JP2015058419A - 高分子多孔質膜及び高分子多孔質膜の製造方法 - Google Patents

高分子多孔質膜及び高分子多孔質膜の製造方法 Download PDF

Info

Publication number
JP2015058419A
JP2015058419A JP2013195977A JP2013195977A JP2015058419A JP 2015058419 A JP2015058419 A JP 2015058419A JP 2013195977 A JP2013195977 A JP 2013195977A JP 2013195977 A JP2013195977 A JP 2013195977A JP 2015058419 A JP2015058419 A JP 2015058419A
Authority
JP
Japan
Prior art keywords
fluoropolymer
polymer
unit
solvent
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013195977A
Other languages
English (en)
Inventor
優子 塩谷
Yuko Shioya
優子 塩谷
和哉 浅野
Kazuya Asano
和哉 浅野
吉景 大向
Yoshikage Omukai
吉景 大向
田中 義人
Yoshito Tanaka
義人 田中
三木 淳
Atsushi Miki
淳 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013195977A priority Critical patent/JP2015058419A/ja
Publication of JP2015058419A publication Critical patent/JP2015058419A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】水処理膜の製造において疎水性ポリマーの親水化剤として従来用いられてきた化合物を用いずに得られる水処理用として用いることができる高分子多孔質膜を提供する。
【解決手段】フッ化ビニリデン単位を有するフルオロポリマー(A)と、フッ素ポリマー(B)とからなり、フッ素ポリマー(B)は、(a)炭素数2のパーハロオレフィン単位、(b)非芳香族系のビニルエステルモノマー単位、(c)水酸基含有ビニルモノマー単位、及び、(d)カルボキシル基含有モノマー単位からなる含フッ素共重合体(B1)、フッ化ビニリデン単位を有するフルオロポリマーと、(メタ)アクリル酸エステル単位を有するアクリルポリマーとを同一粒子内に含有する樹脂粒子(B2)からなる群より選択される少なくとも1種であることを特徴とする高分子多孔質膜。
【選択図】図1

Description

本発明は、高分子多孔質膜及び高分子多孔質膜の製造方法に関する。
近年、多孔質膜は、浄水処理、排水処理などの水処理分野、血液浄化などの医療用途、食品工業分野等をはじめ、荷電膜、電池用セパレーター、燃料電池等の様々な方面で利用されている。
例えば、水処理分野においては、従来の砂濾過、凝集沈殿過程の代替や、処理水質向上のために、水処理膜として多孔質膜が用いられるようになってきている。このような水処理分野では処理水量が多いため、高分子多孔質膜の透水性能が優れていることが要求される。透水性能が優れていれば、膜面積を減らすことが可能となるため、浄水装置がコンパクトになり、設備費の低コスト化が期待できる。
また、浄水処理では、膜の薬液洗浄のために、アルカリ溶液等で膜を洗浄することがあり、高分子多孔質膜には耐薬品性能が求められている。近年では耐薬品性の高い素材としてポリフッ化ビニリデン樹脂等のフルオロポリマーを用いた多孔質膜が研究されているが、フッ化ビニリデン樹脂等は疎水性ポリマーであるため、処理過程で処理水に含まれる固形物質や溶存成分が膜に付着して取れにくくなること(ファウリング)が問題となることから、フルオロポリマーを親水化して水処理膜とすることが検討されている。
上記疎水性ポリマーを親水化して水処理膜とした例としては、例えば、分解反応で親水性化学種を発生させる親水化剤の分解物と、ポリフッ化ビニリデン系樹脂とを含有してなる親水化多孔質膜(例えば、特許文献1参照。)、酢酸セルロースとポリフッ化ビニリデンを含有し、全ポリマー成分中のポリフッ化ビニリデンの含有割合が5〜60質量%である水処理用半透膜(例えば、特許文献2参照。)、50〜99重量パーセントの少なくとも1つのポリフッ化ビニリデン(PVDF)ポリマーまたはコポリマーと、1〜50重量パーセントの少なくとも1つのアクリルポリマーとを含む均質なポリマーブレンドを含む耐苛性膜(例えば、特許文献3参照。)や、ポリフッ化ビニリデン系樹脂と、主鎖がアクリル酸エステル系重合体および/またはメタクリル酸エステル系重合体、側鎖がエチレンオキサイド系重合体および/またはプロピレンオキサイド系重合体であるグラフト共重合体の混合物を主成分として構成される多孔質膜であって、前記側鎖の重合度が25以下であり、かつ、前記側鎖が前記グラフト共重合体中に55重量%以上含まれている多孔質膜(例えば、特許文献4参照。)等が開示されている。
特開2005−296846号公報 特開2006−326497号公報 特表2010−526885号公報 特開2007−723号公報
本発明は、水処理膜の製造において疎水性ポリマーの親水化剤として従来用いられてきた化合物を用いずに得られる水処理用として用いることができる高分子多孔質膜を提供することを目的とする。
本発明者らは、高分子多孔質膜を、フッ化ビニリデン単位を有するフルオロポリマーと、特定のフッ素ポリマーとからなり、フッ素ポリマーは、(a)炭素数2のパーハロオレフィン単位、(b)非芳香族系のビニルエステルモノマー単位、(c)水酸基含有ビニルモノマー単位、及び、(d)カルボキシル基含有モノマー単位からなる含フッ素共重合体(B1)、フッ化ビニリデン単位を有するフルオロポリマーと、(メタ)アクリル酸エステル単位を有するアクリルポリマーとを同一粒子内に含有する樹脂粒子(B2)からなる群より選択される少なくとも1種であるものとすることによって、上記課題をみごとに解決できることを見出し、本発明に到達した。
すなわち、本発明は、フッ化ビニリデン単位を有するフルオロポリマー(A)と、フッ素ポリマー(B)とからなり、上記フッ素ポリマー(B)は、(a)炭素数2のパーハロオレフィン単位、(b)非芳香族系のビニルエステルモノマー単位、(c)水酸基含有ビニルモノマー単位、及び、(d)カルボキシル基含有モノマー単位からなる含フッ素共重合体(B1)、フッ化ビニリデン単位を有するフルオロポリマーと、(メタ)アクリル酸エステル単位を有するアクリルポリマーとを同一粒子内に含有する樹脂粒子(B2)からなる群より選択される少なくとも1種であることを特徴とする高分子多孔質膜である。
上記フッ素ポリマー(B)が上記フルオロポリマー(A)に対して1〜40質量%であることが好ましい。
上記含フッ素共重合体(B1)は、重量平均分子量が1000〜2000000であることが好ましい。
上記樹脂粒子(B2)は、フッ化ビニリデン単位を有するフルオロポリマーからなる粒子の存在下に(メタ)アクリル酸エステルを含む単量体をシード重合させて得られる、フッ化ビニリデン単位を有するフルオロポリマーと(メタ)アクリル酸エステル単位を有するアクリルポリマーとを同一粒子内に含有する樹脂粒子であることが好ましい。
上記高分子多孔質膜は、中空糸膜であることが好ましい。また、上記高分子多孔質膜は、平膜であることも好ましい。更に、上記高分子多孔質膜は、水処理用であることも好ましい。
本発明の高分子多孔質膜は、上述の構成よりなるものであるため、水処理膜の製造において疎水性ポリマーの親水化剤として従来用いられてきた化合物を用いずに水処理用として用いることができる高分子多孔質膜を製造することができるものである。
実施例10で得られた中空糸膜の断面を走査型電子顕微鏡で観察した写真である。 実施例10で得られた中空糸膜の表面を走査型電子顕微鏡で観察した写真である。
以下に本発明を詳述する。
本発明の高分子多孔質膜は、フッ化ビニリデン単位を有するフルオロポリマー(A)と、フッ素ポリマー(B)とからなり、フッ素ポリマー(B)は、(a)炭素数2のパーハロオレフィン単位、(b)非芳香族系のビニルエステルモノマー単位、(c)水酸基含有ビニルモノマー単位、及び、(d)カルボキシル基含有モノマー単位からなる含フッ素共重合体(B1)、フッ化ビニリデン単位を有するフルオロポリマーと、(メタ)アクリル酸エステル単位を有するアクリルポリマーとを同一粒子内に含有する樹脂粒子(B2)からなる群より選択される少なくとも1種であるものである。該フッ素ポリマー(B)は、フルオロポリマー(A)を親水化することができるものであるが、本発明においては、フッ素ポリマー(B)の高分子多孔質膜中の含有量は少量であってもフルオロポリマー(A)を親水化することができる。
上記フッ素ポリマー(B)の高分子多孔質膜中の含有量としては、フルオロポリマー(A)に対して、1〜40質量%であることが好ましく、5〜30質量%であることがより好ましい。
上記フッ化ビニリデン単位を有するフルオロポリマー(A)は、構成単位中に少なくともフッ化ビニリデン由来の構成単位を有するものであり、ポリフッ化ビニリデン、又は、フッ化ビニリデン単位を有する共重合体である。上記フルオロポリマー(A)は、後述するフッ素ポリマー(B)を含まない。
上記ポリフッ化ビニリデンは、全構成単位がフッ化ビニリデン単位である形態の他、その他の構成単位を更に有する形態であってもよいが、全構成単位に占めるフッ化ビニリデン単位の割合は90モル%を超えていることが好ましい。より好ましくは92モル%以上であり、更に好ましくは95モル%以上である。
上記ポリフッ化ビニリデンに含まれていてもよいその他の構成単位としては、ヘキサフルオロプロピレン単位、クロロトリフルオロエチレン単位、パーフルオロビニルエーテル単位、ビニルアルコール単位、ビニルエステルモノマー単位等が挙げられる。フルオロポリマー(A)は、後述するカルボキシル基含有モノマー単位(d)及び(メタ)アクリル酸エステル単位を含まない。より好ましくは、後述する不飽和カルボン酸系単量体単位を含まない。
上記ポリフッ化ビニリデンの重量平均分子量は、高分子多孔質膜の機械的強度及び加工性の観点から、30000〜2000000であることが好ましく、50000〜1000000であることがより好ましい。
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。
上記フッ化ビニリデン単位を有する共重合体としては、フッ化ビニリデン/テトラフルオロエチレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体等が挙げられる。機械的強度及び耐アルカリ性の観点から、フッ化ビニリデン単位を有する共重合体は、特にフッ化ビニリデン/テトラフルオロエチレン共重合体であることが好ましい。
成膜性及び耐アルカリ性の観点から、フッ化ビニリデン/テトラフルオロエチレン共重合体は、フッ化ビニリデン単位及びテトラフルオロエチレン単位のモル比(フッ化ビニリデン単位/テトラフルオロエチレン単位)が50〜99/50〜1であることが好ましい。このようなポリマーとしては、例えば、ダイキン工業(株)製のネオフロンVT50、VP50、VT100、VP100、VP101、VP100X等が挙げられる。フッ化ビニリデン/テトラフルオロエチレン共重合体は、フッ化ビニリデン単位/テトラフルオロエチレン単位がモル比で50〜90/50〜10であることがより好ましい。また、フッ化ビニリデン/テトラフルオロエチレン共重合体は、フッ化ビニリデン単位及びテトラフルオロエチレン単位のみからなるフッ化ビニリデン/テトラフルオロエチレン共重合体の他に、フッ化ビニリデン単位及びテトラフルオロエチレン単位に加えて、特性を損なわない範囲でヘキサフルオロプロピレン単位、クロロトリフルオロエチレン単位、パーフルオロビニルエーテル単位、ビニルアルコール単位、ビニルエステルモノマー単位等のその他の構成単位を有する三元共重合体でもよい。
なお、上記フッ化ビニリデン/テトラフルオロエチレン共重合体がフッ化ビニリデン単位及びテトラフルオロエチレン単位に加えて、その他の構成単位を更に有する場合、全構成単位に占めるフッ化ビニリデン単位及びテトラフルオロエチレン単位の合計の割合は、80モル%以上であることが好ましく、85モル%以上であることがより好ましい。更に好ましくは90モル%以上、特に好ましくは97モル%以上である。
上記フッ化ビニリデン単位を有する共重合体の重量平均分子量は、機械的強度及び成膜性の観点からは、10000以上であることが好ましい。より好ましくは、50000〜1000000であり、更に好ましくは、100000〜800000である。
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。
上記フルオロポリマー(A)は、例えば、フッ化ビニリデンを含むフルオロポリマー(A)の構成単量体を通常行われる乳化重合法に従って重合することで製造することができる。当該乳化重合においては、重合開始剤、乳化剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ通常用いられるものを使用することができる。
上記フッ素ポリマー(B)は、フルオロポリマー(A)を親水化することができる親水性フッ素ポリマーであり、(a)炭素数2のパーハロオレフィン単位、(b)非芳香族系のビニルエステルモノマー単位、(c)水酸基含有ビニルモノマー単位、及び、(d)カルボキシル基含有モノマー単位からなる含フッ素共重合体(B1)、フッ化ビニリデン単位を有するフルオロポリマーと、(メタ)アクリル酸エステル単位を有するアクリルポリマーとを同一粒子内に含有する樹脂粒子(B2)からなる群より選択される少なくとも1種である。本明細書における「親水性フッ素ポリマー」とは、水と親和性の高いフッ素ポリマーのことであり、水に対する接触角がフルオロポリマー(A)よりも小さいフッ素ポリマーを指す。
上記親水性フッ素ポリマー(B)は、重量平均分子量が1000〜2000000であることが好ましい。親水性フッ素ポリマー(B)の重量平均分子量がこのような範囲であると、表面配向しやすいため親水化剤としての効果が高い。親水性フッ素ポリマー(B)の重量平均分子量としてより好ましくは、2000〜500000であり、更に好ましくは、3000〜200000である。
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。
上記含フッ素共重合体(B1)は、(a)炭素数2のパーハロオレフィン構造単位、(b)非芳香族系のビニルエステルモノマー構造単位、(c)水酸基含有ビニルモノマー構造単位、及び、(d)カルボキシル基含有モノマー構造単位からなるものであるが、含フッ素共重合体(B1)は、上記構造単位(a)、(b)、(c)及び(d)を有する限り、(e)その他のモノマー構造単位を有していてもよい。
なお、本明細書においては、モノマー成分と、当該モノマー成分に対応するモノマー構造単位とには、同じ符号を付して説明することとする。
上記炭素数2のパーハロオレフィン単位(a)としては、テトラフルオロエチレン(TFE)又はクロロトリフルオロエチレン(CTFE)に由来するモノマー単位であることが好ましい。より好ましくは、TFEに由来するモノマー単位である。
上記非芳香族系のビニルエステルモノマー単位(b)は、水酸基及びカルボキシル基のいずれも有しないモノマー単位であり、下記一般式(1):
CH=CH−O−C(=O)−R (1)
(式中、Rは炭素数1〜20の直鎖状又は分岐鎖状のアルキル基を表す。)で表されるカルボン酸ビニルエステルに由来するモノマー単位であることが好ましい。
上記一般式(1)におけるRの炭素数としては、1〜18が好ましく、1〜12がより好ましい。
上記非芳香族系のビニルエステルモノマー単位(b)としては、具体的には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル等に由来するモノマー単位の1種又は2種以上が挙げられる。中でも、入手が容易で安価である点から、バーサチック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、酢酸ビニルに由来するモノマー単位が好ましい。最も好ましくは、バーサチック酸ビニルに由来するモノマー単位である。
上記水酸基含有ビニルモノマー単位(c)は、水酸基を有し、かつ、カルボキシル基を有しない非芳香族系のモノマー単位であり、下記一般式(2):
CH=CHR (2)
(式中、Rは、−OR又は−CHOR(Rは、水酸基を有するアルキル基である。)を表す。)で表されるヒドロキシアルキルビニルエーテルやヒドロキシアルキルアリルエーテルに由来するモノマー単位であることが好ましい。
上記一般式(2)におけるR中のRとしては、たとえば炭素数1〜8の直鎖状または分岐鎖状のアルキル基に1〜3個、好ましくは1個の水酸基が結合したものが好ましい。
上記水酸基含有ビニルモノマー単位(c)としては、具体的には、2−ヒドロキシエチルビニルエーテル、3−ヒドロキシプロピルビニルエーテル、2−ヒドロキシプロピルビニルエーテル、2−ヒドロキシ−2−メチルプロピルビニルエーテル、4−ヒドロキシブチルビニルエーテル、4−ヒドロキシ−2−メチルブチルビニルエーテル、5−ヒドロキシペンチルビニルエーテル、6−ヒドロキシヘキシルビニルエーテル、2−ヒドロキシエチルアリルエーテル、4−ヒドロキシブチルアリルエーテル、グリセロールモノアリルエーテル等に由来するモノマー単位の1種又は2種以上が挙げられる。これらのなかでも、4−ヒドロキシブチルビニルエーテル、2−ヒドロキシエチルビニルエーテルに由来するモノマー単位が好ましい。
上記カルボキシル基含有モノマー単位(d)は、カルボキシル基を有し、かつ、水酸基及び芳香族基を有しないモノマー単位であり、下記一般式(3):
(式中、R、R及びRは、同一又は異なって、水素原子、アルキル基、カルボキシル基、または、エステル基を表す。nは0〜20の整数である。)で表されるカルボキシル基含有ビニルモノマー単位であることが好ましい。
上記一般式(3)において、R及びRは、いずれも水素原子であることが好ましく、また、nは2以上であることが好ましく、8以上であることがより好ましい。
上記カルボキシル基含有モノマー単位(d)としてはまた、下記一般式(4):
(式中、R及びRは、同一又は異なって、飽和又は不飽和の直鎖又は環状アルキル基を表す。nは0又は1、mは0又は1である。)で表されるカルボキシル基含有モノマー単位等も挙げられる。
上記カルボキシル基含有モノマー単位(d)としては、不飽和カルボン酸に由来するモノマー単位であることが好ましく、不飽和カルボン酸は酸無水物であってもよい。上記不飽和カルボン酸としては、具体的には、ウンデシレン酸、ペンテン酸、ヘキセン酸、ヘプテン酸、オクテン酸、ノネン酸、デセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ペンタデセン酸、ヘキサデセン酸、ヘプタデセン酸、オクタデセン酸、ノナデセン酸、エイコセン酸、アクリル酸、メタクリル酸、ビニル酢酸、クロトン酸、桂皮酸、3−アリルオキシプロピオン酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル、マレイン酸無水物、フマル酸、フマル酸モノエステル、フタル酸ビニル、ピロメリット酸ビニル等の1種又は2種以上が挙げられる。なかでも、反応性が良好であり、安価であることから、ウンデシレン酸、クロトン酸が好ましい。
上記その他のモノマー単位(e)としては、たとえば芳香族基含有モノマー(e1)や、他の共重合可能なモノマー(e2)等に由来するモノマー単位が挙げられる。
上記芳香族基含有モノマー(e1)は、芳香族基を有し、かつ、水酸基及びカルボキシル基のいずれも有しないモノマーであり、たとえば安息香酸ビニル、パラ−t−ブチル安息香酸ビニル等の安息香酸ビニルモノマー等の1種又は2種以上が挙げられ、特に安息香酸ビニルが好ましい。
上記他の共重合可能なモノマー(e2)としては、たとえばメチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル;エチレン、プロピレン、n−ブテン、イソブテン等の非フッ素系のオレフィン等が挙げられる。
上記含フッ素共重合体(B1)における構造単位の含有量は、たとえば次の範囲が好ましい。
上記構造単位(a)の含有量は、含フッ素共重合体(B1)の全構造単位に対して、20モル%以上であることが好ましい。より好ましくは、30モル%以上であり、更に好ましくは、40モル%以上である。特に好ましくは、42モル%以上である。上限は、65モル%であることが好ましい。
上記構造単位(b)の含有量は、含フッ素共重合体(B1)の全構造単位に対して、20モル%以上であることが好ましく、25モル%以上であることがより好ましい。上限は、69.9モル%であることが好ましく、60モル%であることがより好ましく、43モル%であることが更に好ましい。特に好ましくは、40モル%以下である。
上記構造単位(c)の含有量は、含フッ素共重合体(B1)の全構造単位に対して、8モル%以上であることが好ましく、より好ましくは、10モル%以上であり、更に好ましくは、15モル%以上である。上限は、30モル%であることが好ましく、20モル%であることがより好ましい。
上記構造単位(d)の含有量は、含フッ素共重合体(B1)の全構造単位に対して、0.1モル%以上であることが好ましく、より好ましくは、0.4モル%以上である。上限は、2モル%であることが好ましく、1.5モル%であることがより好ましい。
上記構造単位(e)は任意成分であるが、含フッ素共重合体(B1)が構造単位(e1)を有する場合の構造単位(e1)の含有量は、含フッ素共重合体(B2)の全構造単位に対して、2〜15モル%であることが好ましい。より好ましくは、4〜10モル%であり、更に好ましくは、4〜8モル%である。
また、含フッ素共重合体(B2)が構造単位(e2)を有する場合の構造単位(e2)の含有量は、含フッ素共重合体(B2)の全構造単位に対して、0.1〜10モル%であることが好ましく、0.5〜5モル%であることがより好ましい。
上記含フッ素共重合体(B1)における各構造単位の含有量は、上述した各構造単位の含有量の範囲内で合計量が100モル%になるように選択される。
上記含フッ素共重合体(B1)は、溶液重合法、乳化重合法、懸濁重合法、又は塊状重合法で製造することができるが、なかでも溶液重合法で得られたものが好ましい。
上記含フッ素共重合体(B1)は、重合溶媒や重合開始剤を用いて上記いずれかの重合方法により前記の構造単位を与えるモノマーを重合することで製造することができる。重合温度は、通常0〜150℃、好ましくは5〜95℃である。重合圧は、通常0.1〜10MPaG(1〜100kgf/cmG)である。
重合溶媒としては、乳化重合法では水、懸濁重合法では、たとえば水、tert−ブタノール、1,1,2−トリクロロ−1,2,2−トリフルオロエタン、1,2−ジクロロ−1,1,2,2−テトラフルオロエタンまたはこれらの混合物等が用いられる。溶液重合法では、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、オクタン、ノナン、デカン、ウンデカン、ドデカン、ミネラルスピリット等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、ナフタレン、ソルベントナフサ等の芳香族炭化水素類;メタノール、エタノール、tert−ブタノール、iso−プロパノール、エチレングリコールモノアルキルエーテル等のアルコール類;テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の環状エーテル類;ジメチルスルホキシド等、またはこれらの混合物等があげられる。
重合開始剤としては、たとえば過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩類(さらに必要に応じて亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、ナフテン酸コバルト、ジメチルアニリン等の還元剤も併用できる);酸化剤(たとえば過酸化アンモニウム、過酸化カリウム等)と還元剤(たとえば亜硫酸ナトリウム等)および遷移金属塩(たとえば硫酸鉄等)からなるレドックス開始剤類;アセチルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド類;イソプロポキシカルボニルパーオキサイド、tert−ブトキシカルボニルパーオキサイド等のジアルコキシカルボニルパーオキサイド類;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド類;過酸化水素、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等のハイドロパーオキサイド類;ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド類;tert−ブチルパーオキシアセテート、tert−ブチルパーオキシピバレート等のアルキルパーオキシエステル類;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルバレロニトリル)、2,2’−アゾビス(2−シクロプロピルプロピオニトリル)、2,2’−アゾビスイソ酪酸ジメチル、2,2’−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]、4,4’−アゾビス(4−シアノペンテン酸)等のアゾ系化合物等が使用できる。
いずれの重合法においても、重合中に単量体または重合体からフッ化水素等の酸性物質が脱離して重合溶液が酸性になり重合体がゲル化することがあるので、系内に炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウム、リン酸ナトリウム、金属酸化物、ハイドロタルサイト類等の無機塩類;ジエチルアミン、ジブチルアミン、トリエチルアミン等の有機アミン類;塩基性陰イオン交換樹脂を添加して、脱離したフッ化水素や塩化水素等の酸性物質を中和してもよい。
上記親水性フッ素ポリマー(B)はまた、含フッ素共重合体(B1)を加水分解して得られるものであってもよい。すなわち、本明細書においては、含フッ素共重合体(B1)には、含フッ素共重合体(B1)の他、含フッ素共重合体(B1)を加水分解して得られた加水分解物も含まれる。
上記含フッ素共重合体(B1)を加水分解して得られる加水分解物としては、たとえば含フッ素共重合体(B1)を、水酸化ナトリウム、炭酸カリウム等を用いて室温〜80℃、0.5〜150時間加水分解することで得られる生成物等が挙げられる。
上記含フッ素共重合体(B1)は、重量平均分子量が1000〜2000000であることが好ましい。含フッ素共重合体(B1)の重量平均分子量がこのような範囲であると、表面配向しやすいため親水化剤としての効果が高い。含フッ素共重合体(B1)の重量平均分子量としてより好ましくは、2000〜500000であり、更に好ましくは、3000〜200000である。
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。
上記フッ化ビニリデン単位を有するフルオロポリマー(p)と、(メタ)アクリル酸エステル単位を有するアクリルポリマー(q)とを同一粒子内に含有する樹脂粒子(B2)は、例えば、フルオロポリマー(p)からなる粒子の存在下に(メタ)アクリル酸エステルを含む単量体を重合させることにより製造することができるものである。
なお、上記樹脂粒子(B2)中、フルオロポリマー(p)とアクリルポリマー(q)とは同一粒子内に存在していれば、化学的に結合していてもよいし、結合していなくてもよい。
上記フルオロポリマー(p)は、フッ化ビニリデン単位を有するものであるが、少なくともフッ化ビニリデン単位を有する限り、その他の単量体単位を有していてもよい。
上記その他の単量体としては、フッ化ビニリデン以外のフルオロオレフィンが挙げられ、具体的には、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)、下記化学式で表されるパーフルオロオレフィン;クロロトリフルオロエチレン(CTFE)、フッ化ビニル(VF)、トリフルオロエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、テトラフルオロプロピレン、ヘキサフルオロイソブテン等の非パーフルオロオレフィンが挙げられる。これらフルオロオレフィンの1種または2種以上を用いることができる。PAVEとしてはパーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)等が挙げられる。
また、CH=CZ(CFn1(式中、ZはH、F又はCl、ZはH、F又はCl、n1は1〜10の整数である。)で示される単量体もあげられる。具体的にはCH=CFCF、CH=CHCF、CH=CFCHF、CH=CClCF等が挙げられる。
また、上記その他の単量体としては、官能基含有フルオロオレフィンも使用することができる。当該官能基含有フルオロオレフィンとしては、例えば、式(5):
CX =CX−(R−Y (5)
(式中、Yは、−OH、−COOH、−SOF、−SO(Mは水素原子、NH基またはアルカリ金属)、カルボン酸塩、カルボキシエステル基、エポキシ基またはシアノ基;XおよびXは、同じかまたは異なり、いずれも水素原子またはフッ素原子;Rは、炭素数1〜40の2価の含フッ素アルキレン基または炭素数1〜40のエーテル結合を含有する2価の含フッ素アルキレン基;mは0または1の整数)で示される化合物等が挙げられる。
上記官能基含有フルオロオレフィンの具体例としては、例えば、下記化合物等が挙げられる。
また、上記その他の単量体としては、ヨウ素含有単量体や、例えば、特公平5−63482号公報や特開昭62−12734号公報に記載されているパーフルオロ(6,6−ジヒドロ−6−ヨード−3−オキサ−1−ヘキセン)、パーフルオロ(5−ヨード−3−オキサ−1−ペンテン)等のパーフルオロビニルエーテルのヨウ素化物等も使用することができる。
上記フルオロポリマー(p)は、フッ化ビニリデン単位からなる重合体であってもよいし、フッ化ビニリデン単位及び上記その他の単量体単位の1種または2種以上からなる重合体であってもよい。そして更には、フッ化ビニリデンと共重合可能な非フッ素系単量体単位を含む共重合体であってもよい。当該非フッ素系単量体としては、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類;エチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル等のビニルエーテル類;アリルアルコール、アリルエーテル等のアルケニル類;酢酸ビニル、乳酸ビニル等のビニルエステル類;無水コハク酸、クロトン酸等のエチレン性不飽和カルボン酸類等が挙げられる。
上記フルオロポリマー(p)としては、これらの中でも、耐候性の観点から、ポリフッ化ビニリデン、又は、フッ化ビニリデン単位とテトラフルオロエチレン単位及び/又はクロロトリフルオロエチレン単位とを有する共重合体であることが好ましい。より好ましくは、ポリフッ化ビニリデン、又は、フッ化ビニリデン単位及びテトラフルオロエチレン単位を有する共重合体である。特に好ましくは、フッ化ビニリデン単位、テトラフルオロエチレン単位、及び、クロロトリフルオロエチレン単位からなる共重合体である。
上記フッ化ビニリデン単位、テトラフルオロエチレン単位、及び、クロロトリフルオロエチレン単位からなる共重合体における、各単位の含有割合は、フッ化ビニリデン単位/テトラフルオロエチレン単位/クロロトリフルオロエチレン単位が、モル比で、50〜90/5〜45/1〜30であることが好ましい。より好ましくは、60〜90/5〜25/1〜20である。
上記フルオロポリマー(p)は、例えば、後述するように、フッ化ビニリデンを含むフルオロポリマー(p)の構成単量体を通常行われる乳化重合法に従って重合することで製造することができる。
上記アクリルポリマー(q)は、(メタ)アクリル酸エステル単位を有するものであるが、少なくとも(メタ)アクリル酸エステル単位を有する限り、その他の単量体単位を有していてもよい。
上記(メタ)アクリル酸エステルとしては、(メタ)アクリル酸の炭素数1〜10のアルキルエステルが好ましく、例えば、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート(BA)、メチルメタクリレート(MMA)、n−プロピルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、イソプロピルメタクリレート、2−エチルへキシルアクリレート、2−エチルヘキシルメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレート等の1種または2種以上が例示できる。なかでも、フルオロポリマー(p)との相溶性が良好な点から、MMA、BAが好ましい。
また、水酸基含有(メタ)アクリル酸エステルも好ましい。水酸基含有(メタ)アクリル酸エステルとしては、ヒドロキシエチルメタクリレート(HEMA)、ヒドロキシエチルアクリレート(HEA)、3−ヒドロキシプロピルメタクリレート、3−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、4−ヒドロキシブチルメタクリレート、2−ヒドロキシブチルアクリレート、2−ヒドロキシブチルメタクリレート、6−ヒドロキシヘキシルアクリレート、6−ヒドロキシヘキシルメタクリレート等が例示できる。なかでも、フルオロポリマー(p)との相溶性が良好な点から、HEMA、HEAが好ましい。
また、オキシアルキレン基を有する(メタ)アクリル酸エステルも好ましい。オキシアルキレン基を有する(メタ)アクリル酸エステルとしては、
メトキシポリエチレングリコールモノ(メタ)アクリレート:
CH=CR−COO−(CO)−CH n=2〜20、
エトキシポリエチレングリコールモノ(メタ)アクリレート、プロポキシポリエチレングリコールモノ(メタ)アクリレート、ブトキシポリエチレングリコールモノ(メタ)アクリレート、オクトキシポリエチレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート、ノニルブェノキシポリエチレングリコールモノ(メタ)アクリレート等があげられる。水酸基末端ポリアルキレングリコールモノ(メタ)アクリレートとして、
ポリエチレングリコールモノ(メタ)アクリレート:
CH=CR−COO−(CO)−H n=2〜20、
ポリプロピレングリコールモノ(メタ)アクリレート:
CH=CR−COO−(CO)−H n=2〜20、
ポリエチレングリコールーポリプロピレングリコールモノ(メタ)アクリレート:
CH=CR−COO−(CO)−(CO)−H n=1〜20、m=1〜20、
ポリ(エチレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート:
CH=CR−COO−(CO)−(CO)−H n=1〜20、m=1〜20、
ポリ(プロピレングリコールーテトラメチレングリコール)モノメタクリレート:
CH=CR−COO−(CO)−(CO)−H n=1〜20、m=1〜20等があげられる。
上記と重複するが、エトキシ−ジエチレングリコール(メタ)アクリレート、メトキシ−トリエチレングルコール(メタ)アクリレート、2−エチルヘキシル−ジグルコール(メタ)アクリレート、メトキシ−ポリエチレングリコール(メタ)アクリレート、メトキシジプロピレングルコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシ−ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が例示できる。適度な親水性を有する観点でメトキシ−ポリエチレングリコール(メタ)アクリレートが好ましい。
上記アクリルポリマー(q)における、その他の単量体としては、不飽和カルボン酸系単量体が挙げられる。
上記(メタ)アクリル酸エステル単位及び不飽和カルボン酸系単量体単位からなる共重合体における、各単位の含有割合は、(メタ)アクリル酸エステル単位/不飽和カルボン酸系単量体単位が、モル比で、55/45〜99/1であることが好ましい。より好ましくは、75/25〜99/1である。
上記不飽和カルボン酸系単量体としては、例えば、アクリル酸(AA)、メタクリル酸、ビニル酢酸、クロトン酸、桂皮酸、3−アリルオキシプロピオン酸、3−(2−アリロキシエトキシカルボニル)プロピオン酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル、マレイン酸無水物、フマル酸、フマル酸モノエステル、フタル酸ビニル、ピロメリット酸ビニル、ウンデシレン酸等が挙げられる。これらのなかでも、密着性や増粘性や耐熱性が良好な点から、アクリル酸が好ましい。
上記その他の単量体としては、そのほか、他の共重合可能なラジカル重合性の非フッ素系単量体を併用することもできる。当該他の非フッ素系単量体としては、例えば、ビニルエーテル系単量体、オレフィン系単量体、加水分解性シリル基含有ビニル系単量体、ビニルエステル系単量体等が挙げられる。
上記ビニルエーテル系単量体としては、アルキルビニルエーテル類、水酸基含有ビニルエーテル類等が挙げられる。
上記水酸基含有ビニルエーテルとしては、例えば、2−ヒドロキシエチルビニルエーテル、3−ヒドロキシプロピルビニルエーテル、2−ヒドロキシプロピルビニルエーテル、2−ヒドロキシ−2−メチルプロピルビニルエーテル、4−ヒドロキシブチルビニルエーテル、4−ヒドロキシ−2−メチルブチルビニルエーテル、5−ヒドロキシペンチルビニルエーテル、6−ヒドロキシヘキシルビニルエーテル、2−ヒドロキシエチルアリルエーテル、4−ヒドロキシブチルアリルエーテル、グリセロールモノアリルエーテル等が挙げられる。
上記オレフィン系単量体としては、例えば、エチレン、プロピレン、n−ブテン、イソブテン、スチレン等が挙げられる。
上記加水分解性シリル基含有ビニル系単量体としては、例えば、γ−メタクリロキシプロピルトリメトキシシラン等が挙げられる。
上記ビニルエステル系単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、安息香酸ビニル、パラ−t−ブチル安息香酸ビニル等のカルボン酸ビニルエステル類等が挙げられる。
上記アクリルポリマー(q)としては、これらの中でも、(メタ)アクリル酸エステル単位と不飽和カルボン酸系単量体単位とを含む共重合体であることが好ましい。より好ましくは、(メタ)アクリル酸の炭素数1〜6のアルキルエステル単位と(メタ)アクリル酸単位とを含む共重合体であり、特に好ましくは、(メタ)アクリル酸の炭素数1〜3のアルキルエステル単位及び(メタ)アクリル酸単位からなる共重合体である。
上記(メタ)アクリル酸の炭素数1〜3のアルキルエステル単位及び(メタ)アクリル酸単位からなる共重合体における、各単位の含有割合は、(メタ)アクリル酸の炭素数1〜3のアルキルエステル単位/(メタ)アクリル酸単位が、モル比で、55/45〜97/3であることが好ましい。より好ましくは、75/25〜92/8である。
上記樹脂粒子(B2)における、フルオロポリマー(p)とアクリルポリマー(q)との含有割合は、フルオロポリマー(p)/アクリルポリマー(q)が、質量比で、10/90〜90/10であることが好ましい。樹脂粒子(B2)中の、フルオロポリマー(p)とアクリルポリマー(q)との含有割合がこのような範囲であると、耐候性や耐水性、貯蔵安定性に優れて好ましい。上記樹脂粒子(B2)における、フルオロポリマー(p)とアクリルポリマー(q)との含有割合としてより好ましくは、20/80〜80/20(質量比)であり、更に好ましくは、40/60〜75/25(質量比)である。
なお、上記フルオロポリマー(p)とアクリルポリマー(q)との質量比は、単一粒子を構成するフルオロポリマー(p)及びアクリルポリマー(q)の単一粒子中の質量比を表している。
上記樹脂粒子(B2)のフッ素含有率は、15〜60質量%であることが好ましい。樹脂粒子(B2)のフッ素含有率がこのような範囲であると、フルオロポリマー(p)とアクリルポリマー(q)との相溶性が良好なものとなる。樹脂粒子(B2)のフッ素含有率としてより好ましくは、15〜55質量%であり、更に好ましくは、20〜50質量%である。
上記樹脂粒子(B2)の平均粒子径は、50〜500nmであることが好ましい。樹脂粒子(B2)の平均粒子径がこのような範囲であると、当該樹脂粒子(B2)を含む水性分散液を調製した場合に、保存時にも粒子が沈降したり凝固したりすることなく、安定的な水性分散液を調製することができる。樹脂粒子(B2)の平均粒子径としてより好ましくは、80〜300nmであり、更に好ましくは、100〜250nmである。
上記樹脂粒子(B2)は、例えば、後述するように、フルオロポリマー(p)からなる粒子の存在下に(メタ)アクリル酸エステルを含むアクリルポリマー(q)の構成単量体を通常行われるシード重合法に従って乳化重合することで製造することができる。ただしここで、当該乳化重合を反応性乳化剤の存在下に行うと、そのようにして得られた樹脂粒子(B2)を用いて作製される高分子多孔質膜が、反応性乳化剤が樹脂粒子(B2)中に取り込まれることにより、乳化剤の溶出が抑えられる点でより優れることとなり好ましい。
上記樹脂粒子(B2)は、例えば、フッ化ビニリデンを含む単量体を乳化重合してフルオロポリマー(p)からなる粒子を含む水性分散液を製造する工程、及び、フルオロポリマー(p)からなる粒子の存在下に(メタ)アクリル酸エステルを含む単量体を乳化重合してフルオロポリマー(p)とアクリルポリマー(q)とを同一粒子内に含有する樹脂粒子を含む水性分散液を製造する工程を行う製造方法により、樹脂粒子(B2)を含む水性分散液の形態で得ることができる。更に、樹脂粒子(B2)を単離する工程を行うことにより、樹脂粒子(B2)を粒子の形態で得ることができる。
上記フルオロポリマー(p)からなる粒子を含む水性分散液を製造する工程における、当該水性分散液の製造方法としては、特に制限されず、通常行われる乳化重合法により行うことができる。具体的には、フッ化ビニリデンを含むフルオロポリマー(p)の構成単量体を乳化重合することで、フルオロポリマー(p)からなる粒子を含む水性分散液を製造することができる。
上記乳化重合においては、重合開始剤、乳化剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ通常用いられるものを使用することができる。
上記製造されるフルオロポリマー(p)からなる粒子を含む水性分散液は、上記乳化重合によって製造されるフルオロポリマー(p)からなる粒子が水性媒体に分散した液である。上記水性媒体としては、上記乳化重合において溶媒として用いることができる水性媒体等が挙げられる。上記水性分散液としては、上記乳化重合によって得られるフルオロポリマー(p)からなる粒子が、乳化重合において溶媒として用いた水性媒体に分散した分散液そのものであってもよいし、上記乳化重合反応において用いた溶媒とは異なる水性媒体にフルオロポリマー(p)からなる粒子を分散させた分散液であってもよい。
上記フルオロポリマー(p)からなる粒子の存在下に(メタ)アクリル酸エステルを含む単量体を乳化重合してフルオロポリマー(p)とアクリルポリマー(q)とを同一粒子内に含有する樹脂粒子(B2)を含む水性分散液を製造する工程における、当該水性分散液の製造方法としては、樹脂を複合化する際に通常行われるシード重合法を採用することが好ましい。具体的には、フルオロポリマー(p)からなる粒子の存在下に(メタ)アクリル酸エステルを含むアクリルポリマー(q)の構成単量体を乳化重合することで、フルオロポリマー(p)とアクリルポリマー(q)とを同一粒子内に含有する樹脂粒子(B2)を含む水性分散液を製造することができる。
上記アクリルポリマー(q)の構成単量体を乳化重合する際には、重合開始剤、乳化剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ通常用いられるものを使用することができるが、特に、反応性乳化剤を用いて行うことが好ましい。当該乳化重合を反応性乳化剤の存在下に行うことによって、反応性乳化剤が重合体中に取り込まれることにより、乳化剤の溶出が抑えられる。このように、上記樹脂粒子(B2)を含む水性分散液を製造する工程における乳化重合が、更に反応性乳化剤の存在下で行われることもまた、本発明の好適な実施形態の1つである。
上記反応性乳化剤としては、通常乳化重合において用いられる反応性乳化剤を使用することができ、特に制限されないが、例えば、ブレンマーPE−350、ブレンマーPME−400、ブレンマー70PEP350B(日油(株)製)、NKエステルM−40G、NKエステルM−90G、NKエステルM−230G(新中村化学(株)製)、RMA450M(日本乳化剤(株)製)、アクアロンHS10、アクアロンHS20、アクアロンHS1025、アクアロンRN10、アクアロンRN20、アクアロンRN30、アクアロンRN50、アクアロンRN2025(第一工業製薬(株)製)、NKエステルAMP−60G、NKエステルCB−1、NKエステルSA、NKエステルA−SA、エレミノールJS2、エレミノールRS30(三洋化成工業(株)製)、ラテムルWX((株)花王製)等が例示される。
また、式:
(式中、nは10と11の混合物)で示される化合物(2−1)も挙げられる。
これらのなかでも、エレミノールJS2、エレミノールRS30、化合物(2−1)が好ましく、エレミノールJS2および化合物(2−1)がより好ましい。
上記反応性乳化剤の使用量としては、乳化重合に供するアクリルポリマー(q)の構成単量体全量100重量%に対して、0.05〜5.0重量%であることが好ましい。より好ましくは、0.10〜2.0重量%である。
上記製造される樹脂粒子(B2)を含む水性分散液は、上記乳化重合によって製造される樹脂粒子(B2)が水性媒体に分散した液である。上記水性媒体としては、上記乳化重合において溶媒として用いることができる水性媒体等が挙げられる。上記水性分散液としては、上記乳化重合によって得られる樹脂粒子(B2)が、乳化重合において溶媒として用いた水性媒体に分散した分散液そのものであってもよいし、上記乳化重合反応において用いた溶媒とは異なる水性媒体に樹脂粒子(B2)を分散させた分散液であってもよい。
上記樹脂粒子(B2)を単離する工程は、種々の方法により行うことができ、例えば、上記製造される樹脂粒子(B2)を含む水性分散体を凍結することにより凝析させ、その後、メタノール溶液で十分洗浄後、真空乾燥を行う方法等を用いることができる。
本発明の高分子多孔質膜は、フッ化ビニリデン単位を有するフルオロポリマー(A)、及び、親水性フッ素ポリマー(B)のみからなるものであってもよいし、フルオロポリマー(A)、親水性フッ素ポリマー(B)、及び、その他の樹脂からなるものであってもよい。
本発明の高分子多孔質膜は、透水性の観点から、フルオロポリマー(A)及び親水性フッ素ポリマー(B)の合計が高分子多孔質膜全体の40質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。
上記その他の樹脂としては、例えば、熱可塑性樹脂が挙げられる。熱可塑性樹脂は、加熱すると外力によって変形又は流動する樹脂である。熱可塑性樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル樹脂、ポリアクリロニトリル、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン(AS)樹脂、塩化ビニル樹脂、ポリエチレンテレフタレート、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、変性ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、及びこれらの混合物や共重合体が挙げられる。これらと混和可能な他の樹脂を混和してもよい。
熱可塑性樹脂としては、耐薬品性が高いことから、ポリエチレン系樹脂、ポリプロピレン系樹脂、及び、アクリル樹脂からなる群より選択される少なくとも1種が好ましい。
ポリエチレン系樹脂は、エチレンホモポリマー又はエチレン共重合体からなる樹脂である。ポリエチレン系樹脂は、複数の種類のエチレン共重合体からなるものでもよい。エチレン共重合体としては、プロピレン、ブテン、ペンテン等の直鎖状不飽和炭化水素から選ばれた1種以上とエチレンとの共重合体が挙げられる。
ポリプロピレン系樹脂は、プロピレンホモポリマー又はプロピレン共重合体からなる樹脂である。ポリプロピレン系樹脂は、複数の種類のプロピレン共重合体からなるものでもよい。プロピレン共重合体としては、エチレン、ブテン、ペンテン等の直鎖状不飽和炭化水素から選ばれた1種類以上とプロピレンとの共重合体が挙げられる。
アクリル樹脂は、主としてアクリル酸、メタクリル酸及びこれらの誘導体、たとえばアクリルアミド、アクリロニトリル等の重合体を包含する高分子化合物である。特にアクリル酸エステル樹脂やメタクリル酸エステル樹脂が好ましい。
本発明の高分子多孔質膜がフルオロポリマー(A)、親水性フッ素ポリマー(B)及び上記その他の樹脂からなる場合、当該その他の樹脂の種類及び量を調整することにより、高分子多孔質膜の膜強度、透水性能、阻止性能等を調整することができる。
本発明の高分子多孔質膜は、親水化の観点や、相分離制御の観点、機械的強度向上の観点から、更に、ポリビニルピロリドン、ポリビニルアルコール、ポリメタクリル酸メチル樹脂、ポリエチレンオキシド、モンモリロナイト、SiO、CaCO、ポリテトラフルオロエチレン等の添加剤を含んでいてもよい。
本発明の高分子多孔質膜は、孔径が2nm〜2.0μmであることが好ましく、5nm〜0.5μmであることがより好ましい。孔径が小さすぎると、気体や液体の透過率が不充分になるおそれがあり、孔径が大きすぎると、阻止性能の低下や、機械的強度が低下して破損しやすくなるおそれがある。
孔径は、細孔が明瞭に確認できる倍率で、SEM等を用いて高分子多孔質膜の表面の写真を撮り、細孔の直径を測定する。楕円形状の孔である場合、細孔の直径は、短径をa、長径をbとすると、(a×b)0.5で求めることができる。また、微粒子阻止率から大まかな孔径を求めることが出来る。つまり、例えば50nmのポリスチレン微粒子等を90%以上阻止する多孔質膜は、50nm以下の孔径を有すると考えられる。
本発明の高分子多孔質膜は、例えば、50nmの微粒子を90%以上阻止する性能を有する場合、純水透過係数が1.0×10−9/m/s/Pa以上であることが好ましく、1.5×10−9/m/s/Pa以上であることがより好ましい。純水透過係数の上限は特に限定されないが、目的の阻止率及び強度を保持する範囲で、高い値であればあるほど望ましい。
純水透過係数は、温度25℃でイオン交換水を、必要に応じてポンプ又は窒素圧で0.01MPa以上に加圧し、作製した中空糸膜又は平膜でろ過することにより求めることができる。具体的には、下記式から求められる。
純水透過係数〔m/m/s/Pa〕=(透過水量)/(膜面積)/(透過時間)/(評価圧力)
本発明の高分子多孔質膜は、100nm又は50nmの微粒子阻止率が90%以上であることが好ましく、より好ましくは、95%以上である。
微粒子阻止率は、粒径が制御されたポリスチレンラテックス微粒子をイオン交換水にて100ppm程度に希釈した分散溶液を評価原液としてろ過し、次式にて求められる。
微粒子阻止率(%)=((評価原液吸光度)−(透過液吸光度))/(評価原液吸光度)×100
本発明の高分子多孔質膜は、機械的強度の観点から、最大点破断強度が0.5MPa以上であることが好ましく、0.6MPa以上であることがより好ましい。1.0MPa以上であることがさらに好ましい。
最大点破断強度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、引張試験前の断面積を単位測定面積として求めることができる。また、チャック間距離25mm、引張速度50mm/分の条件下で試験片の破断強度を測定し、引張試験前の断面積を単位測定面積としても求めることができる。なお、試験片を引っ張る向きは中空糸膜の場合は押出方向で、平膜の場合はキャストの方向である。
本発明の高分子多孔質膜は、靭性の観点から、最大点伸度が100%以上であることが好ましく、120%以上であることがより好ましい。
最大点伸度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、チャック間距離50mmを基準にして最大点の伸び率より求められる。
また、チャック間距離25mm、引張速度50mm/分の条件下で試験片の破断強度を測定し、チャック間距離25mmを基準にして最大点の伸び率からも求められる。なお、試験片を引っ張る向きは中空糸膜の場合は押出方向で、平膜の場合はキャストの方向である。
本発明の高分子多孔質膜の構造は特に限定されない。例えば、固形分が三次元的に網目状に広がっている三次元網目状構造、多数の球状若しくは球状に近い形状の固形分が、直接若しくは筋状の固形分を介して連結している球状構造等であってもよい。また、これらの両方の構造を有していてもよい。
本発明の高分子多孔質膜の形状は、平膜形状又は中空糸膜形状であることが好ましい。
平膜形状の場合、本発明の高分子多孔質膜は、フルオロポリマー(A)および親水性フッ素ポリマー(B)からなるフルオロポリマー層及び多孔質基材からなる複合膜でもよい。複合膜の場合、多孔質基材表面にフルオロポリマー(A)および親水性フッ素ポリマー(B)からなるフルオロポリマー層が被覆されているものであってもよいし、多孔質基材とフルオロポリマー(A)および親水性フッ素ポリマー(B)からなるフルオロポリマー層とが積層されているものであってもよい。
また、多孔質基材、フルオロポリマー(A)および親水性フッ素ポリマー(B)からなるフルオロポリマー層、及び、フルオロポリマー(A)および親水性フッ素ポリマー(B)以外の樹脂からなる樹脂層とからなる複合膜であってもよい。上記樹脂層を形成する樹脂としては、上述した熱可塑性樹脂が挙げられる。
多孔質基材としては、ポリエステル繊維、ナイロン繊維、ポリウレタン繊維、アクリル繊維、レーヨン繊維、綿、絹等の有機繊維からなる織物、編物又は不織布が挙げられる。また、ガラス繊維、金属繊維等の無機繊維からなる織物、編物又は不織布も挙げられる。伸縮性、コストの観点からは、有機繊維からなる多孔質基材が好ましい。
多孔質基材の表面の孔径は、用途によって自由に選択できるが、好ましくは5nm〜100μm、より好ましくは8nm〜10μmである。
平膜形状の場合、高分子多孔質膜の厚みは、10μm〜2mmであることが好ましく、30μm〜500μmであることがより好ましい。上記の多孔質基材を用いた複合膜である場合においても高分子多孔質膜の厚みは上述の範囲内にあることが好ましい。
本発明の高分子多孔質膜は、単位面積、単位体積当たりの処理水量の観点から、中空糸膜形状であることがより好ましい。
中空糸膜形状の場合、中空糸膜の内径は100μm〜10mmが好ましく、150μm〜8mmがより好ましい。中空糸膜の外径は120μm〜15mmが好ましく、200μm〜12mmがより好ましい。
中空糸膜形状の場合、高分子多孔質膜の膜厚は、20μm〜3mmが好ましく、50μm〜2mmがより好ましい。また、中空糸膜の内外表面の孔径は、用途によって自由に選択できるが、好ましくは2nm〜2.0μm、より好ましくは5nm〜0.5μmの範囲である。
次に、本発明の高分子多孔質膜の製造方法について、説明する。
本発明の高分子多孔質膜は、フルオロポリマー(A)、親水性フッ素ポリマー(B)、任意で界面活性剤、溶媒等を混合して混合物を得る工程、得られた混合物を多孔質膜状に成形する工程を行うことによって製造することができる。
上記フルオロポリマー(A)と親水性フッ素ポリマー(B)との混合工程は、フルオロポリマー(A)と親水性フッ素ポリマー(B)とを混練したり、フルオロポリマー(A)の水性分散液に親水性フッ素ポリマー(B)を加えて混合したり、親水性フッ素ポリマー(B)の水性分散液にフルオロポリマー(A)を加えて混合したり、フルオロポリマー(A)の水性分散液と親水性フッ素ポリマー(B)の水性分散液とを混合したりして行うことができるが、該混合工程によって得られた混合物を多孔質膜状に成形する工程において採用する方法に応じて適宜行われる。
なお、上記混合物における、フルオロポリマー(A)と親水性フッ素ポリマー(B)との配合比は、得られる本発明の高分子多孔質膜におけるフルオロポリマー(A)と親水性フッ素ポリマー(B)との含有比が上述した範囲となるように適宜設定される。
上記混合工程においては、フルオロポリマー(A)及び親水性フッ素ポリマー(B)の他、その他の樹脂も加えて混合してもよい。
上記その他の樹脂としては、既に説明した本発明の高分子多孔質膜に含有されうる、フルオロポリマー(A)及び親水性フッ素ポリマー(B)以外のその他の樹脂が挙げられる。
上記製造方法においては、フルオロポリマー(A)、親水性フッ素ポリマー(B)、任意で界面活性剤、溶媒等を混合して混合物を得る工程の後、得られた混合物を多孔質膜状に成形する工程を行う。
上記多孔質膜上に成形する工程は、種々の方法により行うことができ、例えば、相分離法、溶融抽出法、蒸気凝固法、延伸法、エッチング法、高分子シートを焼結することにより多孔質膜とする方法、気泡入りの高分子シートを圧潰することにより多孔質膜を得る方法、エレクトロスピニングを用いる方法等の成形方法を用いることができる。
上記溶融抽出法は、上記混合物に無機微粒子と有機液状体を溶融混練し、上記フルオロポリマー(A)の融点以上の温度で口金から押出したり、プレス機等により成形したりした後、冷却固化し、その後有機液状体と無機微粒子を抽出することにより多孔構造を形成する方法である。
上記蒸気凝固法は、上記混合物を得る際に、フルオロポリマー(A)と親水性フッ素ポリマー(B)に加え、良溶媒を混合して、良溶媒にフルオロポリマー(A)及び親水性フッ素ポリマー(B)が溶解した混合物を得、当該混合物からなる薄膜状物の少なくとも一方の表面に、上記良溶媒と相溶性がありフルオロポリマー(A)及び親水性フッ素ポリマー(B)を溶解しない非溶媒及び/又は貧溶媒の飽和蒸気又はミストを含む蒸気を強制的に供給する方法である。
上記多孔質膜の製造方法は、細孔サイズの制御が容易であることから相分離法が好ましい。相分離法としては、例えば、熱誘起相分離法(TIPS)、非溶媒誘起相分離法(NIPS)等が挙げられる。
熱誘起相分離法を用いる場合、フルオロポリマー(A)及び親水性フッ素ポリマー(B)を貧溶媒又は良溶媒である溶媒に、比較的高い温度で溶解させて混合物を得る工程、及び、該混合物を冷却固化する工程からなる製造方法により多孔質膜状の成形物を得ることができる。
フルオロポリマー(A)及び親水性フッ素ポリマー(B)が溶媒に溶解した混合物は、クラウドポイント(曇点)と呼ばれる温度よりも高い温度に維持されている場合は均一な1相の液体となるが、クラウドポイント以下では相分離が起こり、フルオロポリマー(A)及び親水性フッ素ポリマー(B)濃厚相と溶媒濃厚相の2相に分離し、さらに結晶化温度以下になるとポリマーマトリックスが固定化され、多孔質膜が形成する。
熱誘起相分離法を用いる場合、上記混合物は、フルオロポリマー(A)、親水性フッ素ポリマー(B)及び溶媒との合計に対して10〜60質量%であることが好ましい。より好ましくは15〜50質量%である。
フルオロポリマー(A)及び親水性フッ素ポリマー(B)の濃度を適正な範囲に調整することにより、混合物の粘度を適切な範囲に調整することができる。混合物の粘度が適切な範囲になければ、高分子多孔質膜に成形することができないおそれがある。
上記貧溶媒は、フルオロポリマー(A)及び親水性フッ素ポリマー(B)を60℃未満の温度では5質量%以上溶解させることができないが、60℃以上かつ樹脂の融点(フルオロポリマー(A)及び親水性フッ素ポリマー(B)の融点、又は、その他の樹脂を含有する場合には、フルオロポリマー(A)、親水性フッ素ポリマー(B)及び他の樹脂の融点のいずれかの融点のうち最も低い融点)以下では5質量%以上溶解させることができる溶媒のことである。貧溶媒に対し、60℃未満の温度でもフルオロポリマー(A)及び親水性フッ素ポリマー(B)を5質量%以上溶解させることができる溶媒を良溶媒という。樹脂の融点又は液体の沸点まで、フルオロポリマー(A)及び親水性フッ素ポリマー(B)を溶解も膨潤もさせない溶媒を非溶媒という。
貧溶媒としては、シクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、脂肪族多価アルコール、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステル及び有機カーボネート等、並びに、その混合溶媒が挙げられる。HFC−365等の含フッ素溶媒、ジフェニルカーボネート、メチルベンゾエート、ジエチレングリコールエチルアセテート、ベンゾフェノン等も挙げられる。なお、非溶媒と貧溶媒の混合溶媒であっても、上記貧溶媒の定義を満たす溶媒は、貧溶媒である。
熱誘起相分離法を用いる場合、混合物の溶媒としては貧溶媒が好ましいが、この限りではなく、フルオロポリマーの相分離挙動の検討から良溶媒を用いる場合もある。
良溶媒としては、HCFC−225等の含フッ素溶媒、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、メタノール、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド、及び、これらの混合溶媒等が挙げられる。
非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、四塩化炭素、o−ジクロロベンゼン、トリクロロエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、メタノール、エタノール、プロパノール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、芳香族多価アルコール、塩素化炭化水素、又はその他の塩素化有機液体及びその混合溶媒等が挙げられる。
熱誘起相分離法を用いる場合、混合物を得る工程は、フルオロポリマー(A)及び親水性フッ素ポリマー(B)を貧溶媒又は良溶媒である溶媒に30〜270℃で溶解させるものであることが好ましい。溶解させる温度は40〜250℃であることが好ましい。比較的高温で溶解させた場合には、フルオロポリマー(A)及び親水性フッ素ポリマー(B)の合計濃度を高くすることができ、これにより、高い機械的強度を有する高分子多孔質膜を得ることができる。上記の濃度が高すぎると、得られる高分子多孔質膜の空隙率が小さくなり、透水性能が低下するおそれがある。また、調製した混合物の粘度が適正範囲に無ければ、多孔質膜に成形することができないおそれがある。
上記混合物を冷却固化する方法としては、例えば、上記混合物を、口金から冷却浴中に吐出する方法が好ましい。高分子多孔質膜が平膜の場合、キャストして、冷却浴に浸漬させる方法も好ましい方法として挙げられる。
冷却浴として用いることができる冷却液体は、混合物よりも温度が低いものであり、例えば、温度が0〜80℃であり、濃度が60〜100質量%の貧溶媒又は良溶媒である溶媒を含有する液体を用いることができる。また、冷却液体には、非溶媒や、貧溶媒や良溶媒を含有する非溶媒を用いてもよい。
この多孔質膜の製造方法においては、混合物の濃度、フルオロポリマー(A)及び親水性フッ素ポリマー(B)を溶解する溶媒の組成、冷却浴を構成する冷却液体の組成が重要である。これらの組成を調整することによって、高分子多孔質膜の多孔質構造を制御することができる。
例えば、高分子多孔質膜の片面と他方の面とで、混合物の組成や冷却液体の組成の組み合わせを変更することによって、高分子多孔質膜の片面の構造と、他方の面の構造とを異なるものにすることもできる。
上記多孔質膜状に成形する工程として非溶媒誘起相分離法を用いる場合、例えば、フルオロポリマー(A)及び親水性フッ素ポリマー(B)を溶媒に溶解して混合物を得る工程、得られた混合物を、口金から非溶媒を含む凝固浴中に吐出する工程からなる製造方法により多孔質膜状の成形物を得ることが好ましい。
上記混合物を、非溶媒を含む凝固浴中に浸漬することにより、該混合物と凝固浴中の溶媒と非溶媒の濃度勾配を駆動力として、該混合物中への非溶媒の取り込みと凝固浴中への溶媒の溶出が起こり、結果として、非溶媒誘起型の相分離を生じせしめることができる。この方法によれば、最初に溶媒と非溶媒の置換により相分離が起こる外表面において緻密なスキン層が形成し、膜内部方向に向かって相分離現象が進んでいく。その結果、スキン層に続いて膜内部方向に向かって連続的に孔径が大きくなる非対称膜を製造することもできる。
上記非溶媒誘起相分離法を用いる場合、上記混合物は、フルオロポリマー(A)、親水性フッ素ポリマー(B)及び溶媒からなることが好ましい。上記混合物は、フルオロポリマー(A)、親水性フッ素ポリマー(B)及び溶媒に加えて、更に、非溶媒からなることも好ましい形態の一つである。
混合物は、フルオロポリマー(A)、親水性フッ素ポリマー(B)、溶媒及び非溶媒の合計(混合物が非溶媒を含まない場合には、フルオロポリマー(A)、親水性フッ素ポリマー(B)、及び溶媒の合計)に対して、フルオロポリマー(A)及び親水性フッ素ポリマー(B)が5〜60質量%であることが好ましい。より好ましくは、10〜50質量%である。
混合物は、フルオロポリマー(A)、親水性フッ素ポリマー(B)、溶媒及び非溶媒の合計に対して、非溶媒が0.1〜10質量%であることが好ましい。より好ましくは、0.5〜8質量%である。
フルオロポリマー(A)及び親水性フッ素ポリマー(B)の濃度を適正な範囲に調整することにより、混合物の粘度を適切な範囲に調整することができる。混合物の粘度が適切な範囲になければ、高分子多孔質膜に成形することができないおそれがある。
混合物は、常温であってもよいし、加熱されたものでもよい。例えば、10〜75℃が好ましい。
非溶媒誘起相分離法において、上記溶媒としては、熱誘起相分離法で例示した溶媒を用いることができる。上記溶媒は、貧溶媒であっても良溶媒であってもよいが、良溶媒が好ましい。上記非溶媒としては、熱誘起相分離法で例示した非溶媒を使用することができる。
上記凝固浴として用いることができる凝固液体として、非溶媒を含有する液体を用いて固化させることが好ましく、貧溶媒、良溶媒を含有していてもよい。上記非溶媒としては、熱誘起相分離法で例示した非溶媒を用いることができる。例えば、水を好適に用いることができる。
上記多孔質膜状に成形する工程においては、上記熱誘起相分離法と非溶媒誘起相分離法とを併用してもよい。
非溶媒誘起相分離法及び/又は熱誘起相分離法では、フルオロポリマー(A)及び親水性フッ素ポリマー(B)を溶媒に溶解した混合物を口金から吐出した後、固化させることで多孔質膜状の成形物を得ることができる。上記口金としては、例えば、スリット口金、二重管式口金、三重管式口金等が用いられる。
多孔質膜状の成形物として中空糸膜状の成形物を製造する場合、上記口金としては、中空糸膜紡糸用の二重管式口金、三重管式口金等が好ましく用いられる。
上記二重管式口金を用いる場合、二重管式口金の外側の管から混合物を吐出し、イオン交換水等の中空部形成流体を内側の管から吐出しながら凝固浴又は冷却浴中で固化することで、中空糸膜とすることができる。
中空部形成流体には、通常、気体もしくは液体を用いることができる。熱誘起相分離法では、冷却液体と同様の、濃度が60〜100%の貧溶媒若しくは良溶媒を含有する液体が好ましく採用できるが、非溶媒や、貧溶媒や良溶媒を含有する非溶媒を用いてもよい。非溶媒誘起相分離法では、上記中空部形成流体としては、上述した非溶媒を用いることが好ましく、例えば、イオン交換水等の水が好ましい。また、上述した非溶媒は、貧溶媒、良溶媒を含有していてもよい。
熱誘起相分離法を用いる場合は、上記中空部形成流体としては、上述した溶媒を用いることが好ましく、例えば、グリセロールトリアセテート等の貧溶媒が好ましい。また、熱誘起相分離法を用いる場合は、窒素ガスを用いることもできる。
中空部形成流体と冷却液体又は凝固液体の組成を変えることにより、二種の構造を有する
中空糸膜を形成することもできる。中空部形成流体は、冷却して供給してもよいが、冷却浴の冷却力のみで中空糸膜を固化するのに十分な場合は、中空部形成流体は冷却せずに供給してもよい。
三重管式口金は、2種の樹脂溶液を用いる場合に好適である。例えば、三重管式口金の外側の管と中間の管から2種の混合物を吐出し、中空部形成液体を内側の管から吐出しながら凝固浴又は冷却浴中で固化することで、中空糸膜とすることができる。また、三重管式口金の外側の管から混合物を吐出し、中間の管からフルオロポリマー(A)及び親水性フッ素ポリマー(B)以外の樹脂からなる樹脂溶液を吐出し、中空部形成流体を内側の管から吐出しながら凝固浴又は冷却浴中で固化することで、中空糸膜とすることができる。
フルオロポリマー(A)及び親水性フッ素ポリマー(B)以外の樹脂としては上述したものが挙げられる。中でも、上述した熱可塑性樹脂が好ましく、アクリル樹脂がより好ましい。
上記のように、二重管式口金や三重管式口金を用いた製造方法で中空糸膜を製造した場合、凝固液体又は冷却液体の量を、平膜を製造した場合よりも少なくすることができる点で好ましい。
製造する高分子多孔質膜の形状が中空糸膜の場合、上記の方法で得られた中空糸膜の外表面又は内表面に、更に、上記フルオロポリマー(A)からなる層又は上記フルオロポリマー(A)以外の樹脂からなる樹脂層を形成してもよい。
フルオロポリマー層又は樹脂層は、中空糸膜の外表面又は内表面にフルオロポリマー(A)の溶液又は樹脂溶液を塗布することで形成することができる。中空糸膜の外表面にフルオロポリマー(A)の溶液又は樹脂溶液を塗布する方法としては、中空糸膜をフルオロポリマー(A)の溶液又は樹脂溶液に浸潰したり、中空糸膜にフルオロポリマー(A)の溶液又は樹脂溶液を滴下したりする方法等が好ましく用いられる。中空糸膜の内表面にフルオロポリマー(A)の溶液又は樹脂溶液を塗布する方法としては、フルオロポリマー(A)の溶液又は樹脂溶液を中空糸膜内部に注入する方法等が好ましく用いられる。
フルオロポリマー(A)の溶液又は樹脂溶液の塗布量を制御する方法としては、フルオロポリマー(A)の溶液又は樹脂溶液の塗布量自体を制御する方法の他に、多孔質膜をフルオロポリマー(A)の溶液又は樹脂溶液に浸漬したり、多孔質膜にフルオロポリマー(A)の溶液又は樹脂溶液を塗布した後に、フルオロポリマー(A)の溶液又は樹脂溶液の一部をかき取ったり、エアナイフを用いて吹き飛ばす方法や、塗布の際の濃度を調整する方法も好ましく用いられる。
また、多孔質膜の成形物として平膜状の成形物を製造する場合、混合物をキャストして、冷却浴又は凝固浴に浸漬させることによって製造することができる。また、スリット口金を用いて、冷却浴又は凝固浴に混合物を吐出することでも製造することができる。
本発明の高分子多孔質膜として、多孔質基材からなる複合膜である場合、多孔質基材を混合物に浸漬する方法、多孔質基材の少なくとも片面に混合物を塗布する方法等により本発明の高分子多孔質膜を得ることもできる。
上述した製造方法により、優れた透水性を有する高分子多孔質膜を得ることができるが、透水性能が十分でない場合には、上記製造方法で得られた多孔質膜を更に延伸してもよい。
上記多孔質膜状に成形する工程において、孔径を制御する方法としては、例えば、混合物に孔径を制御するための添加剤を入れ、フルオロポリマー(A)及び親水性フッ素ポリマー(B)による多孔質構造を形成する際、又は多孔質構造を形成した後に、添加剤を溶出させることにより高分子多孔質膜の孔径を制御することができる。また、添加剤は多孔質膜内に留まらせてもよい。
非溶媒誘起相分離法及び熱誘起相分離法のいずれにおいても、混合物は添加剤を含んでいてもよい。多孔質構造を形成した後、添加剤を溶出させることにより、高分子多孔質膜の孔径を制御することができる。添加剤は、必要に応じて多孔質膜内に留まらせてもよい。
添加剤としては、有機化合物及び無機化合物を挙げることができる。有機化合物としては、混合物を構成する溶媒に溶解するもの、又は、均一に分散するものであることが好ましい。更に、非溶媒誘起相分離法では凝固液体に含まれる非溶媒、熱誘起相分離法では冷却液体に含まれる溶媒に溶解するものが好ましい。
例えば、有機化合物としては、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリエチレンイミン、ポリアクリル酸、テキストラン等の水溶性ポリマー、Tween40(ポリオキシエチレンソルビタンモノパルミタート)等の界面活性剤、グリセリン、糖類等を挙げることができる。
無機化合物としては、水溶性化合物が好ましく用いられる。例えば、塩化カルシウム、塩化リチウム、硫酸バリウム等を挙げることができる。
添加剤を用いずに、凝固液における非溶媒の種類、濃度及び温度によって相分離速度をコントロールすることによって表面の平均孔径を制御することも可能である。一般的には、相分離速度が速いと表面の平均孔径が小さく、遅いと大きくなる。また、混合物に非溶媒を添加することも、相分離速度制御に有効である。
混合物は、親水化の観点や、相分離制御の観点、機械的強度向上の観点から、更に、ポリビニルピロリドン、ポリビニルアルコール、ポリメタクリル酸メチル樹脂、モンモリロナイト、SiO、TiO、CaCO、ポリテトラフルオロエチレン等の添加剤を含んでいてもよい。
また、上記製造方法では、多孔質膜状の成形物を得た後、当該多孔質膜状の成形物に湿潤処理を行ってもよい。
上記湿潤処理は、例えば、上記多孔質膜状の成形物をメタノール、エタノール等のアルコールに浸漬し、その後、水に置換することにより行えばよい。
さらに、上記製造方法で得られた高分子多孔質膜は、透水性向上の観点から、アルカリで処理を行ってもよい。アルカリとは、例えば、NaOH水溶液、KOH水溶液、アンモニア水、アミン溶液等である。これらは、エタノール、メタノール等のアルコールや有機溶剤を含んでいてもよい。特にアルカリがアルコールを含むことが好ましいが、これらに限定されるものではない。
上記製造方法で得られた多孔質膜状の成形物は、飲料水製造、浄水処理、排水処理等の水処理に用いられる精密濾過膜又は限外濾過膜として好適である。上記製造方法で得られた多孔質膜状の成形物は、透過性が高く、耐薬品性に優れるため、水処理用の高分子多孔質膜に好適である。
また、上記製造方法で得られた多孔質膜状の成形物は、医療分野、食品分野、電池分野等においても好適に用いられる。
医療分野においては、血液浄化、特に、腎機能を代用するための血液透析、血液濾過、血液濾過透析等の体外循環による血中老廃物の除去を目的とした血液浄化用膜として上記製造方法で得られた多孔質膜状の成形物を用いることができる。
食品分野においては、発酵に用いた酵母の分離除去や、液体の濃縮を目的として上記製造方法で得られた多孔質膜状の成形物を用いることができる。
電池分野においては、電解液は透過できるが、電池反応で生じる生成物は透過できないようにするための電池用セパレーター、又は、高分子固体電解質の基材として上記製造方法で得られた多孔質膜状の成形物を用いることができる。
以下、本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
〔重量平均分子量〕
重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めた。
〔NMR(核磁気共鳴法)によるフルオロポリマーの組成、および交互率の測定〕
H−NMR(核磁気共鳴法)測定には、JNM−EX270(JEOL社製:270MHz)を用いた。溶媒は重アセトンを用いた。
〔純水透過係数〕
純水透過係数は、温度25℃で、イオン交換水を窒素で0.01MPa以上に加圧し、作製した中空糸膜で濾過することで求めた。
純水透過係数〔m/m/s/Pa〕=(透過水量)/(膜面積)/(透過時間)/(評価圧力)
〔微粒子阻止率〕
微粒子阻止率は、粒径が制御されたポリスチレンラテックス微粒子(100nm)をイオン交換水にて100ppm程度に希釈した分散溶液を評価原液として濾過し、次式にて求めた。
微粒子阻止率〔%〕=((評価原液吸光度)−(透過液吸光度))/(評価原液吸光度)×100
〔最大点破断強度〕
最大点破断強度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、引張試験前の断面積を単位測定面積として求めた。
〔最大点伸度〕
最大点伸度は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、チャック間距離50mmを基準にして最大点の伸び率より求めた。
〔弾性率〕
弾性率は、チャック間距離50mm、引張速度200mm/分の条件下で試験片の破断強度を測定し、得られる応力−伸び曲線において、初期の直線部分の傾きから計算し求めた。
〔IR分析〕
Perkin Elmer社製フーリエ変換赤外分光光度計1760Xで室温にて測定した。
(製造例1) 親水性フッ素ポリマーB1−1の調製
3Lステンレス製オートクレーブを窒素置換した後に、酢酸ブチル944gを加えた。次に、ベオバ10(商品名、Momentive Specialty Chemicals社製、ホモポリマーのTg:−3℃)を169.4g、4−ヒドロキシブチルビニルエーテル(HBVE)を41.1g、ウンデシレン酸(UDA)を3.1g加えた。その後、テトラフルオロエチレン(TFE)を150g加え、槽内を60℃まで昇温した。これに撹拌下パーブチルPV(日油(株)製のラジカル重合開始剤)2.5gを加え、反応を開始した。重合開始3時間後に槽内の温度を75℃に上げ、重合開始4時間後に槽内を常温常圧に戻して重合を停止した。親水性フッ素ポリマーB1−1の酢酸ブチル溶液1200g(固形分濃度20.0質量%)を得た。得られた親水性フッ素ポリマーB1−1の酢酸ブチル溶液を大量のヘキサン中に再沈させて、親水性フッ素ポリマーB1−1を回収した。得られた親水性フッ素ポリマーB1−1の重量平均分子量は4.3万であった。得られた親水性フッ素ポリマーB1−1の組成(モル比)を表1に示した。
得られた親水性フッ素ポリマーB1−1を濃度が10質量%になるように酢酸ブチル溶液を調製し、ガラス板にアプリケーター(3mil)を用いて塗布後、風乾し、90℃で15分間の条件で製膜した。得られた膜の対水接触角を測定したところ87°であった。
(製造例2) 親水性フッ素ポリマーB1−2の調製
3Lステンレス製オートクレーブを窒素置換した後に、酢酸ブチル944gを加えた。次に、ベオバ9(商品名、Momentive Specialty Chemicals社製、ホモポリマーのTg:70℃)を146.1g、4−ヒドロキシブチルビニルエーテル(HBVE)を35.4g、ウンデシレン酸(UDA)を2.7g加えた。その後、テトラフルオロエチレン(TFE)を150g加え、槽内を60℃まで昇温した。これに撹拌下パーブチルPV(日油(株)製のラジカル重合開始剤)2.5gを加え、反応を開始した。重合開始3時間後に槽内の温度を75℃に上げ、重合開始4時間後に槽内を常温常圧に戻して重合を停止した。親水性フッ素ポリマーB1−2の酢酸ブチル溶液1200g(固形分濃度20.0質量%)を得た。得られた親水性フッ素ポリマーB1−2の酢酸ブチル溶液を大量のヘキサン中に再沈させて、親水性フッ素ポリマーB1−2を回収した。得られた親水性フッ素ポリマーB1−2の重量平均分子量は5万であった。得られた親水性フッ素ポリマーB1−2の組成(モル比)を表1に示した。
得られた親水性フッ素ポリマーB1−2を濃度が10質量%になるように酢酸ブチル溶液を調製し、ガラス板にアプリケーター(3mil)を用いて塗布後、風乾し、90℃で15分間の条件で製膜した。得られた膜の対水接触角を測定したところ86°であった。
(合成例1) 親水性フッ素ポリマーB1−1の加水分解
THF40mL、メタノール12mLの混合溶液に親水性フッ素ポリマー(B1−1)5.4gを均一溶解させた後、KCOを1.2g溶かした水溶液4mlを滴下した。室温で40時間攪拌した後、さらにKCOを2.4g溶かした水溶液8mlを滴下した。5日後、1.5NのHCl溶液で中和した。二層分離した、上層を室温でエバポレートし、溶媒を除去した。得られた加水分解物をアセトンに溶解させ、ヘキサンで再沈殿を行い、デカンテーションで上澄みを除去後、真空乾燥機にて40℃で乾燥させ精製した。
ケン化の進行はIRにて確認した。ベオバ10に基づくC=O由来のピークが減少し、ケン化を確認した。ケン化度は別途、H−NMRにて測定した結果、10%であった。
このケン化ポリマーをB1−1−Kと呼ぶ。
(製造例3) 親水性フッ素ポリマーB2の製造
2Lのステンレススチール製のオートクレーブに、イオン交換水500g、式:
(式中、nは10と11の混合物)で示される化合物(2−1)の38質量%水溶液0.789g(化合物(2−1)の濃度600ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.75〜0.80MPaとなるようにVDF/TFE/CTFE(=74/14/12モル%)混合単量体を圧入し、70℃に昇温した。
ついで過硫酸アンモニウム(APS)1.0g(2000ppm/水)を4mLのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、600rpmで撹拌しながら反応を開始した。
重合の進行に伴い内圧が降下し始めた時点で、VDF/TFE/CTFE(=74/14/12モル%)混合単量体を内圧が0.75〜0.80MPaを維持するように供給した。重合開始から2時間5分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度10.6質量%の含フッ素重合体(Ia)のディスパージョンを得た。
撹拌翼、冷却管、温度計を備えた内容量2Lの四つ口フラスコに、含フッ素重合体(Ia)ディスパージョン1200gを仕込み、これにシード重合の際のシード粒子の安定性確保のために界面活性剤(三洋化成(株)製、エレミノールJS−20)を含フッ素重合体固形分に対して1質量%、RMA−450M(日本乳化剤(株)製)を含フッ素重合体固形分に対して3質量%、RS−3000(日本乳化剤(株)製)を含フッ素重合体固形分に対して1質量%添加した。撹拌下に水浴中で加温し、該フラスコ内の温度を75℃に上げた。別途、MMAとBAとAAの87.4/10/2.6(モル%比)の混合単量体とAPSの1%水溶液(混合単量体の0.158質量%に相当する量)の混合エマルジョンを調製し、この混合エマルジョンを2時間かけてフラスコ中に滴下し、重合した。重合開始2.5時間後に、前記フラスコ内の温度を80℃に上げ、2時間保持したのち冷却し、アンモニア水で中和してpHを7に調整し、300メッシュの金網で濾過して青白色のフッ素−アクリル複合粒子(親水性フッ素ポリマーB2)(平均粒子径200nm)の水性分散体を製造した。
シード粒子(含フッ素重合体(Ia))とアクリル混合単量体の重量比は70:30であり、得られたフッ素−アクリル複合粒子(親水性フッ素ポリマーB2)水性分散体のNMR分析の結果、フルオロポリマーとアクリルポリマーの重量比は70:30であった。
得られた水性分散体を凍結することにより凝析させ、その後、メタノール溶液で十分洗浄後、真空乾燥をおこない、親水性フッ素ポリマーB2を単離した。
得られた親水性フッ素ポリマーB2を濃度が10質量%になるようにジメチルアセトアミド溶液を調製し、ガラス板にアプリケーター(3mil)を用いて塗布後、風乾し、90℃で15分間の条件で製膜した。得られた膜の対水接触角を測定したところ83°であった。
(製造例4) PVdF(ポリフッ化ビニリデン)の合成例
内容量2LのSUS製オートクレーブに、イオン交換水910g、メチルセルロース0.5gを仕込み、窒素置換後に槽内を真空に引いた後、酢酸エチル1.5g、1,1−ジフルオロエチレン(VdF)(フッ化ビニリデン)365gを仕込み、28℃で一定にさせた。槽内温度一定後、ジノルマルプロピルパーオキシジカーボネート12gを仕込み、懸濁重合を開始した。10時間経過後に槽内を脱圧させ、反応を終了させた。ポリマースラリーを脱水、水洗した後105℃で24時間乾燥してポリフッ化ビニリデン(PVdF)粉末を得た。得られたポリフッ化ビニリデン粉末は110gで、重量平均分子量は27万であった。
得られたポリフッ化ビニリデン粉末を濃度が10質量%になるように酢酸ブチル溶液を調製し、ガラス板にアプリケーター(3mil)を用いて塗布後、風乾し、90℃で15分間の条件で製膜した。得られた膜の対水接触角を測定したところ92°であった。
(製造例5) VdF/TFE共重合体の合成例
内容量4Lのグラスライニング製オートクレーブに、イオン交換水1300gを仕込み、窒素置換後に槽内を真空に引いた後、オクタフルオロシクロブタン1300gを仕込み、槽内を45℃まで昇温し、攪拌速度580rpmで攪拌した。槽内温度一定後、テトラフルオロエチレン(TFE)/1,1−ジフルオロエチレン(VdF)=6/94モル%の混合ガス150g、酢酸エチル10gを仕込み、その後ジノルマルプロピルパーオキシジカーボネートの50質量%メタノール溶液2gを仕込み、懸濁重合を開始した。反応開始時からTFE/VdF=20/80モル%の混合ガスを連続して供給し、槽内圧力を1.3MPaに保った。攪拌速度は580rpmで保った。
反応開始から24時間後に槽内を脱圧させ、反応を終了させた。反応生成物を水洗した後120℃で12時間乾燥してVdF/TFE共重合体の粉末を得た。得られた粉末ポリマーは600gで、重量平均分子量は23万、組成比はVdF/TFE=80/20(モル%)であった。
得られたVdF/TFE共重合体の粉末を濃度が10質量%になるように酢酸ブチル溶液を調製し、ガラス板にアプリケーター(3mil)を用いて塗布後、風乾し、90℃で15分間の条件で製膜した。得られた膜の対水接触角を測定したところ117°であった。
製造例1〜3で得られた各種親水性フッ素樹脂はいずれも製造例4および製造例5で得られたフッ化ビニリデン単位を有するフルオロポリマーよりも低い対水接触角を示した。
(実施例1)
製造例4で得たポリフッ化ビニリデン粉末と製造例1で得た親水性ポリマー(B1−1)とを重量比5:1でブレンドしたものが18.0質量%、ジメチルアセトアミド(DMAc)が82.0質量%になるようにポリマー溶液を調整した。
このポリマー溶液を、ガラス板にアプリケーター(203μm)を用いて塗布し、直ちに
25℃の水凝固浴中に10分間浸漬し平膜の多孔質膜を得た。純水透過係数は6.89×10−9(m/m/s/Pa)であった。また微粒子阻止率は98%であった。
(実施例2)
親水性ポリマー(B1−1)の代わりに製造例3で得られた親水性ポリマー(B2)を用いた以外は実施例1と同様にして、平膜の多孔質膜を得た。実施例1と同様に純水透過係数、微粒子阻止率を評価した。結果を表2および3にまとめる。
(実施例3〜8)
表2、3に示す組成で各種親水性ポリマー(B)とフッ化ビニリデン単位を有するフルオロポリマー(A)を混合した以外は実施例1と同様にして得られた平膜の多孔質膜の物性を実施例1と同様に評価した。結果を表2および表3にまとめる。
(比較例1〜2)
実施例1と同様にして、フッ化ビニリデン単位を有するフルオロポリマー(A)のみからなる平膜の多孔質膜を得た。実施例1と同様に純水透過係数、微粒子阻止率を評価した。結果を表2および表3にまとめる。
(実施例9)
各成分を25℃で混合し、製造例1で得た親水性ポリマー(B1−1)3.7質量%、製造例4で得たポリフッ化ビニリデン16.6質量%、ジメチルアセトアミド79.7質量%のポリマー溶液を得た。このポリマー溶液を二重管式口金から、内部液としてイオン交換水を同伴させながら吐出し、イオン交換水中にて固化した。得られた中空糸膜は、外径0.81mm、内径0.69mmであった。純水透過係数、微粒子阻止率、最大点破断強度、最大点伸度、弾性率を評価した。結果を表4に示す。
(実施例10)
各成分を25℃で混合し、製造例1で得た親水性ポリマー(B1−1)3.7質量%、製造例5で得たVdF/TFE共重合体16.6質量%、ジメチルアセトアミド79.7質量%のポリマー溶液を得た。実施例9と同様にして中空糸膜を得た。得られた中空糸膜は、外径0.91mm、内径0.84mmであった。その物性を実施例9と同様に評価した。結果を表4に示す。また、得られた中空糸膜の断面のSEM像を図1に示す。得られた中空糸膜の表面のSEM像を図2に示す。
図1より明らかなように、実施例10で得られた中空糸膜の断面には、非対称な多孔質膜構造が観測され、大きなマクロボイドも見られず、良好な中空糸膜が得られたことがわかる。
(比較例3)
各成分を25℃で混合し、製造例5で得られたフッ化ビニリデン/テトラフルオロエチレン共重合体(フッ化ビニリデン/テトラフルオロエチレン=80/20(モル%))18.0質量%、ジメチルアセトアミド82.0質量%のポリマー溶液を得た。このポリマー溶液を二重管式口金から、内部液としてイオン交換水を同伴させながら吐出し、イオン交換水中にて固化した。得られた中空糸膜は、外径0.92mm、内径0.84mmであった。25℃で水圧を0.1MPaGをかけたが、純水は透過しなかった。最大点破断強度は8.0MPa、最大点伸度は740%であった。結果を表4に示す。
(比較例4)
各成分を25℃で混合し、製造例4で得られたポリフッ化ビニリデン18.0質量%、ジメチルアセトアミド82.0質量%のポリマー溶液を得た。このポリマー溶液を二重管式口金から、内部液としてイオン交換水を同伴させながら吐出し、イオン交換水中にて固化した。得られた中空糸膜は、外径0.81mm、内径0.74mmであった。25℃で水圧を0.1MPaGをかけたが、純水は透過しなかった。最大点破断強度は11.0MPa、最大点伸度は440%であった。結果を表4に示す。
(比較例5)
各成分を25℃で混合し、製造例5で得られたフッ化ビニリデン/テトラフルオロエチレン共重合体(フッ化ビニリデン/テトラフルオロエチレン=80/20(モル%))18.0質量%、ポリエチレンオキシド(PEG600)3.0質量%、ジメチルアセトアミド79.0質量%のポリマー溶液を得た。このポリマー溶液を二重管式口金から、内部液としてイオン交換水を同伴させながら吐出し、イオン交換水中にて固化した。得られた中空糸膜は、外径0.91mm、内径0.80mmであった。25℃で水圧を0.1MPaGをかけたが、純水は透過しなかった。最大点破断強度は4.7MPa、最大点伸度は590%であった。結果を表4に示す。

Claims (7)

  1. フッ化ビニリデン単位を有するフルオロポリマー(A)と、フッ素ポリマー(B)とからなり、
    フッ素ポリマー(B)は、(a)炭素数2のパーハロオレフィン単位、(b)非芳香族系のビニルエステルモノマー単位、(c)水酸基含有ビニルモノマー単位、及び、(d)カルボキシル基含有モノマー単位からなる含フッ素共重合体(B1)、フッ化ビニリデン単位を有するフルオロポリマーと、(メタ)アクリル酸エステル単位を有するアクリルポリマーとを同一粒子内に含有する樹脂粒子(B2)からなる群より選択される少なくとも1種であることを特徴とする高分子多孔質膜。
  2. フッ素ポリマー(B)がフルオロポリマー(A)に対して1〜40質量%である請求項1記載の高分子多孔質膜。
  3. 含フッ素共重合体(B1)は、重量平均分子量が1000〜2000000である請求項1又は2記載の高分子多孔質膜。
  4. 樹脂粒子(B2)は、フッ化ビニリデン単位を有するフルオロポリマーからなる粒子の存在下に(メタ)アクリル酸エステルを含む単量体をシード重合させて得られる、フッ化ビニリデン単位を有するフルオロポリマーと(メタ)アクリル酸エステル単位を有するアクリルポリマーとを同一粒子内に含有する樹脂粒子である請求項1〜3のいずれかに記載の高分子多孔質膜。
  5. 中空糸膜である請求項1〜4のいずれかに記載の高分子多孔質膜。
  6. 平膜である請求項1〜4のいずれかに記載の高分子多孔質膜。
  7. 水処理用である請求項1〜4のいずれかに記載の高分子多孔質膜。
JP2013195977A 2013-09-20 2013-09-20 高分子多孔質膜及び高分子多孔質膜の製造方法 Pending JP2015058419A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195977A JP2015058419A (ja) 2013-09-20 2013-09-20 高分子多孔質膜及び高分子多孔質膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195977A JP2015058419A (ja) 2013-09-20 2013-09-20 高分子多孔質膜及び高分子多孔質膜の製造方法

Publications (1)

Publication Number Publication Date
JP2015058419A true JP2015058419A (ja) 2015-03-30

Family

ID=52816383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195977A Pending JP2015058419A (ja) 2013-09-20 2013-09-20 高分子多孔質膜及び高分子多孔質膜の製造方法

Country Status (1)

Country Link
JP (1) JP2015058419A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190416A1 (ja) * 2015-05-27 2016-12-01 三菱レイヨン株式会社 多孔質膜
WO2017014130A1 (ja) * 2015-07-23 2017-01-26 昭和電工株式会社 多孔質膜、水処理膜及び多孔質膜の製造方法
CN112334220A (zh) * 2018-06-08 2021-02-05 阿科玛股份有限公司 用于膜的含氟聚合物胶乳涂料
US20220064427A1 (en) * 2020-08-28 2022-03-03 Lawrence Livermore National Security, Llc Actinic and thermal cure fluoropolymers with controlled porosity
WO2022091912A1 (ja) * 2020-10-30 2022-05-05 東邦化学工業株式会社 ビニル系樹脂粒子
CN114984768A (zh) * 2022-06-27 2022-09-02 上海翊科聚合物科技有限公司 一种可用于人工膜肺的中空纤维膜的表面修饰方法
CN115430295A (zh) * 2022-09-07 2022-12-06 上海工程技术大学 一种复合增强型聚丙烯中空纤维微孔膜的制备方法
CN116328556A (zh) * 2023-05-30 2023-06-27 山东招金膜天股份有限公司 纳米催化复合纤维膜及其在Fenton法废水处理中的应用
CN116920634A (zh) * 2023-07-05 2023-10-24 广东宏瑞能源科技股份有限公司 一种聚四氟乙烯微孔膜的亲水改性方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190416A1 (ja) * 2015-05-27 2016-12-01 三菱レイヨン株式会社 多孔質膜
JPWO2016190416A1 (ja) * 2015-05-27 2017-06-08 三菱ケミカル株式会社 多孔質膜
US11033864B2 (en) 2015-05-27 2021-06-15 Mitsubishi Chemical Corporation Porous membrane
WO2017014130A1 (ja) * 2015-07-23 2017-01-26 昭和電工株式会社 多孔質膜、水処理膜及び多孔質膜の製造方法
JPWO2017014130A1 (ja) * 2015-07-23 2018-05-10 昭和電工株式会社 多孔質膜、水処理膜及び多孔質膜の製造方法
CN112334220A (zh) * 2018-06-08 2021-02-05 阿科玛股份有限公司 用于膜的含氟聚合物胶乳涂料
US20220064427A1 (en) * 2020-08-28 2022-03-03 Lawrence Livermore National Security, Llc Actinic and thermal cure fluoropolymers with controlled porosity
WO2022091912A1 (ja) * 2020-10-30 2022-05-05 東邦化学工業株式会社 ビニル系樹脂粒子
CN114984768A (zh) * 2022-06-27 2022-09-02 上海翊科聚合物科技有限公司 一种可用于人工膜肺的中空纤维膜的表面修饰方法
CN115430295A (zh) * 2022-09-07 2022-12-06 上海工程技术大学 一种复合增强型聚丙烯中空纤维微孔膜的制备方法
CN115430295B (zh) * 2022-09-07 2023-11-14 上海工程技术大学 一种复合增强型聚丙烯中空纤维微孔膜的制备方法
CN116328556A (zh) * 2023-05-30 2023-06-27 山东招金膜天股份有限公司 纳米催化复合纤维膜及其在Fenton法废水处理中的应用
CN116920634A (zh) * 2023-07-05 2023-10-24 广东宏瑞能源科技股份有限公司 一种聚四氟乙烯微孔膜的亲水改性方法

Similar Documents

Publication Publication Date Title
JP2015058419A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP7315863B2 (ja) フルオロポリマーの製造方法
JP5861734B2 (ja) 高分子多孔質膜
KR101848218B1 (ko) VDF-코-(TFE 또는 TrFE) 중합체로부터 제조된 물품
JP5664818B1 (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP6075452B2 (ja) 組成物、高分子多孔質膜及び親水化剤
JP6760359B2 (ja) 親水化剤、親水化剤を含む組成物及び高分子多孔質膜
JP5626269B2 (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP7406129B2 (ja) フルオロポリマーの製造方法及びフルオロポリマー
JP7360058B2 (ja) フルオロポリマーの製造方法
JP2015058418A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
US20220275119A1 (en) Method for producing fluoropolymer, polytetrafluoroethylene composition, and polytetrafluoroethylene powder
JP2023158062A (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法、パーフルオロエラストマーの製造方法および組成物
CN113661184A (zh) 含氟聚合物粉末的制造方法
US20220213277A1 (en) Process for producing aqueous fluoropolymer dispersion
JP7472144B2 (ja) 可撓性が高いvdfポリマー
WO2023182229A1 (ja) フルオロポリマーの製造方法および組成物
WO2019016177A1 (en) MEMBRANES COMPRISING FLUORINATED POLYMERS AND THEIR USE
JP2014200702A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP2014200752A (ja) 高分子多孔質膜
JP2014200703A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法