (a) and the vinyl ether (b) or the vinyl ether (c) are alternately copolymerized is easily obtained.
  • the molar ratio (b / c) between the vinyl ether (b) and the vinyl ether (c) is preferably 45/5 to 10/40, particularly preferably 40/10 to 25/25.
  • radical polymerization initiation source examples include a radical polymerization initiator or ionizing radiation.
  • a radical polymerization initiator examples include a water-soluble initiator or an oil-soluble initiator can be appropriately used depending on the polymerization type or the polymerization medium.
  • water-soluble initiator examples include a redox initiator comprising a combination of a persulfate such as ammonium persulfate and a reducing agent such as hydrogen peroxide, sodium hydrogen sulfite, and sodium thiosulfate; a small amount of iron in the redox initiator , Inorganic initiators in the presence of ferrous salt, silver nitrate, etc .; or dibasic acid peroxides such as disuccinic acid peroxide and diglutaric acid peroxide; organic initiators such as dibasic acid salts such as azobisisobutylamidine Is mentioned.
  • a persulfate such as ammonium persulfate
  • a reducing agent such as hydrogen peroxide, sodium hydrogen sulfite, and sodium thiosulfate
  • iron in the presence of ferrous salt, silver nitrate, etc .
  • dibasic acid peroxides such as disuccinic acid peroxide and digluta
  • oil-soluble initiators include peroxy ester type peroxides such as t-butyl peroxyacetate and t-butyl peroxypivalate; dialkyl peroxydicarbonates such as diisopropyl peroxydicarbonate; benzoyl peroxide; azobis Examples include isobutyl nitrile.
  • t-butyl peroxypivalate is preferable from the viewpoint of easy handling.
  • a radical polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
  • the amount of radical polymerization initiator used can be appropriately changed according to the type, polymerization conditions, etc., and is preferably 0.005 to 5% by mass, preferably 0.05 to 0%, based on the total amount of monomers used for copolymerization. .5% by mass is particularly preferred.
  • the copolymerization format is not particularly limited, and bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization and the like can be employed. Among these, solution polymerization using an aromatic compound such as xylene and toluene, alcohols such as t-butyl alcohol, esters, fluorochlorocarbons and the like as a polymerization medium is preferable.
  • the amount of the polymerization medium is preferably 10 to 200% by mass, particularly preferably 50 to 100% by mass, based on the total amount of monomers used for copolymerization.
  • the copolymerization method may be any of batch, continuous and semi-continuous methods.
  • the copolymerization temperature can be appropriately selected depending on the polymerization start source, the polymerization medium, etc., is preferably ⁇ 30 ° C. or higher and 150 ° C. or lower, more preferably 0 ° C. or higher and 100 ° C. or lower, and most preferably 20 ° C. or higher and 70 ° C. or lower. preferable.
  • the copolymerization pressure can be appropriately selected according to the polymerization start source, the polymerization medium, and the like, preferably 0.1 to 10 MPa, particularly preferably 0.2 to 2 MPa.
  • the copolymerization time is preferably 4 to 24 hours, more preferably 6 to 12 hours.
  • the molecular weight of the copolymer (B) can be adjusted by controlling the ratio of the monomer to the polymerization medium or by employing a chain transfer agent.
  • the number average molecular weight (Mn) of the copolymer (B) is preferably from 3,000 to 300,000, more preferably from 10,000 to 300,000.
  • Mn of the copolymer (B) is 3,000 or more, the fastness of the coating film is easily maintained. If Mn of a copolymer (B) is 300,000 or less, shaping
  • the Mn of the copolymer (B) is preferably 3,000 to 30,000. When used as a film or sheet, the Mn of the copolymer (B) is more preferably 10,000 to 100,000.
  • the molecular weight distribution (Mw / Mn) of the copolymer (B) is preferably 1 to 3, and more preferably 1 to 2. If Mw / Mn of the copolymer (B) is 3 or less, improvement in coating productivity and improvement in film strength are expected.
  • Deprotection process In the deprotection step, R 1 of the polymer unit based on the vinyl ether (b) in the copolymer (B) obtained in the polymerization step is replaced with a hydrogen atom by a deprotection reaction to generate a hydroxyl group. Thereby, the polymer unit based on vinyl ether (b) is converted into a polymer unit based on vinyl alcohol, and a copolymer (A) having a polymer unit based on fluorine-containing olefin (a) and a polymer unit based on vinyl alcohol is obtained. .
  • copolymer (B) contains a polymer unit based on vinyl ether (c)
  • R 3 of the polymer unit based on vinyl ether (c) is maintained as it is without deprotection.
  • a copolymer (A) having polymerized units based on (a), polymerized units based on vinyl alcohol, and polymerized units based on vinyl ether (c) is obtained.
  • the deprotection of the protected alcohol by acid, heat or light is usually performed. Reaction can be employed. Among them, from the viewpoint of easily suppressing the resulting copolymer (A) is colored, it is preferred to substitute an R 1 a hydrogen atom with an acid.
  • the acid used for the deprotection reaction include inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid, butyric acid and trifluoroacetic acid.
  • the deprotection reaction with acid includes (1) deprotection reaction in a mixed solution of sulfuric acid / ethanol / water, (2) deprotection reaction in a mixed solution of hydrochloric acid / dioxane, (3) trifluoroacetic acid / methylene chloride.
  • the deprotection reaction with an acid is not limited to the above reaction systems (1) to (3), and may be performed in an aqueous system or a non-aqueous system.
  • Examples of the photoacid generator include onium salts, halogen-containing compounds, diazoketone compounds, sulfone compounds, and sulfonic acid compounds. Specific examples include diphenyliodonium triflate, triphenylsulfonium triflate, phenyl-bis (trichloromethyl) -s-triazine, methoxyphenyl-bis (trichloromethyl) -s-triazine, 4-trisphenacylsulfone, 1, And 8-naphthalenedicarboxylic acid imide triflate.
  • a copolymer (A) having a polymer unit based on the fluorinated olefin (a), a polymer unit based on the vinyl ether (b), and a polymer unit based on vinyl alcohol may be used.
  • the hydrophilicity, crystallinity, etc. of the resulting copolymer (A) can be improved. Can be adjusted.
  • a copolymer (B) In the deprotection of the polymerized units based on the vinyl ether (b), coloring is suppressed.
  • a sufficient reaction rate can be obtained even by deprotection with an acid. Therefore, a high-quality fluorine-containing olefin / vinyl alcohol copolymer can be produced with sufficiently high productivity.
  • the reason why the deprotection by acid proceeds at a sufficient reaction rate is that the etheric oxygen atom of vinyl ether (b) is more easily protonated than the acetate group of vinyl acetate. .
  • the fluorine-containing olefin and vinyl acetate are randomly copolymerized, so that the alternating copolymerization of both monomers is low. And the position of the hydroxyl group in the fluorine-containing olefin / vinyl alcohol copolymer obtained from the fluorine-containing olefin / vinyl acetate copolymer was also random.
  • the fluorine-containing olefin / vinyl alcohol copolymer has a variation in characteristics depending on a portion where the ratio of the polymerized units based on the fluorine-containing olefin is high and a portion where the ratio of the polymerized units based on vinyl alcohol is high. Heat resistance decreases.
  • the fluorine-containing olefin (a), the vinyl ether (b) and the vinyl ether (c) are polymerized substantially alternately, so that the hydroxyl groups are uniformly formed in the polymer chain. Distributed.
  • the heat resistance of the copolymer (A) can be evaluated by a 10% by mass thermal decomposition starting temperature (hereinafter also referred to as “Td 10 [° C.]”).
  • the 10 mass% thermal decomposition starting temperature of the copolymer (A) obtained in the present invention is preferably 340 ° C or higher, and more preferably 360 to 400 ° C.
  • a coating film in which hydroxyl groups are uniformly arranged can be formed.
  • a coating film, a film or the like made of a cured product having a crosslinked structure can be formed from a composition of the copolymer (A) and a curing agent such as melamine or isocyanate that reacts with a hydroxyl group.
  • a curing agent such as melamine or isocyanate that reacts with a hydroxyl group.
  • the timing for performing the deprotection step is not particularly limited.
  • the copolymer (B), components such as an acid used for the deprotection reaction, a curing agent, and the like After the composition obtained by mixing these is formed into a film or sheet, a film or sheet comprising a cured product having a cross-linked structure can be produced by generating hydroxyl groups by applying light or heat. That is, in this case, a vinyl ether site in the copolymer (B) may be used as a potential curing site.
  • Glass-transition temperature The glass transition temperature of the copolymer was measured using “DSC Q-100” manufactured by TA Instruments Japan Co., Ltd. under a N 2 gas atmosphere at a heating rate of 10 ° C./min.
  • the 10% by mass thermal decomposition starting temperature of the copolymer was measured in air using a TGA Q-500 manufactured by TA Instruments Japan, at a temperature rising rate of 10 ° C./min.
  • the copolymer composition of the copolymer was calculated from the fluorine mass spectrometry value of the copolymer. However, in Example 6, the calculation was further combined with the 13 C-NMR measurement result.
  • Example 1 Polymerization process: In an autoclave (withstand pressure of 3 MPa) with a stainless steel stirrer having an internal volume of 200 mL, 79.0 g of t-butyl alcohol, 26.7 g of t-butyl vinyl ether (hereinafter referred to as “TBVE”), which is vinyl ether (b), potassium carbonate And 0.46 g of a 70% isooctane solution of perbutyl perpivalate (hereinafter referred to as “PBPV”) were charged, and pressure purge with N 2 gas was repeated to remove oxygen in the system.
  • TBVE t-butyl vinyl ether
  • PBPV perbutyl perpivalate
  • TFE tetrafluoroethylene
  • a fluorinated olefin
  • the 13 C-NMR spectrum of copolymer B1 is shown in FIG. 1 (A), and the IR spectrum is shown in FIG. 2 (A).
  • Example 2 Copolymer B1 obtained in Example 1 was used. Deprotection process: The copolymer B1 (2.0 g), 4N hydrochloric acid (50 mL) and 1,4-dioxane (1 mL) were placed in a 100 mL flask and heated and stirred at 90 ° C. to carry out a deprotection reaction. This reaction system gradually became a homogeneous solution. After the reaction was continued for a total of 12 hours, the reaction solution was dropped into water to precipitate copolymer A2, washed with water, and then vacuum dried at 40 ° C. to isolate 1.49 g of copolymer A2. did. From the measurement of 1 H-NMR spectrum and IR spectrum, it was confirmed that 97% or more of protecting groups (t-butyl groups) were eliminated in copolymer A2.
  • Example 3 Copolymer B1 obtained in Example 1 was used. Deprotection process: 2.0 g of the copolymer B1, 50 mL of trifluoroacetic acid, and 1 mL of methylene chloride were dissolved in a 100 mL flask, and then stirred at room temperature. After continuing the reaction for a total of 48 hours, the precipitated copolymer was washed with water and then vacuum dried at 40 ° C. to isolate 1.33 g of copolymer A3. From the measurement of 1 H-NMR spectrum and IR spectrum, it was confirmed that 97% or more of protecting groups (t-butyl groups) were eliminated in copolymer A3.
  • Example 4 Polymerization process: In an autoclave with a stainless steel stirrer with an internal volume of 30 mL (withstand pressure of 3 MPa), 8.97 g of t-butyl alcohol, 7.74 g of tetrahydropyranyl vinyl ether (hereinafter referred to as “THPVE”) which is vinyl ether (b), potassium carbonate And 0.298 g of a 70% isooctane solution of PBPV were repeatedly charged and purged with N 2 gas repeatedly to remove oxygen in the system. Next, 6.1 g of TFE was introduced into the autoclave and heated to 65 ° C. At this point, the pressure was 1.75 MPa. Thereafter, the polymerization was continued for 5 hours.
  • TFE tetrahydropyranyl vinyl ether
  • a deprotection step was performed in the same manner as in Example 1 except that the copolymer B2 was used to obtain a copolymer A4. From the measurement of 13 C-NMR spectrum and IR spectrum, it was confirmed that 95% or more of protecting groups (tetrahydropyranyl group) were eliminated in copolymer A4.
  • Example 5 Polymerization process: An autoclave (withstand pressure of 3 MPa) with a stainless steel stirrer with an internal volume of 200 mL was charged with 79.0 g of t-butyl alcohol, 26.7 g of TBVE, 0.52 g of potassium carbonate, and 0.47 g of a 70% isooctane solution of PBPV. The pressure purge was repeated with N 2 gas to remove oxygen in the system. Next, 31.1 g of chlorotrifluoroethylene (hereinafter referred to as “CTFE”), which is a fluorinated olefin (a), was introduced into an autoclave, heated to 55 ° C., and polymerization was continued for 7 hours.
  • CTFE chlorotrifluoroethylene
  • the autoclave was cooled with water, and unreacted CTFE was purged to terminate the polymerization.
  • the obtained polymer solution was thrown into methanol, and the produced copolymer B3 was precipitated.
  • the yield of copolymer B3 was 10.22 g, and the monomer reaction rate was 17.7%.
  • a deprotection step was performed in the same manner as in Example 1 except that the copolymer B3 was used to obtain a copolymer A5. From the measurement of 13 C-NMR spectrum and IR spectrum, it was confirmed that 95% or more of protecting groups (t-butyl groups) were eliminated in copolymer A5. The glass transition temperature of copolymer A5 was unclear.
  • Example 6 In an autoclave (withstand pressure of 3 MPa) with a stainless steel stirrer with an internal volume of 200 mL, 79.0 g of t-butyl alcohol, 13.4 g of TBVE, and cyclohexyl vinyl ether (hereinafter referred to as “CHVE”) as vinyl ether (c) 16. 8 g, 0.52 g of potassium carbonate, and 0.51 g of a 70% isooctane solution of PBPV were charged, and pressure purge with N 2 gas was repeated to remove oxygen in the system. Next, 26.7 g of CTFE was introduced into the autoclave, heated to 55 ° C., and polymerization was continued for 7 hours.
  • CHVE cyclohexyl vinyl ether
  • the autoclave was cooled with water, and unreacted CTFE was purged to terminate the polymerization.
  • the obtained polymer solution was put into methanol, and the produced copolymer B4 was deposited and vacuum-dried.
  • the yield of copolymer B4 was 30.1 g, and the monomer reaction rate was 53%.
  • a deprotection step was performed in the same manner as in Example 1 except that the copolymer B4 was used to obtain a copolymer A6. From the measurement of 1 H-NMR spectrum and IR spectrum, it was confirmed that 95% or more of protecting groups (t-butyl groups) were eliminated in copolymer A6. Moreover, it was confirmed from the fluorine mass spectrometry that the polymerized units based on CHVE remained as they were.
  • Comparative Example 2 The copolymer C1 obtained in Comparative Example 1 was used. Deprotection process: When 2.0 g of the copolymer C1, 50 mL of ethanol, and 3.5 mL of 30% by mass of caustic soda water were placed in a 100 mL flask and reacted with heating and stirring at 90 ° C. for 24 hours, the reaction system was reddish brown. became. The reaction solution was dropped into water to precipitate copolymer D2, washed with water, and then vacuum dried at 40 ° C. to isolate 1.46 g of copolymer D2. Copolymer D2 was colored yellow.
  • the polymerization was continued for 6 hours, and when the pressure dropped to 0.75 MPa, the autoclave was cooled with water, and unreacted TFE was purged to terminate the polymerization.
  • the obtained polymer solution was put into methanol, and the produced copolymer C2 was deposited, followed by vacuum drying.
  • the yield of copolymer D2 was 42.2 g, and the monomer reaction rate was 70%.
  • the copolymers (A1 to A4) of Examples 1 to 4 produced using vinyl ether (b) were not colored and were of high quality.
  • the copolymers (A1 to A6) obtained in Examples 1 to 6 had a high thermal decomposition starting temperature of 10% by mass and excellent heat resistance.
  • the copolymers (D1 and D2) of Comparative Examples 1 and 2 produced using vinyl acetate have a thermal decomposition initiation temperature of 10% by mass as compared with the copolymers (A1 to A4) of Examples 1 to 4.
  • Low and heat resistance was poor. This is considered to be because the polymerization unit based on vinyl acetate is continuous, thereby producing a portion where the polymerization unit based on vinyl alcohol is continuous, and the portion is easily cut by heat.
  • the acid deprotection step of Comparative Example 1 required 72 hours, and the productivity was inferior compared with 12 hours, which was the time required for the acid deprotection step of Example 1 under the same conditions.
  • copolymer D2 of Comparative Example 2 produced by hydrolyzing the copolymer C1 produced using vinyl acetate under basic conditions showed yellow coloration and was inferior in quality. Further, in Comparative Example 3 (copolymer C2) using only vinyl ether (c) without using vinyl ether (b), the deprotection reaction does not proceed in the deprotection step, and the desired copolymer (A) is obtained. It was not obtained.
  • the copolymer (A) obtained by the production method of the present invention comprises a coating material having excellent weather resistance and transparency, an optical material having excellent transparency, a gas / liquid separation membrane material having excellent water resistance, and a gas barrier material. It can be suitably applied to solar cell sealing materials, various surface protective sheet materials, hydrophilic porous materials, and the like. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application 2010-089504 filed on April 8, 2010 is cited herein as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、生産性が充分に高く、耐熱性に優れ、着色による品質低下が抑制された含フッ素オレフィン/ビニルアルコール共重合体の製造方法、および該製造方法により得られる含フッ素オレフィン/ビニルアルコール共重合体の提供を目的とする。 特定の含フッ素オレフィンと、ビニルアルコールの水酸基の水素原子が脱保護可能な保護基で置換されているビニルエーテルとを共重合させる重合工程と、該重合工程で得られた共重合体における前記ビニルエーテルに基づく重合単位の前記保護基を水素原子に置換し、水酸基を生じさせる脱保護工程と、を有する含フッ素オレフィン/ビニルアルコール共重合体の製造方法。また、該製造方法により得られる含フッ素オレフィン/ビニルアルコール共重合体。

Description

含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法
 本発明は、含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法に関する。
 含フッ素オレフィンおよびビニルアルコールの共重合体である含フッ素オレフィン/ビニルアルコール共重合体は、塗料用樹脂の原料、気体/液体分離膜材料、ガスバリア材料、太陽電池用封止材料、各種表面保護シート材料および親水性多孔質材料等に用いられている(特許文献1、2)。
 含フッ素オレフィン/ビニルアルコール共重合体の製造方法としては、含フッ素オレフィンと酢酸ビニルとを共重合した後、酸性あるいは塩基性条件で加水分解することにより製造する方法が既に知られている(特許文献1、2、非特許文献3)。この方法では、原料として含フッ素オレフィンと酢酸ビニルを用い、それらを共重合させた含フッ素オレフィン/酢酸ビニル共重合体において、酢酸ビニルに基づく重合単位のエステル部分を加水分解することで水酸基を生じさせ、ビニルアルコールに基づく重合単位に変換している。しかし、含フッ素オレフィン/酢酸ビニル共重合体を塩基性条件で加水分解する方法は、反応速度は速いものの、得られる共重合体が黄色く着色し、品質が低下する。また、含フッ素オレフィン/酢酸ビニル共重合体を酸性条件で加水分解する方法は、反応速度が遅く、生産性が低い。加えて、得られた含フッ素オレフィン/ビニルアルコール共重合体は概して熱分解開始温度が低く、熱安定性に問題を有している。
特開平5-261256号公報 特開平6-1876号公報
M. Ragazzini et. al., Eur. Polym. J., 3, 5 (1967)
 本発明は、生産性、耐熱性が充分に高く、着色による品質低下が抑制された含フッ素オレフィン/ビニルアルコール共重合体の製造方法、および該製造方法により得られる含フッ素オレフィン/ビニルアルコール共重合体の提供を目的とする。
 本発明は、前記課題を解決するために以下の構成の、含フッ素オレフィン/ビニルアルコール共重合体の製造方法及び含フッ素オレフィン/ビニルアルコール共重合体を提供する。
[1]下式(1)で表される含フッ素オレフィンと、下式(2)で表されるビニルエーテルとを共重合させる重合工程と、該重合工程で得られた共重合体における前記ビニルエーテルに基づく重合単位のRを水素原子に置換し、水酸基を生じさせる脱保護工程と、を有する含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
 CF=CFX   (1)
 CH=CHOR   (2)
(ただし、前記式中、Xはフッ素原子、塩素原子、トリフルオロメチル基、または-OC2a+1(aは1~3の整数である。)である。また、Rは脱保護反応により水素原子に置換される保護基である。)
[2]前記式(2)のRが-CR(R、R、Rは、それぞれ独立に炭素数1~3のアルキル基である。)、炭素数1~6のアルコキシメチル基、テトラヒドロフリル基、テトラヒドロピラニル基、またはトリアルキルシリル基(-Si(R、Rは炭素数1~6のアルキル基またはアリール基である。)である前記[1]に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
[3]前記式(2)で表される化合物がt-ブチルビニルエーテルである前記[1]に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
[4]前記Rを酸によって水素原子に置換する前記[1]~[3]のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
[5]前記重合工程において、前記式(1)で表される含フッ素オレフィンと、前記式(2)で表されるビニルエーテルとのモル比である(含フッ素オレフィン)/(ビニルエーテル)が45/55~55/45である前記[1]~[4]のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
[6]さらに、下式(3)で表されるビニルエーテルを共重合させる前記[1]~[5]
のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
 CH=CHOR   (3)
(ただし、前記式(3)中、Rは前記脱保護工程において脱保護反応しない基である。)
[7]下式(1)で表される含フッ素オレフィンとビニルアルコールの交互共重合比率が95%以上である含フッ素オレフィン/ビニルアルコール共重合体。
 CF=CFX   (1)
(ただし、前記式中、Xはフッ素原子、塩素原子、トリフルオロメチル基、または-OC2a+1(aは1~3の整数である。)である。)
[8]10質量%熱分解開始温度が340℃以上である前記[7]に記載の含フッ素オレフィン/ビニルアルコール共重合体。
 本発明の製造方法によれば、充分に高い生産性で、着色による品質低下が抑制されて、耐熱性に優れる含フッ素オレフィン/ビニルアルコール共重合体を製造できる。
 また、本発明の含フッ素オレフィン/ビニルアルコール共重合体は、着色による品質低下が抑制され、優れた耐熱性を有している。
実施例1における共重合体B1(上段)および共重合体A1(下段)の13C NMRチャートである。 実施例1における共重合体B1のIRチャート(A)、および共重合体A1のIRチャート(B)である。
 本発明の含フッ素オレフィン/ビニルアルコール共重合体(以下、「共重合体(A)」という。)の製造方法は、下記工程を有する。
 重合工程:下式(1)で表される含フッ素オレフィン(以下、「含フッ素オレフィン(a)」という。)と、下式(2)で表されるビニルエーテル(以下、「ビニルエーテル(b)」という。)とを共重合させる工程。
 脱保護工程:前記重合工程で得られた共重合体におけるビニルエーテル(b)に基づく重合単位のRを水素原子に置換し、水酸基を生じさせる工程。
 CF=CFX   (1)
 CH=CHOR   (2)
(ただし、前記式中、Xはフッ素原子、塩素原子、トリフルオロメチル基、または-OC2a+1(aは1~3の整数である。)である。また、Rは脱保護反応により水素原子に置換される保護基である。)
 つまり、本発明の製造方法は、重合工程において含フッ素オレフィン(a)に基づく重合単位と、ビニルエーテル(b)に基づく重合単位を有する含フッ素オレフィン/ビニルエーテル共重合体(以下、「共重合体(B)」という。)を得た後、共重合体(B)におけるビニルエーテル(b)に基づく重合単位のRを脱保護反応により水素原子に置換することで、含フッ素オレフィンに基づく重合単位と、ビニルアルコールに基づく重合単位とを有する共重合体(A)を得る方法である。
 重合工程:
 重合工程では、前記式(1)で表される含フッ素オレフィン(a)と、前記式(2)で表されるビニルエーテル(b)とを共重合させることにより、含フッ素オレフィン(a)に基づく重合単位とビニルエーテル(b)に基づく重合単位を有する共重合体(B)を得る。
 含フッ素オレフィン(a)の具体例としては、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)等が挙げられる。パーフルオロ(アルキルビニルエーテル)としては、パーフルオロ(プロピルビニルエーテル)等が挙げられる。なかでも、含フッ素オレフィン(a)としては、耐熱性に優れることから、テトラフルオロエチレン、またはクロロトリフルオロエチレンが好ましく、テトラフルオロエチレンが特に好ましい。
 含フッ素オレフィン(a)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 ビニルエーテル(b)は、ビニルアルコールの水酸基の水素原子が脱保護可能な保護基で置換されているビニルエーテルである。
 Rは、水酸基をエーテルとして保護し、脱保護反応により水素原子に置換されて水酸基を生じる保護基であり、有機化学分野で通常用いられる保護基が使用でき、入手容易性の点から、-CR(R、R、Rは、それぞれ独立に炭素数1~3のアルキル基である。)、炭素数1~6のアルコキシメチル基、テトラヒドロフリル基、テトラヒドロピラニル基、またはトリアルキルシリル基(-Si(R、Rは炭素数1~6のアルキル基またはアリール基である。)が好ましく、-CRがより好ましい。
 ビニルエーテル(b)としては、t-ブチルビニルエーテル、1,1-ジメチルプロピルビニルエーテル、メトキシメチルビニルエーテル、テトラヒドロフリルビニルエーテル、テトラヒドロピラニルビニルエーテル、ビニロキシトリメチルシラン、またはビニロキシジメチルフェニルシランが好ましく、入手容易性の点から、t-ブチルビニルエーテルが特に好ましい。
 ビニルエーテル(b)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 含フッ素オレフィン(a)とビニルエーテル(b)とは、交互共重合性が高いため、得られる共重合体(B)の交互共重合比率は両単量体の共重合反応性比から確率計算して95%以上となる。前記交互共重合比率とは、隣り合う2つの重合単位の組み合わせ数の合計に対する、異なる単量体に基づく重合単位が隣り合っている組み合わせ数の比率である。例えば、共重合体(B)がababbabababで表される共重合体(ただし、aは含フッ素オレフィン(a)に基づく重合単位を示し、bはビニルエーテル(b)に基づく重合単位を示す。)である場合、隣り合う2つの重合単位の組み合わせ数は10であり、異なる単量体に基づく重合単位が隣り合っている組み合わせ数が9であるので、交互共重合比率は90%である。
 共重合体(B)の交互共重合比率が95%以上であるので、共重合体(B)から得られる共重合体(A)は、含フッ素オレフィン(a)とビニルアルコールの交互共重合比率が95%以上のとなる。該交互共重合比率の高い共重合体(A)は、含フッ素オレフィン(a)に基づく重合単位と、ビニルアルコールに基づく重合単位が均一に配置されているため、耐候性および耐水性が向上する。また、例えば、共重合体(A)が有する水酸基に硬化剤を反応させて硬化物を形成する場合には、水酸基が均一に分布しているために、水酸基の反応性がより安定する。
 共重合体(B)を得る重合工程においては、含フッ素オレフィン(a)およびビニルエーテル(b)に加えて、下式(3)で表されるビニルエーテル(c)をさらに共重合させてもよい。
 CH=CHOR   (3)
(ただし、前記式(3)中、Rは脱保護工程において脱保護反応しない基である。)
 ビニルエーテル(c)は、脱保護工程においてRが脱保護反応しないビニルエーテルである。脱保護工程においてRが脱保護反応しないとは、ビニルエーテル(b)のRを脱保護反応により水素原子に置換する反応条件においてRが脱保護反応しないことを意味する。つまり、Rは、Rを脱保護反応により水素原子に置換する反応条件以外の条件であれば、脱保護反応する基であってもよい。
 ビニルエーテル(c)を用いれば、脱保護工程において、共重合体(B)におけるビニルエーテル(c)に基づく重合単位のRは脱離せず、得られる共重合体(A)においてビニルエーテル(c)に基づく重合単位がそのまま維持される。
 ビニルエーテル(c)におけるRは、炭素数1~6の第1級もしくは第2級アルキル基、該アルキル基の水素原子の1個以上が置換基で置換された基が好ましい。前記置換基としては、水酸基、アミノ基、グリシジル基等の官能基、フッ素原子等が挙げられる。
 ビニルエーテル(c)の具体例としては、メチルビニルエーテル、エチルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテル;ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、アミノプロピルビニルエーテル、グリシジルビニルエーテル等の官能基含有ビニルエーテル;ヘプタフルオロペンチルビニルエーテル等の含フッ素ビニルエーテル等が挙げられる。
 ビニルエーテル(c)を用いる場合、ビニルエーテル(b)及びビニルエーテル(c)のいずれかのビニルエーテルと、含フッ素オレフィン(a)が交互に共重合して共重合体(B)が得られる。ビニルエーテル(b)とビニルエーテル(c)の重合反応性はほぼ等しいため、共重合体(B)における含フッ素オレフィン(a)に基づく重合単位の両側が、ビニルエーテル(b)に基づく重合単位とビニルエーテル(c)に基づく重合単位のいずれになるかは確率の問題となる。
 ビニルエーテル(c)を用いる場合、共重合体(B)におけるビニルエーテル(c)に基づく重合単位では脱保護反応が起きない。そのため、ビニルエーテル(b)とビニルエーテル(c)の比率を調節することにより、脱保護工程後の共重合体(A)におけるビニルアルコールに基づく重合単位の比率を調節できる。これにより、共重合体(A)における水酸基の量を調節することで、共重合体(A)の親水性を調節できる。
 前記含フッ素オレフィン(a)、ビニルエーテル(b)、および必要に応じて用いるビニルエーテル(c)をラジカル重合させることにより、共重合体(B)が得られる。ビニルエーテル基を有する単量体(ビニルエーテル(b)およびビニルエーテル(c))は、酸性条件下において、異性化、分解あるいは単独カチオン重合を起こすおそれがある。そのため、重合を安定に進行させる点から、塩基性条件下でラジカル重合を行うことが好ましく、pHを8~9とすることがより好ましい。重合におけるpHを塩基性条件に調節する方法としては、炭酸カリウム、炭酸アンモニウム等を重合媒体中に加える方法が好ましい。
 ビニルエーテル(c)を用いない場合、共重合に用いる含フッ素オレフィン(a)とビニルエーテル(b)のモル比(a/b)は、40/60~60/40が好ましく、45/55~55/45がより好ましく、50/50が特に好ましい。モル比(a/b)が前記範囲内であれば、含フッ素オレフィン(a)とビニルエーテル(b)が交互に共重合した交互共重合体が得られやすい。
 また、ビニルエーテル(c)を用いる場合、共重合に用いる含フッ素オレフィン(a)と、ビニルエーテル(b)およびビニルエーテル(c)の合計のモル比(a/(b+c))は、40/60~60/40が好ましく、45/55~55/45がより好ましく、50/50が特に好ましい。モル比(a/(b+c))が前記範囲内であれば、含フッ素オレフィン(a)と、ビニルエーテル(b)またはビニルエーテル(c)とが交互に共重合した交互共重合体が得られやすい。
 また、この場合、ビニルエーテル(b)とビニルエーテル(c)とのモル比(b/c)は、45/5~10/40が好ましく、40/10~25/25が特に好ましい。
 ラジカル重合開始源としては、ラジカル重合開始剤あるいは電離性放射線が挙げられる。ラジカル重合開始剤としては、重合形式あるいは重合媒体に応じて水溶性開始剤あるいは油溶性開始剤を適宜使用できる。
 水溶性開始剤としては、例えば、過硫酸アンモニウム等の過硫酸塩と、過酸化水素、亜硫酸水素ナトリウム、チオ硫酸ナトリウム等の還元剤との組み合わせからなるレドックス開始剤;前記レドックス開始剤に少量の鉄、第一鉄塩、硝酸銀等を共存させた無機系開始剤;またはジコハク酸パーオキシド、ジグルタール酸パーオキシド等の2塩基酸過酸化物;アゾビスイソブチルアミジン等の2塩基酸塩等の有機系開始剤が挙げられる。
 油溶性開始剤としては、t-ブチルパーオキシアセテート、t-ブチルパーオキシピバレート等のパーオキシエステル型過酸化物;ジイソプロピルパーオキシジカーボネート等のジアルキルパーオキシジカーボネート;ベンゾイルパーオキシド;アゾビスイソブチルニトリル等が挙げられる。
 ラジカル重合開始剤としては、取り扱いの容易性等の点から、t-ブチルパーオキシピバレート等が好ましい。
 ラジカル重合開始剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 ラジカル重合開始剤の使用量は、その種類、重合条件等に応じて適宜変更でき、共重合に用いる単量体の全量に対して、0.005~5質量%が好ましく、0.05~0.5質量%が特に好ましい。
 共重合形式としては、特に限定されず、塊状重合、懸濁重合、乳化重合、溶液重合等が採用できる。なかでも、キシレン、トルエン等の芳香族化合物、t-ブチルアルコール等のアルコール類、エステル類、フロロクロロカーボン類等を重合媒体とする溶液重合が好ましい。
 重合媒体の量は、共重合に用いる単量体の全量に対して、10~200質量%が好ましく、50~100質量%が特に好ましい。
 また、共重合方式としては、回分式、連続式、半連続式のいずれの形式で行ってもよい。
 共重合温度は、重合開始源、重合媒体等に応じて適宜最適値が選択でき、-30℃以上150℃以下が好ましく、0℃以上100℃以下がより好ましく、20℃以上70℃以下が最も好ましい。
 共重合圧力も同様に、重合開始源、重合媒体等に応じて適宜選択でき、0.1~10MPaが好ましく、0.2~2MPaが特に好ましい。
 共重合時間は、4~24時間が好ましく、6~12時間がより好ましい。
 共重合体(B)の分子量は、単量体と重合媒体の比率の制御、あるいは連鎖移動剤の採用により調節できる。
 共重合体(B)の数平均分子量(Mn)は、3,000~300,000が好ましく、10,000~300,000がより好ましい。共重合体(B)のMnが3,000以上であれば、コーティング膜の堅牢性が維持されやすい。共重合体(B)のMnが300,000以下であれば、フィルムやシートの成形が容易となる。
 また、用途がコーティング分野である場合、共重合体(B)のMnは、3,000~30,000が好ましい。フィルムやシートとして用いられる場合、共重合体(B)のMnは、10,000~100,000がより好ましい。
 共重合体(B)の分子量分布(Mw/Mn)は、1~3が好ましく、1~2がより好ましい。共重合体(B)のMw/Mnが3以下であれば、塗装生産性の向上やフィルム強度の向上が期待される。
 脱保護工程:
 脱保護工程では、前記重合工程で得られた共重合体(B)におけるビニルエーテル(b)に基づく重合単位のRを脱保護反応により水素原子に置換し、水酸基を生じさせる。これにより、ビニルエーテル(b)に基づく重合単位がビニルアルコールに基づく重合単位に変換され、含フッ素オレフィン(a)に基づく重合単位とビニルアルコールに基づく重合単位を有する共重合体(A)が得られる。共重合体(B)にビニルエーテル(c)に基づく重合単位が含まれている場合は、該ビニルエーテル(c)に基づく重合単位のRは脱保護反応せずそのまま維持されるので、含フッ素オレフィン(a)に基づく重合単位、ビニルアルコールに基づく重合単位、およびビニルエーテル(c)に基づく重合単位を有する共重合体(A)が得られる。
 共重合体(B)のビニルエーテル(b)に基づく重合単位におけるRを脱保護反応により水素原子に置換する方法としては、通常行われる、酸、熱あるいは光による、保護化したアルコールの脱保護反応が採用できる。なかでも、得られる共重合体(A)が着色することを抑制しやすい点から、酸によってRを水素原子に置換することが好ましい。
 脱保護反応に用いる酸としては、硫酸、塩酸、硝酸等の無機酸、酢酸、酪酸、トリフルオロ酢酸等の有機酸等が挙げられる。
 酸による脱保護反応は、(1)硫酸/エタノール/水の混合溶液中での脱保護反応、(2)塩酸/ジオキサンの混合溶液中での脱保護反応、(3)トリフルオロ酢酸/塩化メチレンの混合溶液中での脱保護反応が好ましい。ただし、酸による脱保護反応は、前記(1)~(3)の反応系には限定されず、水系で行ってもよく、非水系で行ってもよい。
 また、酸による脱保護反応は、光の照射により酸を発生する光酸発生剤を用いて行ってもよい。光酸発生剤としては、例えば、オニウム塩、ハロゲン含有化合物、ジアゾケトン化合物、スルホン化合物、スルホン酸化合物等が挙げられる。具体例としては、ジフェニルヨードニウムトリフレート、トリフェニルスルホニウムトリフレート、フェニル-ビス(トリクロロメチル)-s-トリアジン、メトキシフェニル-ビス(トリクロロメチル)-s-トリアジン、4-トリスフェナシルスルホン、1,8-ナフタレンジカルボン酸イミドトリフレート等が挙げられる。
 脱保護工程においては、共重合体(A)に求められる用途に応じて、共重合体(B)が有する全ての保護基が脱保護される前に脱保護反応を途中で終了することにより、含フッ素オレフィン(a)に基づく重合単位と、ビニルエーテル(b)に基づく重合単位と、ビニルアルコールに基づく重合単位とを有する共重合体(A)としてもよい。脱保護反応を途中で終了させて、ビニルエーテル(b)に基づく重合単位とビニルアルコールに基づく重合単位との比率を調節することにより、得られる共重合体(A)の親水性、結晶性等を調節できる。
 以上説明した本発明の製造方法によれば、従来の含フッ素オレフィンと酢酸ビニルを共重合させて得た含フッ素オレフィン/酢酸ビニル共重合体を加水分解する方法とは異なり、共重合体(B)のビニルエーテル(b)に基づく重合単位における脱保護において、着色が抑制される。また、酸による脱保護であっても充分な反応速度が得られる。そのため、高品質な含フッ素オレフィン/ビニルアルコール共重合体を充分に高い生産性で製造できる。本発明において酸による脱保護が充分な反応速度で進行する要因としては、ビニルエーテル(b)のエーテル性酸素原子の方が、酢酸ビニルの酢酸基よりもプロトネーションしやすいためであると推定される。
 また、従来の含フッ素オレフィンと酢酸ビニルとの共重合では含フッ素オレフィンと酢酸ビニルとがランダムに共重合するため、両単量体の交互共重合性が低い。そして、該含フッ素オレフィン/酢酸ビニル共重合体から得られる含フッ素オレフィン/ビニルアルコール共重合体内における水酸基の位置もランダムであった。そのため、該含フッ素オレフィン/ビニルアルコール共重合体には、含フッ素オレフィンに基づく重合単位の割合が高い部分と、ビニルアルコールに基づく重合単位の割合が高い部分によって特性にばらつきがあり、耐水性、耐熱性が低下する。
 これに対し、本発明の製造方法によれば、含フッ素オレフィン(a)と、ビニルエーテル(b)及びビニルエーテル(c)が実質的に交互に重合するために、高分子鎖中に水酸基が均一に分布する。そのため、水酸基が特定の場所に集中しないので、高分子鎖の特定の部分の親水性が極端に高くなることを抑制でき、共重合体(A)は、優れた耐水性を発現する。また、共重合体(A)は、ビニルアルコールに基づく重合単位が特定の場所に集中しないので、優れた耐熱性が得られやすい。
 共重合体(A)の耐熱性は、後述する10質量%熱分解開始温度(以下、「Td10[℃]」ともいう。)によって評価できる。本発明で得られる共重合体(A)の10質量%熱分解開始温度は、340℃以上が好ましく、360~400℃がより好ましい。
 例えば、共重合体(A)を塗料用途とする場合は、水酸基を均一に配列させた塗膜を形成できる。さらに、共重合体(A)と、水酸基と反応するメラミン、イソシアネート等の硬化剤等との組成物から、架橋構造を有する硬化物からなる塗膜やフィルム等を形成することもできる。この場合には、ビニルエーテル(c)を用いずに水酸基が均一に分布することで、水酸基の反応性が安定して得られるという効果も得られる。また、前記のように硬化剤を用いる場合等においては、脱保護工程を行うタイミングは特に限定されず、例えば、共重合体(B)、脱保護反応に用いる酸等の成分、および硬化剤等を混合して得た組成物を、フィルムあるいはシートに成形した後に、光あるいは熱を加えることにより水酸基を生じさせて架橋構造を有する硬化物からなるフィルムあるいはシートとすることもできる。すなわち、この場合には、共重合体(B)におけるビニルエーテル部位を潜在的硬化部位として使用してもよい。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
[測定方法]
(数平均分子量(Mn)、分子量分布(Mw/Mn))
 各例で得られた共重合体の数平均分子量(Mn)および分子量分布(Mw/Mn)は、東ソー社製の高速GPC装置「HLC-8220GPC」を使用し、ゲル濾過クロマトグラフィー(GPC)で測定した。それらの値は、標準物質をポリスチレンとする換算値である。溶離液はテトラヒドロフランを用いた。
(ガラス転移温度)
 共重合体のガラス転移温度は、ティー・エイ・インスツルメント・ジャパン社製「DSC Q-100」を使用し、Nガス雰囲気下で昇温速度10℃/分で測定した。
(10質量%熱分解開始温度)
 共重合体の10質量%熱分解開始温度は、ティー・エイ・インスツルメント・ジャパン社製TGA Q-500を使用し、空気中、昇温速度10℃/分で測定した。
(共重合組成)
 共重合体の共重合組成は、共重合体のフッ素質量分析値から算出した。ただし、実施例6では、さらに13C-NMR測定結果と組み合せて算出した。
(共重合体の構造)
 共重合体の構造については、IRスペクトル、H-NMRおよび13C-NMRスペクトルの測定から同定した。
[実施例1]
 重合工程:
 内容積200mLのステンレス製攪拌機付きオートクレーブ(耐圧3MPa)に、t-ブチルアルコールの79.0g、ビニルエーテル(b)であるt-ブチルビニルエーテル(以下、「TBVE」という。)の26.7g、炭酸カリウムの0.48g、およびパーブチルパーピバレート(以下、「PBPV」という。)の70%イソオクタン溶液の0.46gを仕込み、Nガスで加圧パージを繰り返して系内の酸素を除去した。次いで、含フッ素オレフィン(a)であるテトラフルオロエチレン(以下、「TFE」という。)の26.7gをオートクレーブ中に導入し、55℃まで加熱した。この時点での圧力は1.56MPaを示した。その後、7時間重合を続行し、圧力が1.12MPaまで低下したところでオートクレーブを水冷し、未反応TFEをパージして重合を停止させた。得られた重合体溶液をメタノール中に投入し、生成した共重合体B1を析出させた後、真空乾燥を行った。共重合体B1の収量は22.0g、単量体の反応率は41%であった。共重合体B1の13C-NMRスペクトルを図1(A)、IRスペクトルを図2(A)に示す。
 フッ素質量分析の結果、共重合体B1の共重合組成比はTFE/TBVE=51/49(モル%)であった。また両単量体の共重合反応性比からの計算で実質的に交互構造(交互共重合比率95%以上)を有していることが分かった。
 脱保護工程:
 前記共重合体B1の2.0g、濃硫酸の0.5mL、エタノールの50mL、水の1mLを100mLフラスコに入れ、90℃で加熱攪拌し、脱保護反応を行った。この反応系は3~4時間で均一溶液となった。反応を合計12時間続行した後、反応液を水中に滴下し、共重合体を析出させ、水で洗浄した後、40℃で真空乾燥を行い、1.42gの白色の共重合体A1を単離した。共重合体A1の13C-NMRスペクトルを図1(B)、IRスペクトルを図2(B)に示す。
 13C-NMRスペクトルとIRスペクトルの測定により、共重合体A1においては、加水分解により97%以上の保護基(t-ブチル基)が脱離して水酸基が生成していることを確認した。
[実施例2]
 実施例1で得られた共重合体B1を用いた。
 脱保護工程:
 前記共重合体B1の2.0g、4規定の塩酸の50mL、1,4-ジオキサンの1mLを100mLフラスコに入れ、90℃で加熱攪拌し、脱保護反応を行った。この反応系は次第に均一溶液となった。反応を合計12時間続行した後、反応液を水中に滴下し、共重合体A2を析出させ、水で洗浄した後、40℃で真空乾燥を行い、1.49gの共重合体A2を単離した。
 H-NMRスペクトルとIRスペクトルの測定により、共重合体A2においては、97%以上の保護基(t-ブチル基)が脱離していることを確認した。
[実施例3]
 実施例1で得られた共重合体B1を用いた。
 脱保護工程:
 前記共重合体B1の2.0g、トリフルオロ酢酸の50mL、塩化メチレンの1mLを100mLフラスコに入れて溶解させた後、室温で攪拌した。合計48時間反応を続行した後、析出した共重合体を水で洗浄した後、40℃で真空乾燥を行い、1.33gの共重合体A3を単離した。
 H-NMRスペクトルとIRスペクトルの測定により、共重合体A3においては、97%以上の保護基(t-ブチル基)が脱離していることを確認した。
[実施例4]
 重合工程:
 内容積30mLのステンレス製攪拌機付きオートクレーブ(耐圧3MPa)に、t-ブチルアルコールの8.97g、ビニルエーテル(b)であるテトラヒドロピラニルビニルエーテル(以下、「THPVE」という。)の7.74g、炭酸カリウムの0.124g、およびPBPVの70%イソオクタン溶液の0.298gを仕込み、Nガスで加圧パージを繰り返し、系内の酸素を除去した。次いで、TFEの6.1gをオートクレーブ中に導入し、65℃まで加熱した。この時点で圧力は1.75MPaを示した。その後、5時間重合を続行し、圧力が0.59MPaまで低下したところでオートクレーブを水冷し、未反応TFEをパージして重合を停止した。得られた重合体溶液をメタノール中に投入し、生成した共重合体B2を析出させた。共重合体B2の収量は9.04g、単量体の反応率は65.3%であった。
 フッ素質量分析の結果、共重合体B2の共重合組成比はTFE/THPVE=47/53(モル%)であった。両単量体の共重合反応性比からの計算で実質的に交互構造(交互共重合比率95%以上)を有していることが分かった。
 脱保護工程:
 共重合体B2を用いた以外は実施例1と同様にして脱保護工程を行い、共重合体A4を得た。
 13C-NMRスペクトルとIRスペクトルの測定により、共重合体A4においては、95%以上の保護基(テトラヒドロピラニル基)が脱離していることを確認した。
[実施例5]
 重合工程:
 内容積200mLのステンレス製攪拌機付きオートクレーブ(耐圧3MPa)にt-ブチルアルコールの79.0g、TBVEの26.7g、炭酸カリウムの0.52g、およびPBPVの70%イソオクタン溶液の0.47gを仕込み、Nガスで加圧パージを繰り返し、系内の酸素を除去した。次いで、含フッ素オレフィン(a)であるクロロトリフルオロエチレン(以下、「CTFE」という。)の31.1gをオートクレーブ中に導入し、55℃まで加熱し、7時間重合を続行した。その後、オートクレーブを水冷し、未反応CTFEをパージして重合を停止した。得られた重合体溶液をメタノール中に投入し、生成した共重合体B3を析出させた。共重合体B3の収量は10.22g、単量体の反応率は17.7%であった。
 フッ素質量分析の結果、共重合体B3の共重合組成比はCTFE/TBVE=49/51(モル%)であった。
 脱保護工程:
 共重合体B3を用いた以外は実施例1と同様にして脱保護工程を行い、共重合体A5を得た。
 13C-NMRスペクトルとIRスペクトルの測定により、共重合体A5においては、95%以上の保護基(t-ブチル基)が脱離していることを確認した。共重合体A5のガラス転移温度は不鮮明であった。
[実施例6]
 内容積200mLのステンレス製攪拌機付きオートクレーブ(耐圧3MPa)に、t-ブチルアルコールの79.0g、TBVEの13.4g、ビニルエーテル(c)であるシクロヘキシルビニルエーテル(以下、「CHVE」という。)の16.8g、炭酸カリウムの0.52g、およびPBPVの70%イソオクタン溶液の0.51gを仕込み、Nガスで加圧パージを繰り返し系内の酸素を除去した。次いで、CTFEの26.7gをオートクレーブ中に導入し、55℃まで加熱し、7時間重合を続行した。その後、オートクレーブを水冷し、未反応CTFEをパージして重合を停止した。得られた重合体溶液をメタノール中に投入し、生成した共重合体B4を析出させ、真空乾燥を行った。共重合体B4の収量は30.1g、単量体の反応率は53%であった。
 フッ素質量分析および13C-NMR測定の結果、共重合体B4の共重合組成比はCTFE/TBVE/CHVE=51/24/25(モル%)であった。また単量体の共重合反応性比からの計算で実質的に交互構造(交互共重合比率95%以上)を有していることが分かった。
 脱保護工程:
 共重合体B4を用いた以外は実施例1と同様にして脱保護工程を行い、共重合体A6を得た。
 H-NMRスペクトルとIRスペクトルの測定により、共重合体A6においては、95%以上の保護基(t-ブチル基)が脱離していることを確認した。また、CHVEに基づく重合単位は、フッ素質量分析からそのまま残存していることが確認された。
[比較例1]
 重合工程:
 内容積200mLのステンレス製攪拌機付きオートクレーブ(耐圧3MPa)に、酢酸メチルの61.9g、酢酸ビニル(以下、「VAc」という。)の9.1g、およびPBPVの70%イソオクタン溶液の0.39gを仕込み、Nガスで加圧パージを繰り返し、系内の酸素を除去した。次いで、TFEの20.9gをオートクレーブ中に導入した後、55℃まで加熱した。この時点で圧力は1.23MPaを示した。その後、1時間重合を続行し、圧力が0.75MPaまで低下したところでオートクレーブを水冷し、未反応TFEをパージして重合を停止させた。得られた重合体溶液をメタノール中に投入し、共重合体C1を析出させ、真空乾燥を行った。共重合体C1の収量は18.5g、単量体の反応率は62%であった。
 フッ素質量分析の結果、共重合体C1の共重合組成比はTFE/VAc=49/51(モル%)であった。共重合体C1の交互共重合比率は、両単量体の共重合反応性比からの計算で80~85%であった。
 脱保護工程:
 前記共重合体C1の2.0g、濃硫酸の0.5mL、エタノールの50mL、水の1mLを100mLフラスコに入れ、90℃で加熱攪拌しながら24時間反応を行った。反応後、フッ素質量分析値より脱保護率を算出したところ、約50%であった。さらに加熱を続けると反応系は次第に均一溶液となった。合計72時間反応を続行した後、反応液を水中に滴下し、共重合体D1を析出させ、水で洗浄した後、40℃で真空乾燥を行い、1.42gの共重合体D1を単離した。
 13C-NMRスペクトルとIRスペクトルの測定により、共重合体D1においては、97%以上の保護基(アセチル基)が脱離して水酸基が生成したことを確認した。
[比較例2]
 比較例1で得られた共重合体C1を用いた。
 脱保護工程:
 前記共重合体C1の2.0g、エタノールの50mL、30質量%の苛性ソーダ水の3.5mLを100mLフラスコに入れ、90℃で加熱攪拌しながら24時間反応を行ったところ、反応系が赤褐色となった。反応液を水中に滴下し、共重合体D2を析出させ、水で洗浄した後、40℃で真空乾燥を行い、1.46gの共重合体D2を単離した。共重合体D2は黄色に着色していた。
[比較例3]
 重合工程:
 内容積200mLのステンレス製攪拌機付きオートクレーブ(耐圧3MPa)に、t-ブチルアルコールの79.0g、CHVEの33.6g、炭酸カリウムの0.54g、およびPBPVの70%イソオクタン溶液の0.46gを仕込み、Nガスで加圧パージを繰り返し、系内の酸素を除去した。次いで、TFEの26.7gをオートクレーブ中に導入した後、55℃まで加熱した。この時点で圧力は1.54MPaを示した。その後、6時間重合を続行し、圧力が0.75MPaまで低下したところでオートクレーブを水冷し、未反応TFEをパージして重合を停止させた。得られた重合体溶液をメタノール中に投入し、生成した共重合体C2を析出させた後、真空乾燥を行った。共重合体D2の収量は42.2g、単量体の反応率は70%であった。
 フッ素質量分析の結果、得られた共重合体C2の共重合組成比はTFE/CHVE=50/50(モル%)であった。
 脱保護工程:
 共重合体C2を用いて、実施例1と同じ条件で脱保護反応を試みた。48時間の加熱攪拌後、共重合体D3を回収し、真空乾燥を行った。共重合体D3をIRスペクトルにて分析したところ、反応前後でスペクトルに全く変化がなく、脱保護反応が進行していないことが分かった。すなわち、共重合体D3は、共重合体C2と同じ共重合体であった。
 実施例および比較例で得られた共重合体の数平均分子量(Mn)、分子量分布(Mw/Mn)、ガラス転移温度(Tg)、10質量%熱分解開始温度(Td10)および融点(Tm)の測定結果、ならびに脱保護工程後の着色の有無を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ビニルエーテル(b)を用いて製造した実施例1~4の共重合体(A1~A4)は、着色もなく、高品質であった。加えて、実施例1~6で得られた共重合体(A1~A6)は、10質量%熱分解開始温度が高く、耐熱性が優れていた。
 一方、酢酸ビニルを用いて製造した比較例1および2の共重合体(D1及びD2)は、実施例1~4の共重合体(A1~A4)に比べ、10質量%熱分解開始温度が低く、耐熱性が劣っていた。これは、酢酸ビニルに基づく重合単位が連続したことにより、ビニルアルコールに基づく重合単位が連続する部分が生じ、その部分が熱により切断されやすいためであると考えられる。
 また、比較例1の酸による脱保護工程には72時間を要し、実施例1の同じ条件の酸による脱保護工程の所要時間である12時間と比較して生産性が劣っていた。
 また、酢酸ビニルを用いて製造した共重合体C1を塩基性条件下で加水分解することにより製造した比較例2の共重合体D2は、黄色の着色が見られ、品質が劣っていた。
 また、ビニルエーテル(b)を用いずにビニルエーテル(c)のみを用いた比較例3(共重合体C2)では、脱保護工程において脱保護反応が進行せず、目的の共重合体(A)が得られなかった。
 本発明の製造方法により得られる共重合体(A)は、耐候性および透明性に優れた塗料用原料、透明性に優れた光学材料、耐水性に優れた気体/液体分離膜材料、ガスバリア材料、太陽電池用封止材料、各種表面保護シート材料、ならびに親水性多孔質材料等に好適に応用できる。
 なお、2010年4月8日に出願された日本特許出願2010-089504号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (8)

  1.  下式(1)で表される含フッ素オレフィンと、下式(2)で表されるビニルエーテルとを共重合させる重合工程と、
     該重合工程で得られた共重合体における前記ビニルエーテルに基づく重合単位のRを水素原子に置換し、水酸基を生じさせる脱保護工程と、を有する含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
     CF=CFX   (1)
     CH=CHOR   (2)
    (ただし、前記式中、Xはフッ素原子、塩素原子、トリフルオロメチル基、または-OC2a+1(aは1~3の整数である。)である。また、Rは脱保護反応により水素原子に置換される保護基である。)
  2.  前記式(2)のRが、-CR(R、R、Rは、それぞれ独立に炭素数1~3のアルキル基である。)、炭素数1~6のアルコキシメチル基、テトラヒドロフリル基、テトラヒドロピラニル基、またはトリアルキルシリル基(-Si(R、Rは炭素数1~6のアルキル基またはアリール基である。)である請求項1に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
  3.  前記式(2)で表される化合物がt-ブチルビニルエーテルである請求項1に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
  4.  前記Rを酸によって水素原子に置換する請求項1~3のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
  5.  前記重合工程において、前記式(1)で表される含フッ素オレフィンと、前記式(2)で表されるビニルエーテルとのモル比である(含フッ素オレフィン)/(ビニルエーテル)が45/55~55/45である請求項1~4のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
  6.  さらに、下式(3)で表されるビニルエーテルを共重合させる請求項1~5のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
     CH=CHOR   (3)
    (ただし、前記式(3)中、Rは前記脱保護工程において脱保護反応しない基である。)
  7.  下式(1)で表される含フッ素オレフィンとビニルアルコールの交互共重合比率が95%以上である含フッ素オレフィン/ビニルアルコール共重合体。
     CF=CFX   (1)
    (ただし、前記式中、Xはフッ素原子、塩素原子、トリフルオロメチル基、または-OC2a+1(aは1~3の整数である。)である。)
  8.  10質量%熱分解開始温度が340℃以上である請求項7に記載の含フッ素オレフィン/ビニルアルコール共重合体。
PCT/JP2011/058736 2010-04-08 2011-04-06 含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法 WO2011126056A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180014589.5A CN102812059B (zh) 2010-04-08 2011-04-06 含氟烯烃/乙烯醇共聚物及其制造方法
EP11765956.5A EP2557097B1 (en) 2010-04-08 2011-04-06 Fluorine-containing olefin/vinyl alcohol copolymer and preparation method therefor
JP2012509690A JP5796571B2 (ja) 2010-04-08 2011-04-06 含フッ素オレフィン/ビニルアルコール共重合体の製造方法
US13/564,128 US20120296040A1 (en) 2010-04-08 2012-08-01 Fluoroolefin/vinyl alcohol copolymer and process for its production
US14/246,791 US9290595B2 (en) 2010-04-08 2014-04-07 Process for the production of a flouroolefin/vinyl alcohol copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-089504 2010-04-08
JP2010089504 2010-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/564,128 Continuation US20120296040A1 (en) 2010-04-08 2012-08-01 Fluoroolefin/vinyl alcohol copolymer and process for its production

Publications (1)

Publication Number Publication Date
WO2011126056A1 true WO2011126056A1 (ja) 2011-10-13

Family

ID=44762991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058736 WO2011126056A1 (ja) 2010-04-08 2011-04-06 含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法

Country Status (5)

Country Link
US (2) US20120296040A1 (ja)
EP (2) EP2743281B1 (ja)
JP (1) JP5796571B2 (ja)
CN (2) CN104725546A (ja)
WO (1) WO2011126056A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165503A1 (ja) * 2011-06-03 2012-12-06 旭硝子株式会社 親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法
WO2013051668A1 (ja) * 2011-10-05 2013-04-11 旭硝子株式会社 含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルム
WO2013099966A1 (ja) * 2011-12-28 2013-07-04 ダイキン工業株式会社 高分子多孔質膜
WO2014024933A1 (ja) * 2012-08-09 2014-02-13 旭硝子株式会社 ガラスシートフッ素樹脂積層体
WO2014084356A1 (ja) * 2012-11-30 2014-06-05 旭硝子株式会社 含フッ素共重合体からなる分離膜
US20140187699A1 (en) * 2011-10-05 2014-07-03 Asahi Glass Company, Limited Composition comprising fluorinated olefin/vinyl alcohol copolymer and alkoxysilane, compound, cured product formed from said composition, and film comprising said cured product
US10189918B2 (en) * 2011-10-05 2019-01-29 Honeywell International Inc. Curable fluorocopolymer formed from tetrafluoropropene
WO2019124490A1 (ja) * 2017-12-20 2019-06-27 Agc株式会社 加飾フィルムおよび加飾フィルム付き3次元成形品の製造方法
WO2022163503A1 (ja) * 2021-01-29 2022-08-04 Agc株式会社 二次電池用電極および電気化学デバイス
US11453731B2 (en) 2013-10-22 2022-09-27 Honeywell International Inc. Curable fluorocopolymer formed from tetrafluoropropene

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628959A (zh) 2008-07-15 2010-01-20 中国石油化工集团公司 一种可发泡苯乙烯属单体-二烯烃共聚物、其制备方法和用途
CN105339427B (zh) * 2013-06-26 2018-04-10 大金工业株式会社 组合物、高分子多孔质膜和亲水化剂
JP6455507B2 (ja) 2014-03-10 2019-01-23 Agc株式会社 塗料用組成物、溶剤系塗料、水系塗料、粉体塗料および塗装物品
US9702837B2 (en) 2014-12-02 2017-07-11 Kuwait Institute For Scientific Research System for measuring glass transition temperature of a polymer
CN105418822A (zh) * 2015-12-31 2016-03-23 山东华夏神舟新材料有限公司 高疏水涂料用氟树脂
WO2018118493A1 (en) * 2016-12-20 2018-06-28 3M Innovative Properties Company Partially fluorinated copolymers derived from fluorinated allyl ethers
CN111153773A (zh) * 2020-01-03 2020-05-15 重庆市化工研究院 一种苄基乙烯基醚及其单体共聚物制备的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502832A (ja) * 1987-11-20 1990-09-06 アライド‐シグナル・インコーポレーテッド フッ素化共重合体、そのフィルム及び該共重合体の製造法
JPH04139237A (ja) * 1990-05-18 1992-05-13 Japan Gore Tex Inc 親水性多孔質フッ素樹脂材料
JPH05261256A (ja) 1992-03-19 1993-10-12 Japan Gore Tex Inc 含フッ素共重合体膜及び分離膜
JPH061876A (ja) 1992-06-22 1994-01-11 Japan Gore Tex Inc 親水性多孔質フッ素樹脂材料の製造方法
JPH0834817A (ja) * 1994-07-22 1996-02-06 Sekisui Chem Co Ltd ポリビニルブチラールの製造方法
JP2010089504A (ja) 2008-10-08 2010-04-22 Xerox Corp 相変化インク画像記録済媒体断裁システム及び方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL296594A (ja) * 1962-08-13
US5137999A (en) 1987-11-20 1992-08-11 Allied-Signal Inc. Copolymerization of vinyl acetate and a fluoromonomer in an aqueous medium
US5070162A (en) * 1987-11-20 1991-12-03 Allied-Signal Inc. Copolymerization of vinyl acetate and a fluoromonomer in an aqueous medium
US5151477A (en) * 1987-11-20 1992-09-29 Allied-Signal Inc. Copolymerization of vinyl acetate and a fluoromonomer in an aqueous medium
US5032656A (en) 1987-11-23 1991-07-16 Allied-Signal Inc. Fluorinated copolymer and barrier films
US5173556A (en) 1987-11-23 1992-12-22 Allied-Signal Inc. Fluorinated copolymer and barrier films
JPH07119260B2 (ja) 1989-11-02 1995-12-20 旭硝子株式会社 含フッ素共重合体
EP0456939B1 (en) 1990-05-18 1995-02-22 Japan Gore-Tex, Inc. Hydrophilic porous fluoropolymer membrane
US5445739A (en) 1991-02-04 1995-08-29 Japan Gore-Tex, Inc. Composite membrane that includes a separation membrane
US5188890A (en) 1991-03-15 1993-02-23 Japan Gore-Tex, Inc. Metallized porous flourinated resin and process therefor
JP3093345B2 (ja) * 1991-07-10 2000-10-03 旭硝子株式会社 シリル基を有する含フッ素共重合体を含有する塗料用組成物
US7939094B2 (en) * 2002-06-19 2011-05-10 Boston Scientific Scimed, Inc. Multiphase polymeric drug release region

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502832A (ja) * 1987-11-20 1990-09-06 アライド‐シグナル・インコーポレーテッド フッ素化共重合体、そのフィルム及び該共重合体の製造法
JPH04139237A (ja) * 1990-05-18 1992-05-13 Japan Gore Tex Inc 親水性多孔質フッ素樹脂材料
JPH05261256A (ja) 1992-03-19 1993-10-12 Japan Gore Tex Inc 含フッ素共重合体膜及び分離膜
JPH061876A (ja) 1992-06-22 1994-01-11 Japan Gore Tex Inc 親水性多孔質フッ素樹脂材料の製造方法
JPH0834817A (ja) * 1994-07-22 1996-02-06 Sekisui Chem Co Ltd ポリビニルブチラールの製造方法
JP2010089504A (ja) 2008-10-08 2010-04-22 Xerox Corp 相変化インク画像記録済媒体断裁システム及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. RAGAZZINI, EUR. POLYM. J., vol. 3, 1967, pages 5
See also references of EP2557097A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165503A1 (ja) * 2011-06-03 2012-12-06 旭硝子株式会社 親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法
US10189918B2 (en) * 2011-10-05 2019-01-29 Honeywell International Inc. Curable fluorocopolymer formed from tetrafluoropropene
WO2013051668A1 (ja) * 2011-10-05 2013-04-11 旭硝子株式会社 含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルム
US20140187728A1 (en) * 2011-10-05 2014-07-03 Asahi Glass Company, Limited Process for producing fluorinated olefin/vinyl alcohol copolymer and film made by forming a composition containing the copolymer
US20140187699A1 (en) * 2011-10-05 2014-07-03 Asahi Glass Company, Limited Composition comprising fluorinated olefin/vinyl alcohol copolymer and alkoxysilane, compound, cured product formed from said composition, and film comprising said cured product
US9388262B2 (en) 2011-10-05 2016-07-12 Asahi Glass Company, Limited Process for producing fluorinated olefin/vinyl alcohol copolymer and film made by forming a composition containing the copolymer
WO2013099966A1 (ja) * 2011-12-28 2013-07-04 ダイキン工業株式会社 高分子多孔質膜
JP2013151671A (ja) * 2011-12-28 2013-08-08 Daikin Industries Ltd 高分子多孔質膜
CN103975005A (zh) * 2011-12-28 2014-08-06 大金工业株式会社 高分子多孔质膜
JP2014166632A (ja) * 2011-12-28 2014-09-11 Daikin Ind Ltd 高分子多孔質膜
WO2014024933A1 (ja) * 2012-08-09 2014-02-13 旭硝子株式会社 ガラスシートフッ素樹脂積層体
JPWO2014024933A1 (ja) * 2012-08-09 2016-07-25 旭硝子株式会社 ガラスシートフッ素樹脂積層体
WO2014084356A1 (ja) * 2012-11-30 2014-06-05 旭硝子株式会社 含フッ素共重合体からなる分離膜
JPWO2014084356A1 (ja) * 2012-11-30 2017-01-05 旭硝子株式会社 含フッ素共重合体からなる分離膜
US11453731B2 (en) 2013-10-22 2022-09-27 Honeywell International Inc. Curable fluorocopolymer formed from tetrafluoropropene
WO2019124490A1 (ja) * 2017-12-20 2019-06-27 Agc株式会社 加飾フィルムおよび加飾フィルム付き3次元成形品の製造方法
CN111556809A (zh) * 2017-12-20 2020-08-18 Agc株式会社 装饰薄膜及带装饰薄膜的三维成形品的制造方法
JPWO2019124490A1 (ja) * 2017-12-20 2021-01-14 Agc株式会社 加飾フィルムおよび加飾フィルム付き3次元成形品の製造方法
JP7167940B2 (ja) 2017-12-20 2022-11-09 Agc株式会社 加飾フィルムおよび加飾フィルム付き3次元成形品の製造方法
CN111556809B (zh) * 2017-12-20 2023-02-17 Agc株式会社 装饰薄膜及带装饰薄膜的三维成形品的制造方法
WO2022163503A1 (ja) * 2021-01-29 2022-08-04 Agc株式会社 二次電池用電極および電気化学デバイス

Also Published As

Publication number Publication date
US20140221570A1 (en) 2014-08-07
US9290595B2 (en) 2016-03-22
EP2743281A1 (en) 2014-06-18
CN104725546A (zh) 2015-06-24
EP2743281B1 (en) 2015-06-10
JP5796571B2 (ja) 2015-10-21
JPWO2011126056A1 (ja) 2013-07-11
EP2557097A1 (en) 2013-02-13
US20120296040A1 (en) 2012-11-22
CN102812059B (zh) 2015-06-17
EP2557097B1 (en) 2015-06-10
CN102812059A (zh) 2012-12-05
EP2557097A4 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5796571B2 (ja) 含フッ素オレフィン/ビニルアルコール共重合体の製造方法
JP6212542B2 (ja) トリフルオロエチレンの制御フリーラジカル共重合
US9388262B2 (en) Process for producing fluorinated olefin/vinyl alcohol copolymer and film made by forming a composition containing the copolymer
EP0135917A2 (en) Fluorine-containing copolymer
US10730979B2 (en) Functionalised fluorinated copolymers
US20180305483A1 (en) Functionalized fluorinated copolymers
JP2004526048A (ja) 硬化性耐塩基性フルオロエラストマー
JPS6127404B2 (ja)
JPH02191613A (ja) 新規非結晶性含フッ素共重合体
JP3713870B2 (ja) 含フッ素ニトリルおよびその重合体
EP1525238A2 (en) Fluoroelastomer copoloymer based on tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene and vinylidene fluoride
EP0570762B1 (en) Fluoroelastomeric and fluoroplastomeric copolymers having a high resistance to bases
JPH0718002A (ja) 含フッ素共重合体の製造方法
JP3498489B2 (ja) 含フッ素共重合体およびそれを用いた組成物
JPH0216325B2 (ja)
JP2011042713A (ja) 主鎖に環状構造を有する含フッ素共重合体及びその製造方法
JP2841396B2 (ja) 含フツ素共重合体の製造方法
JPH0319246B2 (ja)
JPH02605A (ja) 含フッ素共重合体
JPH04372612A (ja) 水酸基を含有するフルオロオレフィン共重合体の製造方法
JPH05230152A (ja) フルオロビニルエーテルを含む共重合体
JPS61113607A (ja) フルオロオレフイン共重合体及びその製造法
JPH04318009A (ja) 含フッ素共重合体の製造方法
JPH03294312A (ja) 含フッ素共重合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014589.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509690

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011765956

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE