WO2013099966A1 - 高分子多孔質膜 - Google Patents

高分子多孔質膜 Download PDF

Info

Publication number
WO2013099966A1
WO2013099966A1 PCT/JP2012/083690 JP2012083690W WO2013099966A1 WO 2013099966 A1 WO2013099966 A1 WO 2013099966A1 JP 2012083690 W JP2012083690 W JP 2012083690W WO 2013099966 A1 WO2013099966 A1 WO 2013099966A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
tetrafluoroethylene
solvent
polymer
membrane
Prior art date
Application number
PCT/JP2012/083690
Other languages
English (en)
French (fr)
Inventor
優子 塩谷
田中 義人
剣吾 伊藤
三木 淳
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR20147020679A priority Critical patent/KR20140116146A/ko
Priority to US14/363,139 priority patent/US20150021261A1/en
Priority to EP12862678.5A priority patent/EP2784108A4/en
Priority to IN1268KON2014 priority patent/IN2014KN01268A/en
Priority to CN201280059751.XA priority patent/CN103975005A/zh
Publication of WO2013099966A1 publication Critical patent/WO2013099966A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polymer porous membrane.
  • porous membranes have been used in various fields such as charged membranes, battery separators, and fuel cells, including water treatment fields such as water purification and wastewater treatment, medical applications such as blood purification, and the food industry. Yes.
  • porous membranes are used to replace conventional sand filtration and coagulation sedimentation processes and improve the quality of treated water.
  • the water permeability of the porous membrane is required to be excellent. If the water permeation performance is excellent, the membrane area can be reduced, so the water purifier becomes compact and the equipment cost can be reduced.
  • Patent Document 1 discloses a fluorine-containing copolymer film made of a copolymer of tetrafluoroethylene and vinyl acetate or a copolymer obtained by saponifying at least a part of acetate groups contained in the copolymer. Has been.
  • porous membranes using vinyl alcohol polymers are not sufficient in terms of water permeability and have room for improvement.
  • the porous membrane is required to have hydrophilicity so that the porous membrane has excellent water permeability and is hardly contaminated. If the porous membrane is highly hydrophilic, it is difficult for contaminants to accumulate on the membrane surface, and the contaminants are easy to remove by washing. Therefore, there are advantages in terms of operating costs such as a low operating pressure, and an advantage that the membrane life is prolonged.
  • the present invention provides a polymer porous membrane excellent in water permeability and hydrophilicity.
  • the present invention comprises a copolymer (A) having a vinyl alcohol unit and a tetrafluoroethylene unit, wherein the alternating rate of the vinyl alcohol unit and the tetrafluoroethylene unit is 30% or more. It is a molecular porous membrane.
  • the copolymer (A) preferably has a molar ratio of vinyl alcohol units to tetrafluoroethylene units (vinyl alcohol units / tetrafluoroethylene units) of 25 to 75/75 to 25.
  • the porous polymer membrane of the present invention is preferably composed of the copolymer (A) and further a vinylidene fluoride resin.
  • the porous polymer membrane of the present invention is preferably produced by a non-solvent induced phase separation method, a thermally induced phase separation method, or a combination of both.
  • the polymer porous membrane of the present invention is preferably a hollow fiber membrane.
  • the porous polymer membrane of the present invention is preferably used for water treatment.
  • the polymeric porous membrane of this invention is the above-mentioned structure, it is excellent in water permeability and hydrophilicity.
  • the porous polymer membrane of the present invention has a vinyl alcohol unit (—CH 2 —CH (OH) —) and a tetrafluoroethylene unit (—CF 2 —CF 2 —), and the vinyl alcohol unit and the tetrafluoroethylene unit. And the copolymer (A) having an alternating rate of 30% or more. Since the porous polymer membrane of the present invention is made of a copolymer having a high ratio of alternately polymerizing vinyl alcohol units and tetrafluoroethylene units, it is excellent in water permeability and hydrophilicity.
  • a method for producing a vinyl alcohol polymer As a method for producing a vinyl alcohol polymer, a method of polymerizing a vinyl ester monomer typified by vinyl acetate and then saponifying the obtained polymer is common.
  • vinyl acetate is easily chained due to the strong homopolymerization property of vinyl acetate, and it is difficult to obtain a copolymer having a high alternating rate.
  • the present inventors have succeeded in obtaining a copolymer having a high alternating rate of vinyl alcohol units and tetrafluoroethylene units by adjusting the polymerization conditions as described later.
  • the present invention has been completed by finding a new finding that a polymer porous membrane having high water permeability and hydrophilicity can be obtained by using a copolymer having a high alternating rate.
  • the porous polymer membrane of the present invention is also composed of the copolymer (A), it is excellent in the permeation performance of a treatment liquid such as water, and has mechanical strength such as tensile strength, elongation characteristics, bending strength, Excellent chemical resistance and alkali resistance.
  • the polymer porous membrane of the present invention can be produced in a wide range from those for separating fine particles having a diameter of about 10 nm to those for separating fine particles on the micron level by controlling the film forming conditions.
  • the copolymer (A) preferably has an alternating rate of vinyl alcohol units and tetrafluoroethylene units of 35% or more. More preferably, it is 40% or more, and still more preferably 60% or more. The upper limit of the alternating rate is 100%, preferably 95%, more preferably 90%.
  • the alternating rate of the vinyl alcohol unit and the tetrafluoroethylene unit was determined by performing 1 H-NMR measurement of the copolymer (A) using a solvent in which the copolymer (A) such as heavy acetone was dissolved, It can be calculated as an alternating rate of 3 chains.
  • Alternating rate (%) C / (A + B + C) ⁇ 100
  • the number of V units of A, B, and C is calculated from the intensity ratio of H of the main chain bonded to the tertiary carbon of the vinyl alcohol unit (—CH 2 —CH (OH) —) measured by 1 H-NMR.
  • the alternating rate is preferably 35% or more and 85% or less, and more preferably 35% or more and less than 80%. If the alternating rate of the copolymer (A) is too high, the solubility in a solvent may be reduced, and it may be difficult to produce a polymeric porous membrane. A porous membrane having excellent hydrophilicity and mechanical strength is obtained. It may not be obtained.
  • the film material is excellent in heat resistance.
  • the copolymer (A) is a copolymer having a vinyl alcohol unit and a tetrafluoroethylene unit (hereinafter also referred to as “vinyl alcohol / tetrafluoroethylene copolymer”).
  • the vinyl alcohol / tetrafluoroethylene copolymer preferably has a vinyl alcohol unit / tetrafluoroethylene unit in a molar ratio of 25 to 75/75 to 25. If the molar ratio of the vinyl alcohol unit to the tetrafluoroethylene unit is outside the above range, a vinyl alcohol / tetrafluoroethylene copolymer having a high alternating rate may not be obtained. If there are too many vinyl alcohol units, an elution phenomenon may occur when the produced porous membrane is brought into contact with hot water, and sufficient mechanical strength may not be obtained. When there are too few vinyl alcohol units, hydrophilicity will fall and there exists a possibility that sufficient water permeability may not be obtained.
  • the copolymer (A) has a vinyl alcohol unit / tetrafluoroethylene unit molar ratio of 33-60 / 67-40, more preferably 38-60 / 62-40.
  • the copolymer (A) is preferably a vinyl alcohol / tetrafluoroethylene copolymer substantially consisting of only a vinyl alcohol unit and a tetrafluoroethylene unit.
  • the copolymer (A) may have a monomer unit other than the vinyl alcohol unit and the tetrafluoroethylene unit as long as the effects of the present invention are not impaired.
  • Other monomer units include vinyl ester monomer units, vinyl ether monomer units, (meth) acrylic monomer units having polyethylene oxide in the side chain, vinyl monomer units having polyethylene oxide in the side chain, and long-chain hydrocarbon groups.
  • the total of other monomer units is preferably from 0 to 50 mol%, more preferably from 0 to 40 mol%, still more preferably from 0 to 30 mol%.
  • the copolymer (A) may have a vinyl ester monomer unit.
  • the glass transition temperature becomes high, so that the polymer porous membrane is more excellent in mechanical strength.
  • the polymer porous membrane has excellent acid resistance, it is possible to prevent the polymer porous membrane from being damaged even when the polymer porous membrane is washed or disinfected with an acid. it can.
  • the copolymer (A) having a vinyl ester monomer unit adjusts the degree of saponification in the case where the polymer porous film of the present invention is obtained by saponifying a copolymer having a vinyl ester monomer unit and a tetrafluoroethylene unit. Can be manufactured. Saponification will be described later.
  • the weight average molecular weight of the copolymer (A) varies depending on the use of the polymer porous membrane of the present invention, but is preferably 10,000 or more from the viewpoint of mechanical strength and film formability. More preferably, it is 30,000 to 2,000,000, and still more preferably 50,000 to 1,000,000.
  • the weight average molecular weight can be determined by gel permeation chromatography (GPC).
  • the manufacturing method of a copolymer (A) is demonstrated.
  • the copolymer (A) is obtained by copolymerizing a vinyl ester monomer such as vinyl acetate and tetrafluoroethylene, and then saponifying the obtained copolymer. From the viewpoint of setting the alternating ratio of the copolymer (A) to 30% or more, it is preferable to carry out the polymerization under conditions that keep the composition ratio of the vinyl ester monomer and tetrafluoroethylene substantially constant.
  • the copolymer (A) is polymerized under the condition that the composition ratio of the vinyl ester monomer and tetrafluoroethylene is kept almost constant to obtain a copolymer having a vinyl ester monomer unit and a tetrafluoroethylene unit. It is preferably obtained by a production method comprising a step and a step of saponifying the obtained copolymer to obtain a copolymer having a vinyl alcohol unit and a tetrafluoroethylene unit.
  • vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valelate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, pelargonic acid Vinyl, vinyl caprate, vinyl laurate, vinyl myristate, vinyl pentadecylate, vinyl palmitate, vinyl margarate, vinyl stearate, vinyl octylate, Veova-9 (manufactured by Showa Shell Sekiyu KK), Veova-10 (Showa Shell Sekiyu Co., Ltd.), vinyl benzoate, vinyl versatate and the like are mentioned. Of these, vinyl acetate, vinyl propionate and vinyl versatate are preferably used because they are easily available and inexpensive. Moreover, you may mix and use these.
  • Examples of a method for copolymerizing a vinyl ester monomer and tetrafluoroethylene include polymerization methods such as solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization. Or it is preferable to manufacture by solution polymerization, but it is not this limitation.
  • a polymerization initiator In emulsion polymerization or solution polymerization, a polymerization initiator, a solvent, a chain transfer agent, a surfactant and the like can be used, and conventionally known ones can be used.
  • the solvent used in the solution polymerization is preferably one that dissolves tetrafluoroethylene, the vinyl ester monomer, and the copolymer (A).
  • esters such as butyl acetate, ethyl acetate, methyl acetate, and propyl acetate; acetone Ketones such as methyl ethyl ketone and cyclohexanone; aliphatic hydrocarbons such as hexane, cyclohexane and octane; aromatic hydrocarbons such as benzene, toluene and xylene; alcohols such as methanol, ethanol, tert-butanol and isopropanol; tetrahydrofuran And cyclic ethers such as dioxane; fluorine-containing solvents such as HCFC-225; dimethyl sulfoxide, dimethylformamide, or a mixture thereof.
  • solvent used in the emulsion polymerization such
  • polymerization initiator examples include peroxycarbonates such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP), and t-butyl peroxypivalate.
  • Oil-soluble radical polymerization initiators and water-soluble radical polymerization initiators such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium salt, and the like can be used. Particularly in emulsion polymerization, ammonium persulfate and potassium persulfate are preferred.
  • a known surfactant can be used.
  • a nonionic surfactant an anionic surfactant, a cationic surfactant, or the like can be used.
  • a fluorine-containing surfactant may be used.
  • chain transfer agent examples include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
  • the addition amount may vary depending on the chain transfer constant of the compound used, but is usually used in the range of 0.001 to 10% by mass with respect to the polymerization solvent.
  • the polymerization temperature may be within a range in which the composition ratio during the reaction of the vinyl ester monomer and tetrafluoroethylene is substantially constant, and may be 0 to 100 ° C.
  • the polymerization pressure may be in a range where the composition ratio during the reaction between the vinyl ester monomer and tetrafluoroethylene is substantially constant, and may be 0 to 10 MPaG.
  • Saponification of an acetate group derived from vinyl acetate is well known in the art, and can be performed by a conventionally known method such as alcoholysis or hydrolysis. By this saponification, the acetate group (—OCOCH 3 ) is converted to a hydroxyl group (—OH). Similarly, other vinyl ester monomers can be saponified by a conventionally known method to obtain a hydroxyl group.
  • the degree of saponification in the case of obtaining a porous polymer membrane of the present invention by saponifying a copolymer having a vinyl ester monomer unit and a tetrafluoroethylene unit may be in a range that does not impair water permeability and alkali resistance. Specifically, it is preferably 50% or more, more preferably 60% or more, and still more preferably 70% or more.
  • the resin constituting the polymer porous membrane may be only the copolymer (A), or other than the copolymer (A) and the copolymer (A). It may consist of resin.
  • the copolymer (A) is preferably 30% by mass or more, more preferably 40% by mass or more of the entire polymer porous membrane. .
  • thermoplastic resin is a resin that deforms or flows by an external force when heated.
  • Thermoplastic resins include vinylidene fluoride resin, polyethylene resin, polypropylene resin, acrylic resin, polyacrylonitrile, acrylonitrile-butadiene-styrene (ABS) resin, polystyrene resin, acrylonitrile-styrene (AS) resin, vinyl chloride resin
  • ABS acrylonitrile-butadiene-styrene
  • AS acrylonitrile-styrene
  • vinyl chloride resin Polyethylene terephthalate, polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether resin, polyphenylene sulfide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, and mixtures and copolymers thereof. .
  • Other resins miscible with these may be mixed.
  • the thermoplastic resin is preferably at least one selected from the group consisting of vinylidene fluoride resin, polyethylene resin, polypropylene resin, and acrylic resin because of its high chemical resistance. More preferred is a vinylidene fluoride resin.
  • the vinylidene fluoride-based resin is a resin made of polyvinylidene fluoride or a copolymer having a vinylidene fluoride unit.
  • the weight average molecular weight of polyvinylidene fluoride is preferably 50,000 to 1,000,000 from the viewpoint of mechanical strength and processability of the polymer porous membrane.
  • the copolymer having a vinylidene fluoride unit examples include a vinylidene fluoride / tetrafluoroethylene copolymer and a vinylidene fluoride / hexafluoropropylene copolymer. From the viewpoint of mechanical strength and alkali resistance, the copolymer having a vinylidene fluoride unit is particularly preferably a vinylidene fluoride / tetrafluoroethylene copolymer.
  • the vinylidene fluoride / tetrafluoroethylene copolymer has a molar ratio of vinylidene fluoride units to tetrafluoroethylene units (vinylidene fluoride units / tetrafluoroethylene units) of 50 to 99 / 50 to 1 is preferable.
  • examples of such a polymer include Neoflon VT50, VP50, VT100, VP100, VP101, and VP100X manufactured by Daikin Industries, Ltd.
  • the vinylidene fluoride / tetrafluoroethylene copolymer has a molar ratio of vinylidene fluoride units / tetrafluoroethylene units of 50 to 90/50 to 10.
  • vinylidene fluoride / tetrafluoroethylene copolymer consisting of only vinylidene fluoride units and tetrafluoroethylene units
  • vinylidene fluoride / tetrafluoroethylene copolymers include vinylidene fluoride units and tetrafluoroethylene units.
  • a terpolymer having a hexafluoropropylene unit, a chlorotrifluoroethylene unit, a perfluorovinyl ether unit, or the like may be used as long as the characteristics are not impaired.
  • the weight average molecular weight of the copolymer having a vinylidene fluoride unit varies depending on the use of the polymer porous membrane of the present invention, but is preferably 10,000 or more from the viewpoint of mechanical strength and film formability. More preferably, it is 50,000 to 1,000,000, and more preferably 100,000 to 800,000.
  • the weight average molecular weight can be determined by gel permeation chromatography (GPC).
  • the polyethylene resin is a resin made of an ethylene homopolymer or an ethylene copolymer.
  • the polyethylene resin may be composed of a plurality of types of ethylene copolymers.
  • Examples of the ethylene copolymer include a copolymer of ethylene and one or more selected from linear unsaturated hydrocarbons such as propylene, butene and pentene.
  • the polypropylene resin is a resin made of a propylene homopolymer or a propylene copolymer.
  • the polypropylene resin may be composed of a plurality of types of propylene copolymers.
  • Examples of the propylene copolymer include a copolymer of propylene and one or more selected from linear unsaturated hydrocarbons such as ethylene, butene, and pentene.
  • the acrylic resin is a polymer compound mainly including a polymer such as acrylic acid, methacrylic acid and derivatives thereof such as acrylamide and acrylonitrile. Particularly preferred are acrylic ester resins and methacrylic ester resins.
  • the polymer porous membrane of the present invention is composed of the copolymer (A) and a resin other than the copolymer (A)
  • the type and amount of the resin other than the copolymer (A) The membrane strength, water permeability, blocking performance, etc. of the molecular porous membrane can be adjusted.
  • the resin other than the copolymer (A) is a vinylidene fluoride copolymer
  • the polymer porous membrane has excellent water permeability and also has high mechanical strength and alkali resistance.
  • the polymer porous membrane of the present invention is further composed of polyvinylpyrrolidone, polymethyl methacrylate resin, polyethylene oxide, montmorillonite, SiO 2 , CaCO. 3. Additives such as polytetrafluoroethylene may be included.
  • the porous polymer membrane of the present invention may be treated with an alkali from the viewpoint of improving water permeability.
  • the alkali include NaOH aqueous solution, KOH aqueous solution, aqueous ammonia, and amine solution. These may contain alcohols such as ethanol and methanol, and organic solvents.
  • the alkali preferably contains an alcohol, but is not limited thereto.
  • the porous polymer membrane of the present invention preferably has a pore size of 2 nm to 1.0 ⁇ m, more preferably 5 nm to 0.5 ⁇ m. If the pore diameter is too small, the gas or liquid permeability may be insufficient, and if the pore diameter is too large, the blocking performance may be lowered, or the mechanical strength may be lowered and the glass may be easily damaged.
  • the pore diameter is a magnification at which pores can be clearly confirmed, and the surface of the porous polymer membrane is photographed using SEM or the like, and the pore diameter is measured.
  • the diameter of the pore can be obtained by (a ⁇ b) 0.5, where a is the minor axis and b is the major axis.
  • a rough pore diameter can be obtained from the fine particle rejection rate. That is, for example, a porous film that blocks 95% or more of polystyrene fine particles of 50 nm or the like is considered to have a pore diameter of 50 nm or less.
  • the polymer porous membrane of the present invention has a pure water permeability coefficient of 1.0 ⁇ 10 ⁇ 9 m 3 / m 2 / Pa / s or more when, for example, the polymer porous membrane has a performance of blocking 95% or more of fine particles of 50 nm. It is preferably 2.0 ⁇ 10 ⁇ 9 m 3 / m 2 / Pa / s or more.
  • the upper limit of the pure water permeability coefficient is not particularly limited, but it is desirable that the value is higher as long as the desired rejection and strength are maintained.
  • the polymer porous membrane of the present invention preferably has a fine particle blocking rate of 100 nm or 50 nm of 90% or more, more preferably 95% or more.
  • Fine particle blocking rate is obtained by the following equation after filtering a dispersion solution in which polystyrene latex fine particles having a controlled particle size are diluted to about 100 ppm with ion exchange water.
  • Fine particle rejection (%) ((Evaluation stock solution absorbance) ⁇ (Transmission solution absorbance)) / (Evaluation stock solution absorbance) ⁇ 100
  • the polymer porous membrane of the present invention preferably has a maximum point breaking strength of 1.0 MPa or more, more preferably 2.0 MPa or more.
  • the maximum breaking strength is a value obtained by measuring the breaking strength of a test piece under the conditions of a distance between chucks of 50 mm and a tensile speed of 200 mm / min, and using the cross-sectional area before the tensile test as a unit measurement area.
  • the polymer porous membrane of the present invention preferably has a maximum point elongation of 90% or more, and more preferably 200% or more.
  • the maximum point elongation is obtained from the elongation at the maximum point on the basis of the distance between the chucks of 50 mm and the tensile strength of 200 mm / min.
  • the structure of the polymer porous membrane of the present invention is not particularly limited.
  • a three-dimensional network structure in which the solid content spreads in a three-dimensional network or a spherical structure in which a large number of spherical or nearly spherical solid components are connected directly or via a streaky solid content Etc.
  • the shape of the polymer porous membrane of the present invention is preferably a flat membrane shape or a hollow fiber membrane shape.
  • the polymer porous membrane of the present invention may be a composite membrane comprising a fluoropolymer layer comprising a copolymer (A) and a porous substrate.
  • the surface of the porous substrate may be coated with a fluoropolymer layer made of the copolymer (A), or the fluoropolymer made of the porous substrate and the copolymer (A).
  • a layer may be laminated.
  • the composite film which consists of a resin layer which consists of resin other than a porous base material, a fluoropolymer layer, and a copolymer (A) may be sufficient. Examples of the resin forming the resin layer include the thermoplastic resins described above.
  • porous substrate examples include polyester fibers, nylon fibers, polyurethane fibers, acrylic fibers, rayon fibers, woven fabrics, knitted fabrics, and nonwoven fabrics made of organic fibers such as cotton and silk.
  • the pore diameter on the surface of the porous substrate can be freely selected depending on the use, but is preferably 5 nm to 1.0 ⁇ m, more preferably 8 nm to 0.5 ⁇ m.
  • the thickness of the polymer porous membrane is preferably 10 ⁇ m to 1 mm, and more preferably 30 ⁇ m to 500 ⁇ m.
  • the thickness including the porous substrate is preferably within the above-mentioned range.
  • the porous polymer membrane of the present invention is more preferably in the form of a hollow fiber membrane from the viewpoint of unit area and the amount of treated water per unit volume.
  • the inner diameter of the hollow fiber membrane is preferably 100 ⁇ m to 10 mm, more preferably 150 ⁇ m to 8 mm.
  • the outer diameter of the hollow fiber membrane is preferably 120 ⁇ m to 15 mm, more preferably 200 ⁇ m to 12 mm.
  • the film thickness of the polymer porous membrane is preferably 20 ⁇ m to 3 mm, more preferably 50 ⁇ m to 2 mm.
  • the pore diameter of the inner and outer surfaces of the hollow fiber membrane can be freely selected depending on the application, but is preferably in the range of 2 nm to 1.0 ⁇ m, more preferably 5 nm to 0.5 ⁇ m.
  • the polymer porous membrane of the present invention can be produced by various methods. For example, a phase separation method, a melt extraction method, a vapor solidification method, a stretching method, an etching method, a method of forming a porous film by sintering a polymer sheet, a porous film by crushing a polymer sheet containing bubbles And a method using electrospinning.
  • inorganic fine particles and an organic liquid material are melt-kneaded into a mixture, extruded from a die at a temperature equal to or higher than the melting point of the copolymer (A), molded by a press machine, and then solidified by cooling, and then an organic liquid.
  • This is a method for forming a porous structure by extracting a body and inorganic fine particles.
  • At least one surface of a thin-film product comprising a fluoropolymer solution obtained by dissolving the copolymer (A) in a good solvent is compatible with the good solvent and does not dissolve the copolymer (A).
  • the method for producing a porous polymer membrane of the present invention is preferably a phase separation method because the pore size can be easily controlled.
  • the phase separation method include a thermally induced phase separation method (TIPS) and a non-solvent induced phase separation method (NIPS).
  • a porous membrane produced by a non-solvent induced phase separation method has a high mechanical strength and is suitably used for producing a membrane having an asymmetric structure.
  • Porous membranes produced by thermally induced phase separation tend to be superior in water permeability due to the relatively easy formation of spherical structures, and mechanical properties can be increased by increasing the concentration of the polymer solution during film formation. Strength can be improved. It is preferable to select a film formation method in consideration of these.
  • a step of dissolving the copolymer (A) in a solvent that is a poor solvent or a good solvent at a relatively high temperature to obtain a fluoropolymer solution, and cooling and solidifying the fluoropolymer solution
  • the polymeric porous membrane of this invention can be manufactured with the manufacturing method which consists of a process to do.
  • the copolymer (A) in the fluoropolymer solution is preferably 10 to 60% by mass based on the total of the copolymer (A) and the solvent. More preferably, it is 15 to 50% by mass.
  • the viscosity of the fluoropolymer solution can be adjusted to an appropriate range. If the viscosity of the fluoropolymer solution is not within an appropriate range, the polymer porous membrane may not be molded.
  • the poor solvent is a solvent capable of dissolving 5% by mass or more at a temperature of 60 ° C. or more and below the melting point of the resin, although the copolymer (A) cannot be dissolved by 5% by mass or less at a temperature of less than 60 ° C. It is.
  • a solvent capable of dissolving 5% by mass or more of the resin with respect to the poor solvent even at a temperature lower than 60 ° C. is referred to as a good solvent.
  • a solvent that does not dissolve or swell the resin up to the melting point of the resin or the boiling point of the liquid is called a non-solvent.
  • Examples of poor solvents include cyclohexanone, isophorone, ⁇ -butyrolactone, methyl isoamyl ketone, dimethyl phthalate, diethyl phthalate, ethanol, propanol, aliphatic polyhydric alcohol, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, glycerol triacetate, etc.
  • fluorine-containing solvents such as HFC-365, diphenyl carbonate, methyl benzoate, diethylene glycol ethyl acetate, and benzophenone.
  • fills the definition of the said poor solvent is a poor solvent.
  • a poor solvent is preferable as the solvent of the fluoropolymer solution.
  • the solvent is not limited to this, and a good solvent may be used in consideration of the phase separation behavior of the fluoropolymer.
  • good solvents include fluorinated solvents such as HCFC-225, lower alkyl such as N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, methanol, tetrahydrofuran, tetramethylurea, and trimethyl phosphate.
  • fluorinated solvents such as HCFC-225, lower alkyl such as N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, methanol, tetrahydrofuran, tetramethylurea, and trimethyl phosphate.
  • ketones, esters, amides, and mixed solvents thereof include ketones, esters, amides, and mixed solvents thereof.
  • Non-solvents include water, hexane, pentane, benzene, toluene, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, pentanediol, hexanediol, low molecular weight
  • examples include aliphatic hydrocarbons such as polyethylene glycol, aromatic hydrocarbons, aromatic polyhydric alcohols, chlorinated hydrocarbons, other chlorinated organic liquids, and mixed solvents thereof.
  • the step of obtaining the fluoropolymer solution is to dissolve the copolymer (A) in a solvent that is a poor solvent or a good solvent at 20 to 220 ° C.
  • the melting temperature is more preferably 30 to 200 ° C.
  • the concentration of the copolymer (A) can be increased, whereby a polymer porous membrane having high mechanical strength can be obtained. If the concentration of the copolymer (A) is too high, the porosity of the resulting polymer porous membrane will be small, and the water permeation performance may be reduced. Further, if the viscosity of the prepared fluoropolymer solution is not within an appropriate range, there is a possibility that it cannot be formed into a porous film.
  • a method for cooling and solidifying the fluoropolymer solution for example, a method of discharging the fluoropolymer solution from the die into a cooling bath is preferable.
  • a method of casting and immersing in a cooling bath can also be mentioned as a preferable method.
  • the cooling liquid that can be used as the cooling bath has a temperature lower than that of the fluoropolymer solution.
  • the solvent is a poor solvent or a good solvent having a temperature of 5 to 80 ° C. and a concentration of 60 to 100% by mass. Can be used.
  • the cooling liquid may be a non-solvent or a non-solvent containing a poor solvent or a good solvent.
  • the concentration of the fluoropolymer solution, the composition of the solvent that dissolves the fluoropolymer, and the composition of the cooling liquid constituting the cooling bath are important. By adjusting these compositions, the porous structure of the polymer porous membrane can be controlled.
  • the structure on one side of the polymer porous membrane and the structure on the other side can be different.
  • porous polymer membrane of the present invention by a non-solvent induced phase separation method, for example, a step of dissolving the copolymer (A) in a solvent to obtain a fluoropolymer solution, It is preferable to obtain a porous polymer membrane by a production method comprising a step of discharging into a coagulation bath containing a non-solvent.
  • non-solvent-induced phase separation is caused by using the concentration gradient of the solvent and non-solvent in the coagulation bath as a driving force. be able to.
  • a dense skin layer is first formed on the outer surface where phase separation occurs due to substitution between a solvent and a non-solvent, and the phase separation phenomenon proceeds toward the inside of the membrane with the passage of time.
  • the fluoropolymer solution is preferably composed of the copolymer (A) and a solvent.
  • the fluoropolymer solution is preferably a non-solvent.
  • the fluoropolymer solution is a copolymer with respect to the copolymer (A), the sum of the solvent and the non-solvent (or the sum of the copolymer (A) and the solvent when the fluoropolymer solution does not contain a non-solvent).
  • (A) is preferably 5 to 40% by mass. More preferably, it is 10 to 35% by mass.
  • the fluoropolymer solution preferably contains 0.1 to 10% by mass of the non-solvent based on the total of the copolymer (A), the solvent and the non-solvent. More preferably, it is 0.5 to 8% by mass.
  • the viscosity of the fluoropolymer solution can be adjusted to an appropriate range. If the viscosity of the fluoropolymer solution is not within an appropriate range, the polymer porous membrane may not be molded.
  • the fluoropolymer solution may be at room temperature or heated. For example, 10 to 35 ° C. is preferable.
  • the solvent exemplified in the thermally induced phase separation method can be used as the solvent.
  • the solvent may be a poor solvent or a good solvent, but a good solvent is preferred.
  • the non-solvent the non-solvent exemplified in the thermally induced phase separation method can be used.
  • the coagulation liquid that can be used as the coagulation bath is preferably solidified using a liquid containing a non-solvent, and may contain a poor solvent or a good solvent.
  • a non-solvent the non-solvent exemplified in the thermally induced phase separation method can be used.
  • water can be preferably used.
  • the above-described thermally induced phase separation method and non-solvent induced phase separation method may be used in combination.
  • a porous film can be obtained by discharging a fluoropolymer solution in which the copolymer (A) is dissolved in a solvent from a die and then solidifying the solution.
  • a base for example, a slit base, a double pipe base, a triple pipe base, or the like is used.
  • the shape of the polymer porous membrane is a hollow fiber membrane
  • a double tube die or a triple tube die for spinning a hollow fiber membrane is preferably used as the die.
  • gas or liquid can be usually used.
  • a liquid containing a poor solvent or a good solvent having a concentration of 60 to 100%, which is the same as the cooling liquid can be preferably used, but a non-solvent or a non-solvent containing a poor solvent or a good solvent is used. It may be used.
  • the non-solvent induced phase separation method the above-mentioned non-solvent is preferably used as the hollow portion forming fluid, and for example, water such as ion-exchanged water is preferable.
  • the non-solvent mentioned above may contain a poor solvent and a good solvent.
  • a hollow fiber membrane having two types of structures can also be formed by changing the composition of the hollow portion forming fluid and the cooling liquid or coagulating liquid.
  • the hollow portion forming fluid may be supplied after cooling, but if the hollow fiber membrane is solidified only by the cooling power of the cooling bath, the hollow portion forming fluid may be supplied without cooling. .
  • the triple tube type die is suitable when two kinds of resin solutions are used.
  • two fluoropolymer solutions are discharged from an outer tube and an intermediate tube of a triple tube die, and solidified in a solidification bath or a cooling bath while discharging a hollow portion forming liquid from an inner tube.
  • It can be a thread membrane.
  • the fluoropolymer solution is discharged from the outer tube of the triple tube type die, the resin solution made of resin other than the copolymer (A) is discharged from the intermediate tube, and the hollow portion forming fluid is discharged from the inner tube.
  • it can be set as a hollow fiber membrane by solidifying in a coagulation bath or a cooling bath.
  • resin other than a copolymer (A) is preferable and a vinylidene fluoride resin or an acrylic resin is more preferable.
  • the amount of the solidification liquid or the cooling liquid may be made smaller than when a flat membrane is produced. It is preferable in that it can be performed.
  • a resin other than the fluoropolymer layer or the copolymer (A) is further provided on the outer surface or inner surface of the hollow fiber membrane obtained by the above method. You may form the resin layer which consists of.
  • the fluoropolymer layer or the resin layer can be formed by applying a fluoropolymer solution or a resin solution to the outer surface or inner surface of the hollow fiber membrane.
  • a method of applying the fluoropolymer solution or the resin solution to the outer surface of the hollow fiber membrane a method of immersing the hollow fiber membrane in the solution or dropping the solution onto the hollow fiber membrane is preferably used.
  • a method for applying the solution to the inner surface of the hollow fiber membrane a method of injecting the solution into the hollow fiber membrane is preferably used.
  • the porous membrane is immersed in the solution, or after the solution is applied to the porous membrane, A method in which a part is scraped off or blown off using an air knife is also preferably used.
  • the shape of the polymer porous membrane of the present invention is a flat membrane, it can be produced by casting a fluoropolymer solution and immersing it in a cooling bath or a coagulation bath. Moreover, it can also manufacture by discharging a fluoropolymer solution to a cooling bath or a coagulation bath using a slit cap.
  • the polymer porous membrane of the present invention is a composite membrane comprising a porous substrate, a method of immersing the porous substrate in a fluoropolymer solution, a method of applying the fluoropolymer solution to at least one surface of the porous substrate, etc.
  • the porous polymer membrane of the present invention can also be obtained.
  • a polymer porous membrane having excellent water permeability can be obtained.
  • the porous membrane obtained by the production method is further stretched to obtain the present invention. It is good also as a polymeric porous membrane.
  • an additive for controlling the pore diameter is added to the fluoropolymer solution to form a porous structure of the copolymer (A), or After forming the porous structure, the pore diameter of the polymer porous membrane can be controlled by eluting the additive. Further, the additive may remain in the porous membrane.
  • the fluoropolymer solution may contain an additive.
  • the pore diameter of the polymer porous membrane can be controlled by eluting the additive.
  • the additive may remain in the porous membrane as necessary.
  • additives include organic compounds and inorganic compounds.
  • an organic compound it is preferable that it is a thing melt
  • a non-solvent contained in the coagulating liquid in the non-solvent induced phase separation method and a solvent dissolved in the solvent contained in the cooling liquid in the thermally induced phase separation method are preferable.
  • examples of the organic compound include water-soluble polymers such as polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, polyethylene imine, polyacrylic acid, and textlan, surfactants, glycerin, and saccharides.
  • water-soluble polymers such as polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, polyethylene imine, polyacrylic acid, and textlan, surfactants, glycerin, and saccharides.
  • a water-soluble compound is preferably used.
  • a water-soluble compound for example, calcium chloride, lithium chloride, barium sulfate and the like can be mentioned.
  • the average pore diameter of the surface by controlling the phase separation speed by the type, concentration and temperature of the non-solvent in the coagulating liquid without using an additive.
  • the phase separation speed when the phase separation rate is high, the average pore size on the surface is small, and when the phase separation rate is low, the average pore size is large.
  • adding a non-solvent to the fluoropolymer solution is also effective for controlling the phase separation rate.
  • the fluoropolymer solution is further made of polyvinylpyrrolidone, polymethyl methacrylate resin, montmorillonite, SiO 2 , CaCO 3 , polytetrafluoroethylene, etc.
  • An additive may be included.
  • the polymer porous membrane of the present invention is suitable as a microfiltration membrane or an ultrafiltration membrane used for water treatment such as drinking water production, water purification treatment, and wastewater treatment. Moreover, in the ultrapure water production field, it can also be used as a charged porous membrane for enhancing ion exclusion and increasing the purity of the obtained pure water.
  • the polymer porous membrane of the present invention is preferably a polymer porous membrane for water treatment because of its high permeability and excellent chemical resistance.
  • the porous polymer membrane of the present invention is also suitably used in the medical field, food field, battery field and the like.
  • the membrane of the present invention is used as a blood purification membrane for the purpose of removing blood waste, particularly blood dialysis to substitute for renal function, blood filtration, blood filtration dialysis, etc.
  • a molecular porous membrane can be used.
  • the polymer porous membrane of the present invention can be used for the purpose of separating and removing yeasts used for fermentation and concentrating liquids.
  • the polymer porous membrane of the present invention is used as a battery separator or a polymer solid electrolyte base material so that the electrolyte solution can permeate but the product produced by the battery reaction cannot permeate. be able to.
  • the alternating rate between the vinyl alcohol unit and the tetrafluoroethylene unit was determined by performing 1 H-NMR measurement (heavy acetone solvent) of the copolymer with a heavy acetone solvent, and calculating the alternating rate of three chains from the following formula.
  • Alternating rate (%) C / (A + B + C) ⁇ 100
  • the number of V units of A, B and C was calculated from the intensity ratio of H of the main chain bonded to the tertiary carbon of the vinyl alcohol unit (—CH 2 —CH (OH) —) measured by 1 H-NMR.
  • the pure water permeability coefficient was determined by pressurizing ion-exchanged water at a temperature of 25 ° C. to 0.01 MPa or more with a pump or nitrogen pressure as necessary, and filtering with a produced hollow fiber or flat membrane.
  • Pure water permeability coefficient [m 3 / m 2 / Pa / s] (permeated water amount) / (membrane area) / (permeation time) / (evaluation pressure)
  • Fine particle rejection ((Evaluation stock solution absorbance) ⁇ (Transmission solution absorbance)) / (Evaluation stock solution absorbance) ⁇ 100
  • the maximum breaking strength was determined by measuring the breaking strength of the test piece under the conditions of a distance between chucks of 50 mm and a tensile speed of 200 mm / min, and the cross-sectional area before the tensile test as a unit measurement area.
  • the maximum point elongation was obtained by measuring the breaking strength of the test piece under the conditions of a distance between chucks of 50 mm and a tensile speed of 200 mm / min, and obtaining the maximum point elongation from the maximum distance between the chucks of 50 mm.
  • the alkali treatment was performed by immersing the hollow fiber in an aqueous solution of methanol / water (50/50 (volume%)) of 1N NaOH.
  • the contact angle measurement (25 ° C.) was performed using a DropMaster 701 manufactured by Kyowa Interface Chemical Co., Ltd. using pure water as a measurement solvent.
  • Example 1 Synthesis of vinyl acetate / tetrafluoroethylene copolymer
  • a 3 L stainless steel autoclave was charged with 1000 g of pure water, 23.2 g of vinyl acetate, Neocor P (76.4 mass% isopropyl alcohol solution of sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), nitrogen-substituted, and tetrafluoro Ethylene 37g was added and the inside of a tank was heated up to 80 degreeC. Thereafter, 30 g of tetrafluoroethylene was added. At this time, the pressure in the tank was 0.809 MPa.
  • the solenoid valve when tetrafluoroethylene is consumed and the inside of the tank reaches 0.800 MPa, the solenoid valve is automatically opened to supply tetrafluoroethylene, and when 0.775 MPa is reached, the solenoid valve is automatically closed and tetrafluoroethylene is closed. While controlling the supply and pressure of tetrafluoroethylene in a cycle in which the supply of ethylene was stopped, vinyl acetate was added in accordance with the consumption of tetrafluoroethylene.
  • the resulting vinyl acetate / tetrafluoroethylene copolymer had a glass transition temperature of 40 ° C. and a particle size of 116 nm.
  • the composition of vinyl acetate / tetrafluoroethylene copolymer determined by elemental analysis of fluorine was 49/51 (molar ratio).
  • the obtained hollow fiber membrane had an outer diameter of 0.84 mm and an inner diameter of 0.73 mm.
  • the pure water permeability coefficient at 25 ° C. was 4.4 ⁇ 10 ⁇ 9 [m 3 / m 2 / Pa / s], and the removal rate of 50 nm polystyrene fine particles was 98% or more.
  • the hollow fiber membrane is considered to have a pore diameter of 50 nm or less.
  • the maximum point breaking strength was 4.3 MPa, and the maximum point elongation was 270%.
  • Example 2 Synthesis of vinyl acetate / tetrafluoroethylene copolymer
  • a 3 L stainless steel autoclave is charged with 1200 g of butyl acetate solvent and 140 g of vinyl acetate monomer, 7.2 g of catalyst perbutyl PV is added, the flange is tightened, the autoclave is vacuum-substituted, 200 g of tetrafluoroethylene is sealed, and a stirring speed of 200 rpm
  • the temperature inside the tank was raised to 60 ° C. to start the reaction. Since the polymerization pressure was lowered, consumption of the gas monomer was confirmed, stirring was stopped in 6 hours, and the remaining gas was blown to complete the reaction.
  • the polymer solution was reprecipitated in a large amount of methanol solution, and the polymer was purified to obtain a vinyl acetate / tetrafluoroethylene copolymer.
  • the composition of the vinyl acetate / tetrafluoroethylene copolymer determined by elemental analysis of fluorine was 43/57 (molar ratio).
  • a polymer solution containing 7% by mass of 11.5% by mass of dimethylacetamide and 11.5% by mass of vinylidene fluoride / tetrafluoroethylene copolymer (vinylidene fluoride / tetrafluoroethylene 80/20 (mol%)) was obtained.
  • This polymer solution was discharged from a double-tube base while accompanying ion exchange water as an internal liquid, and solidified in ion exchange water.
  • the obtained hollow fiber membrane had an outer diameter of 0.73 mm and an inner diameter of 0.61 mm.
  • the pure water permeability coefficient at 25 ° C. was 3.1 ⁇ 10 ⁇ 9 [m 3 / m 2 / Pa / s], and the removal rate of 50 nm polystyrene fine particles was 95%.
  • the hollow fiber membrane is considered to have a pore diameter of 50 nm or less.
  • the maximum point breaking strength was 4.6 MPa, and the maximum point elongation was 95%.
  • Example 3 Each component was mixed at 25 ° C. to obtain a polymer solution of 18.0% by mass of vinyl alcohol / tetrafluoroethylene copolymer (described in Example 1) and 82.0% by mass of dimethylacetamide.
  • This polymer solution was applied to a polyester nonwoven fabric (manufactured by Unitika Ltd., 20557FLV) using an applicator (203 ⁇ m), immediately immersed in a 25 ° C. water coagulation bath for 5 minutes, and further immersed in 92 ° C. hot water for 2 minutes.
  • a flat porous membrane was obtained by immersion.
  • the pure water permeability coefficient at 25 ° C. was 4.9 ⁇ 10 ⁇ 6 [m 3 / m 2 / Pa / s].
  • the contact angle (water) of the membrane was 88 °.
  • the polymer solution was reprecipitated in a large amount of methanol solution, and the polymer was purified to obtain a vinyl stearate / tetrafluoroethylene copolymer.
  • the composition of vinyl stearate / tetrafluoroethylene copolymer determined by elemental analysis of fluorine was 68/32 (molar ratio).
  • a polymer solution of 8% by mass and dimethylacetamide 82.0% by mass was obtained.
  • This polymer solution was applied to a polyester nonwoven fabric (manufactured by Unitika Ltd., 20557FLV) using an applicator (203 ⁇ m), immediately immersed in a 25 ° C. water coagulation bath for 5 minutes, and further immersed in 92 ° C. hot water for 2 minutes. When immersed, the polymer component flowed into the coagulation bath, and a uniform porous film could not be obtained.
  • vinyl alcohol / tetrafluoroethylene copolymer described in Example 1
  • vinylidene fluoride / tetrafluoroethylene copolymer vinylidene fluoride / tetrafluoroethylene copolymer
  • Example 5 Each component was mixed at 25 ° C., 9.0% by mass of vinyl alcohol / tetrafluoroethylene copolymer (described in Example 1), 9.0% by mass of polyvinylidene fluoride (manufactured by Daikin Industries, Ltd.), A polymer solution of 82.0% by mass of dimethylacetamide was obtained. This polymer solution was applied to a polyester nonwoven fabric (manufactured by Unitika Ltd., 20557FLV) using an applicator (203 ⁇ m), immediately immersed in a 25 ° C. water coagulation bath for 5 minutes, and further immersed in 92 ° C. hot water for 2 minutes. A flat porous membrane was obtained by immersion. The pure water permeability coefficient at 25 ° C. was 7.3 ⁇ 10 ⁇ 9 [m 3 / m 2 / Pa / s]. The contact angle (water) of the film was 78 °, and water droplets soaked into the film within 10 minutes.
  • the polymer porous membrane of the present invention can be used for various applications, and is particularly suitable for water treatment applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、透水性及び親水性に優れる高分子多孔質膜を提供することを目的とする。 本発明は、ビニルアルコール単位及びテトラフルオロエチレン単位を有し、ビニルアルコール単位とテトラフルオロエチレン単位との交互率が30%以上である共重合体(A)からなることを特徴とする高分子多孔質膜に関する。

Description

高分子多孔質膜
本発明は、高分子多孔質膜に関する。
近年、多孔質膜は、浄水処理、排水処理等の水処理分野、血液浄化等の医療用途、食品工業分野等をはじめ、荷電膜、電池用セパレーター、燃料電池等の様々な方面で利用されている。
例えば、浄水処理用途や排水処理用途等の水処理分野においては、従来の砂濾過、凝集沈殿過程の代替や、処理水質向上のために、多孔質膜が用いられるようになっている。このような水処理分野では処理水量が大きいため、多孔質膜の透水性能が優れていることが要求される。透水性能が優れていれば、膜面積を減らすことが可能となるため、浄水装置がコンパクトになり、設備費の低コスト化が期待できる。
上記のような多孔質膜として、ビニルアルコール系重合体を用いた多孔質膜が検討されている。例えば、特許文献1には、テトラフルオロエチレンと酢酸ビニルとの共重合体又は該共重合体に含まれるアセテート基の少なくとも一部をケン化した共重合体からなる含フッ素共重合体膜が開示されている。
特開平5-261256号公報
しかしながら、従来のビニルアルコール系重合体を用いた多孔質膜は、透水性の点で充分とはいえず、改善の余地があった。また、多孔質膜が優れた透水性能を有しかつ汚染されにくいようにするためには、多孔質膜に親水性も要求される。多孔質膜の親水性が高いと、膜表面への汚染物質の蓄積を生じ難く、またその汚染物質は洗浄により除去しやすい。よって、運転圧力を低く抑えられる等の運転コスト面でのメリットや、膜寿命が長くなるというメリットもある。
本発明は、透水性及び親水性に優れる高分子多孔質膜を提供する。
本発明者等は、ビニルアルコール単位とテトラフルオロエチレン単位とを有する共重合体におけるビニルアルコール単位とテトラフルオロエチレン単位との交互率が30%以上であると、高分子多孔質膜の透水性及び親水性が顕著に向上することを見出した。
すなわち、本発明は、ビニルアルコール単位及びテトラフルオロエチレン単位を有し、ビニルアルコール単位とテトラフルオロエチレン単位との交互率が30%以上である共重合体(A)からなることを特徴とする高分子多孔質膜である。
共重合体(A)は、ビニルアルコール単位及びテトラフルオロエチレン単位のモル比(ビニルアルコール単位/テトラフルオロエチレン単位)が25~75/75~25であることが好ましい。
本発明の高分子多孔質膜は、共重合体(A)と、更にフッ化ビニリデン系樹脂とからなることが好ましい。
本発明の高分子多孔質膜は、非溶媒誘起相分離法、熱誘起相分離法、又はそれら両方の組み合わせにより作製されたものであることが好ましい。
本発明の高分子多孔質膜は、中空糸膜であることが好ましい。
本発明の高分子多孔質膜は、水処理用であることが好ましい。
本発明の高分子多孔質膜は、上述の構成であるため、透水性及び親水性に優れる。
以下に本発明を詳述する。
本発明の高分子多孔質膜は、ビニルアルコール単位(-CH-CH(OH)-)及びテトラフルオロエチレン単位(-CF-CF-)を有し、ビニルアルコール単位とテトラフルオロエチレン単位との交互率が30%以上である共重合体(A)からなる。本発明の高分子多孔質膜は、ビニルアルコール単位とテトラフルオロエチレン単位とが交互に重合している割合が高い共重合体からなるので、透水性及び親水性に優れる。
ビニルアルコール系重合体の製造方法としては、酢酸ビニルに代表されるビニルエステルモノマーを重合した後、得られた重合体をケン化する方法が一般的である。しかしながら、例えばテトラフルオロエチレンと酢酸ビニルを共重合させると、酢酸ビニルの強いホモ重合性により酢酸ビニル同士が連鎖しやすく、交互率の高い共重合体が得られにくい。
本発明者等は、後述するように重合条件を調整することによって、ビニルアルコール単位とテトラフルオロエチレン単位との交互率が高い共重合体を得ることに成功した。そして、上記交互率が高い共重合体を用いると、透水性及び親水性の高い高分子多孔質膜が得られるという新たな知見を見出し、本発明は完成したものである。
本発明の高分子多孔質膜はまた、共重合体(A)からなるものであるため、水等の処理液体の透過性能に優れるとともに、引っ張り強度、伸び特性、曲げ強度等の機械的強度、耐薬品性、及び、耐アルカリ性にも優れる。また、本発明の高分子多孔質膜は、製膜条件を制御することで10nm程度の径の微粒子を分離するものから、ミクロンレベルの微粒子を分離するものまで、幅広く作製することが出来る。
透水性を向上させる観点から、共重合体(A)は、ビニルアルコール単位とテトラフルオロエチレン単位との交互率が35%以上であることが好ましい。より好ましくは、40%以上であり、更に好ましくは、60%以上である。交互率の上限は、100%であるが、好ましくは95%であり、より好ましくは90%である。
ビニルアルコール単位とテトラフルオロエチレン単位との交互率は、重アセトン等の共重合体(A)が溶解する溶媒を用いて、共重合体(A)のH-NMR測定を行い、以下の式より3連鎖の交互率として算出できる。
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:テトラフルオロエチレン単位、V:ビニルアルコール単位)
A、B、CのV単位の数は、H-NMR測定のビニルアルコール単位(-CH-CH(OH)-)の3級炭素に結合する主鎖のHの強度比より算出する。
交互率は、35%以上85%以下であることも好ましく、35%以上80%未満であることも好ましい。共重合体(A)の交互率が高すぎると、溶媒に対する溶解性が低下して高分子多孔質膜の製造が困難になるおそれがあり、親水性と機械的強度に優れた多孔質膜が得られない可能性がある。
交互率は95%以上であると、膜材料として耐熱性に優れる。
共重合体(A)は、ビニルアルコール単位及びテトラフルオロエチレン単位を有する共重合体(以下「ビニルアルコール/テトラフルオロエチレン共重合体」ともいう。)である。
ビニルアルコール/テトラフルオロエチレン共重合体は、ビニルアルコール単位/テトラフルオロエチレン単位がモル比で25~75/75~25であることが好ましい。ビニルアルコール単位とテトラフルオロエチレン単位とのモル比が上記範囲外であると、交互率の高いビニルアルコール/テトラフルオロエチレン共重合体が得られないおそれがある。ビニルアルコール単位が多すぎると、作製される多孔質膜を熱水と接触させた場合に溶出現象が生じることがあり、また充分な機械的強度が得られないおそれがある。ビニルアルコール単位が少なすぎると、親水性が低下し、充分な透水性が得られないおそれがある。共重合体(A)は、ビニルアルコール単位/テトラフルオロエチレン単位がモル比で33~60/67~40であることがより好ましく、38~60/62~40であることが更に好ましい。
上記交互率を高くする観点からは、共重合体(A)は、実質的にビニルアルコール単位及びテトラフルオロエチレン単位のみからなるビニルアルコール/テトラフルオロエチレン共重合体であることが好ましい。
共重合体(A)は、本発明の効果を損なわない範囲で、ビニルアルコール単位及びテトラフルオロエチレン単位以外の他の単量体単位を有していてもよい。他の単量体単位としては、ビニルエステルモノマー単位、ビニルエーテルモノマー単位、ポリエチレンオキシドを側鎖に有する(メタ)アクリルモノマー単位、ポリエチレンオキシドを側鎖に有するビニルモノマー単位、長鎖炭化水素基を有する(メタ)アクリルモノマー単位、長鎖炭化水素基を有するビニルモノマー単位、ヘキサフルオロプロピレン単位、クロロトリフルオロエチレン単位、パーフルオロビニルエーテル単位等が挙げられる。他の単量体単位の合計は、0~50モル%であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが更に好ましい。
共重合体(A)は、ビニルエステルモノマー単位を有していてもよい。共重合体(A)がビニルエステルモノマー単位を有すると、ガラス転移温度が高くなることから、高分子多孔質膜が機械的強度により優れることとなる。更に、高分子多孔質膜が耐酸性にも優れるものとなることから、高分子多孔質膜を酸により洗浄や消毒した場合であっても、高分子多孔質膜が損傷するのを防ぐことができる。ビニルエステルモノマー単位を有する共重合体(A)は、ビニルエステルモノマー単位とテトラフルオロエチレン単位とを有する共重合体をケン化して本発明の高分子多孔質膜を得る場合のケン化度を調整することにより製造できる。ケン化については後述する。
共重合体(A)の重量平均分子量は、本発明の高分子多孔質膜の用途によって異なるが、機械的強度及び成膜性の観点からは、10000以上であることが好ましい。より好ましくは、30000~2000000であり、更に好ましくは、50000~1000000である。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。
以下に共重合体(A)の製造方法について説明する。通常、共重合体(A)は、酢酸ビニル等のビニルエステルモノマーとテトラフルオロエチレンとを共重合して、その後、得られた共重合体をケン化することにより得られる。共重合体(A)の交互率を30%以上とする観点からは、ビニルエステルモノマーとテトラフルオロエチレンの組成比を、ほぼ一定に保つ条件下で重合を行うことが好ましい。すなわち、共重合体(A)は、ビニルエステルモノマーとテトラフルオロエチレンの組成比を、ほぼ一定に保つ条件下で重合して、ビニルエステルモノマー単位とテトラフルオロエチレン単位とを有する共重合体を得る工程、及び、得られた共重合体をケン化して、ビニルアルコール単位及びテトラフルオロエチレン単位を有する共重合体を得る工程、からなる製造方法により得られたものであることが好ましい。
ビニルエステルモノマーとテトラフルオロエチレンとの重合は、一般的に、ビニルエステルモノマーの強いホモ重合性によりビニルエステルモノマー同士が連鎖しやすく、ビニルエステルモノマーとテトラフルオロエチレンとの交互率が高くなりにくい。
ビニルエステルモノマーとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、バレリン酸ビニル、イソバレリン酸ビニル、カプロン酸ビニル、へプチル酸ビニル、カプリル酸ビニル、ピバリン酸ビニル、ペラルゴン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、ペンタデシル酸ビニル、パルチミン酸ビニル、マルガリン酸ビニル、ステアリン酸ビニル、オクチル酸ビニル、ベオバ-9(昭和シェル石油(株)製)、ベオバ-10(昭和シェル石油(株)製)、安息香酸ビニル、バーサチック酸ビニル等が挙げられるが、中でも入手が容易で安価である点から、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルが好ましく用いられる。また、これらを混合して用いてもよい。
ビニルエステルモノマーとテトラフルオロエチレンとを共重合させる方法としては、溶液重合、塊状重合、乳化重合、懸濁重合等の重合方法を挙げることができ、工業的に実施が容易であることから乳化重合又は溶液重合により製造することが好ましいが、この限りではない。
乳化重合又は溶液重合においては、重合開始剤、溶媒、連鎖移動剤、界面活性剤等を使用することができ、それぞれ従来公知のものを使用することができる。
溶液重合において使用する溶媒は、テトラフルオロエチレンとビニルエステルモノマー、及び、共重合体(A)を溶解するものが好ましく、例えば、酢酸ブチル、酢酸エチル、酢酸メチル、酢酸プロピル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;メタノール、エタノール、tert-ブタノール、イソプロパノール等のアルコール類;テトラヒドロフラン、ジオキサン等の環状エーテル類;HCFC-225等の含フッ素溶媒;ジメチルスルホキシド、ジメチルホルムアミド、又はこれらの混合物等が挙げられる。
乳化重合において使用する溶媒としては、例えば、水、水とアルコールとの混合溶媒等が挙げられる。
上記重合開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート(IPP)、ジ-n-プロピルパーオキシジカーボネート(NPP)等のパーオキシカーボネート類や、t-ブチルパーオキシピバレートなどに代表される油溶性ラジカル重合開始剤や、例えば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸のアンモニウム塩、カリウム塩、ナトリウム塩等の水溶性ラジカル重合開始剤等を使用できる。特に乳化重合においては、過硫酸アンモニウム、過硫酸カリウムが好ましい。
上記界面活性剤としては、公知の界面活性剤が使用でき、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤等が使用できる。また、含フッ素系界面活性剤でもよい。
上記連鎖移動剤としては、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサン等の炭化水素類;トルエン、キシレン等の芳香族類;アセトン等のケトン類;酢酸エチル、酢酸ブチル等の酢酸エステル類;メタノール、エタノール等のアルコール類;メチルメルカプタン等のメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素等があげられる。添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.001~10質量%の範囲で使用される。
重合温度としては、ビニルエステルモノマーとテトラフルオロエチレンの反応中の組成比がほぼ一定になる範囲であればよく、0~100℃であってよい。
重合圧力としては、ビニルエステルモノマーとテトラフルオロエチレンの反応中の組成比がほぼ一定になる範囲であればよく、0~10MPaGであってよい。
酢酸ビニルに由来するアセテート基のケン化は従来よく知られており、アルコリシスや加水分解等の従来公知の方法によって行うことができる。このケン化によって、アセテート基(-OCOCH)は、水酸基(-OH)に変換される。他のビニルエステルモノマーにおいても同様に、従来公知の方法によってケン化され、水酸基を得ることができる。
ビニルエステルモノマー単位とテトラフルオロエチレン単位とを有する共重合体をケン化して本発明の高分子多孔質膜を得る場合のケン化度は、透水性能及び耐アルカリ性を損なわない範囲であればよく、具体的には50%以上が好ましく、60%以上がより好ましく、70%以上が更に好ましい。
ケン化度は共重合体(A)のIR測定又はH-NMR測定より、以下の式より算出される。
ケン化度(%)=D/(D+E)×100
D:共重合体(A)中のビニルアルコール単位数
E:共重合体(A)中のビニルエステルモノマー単位数
本発明の高分子多孔質膜は、該高分子多孔質膜を構成する樹脂が共重合体(A)のみであってもよいし、共重合体(A)と共重合体(A)以外の樹脂とからなるものであってもよい。
本発明の高分子多孔質膜は、透水性の観点から、共重合体(A)が高分子多孔質膜全体の30質量%以上であることが好ましく、40質量%以上であることがより好ましい。
共重合体(A)以外の樹脂としては、例えば、熱可塑性樹脂が挙げられる。熱可塑性樹脂は、加熱すると外力によって変形又は流動する樹脂である。熱可塑性樹脂としては、フッ化ビニリデン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル樹脂、ポリアクリロニトリル、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン(AS)樹脂、塩化ビニル樹脂、ポリエチレンテレフタレート、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、変性ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、及びこれらの混合物や共重合体が挙げられる。これらと混和可能な他の樹脂を混和してもよい。
熱可塑性樹脂としては、耐薬品性が高いことから、フッ化ビニリデン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、及び、アクリル樹脂からなる群より選択される少なくとも1種が好ましい。より好ましくは、フッ化ビニリデン系樹脂である。
フッ化ビニリデン系樹脂は、ポリフッ化ビニリデン、又は、フッ化ビニリデン単位を有する共重合体からなる樹脂である。
ポリフッ化ビニリデンの重量平均分子量は、高分子多孔質膜の機械的強度及び加工性の観点から、50000~1000000であることが好ましい。
フッ化ビニリデン単位を有する共重合体としては、フッ化ビニリデン/テトラフルオロエチレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体等が挙げられる。機械的強度及び耐アルカリ性の観点から、フッ化ビニリデン単位を有する共重合体は、特にフッ化ビニリデン/テトラフルオロエチレン共重合体であることが好ましい。
成膜性及び耐アルカリ性の観点から、フッ化ビニリデン/テトラフルオロエチレン共重合体は、フッ化ビニリデン単位及びテトラフルオロエチレン単位のモル比(フッ化ビニリデン単位/テトラフルオロエチレン単位)が50~99/50~1であることが好ましい。このようなポリマーとしては、例えば、ダイキン工業(株)製のネオフロンVT50、VP50、VT100、VP100、VP101、VP100X等が挙げられる。フッ化ビニリデン/テトラフルオロエチレン共重合体は、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で50~90/50~10であることがより好ましい。また、フッ化ビニリデン/テトラフルオロエチレン共重合体は、フッ化ビニリデン単位及びテトラフルオロエチレン単位のみからなるフッ化ビニリデン/テトラフルオロエチレン共重合体の他に、フッ化ビニリデン単位及びテトラフルオロエチレン単位に加えて、特性を損なわない範囲でヘキサフルオロプロピレン単位、クロロトリフルオロエチレン単位、パーフルオロビニルエーテル単位等を有する三元共重合体でもよい。
フッ化ビニリデン単位を有する共重合体の重量平均分子量は、本発明の高分子多孔質膜の用途によって異なるが、機械的強度及び成膜性の観点からは、10000以上であることが好ましい。より好ましくは、50000~1000000であり、更に好ましくは、100000~800000である。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。
ポリエチレン系樹脂は、エチレンホモポリマー又はエチレン共重合体からなる樹脂である。ポリエチレン系樹脂は、複数の種類のエチレン共重合体からなるものでもよい。エチレン共重合体としては、プロピレン、ブテン、ペンテン等の直鎖状不飽和炭化水素から選ばれた1種以上とエチレンとの共重合体が挙げられる。
ポリプロピレン系樹脂は、プロピレンホモポリマー又はプロピレン共重合体からなる樹脂である。ポリプロピレン系樹脂は、複数の種類のプロピレン共重合体からなるものでもよい。プロピレン共重合体としては、エチレン、ブテン、ペンテン等の直鎖状不飽和炭化水素から選ばれた1種類以上とプロピレンとの共重合体が挙げられる。
アクリル樹脂は、主としてアクリル酸、メタクリル酸及びこれらの誘導体、たとえばアクリルアミド、アクリロニトリル等の重合体を包含する高分子化合物である。特にアクリル酸エステル樹脂やメタクリル酸エステル樹脂が好ましい。
本発明の高分子多孔質膜が共重合体(A)と共重合体(A)以外の樹脂とからなる場合、共重合体(A)以外の樹脂の種類及び量を調整することにより、高分子多孔質膜の膜強度、透水性能、阻止性能等を調整することができる。特に、共重合体(A)以外の樹脂がフッ化ビニリデン系共重合体であると、高分子多孔質膜が優れた透水性を有するとともに、高い機械的強度及び耐アルカリ性をも有する。
本発明の高分子多孔質膜は、親水化の観点や、相分離制御の観点、機械的強度向上の観点から、更に、ポリビニルピロリドン、ポリメタクリル酸メチル樹脂、ポリエチレンオキシド、モンモリロナイト、SiO、CaCO、ポリテトラフルオロエチレン等の添加剤を含んでいてもよい。また本発明の高分子多孔質膜は、透水性向上の観点から、アルカリで処理を行ってもよい。アルカリとは、例えば、NaOH水溶液、KOH水溶液、アンモニア水、アミン溶液等である。これらは、エタノール、メタノール等のアルコールや有機溶剤を含んでいてもよい。特にアルカリがアルコールを含むことが好ましいが、これらに限定されるものではない。
本発明の高分子多孔質膜は、孔径が2nm~1.0μmであることが好ましく、5nm~0.5μmであることがより好ましい。孔径が小さすぎると、気体や液体の透過率が不充分になるおそれがあり、孔径が大きすぎると、阻止性能の低下や、機械的強度が低下して破損しやすくなるおそれがある。
孔径は、細孔が明瞭に確認できる倍率で、SEM等を用いて高分子多孔質膜の表面の写真を撮り、細孔の直径を測定する。楕円形状の孔である場合、細孔の直径は、短径をa、長径をbとすると、(a×b)0.5で求めることができる。また、微粒子阻止率から大まかな孔径を求めることが出来る。つまり、例えば50nmのポリスチレン微粒子等を95%以上阻止する多孔質膜は、50nm以下の孔径を有すると考えられる。
本発明の高分子多孔質膜は、例えば、50nmの微粒子を95%以上阻止する性能を有する場合、純水透過係数が1.0×10-9/m/Pa/s以上であることが好ましく、2.0×10-9/m/Pa/s以上であることがより好ましい。純水透過係数の上限は特に限定されないが、目的の阻止率及び強度を保持する範囲で、高い値であればあるほど望ましい。
純水透過係数は、温度25℃でイオン交換水を、必要に応じてポンプ又は窒素圧で0.01MPa以上に加圧し、作製した中空糸膜又は平膜でろ過することにより求めることができる。具体的には、下記式から求められる。
純水透過係数〔m/m/Pa/s〕=(透過水量)/(膜面積)/(透過時間)/(評価圧力)
本発明の高分子多孔質膜は、100nm又は50nmの微粒子阻止率が90%以上であることが好ましく、より好ましくは、95%以上である。
微粒子阻止率は、粒径が制御されたポリスチレンラテックス微粒子をイオン交換水にて100ppm程度に希釈した分散溶液を評価原液としてろ過し、次式にて求められる。
微粒子阻止率(%)=((評価原液吸光度)-(透過液吸光度))/(評価原液吸光度)×100
本発明の高分子多孔質膜は、機械的強度の観点から、最大点破断強度が1.0MPa以上であることが好ましく、2.0MPa以上であることがより好ましい。
最大点破断強度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、引張試験前の断面積を単位測定面積として求めた値である。
本発明の高分子多孔質膜は、機械的強度の観点から、最大点伸度が90%以上であることが好ましく、200%以上であることがより好ましい。
最大点伸度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、チャック間距離50mmを基準にして最大点の伸び率より求められる。
本発明の高分子多孔質膜の構造は特に限定されない。例えば、固形分が三次元的に網目状に広がっている三次元網目状構造、多数の球状若しくは球状に近い形状の固形分が、直接若しくは筋状の固形分を介して連結している球状構造等であってもよい。また、これらの両方の構造を有していてもよい。
本発明の高分子多孔質膜の形状は、平膜形状又は中空糸膜形状であることが好ましい。
平膜形状の場合、本発明の高分子多孔質膜は、共重合体(A)からなるフルオロポリマー層及び多孔質基材からなる複合膜でもよい。複合膜の場合、多孔質基材表面に共重合体(A)からなるフルオロポリマー層が被覆されているものであってもよいし、多孔質基材と共重合体(A)からなるフルオロポリマー層とが積層されているものであってもよい。また、多孔質基材、フルオロポリマー層、及び、共重合体(A)以外の樹脂からなる樹脂層とからなる複合膜であってもよい。上記樹脂層を形成する樹脂としては、上述した熱可塑性樹脂が挙げられる。
多孔質基材としては、ポリエステル繊維、ナイロン繊維、ポリウレタン繊維、アクリル繊維、レーヨン繊維、綿、絹等の有機繊維からなる織物、編物又は不織布が挙げられる。また、ガラス繊維、金属繊維等の無機繊維からなる織物、編物又は不織布も挙げられる。伸縮性、コストの観点からは、有機繊維からなる多孔質基材が好ましい。
多孔質基材の表面の孔径は、用途によって自由に選択できるが、好ましくは5nm~1.0μm、より好ましくは8nm~0.5μmである。
平膜形状の場合、高分子多孔質膜の厚みは、10μm~1mmであることが好ましく、30μm~500μmであることがより好ましい。上記の多孔質基材を用いた複合膜である場合は、多孔質基材を含む厚みが上述の範囲内にあることが好ましい。
本発明の高分子多孔質膜は、単位面積、単位体積当たりの処理水量の観点から、中空糸膜形状であることがより好ましい。
中空糸膜形状の場合、中空糸膜の内径は100μm~10mmが好ましく、150μm~8mmがより好ましい。中空糸膜の外径は120μm~15mmが好ましく、200μm~12mmがより好ましい。
高分子多孔質膜の膜厚は、20μm~3mmが好ましく、50μm~2mmがより好ましい。また、中空糸膜の内外表面の孔径は、用途によって自由に選択できるが、好ましくは2nm~1.0μm、より好ましくは5nm~0.5μmの範囲である。
本発明の高分子多孔質膜は、種々の方法により製造することができる。例えば、相分離法、溶融抽出法、蒸気凝固法、延伸法、エッチング法、高分子シートを焼結することにより多孔質膜とする方法、気泡入りの高分子シートを圧潰することにより多孔質膜を得る方法、エレクトロスピニングを用いる方法等が挙げられる。
溶融抽出法は、混合物に無機微粒子と有機液状体を溶融混練し、共重合体(A)の融点以上の温度で口金から押出したり、プレス機等により成形した後、冷却固化し、その後有機液状体と無機微粒子を抽出することにより多孔構造を形成する方法である。
蒸気凝固法は、共重合体(A)を良溶媒に溶解したフルオロポリマー溶液からなる薄膜状物の少なくとも一方の表面に、上記良溶媒と相溶性があり共重合体(A)を溶解しない貧溶媒の飽和蒸気又はミストを含む蒸気を強制的に供給する方法である。
本発明の高分子多孔質膜の製造方法は、細孔サイズの制御が容易であることから相分離法が好ましい。相分離法としては、例えば、熱誘起相分離法(TIPS)、非溶媒誘起相分離法(NIPS)等が挙げられる。
三次元網目状構造が比較的生成しやすいことから、非溶媒誘起相分離法で作製された多孔質膜は機械的強度が強く、また、非対称構造の膜作製に好適に用いられる。熱誘起相分離法で作製された多孔質膜は、球状構造が比較的生成しやすいことから、透水性に優れる傾向があり、また、製膜時のポリマー溶液の濃度を高くすることで機械的強度を向上させることが出来る。これらを考慮して膜の作製方法を選択することが好ましい。
熱誘起相分離法を用いる場合、共重合体(A)を貧溶媒又は良溶媒である溶媒に、比較的高い温度で溶解させてフルオロポリマー溶液を得る工程、及び、該フルオロポリマー溶液を冷却固化する工程からなる製造方法により本発明の高分子多孔質膜は製造することができる。
共重合体(A)が溶媒に溶解したフルオロポリマー溶液は、クラウドポイント(曇点)と呼ばれる温度よりも高い温度に維持されている場合は均一な1相の液体となるが、クラウドポイント以下では相分離が起こり、ポリマー濃厚相と溶媒濃厚相の2相に分離し、さらに結晶化温度以下になるとポリマーマトリックスが固定化され、多孔質膜が形成する。
熱誘起相分離法を用いる場合、上記フルオロポリマー溶液は、共重合体(A)が共重合体(A)と溶媒との合計に対して10~60質量%であることが好ましい。より好ましくは15~50質量%である。
フルオロポリマー濃度を適正な範囲に調整することにより、フルオロポリマー溶液の粘度を適切な範囲に調整することができる。フルオロポリマー溶液の粘度が適切な範囲になければ、高分子多孔質膜に成形することができないおそれがある。
上記貧溶媒は、共重合体(A)を60℃未満の温度では5質量%以上溶解させることができないが、60℃以上かつ樹脂の融点以下では5質量%以上溶解させることができる溶媒のことである。貧溶媒に対し、60℃未満の温度でも樹脂を5質量%以上溶解させることができる溶媒を良溶媒という。樹脂の融点又は液体の沸点まで、樹脂を溶解も膨潤もさせない溶媒を非溶媒という。
貧溶媒としては、シクロヘキサノン、イソホロン、γーブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、フタル酸ジエチル、エタノール、プロパノール、脂肪族多価アルコール、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステル及び有機カーボネート等、並びに、その混合溶媒が挙げられる。HFC-365等の含フッ素溶媒、ジフェニルカーボネート、メチルベンゾエート、ジエチレングリコールエチルアセテート、ベンゾフェノン等も挙げられる。なお、非溶媒と貧溶媒の混合溶媒であっても、上記貧溶媒の定義を満たす溶媒は、貧溶媒である。
熱誘起相分離法を用いる場合、フルオロポリマー溶液の溶媒としては貧溶媒が好ましいが、この限りではなく、フルオロポリマーの相分離挙動の検討から良溶媒を用いる場合もある。
良溶媒としては、HCFC-225等の含フッ素溶媒、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、メタノール、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド、及び、これらの混合溶媒等が挙げられる。
非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、四塩化炭素、o-ジクロロベンゼン、トリクロロエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、芳香族多価アルコール、塩素化炭化水素、又はその他の塩素化有機液体及びその混合溶媒等が挙けられる。
熱誘起相分離法を用いる場合、フルオロポリマー溶液を得る工程は、共重合体(A)を貧溶媒又は良溶媒である溶媒に20~220℃で溶解させるものであることが好ましい。溶解させる温度は30~200℃であることがより好ましい。比較的高温で溶解させた場合には、共重合体(A)の濃度を高くすることができ、これにより、高い機械的強度を有する高分子多孔質膜を得ることができる。共重合体(A)の濃度が高すぎると、得られる高分子多孔質膜の空隙率が小さくなり、透水性能が低下するおそれがある。また、調製したフルオロポリマー溶液の粘度が適正範囲に無ければ、多孔質膜に成形することができないおそれがある。
フルオロポリマー溶液を冷却固化する方法としては、例えば、上記フルオロポリマー溶液を、口金から冷却浴中に吐出する方法が好ましい。高分子多孔質膜が平膜の場合、キャストして、冷却浴に浸漬させる方法も好ましい方法として挙げられる。
冷却浴として用いることができる冷却液体は、フルオロポリマー溶液よりも温度が低いものであり、例えば、温度が5~80℃であり、濃度が60~100質量%の貧溶媒又は良溶媒である溶媒を含有する液体を用いることができる。また、冷却液体には、非溶媒や、貧溶媒や良溶媒を含有する非溶媒を用いてもよい。
本発明の高分子多孔質膜の製造方法においては、フルオロポリマー溶液の濃度、フルオロポリマーを溶解する溶媒の組成、冷却浴を構成する冷却液体の組成が重要である。これらの組成を調整することによって、高分子多孔質膜の多孔質構造を制御することができる。
例えば、高分子多孔質膜の片面と他方の面とで、フルオロポリマー溶液の組成や冷却液体の組成の組み合わせを変更することによって、高分子多孔質膜の片面の構造と、他方の面の構造とを異なるものにすることもできる。
本発明の高分子多孔質膜を非溶媒誘起相分離法により製造する場合、例えば、共重合体(A)を溶媒に溶解してフルオロポリマー溶液を得る工程、得られたフルオロポリマー溶液を、口金から非溶媒を含む凝固浴中に吐出する工程からなる製造方法により高分子多孔質膜を得ることが好ましい。
上記フルオロポリマー溶液を、非溶媒を含む凝固浴中に浸漬することにより、該フルオロポリマー溶液と凝固浴中の溶媒と非溶媒の濃度勾配を駆動力として、非溶媒誘起型の相分離を生じせしめることができる。この方法によれば、最初に溶媒と非溶媒の置換により相分離が起こる外表面において緻密なスキン層が形成し、時間の経過とともに膜内部方向に向かって相分離現象が進んでいく。その結果、スキン層に続いて膜内部方向に向かって連続的に孔径が大きくなる非対称膜を製造することもできる。
非溶媒誘起相分離法を用いる場合、上記フルオロポリマー溶液は、共重合体(A)及び溶媒からなることが好ましい。上記フルオロポリマー溶液は、共重合体(A)及び溶媒に加えて、更に、非溶媒からなることも好ましい形態の一つである。
フルオロポリマー溶液は、共重合体(A)、溶媒及び非溶媒の合計(フルオロポリマー溶液が非溶媒を含まない場合には、共重合体(A)及び溶媒の合計)に対して、共重合体(A)が5~40質量%であることが好ましい。より好ましくは、10~35質量%である。
フルオロポリマー溶液は、共重合体(A)、溶媒及び非溶媒の合計に対して、非溶媒が0.1~10質量%であることが好ましい。より好ましくは、0.5~8質量%である。
フルオロポリマー濃度を適正な範囲に調整することにより、フルオロポリマー溶液の粘度を適切な範囲に調整することができる。フルオロポリマー溶液の粘度が適切な範囲になければ、高分子多孔質膜に成形することができないおそれがある。
フルオロポリマー溶液は、常温であってもよいし、加熱されたものでもよい。例えば、10~35℃が好ましい。
非溶媒誘起相分離法において、上記溶媒としては、熱誘起相分離法で例示した溶媒を用いることができる。上記溶媒は、貧溶媒であっても良溶媒であってもよいが、良溶媒が好ましい。
上記非溶媒としては、熱誘起相分離法で例示した非溶媒を使用することができる。
上記凝固浴として用いることができる凝固液体として、非溶媒を含有する液体を用いて固化させることが好ましく、貧溶媒、良溶媒を含有していてもよい。上記非溶媒としては、熱誘起相分離法で例示した非溶媒を用いることができる。例えば、水を好適に用いることができる。
本発明の高分子多孔質膜を製造する場合、上記熱誘起相分離法と非溶媒誘起相分離法とを併用してもよい。
非溶媒誘起相分離法及び熱誘起相分離法では、共重合体(A)を溶媒に溶解したフルオロポリマー溶液を口金から吐出した後、固化させることで多孔質膜を得ることができる。上記口金としては、例えば、スリット口金、二重管式口金、三重管式口金等が用いられる。
高分子多孔質膜の形状を中空糸膜とする場合、上記口金としては、中空糸膜紡糸用の二重管式口金、三重管式口金等が好ましく用いられる。
二重管式口金を用いる場合、二重管式口金の外側の管からフルオロポリマー溶液を吐出し、イオン交換水等の中空部形成流体を内側の管から吐出しながら凝固浴又は冷却浴中で固化することで、中空糸膜とすることができる。
中空部形成流体には、通常、気体もしくは液体を用いることができる。熱誘起相分離法では、冷却液体と同様の、濃度が60~100%の貧溶媒若しくは良溶媒を含有する液体が好ましく採用できるが、非溶媒や、貧溶媒や良溶媒を含有する非溶媒を用いてもよい。非溶媒誘起相分離法では、上記中空部形成流体としては、上述した非溶媒を用いることが好ましく、例えば、イオン交換水等の水が好ましい。また、上述した非溶媒は、貧溶媒、良溶媒を含有していてもよい。
中空部形成流体と冷却液体又は凝固液体の組成を変えることにより、二種の構造を有する中空糸膜を形成することもできる。中空部形成流体は、冷却して供給してもよいが、冷却浴の冷却力のみで中空糸膜を固化するのに十分な場合は、中空部形成流体は冷却せずに供給してもよい。
三重管式口金は、2種の樹脂溶液を用いる場合に好適である。例えば、三重管式口金の外側の管と中間の管から2種のフルオロポリマー溶液を吐出し、中空部形成液体を内側の管から吐出しながら凝固浴又は冷却浴中で固化することで、中空糸膜とすることができる。また、三重管式口金の外側の管からフルオロポリマー溶液を吐出し、中間の管から共重合体(A)以外の樹脂からなる樹脂溶液を吐出し、中空部形成流体を内側の管から吐出しながら凝固浴又は冷却浴中で固化することで、中空糸膜とすることができる。
共重合体(A)以外の樹脂としては上述したものが挙げられる。中でも、上述した熱可塑性樹脂が好ましく、フッ化ビニリデン系樹脂、又は、アクリル樹脂がより好ましい。
上記のように、二重管式口金や三重管式口金を用いた製造方法で中空糸膜を製造した場合、凝固液体又は冷却液体の量を、平膜を製造した場合よりも少なくすることができる点で好ましい。
本発明の高分子多孔質膜の形状が中空糸膜の場合、上記の方法で得られた中空糸膜の外表面又は内表面に、更に、フルオロポリマー層又は共重合体(A)以外の樹脂からなる樹脂層を形成してもよい。
フルオロポリマー層又は樹脂層は、中空糸膜の外表面又は内表面にフルオロポリマー溶液又は樹脂溶液を塗布することで形成することができる。中空糸膜の外表面にフルオロポリマー溶液又は樹脂溶液を塗布する方法としては、中空糸膜を該溶液に浸潰したり、中空糸膜に該溶液を滴下したりする方法等が好ましく用いられる。中空糸膜の内表面に上記溶液を塗布する方法としては、該溶液を中空糸膜内部に注入する方法等が好ましく用いられる。
溶液の塗布量を制御する方法としては、該溶液の塗布量自体を制御する方法の他に、多孔質膜を該溶液に浸漬したり、多孔質膜に該溶液を塗布した後に、該溶液の一部をかき取ったり、エアナイフを用いて吹き飛ばす方法も好ましく用いられる。
本発明の高分子多孔質膜の形状を平膜とする場合、フルオロポリマー溶液をキャストして、冷却浴又は凝固浴に浸漬させることによって製造することができる。また、スリット口金を用いて、冷却浴又は凝固浴にフルオロポリマー溶液を吐出することでも製造することができる。
本発明の高分子多孔質膜が多孔質基材からなる複合膜である場合、多孔質基材をフルオロポリマー溶液に浸漬する方法、多孔質基材の少なくとも片面にフルオロポリマー溶液を塗布する方法等により本発明の高分子多孔質膜を得ることもできる。
上述した製造方法により、優れた透水性を有する高分子多孔質膜を得ることができるが、透水性能が十分でない場合には、上記製造方法で得られた多孔質膜を更に延伸して本発明の高分子多孔質膜としてもよい。
本発明の高分子多孔質膜の孔径を制御する方法としては、例えば、フルオロポリマー溶液に孔径を制御するための添加剤を入れ、共重合体(A)による多孔質構造を形成する際、又は多孔質構造を形成した後に、添加剤を溶出させることにより高分子多孔質膜の孔径を制御することができる。また、添加剤は多孔質膜内に留まらせてもよい。
非溶媒誘起相分離法及び熱誘起相分離法のいずれにおいても、フルオロポリマー溶液は添加剤を含んでいてもよい。多孔質構造を形成した後、添加剤を溶出させることにより、高分子多孔質膜の孔径を制御することができる。添加剤は、必要に応じて多孔質膜内に留まらせてもよい。
添加剤としては、有機化合物及び無機化合物を挙げることができる。有機化合物としては、フルオロポリマー溶液を構成する溶媒に溶解するもの、又は、均一に分散するものであることが好ましい。更に、非溶媒誘起相分離法では凝固液体に含まれる非溶媒、熱誘起相分離法では冷却液体に含まれる溶媒に溶解するものが好ましい。
例えば、有機化合物としては、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリエチレンイミン、ポリアクリル酸、テキストラン等の水溶性ポリマー、界面活性剤、グリセリン、糖類等を挙げることができる。
無機化合物としては、水溶性化合物が好ましく用いられる。例えば、塩化カルシウム、塩化リチウム、硫酸バリウム等を挙げることができる。
添加剤を用いずに、凝固液における非溶媒の種類、濃度及び温度によって相分離速度をコントロールすることによって表面の平均孔径を制御することも可能である。一般的には、相分離速度が速いと表面の平均孔径が小さく、遅いと大きくなる。また、フルオロポリマー溶液に非溶媒を添加することも、相分離速度制御に有効である。
フルオロポリマー溶液は、親水化の観点や、相分離制御の観点、機械的強度向上の観点から、更に、ポリビニルピロリドン、ポリメタクリル酸メチル樹脂、モンモリロナイト、SiO、CaCO、ポリテトラフルオロエチレン等の添加剤を含んでいてもよい。
本発明の高分子多孔質膜は、飲料水製造、浄水処理、排水処理等の水処理に用いられる精密濾過膜又は限外濾過膜として好適である。また、超純水製造分野においては、イオン排除性を高め、得られる純水の純度を高めるための荷電性多孔質膜として用いることもできる。本発明の高分子多孔質膜は、透過性が高く、耐薬品性に優れるため、水処理用の高分子多孔質膜であることが好ましい。
また、本発明の高分子多孔質膜は、医療分野、食品分野、電池分野等においても好適に用いられる。
医療分野においては、血液浄化、特に、腎機能を代用するための血液透析、血液濾過、血液濾過透析等の体外循環による血中老廃物の除去を目的とした血液浄化用膜として本発明の高分子多孔質膜を用いることができる。
食品分野においては、発酵に用いた酵母の分離除去や、液体の濃縮を目的として本発明の高分子多孔質膜を用いることができる。
電池分野においては、電解液は透過できるが、電池反応で生じる生成物は透過できないようにするための電池用セパレーター、又は、高分子固体電解質の基材として本発明の高分子多孔質膜を用いることができる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
(交互率)
ビニルアルコール単位とテトラフルオロエチレン単位との交互率は、重アセトン溶媒で共重合体のH-NMR測定(重アセトン溶媒)を行い、以下の式より3連鎖の交互率を算出した。
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:テトラフルオロエチレン単位、V:ビニルアルコール単位)
A、B、CのV単位の数は、H-NMR測定のビニルアルコール単位(-CH-CH(OH)-)の3級炭素に結合する主鎖のHの強度比より算出した。
(NMR(核磁気共鳴法)による測定)
H-NMR(核磁気共鳴法)測定には、JNM-EX270(JEOL社製:270MHz)を用いた。溶媒は重アセトンを用いた。
(純水透過係数)
純水透過係数は、温度25℃でイオン交換水を、必要に応じてポンプ又は窒素圧で0.01MPa以上に加圧し、作製した中空糸又は平膜でろ過することで求めた。
純水透過係数〔m/m/Pa/s〕=(透過水量)/(膜面積)/(透過時間)/(評価圧力)
(微粒子阻止率)
微粒子阻止率は、粒径が制御されたポリスチレンラテックス微粒子をイオン交換水にて100ppm程度に希釈した分散溶液を評価原液としてろ過し、次式にて求めた。
微粒子阻止率(%)=((評価原液吸光度)-(透過液吸光度))/(評価原液吸光度)×100
(最大点破断強度)
最大点破断強度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、引張試験前の断面積を単位測定面積として求めた。
(最大点伸度)
最大点伸度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、チャック間距離50mmを基準にして最大点の伸び率より求めた。
(アルカリ処理の条件)
アルカリ処理は1N NaOHのメタノール/水(50/50(体積%))の水溶液に中空糸を浸漬させることで行った。
(接触角)
接触角測定(25℃)は協和界面化学(株)製のDropMaster701を用いて、純水を測定溶媒として測定した。
〔実施例1〕
(酢酸ビニル/テトラフルオロエチレン共重合体の合成)
3Lステンレス製オートクレーブに純水1000g、酢酸ビニル23.2g、ネオコールP(ジオクチルスルホコハク酸ナトリウムの76.4質量%イソプロピルアルコール溶液:第一工業製薬(株)製)を入れ、窒素置換し、テトラフルオロエチレン37gを加え、槽内を80℃まで昇温した。その後、テトラフルオロエチレンを30g加えた。このとき槽内の圧力は0.809MPaとなった。これに撹拌下、過硫酸アンモニウム(APS)の1質量%水溶液22gを加え、反応を開始した。反応開始時に酢酸ビニルの追加を開始し、6時間かけて283gの酢酸ビニルを追加した。反応中は酢酸ビニル/テトラフルオロエチレンの比率が一定になるように、電磁弁を用いてテトラフルオロエチレンを連続供給した。撹拌速度は500rpmであった。
具体的には、テトラフルオロエチレンが消費されて槽内が0.800MPaになると自動的に電磁弁を開いてテトラフルオロエチレンを供給し、0.775MPaになると自動的に電磁弁を閉じてテトラフルオロエチレンの供給を停止するサイクルでテトラフルオロエチレンの供給と圧力を制御しながら、テトラフルオロエチレンの消費量に合わせて酢酸ビニルを追加した。
反応開始から6時間後にテトラフルオロエチレンと酢酸ビニルの供給を停止した。その後1時間反応させた後に、槽内を常温常圧に戻して重合を停止し、酢酸ビニル/テトラフルオロエチレン共重合体のエマルション1661g(固形分濃度38.5質量%)を得た。
得られた酢酸ビニル/テトラフルオロエチレン共重合体のガラス転移温度は40℃であり、粒子径は116nmであった。フッ素の元素分析より求めた、酢酸ビニル/テトラフルオロエチレン共重合体の組成は49/51(モル比)であった。
(加水分解:ビニルアルコール/テトラフルオロエチレン共重合体の合成)
酢酸ビニル/テトラフルオロエチレン共重合体(酢酸ビニル/テトラフルオロエチレン=49/51(モル比))22.5gをテトラヒドロフラン150mlに溶解させた。この溶液に26質量%NaOH溶液(水/メタノール=50/50(質量%))を8g加え攪拌した。反応溶液をIR測定することにより、加水分解反応の追跡を行った。加水分解が100%進行したところで、溶液を濃縮し、再沈殿、洗浄、乾燥することで、ビニルアルコール/テトラフルオロエチレン共重合体をほぼ定量的に得た。交互率は62%であった。
各成分を25℃で混合し、ビニルアルコール/テトラフルオロエチレン共重合体(ビニルアルコール/テトラフルオロエチレン=49/51(モル比)、交互率=62%、ケン化度=100%)11.5質量%、ビニリデンフルオライド/テトラフルオロエチレン共重合体(ビニリデンフルオライド/テトラフルオロエチレン=80/20(モル%))9.0質量%、ポリエチレンオキシド(PEG600)1.5質量%、ジメチルアセトアミド78.0質量%のポリマー溶液を得た。このポリマー溶液を二重管式口金から、内部液としてイオン交換水を同伴させながら吐出し、イオン交換水中にて固化した。得られた中空糸膜は、外径0.84mm、内径0.73mmであった。25℃での純水透過係数は、4.4×10-9[m/m/Pa/s]であり、50nmのポリスチレン微粒子の除去率は98%以上であった。中空糸膜は、50nm以下の孔径を有すると考えられる。最大点破断強度は4.3MPa、最大点伸度は270%であった。
〔比較例1〕
各成分を25℃で混合し、ビニリデンフルオライド/テトラフルオロエチレン共重合体(ビニリデンフルオライド/テトラフルオロエチレン=80/20(モル%))18.0質量%、ポリエチレンオキシド(PEG600)3.0質量%、ジメチルアセトアミド79.0質量%のポリマー溶液を得た。このポリマー溶液を二重管式口金から、内部液としてイオン交換水を同伴させながら吐出し、イオン交換水中にて固化した。得られた中空糸膜は、外径0.91mm、内径0.80mmであった。25℃で水圧を0.1MPaGをかけたが、純水は透過しなかった。最大点破断強度は4.7MPa、最大点伸度は590%であった。
〔実施例2〕
(酢酸ビニル/テトラフルオロエチレン共重合体の合成)
3Lステンレス製オートクレーブ中に酢酸ブチル溶媒1200gと酢酸ビニルモノマー140gを仕込み、触媒のパーブチルPVを7.2g加え、フランジを締め、オートクレーブを真空置換して、テトラフルオロエチレンを200g封入し、撹拌速度200rpmにて槽内を60℃まで昇温して反応を開始した。重合圧力が降下していることからガスモノマーの消費を確認し、6時間で攪拌を止め、残ガスをブローして反応を終了した。
反応終了後、ポリマー溶液を大量のメタノール溶液に再沈させ、ポリマーの精製を行い、酢酸ビニル/テトラフルオロエチレン共重合体を得た。
フッ素の元素分析より求めた、酢酸ビニル/テトラフルオロエチレン共重合体の組成は、43/57(モル比)であった。
(加水分解:ビニルアルコール/テトラフルオロエチレン共重合体の合成)
酢酸ビニル/テトラフルオロエチレン共重合体(酢酸ビニル/テトラフルオロエチレン=43/57(モル比))20.0gをテトラヒドロフラン150mlに溶解させた。この溶液に26質量%NaOH溶液(水/メタノール=50/50(質量%))を8g加え攪拌した。反応溶液をIR測定することにより、加水分解反応の追跡を行った。加水分解が100%進行したところで、溶液を濃縮し、再沈殿、洗浄、乾燥することで、ビニルアルコール/テトラフルオロエチレン共重合体をほぼ定量的に得た。交互率は40%であった。
各成分を25℃で混合し、ビニルアルコール/テトラフルオロエチレン共重合体(ビニルアルコール/テトラフルオロエチレン=43/57(モル比)、交互率=40%、ケン化度=100%)11.5質量%、ビニリデンフルオライド/テトラフルオロエチレン共重合体(ビニリデンフルオライド/テトラフルオロエチレン=80/20(モル%))11.5質量%ジメチルアセトアミド78.0質量%のポリマー溶液を得た。このポリマー溶液を二重管式口金から、内部液としてイオン交換水を同伴させながら吐出し、イオン交換水中にて固化した。得られた中空糸膜は、外径0.73mm、内径0.61mmであった。25℃での純水透過係数は、3.1×10-9[m/m/Pa/s]であり、50nmのポリスチレン微粒子の除去率は95%であった。中空糸膜は、50nm以下の孔径を有すると考えられる。最大点破断強度は4.6MPa、最大点伸度は95%であった。
〔比較例2〕
各成分を25℃で混合し、ビニリデンフルオライド/テトラフルオロエチレン共重合体(ビニリデンフルオライド/テトラフルオロエチレン=80/20(モル%))18.0質量%、ジメチルアセトアミド82.0質量%のポリマー溶液を得た。このポリマー溶液を二重管式口金から、内部液としてイオン交換水を同伴させながら吐出し、イオン交換水中にて固化した。得られた中空糸膜は、外径0.92mm、内径0.84mmであった。25℃で水圧を0.1MPaGをかけたが、純水は透過しなかった。最大点破断強度は8.0MPa、最大点伸度は740%であった。
〔実施例3〕
各成分を25℃で混合し、ビニルアルコール/テトラフルオロエチレン共重合体(実施例1に記載のもの)18.0質量%、ジメチルアセトアミド82.0質量%のポリマー溶液を得た。このポリマー溶液を、ポリエステル不織布(ユニチカ(株)製、20557FLV)にアプリケーター(203μm)を用いて塗布し、直ちに25℃の水凝固浴中に5分間浸漬し、さらに92℃の熱水に2分間浸漬し平膜の多孔質膜を得た。25℃での純水透過係数は、4.9×10-6[m/m/Pa/s]であった。膜の接触角(水)は88°であった。
〔比較例3〕
(ステアリン酸ビニル/テトラフルオロエチレン共重合体の合成)
300mlステンレス製オートクレーブ中に酢酸ブチル溶媒50gとステアリン酸ビニルモノマー10.0gを仕込み、触媒のパーブチルPVを0.4g加え、フランジを締め、オートクレーブを真空置換して、テトラフルオロエチレンを3.0g封入し、60℃の振とう式恒温槽に入れて反応を開始した。重合圧力が降下していることからガスモノマーの消費を確認し、2時間で振とうを止め、残ガスをブローして反応を終了した。
反応終了後、ポリマー溶液を大量のメタノール溶液に再沈させ、ポリマーの精製を行い、ステアリン酸ビニル/テトラフルオロエチレン共重合体を得た。
フッ素の元素分析より求めた、ステアリン酸ビニル/テトラフルオロエチレン共重合体の組成は、68/32(モル比)であった。
(加水分解:ビニルアルコール/テトラフルオロエチレン共重合体の合成)
ステアリン酸ビニル/テトラフルオロエチレン共重合体(ステアリン酸ビニル/テトラフルオロエチレン=68/32(モル比))4.3gをテトラヒドロフラン50mlに溶解させた。この溶液に26質量%NaOH溶液(水/メタノール=50/50(質量%))を5g加え攪拌した。反応溶液をIR測定することにより、加水分解反応の追跡を行った。加水分解が100%進行したところで、溶液を濃縮し、ろ過、再沈殿、洗浄、乾燥することで、ビニルアルコール/テトラフルオロエチレン共重合体をほぼ定量的に得た。交互率は25%であった。
各成分を25℃で混合し、ビニルアルコール/テトラフルオロエチレン共重合体(ビニルアルコール/テトラフルオロエチレン=68/32(モル比)、交互率=25%、ケン化度=100%)18.0質量%、ジメチルアセトアミド82.0質量%のポリマー溶液を得た。このポリマー溶液を、ポリエステル不織布(ユニチカ(株)製、20557FLV)にアプリケーター(203μm)を用いて塗布し、直ちに25℃の水凝固浴中に5分間浸漬し、さらに92℃の熱水に2分間浸漬したところ、ポリマー成分が凝固浴中に流出し、均一な多孔質膜を得ることができなかった。
〔実施例4〕
各成分を25℃で混合し、ビニルアルコール/テトラフルオロエチレン共重合体(実施例1に記載のもの)9.0質量%、ビニリデンフルオライド/テトラフルオロエチレン共重合体(ビニリデンフルオライド/テトラフルオロエチレン=80/20(モル%))9.0質量%、ジメチルアセトアミド82.0質量%のポリマー溶液を得た。このポリマー溶液を、ポリエステル不織布(ユニチカ(株)製、20557FLV)にアプリケーター(203μm)を用いて塗布し、直ちに25℃の水凝固浴中に5分間浸漬し、さらに92℃の熱水に2分間浸漬し平膜の多孔質膜を得た。25℃での純水透過係数は、2.3×10-8[m/m/Pa/s]であった。膜の接触角(水)は77°であり、水滴は10分以内に膜内に染み込んでいった。
〔比較例4〕
各成分を25℃で混合し、ビニリデンフルオライド/テトラフルオロエチレン共重合体(ビニリデンフルオライド/テトラフルオロエチレン=80/20(モル%))18.0質量%、ジメチルアセトアミド82.0質量%のポリマー溶液を得た。このポリマー溶液を、ポリエステル不織布(ユニチカ(株)製、20557FLV)にアプリケーター(203μm)を用いて塗布し、直ちに25℃の水凝固浴中に5分間浸漬し、さらに92℃の熱水に2分間浸漬し平膜の多孔質膜を得た。25℃での純水透過係数は、4.6×10-10[m/m/Pa/s]であった。また、別途ガラス板上に、同様の方法で作製した多孔質膜の接触角(水)は、89°であった。
〔実施例5〕
各成分を25℃で混合し、ビニルアルコール/テトラフルオロエチレン共重合体(実施例1に記載のもの)9.0質量%、ポリフッ化ビニリデン(ダイキン工業(株)製)9.0質量%、ジメチルアセトアミド82.0質量%のポリマー溶液を得た。このポリマー溶液を、ポリエステル不織布(ユニチカ(株)製、20557FLV)にアプリケーター(203μm)を用いて塗布し、直ちに25℃の水凝固浴中に5分間浸漬し、さらに92℃の熱水に2分間浸漬し平膜の多孔質膜を得た。25℃での純水透過係数は、7.3×10-9[m/m/Pa/s]であった。膜の接触角(水)は78°であり、水滴は10分以内に膜内に染み込んでいった。
〔比較例5〕
各成分を25℃で混合し、ポリフッ化ビニリデン(ダイキン工業(株)製)18.0質量%、ジメチルアセトアミド82.0質量%のポリマー溶液を得た。このポリマー溶液を、ポリエステル不織布(ユニチカ(株)製、20557FLV)にアプリケーター(203μm)を用いて塗布し、直ちに25℃の水凝固浴中に5分間浸漬し、さらに92℃の熱水に2分間浸漬し平膜の多孔質膜を得た。25℃での純水透過係数は、5.9×10-10[m/m/Pa/s]であった。また、別途ガラス板上に、同様の方法で作製した多孔質膜の接触角(水)は、112°であった。
本発明の高分子多孔質膜は、種々の用途に使用することができ、特に水処理用途に好適である。

Claims (6)

  1. ビニルアルコール単位及びテトラフルオロエチレン単位を有し、ビニルアルコール単位とテトラフルオロエチレン単位との交互率が30%以上である共重合体(A)からなることを特徴とする高分子多孔質膜。
  2. 共重合体(A)は、ビニルアルコール単位及びテトラフルオロエチレン単位のモル比(ビニルアルコール単位/テトラフルオロエチレン単位)が25~75/75~25である請求項1記載の高分子多孔質膜。
  3. 共重合体(A)と、更にフッ化ビニリデン系樹脂と、からなる請求項1又は2記載の高分子多孔質膜。
  4. 非溶媒誘起相分離法、熱誘起相分離法、又は、それら両方の組み合わせにより作製されたものである請求項1、2又は3記載の高分子多孔質膜。
  5. 中空糸膜である請求項1、2、3又は4記載の高分子多孔質膜。
  6. 水処理用である請求項1、2、3、4又は5記載の高分子多孔質膜。
PCT/JP2012/083690 2011-12-28 2012-12-26 高分子多孔質膜 WO2013099966A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR20147020679A KR20140116146A (ko) 2011-12-28 2012-12-26 고분자 다공질막
US14/363,139 US20150021261A1 (en) 2011-12-28 2012-12-26 Porous polymer membrane
EP12862678.5A EP2784108A4 (en) 2011-12-28 2012-12-26 POROUS POLYMERMEMBRANE
IN1268KON2014 IN2014KN01268A (ja) 2011-12-28 2012-12-26
CN201280059751.XA CN103975005A (zh) 2011-12-28 2012-12-26 高分子多孔质膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-289315 2011-12-28
JP2011289315 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099966A1 true WO2013099966A1 (ja) 2013-07-04

Family

ID=48697447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083690 WO2013099966A1 (ja) 2011-12-28 2012-12-26 高分子多孔質膜

Country Status (8)

Country Link
US (1) US20150021261A1 (ja)
EP (1) EP2784108A4 (ja)
JP (2) JP2013151671A (ja)
KR (1) KR20140116146A (ja)
CN (1) CN103975005A (ja)
IN (1) IN2014KN01268A (ja)
TW (1) TW201341046A (ja)
WO (1) WO2013099966A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084356A1 (ja) * 2012-11-30 2014-06-05 旭硝子株式会社 含フッ素共重合体からなる分離膜
WO2014208592A1 (ja) * 2013-06-26 2014-12-31 ダイキン工業株式会社 組成物、高分子多孔質膜及び親水化剤
WO2016104596A1 (ja) * 2014-12-26 2016-06-30 国立大学法人 奈良先端科学技術大学院大学 低タンパク質吸着性材料、低タンパク質吸着性物品、低細胞付着性材料および低細胞付着性物品
CN114277509A (zh) * 2021-12-24 2022-04-05 江南大学 一种静电纺聚酰亚胺均匀小孔径纳米纤维膜及其制备方法与应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10245545B2 (en) * 2013-10-23 2019-04-02 Daikin Industries, Ltd. Embossed air filter filtration medium, filter pack, air filter unit, and method for manufacturing filtration medium for embossed air filter
JP6413768B2 (ja) * 2013-12-13 2018-10-31 東レ株式会社 多層分離膜
WO2015133364A1 (ja) * 2014-03-03 2015-09-11 Jnc株式会社 複合微多孔質膜及びこれを用いたフィルター
KR101738732B1 (ko) 2014-07-04 2017-05-24 연세대학교 산학협력단 안티파울링 특성이 강화된 고분자막의 제조 방법
CN104377377B (zh) * 2014-09-18 2016-07-06 苏州经贸职业技术学院 一种燃料电池复合聚合物膜及其制备方法
TW201708276A (zh) * 2015-02-20 2017-03-01 Daikin Ind Ltd 親水化劑、含有親水化劑之組成物及高分子多孔質膜
CN105988627B (zh) * 2015-02-25 2020-06-30 宸鸿科技(厦门)有限公司 触控显示装置及其制造方法
JP6592306B2 (ja) * 2015-08-21 2019-10-16 学校法人 中央大学 リン吸着用多孔質膜およびその製造方法
CN107793515A (zh) * 2017-10-12 2018-03-13 江门建滔电子发展有限公司 四氟乙烯‑乙烯醇共聚物及采用其制备的半固化片和覆铜板
TWI668046B (zh) * 2018-07-18 2019-08-11 國立臺北科技大學 過濾材的製造方法、過濾材的製造裝置及使用該方法所得之過濾材
JP7177016B2 (ja) 2019-07-24 2022-11-22 富士フイルム株式会社 多孔質膜およびフィルターカートリッジ
US11617989B1 (en) * 2020-09-04 2023-04-04 King Saud University Extraction of benzene from benzene/cyclohexane mixture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892447A (ja) * 1981-11-27 1983-06-01 Asahi Glass Co Ltd 気体選択透過素子
JPH02502832A (ja) * 1987-11-20 1990-09-06 アライド‐シグナル・インコーポレーテッド フッ素化共重合体、そのフィルム及び該共重合体の製造法
JPH05261256A (ja) 1992-03-19 1993-10-12 Japan Gore Tex Inc 含フッ素共重合体膜及び分離膜
WO2011126056A1 (ja) * 2010-04-08 2011-10-13 旭硝子株式会社 含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156789A (en) * 1976-06-23 1977-12-27 Asahi Chem Ind Co Ltd Ion exchange membrane contg. halogen element and production thereof
DE3129744A1 (de) * 1981-07-28 1983-03-10 Hoechst Ag, 6000 Frankfurt Fuer fluessigkeiten sowie gase selektiv-durchlaessige formkoerper aus fluorgruppen enthaltendem copolymerisat, die zugleich oleophob und oleophil sind
JP3286696B2 (ja) * 1992-06-22 2002-05-27 ジャパンゴアテックス株式会社 親水性多孔質フッ素樹脂材料の製造方法
CN1785490A (zh) * 2005-09-20 2006-06-14 丽水学院 聚四氟乙烯亲水性微滤膜的制备方法
US8137800B2 (en) * 2005-10-13 2012-03-20 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
JP5318385B2 (ja) * 2006-08-10 2013-10-16 株式会社クラレ フッ化ビニリデン系樹脂よりなる多孔膜及びその製造方法
JP2011225659A (ja) * 2010-04-16 2011-11-10 Asahi Glass Co Ltd 親水化されたエチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体
CN103582672A (zh) * 2011-06-03 2014-02-12 旭硝子株式会社 亲水化处理剂组合物、亲水化方法、亲水化树脂多孔体及其制造方法
JP6127976B2 (ja) * 2011-10-05 2017-05-17 旭硝子株式会社 含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892447A (ja) * 1981-11-27 1983-06-01 Asahi Glass Co Ltd 気体選択透過素子
JPH02502832A (ja) * 1987-11-20 1990-09-06 アライド‐シグナル・インコーポレーテッド フッ素化共重合体、そのフィルム及び該共重合体の製造法
JPH05261256A (ja) 1992-03-19 1993-10-12 Japan Gore Tex Inc 含フッ素共重合体膜及び分離膜
WO2011126056A1 (ja) * 2010-04-08 2011-10-13 旭硝子株式会社 含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784108A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084356A1 (ja) * 2012-11-30 2014-06-05 旭硝子株式会社 含フッ素共重合体からなる分離膜
WO2014208592A1 (ja) * 2013-06-26 2014-12-31 ダイキン工業株式会社 組成物、高分子多孔質膜及び親水化剤
WO2016104596A1 (ja) * 2014-12-26 2016-06-30 国立大学法人 奈良先端科学技術大学院大学 低タンパク質吸着性材料、低タンパク質吸着性物品、低細胞付着性材料および低細胞付着性物品
JPWO2016104596A1 (ja) * 2014-12-26 2017-10-05 国立大学法人 奈良先端科学技術大学院大学 低タンパク質吸着性材料、低タンパク質吸着性物品、低細胞付着性材料および低細胞付着性物品
CN114277509A (zh) * 2021-12-24 2022-04-05 江南大学 一种静电纺聚酰亚胺均匀小孔径纳米纤维膜及其制备方法与应用

Also Published As

Publication number Publication date
JP5861734B2 (ja) 2016-02-16
IN2014KN01268A (ja) 2015-10-16
JP2014166632A (ja) 2014-09-11
EP2784108A4 (en) 2015-08-12
US20150021261A1 (en) 2015-01-22
JP2013151671A (ja) 2013-08-08
TW201341046A (zh) 2013-10-16
CN103975005A (zh) 2014-08-06
KR20140116146A (ko) 2014-10-01
EP2784108A1 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5861734B2 (ja) 高分子多孔質膜
JP5626269B2 (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP6075452B2 (ja) 組成物、高分子多孔質膜及び親水化剤
KR101016732B1 (ko) 고내구성 pvdf 다공질 막 및 그 제조 방법 및 이를 이용한 세정 방법 및 여과 방법
JP6760359B2 (ja) 親水化剤、親水化剤を含む組成物及び高分子多孔質膜
JP5664818B1 (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
WO2008001426A1 (en) Polymer separation membrane and process for producing the same
JP2015058419A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
WO2007125709A1 (ja) 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法
JP2015058418A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP2014200752A (ja) 高分子多孔質膜
JP2014200702A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363139

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012862678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862678

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147020679

Country of ref document: KR

Kind code of ref document: A