WO2012165503A1 - 親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法 - Google Patents

親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法 Download PDF

Info

Publication number
WO2012165503A1
WO2012165503A1 PCT/JP2012/063983 JP2012063983W WO2012165503A1 WO 2012165503 A1 WO2012165503 A1 WO 2012165503A1 JP 2012063983 W JP2012063983 W JP 2012063983W WO 2012165503 A1 WO2012165503 A1 WO 2012165503A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
porous body
hydrophilic
repeating unit
agent composition
Prior art date
Application number
PCT/JP2012/063983
Other languages
English (en)
French (fr)
Inventor
弘賢 山本
山本 達也
森澤 義富
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2013518136A priority Critical patent/JP5871194B2/ja
Priority to CN201280026986.9A priority patent/CN103582672A/zh
Priority to EP12794044.3A priority patent/EP2716705A4/en
Publication of WO2012165503A1 publication Critical patent/WO2012165503A1/ja
Priority to US14/055,962 priority patent/US20140045956A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/186Monomers containing fluorine with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization

Definitions

  • the present invention relates to a hydrophilizing agent composition used for hydrophilizing various materials such as a porous resin body, a hydrophilizing method using the hydrophilizing agent composition, a hydrophilizing resin porous body, and a method for producing the same.
  • porous resin bodies are used for separation membranes such as filtration membranes and medical filters, and battery separators.
  • the porous resin body is hydrophobic, its affinity with water is low. Therefore, in separation membrane applications used for the treatment of aqueous liquids such as water and aqueous solutions, a technique for hydrophilizing a resin porous body is widely used. Hydrophilicity improves the familiarity with water and improves water permeability. The improvement in water permeability has merits such as an increase in filtration flow rate during liquid passage and a decrease in filtration pressure.
  • Examples of the hydrophilic treatment method for the porous resin body include a method of impregnating a hydrophilic monomer into the porous resin body and graft polymerization (Patent Document 1). A method (Patent Document 2) and the like have been reported.
  • the method of grafting a hydrophilic monomer described in Patent Document 1 cannot avoid the problem of remaining hydrophilic monomer. Since the hydrophilic monomer remaining in the porous resin body causes contamination of the aqueous liquid, it is not suitable as a separation membrane for the aqueous liquid.
  • the hydrophilic polymer described in Patent Document 2 with ultraviolet rays, since the affinity with the hydrophobic resin porous material is low, the hydrophilic polymer is difficult to impregnate into the pores. Since the pores of the porous resin body are blocked, there is a problem that the effect of improving water permeability cannot be obtained sufficiently. Further, the methods described in Patent Documents 1 and 2 also have a problem that a large special device is required.
  • the present invention has been made in view of the above circumstances, and a hydrophilic treatment agent composition capable of efficiently hydrophilizing a resin porous body and imparting excellent water permeability, and the hydrophilic treatment agent composition
  • a hydrophilization method using the method, a method for producing a hydrophilic resin porous body, and a hydrophilization material are provided.
  • the present invention provides a hydrophilizing agent composition, a hydrophilization method, a hydrophilized resin porous body, and a production method thereof having the following configurations [1] to [15].
  • [1] It includes a copolymer having an alternating copolymer ratio of 95% or more of the repeating unit represented by the following formula (1) and the repeating unit represented by the following formula (2), and a solvent.
  • a hydrophilic treatment composition characterized by the above.
  • X and Y are each independently H, F, CF 3 or Cl.
  • Z is OR 1, NHR 2, COOR 3 or SO 3 R 4.
  • R is a single bond, a divalent linking group that may contain an etheric oxygen atom, or a divalent linking group that may contain a ring structure.
  • R 1 to R 4 are each independently H or a monovalent organic group. However, the ratio of the repeating unit in which R 1 is H among the repeating units represented by the formula (2) contained in the copolymer is 50 mol% or more.
  • the R is a single bond, O (CH 2 ) n or (OCH 2 CH 2 ) m (where n is an integer of 2 to 4, and m is an integer of 1 to 4).
  • the hydrophilic treatment composition according to any one of [5].
  • a method for hydrophilizing a material comprising treating a material to be treated with the hydrophilizing agent composition according to any one of [1] to [8].
  • a method for producing a hydrophilic resin porous body comprising impregnating the porous resin body with the hydrophilic treatment agent composition according to any one of [1] to [8] and drying the resin porous body.
  • a hydrophilic treatment agent composition capable of efficiently hydrophilizing the resin porous body and imparting excellent water permeability. Moreover, a hydrophilic resin porous body and a hydrophilic material can be efficiently produced by a hydrophilic method using the hydrophilic treatment composition.
  • the hydrophilic treatment agent composition of the present invention comprises a repeating unit represented by the following formula (1) (hereinafter also referred to as “repeating unit (1)”) and a repeating unit represented by the following formula (2) (
  • a copolymer hereinafter also referred to as “alternating copolymer” having an alternating copolymerization ratio of 95% or more with “repeating unit (2)” is included.
  • X and Y are each independently H, F, CF 3 or Cl.
  • Z is OR 1, NHR 2, COOR 3 or SO 3 R 4.
  • R is a single bond, a divalent linking group that may contain an etheric oxygen atom, or a divalent linking group that may contain a ring structure.
  • R 1 to R 4 are each independently H or a monovalent organic group. However, of the repeating units (2) contained in the alternating copolymer, the proportion of the repeating units in which R 1 to R 4 are H is 50 mol% or more.
  • the repeating unit (1) is a hydrophobic repeating unit.
  • X is H, F, CF 3 or Cl.
  • F is preferable because the hydrophobicity of the repeating unit (1) is increased.
  • One type or two or more types of X present in the alternating copolymer may be used, but one type is preferable in terms of stable production.
  • Y is H, F, CF 3 or Cl. From the viewpoint of increasing the hydrophobicity of the repeating unit (1), F is preferred.
  • Cl is preferable from the point which the heat resistance of an alternating copolymer becomes high.
  • Y present in the alternating copolymer may be one type or two or more types, but one type is preferable in that it can be stably produced.
  • X is preferably F and Y is F or Cl from the viewpoint of easy availability of the monomer.
  • Z is OR 1 , NHR 2 , COOR 3 or SO 3 R 4 , and R 1 to R 4 are each independently H or a monovalent organic group.
  • the proportion of the repeating units in which R 1 to R 4 are H is 50 mol% or more, preferably 70 to 100 mol%, preferably 85 to 100 mol% is particularly preferred.
  • the repeating unit in which R 1 to R 4 are H that is, the repeating unit in which Z is OH, NH 2 , COOH, or SO 3 H is a hydrophilic repeating unit.
  • the repeating unit (2) in which R 1 to R 4 are monovalent organic groups is a repeating unit having a lower hydrophilicity than the repeating unit (2) in which R 1 to R 4 are H. Therefore, by adjusting the ratio (molar ratio) of the repeating unit (2) between the repeating unit in which R 1 to R 4 are H and the repeating unit in which R 1 to R 4 are monovalent organic groups.
  • the hydrophilicity of the alternating copolymer as a whole can be adjusted.
  • the monovalent organic group in R 1 to R 4 is a primary or secondary alkyl group having 1 to 6 carbon atoms which may contain an etheric oxygen atom, or one or more hydrogen atoms of the alkyl group Is preferably a group substituted with a substituent.
  • the alkyl group may be linear, branched or cyclic.
  • functional groups such as a hydroxyl group, an amino group, and a glycidyl group, a fluorine atom, etc. are mentioned.
  • the monovalent organic group in R 1 to R 4 is —CR 5 R 6 R 7 (R 5 , R 6 and R 7 are each independently an alkyl group having 1 to 3 carbon atoms), and 1 carbon atom.
  • Z is preferably OR 1 and particularly preferably OH because the hydrophilicity of the repeating unit (2) is increased.
  • One type or two or more types of Z present in the alternating copolymer may be used, but one type is preferable in terms of stable production.
  • R is a single bond, a divalent linking group that may contain an etheric oxygen atom, or a divalent linking group that may contain a ring structure.
  • the divalent linking group which may contain an etheric oxygen atom is preferably an alkylene group having 1 to 100 carbon atoms or an alkylene group containing 1 to 100 carbon atoms containing an etheric oxygen atom, and has 1 to 50 carbon atoms. More preferably an alkylene group having 1 to 50 carbon atoms containing an etheric oxygen atom, particularly an alkylene group having 1 to 10 carbon atoms or an alkylene group having 1 to 10 carbon atoms containing an etheric oxygen atom. preferable.
  • the divalent linking group that may contain a ring structure is preferably a cyclohexylene group or a cyclohexylene group containing an etheric oxygen atom.
  • R is a single bond, O (CH 2 ) n or (OCH 2 CH 2 ) m from the viewpoint of improving hydrophilicity of the alternating copolymer (where n is an integer of 2 to 4, and m is 1 to It is preferably an integer of 4.
  • the plurality of Rs present in the alternating copolymer may be one type or two or more types, but one type is preferable in that it can be stably produced.
  • the alternating copolymer used in the present invention has a repeating unit (1) wherein X is F and Y is F or Cl, and Z is OR 1 as the repeating unit (2). And R has a single bond, O (CH 2 ) n or (OCH 2 CH 2 ) m (wherein n is an integer of 2 to 4 and m is an integer of 1 to 4).
  • the alternating copolymerization rate of the alternating copolymer is 95% or more. From the viewpoint that the hydrophobic domain and the hydrophilic domain are not unevenly distributed, 95 to 100% is preferable, and 97 to 100% is particularly preferable.
  • the alternating copolymerization ratio of the copolymer is the ratio of the number of combinations in which repeating units based on different monomers are adjacent to the total number of combinations of two adjacent repeating units.
  • a copolymer represented by 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2 (where 1 is a repeating unit (1) and 2 is a repeating unit ( 2).)
  • the number of combinations of two adjacent polymerization units is 10, and the number of combinations of repeating units based on different monomers is 9, so the alternating copolymerization ratio is 90%.
  • a copolymer having an alternating copolymerization ratio of less than 95% (hereinafter also referred to as “random copolymer”) has a high proportion of the repeating unit (1) and a high proportion of the repeating unit (2). There is a portion, and the distribution of hydrophilic groups (OH, NH 2 , COOH or SO 3 H) is biased. Therefore, the random copolymer varies in characteristics (hydrophilicity, hydrophobicity, etc.) depending on the part, and it is considered that the hydrophilization performance is not sufficiently exhibited due to this. On the other hand, in the alternating copolymer having an alternating copolymer ratio of 95% or more, the repeating unit (1) and the repeating unit (2) are arranged almost uniformly.
  • an alternating copolymer having an alternating copolymerization ratio of 95% or more of the repeating unit (1) and the repeating unit (2) in which R 1 is H has a hydrophobic repeating unit and a hydrophilic repeating unit. It has an alternately polymerized structure over almost the entire molecule. Since there is no portion in which hydrophilic repeating units are unevenly distributed, there is no portion with extremely low affinity with the resin porous body, the affinity with the resin porous body of the whole molecule is increased, and during hydrophilic treatment The impregnation property to the resin porous body is high.
  • the alternating copolymerization ratio of the copolymer is determined from the polymerization reactivity ratio of a plurality of types of monomers used for the synthesis of the copolymer. When the polymerization reactivity of each monomer is low and close, the alternating copolymerization ratio is improved.
  • the alternating copolymer is preferably composed of only the repeating unit (1) and the repeating unit (2), but other than the repeating unit (1) and the repeating unit (2) as long as the effects of the present invention are not impaired.
  • the repeating unit (3) may be included.
  • Examples of the repeating unit (3) include vinyl ethers to which an alkyl group is bonded in order to increase the toughness of the alternating copolymer.
  • the ratio of the repeating unit (3) is preferably 0 to 5 mol%, particularly preferably 0 to 2 mol%, based on all repeating units of the alternating copolymer.
  • the number average molecular weight (Mn) of the alternating copolymer is preferably 3,000 to 500,000, more preferably 5,000 to 300,000, and particularly preferably 10,000 to 300,000.
  • Mn number average molecular weight
  • the molecular weight distribution (Mw / Mn) of the alternating copolymer is preferably 1 to 5, particularly preferably 1 to 3. If it is the said range, productivity will improve and the improvement of the intensity
  • Mw represents a weight average molecular weight.
  • the content of the alternating copolymer is preferably 0.01 to 10% by mass, preferably 0.05 to 5% by mass, based on the total mass of the hydrophilic treatment agent composition. More preferred is 1 to 5% by mass.
  • the method for producing the copolymer of the present invention is selected from known methods except that monomers having low and close polymerization reactivity are used as monomers for forming the repeating units (1) and (2). it can. Examples of the method include the following methods (i) and (ii). (I) A method of copolymerizing a monomer that forms a repeating unit (1) upon polymerization and a monomer that forms a repeating unit (2).
  • copolymer (A) in case Z is OR 1 is described.
  • the manufacturing method of this embodiment has the following polymerization process and deprotection process.
  • Deprotection step a step of generating a hydroxyl group by substituting R 9 of the polymerization unit based on vinyl ether (4) in the copolymer obtained in the polymerization step with a hydrogen atom.
  • CF 2 CXY (3)
  • CH 2 CHOR 9 (4)
  • X and Y are each independently H, F, CF 3 or Cl.
  • R 9 is a protecting group substituted by a hydrogen atom by a deprotection reaction. .
  • the production method of the present embodiment comprises a fluorine-containing olefin / vinyl ether copolymer (hereinafter referred to as “copolymer”) having a repeating unit based on the fluorine-containing olefin (3) and a repeating unit based on the vinyl ether (4) in the polymerization step.
  • (B) ) is obtained, and then R 9 of the repeating unit based on vinyl ether (4) in copolymer (B) is replaced with a hydrogen atom by a deprotection reaction, whereby the repeating unit based on fluorine-containing olefin is obtained.
  • a copolymer (A) having a repeating unit based on vinyl alcohol.
  • a copolymer having a repeating unit based on the fluorine-containing olefin (3) and a repeating unit based on the vinyl ether (4) by copolymerizing the fluorine-containing olefin (3) and the vinyl ether (4) (B )
  • the fluorine-containing olefin (3) and the vinyl ether (4) have high alternating copolymerizability.
  • the alternating copolymerization ratio (the alternating copolymerization ratio of the repeating unit based on the fluorinated olefin (3) and the repeating unit based on the vinyl ether (4)) of the copolymer (B) obtained is a copolymerization of both monomers.
  • the probability is calculated from the reactivity ratio and is 95% or more.
  • the alternating copolymerization ratio of the copolymer (B) is 95% or more
  • the alternating copolymerization ratio of the copolymer (A) obtained from the copolymer (B) in the next deprotection step fluorinated olefin ( The alternating copolymerization ratio of the repeating unit based on 3) and the repeating unit based on vinyl alcohol is also 95% or more.
  • fluorinated olefin (3) examples include tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene and the like. Of these, tetrafluoroethylene or chlorotrifluoroethylene is preferable and tetrafluoroethylene is particularly preferable from the viewpoint of excellent heat resistance.
  • a fluorine-containing olefin (3) may be used individually by 1 type, and may use 2 or more types together.
  • Vinyl ether (4) is a compound in which the hydrogen atom of the hydroxyl group of vinyl alcohol is substituted with R 9 .
  • R 9 is a protecting group that protects a hydroxyl group as an ether, and is a group that is substituted with a hydrogen atom by a deprotection reaction performed in the next deprotection step. When R 9 is replaced with a hydrogen atom by a deprotection reaction, a hydroxyl group is formed.
  • R 9 a protecting group usually used in the field of organic chemistry can be used.
  • —CR 5 R 6 R 7 (R 5 , R 6 and R 7 each independently has 1 to An alkoxymethyl group having 1 to 6 carbon atoms, a tetrahydrofuryl group, a tetrahydropyranyl group, or —Si (R 8 ) 3 (R 8 is an alkyl group having 1 to 6 carbon atoms or an aryl group)
  • R 8 is an alkyl group having 1 to 6 carbon atoms or an aryl group
  • t-butyl vinyl ether 1,1-dimethylpropyl vinyl ether, methoxymethyl vinyl ether, tetrahydrofuryl vinyl ether, tetrahydropyranyl vinyl ether, vinyloxytrimethylsilane, or vinyloxydimethylphenylsilane is preferable. Therefore, t-butyl vinyl ether is particularly preferable.
  • a vinyl ether (4) may be used individually by 1 type, and may use 2 or more types together.
  • a vinyl ether (5) represented by the following formula (5) may be further copolymerized.
  • CH 2 CHOR 10 (5) (Wherein in the formula (5), R 10 is a group which does not deprotected under reaction conditions wherein R 9 is deprotection reaction.)
  • Vinyl ether (5) is a compound in which a hydrogen atom of the hydroxyl group of vinyl alcohol is substituted with R 10.
  • R 10 is a group that does not undergo a deprotection reaction under the reaction conditions under which R 9 undergoes a deprotection reaction, that is, a group that does not undergo a deprotection reaction in the deprotection step.
  • R 9 of the repeating unit based on the vinyl ether (4) is replaced with a hydrogen atom by a deprotection reaction. Under the reaction conditions at this time, R 10 does not undergo the deprotection reaction, and the vinyl ether (5) The repeating unit based on is maintained as it is.
  • the copolymer (B) is based on the repeating unit based on the fluorinated olefin (3), the repeating unit based on the vinyl ether (4), and the vinyl ether (5).
  • a copolymer having a repeating unit is obtained, and then a deprotection step is performed, so that a repeating unit based on the fluorinated olefin (3), a repeating unit based on vinyl alcohol, and a vinyl ether (5) are obtained as the copolymer (A).
  • a copolymer having a repeating unit based on is obtained.
  • R 10 may be a group that undergoes a deprotection reaction as long as the conditions are other than the reaction conditions for substituting R 9 with a hydrogen atom by a deprotection reaction.
  • R 10 in the vinyl ether (5) is a primary or secondary alkyl group having 1 to 6 carbon atoms which may contain an etheric oxygen atom, or one or more hydrogen atoms of the alkyl group is a substituent. Substituted groups are preferred.
  • the alkyl group may be linear, branched or cyclic.
  • functional groups such as a hydroxyl group, an amino group, and a glycidyl group, a fluorine atom, etc. are mentioned.
  • vinyl ether (5) include alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether; functional groups such as hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, aminopropyl vinyl ether and glycidyl vinyl ether Vinyl ether; fluorine-containing vinyl ether such as heptafluoropentyl vinyl ether.
  • alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether
  • functional groups such as hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, aminopropyl vinyl ether and glycidyl vinyl ether Vinyl ether
  • fluorine-containing vinyl ether such as heptafluoropentyl vinyl ether.
  • the ratio of the repeating unit based on vinyl alcohol in the copolymer (A) after the deprotection step can be adjusted by adjusting the ratio of vinyl ether (4) to vinyl ether (5).
  • the hydrophilicity of a copolymer (A) can be adjusted by adjusting the quantity of the hydroxyl group in a copolymer (A).
  • the copolymer (B) is obtained by radical polymerization of the fluorine-containing olefin (3), the vinyl ether (4), and the vinyl ether (5) used as necessary.
  • the monomers having a vinyl ether group may cause isomerization, decomposition or homocation polymerization under acidic conditions. Therefore, from the viewpoint of allowing the polymerization to proceed stably, radical polymerization is preferably performed under basic conditions, and the pH is particularly preferably 8-9.
  • a method for adjusting the pH in the polymerization to basic conditions a method of adding potassium carbonate, ammonium carbonate or the like to the polymerization medium is preferable.
  • the pH is a pH at room temperature (20 to 25 ° C.).
  • the molar ratio of fluorine-containing olefin (3) and vinyl ether (4) used for copolymerization is 40/60 to 60/40. Is preferred, 45/55 to 55/45 is more preferred, and 50/50 is particularly preferred.
  • the molar ratio (fluorinated olefin (3) / vinyl ether (4)) is within the above range, an alternating copolymer in which the fluorinated olefin (3) and the vinyl ether (4) are alternately copolymerized is easily obtained. .
  • the total molar ratio of fluorine-containing olefin (3) used for copolymerization to vinyl ether (4) and vinyl ether (5) is preferably 40/60 to 60/40, more preferably 45/55 to 55/45, and particularly preferably 50/50.
  • the molar ratio (fluorinated olefin (3) / (vinyl ether (4) + vinyl ether (5))) is within the above range, the fluorinated olefin (3) and the vinyl ether (4) or vinyl ether (5) It is easy to obtain an alternating copolymer copolymerized alternately.
  • the molar ratio of vinyl ether (4) to vinyl ether (5) is preferably 45/5 to 25/25, preferably 40/10 to 25/25 is particularly preferred.
  • radical polymerization initiator examples include a radical polymerization initiator or ionizing radiation.
  • a radical polymerization initiator a water-soluble initiator or an oil-soluble initiator can be appropriately used depending on the polymerization type or the polymerization medium.
  • water-soluble initiator examples include a redox initiator comprising a combination of a persulfate such as ammonium persulfate and a reducing agent such as hydrogen peroxide, sodium hydrogen sulfite, and sodium thiosulfate;
  • a persulfate such as ammonium persulfate
  • a reducing agent such as hydrogen peroxide, sodium hydrogen sulfite, and sodium thiosulfate
  • organic initiators such as salts.
  • oil-soluble initiators include peroxyester type peroxides such as t-butyl peroxyacetate and t-butyl peroxypivalate; dialkyl peroxydicarbonates such as diisopropyl peroxydicarbonate; benzoyl peroxide; azobis Examples include isobutyl nitrile.
  • t-butyl peroxypivalate is preferable from the viewpoint of easy handling.
  • a radical polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
  • the amount of radical polymerization initiator used can be appropriately changed according to the type, polymerization conditions, etc., and is preferably 0.005 to 5% by mass, preferably 0.05 to 0%, based on the total amount of monomers used for copolymerization. .5% by mass is particularly preferred.
  • the copolymerization format is not particularly limited, and bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization and the like can be employed. Among these, solution polymerization using an aromatic compound such as xylene and toluene, alcohols such as t-butyl alcohol, esters, fluorochlorocarbons and the like as a polymerization medium is preferable.
  • the amount of the polymerization medium is preferably 10 to 200% by mass, particularly preferably 50 to 100% by mass, based on the total amount of monomers used for copolymerization.
  • the copolymerization method may be any of batch, continuous and semi-continuous methods.
  • the copolymerization temperature can be appropriately selected depending on the radical polymerization initiation source, the polymerization medium, etc., is preferably ⁇ 30 to 150 ° C., more preferably 0 to 100 ° C., and particularly preferably 20 to 70 ° C.
  • the copolymerization pressure can be appropriately selected according to the radical polymerization initiation source, the polymerization medium, and the like, preferably 0.1 to 10 MPa, and particularly preferably 0.2 to 2 MPa.
  • the copolymerization time is preferably 4 to 24 hours, particularly preferably 6 to 12 hours.
  • the molecular weight of the copolymer (B) can be adjusted by controlling the ratio of the monomer to the polymerization medium or by employing a chain transfer agent.
  • the number average molecular weight (Mn) of the copolymer (B) is preferably 3,000 to 500,000, more preferably 5,000 to 300,000, as in the case of the alternating copolymer. 000 is particularly preferred.
  • the molecular weight distribution (Mw / Mn) of the copolymer (B) is preferably 1 to 5, and more preferably 1 to 3, as in the case of the alternating copolymer.
  • copolymer (B) contains a repeating unit based on the vinyl ether (5)
  • R 10 of the repeating unit based on the vinyl ether (5) is maintained as it is without deprotection.
  • a copolymer (A) having a polymerization unit based on (3), a polymerization unit based on vinyl alcohol, and a polymerization unit based on vinyl ether (5) (a copolymer in which OH and OR 10 are present as Z) is obtained.
  • R 9 in the monomer based on the vinyl ether (4) of the copolymer (B) with a hydrogen atom by a deprotection reaction As a method of substituting R 9 in the monomer based on the vinyl ether (4) of the copolymer (B) with a hydrogen atom by a deprotection reaction, the deprotection of the protected alcohol by acid, heat or light is generally performed. A protective reaction can be employed. Of these, from the viewpoint of easily suppressing the resulting copolymer (A) is colored, it is preferred to substitute an R 9 represents a hydrogen atom with an acid.
  • the acid used for the deprotection reaction include inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid, butyric acid and trifluoroacetic acid.
  • the deprotection reaction with acid includes (I) deprotection reaction in a mixed solution of sulfuric acid / ethanol / water, (II) deprotection reaction in a mixed solution of hydrochloric acid / dioxane, (III) trifluoroacetic acid / methylene chloride.
  • the deprotection reaction with an acid is not limited to the reaction systems (I) to (III) described above, and may be performed in an aqueous system or a non-aqueous system.
  • Examples of the photoacid generator include onium salts, halogen-containing compounds, diazoketone compounds, sulfone compounds, and sulfonic acid compounds. Specific examples include diphenyliodonium triflate, triphenylsulfonium triflate, phenyl-bis (trichloromethyl) -s-triazine, methoxyphenyl-bis (trichloromethyl) -s-triazine, 4-trisphenacylsulfone, 1, And 8-naphthalenedicarboxylic acid imide triflate.
  • the deprotection reaction may be terminated halfway before all the protective groups of the copolymer (B) are deprotected.
  • a copolymer (A) having a repeating unit based on the fluorinated olefin (3), a repeating unit based on the vinyl ether (4), and a repeating unit based on vinyl alcohol (OH and OR 9 are present as Z).
  • copolymer (B) contains a repeating unit based on the vinyl ether (5)
  • the polymerization unit based on the fluorinated olefin (3) and the vinyl ether (4) are obtained by terminating the deprotection reaction halfway.
  • a copolymer (A) (a copolymer in which OH, OR 9 and OR 10 are present as Z) having a repeating unit based on the above, a polymer unit based on vinyl alcohol, and a polymer unit based on vinyl ether (5) is obtained. .
  • the deprotection reaction is terminated halfway, the ratio of the repeating unit based on vinyl ether (4) and the repeating unit based on vinyl alcohol, or the repeating unit based on vinyl ether (4) and the repeating unit based on vinyl alcohol
  • the hydrophilicity, crystallinity, and the like of the resulting copolymer (A) can be adjusted by adjusting the ratio of the repeating unit based on vinyl ether (5).
  • the fluorine-containing olefin and vinyl acetate are randomly copolymerized, and the resulting fluorine-containing olefin / vinyl acetate copolymer is based on the fluorine-containing olefin.
  • the fluorine-containing olefin / vinyl alcohol copolymer obtained from the fluorine-containing olefin / vinyl acetate copolymer also has a high proportion of repeating units based on the fluorine-containing olefin and a proportion of repeating units based on the vinyl alcohol. There is a high part and the distribution of hydroxyl groups is biased. For this reason, the fluorine-containing olefin / vinyl alcohol copolymer has a variation in characteristics depending on the part, which is considered to have deteriorated the impregnation property and water permeability of the resin porous body.
  • the fluorine-containing olefin (3) and the vinyl ether (4) or the vinyl ether (5) are polymerized substantially alternately. Evenly distributed. Therefore, since the hydroxyl group is not concentrated at a specific location, the hydrophilicity of a specific portion of the polymer chain can be suppressed from becoming extremely high, and the copolymer (A) can be impregnated into a porous resin body and has excellent water permeability. It is thought to express sex.
  • the etheric oxygen atom of vinyl ether (4) is more likely to be protonated (protonated) than the acetate group of vinyl acetate. It is presumed that.
  • the solvent is preferably a solvent that dissolves or disperses the alternating copolymer, and particularly preferably a solvent that dissolves the alternating copolymer.
  • the solvent alcohols, ketones, esters, and water are preferable.
  • alcohols include alcohols having 1 to 10 carbon atoms, and methanol or ethanol is preferable.
  • methanol is preferable.
  • the ketones include alkyl ketones having 2 to 10 carbon atoms.
  • the esters include esters having 2 to 10 carbon atoms that may contain an etheric oxygen atom.
  • the solvent preferably contains at least alcohol, more preferably contains alcohol in a proportion of 70% by mass or more, more preferably consists only of alcohol, and particularly preferably consists only of methanol.
  • the alternating copolymer used in the present invention has an alternating copolymerization ratio of 95% or more, and the repeating unit (1) and the repeating unit (2) are alternately polymerized almost entirely. Even in the case of using only this, it can be sufficiently dissolved. When only methanol is used as the solvent, the impregnation property into the resin porous body is particularly good.
  • the boiling point of the solvent is preferably 40 to 150 ° C at normal pressure, more preferably 40 to 100 ° C, and particularly preferably 40 to 80 ° C. Within the above range, the temperature at which the solvent is dried can be lowered, and the load on the material can be reduced. Only 1 type may be used for a solvent and the mixed solvent which mixed 2 or more types may be used. From the viewpoint of quality stabilization, it is preferable to use only one kind.
  • the solvent is preferably contained in the hydrophilizing agent composition in an amount of 70 to 99.9% by mass, more preferably 80 to 99.9% by mass, and particularly preferably 90 to 99.9% by mass.
  • the hydrophilic treatment agent composition may contain other compounds in addition to the copolymer and the solvent.
  • examples of other compounds include surfactants and antioxidants.
  • the other compound is preferably contained in the hydrophilization composition in an amount of 0.01 to 5% by mass, more preferably 0.03 to 3% by mass, and particularly preferably 0.05 to 2% by mass. .
  • the hydrophilization treatment agent composition of the present invention is used for hydrophilization of a hydrophobic material.
  • the “material having hydrophobicity” refers to a material having higher hydrophobicity than the alternating copolymer contained in the hydrophilic treatment agent composition. Whether the material is more hydrophobic than the alternating copolymer can be confirmed by measuring the water contact angle of the material.
  • the hydrophobic material (material to be treated) that is hydrophilized with the hydrophilizing composition of the present invention and the hydrophilization method will be described below as the hydrophilization method of the present invention.
  • the hydrophilic treatment agent composition of the present invention can also be used as a primer (primer paint). By using the hydrophilic treatment agent composition of the present invention as a primer, a resin (for example, polyvinyl alcohol) that cannot be directly applied to the original material to be treated can be coated thereon.
  • the hydrophilization method of the present invention is characterized in that a material to be treated is treated with the hydrophilizing agent composition of the present invention.
  • the material to be treated is not particularly limited as long as it is more hydrophobic than the alternating copolymer contained in the hydrophilic treatment composition.
  • the material of the material to be processed may be an organic substance such as a resin, or an inorganic substance such as glass or ceramics. Among these, a resin is preferable because it is difficult to break. Although it does not specifically limit as this resin, A polyimide, polysulfone, or a fluorine-containing resin is preferable from the point that hydrophobicity and heat resistance are high.
  • a fluorine-containing resin is particularly preferable because of its high hydrophobicity.
  • the fluorine-containing resin will be described in detail later.
  • the form of the material to be treated is not particularly limited, and examples thereof include a film, a tube, a tape, and a fabric. These may have a hollow structure.
  • the film may be further processed to have a disk shape or a cartridge shape.
  • the material to be treated may be a porous body or a non-porous body, but a porous body is preferable from the viewpoint of the usefulness of the present invention.
  • a porous body is a molded body having pores. Since the hydrophilic treatment composition of the present invention contains a solvent together with a copolymer, it can be impregnated to the inside of the pores of the porous body to make the surface of the pores hydrophilic. Such a porous body is excellent in water permeability and is useful for applications such as a separation membrane of an aqueous liquid.
  • the porosity of the porous body is preferably 15 to 95%, particularly preferably 75 to 95%.
  • the pore diameter of the porous body is preferably 0.02 to 30 ⁇ m.
  • the porosity of the porous body is a value calculated from the measured density of the material and the true density of the material.
  • the pore diameter of the porous body is a value measured by observation with an electron microscope, a bubble point method, or the
  • a well-known method can be used for the process of the to-be-processed material using a hydrophilic treatment agent composition.
  • a hydrophilic treatment agent composition contact a to-be-processed material, and making it dry is mentioned.
  • the hydrophilic treatment agent composition of the present invention is brought into contact with the material to be treated, the contact surface is coated with the hydrophilic treatment agent composition.
  • the copolymer adheres to the contact surface to form a hydrophilic layer, and the hydrophilicity is improved.
  • the material to be treated is a porous body and the porous body is impregnated with the hydrophilic treatment agent composition, not only the outer surface of the porous body but also the surface of the internal pores are hydrophilized.
  • Examples of the method of bringing the hydrophilic treatment agent composition into contact with the material to be treated include a method of applying the hydrophilic treatment agent composition to the material, a method of impregnating the hydrophilic treatment agent composition into the material, and the like. It is selected according to.
  • coating to the to-be-processed material of a hydrophilic treatment agent composition can be performed by well-known methods, such as a spin coat method, a bar coat method, a casting method, and a spray method.
  • the impregnation of the hydrophilic treatment agent composition into the porous resin body can be performed by a known method such as spraying, dipping, press-fitting, or suction. Immersion is preferred in terms of process simplicity.
  • Drying is performed to remove the solvent contained in the hydrophilic treatment agent composition.
  • the drying method is not particularly limited, and a known method can be used. From the viewpoint of simplicity of the process, a method in which the porous resin body impregnated with the hydrophilizing agent composition is fixed to a pin frame and air-dried or heated in air at normal pressure or reduced pressure is preferable.
  • the heating temperature is preferably 40 to 150 ° C., and the heating time is preferably 10 minutes to 3 hours.
  • the hydrophilization treatment composition is brought into contact with the material to be treated and dried by simply treating the material to be treated, such as a porous resin body, with high hydrophilization performance. Can be granted.
  • the hydrophilizing material of the present invention is obtained by hydrophilizing the material to be treated with the hydrophilizing agent composition of the present invention.
  • the material to be treated include the same materials as those described in the description of the hydrophilization method.
  • a resin porous body is preferable, and a fluororesin porous body is particularly preferable. That is, the hydrophilic material is preferably a hydrophilic resin porous body, and particularly preferably a hydrophilic fluororesin porous body.
  • the hydrophilic material of the present invention, particularly the hydrophilic resin porous body is useful as an aqueous liquid separation membrane.
  • the aqueous liquid means an aqueous solution containing water as a main component in a solvent, and examples thereof include water and sewage, rainwater, drainage, body fluid, chemicals, drinking water, juice, and liquor.
  • examples of the aqueous liquid separation membrane include a filtration membrane and a medical filter.
  • the use of the hydrophilic material of the present invention is not limited to the separation membrane, and can be used for other uses such as battery separators and primers.
  • the resin porous body is preferably impregnated with the hydrophilic treatment agent composition of the present invention and dried.
  • the preferable conditions of the impregnation to the resin porous body of a hydrophilic treatment agent composition and drying are as above-mentioned.
  • a resin porous body is a porous body comprised from resin.
  • the resin porous body is composed of a resin having higher hydrophobicity than the alternating copolymer contained in the hydrophilic treatment agent composition.
  • a polyimide, polyamide, polysulfone, or a fluorine-containing resin is preferable from the point that hydrophobicity and heat resistance are high.
  • a fluorine-containing resin is particularly preferable because of its high hydrophobicity.
  • fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-hexafluoropropylene.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • EPE tetrafluoroethylene-hexafluoropropylene copolymer
  • EPE tetrafluoroethylene-ethylene copolymer
  • EFE tetrafluoroethylene-ethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE chlorotrifluoroethylene-ethylene copolymer
  • PVDF
  • the copolymer composition of the copolymer obtained in each example was calculated from the measurement results of 1 H NMR (nuclear magnetic resonance) spectrum and 19 F NMR spectrum of the obtained copolymer.
  • tetrafluoroethylene hereinafter also referred to as “TFE”
  • TFE tetrafluoroethylene
  • the pressure at this time point was 1.62 MPa.
  • the reaction was continued for 8 hours.
  • the pressure dropped to 0.86 MPa the autoclave was cooled with water, and the reaction was stopped by purging (purging out) unreacted gas.
  • the obtained polymerization solution was put into methanol, and the produced copolymer was precipitated, followed by vacuum drying to obtain a copolymer (B1) as a solid.
  • the yield of the copolymer (B1) was 121 g, and the yield was 54%.
  • copolymer (B2) was a solid.
  • the yield of copolymer (B2) was 110 g, and the yield was 45%.
  • the alternating copolymerization ratio of the copolymer (B2) was 80 to 85% as calculated from the copolymerization reactivity ratio of TFE and VAc.
  • Example 1 1 g of the copolymer (A1) obtained in Synthesis Example 1 was dissolved in 99 g of methanol (moisture content of 271 ppm) to prepare a hydrophilizing agent composition.
  • a PTFE porous membrane manufactured by Advantech, product name: T-100A-047A, porosity 79%, pore diameter 1.0 ⁇ m
  • the mass of the obtained hydrophilic PTFE porous membrane was measured, it was increased by 2.6% with respect to the mass of the original PTFE porous membrane.
  • Example 2 A hydrophilic PTFE porous membrane was obtained in the same manner as in Example 1 except that the copolymer (A3) was used instead of the copolymer (A1).
  • the mass of the obtained hydrophilic PTFE porous membrane was measured, it was increased by 3.7% with respect to the mass of the original PTFE porous membrane.
  • the water-permeable PTFE membrane thus obtained was subjected to a water permeability test at a pressure difference of 0.15 MPa, the filtration flux of ion-exchanged water was 7.7 g / (cm 2 ⁇ min).
  • Example 3 A hydrophilic PTFE porous membrane was obtained in the same manner as in Example 1 except that the copolymer (A4) was used instead of the copolymer (A1).
  • the mass of the obtained hydrophilic PTFE porous membrane was measured, it was increased by 4.0% with respect to the mass of the original PTFE porous membrane.
  • the water-permeable test was conducted at a pressure difference of 0.15 MPa on the obtained hydrophilic PTFE porous membrane, the filtration flux of ion-exchanged water was 7.6 g / (cm 2 ⁇ min).
  • Example 4 A hydrophilic PTFE porous membrane was obtained in the same manner as in Example 1 except that the copolymer (A5) was used instead of the copolymer (A1). When the mass of the obtained hydrophilic PTFE porous membrane was measured, it was increased by 3.3% with respect to the mass of the original PTFE porous membrane. In addition, when the water-permeable PTFE membrane obtained was subjected to a water permeability test at a pressure difference of 0.15 MPa, the filtration flux of ion-exchanged water was 21.9 g / (cm 2 ⁇ min).
  • Example 1 A hydrophilic PTFE porous membrane was obtained in the same manner as in Example 1 except that the copolymer (A2) was used instead of the copolymer (A1).
  • the mass of the obtained hydrophilic PTFE porous membrane was measured, it was increased by 4.3% with respect to the mass of the original PTFE porous membrane.
  • the water-permeable test was performed at a pressure difference of 0.15 MPa on the obtained hydrophilic PTFE porous membrane, the filtration flux of ion-exchanged water was 1.7 g / (cm 2 ⁇ min).
  • Example 2 A hydrophilic PTFE porous membrane was obtained in the same manner as in Example 1 except that methanol (moisture content of 271 ppm) was used instead of the hydrophilic treatment agent composition. When the obtained PTFE porous membrane was subjected to a water permeability test at a pressure difference of 0.15 MPa, the ion exchange water did not permeate.
  • Examples 1 to 4 using a methanol solution of a copolymer (A1) having an alternating copolymerization ratio of the repeating unit (1) and the repeating unit (2) of 95% or more as the hydrophilizing agent composition are ion exchanges.
  • the water filtration flux was good. That is, the hydrophilic property of the PTFE porous membrane was improved, and the membrane was easy to pass water.
  • Comparative Example 1 using a methanol solution of the copolymer (A2) having an alternating copolymerization ratio of the repeating unit (1) and the repeating unit (2) of less than 95% as the hydrophilizing agent composition was hydrophilized.
  • the treatment agent composition was sufficiently impregnated and the weight of the PTFE porous membrane increased, the filtration flux of ion-exchanged water was about 60% less than that in Example 1. That is, it was a film that was difficult for water to pass through.
  • the membrane obtained in Comparative Example 2 using methanol instead of the hydrophilic treatment composition did not allow water to pass through at all.
  • the hydrophilic treatment composition of the present invention By simply treating a material to be treated such as a porous resin body with the hydrophilic treatment composition of the present invention, high hydrophilic performance can be efficiently imparted to the material to be treated.
  • a resin porous body is used as the material to be treated, the obtained hydrophilic resin porous body has high water permeability and is useful as a separation membrane for aqueous liquids.
  • it can be used as a filtration membrane or a medical filter. Is possible.
  • it can use as the separator for batteries using the provided hydrophilic property.
  • the hydrophilic treatment agent composition of the present invention is used as a primer, it is industrially useful, for example, a resin that could not be applied to the original porous resin body can be coated thereon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 樹脂多孔質体を効率的に親水化でき、優れた透水性を付与することができる親水化処理剤組成物、該親水化処理剤組成物を用いた親水化方法、親水化樹脂多孔体の製造方法および親水化材料の提供。 下式(1)で表される繰り返し単位と下式(2)で表される繰り返し単位との交互共重合体率が95%以上である共重合体と、溶媒とを含む親水化処理剤組成物。式(1)中、XおよびYは、それぞれ独立にH、F、CFまたはClである。式(2)中、ZはOR、NHR、COORまたはSOである。Rは単結合、エーテル性酸素原子を含んでもよい2価の連結基、または環構造を含んでもよい2価の連結基である。R~Rは、それぞれ独立にHまたは1価の有機基である。ただし、前記共重合体に含まれる式(2)で表される繰り返し単位のうち、R~RがHである繰り返し単位の割合は50モル%以上である。

Description

親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法
 本発明は、樹脂多孔体等の各種材料の親水化に用いられる親水化処理剤組成物、該親水化処理剤組成物を用いた親水化方法、親水化樹脂多孔体およびその製造方法に関する。
 従来、濾過膜、医療用フィルタ等の分離膜や電池セパレータに樹脂多孔体が用いられている。一般に樹脂多孔体は疎水性である為、水との親和性が低い。そこで、水、水溶液等の水系液体の処理に用いられる分離膜用途においては、樹脂多孔体を親水化する技術が広く用いられている。親水化により水とのなじみが良くなり、透水性が向上する。透水性の向上は、通液時の濾過流速の増大、濾過圧力の低下等のメリットがある。
 樹脂多孔体の親水化処理方法としては、たとえば、親水性モノマーを樹脂多孔体の中に含浸させ、グラフト重合する方法(特許文献1)、親水性ポリマーを含浸後、紫外線により架橋し固定化する方法(特許文献2)等が報告されている。
特開平5-131124号公報 特公平7-119316号公報
 しかし、特許文献1に記載の親水性モノマーのグラフト重合を行う方法では、親水性モノマーの残存の問題が避けられない。樹脂多孔体に残存する親水性モノマーは水系液体の汚染の原因となるため、水系液体の分離膜としては適していない。
 特許文献2に記載の親水性ポリマーを紫外線で架橋する方法では、疎水性である樹脂多孔体との親和性が低いため親水性ポリマーが細孔内にまで含浸しにくく、含浸したとしても架橋により樹脂多孔体の細孔が閉塞するため、透水性の向上効果が充分に得られない問題がある。
 さらに、特許文献1および2に記載の方法は、いずれも大型の特殊な装置を要するという問題もある。
 本発明は、上記事情に鑑みなされたものであり、樹脂多孔質体を効率的に親水化でき、優れた透水性を付与することができる親水化処理剤組成物、該親水化処理剤組成物を用いた親水化方法、親水化樹脂多孔体の製造方法および親水化材料を提供する。
 本発明は、以下の[1]~[15]の構成を有する親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法を提供する。
 [1]下式(1)で表される繰り返し単位と下式(2)で表される繰り返し単位との交互共重合体率が95%以上である共重合体と、溶媒とを含むことを特徴とする親水化処理剤組成物。
Figure JPOXMLDOC01-appb-C000002
 前記式(1)中、XおよびYは、それぞれ独立にH、F、CFまたはClである。
 前記式(2)中、ZはOR、NHR、COORまたはSOである。Rは単結合、エーテル性酸素原子を含んでもよい2価の連結基、または環構造を含んでもよい2価の連結基である。R~Rは、それぞれ独立にHまたは1価の有機基である。
 ただし、前記共重合体に含まれる前記式(2)で表される繰り返し単位のうち、前記RがHである繰り返し単位の割合は50モル%以上である。
 [2]前記交互共重合体の含有量が、親水化処理剤組成物の総質量に対して、0.01~10質量%である、前記[1]に記載の親水化処理剤組成物。
 [3]前記交互共重合体の数平均分子量が、3,000~500,000であり、分子量分布(Mw/Mn)が1~5である前記[1]または[2]に記載の親水化処理剤組成物。
 [4]前記XがFであり、前記YがFまたはClである、前記[1]~[3]のいずれかに記載の親水化処理剤組成物。
 [5]前記ZがORである、前記[1]~[4]のいずれかに記載の親水化処理剤組成物。
 [6]前記Rが単結合、O(CHまたは(OCHCHである(ただしnは2~4の整数であり、mは1~4の整数である。)、前記[1]~[5]のいずれかに記載の親水化処理剤組成物。
 [7]親水化処理剤組成物中の溶媒の量が70~99.9質量%である前記[1]~[6]のいずれかに記載の親水化処理剤組成物。
 [8]前記溶媒がアルコール類を70質量%以上の割合で含む、前記[7]に記載の親水化処理剤組成物。
 [9]前記[1]~[8]のいずれかに記載の親水化処理剤組成物を用いて被処理材料を処理することを特徴とする、材料の親水化方法。
 [10]前記[1]~[8]のいずれかに記載の親水化処理剤組成物を、樹脂多孔体に含浸させ、乾燥させることを特徴とする、親水化樹脂多孔体の製造方法。
 [11]前記樹脂多孔体を構成する樹脂が含フッ素樹脂である、前記[10]に記載の親水化樹脂多孔体の製造方法。
 [12]前記含フッ素樹脂がポリテトラフルオロエチレンまたはポリフッ化ビニリデンである、前記[11]に記載の親水化樹脂多孔体の製造方法。
 [13]前記[1]~[8]のいずれかに記載の親水化処理剤組成物で被処理材料を親水化してなる親水化材料。
 [14]前記被処理材料が樹脂多孔体であり、該樹脂多孔体を構成する樹脂が含フッ素樹脂である、前記[13]に記載の親水化材料。
 [15]水系液体の分離膜用である、前記[13]または[14]に記載の親水化材料。
 本発明によれば、樹脂多孔質体を効率的に親水化でき、優れた透水性を付与することが可能な親水化処理剤組成物を提供できる。また、該親水化処理剤組成物を用いた親水化方法により親水化樹脂多孔体および親水化材料を効率的に製造できる。
合成例1における共重合体(B1)の13C NMRチャート(A)、および共重合体(A1)の13C NMRチャート(B)である。 合成例1における共重合体(B1)のIRチャート(A)、および共重合体(A1)のIRチャート(B)である。
[親水化処理剤組成物]
(共重合体)
 本発明の親水化処理剤組成物は、下式(1)で表される繰り返し単位(以下、「繰り返し単位(1)」ともいう。)と、下式(2)で表される繰り返し単位(以下、「繰り返し単位(2)」ともいう。)との交互共重合比率が95%以上の共重合体(以下、「交互共重合体」ともいう。)を含む。
Figure JPOXMLDOC01-appb-C000003
 前記式(1)中、XおよびYは、それぞれ独立にH、F、CFまたはClである。
 前記式(2)中、ZはOR、NHR、COORまたはSOである。Rは単結合、エーテル性酸素原子を含んでもよい2価の連結基、または環構造を含んでもよい2価の連結基である。R~Rは、それぞれ独立にHまたは1価の有機基である。
 ただし、前記交互共重合体に含まれる繰り返し単位(2)のうち、前記R~RがHである繰り返し単位の割合は50モル%以上である。
 繰り返し単位(1)は疎水性を有する繰り返し単位である。
 式(1)中、XはH、F、CFまたはClである。繰り返し単位(1)の疎水性が高くなる点から、Fが好ましい。交互共重合体中に存在するXは、1種類でも2種類以上でもよいが、安定的に製造できる点で1種類が好ましい。
 YはH、F、CFまたはClである。繰り返し単位(1)の疎水性が高くなる点からは、Fが好ましい。また、交互共重合体の耐熱性が高くなる点からは、Clが好ましい。交互共重合体中に存在するYは、1種類でも2種類以上でもよいが、安定的に製造できる点で1種類が好ましい。
 繰り返し単位(1)としては、単量体の入手容易の点から、XがFであり、YがFまたはClであるものが好ましい。
 式(2)中、ZはOR、NHR、COORまたはSOであり、R~Rはそれぞれ独立にHまたは1価の有機基である。ただし、前記交互共重合体に含まれる繰り返し単位(2)のうち、前記R~RがHである繰り返し単位の割合は50モル%以上であり、70~100モル%が好ましく、85~100モル%が特に好ましい。
 繰り返し単位(2)のうち、R~RがHである繰り返し単位、つまりZがOH、NH、COOHまたはSOHである繰り返し単位は親水性を有する繰り返し単位である。また、R~Rが1価の有機基である繰り返し単位(2)は、R~RがHである繰り返し単位(2)よりも親水性の低い繰り返し単位である。そのため、繰り返し単位(2)のうちの、R~RがHである繰り返し単位とR~Rが1価の有機基である繰り返し単位との比率(モル比)を調節することで、交互共重合体全体としての親水性を調節できる。
 R~Rにおける1価の有機基としては、エーテル性酸素原子を含んでもよい炭素数1~6の第1級もしくは第2級のアルキル基、または該アルキル基の水素原子の1個以上が置換基で置換された基が好ましい。該アルキル基は、直鎖状、分岐状、環状のいずれであってもよい。前記置換基としては、水酸基、アミノ基、グリシジル基等の官能基、フッ素原子等が挙げられる。
 R~Rにおける1価の有機基は、-CR(R、RおよびRは、それぞれ独立に炭素数1~3のアルキル基である。)、炭素数1~6のアルコキシメチル基、テトラヒドロフリル基、テトラヒドロピラニル基、または-Si(R(Rは炭素数1~6のアルキル基またはアリール基である。)であってもよい。
 Zとしては、繰り返し単位(2)の親水性が高くなることから、ORが好ましく、OHが特に好ましい。
 交互共重合体中に存在するZは1種類でも2種類以上でもよいが、安定的に製造できる点で1種類が好ましい。
 Rは単結合、エーテル性酸素原子を含んでもよい2価の連結基、または環構造を含んでもよい2価の連結基である。
 エーテル性酸素原子を含んでもよい2価の連結基としては、炭素数が1~100のアルキレン基またはエーテル性酸素原子を含む炭素数が1~100のアルキレン基が好ましく、炭素数が1~50のアルキレン基またはエーテル性酸素原子を含む炭素数が1~50のアルキレン基がより好ましく、炭素数が1~10のアルキレン基またはエーテル性酸素原子を含む炭素数が1~10のアルキレン基が特に好ましい。
 環構造を含んでもよい2価の連結基としては、シクロヘキシレン基またはエーテル性酸素原子を含むシクロヘキシレン基が好ましい。
 Rは、交互共重合体の親水性向上の点から、単結合、O(CHまたは(OCHCHである(ただしnは2~4の整数であり、mは1~4の整数である。)ことが好ましい。
 交互共重合体中に存在する複数のRは、1種類でも2種類以上でもよいが、安定的に製造できる点で1種類が好ましい。
 本発明に用いられる交互共重合体としては、繰り返し単位(1)として、前記XがF、前記YがFまたはClである繰り返し単位を有し、繰り返し単位(2)として、前記ZがOR、前記Rが単結合、O(CHまたは(OCHCHである繰り返し単位(ただしnは2~4の整数、mは1~4の整数)を有するものが好ましい。
 交互共重合体の交互共重合率は95%以上である。疎水性ドメインと親水性ドメインが偏在しない点から、95~100%が好ましく、97~100%が特に好ましい。
 共重合体の交互共重合比率とは、隣り合う2つの繰り返し単位の組み合わせ数の合計に対する、異なる単量体に基づく繰り返し単位が隣り合っている組み合わせ数の比率である。たとえば、共重合体が1・2・1・2・2・1・2・1・2・1・2で表されるもの(ただし、1は繰り返し単位(1)を示し、2は繰り返し単位(2)を示す。)である場合、隣り合う2つの重合単位の組み合わせ数は10であり、異なる単量体に基づく繰り返し単位が隣り合っている組み合わせ数が9であるので、交互共重合比率は90%である。
 交互共重合比率が95%未満である共重合体(以下、「ランダム共重合体」ともいう。)には、繰り返し単位(1)の割合が高い部分と、繰り返し単位(2)の割合が高い部分が存在し、親水基(OH、NH、COOHまたはSOH)の分布に偏りがある。そのため、ランダム共重合体は、部分によって特性(親水性、疎水性等)にばらつきがあり、これが原因となって親水化性能が充分に発揮されないと考えられる。
 一方、交互共重合比率が95%以上である交互共重合体中においては、繰り返し単位(1)と繰り返し単位(2)とがほぼ均一に配置されている。そのため樹脂多孔体および水の両者と親和性が高く、高い親水化性能を発現できると考えられる。たとえば繰り返し単位(1)とRがHである繰り返し単位(2)との交互共重合比率が95%以上の交互共重合体は、疎水性を有する繰り返し単位と親水性を有する繰り返し単位とが分子内のほぼ全体にわたって交互に重合した構造を有する。親水性を有する繰り返し単位が偏って分布した部分がないため、樹脂多孔体との親和性が極端に低い部分がなく、分子全体の樹脂多孔体との親和性が高くなり、親水化処理時における樹脂多孔体への含浸性が高くなっている。また、繰り返し単位(1)が偏って分布した部分がないため、水との親和性が極端に低い部分がなく、分子全体の水との親和性が高くなっている。そのため、本発明の親水化処理剤で樹脂多孔体を処理した際に、樹脂多孔体の外側表面だけでなく、細孔内部の表面にも水との親和性の高い親水層が形成され、これによって透水性が向上していると考えられる。
 共重合体の交互共重合比率は、当該共重合体の合成に用いる複数種の単量体の重合反応性比から求められる。各単量体の重合反応性が低くかつ近い場合に、交互共重合比率が向上する。
 前記交互共重合体は、繰り返し単位(1)および繰り返し単位(2)のみから構成されることが好ましいが、本発明の効果を損なわない範囲で、繰り返し単位(1)および繰り返し単位(2)以外の繰り返し単位(3)を含んでいてもよい。繰り返し単位(3)としては、交互共重合体の靭性を高める点から、アルキル基の結合したビニルエーテル等が挙げられる。
 前記交互共重合体中、繰り返し単位(3)の割合は、交互共重合体の全繰り返し単位中に0~5モル%が好ましく、0~2モル%が特に好ましい。
 前記交互共重合体の数平均分子量(Mn)は3,000~500,000が好ましく、5,000~300,000がより好ましく、10,000~300,000が特に好ましい。数平均分子量(Mn)が上記範囲の下限値以上であれば、親水化処理剤組成物より得られた親水層の強度が良好である。上記範囲の上限値以下であれば、親水化処理剤組成物の粘度が高くなりすぎない。
 前記交互共重合体の分子量分布(Mw/Mn)は1~5が好ましく、1~3が特に好ましい。上記範囲であれば、生産性が向上し、親水層の強度の向上が期待される。なおMwは重量平均分子量を示す。
 本発明の親水化処理剤組成物中、前記交互共重合体の含有量は、親水化処理剤組成物の総質量に対し、0.01~10質量%が好ましく、0.05~5質量%より好ましく、1~5質量%が特に好ましい。
(共重合体の製造方法)
 本発明の共重合体の製造方法は、繰り返し単位(1)、および(2)を形成するための単量体として、互いに重合反応性が低くかつ近いものを用いる以外は、公知の方法から選択できる。該方法としては、たとえば下記方法(i)、(ii)等が挙げられる。
 (i)重合すると繰り返し単位(1)を形成する単量体と、繰り返し単位(2)を形成する単量体とを共重合させる方法。
 (ii)重合すると繰り返し単位(1)を形成する単量体と、化学反応(脱保護反応等)により繰り返し単位(2)となる繰り返し単位を形成する単量体とを共重合体させた後、得られた共重合体を化学反応させて目的とする共重合体を得る方法。
 (i)および(ii)のいずれを選択するかは、繰り返し単位(2)中のZを考慮して選択される。たとえばZがOHの場合は(i)または(ii)、NHの場合は(i)または(ii)、COOHの場合は(ii)、SOHの場合は(ii)の方法が好ましく用いられる。
 以下に、ZがORである場合の前記交互共重合体(以下、「共重合体(A)」という。)の製造方法の好ましい実施形態を説明する。
 本実施形態の製造方法は、下記重合工程および脱保護工程を有する。
 重合工程:下式(3)で表される含フッ素オレフィン(以下、「含フッ素オレフィン(3)」ともいう。)と、下式(4)で表されるビニルエーテル(以下、「ビニルエーテル(4)」ともいう。)とを共重合させる工程。
 脱保護工程:前記重合工程で得られた共重合体におけるビニルエーテル(4)に基づく重合単位のRを水素原子に置換し、水酸基を生じさせる工程。
 CF=CXY   (3)
 CH=CHOR   (4)
(ただし、前記式(3)中、XおよびYはそれぞれ独立にH、F、CFまたはClである。前記式(4)中、Rは脱保護反応により水素原子に置換される保護基である。)
 つまり、本実施形態の製造方法は、重合工程において含フッ素オレフィン(3)に基づく繰り返し単位と、ビニルエーテル(4)に基づく繰り返し単位を有する含フッ素オレフィン/ビニルエーテル共重合体(以下、「共重合体(B)」という。)を得た後、共重合体(B)におけるビニルエーテル(4)に基づく繰り返し単位のRを脱保護反応により水素原子に置換することで、含フッ素オレフィンに基づく繰り返し単位と、ビニルアルコールに基づく繰り返し単位とを有する共重合体(A)を得る方法である。
<重合工程>
 重合工程では、含フッ素オレフィン(3)とビニルエーテル(4)とを共重合させることにより、含フッ素オレフィン(3)に基づく繰り返し単位とビニルエーテル(4)に基づく繰り返し単位とを有する共重合体(B)を得る。
 含フッ素オレフィン(3)とビニルエーテル(4)とは交互共重合性が高い。そのため、得られる共重合体(B)の交互共重合比率(含フッ素オレフィン(3)に基づく繰り返し単位とビニルエーテル(4)に基づく繰り返し単位の交互共重合比率)は、両単量体の共重合反応性比から確率計算して、95%以上となる。
 共重合体(B)の交互共重合比率が95%以上であるので、次の脱保護工程で共重合体(B)から得られる共重合体(A)の交互共重合比率(含フッ素オレフィン(3)に基づく繰り返し単位とビニルアルコールに基づく繰り返し単位の交互共重合比率)も95%以上となる。
 含フッ素オレフィン(3)の具体例としては、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン等が挙げられる。なかでも、耐熱性に優れる点から、テトラフルオロエチレンまたはクロロトリフルオロエチレンが好ましく、テトラフルオロエチレンが特に好ましい。
 含フッ素オレフィン(3)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 ビニルエーテル(4)は、ビニルアルコールの水酸基の水素原子がRで置換されている化合物である。
 Rは、水酸基をエーテルとして保護する保護基であり、次の脱保護工程で行う脱保護反応により水素原子に置換される基である。Rが脱保護反応により水素原子に置換されると水酸基を生じる。
 Rとしては、有機化学分野で通常用いられる保護基が使用でき、入手容易性の点から、-CR(R、RおよびRは、それぞれ独立に炭素数1~3のアルキル基である。)、炭素数1~6のアルコキシメチル基、テトラヒドロフリル基、テトラヒドロピラニル基または-Si(R(Rは炭素数1~6のアルキル基またはアリール基である。)が好ましく、-CRが特に好ましい。
 ビニルエーテル(4)としては、t-ブチルビニルエーテル、1,1-ジメチルプロピルビニルエーテル、メトキシメチルビニルエーテル、テトラヒドロフリルビニルエーテル、テトラヒドロピラニルビニルエーテル、ビニロキシトリメチルシランまたはビニロキシジメチルフェニルシランが好ましく、入手容易の点から、t-ブチルビニルエーテルが特に好ましい。
 ビニルエーテル(4)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 重合工程においては、含フッ素オレフィン(3)およびビニルエーテル(4)に加えて、下式(5)で表されるビニルエーテル(5)をさらに共重合させてもよい。
 CH=CHOR10   (5)
(ただし前記式(5)中、R10は前記Rが脱保護反応する反応条件で脱保護反応しない基である。)
 ビニルエーテル(5)は、ビニルアルコールの水酸基の水素原子がR10で置換されている化合物である。
 R10は、前記Rが脱保護反応する反応条件で脱保護反応しない基、つまり脱保護工程において脱保護反応しない基である。脱保護工程においては、ビニルエーテル(4)に基づく繰り返し単位が有するRを脱保護反応により水素原子に置換するが、このときの反応条件においてR10は脱保護反応せず、ビニルエーテル(5)に基づく繰り返し単位がそのまま維持される。したがって、ビニルエーテル(5)を用いて重合工程を行うことで、共重合体(B)として、含フッ素オレフィン(3)に基づく繰り返し単位とビニルエーテル(4)に基づく繰り返し単位とビニルエーテル(5)に基づく繰り返し単位を有する共重合体が得られ、その後脱保護工程を行うことで、共重合体(A)として、含フッ素オレフィン(3)に基づく繰り返し単位とビニルアルコールに基づく繰り返し単位とビニルエーテル(5)に基づく繰り返し単位を有する共重合体が得られる。
 R10は、Rを脱保護反応により水素原子に置換する反応条件以外の条件であれば、脱保護反応する基であってもよい。
 ビニルエーテル(5)におけるR10としては、エーテル性酸素原子を含んでもよい炭素数1~6の第1級もしくは第2級のアルキル基、または該アルキル基の水素原子の1個以上が置換基で置換された基が好ましい。該アルキル基は、直鎖状、分岐状、環状のいずれであってもよい。前記置換基としては、水酸基、アミノ基、グリシジル基等の官能基、フッ素原子等が挙げられる。
 ビニルエーテル(5)の具体例としては、メチルビニルエーテル、エチルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテル;ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、アミノプロピルビニルエーテル、グリシジルビニルエーテル等の官能基含有ビニルエーテル;ヘプタフルオロペンチルビニルエーテル等の含フッ素ビニルエーテル等が挙げられる。
 ビニルエーテル(5)とビニルエーテル(4)の重合反応性はほぼ等しい。そのため、ビニルエーテル(5)を用いる場合、ビニルエーテル(4)およびビニルエーテル(5)のいずれかのビニルエーテルと、含フッ素オレフィン(3)が交互に共重合して共重合体(B)が得られる。共重合体(B)における含フッ素オレフィン(3)に基づく繰り返し単位の両側がそれぞれビニルエーテル(4)に基づく繰り返し単位とビニルエーテル(5)に基づく繰り返し単位のいずれになるかは確率の問題となる。
 ビニルエーテル(5)を用いる場合、共重合体(B)におけるビニルエーテル(5)に基づく繰り返し単位では脱保護反応が起きない。そのため、ビニルエーテル(4)とビニルエーテル(5)の比率を調節することにより、脱保護工程後の共重合体(A)におけるビニルアルコールに基づく繰り返し単位の比率を調節できる。これにより、共重合体(A)における水酸基の量を調節することで、共重合体(A)の親水性を調節できる。
 前記含フッ素オレフィン(3)、ビニルエーテル(4)、および必要に応じて用いるビニルエーテル(5)をラジカル重合させることにより、共重合体(B)が得られる。
 ビニルエーテル基を有する単量体(ビニルエーテル(4)およびビニルエーテル(5))は、酸性条件下において、異性化、分解あるいは単独カチオン重合を起こすおそれがある。そのため、重合を安定に進行させる点から、塩基性条件下でラジカル重合を行うことが好ましく、pHを8~9とすることが特に好ましい。
 重合におけるpHを塩基性条件に調節する方法としては、炭酸カリウム、炭酸アンモニウム等を重合媒体中に加える方法が好ましい。
 なお、該pHは、室温(20~25℃)におけるpHである。
 ビニルエーテル(5)を用いない場合、共重合に用いる含フッ素オレフィン(3)とビニルエーテル(4)とのモル比(含フッ素オレフィン(3)/ビニルエーテル(4))は、40/60~60/40が好ましく、45/55~55/45がより好ましく、50/50が特に好ましい。該モル比(含フッ素オレフィン(3)/ビニルエーテル(4))が上記範囲内であれば、含フッ素オレフィン(3)とビニルエーテル(4)とが交互に共重合した交互共重合体が得られやすい。
 ビニルエーテル(5)を用いる場合、共重合に用いる含フッ素オレフィン(3)と、ビニルエーテル(4)およびビニルエーテル(5)の合計のモル比(含フッ素オレフィン(3)/(ビニルエーテル(4)+ビニルエーテル(5)))は、40/60~60/40が好ましく、45/55~55/45がより好ましく、50/50が特に好ましい。該モル比(含フッ素オレフィン(3)/(ビニルエーテル(4)+ビニルエーテル(5)))が上記範囲内であれば、含フッ素オレフィン(3)と、ビニルエーテル(4)またはビニルエーテル(5)とが交互に共重合した交互共重合体が得られやすい。
 また、ビニルエーテル(5)を用いる場合、ビニルエーテル(4)とビニルエーテル(5)とのモル比(ビニルエーテル(4)/ビニルエーテル(5))は、45/5~25/25が好ましく、40/10~25/25が特に好ましい。
 ラジカル重合開始源としては、ラジカル重合開始剤または電離性放射線が挙げられる。
 ラジカル重合開始剤としては、重合形式または重合媒体に応じて、水溶性開始剤または油溶性開始剤を適宜使用できる。
 水溶性開始剤としては、たとえば、過硫酸アンモニウム等の過硫酸塩と、過酸化水素、亜硫酸水素ナトリウム、チオ硫酸ナトリウム等の還元剤との組み合わせからなるレドックス(酸化還元反応、redox)開始剤;前記レドックス開始剤に少量の鉄、第一鉄塩、硝酸銀等を共存させた無機系開始剤;またはジコハク酸パーオキシド、ジグルタール酸パーオキシド等の2塩基酸過酸化物;アゾビスイソブチルアミジン等の2塩基酸塩等の有機系開始剤が挙げられる。
 油溶性開始剤としては、t-ブチルパーオキシアセテート、t-ブチルパーオキシピバレート等のパーオキシエステル型過酸化物;ジイソプロピルパーオキシジカーボネート等のジアルキルパーオキシジカーボネート;ベンゾイルパーオキシド;アゾビスイソブチルニトリル等が挙げられる。
 ラジカル重合開始剤としては、取り扱いの容易性等の点から、t-ブチルパーオキシピバレート等が好ましい。
 ラジカル重合開始剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 ラジカル重合開始剤の使用量は、その種類、重合条件等に応じて適宜変更でき、共重合に用いる単量体の全量に対して、0.005~5質量%が好ましく、0.05~0.5質量%が特に好ましい。
 共重合形式としては、特に限定されず、塊状重合、懸濁重合、乳化重合、溶液重合等が採用できる。なかでも、キシレン、トルエン等の芳香族化合物、t-ブチルアルコール等のアルコール類、エステル類、フロロクロロカーボン類等を重合媒体とする溶液重合が好ましい。
 重合媒体の量は、共重合に用いる単量体の全量に対して、10~200質量%が好ましく、50~100質量%が特に好ましい。
 また、共重合方式としては、回分式、連続式、半連続式のいずれの形式で行ってもよい。
 共重合温度は、ラジカル重合開始源、重合媒体等に応じて適宜最適値が選択でき、-30~150℃が好ましく、0~100℃がより好ましく、20~70℃が特に好ましい。
 共重合圧力も同様に、ラジカル重合開始源、重合媒体等に応じて適宜選択でき、0.1~10MPaが好ましく、0.2~2MPaが特に好ましい。
 共重合時間は、4~24時間が好ましく、6~12時間が特に好ましい。
 共重合体(B)の分子量は、単量体と重合媒体の比率の制御、あるいは連鎖移動剤の採用により調節できる。
 共重合体(B)の数平均分子量(Mn)は、前記交互共重合体と同様、3,000~500,000が好ましく、5,000~300,000がより好ましく、10,000~300,000が特に好ましい。
 共重合体(B)の分子量分布(Mw/Mn)は、前記交互共重合体と同様、1~5が好ましく、1~3がより好ましい。
<脱保護工程>
 脱保護工程では、前記重合工程で得られた共重合体(B)におけるビニルエーテル(4)に基づく繰り返し単位のRを脱保護反応により水素原子に置換し、水酸基を生じさせる。これにより、ビニルエーテル(4)に基づく繰り返し単位がビニルアルコールに基づく繰り返し単位に変換され、含フッ素オレフィン(3)に基づく繰り返し単位とビニルアルコールに基づく繰り返し単位を有する共重合体(A)(ZとしてOHが存在する共重合体)が得られる。共重合体(B)にビニルエーテル(5)に基づく繰り返し単位が含まれている場合は、該ビニルエーテル(5)に基づく繰り返し単位のR10は脱保護反応せずそのまま維持されるので、含フッ素オレフィン(3)に基づく重合単位、ビニルアルコールに基づく重合単位、およびビニルエーテル(5)に基づく重合単位を有する共重合体(A)(ZとしてOHおよびOR10が存在する共重合体)が得られる。
 共重合体(B)のビニルエーテル(4)に基づく単量体におけるRを脱保護反応により水素原子に置換する方法としては、通常行われる、酸、熱あるいは光による、保護化したアルコールの脱保護反応が採用できる。なかでも、得られる共重合体(A)が着色することを抑制しやすい点から、酸によってRを水素原子に置換することが好ましい。
 脱保護反応に用いる酸としては、硫酸、塩酸、硝酸等の無機酸、酢酸、酪酸、トリフルオロ酢酸等の有機酸等が挙げられる。
 酸による脱保護反応は、(I)硫酸/エタノール/水の混合溶液中での脱保護反応、(II)塩酸/ジオキサンの混合溶液中での脱保護反応、(III)トリフルオロ酢酸/塩化メチレンの混合溶液中での脱保護反応が好ましい。ただし、酸による脱保護反応は、前記(I)~(III)の反応系には限定されず、水系で行ってもよく、非水系で行ってもよい。
 また、酸による脱保護反応は、光の照射により酸を発生する光酸発生剤を用いて行ってもよい。光酸発生剤としては、たとえば、オニウム塩、ハロゲン含有化合物、ジアゾケトン化合物、スルホン化合物、スルホン酸化合物等が挙げられる。具体例としては、ジフェニルヨードニウムトリフレート、トリフェニルスルホニウムトリフレート、フェニル-ビス(トリクロロメチル)-s-トリアジン、メトキシフェニル-ビス(トリクロロメチル)-s-トリアジン、4-トリスフェナシルスルホン、1,8-ナフタレンジカルボン酸イミドトリフレート等が挙げられる。
 脱保護工程においては、共重合体(A)に求められる用途に応じて、共重合体(B)が有する全ての保護基が脱保護される前に脱保護反応を途中で終了してもよい。この場合、含フッ素オレフィン(3)に基づく繰り返し単位と、ビニルエーテル(4)に基づく繰り返し単位と、ビニルアルコールに基づく繰り返し単位とを有する共重合体(A)(ZとしてOHおよびORが存在する共重合体)が得られる。
 共重合体(B)にビニルエーテル(5)に基づく繰り返し単位が含まれている場合は、脱保護反応を途中で終了させることにより、含フッ素オレフィン(3)に基づく重合単位と、ビニルエーテル(4)に基づく繰り返し単位と、ビニルアルコールに基づく重合単位と、ビニルエーテル(5)に基づく重合単位を有する共重合体(A)(ZとしてOH、ORおよびOR10が存在する共重合体)が得られる。
 上記のように、脱保護反応を途中で終了させて、ビニルエーテル(4)に基づく繰り返し単位とビニルアルコールに基づく繰り返し単位との比率、またはビニルエーテル(4)に基づく繰り返し単位とビニルアルコールに基づく繰り返し単位とビニルエーテル(5)に基づく繰り返し単位との比率を調節することにより、得られる共重合体(A)の親水性、結晶性等を調節できる。
 従来、含フッ素オレフィン/ビニルアルコール共重合体の製造方法としては、含フッ素オレフィンと酢酸ビニルを共重合させて得た含フッ素オレフィン/酢酸ビニル共重合体を加水分解する方法が一般的である。しかしこの方法では交互共重合比率が95%以上の含フッ素オレフィン/酢酸ビニル共重合体を得ることはできない。つまり、含フッ素オレフィンと酢酸ビニルとの重合反応性が異なるため、含フッ素オレフィンと酢酸ビニルとがランダムに共重合し、得られる含フッ素オレフィン/酢酸ビニル共重合体には、含フッ素オレフィンに基づく繰り返し単位の割合が高い部分と、酢酸ビニルに基づく繰り返し単位の割合が高い部分が存在する。そのため、該含フッ素オレフィン/酢酸ビニル共重合体から得られる含フッ素オレフィン/ビニルアルコール共重合体にも、含フッ素オレフィンに基づく繰り返し単位の割合が高い部分と、ビニルアルコールに基づく繰り返し単位の割合が高い部分が存在し、水酸基の分布に偏りがある。そのため、該含フッ素オレフィン/ビニルアルコール共重合体には、部分によって特性にばらつきがあり、これが樹脂多孔体への含浸性や透水性を低下させていたと考えられる。
 これに対し、本実施形態の製造方法によれば、含フッ素オレフィン(3)と、ビニルエーテル(4)またはビニルエーテル(5)とが実質的に交互に重合するために、高分子鎖中に水酸基が均一に分布する。そのため、水酸基が特定の場所に集中しないので、高分子鎖の特定の部分の親水性が極端に高くなることを抑制でき、共重合体(A)が優れた樹脂多孔体への含浸性や透水性を発現すると考えられる。
 また、含フッ素オレフィンと酢酸ビニルを共重合させて得た含フッ素オレフィン/酢酸ビニル共重合体を加水分解する方法の場合、加水分解時に着色が生じる問題や、該加水分解に酸を用いる場合に反応速度が遅い問題等がある。
 これに対し、上記した本実施形態の製造方法によれば、ビニルエーテルに基づく繰り返し単位を脱保護する場合、着色は生じにくい。また、酸による脱保護であっても充分な反応速度が得られる。そのため、着色の少ない高品質な含フッ素オレフィン/ビニルアルコール共重合体を充分に高い生産性で製造できる。本実施形態において酸による脱保護が充分な反応速度で進行する要因としては、ビニルエーテル(4)のエーテル性酸素原子の方が、酢酸ビニルの酢酸基よりもプロトネーション(プロトン付加、protonation)しやすいためであると推定される。
(溶媒)
 溶媒は、前記交互共重合体を溶解または分散させる溶媒が好ましく、前記交互共重合体を溶解させる溶媒が特に好ましい。
 溶媒としては、アルコール類、ケトン類、エステル類、水が好ましい。
 アルコール類としては、炭素数1~10のアルコールが挙げられ、メタノールまたはエタノールが好ましい。なかでも、親水化処理剤組成物の適用対象が樹脂多孔体である場合、樹脂多孔体への含浸性に優れることから、メタノールが好ましい。
 ケトン類としては、炭素数が2~10のアルキルケトンが挙げられる。
 エステル類としては、エーテル性酸素原子を含んでもよい炭素数が2~10のエステルが挙げられる。
 溶媒は、少なくともアルコール類を含むことが好ましく、アルコール類を70質量%以上の割合で含むことがより好ましく、アルコール類のみからなることがさらに好ましく、メタノールのみからなることが特に好ましい。
 本発明に用いられる交互共重合体は、交互共重合比率が95%以上であり、繰り返し単位(1)と繰り返し単位(2)とがほぼ全体にわたって交互に重合していることから、溶媒としてメタノールのみを用いる場合でも充分に溶解し得る。溶媒としてメタノールのみを用いる場合、樹脂多孔体への含浸性が特に良好となる。一方、交互共重合比率が95%未満の共重合体を用いる場合、メタノール以外に、溶解性の向上のため、エタノール等の比較的溶解性の高い溶媒を併用し、さらにあらかじめ該共重合体と水とをなじませておくため水を併用する必要があった。このような3成分系の溶媒を用いる場合、メタノールの割合が低いため樹脂多孔体への含浸性が不充分となる、当該共重合体が水不溶性であるため液が不安定で析出が生じる等の問題があった。
 溶媒の沸点は常圧で40~150℃が好ましく、40~100℃がより好ましく、40~80℃が特に好ましい。上記範囲であると、溶媒を乾燥させる際の温度を低くすることができ、材料への負荷を小さくすることができる。
 溶媒は1種のみを用いてもよく、2種以上を混合した混合溶媒を用いてもよい。品質安定化の点から、1種のみを用いることが好ましい。
 溶媒は親水化処理剤組成物中に70~99.9質量%含むことが好ましく、80~99.9質量%を含むことがより好ましく、90~99.9質量%含むことが特に好ましい。
(その他の化合物)
 親水化処理剤組成物は、共重合体と溶媒以外に、その他の化合物を含んでいてもよい。その他の化合物としては界面活性剤、酸化防止剤等が挙げられる。
 該その他の化合物は、親水化処理組成物中に0.01~5質量%含むことが好ましく、0.03~3質量%含むことがより好ましく、0.05~2質量%含むことが特に好ましい。
 本発明における親水化処理剤組成物としては、X=F、Y=F、R=単結合、Z=OHである交互共重合体の0.5~5質量%と、メタノールの90~100質量%と含む組成物が好ましい。
(親水化処理剤組成物の用途)
 本発明の親水化処理剤組成物は、疎水性を有する材料の親水化に用いられる。
 ここで「疎水性を有する材料」とは、親水化処理剤組成物に含まれる交互共重合体よりも疎水性の高い材料を示す。
 交互共重合体よりも疎水性の高い材料であるかどうかは、材料の水接触角を測定することにより確認できる。
 本発明の親水化処理剤組成物で親水化される、疎水性を有する材料(被処理材料)およびその親水化方法については、以下において、本発明の親水化方法として説明する。
 また、本発明の親水化処理剤組成物は、プライマ(下塗塗料、primer)として用いることもできる。本発明の親水化処理剤組成物をプライマとして用いることで、元の被処理材料に直接塗布できなかった樹脂(たとえばポリビニルアルコール等)をその上にコーティングすることができる。
[親水化方法]
 本発明の親水化方法は、本発明の親水化処理剤組成物を用いて被処理材料を処理することを特徴とする。
 被処理材料としては、親水化処理剤組成物に含まれる交互共重合体よりも疎水性の高いものであれば特に限定されない。
 被処理材料の材質としては、樹脂等の有機物であってもよく、ガラス、セラミックス等の無機物であってもよい。これらの中でも割れにくい点で、樹脂が好ましい。該樹脂としては特に限定されないが、疎水性および耐熱性が高い点から、ポリイミド、ポリサルフォンまたは含フッ素樹脂が好ましい。疎水性が高い点から、含フッ素樹脂が特に好ましい。該含フッ素樹脂については、後で詳しく説明する。
 被処理材料の形態は、特に限定されず、フィルム、チューブ、テープ、織物等が挙げられる。これらの内部に中空構造を有していてもよい。フィルムをさらに加工し、ディスク形状や、カートリッジ形状をしていてもよい。
 被処理材料は、多孔体であっても非多孔体であってもよいが、本発明の有用性の点で、多孔体が好ましい。
 多孔体とは孔を有する成形体のことである。
 本発明の親水化処理剤組成物は共重合体とともに溶媒を含むため、多孔体の細孔内部まで含浸し、細孔内部表面まで親水化できる。このような多孔体は、透水性に優れており、水系液体の分離膜等の用途に有用である。
 多孔体の空孔率が15~95%が好ましく、75~95%が特に好ましい。
 多孔体の細孔直径は0.02~30μmが好ましい。
 なお、多孔体の空孔率は、測定した材料の密度と、素材の真の密度により計算される値である。
 また、多孔体の細孔直径は、電子顕微鏡での観察や、バブルポイント法等により測定される値である。
 親水化処理剤組成物を用いた被処理材料の処理には、公知の方法を用いることができる。たとえば、親水化処理剤組成物を被処理材料に接触させ、乾燥させる方法が挙げられる。本発明の親水化処理剤組成物を被処理材料に接触させると、その接触面が親水化処理剤組成物で被覆される。乾燥により溶媒を除去すると、該接触面に共重合体が付着して親水層となり、親水性が向上する。
 被処理材料が多孔体であり、該多孔体に親水化処理剤組成物を含浸する場合、多孔体の外表面だけでなく、内部の細孔の表面も親水化される。
 親水化処理剤組成物を被処理材料に接触させる方法としては、親水化処理剤組成物を材料に塗布する方法、親水化処理剤組成物を材料に含浸させる方法等が挙げられ、被処理材料に応じて選択される。
 親水化処理剤組成物の被処理材料への塗布は、スピンコート法、バーコート法、キャスト法、スプレー法等の公知の方法で行うことができる。
 親水化処理剤組成物の樹脂多孔体への含浸は、散布、浸漬、圧入、吸引等の公知の方法で行うことができる。プロセスの簡便性の点で、浸漬が好ましい。
 乾燥は、親水化処理剤組成物に含まれる溶媒を除去するために行う。乾燥方法は特に限定されず、公知の方法を用いることができる。プロセスの簡便性の点から、親水化処理剤組成物を含浸した樹脂多孔体をピンフレームに固定して、風乾させる、または空気中で常圧もしくは減圧条件で加熱する方法が好ましい。加熱温度は40~150℃が好ましく、加熱時間は10分~3時間が好ましい。
 上記のとおり、本発明の親水化方法においては、親水化処理剤組成物を被処理材料に接触させ、乾燥するだけの簡単な処理で、樹脂多孔体等の被処理材料に高い親水化性能を付与することができる。
[親水化材料]
 本発明の親水化材料は、前記本発明の親水化処理剤組成物で被処理材料を親水化してなるものである。
 被処理材料としては、前記親水化方法の説明で挙げたものと同様のものが挙げられる。被処理材料としては、樹脂多孔体が好ましく、含フッ素樹脂多孔体が特に好ましい。すなわち、親水化材料は、親水化樹脂多孔体であることが好ましく、親水化含フッ素樹脂多孔体であることが特に好ましい。
 本発明の親水化材料、特に親水化樹脂多孔体は、水系液体の分離膜として有用である。
 水系液体とは、溶媒中において水を主成分とする水溶液を意味し、上下水、雨水、排水、体液、薬品、飲料水、ジュース、酒等が挙げられる。
 水系液体の分離膜としては、濾過膜、医療用フィルタ等が挙げられる。
 ただし本発明の親水化材料の用途は前記分離膜に限定されず、その他、電池セパレータ、プライマ等の用途に利用できる。
[親水化樹脂多孔体の製造方法]
 本発明の親水化樹脂多孔体の製造方法は、前記本発明の親水化処理剤組成物を、樹脂多孔体に含浸させ、乾燥することが好ましい。なお、親水化処理剤組成物の樹脂多孔体への含浸および乾燥の好ましい条件は、上述の通りである。
(樹脂多孔体)
 樹脂多孔体とは、樹脂から構成される多孔体である。
 樹脂多孔体は、親水化処理剤組成物に含まれる交互共重合体よりも疎水性の高い樹脂から構成される。該樹脂としては特に限定されないが、疎水性および耐熱性が高い点から、ポリイミド、ポリアミド、ポリサルフォンまたは含フッ素樹脂が好ましい。疎水性が高い点から、含フッ素樹脂が特に好ましい。
 前記含フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ペルフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-ヘキサフルオロプロピレン-ペルフルオロアルキルビニルエーテル共重合体(EPE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン-エチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)等が挙げられる。
 前記含フッ素樹脂としては、入手容易の点から、テトラフルオロエチレン(PTFE)またはポリフッ化ビニリデン(PVDF)が特に好ましい。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によって限定して解釈されない。
[測定方法]
(数平均分子量(Mn)、分子量分布(Mw/Mn))
 各例で得られた共重合体の数平均分子量(Mn)および分子量分布(Mw/Mn)は、東ソー社製の高速GPC装置「HLC-8220GPC」を使用し、ポリスチレンゲル換算のゲル濾過クロマトグラフィー(GPC)で測定した。溶離液はテトラヒドロフランを用いた。
(共重合組成)
 各例で得られた共重合体の共重合組成は、得られた共重合体のH NMR(核磁気共鳴)スペクトルおよび19F NMRスペクトルの測定結果から算出した。
(共重合体の構造)
 各例で得られた共重合体の構造は、得られた共重合体の13C NMRスペクトルおよびIR(赤外吸収)スペクトルの測定により同定した。
(交互共重合比率の計算方法)
 モノマー固有の数値であるQ値およびe値から計算される共重合反応性比に基づいて、モンテカルロ法によりシーケンス解析を行った。
(水分量の測定方法)
 三菱化学社製の微量水分測定装置「CA-100」を使用し、液中の水分量を測定した。
(透水試験)
 耐溶媒攪拌式セル(日本ミリポア社製)に、多孔質膜をセットし、圧力をかけてイオン交換水を通液させた時の、一定時間の通液量を測定することにより、単位面積あたりのイオン交換水の濾過流束[単位:g/(cm・min)]を測定した。該濾過流束の値が大きいほど水が通りやすい(透水性が高い)膜であることを示す。
[合成例1:共重合体(A1)の合成]
(重合工程)
 内容積1L(リットル)のステンレス製攪拌機付きオートクレーブに、t-ブチルアルコールの317g、t-ブチルビニルエーテル(以下、「t-BuVE」ともいう。)の111g、炭酸カリウムの0.98gおよびパーブチルパーピバレート(以下、「PBPV」ともいう。)の50質量%1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン溶液の2.72gを仕込み、液体窒素で凍結脱気を行い、系内の酸素を除去した。次いで、テトラフルオロエチレン(以下、「TFE」ともいう。)の113gをオートクレーブ中に導入し、55℃まで加熱した。この時点での圧力は1.62MPaを示した。その後、8時間反応を続行し、圧力が0.86MPaまで低下したところでオートクレーブを水冷し、未反応ガスをパージ(追い出す、purge)して反応を停止させた。得られた重合溶液をメタノール中に投入し、生成した共重合体を析出させた後、真空乾燥を行い、共重合体(B1)を固体として得た。共重合体(B1)の収量は121g、収率は54%であった。
 得られた共重合体(B1)のMnは24,000、Mw/Mnは1.5、共重合組成比はTFE/t-BuVE=50/50(モル%)であった。また、TFEおよびt-BuVEの共重合反応性比からの計算で、共重合体(B1)の交互共重合比率が95%以上であり、実質的に交互構造を有していることが分かった。
(脱保護工程)
 前記共重合体(B1)の4.0g、36質量%濃塩酸の4.0g、およびエタノールの52gを100mLフラスコに入れ、内温78℃で加熱攪拌し、脱保護反応を行った。反応を8時間続行した後、反応液を水中に滴下し、共重合体を析出させ、水で洗浄した後、90℃で真空乾燥を行い、2.5gの共重合体(A1)を得た。
 前記共重合体(B1)および得られた共重合体(A1)について、13C NMRスペクトルおよびIRスペクトルを測定した。13C NMRスペクトルの測定結果を図1に示し、IRスペクトルの測定結果を図2に示した。これらの結果から、共重合体(A1)においては、加水分解により99%以上の保護基(t-BuVEに由来するt-ブチル基)が脱離して水酸基が生成したことが確認できた。
(図1(A)中の「t」で示したピークが、t-ブチルに由来するピークである。)
[合成例2:共重合体(A2)の合成]
(重合工程)
 内容積1Lのステンレス製攪拌機付きオートクレーブに、酢酸メチルの354g、酢酸ビニル(以下、「VAc」ともいう。)の63g、およびPBPVの50質量%1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン溶液の2.3gを仕込み、液体窒素で凍結脱気を行い、系内の酸素を除去した。次いで、TFEの179gをオートクレーブ中に導入した後、55℃まで加熱した。その後、10分間反応を続行した後、オートクレーブを水冷し、未反応ガスをパージして反応を停止させた。得られた重合溶液をメタノール中に投入し、生成した共重合体を析出させた後、真空乾燥を行い、共重合体(B2)を固体として得た。共重合体(B2)の収量は110g、収率は45%であった。
 得られた共重合体(B1)のMnは84,000、Mw/Mnは3.3、共重合組成比はTFE/VAc=50/50(モル%)であった。また、TFEおよびVAcの共重合反応性比からの計算で、共重合体(B2)の交互共重合比率は80~85%であった。
(脱保護工程)
 前記共重合体(B2)の4.1g、36質量%濃塩酸の4.0g、およびエタノールの52gを100mLフラスコに入れ、内温78℃で加熱攪拌し、脱保護反応を行った。反応を32時間続行した後、反応液を水中に滴下し、共重合体を析出させ、水で洗浄した後、40℃で真空乾燥を行い、2.7gの共重合体(A2)を得た。
 前記共重合体(B2)および得られた共重合体(A2)について、13C NMRスペクトルおよびIRスペクトルを測定した。これらの結果から、共重合体(A2)においては、99%以上の保護基(アセチル基)が脱離して水酸基が生成したことが確認できた。
[合成例3:共重合体(A3)の合成]
(重合工程)
 内容積1Lのステンレス製攪拌機付きオートクレーブに、t-ブチルアルコールの382g、2-ヒドロキシエチルビニルエーテル(以下、「HEVE」ともいう。)の68.0g、炭酸カリウムの1.09gおよびPBPVの50質量%1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン溶液の4.36gを仕込み、液体窒素で凍結脱気を行い、系内の酸素を除去した。次いで、TFEの89gをオートクレーブ中に導入した後、55℃まで加熱した。この時点での圧力は1.08MPaを示した。その後、3.5時間反応を続行し、圧力が0.04MPaまで低下したところでオートクレーブを水冷し、未反応ガスをパージして反応を停止させた。得られた重合溶液をエタノールで希釈した後、ヘキサン中に投入し、生成した共重合体を析出させた。その後、真空乾燥を行い、共重合体(A3)を固体として得た。共重合体(A3)の収量は128g、収率は81%であった。
 得られた共重合体(A3)のMnは114,000、Mw/Mnは3.9、共重合組成比はTFE/HEVE=50/50(モル%)であった。また、TFEおよびHEVEの共重合反応性比からの計算で、共重合体(A3)の交互共重合比率は95%以上であり、実質的に交互構造を有していることが分かった。
[合成例4:共重合体(A4)の合成]
(重合工程)
 内容積1Lのステンレス製攪拌機付きオートクレーブに、t-ブチルアルコールの377g、2-ブタノールの25.3g、4-ヒドロキシブチルビニルエーテル(以下、「HBVE」ともいう。)の89.7g、炭酸カリウムの1.15gおよびPBPVの50質量%1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン溶液の3.45gを仕込み、液体窒素で凍結脱気を行い、系内の酸素を除去した。次いで、TFEの78.8gをオートクレーブ中に導入した後、55℃まで加熱した。この時点での圧力は1.13MPaを示した。その後、4.5時間反応を続行し、圧力が0.57MPaまで低下したところでオートクレーブを水冷し、未反応ガスをパージして反応を停止させた。得られた重合溶液をエタノールで希釈した後、ヘキサン中に投入し、生成した共重合体を析出させた。その後、真空乾燥を行い、共重合体(A4)を固体として得た。共重合体(A4)の収量は113g、収率は67%であった。
 得られた共重合体(A4)のMnは78,000、Mw/Mnは4.9、共重合組成比はTFE/HBVE=49/51(モル%)であった。また、TFEおよびHBVEの共重合反応性比からの計算で、共重合体(A4)の交互共重合比率が95%以上であり、実質的に交互構造を有していることが分かった。
[合成例5:共重合体(A5)の合成]
(重合工程)
 内容積1Lのステンレス製攪拌機付きオートクレーブに、t-ブチルアルコールの410g、2-ブタノールの55.4g、ジエチレングリコールモノビニルエーテル(以下、「DEGMVE」ともいう。)の55.4g、炭酸カリウムの1.73gおよび「PBPVの50質量%1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン溶液の2.31gを仕込み、液体窒素で凍結脱気を行い、系内の酸素を除去した。次いで、TFEの50.8gをオートクレーブ中に導入した後、55℃まで加熱した。この時点での圧力は0.62MPaを示した。その後、2.7時間反応を続行し、圧力が0.11MPaまで低下したところでオートクレーブを水冷し、未反応ガスをパージして反応を停止させた。得られた重合溶液をエタノールで希釈した後、ヘキサン中に投入し、生成した共重合体を析出させた。その後、真空乾燥を行い、共重合体(A5)を固体として得た。共重合体(A5)の収量は81.2g、収率は75%であった。
 得られた共重合体(A5)のMnは16,000、Mw/Mnは2.4、共重合組成比はTFE/DEGMVE=49/51(モル%)であった。また、TFEおよびDEGMVEの共重合反応性比からの計算で、共重合体(A5)の交互共重合比率が95%以上であり、実質的に交互構造を有していることが分かった。
[実施例1]
 合成例1で得た共重合体(A1)の1gをメタノール(水分量271ppm)の99gに溶解し、親水化処理剤組成物を調製した。この親水化処理剤組成物にPTFE多孔質膜(アドバンテック社製、製品名:T-100A-047A、空孔率79%、細孔直径1.0μm)を60分間浸漬した後、50℃で30分間乾燥させ、親水化PTFE多孔質膜を得た。
 得られた親水化PTFE多孔質膜の質量を測定したところ、元のPTFE多孔質膜の質量に対し2.6%増加していた。
 また、得られた親水化PTFE多孔質膜について、圧力差0.15MPaで透水試験を行ったところ、イオン交換水の濾過流束は2.5g/(cm・min)であった。
[実施例2]
 共重合体(A1)の代わりに共重合体(A3)を用いた以外は実施例1と同様にして親水化PTFE多孔質膜を得た。
 得られた親水化PTFE多孔質膜の質量を測定したところ、元のPTFE多孔質膜の質量に対し3.7%増加していた。
 また、得られた親水化PTFE多孔質膜について、圧力差0.15MPaで透水試験を行ったところ、イオン交換水の濾過流束は7.7g/(cm・min)であった。
[実施例3]
 共重合体(A1)の代わりに共重合体(A4)を用いた以外は実施例1と同様にして親水化PTFE多孔質膜を得た。
 得られた親水化PTFE多孔質膜の質量を測定したところ、元のPTFE多孔質膜の質量に対し4.0%増加していた。
 また、得られた親水化PTFE多孔質膜について、圧力差0.15MPaで透水試験を行ったところ、イオン交換水の濾過流束は7.6g/(cm・min)であった。
[実施例4]
 共重合体(A1)の代わりに共重合体(A5)を用いた以外は実施例1と同様にして親水化PTFE多孔質膜を得た。
 得られた親水化PTFE多孔質膜の質量を測定したところ、元のPTFE多孔質膜の質量に対し3.3%増加していた。
 また、得られた親水化PTFE多孔質膜について、圧力差0.15MPaで透水試験を行ったところ、イオン交換水の濾過流束は21.9g/(cm・min)であった。
[比較例1]
 共重合体(A1)の代わりに共重合体(A2)を用いた以外は実施例1と同様にして親水化PTFE多孔質膜を得た。
 得られた親水化PTFE多孔質膜の質量を測定したところ、元のPTFE多孔質膜の質量に対し4.3%増加していた。
 また、得られた親水化PTFE多孔質膜について、圧力差0.15MPaで透水試験を行ったところ、イオン交換水の濾過流束は1.7g/(cm・min)であった。
[比較例2]
 親水化処理剤組成物の代わりにメタノール(水分量271ppm)を用いた以外は実施例1と同様にして親水化PTFE多孔質膜を得た。得られたPTFE多孔質膜について、圧力差0.15MPaで透水試験を行ったところ、イオン交換水は透水しなかった。
 親水化処理剤組成物として繰り返し単位(1)と繰り返し単位(2)との交互共重合比率が95%以上の共重合体(A1)のメタノール溶液を用いた実施例1~4は、イオン交換水の濾過流束は、良好であった。すなわちPTFE多孔質膜の親水性が向上し、水が通りやすい膜となっていた。
 一方、親水化処理剤組成物として繰り返し単位(1)と繰り返し単位(2)との交互共重合比率が95%未満の共重合体(A2)のメタノール溶液を用いた比較例1は、親水化処理剤組成物が充分に含浸されかつPTFE多孔質膜の重量が増加したにもかかわらず、イオン交換水の濾過流束が、実施例1に比べて6割程度と不充分であった。すなわち、水が通りにくい膜となっていた。
 親水化処理剤組成物の代わりにメタノールを用いた比較例2で得られた膜は全く水が通らなかった。
 本発明の親水化処理剤組成物で樹脂多孔体等の被処理材料を処理するだけで、該被処理材料に対し、効率的に高い親水性能を付与することができる。
 被処理材料として樹脂多孔体を用いた場合、得られた親水化樹脂多孔体は、透水性が高く、水系の液体の分離膜として有用であり、たとえば濾過膜や医療用フィルタ等として用いることが可能である。また、その付与された親水性を利用し、電池用のセパレータとして用いることができる。
 さらに、本発明の親水化処理剤組成物をプライマとして用いた場合は、元の樹脂多孔体には塗布できなかった樹脂をその上にコーティングすることができる等、産業上、有用である。
 なお、2011年6月3日に出願された日本特許出願2011-125049号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  下式(1)で表される繰り返し単位と下式(2)で表される繰り返し単位との交互共重合体率が95%以上である共重合体と、溶媒とを含むことを特徴とする親水化処理剤組成物。
    Figure JPOXMLDOC01-appb-C000001
     前記式(1)中、XおよびYは、それぞれ独立にH、F、CFまたはClである。
     前記式(2)中、ZはOR、NHR、COORまたはSOである。Rは単結合、エーテル性酸素原子を含んでもよい2価の連結基、または環構造を含んでもよい2価の連結基である。R~Rは、それぞれ独立にHまたは1価の有機基である。
     ただし、前記共重合体に含まれる前記式(2)で表される繰り返し単位のうち、前記R~RがHである繰り返し単位の割合は50モル%以上である。
  2.  前記交互共重合体の含有量が、親水化処理剤組成物の総質量に対して、0.01~10質量%である、請求項1に記載の親水化処理剤組成物。
  3.  前記交互共重合体の数平均分子量が、3,000~500,000であり、分子量分布(Mw/Mn)が1~5である請求項1または2に記載の親水化処理剤組成物。
  4.  前記XがFであり、前記YがFまたはClである、請求項1~3のいずれか一項に記載の親水化処理剤組成物。
  5.  前記ZがORである、請求項1~4のいずれか一項に記載の親水化処理剤組成物。
  6.  前記Rが単結合、O(CHまたは(OCHCHである(ただしnは2~4の整数であり、mは1~4の整数である。)、請求項1~5のいずれか一項に記載の親水化処理剤組成物。
  7.  親水化処理剤組成物中の溶媒の量が70~99.9質量%である請求項1~6のいずれか一項に記載の親水化処理剤組成物。
  8.  前記溶媒がアルコール類を70質量%以上の割合で含む、請求項7に記載の親水化処理剤組成物。
  9.  請求項1~8のいずれか一項に記載の親水化処理剤組成物を用いて被処理材料を処理することを特徴とする、材料の親水化方法。
  10.  請求項1~8のいずれか一項に記載の親水化処理剤組成物を、樹脂多孔体に含浸させ、乾燥させることを特徴とする、親水化樹脂多孔体の製造方法。
  11.  前記樹脂多孔体を構成する樹脂が含フッ素樹脂である、請求項10に記載の親水化樹脂多孔体の製造方法。
  12.  前記含フッ素樹脂がポリテトラフルオロエチレンまたはポリフッ化ビニリデンである、請求項11に記載の親水化樹脂多孔体の製造方法。
  13.  請求項1~8のいずれか一項に記載の親水化処理剤組成物で被処理材料を親水化してなる親水化材料。
  14.  前記被処理材料が樹脂多孔体であり、該樹脂多孔体を構成する樹脂が含フッ素樹脂である、請求項13に記載の親水化材料。
  15.  水系液体の分離膜用である、請求項13または14に記載の親水化材料。
PCT/JP2012/063983 2011-06-03 2012-05-30 親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法 WO2012165503A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013518136A JP5871194B2 (ja) 2011-06-03 2012-05-30 親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法
CN201280026986.9A CN103582672A (zh) 2011-06-03 2012-05-30 亲水化处理剂组合物、亲水化方法、亲水化树脂多孔体及其制造方法
EP12794044.3A EP2716705A4 (en) 2011-06-03 2012-05-30 HYDROPHILIC COMPOSITION, HYDROPHILATION METHOD, POROUS BODY OF HYDROPHILIZED RESIN AND METHOD FOR THE PRODUCTION OF THE POROUS BODY OF HYDROPHILIZED RESIN
US14/055,962 US20140045956A1 (en) 2011-06-03 2013-10-17 Hydrophilizing agent composition, hydrophilizing method, hydrophilized resin porous material and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011125049 2011-06-03
JP2011-125049 2011-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/055,962 Continuation US20140045956A1 (en) 2011-06-03 2013-10-17 Hydrophilizing agent composition, hydrophilizing method, hydrophilized resin porous material and its production method

Publications (1)

Publication Number Publication Date
WO2012165503A1 true WO2012165503A1 (ja) 2012-12-06

Family

ID=47259355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063983 WO2012165503A1 (ja) 2011-06-03 2012-05-30 親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法

Country Status (5)

Country Link
US (1) US20140045956A1 (ja)
EP (1) EP2716705A4 (ja)
JP (1) JP5871194B2 (ja)
CN (1) CN103582672A (ja)
WO (1) WO2012165503A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208592A1 (ja) * 2013-06-26 2014-12-31 ダイキン工業株式会社 組成物、高分子多孔質膜及び親水化剤
EP2784108A4 (en) * 2011-12-28 2015-08-12 Daikin Ind Ltd POROUS POLYMERMEMBRANE
JP2016113535A (ja) * 2014-12-15 2016-06-23 旭硝子株式会社 塗料用組成物および塗装物品
US10246603B2 (en) 2014-03-10 2019-04-02 AGC Inc. Coating material composition, solvent-based coating material, aqueous coating material, powder coating material and coated article
WO2020138230A1 (ja) * 2018-12-27 2020-07-02 丸善石油化学株式会社 ポリフッ化ビニリデン樹脂製多孔膜及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831080B (zh) * 2021-03-10 2022-09-30 广东源诚塑业有限公司 一种表面亲水的聚乙烯的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131124A (ja) 1991-11-11 1993-05-28 Nitto Denko Corp 親水性フツ素樹脂多孔質膜の製造方法
JPH05301033A (ja) * 1990-05-18 1993-11-16 Japan Gore Tex Inc 分離膜を含む複合膜
JPH07119316B2 (ja) 1987-08-04 1995-12-20 日東電工株式会社 親水性を有するフッ素樹脂多孔体の製造法
WO2011126056A1 (ja) * 2010-04-08 2011-10-13 旭硝子株式会社 含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法
JP2011225659A (ja) * 2010-04-16 2011-11-10 Asahi Glass Co Ltd 親水化されたエチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW574353B (en) * 2000-01-17 2004-02-01 Nihon Parkerizing Agents, liquid compositions and process for hydrophilization
JP4370111B2 (ja) * 2003-03-06 2009-11-25 日華化学株式会社 親水化処理剤組成物及び親水性保護膜形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119316B2 (ja) 1987-08-04 1995-12-20 日東電工株式会社 親水性を有するフッ素樹脂多孔体の製造法
JPH05301033A (ja) * 1990-05-18 1993-11-16 Japan Gore Tex Inc 分離膜を含む複合膜
JPH05131124A (ja) 1991-11-11 1993-05-28 Nitto Denko Corp 親水性フツ素樹脂多孔質膜の製造方法
WO2011126056A1 (ja) * 2010-04-08 2011-10-13 旭硝子株式会社 含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法
JP2011225659A (ja) * 2010-04-16 2011-11-10 Asahi Glass Co Ltd 親水化されたエチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716705A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784108A4 (en) * 2011-12-28 2015-08-12 Daikin Ind Ltd POROUS POLYMERMEMBRANE
WO2014208592A1 (ja) * 2013-06-26 2014-12-31 ダイキン工業株式会社 組成物、高分子多孔質膜及び親水化剤
CN105339427A (zh) * 2013-06-26 2016-02-17 大金工业株式会社 组合物、高分子多孔质膜和亲水化剂
JP6075452B2 (ja) * 2013-06-26 2017-02-08 ダイキン工業株式会社 組成物、高分子多孔質膜及び親水化剤
CN105339427B (zh) * 2013-06-26 2018-04-10 大金工业株式会社 组合物、高分子多孔质膜和亲水化剂
US10246603B2 (en) 2014-03-10 2019-04-02 AGC Inc. Coating material composition, solvent-based coating material, aqueous coating material, powder coating material and coated article
JP2016113535A (ja) * 2014-12-15 2016-06-23 旭硝子株式会社 塗料用組成物および塗装物品
WO2020138230A1 (ja) * 2018-12-27 2020-07-02 丸善石油化学株式会社 ポリフッ化ビニリデン樹脂製多孔膜及びその製造方法

Also Published As

Publication number Publication date
EP2716705A1 (en) 2014-04-09
JPWO2012165503A1 (ja) 2015-02-23
JP5871194B2 (ja) 2016-03-01
CN103582672A (zh) 2014-02-12
EP2716705A4 (en) 2015-02-18
US20140045956A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5871194B2 (ja) 親水化処理剤組成物、親水化方法、親水化樹脂多孔体およびその製造方法
US9074032B2 (en) Membranes based on polyvinyl alcohol
JP6116642B2 (ja) 親水性改質フッ素化膜(v)
JP6124162B2 (ja) 親水性改質フッ素化膜(iii)
CN107614549A (zh) 用于从烷烃分离烯烃的改进的膜
JP6124158B2 (ja) フッ素化ポリマー及び親水性膜の調製におけるその使用(vi)
US9388262B2 (en) Process for producing fluorinated olefin/vinyl alcohol copolymer and film made by forming a composition containing the copolymer
TW201815852A (zh) 氟聚合物及包含氟聚合物(ii)的膜
JP6217992B2 (ja) 親水性改質フッ素化膜(vi)
US20140142264A1 (en) Use of 2,3,3,3-tetrafluoropropene/vinylidene fluoride copolymers to prevent biofouling
JPS5833886B2 (ja) 陽イオン交換膜並びにその製法
KR102359337B1 (ko) 표면 처리로서 불소화 공중합체를 갖는 다공성 막
WO2014084356A1 (ja) 含フッ素共重合体からなる分離膜
KR102328470B1 (ko) 클로로트리플루오로에틸렌와 비닐 염화물에 기초한 공중합체와 3량체 및 그의 용도
JPH06226066A (ja) 膜蒸留方法
CN110869400A (zh) 基于三氟氯乙烯和氯乙烯的共聚物和三元共聚物及其用途
JP2018070860A (ja) フルオロポリマー及びフルオロポリマーを含む膜(iii)
WO2023058485A1 (ja) 水処理薬剤及び水処理膜
TWI423843B (zh) 低生物結垢過濾膜及其形成方法
JP2016169375A (ja) オキシアルキレン基含有含フッ素重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518136

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012794044

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE