WO2011111787A1 - 間葉系幹細胞を含む細胞製剤及びその製造方法 - Google Patents

間葉系幹細胞を含む細胞製剤及びその製造方法 Download PDF

Info

Publication number
WO2011111787A1
WO2011111787A1 PCT/JP2011/055683 JP2011055683W WO2011111787A1 WO 2011111787 A1 WO2011111787 A1 WO 2011111787A1 JP 2011055683 W JP2011055683 W JP 2011055683W WO 2011111787 A1 WO2011111787 A1 WO 2011111787A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesenchymal stem
stem cells
medium
culture
serum
Prior art date
Application number
PCT/JP2011/055683
Other languages
English (en)
French (fr)
Other versions
WO2011111787A8 (ja
Inventor
土屋 利江
辻 紘一郎
加藤 幸夫
金昌 邵
真依子 原
Original Assignee
株式会社ツーセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ツーセル filed Critical 株式会社ツーセル
Priority to CN201180012941.1A priority Critical patent/CN102791276B/zh
Priority to CA2792802A priority patent/CA2792802C/en
Priority to DK11753445.3T priority patent/DK2545928T3/en
Priority to AU2011225158A priority patent/AU2011225158C1/en
Priority to SG2012066262A priority patent/SG183570A1/en
Priority to JP2012504519A priority patent/JP5804385B2/ja
Priority to US13/583,150 priority patent/US9394521B2/en
Priority to KR1020127026184A priority patent/KR101443478B1/ko
Priority to EP11753445.3A priority patent/EP2545928B1/en
Publication of WO2011111787A1 publication Critical patent/WO2011111787A1/ja
Publication of WO2011111787A8 publication Critical patent/WO2011111787A8/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/12Hepatocyte growth factor [HGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/135Platelet-derived growth factor [PDGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)

Definitions

  • the present invention relates to a cell preparation containing mesenchymal stem cells and a production method thereof, and further to a culture medium additive, a culture medium and a kit used in the production method, and a culture method using these.
  • Mesenchymal stem cells are isolated not only from bone marrow, fat, synovium, alveolar bone, periodontal ligament and other adult tissues but also from placenta, umbilical cord blood, umbilical cord cells, etc. And can be cultured and amplified in vitro. Furthermore, mesenchymal stem cells can be differentiated not only into multiple mesenchymal cells (osteoblasts, adipocytes, chondrocytes) but also into cells of non-mesenchymal (neural progenitor cells, hepatocytes) lineage. It is expected to be used as a cell source for regenerative medicine and cell therapy.
  • MSC Mesenchymal Stem Cell
  • FBS fetal bovine serum
  • Patent Document 1 and Non-Patent Document 1 describe serum-free culture of mesenchymal stem cells. As described in Patent Document 1 and Non-Patent Document 1, by performing serum-free culture of mesenchymal stem cells, a growth promoting effect superior to that of culturing mesenchymal stem cells in a medium containing 5 to 15% FBS can be obtained. This culture yields mesenchymal stem cells that maintain (promote) pluripotency.
  • Non-Patent Documents 2 to 5 mesenchymal stem cells have been shown not only to have low immunogenicity but also affect the function of various immune effector cells (T cells, B cells, NK cells, dendritic cells). Therefore, it is expected that mesenchymal stem cells are applied to the treatment of various diseases involving immune responses (Non-patent Document 6).
  • Non-Patent Document 7 describes that mesenchymal stem cells suppress the proliferation of T cells by mouse lymphocyte mixed reaction (MLR).
  • MLR mouse lymphocyte mixed reaction
  • mesenchymal stem cells having immunosuppressive ability can be obtained by serum-free or low-serum culture with a low risk of contamination with a heterologous protein or synthetic medium.
  • the FBS-containing medium is problematic not only from the amount of bovine serum albumin but also from other soluble substances having allergenicity, and the use of a culture medium not containing this is indispensable.
  • the present invention has been made in view of the above problems, and its object is to provide a production method for producing a cell preparation containing mesenchymal stem cells having maintained immunosuppressive ability by serum-free or low-serum culture. It is to provide.
  • the present inventors diligently studied the influence of serum-free culture on the immunosuppressive ability of mesenchymal stem cells, and as a result, mesenchyme cultured in a serum-free medium containing a specific additive.
  • the present inventors have found that the stem cells maintain immunosuppressive ability and that the immunosuppressive effect is improved, and have completed the present invention.
  • the method for producing a cell preparation containing mesenchymal stem cells comprises FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid in serum-free medium A. And a proliferating step for proliferating mesenchymal stem cells, and a screening step for screening mesenchymal stem cells whose immunosuppressive ability is maintained or improved from mesenchymal stem cells after the proliferating step.
  • the cell preparation containing mesenchymal stem cells according to the present invention is characterized by being produced by the production method described above.
  • the medium additive according to the present invention is a serum-free medium additive for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved, and includes FGF, PDGF, TGF- ⁇ , It is characterized by containing HGF, EGF, at least one phospholipid, and at least one fatty acid.
  • the culture medium according to the present invention is a serum-free culture medium for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved, and contains the above-mentioned medium additive It is a feature.
  • the culture method according to the present invention is a culture method for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved, and includes a step of culturing mesenchymal stem cells in the culture medium. It is characterized by that.
  • the kit according to the present invention is a kit for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved, and is characterized by comprising at least the above-mentioned medium additive.
  • the method for producing a cell preparation containing mesenchymal stem cells includes a method for producing a cell preparation in serum-free medium A containing FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid. Since it includes a proliferation step for growing mesenchymal stem cells, and a screening step for screening mesenchymal stem cells whose immunosuppressive ability is maintained or improved from mesenchymal stem cells after the above proliferation step, serum-free or low It is possible to produce a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved by serum culture.
  • Patent Document 1 and Non-Patent Document 1 describe a medium for culturing cells without losing growth in a serum-free medium (serum-free medium).
  • This medium is a medium in which a complex of a specific growth factor group, phospholipid and fatty acid is added to the basal medium. By using this medium, even under serum-free conditions, it is equivalent to or better than 10% serum. It leads to the effect of promoting cell proliferation. Further, in this medium, mesenchymal stem cells can be cultured without serum while maintaining the differentiation ability and enhancing the maintenance ability. Further, in this medium, serum-free culture of bone marrow-derived MSC, fat-derived MSC, and synovium-derived MSC is possible.
  • the present invention provides a method for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved under serum-free conditions.
  • the method for producing a cell preparation according to the present invention allows mesenchymal stem cells to grow in serum-free medium A containing FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid. It includes a proliferation step and a screening step for screening mesenchymal stem cells having maintained or improved immunosuppressive ability from mesenchymal stem cells after the proliferation step.
  • mesenchymal stem cells are cultured in serum-free medium A containing FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid. And expand mesenchymal stem cells.
  • serum-free medium is intended to be a serum-free medium
  • serum-free culture is intended to be a serum-free culture.
  • low serum culture is a culture using a medium containing less serum than a general serum-containing medium (for example, a medium containing 10% FBS) and a general serum-containing medium. It is intended that the culture period using the serum-containing medium is shorter than the culture.
  • the “cell preparation” is a therapeutic agent formulated into a cell, which is used for regenerative medicine as a material for regenerative medicine, and the cell is formulated without changing its function in its original state. It includes not only those but also those obtained by formulating cells whose functions such as differentiation ability and immunosuppressive ability are improved by culturing and proliferating under specific conditions.
  • mesenchymal stem cells are not only derived from adult tissues such as bone marrow, adipocytes, synovial cells, alveolar bone, periodontal ligament, but also various cells of placenta, umbilical cord blood, fetus Although it is preferable that it is a human mesenchymal stem cell including those isolated from humans, it may be a mesenchymal stem cell derived from a non-human animal such as a rat or a mouse.
  • the basal medium for constituting the serum-free medium A used in the growth step is not particularly limited as long as it is a well-known animal cell medium in the art.
  • Preferred basal media include, for example, Ham's F12 medium and DMEM medium. RPMI-1640 medium, MCDB medium, and the like. These basal media may be used alone or in combination.
  • the basal medium for constituting the serum-free medium A is preferably a medium in which MCDB and DMEM are mixed at a ratio of 1: 1.
  • serum-free medium A in which FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid are added to the basal medium may be used in the growth step.
  • the content of FGF with respect to the basal medium is preferably 0.1 to 100 ng / ml, more preferably 3 ng / ml at the final concentration.
  • the PDGF content in the basal medium is preferably 0.5 to 100 ng / ml, more preferably 10 ng / ml, at the final concentration.
  • the content of TGF- ⁇ with respect to the basal medium is preferably 0.5 to 100 ng / ml, more preferably 10 ng / ml, at the final concentration.
  • the content of HGF with respect to the basal medium is preferably 0.1 to 50 ng / ml, more preferably 5 ng / ml, at the final concentration.
  • the EGF content in the basal medium is preferably 0.5 to 200 ng / ml, more preferably 20 ng / ml, at the final concentration.
  • the total content of phospholipids with respect to the basal medium is preferably 0.1 to 30 ⁇ g / ml, more preferably 10 ⁇ g / ml in the final concentration.
  • the total content of fatty acids in the basal medium is preferably 1/1000 to 1/10 of the basal medium, more preferably 1/100.
  • examples of the phospholipid contained in the serum-free medium A include phosphatidic acid, lysophosphatidic acid, phosphatidylinositol, phosphatidylserine, phosphati Examples thereof include dilethanolamine, phosphatidylcholine, and phosphatidylglycerol, and these phospholipids may be contained alone or in combination.
  • the serum-free medium A may contain a combination of phosphatidic acid and phosphatidylcholine, and these phospholipids may be derived from animals or plants. Good.
  • the fatty acid contained in the serum-free medium A examples include linoleic acid, oleic acid, linolenic acid, arachidonic acid, myristic acid, palmitoyl acid, palmitic acid, stearic acid, and the like.
  • the additive may contain these fatty acids alone or in combination.
  • the serum-free medium A according to the present embodiment may further contain cholesterol in addition to the fatty acid.
  • FGF is intended to be a growth factor selected from the fibroblast growth factor (FGF) family and is preferably FGF-2 (bFGF). May be selected from other FGF families such as -1.
  • FGF fibroblast growth factor
  • PDGF is intended to be a growth factor selected from the platelet derived growth factor (PDGF) family, and is preferably PDGF-BB or PDGF-AB.
  • TGF- ⁇ is a growth factor selected from the transforming growth factor- ⁇ (TGF- ⁇ ) family, and is TGF- ⁇ 3. Preferably, it may be selected from other TGF- ⁇ families.
  • HGF is intended to be a growth factor selected from the hepatocyte growth factor family
  • EGF is selected from the epidermal growth factor (EGF) family. Growth factors are contemplated.
  • the serum-free medium A is at least selected from the group consisting of a connective tissue growth factor (CTGF), a vascular endothelial growth factor (VEGF), and an ascorbic acid compound. Two factors may further be contained.
  • CTGF connective tissue growth factor
  • VEGF vascular endothelial growth factor
  • ascorbic acid compound Two factors may further be contained.
  • ascorbic acid compound is intended to be ascorbic acid (vitamin C) or ascorbic acid diphosphate, or a similar compound.
  • the above-mentioned growth factors contained in the serum-free medium A may be natural or may be produced by genetic recombination.
  • the serum-free medium A preferably contains a lipid antioxidant.
  • the lipid antioxidant contained in serum-free medium A can be DL- ⁇ -tocopherol acetate (vitamin E).
  • the serum-free medium A may further contain a surfactant.
  • the surfactant contained in serum-free medium A can be Pluronic F-68 or Tween 80.
  • Serum-free medium A may further contain insulin, transferrin and selenate.
  • insulin may be an insulin-like growth factor and may be derived from natural cells or produced by genetic recombination.
  • the culture medium additive according to the present invention may further contain dexamethasone or other glucocorticoids.
  • the above-described serum-free medium A is seeded with mesenchymal stem cells isolated from animal tissues or cells such as humans by a conventionally known method and cultured until they grow to a desired number.
  • mesenchymal stem cells isolated from animal tissues or cells such as humans by a conventionally known method and cultured until they grow to a desired number.
  • 1 to 2 ⁇ 10 4 mesenchymal stem cells are preferably seeded per 1 ml of medium
  • the culture temperature is 37 ° C. ⁇ 1 ° C.
  • the culture time is 48 to 96 hours
  • mesenchymal stem cells having maintained or improved immunosuppressive ability can be obtained efficiently and in large quantities.
  • the culture vessel used for the culture is not particularly limited as long as the mesenchymal stem cells can grow.
  • the mesenchymal stem cells can grow.
  • cell proliferation may be affected by the type of culture vessel used.
  • a culture vessel suitable for proliferation is used for each mesenchymal stem cell to be proliferated in the proliferation process (hereinafter also referred to as “proliferation target cell”). It is preferable to perform the proliferation step.
  • Examples of a method for selecting a culture vessel suitable for the growth of cells to be proliferated include a method for causing the cells to be proliferated to select an optimal culture vessel. Specifically, multiple types of culture containers are prepared, the cells to be proliferated are grown under the same culture conditions except that the types of culture containers are different, and the number of cells after 2 weeks from the start of the culture is measured by a known method. And it can be judged that it is a culture container suitable for the proliferation of a proliferation object cell in an order from a thing with many cells.
  • the cells to be proliferated are proliferated in order from the shortest period in which the number of cells reaching 80 to 90% of the confluent state is reached even before two weeks have passed since the start of the culture. It can be determined that the culture vessel is suitable.
  • the culture vessel may be used.
  • the manufacturing method according to the present invention is for selecting a culture container suitable for the proliferation of cells to be proliferated.
  • a “culture vessel selection step” (described later) may be further included before the growth step.
  • cell adhesion molecule examples include fibronectin, collagen, gelatin and the like. One type of these cell adhesion molecules may be used alone, or a plurality of types may be used in combination.
  • the content of the cell adhesion molecule with respect to the serum-free medium A is preferably 1 to 50 ⁇ g / ml, more preferably 5 ⁇ g / ml in the final concentration.
  • the adhesion efficiency of the cells to be proliferated to the culture vessel can be improved by adding the fibronectin to the serum-free medium A so that the final concentration is 5 ⁇ g / ml. it can.
  • mesenchymal stem cells may be passaged at least once. Since mesenchymal stem cells proliferate in an anchorage-dependent manner, when the mesenchymal stem cells are locally biased and proliferated, the culture conditions can be changed by substituting the mesenchymal stem cells during the growth process. Can be improved.
  • the method for subculturing mesenchymal stem cells is not particularly limited, and it can be performed using a conventionally known method for subculturing mesenchymal stem cells. Since the state of mesenchymal stem cells after passage is good, in the above proliferation step, when the passage is performed, the above mesenchymal stem cells are used using a cell exfoliant that does not contain a component derived from mammals or microorganisms. Is preferably peeled off. Examples of the above-mentioned “cell detachment agent that does not contain components derived from mammals and microorganisms” include ACCUTASE (Innovative Cell Technologies, Inc.).
  • mesenchymal stem cells after the first passage (P1) after collection from animal tissues such as humans for the proliferation step.
  • mesenchymal stem cells having maintained or improved immunosuppressive ability are screened from the mesenchymal stem cells after the above-described proliferation step.
  • the mesenchymal stem cells grown in the above-described serum-free medium A after the growth step are maintained at least in the immunosuppressive ability, and the immunosuppressive ability is further enhanced. Therefore, by screening such mesenchymal stem cells on the basis of immunosuppressive ability, mesenchymal stem cells having maintained or improved immunosuppressive ability can be selected.
  • the above-mentioned serum-free medium A does not contain a heterologous protein, and mesenchymal stem cells cultured in the medium maintain the function as stem cells.
  • the mesenchymal stem cells cultured in the above-described serum-free medium A have a high proliferative ability and a high activity showing an immunosuppressive effect as compared with mesenchymal stem cells cultured in a fetal bovine serum-containing medium. Therefore, when the mesenchymal stem cells cultured in the above-described serum-free medium A are used for transplantation treatment, synergistic effects can be expected because the number of cells that retain the characteristics increases and the activity of individual cells is high.
  • the inventors of the present invention have investigated the tumorigenicity that is concerned from the effect of the growth ability of the above-mentioned serum-free medium A using the in vitro vitro agar culture method and the insensitive in vivo immunodeficient mouse (NOG mouse). Each was examined by a neoplastic test method. Specifically, 3 lots of synovial membrane-derived human mesenchymal stem cells and 1 lot of bone marrow-derived human mesenchymal stem cells were cultured in the above-described serum-free medium A to obtain 1,000,000 cultured cells. Were transplanted into the medium for soft agar culture and 10 subcutaneous sites of NOG mice.
  • immunosuppressive ability refers to the ability to suppress immune rejection that occurs when allogeneic or allogeneic cells are transplanted to various immunity, such as suppressing the proliferation of T cells. It is intended to have the ability to suppress immune responses caused by these by affecting the function of effector cells. This is part of the anti-inflammatory ability.
  • “maintaining immunosuppressive ability” means that the immunosuppressive ability originally possessed by mesenchymal stem cells is not lost by the above-described proliferation step, and “improves immunosuppressive ability” "Is intended to improve the immunosuppressive ability of mesenchymal stem cells before and after the above-described proliferation step.
  • the immunosuppressive ability is obtained by co-culturing the proliferated mesenchymal stem cells and immune cells in the serum-free medium A after the above proliferation step, and evaluating the number of immune cells in the medium after the co-culture.
  • the present invention is not limited to this.
  • T cells were used as immune cells, as shown in Examples described later, the amount of T cells increased or the amount of cytokine production was evaluated, and B cells or activated NK cells were used as immune cells.
  • mesenchymal stem cells having maintained or improved immunosuppressive ability can be screened by evaluating the increased amount of these cells.
  • dendritic cells when used as immune cells, mesenchymal stem cells having maintained or improved immunosuppressive ability can be screened by evaluating their differentiation, maturation, activation and the like.
  • the immune cells used for such screening are preferably T cells, B cells, or activated NK cells, more preferably T cells or B cells, and most preferably T cells.
  • the production method according to the present invention may further include a second screening step of screening mesenchymal stem cells not having tumorigenicity from mesenchymal stem cells after the above-described proliferation step.
  • the mesenchymal stem cells that have grown in the above-described serum-free medium A after the growth step are selectively increased in mesenchymal stem cells that do not have tumorigenicity. Therefore, mesenchymal stem cells that do not have tumorigenicity can be selected by screening such mesenchymal stem cells on the basis of tumorigenicity. And the transplantation treatment of the mesenchymal stem cell which does not have tumorigenicity is implement
  • a mesenchymal stem cell that does not have tumorigenicity means that while the above-described method for confirming the presence or absence of tumorigenicity is confirmed to have no tumorigenicity. Intended for leaf stem cells.
  • the order of performing the first screening step and the second screening step is not particularly limited. That is, the first screening step may be performed before the second screening step, or the first screening step may be performed after the second screening step.
  • the production method according to the present invention may further include a serum culture step of culturing mesenchymal stem cells after the proliferation step in a serum-containing medium before the screening step.
  • a serum culture step of culturing mesenchymal stem cells after the proliferation step in a serum-containing medium before the screening step.
  • the mesenchymal stem cells cultured without serum in the proliferation step are cultured in a serum-containing medium.
  • the mesenchymal stem cells after the serum culture process are subjected to a screening process.
  • the serum-containing medium used in the serum culture step a conventionally known serum-containing medium can be used, and a 10% FBS-containing medium obtained by adding 10% FBS to the above-described basal medium is used as the serum-containing medium. May be.
  • the mesenchymal stem cells obtained in the growth step are seeded and cultured in such a serum-containing medium.
  • the number of mesenchymal stem cells is preferably 1 to 2 ⁇ 10 4 per 1 ml of medium
  • the culture temperature is 37 ° C. ⁇ 1 ° C.
  • the culture time is 48 to 96 hours
  • 5% CO 2. 2 is preferable.
  • mesenchymal stem cells cultured in the serum-containing medium are subjected to a screening step, and mesenchymal stem cells whose immunosuppressive ability is maintained or improved are selected.
  • mesenchymal stem cells are pre-cultured in serum-free medium A and then main-cultured in a serum-containing medium, so that both the pre-culture and the main culture have immunosuppressive effects equivalent to or higher than those cultured in a serum-containing medium.
  • the immunosuppressive effect of mesenchymal stem cells can be exerted more quickly.
  • serum since serum is used only during main culture, the serum content is low and low serum culture can be realized.
  • the production method according to the present invention is a pre-growth method for proliferating mesenchymal stem cells in a serum-free medium B containing FGF, PDGF, EGF, at least one phospholipid, and at least one fatty acid before the proliferation step.
  • a process may be further performed.
  • the “serum-free medium B” is different from the serum-free medium A described in the “Proliferation step” above in that it does not contain HGF and TGF- ⁇ .
  • the components other than HGF and TGF- ⁇ (FGF, PDGF, EGF, at least one phospholipid, and at least one fatty acid) and the basal medium are as described for the serum-free medium A in the “Proliferation step” above. Since there is, explanation is omitted here.
  • the serum-free medium B preferably contains a lipid antioxidant, like the serum-free medium A.
  • the serum-free medium B may further contain a surfactant.
  • the serum-free medium B may further contain insulin, transferrin, and selenate.
  • the serum-free medium B may further contain dexamethasone or other glucocorticoids. Since these components are also as described for the serum-free medium A in the above-mentioned “Proliferation step”, the description thereof is omitted here.
  • the content of the above-mentioned components contained in the serum-free medium B is contained in the serum-free medium A as long as it is within the content range described for the serum-free medium A in the above “Proliferation step”.
  • the content of each component may be the same or different.
  • the above-described serum-free medium B is seeded with mesenchymal stem cells isolated from animal tissues such as humans by a conventionally known method, and cultured until they grow to a desired number.
  • mesenchymal stem cells isolated from animal tissues such as humans by a conventionally known method
  • the culture temperature is 37 ° C. ⁇ 1 ° C.
  • the culture time is 3 to 14 day between, and is preferably below 5% CO 2.
  • the mesenchymal stem cells subjected to the pre-proliferation step there is no particular limitation on the mesenchymal stem cells subjected to the pre-proliferation step, but the initial mesenchymal stem cells, that is, cells that have not been subcultured after being collected from animal tissues such as humans. preferable. As shown in the examples described later, the number of mesenchymal stem cells obtained in the proliferation step is significantly increased by proliferating the initial mesenchymal stem cells in serum-free medium B before being subjected to the proliferation step. It becomes possible.
  • the method for culturing mesenchymal stem cells in the pre-proliferation step is, for example, seeding mesenchymal stem cells in a serum-free medium B at a seeding concentration of 2 ⁇ 10 5 cells / cm 2 , and then one week To the extent, 10% of the serum-free medium B of the culture medium at the time of seeding is added every 2 days, and the cells are grown until the number of cells reaches 70-80% of the confluent state.
  • the mesenchymal stem cells previously cultured in the serum-free medium B for the proliferation step it is possible to efficiently obtain a large amount of mesenchymal stem cells whose immunosuppressive ability is maintained or improved.
  • each mesenchymal stem cell to be proliferated in the pre-proliferation step (hereinafter also referred to as “pre-proliferation target cell”) is suitable for proliferation. It is preferable to perform the pre-growth step using the cultured vessel.
  • the method for selecting a culture vessel suitable for the growth of the pre-proliferation target cells is as described in the above-mentioned “Proliferation step”, and thus the description thereof is omitted here.
  • the serum-free medium B may further contain a cell adhesion molecule.
  • the cell adhesion molecule is the same as described in the above-mentioned “Proliferation step”, and the description thereof is omitted here.
  • the mesenchymal stem cells may be passaged at least once in the pre-growth step.
  • the culture conditions can be improved by passage of mesenchymal stem cells in the middle of the pre-growth step.
  • the pre-growth step is preferably performed during the period from the primary culture (P0) to the third passage (P3).
  • the method for subculturing mesenchymal stem cells in the middle of the pre-proliferation step and the method for substituting cells after the pre-proliferation step for the proliferation step are as described above in the section of “Proliferation step”. Then, explanation is omitted.
  • the production method according to the present invention may further include a culture vessel selection step of selecting a culture vessel suitable for the growth of mesenchymal stem cells before the growth step (or before the pre-growth step). .
  • the method for selecting a culture vessel suitable for the growth of mesenchymal stem cells is the same as described in the above-mentioned “Proliferation step”, and the description thereof is omitted here.
  • the present invention relates to a serum-free medium additive for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved.
  • the culture medium additive according to the present invention contains FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid.
  • the medium additive according to the present invention is added to a conventionally known basal medium, and a serum-free medium (serum-free medium A) for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved.
  • serum-free medium serum-free medium A
  • Examples of the phospholipid contained in the culture medium additive according to the present invention include phosphatidic acid, lysophosphatidic acid, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, and phosphatidyl. Examples thereof include choline and phosphatidylglycerol, and the culture medium additive according to the present invention may contain these phospholipids alone or in combination. In one embodiment, the culture medium additive according to the present invention contains phosphatidic acid and phosphatidylcholine in combination. Moreover, these phospholipids may be derived from animals or plants.
  • Examples of the fatty acid contained in the culture medium additive according to this embodiment include linoleic acid, oleic acid, linolenic acid, arachidonic acid, myristic acid, palmitoyl acid, palmitic acid, and stearic acid.
  • the culture medium additive according to the embodiment may contain these fatty acids alone or in combination.
  • the culture-medium additive which concerns on this embodiment may contain cholesterol further in addition to the said fatty acid.
  • FGF is intended to be a growth factor selected from the fibroblast growth factor (FGF) family and is preferably FGF-2 (bFGF). May be selected from other FGF families such as -1.
  • FGF fibroblast growth factor
  • PDGF is intended to be a growth factor selected from the platelet derived growth factor (PDGF) family, and is preferably PDGF-BB or PDGF-AB.
  • TGF- ⁇ is a growth factor selected from the transforming growth factor- ⁇ (TGF- ⁇ ) family, and is TGF- ⁇ 3. Preferably, it may be selected from other TGF- ⁇ families.
  • HGF is intended to be a growth factor selected from the hepatocyte growth factor family
  • EGF is selected from the epidermal growth factor (EGF) family. Growth factors are contemplated.
  • the serum-free medium A is at least selected from the group consisting of a connective tissue growth factor (CTGF), a vascular endothelial growth factor (VEGF), and an ascorbic acid compound. Two factors may further be contained.
  • CTGF connective tissue growth factor
  • VEGF vascular endothelial growth factor
  • ascorbic acid compound Two factors may further be contained.
  • ascorbic acid compound is intended to be ascorbic acid (vitamin C) or ascorbic acid diphosphate, or a similar compound.
  • the growth factor contained in the culture medium additive according to the present invention may be natural or produced by genetic recombination.
  • the culture medium additive according to the present invention preferably contains a lipid antioxidant.
  • the lipid antioxidant contained in the medium additive according to the present embodiment may be DL- ⁇ -tocopherol acetate (vitamin E).
  • the culture medium additive according to the present invention may further contain a surfactant.
  • the surfactant contained in the culture medium additive according to the present embodiment may be Pluronic F-68 or Tween 80.
  • the medium additive according to the present invention may further contain insulin, transferrin, and selenate.
  • insulin may be an insulin-like growth factor and may be derived from natural cells or produced by genetic recombination.
  • the culture medium additive according to the present invention may further contain dexamethasone or other glucocorticoids.
  • the present invention provides a serum-free medium additive for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved.
  • the culture medium additive (medium additive A) according to the present invention contains FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid.
  • the culture medium additive according to the present invention may further contain a cell adhesion molecule.
  • the culture medium additive kit according to the present invention includes FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid, even if they are contained in the same container. You may be prepared for. Moreover, the culture medium additive kit according to the present invention may further contain a cell adhesion molecule.
  • the cell adhesion molecule is the same as described in the “Proliferation step” in the section of “(1) Method for producing cell preparation containing mesenchymal stem cells” in the present specification, and therefore, the description thereof is omitted here.
  • the medium additive kit according to the present invention is added to a conventionally known basal medium to produce a serum-free medium (serum-free medium A) for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved. ) Can be used.
  • composition is a form in which each main component is contained in one substance
  • kit is a form in which at least one of each main ingredient is contained in another substance. It is intended to be in form. Therefore, it is easily understood that the growth factor, phospholipid and fatty acid provided in the culture medium additive kit according to the present invention are the same as those described above for the culture medium additive.
  • the kit according to the present invention is a kit for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved, and the culture medium additive (medium additive A) according to the present invention. At least.
  • the kit according to the present invention may further include a medium additive B containing FGF, PDGF, EGF, at least one phospholipid, and at least one fatty acid.
  • the description of “serum-free medium B” can be read as the description of “medium additive B”.
  • the present invention provides a serum-free culture medium for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved.
  • the culture medium according to the present invention contains FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid.
  • the culture medium according to the present invention can be used as a serum-free medium (serum-free medium A) for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved.
  • the culture medium according to the present invention only needs to contain FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid, and these components are added simultaneously to the basal medium. May also be added separately. That is, it can be said that the culture medium according to the present invention only needs to contain the components contained in the above-described medium additive or the components provided in the medium additive kit.
  • the basal medium for constituting the culture medium according to the present invention is not particularly limited as long as it is a well-known medium for animal cells in the art.
  • Preferred basal media include, for example, Ham's F12 medium, DMEM medium, and RPMI. -1640 medium, MCDB medium and the like. These basal media may be used alone or in combination.
  • the basal medium for constituting the culture medium according to the present invention is preferably a medium in which MCDB and DMEM are mixed at a ratio of 1: 1.
  • the present invention provides a culture method for producing a cell preparation containing mesenchymal stem cells whose immunosuppressive ability is maintained or improved.
  • the culture method according to the present invention comprises a mesenchymal system in a serum-free medium (serum-free medium A) containing FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid. It includes a step of culturing stem cells (culturing step A).
  • serum-free medium A serum-free medium containing FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid. It includes a step of culturing stem cells (culturing step A).
  • the above-described serum-free culture medium may be used when culturing mesenchymal stem cells.
  • the culture method according to the present invention cultivates mesenchymal stem cells in the serum-free medium B containing FGF, PDGF, EGF, at least one phospholipid, and at least one fatty acid before the culture step A.
  • the process (culture process B) to perform may be further included.
  • the “culturing step A” and the “culturing step B” correspond to the “proliferation step” and the “pre-proliferation step” in the method for producing a cell preparation containing mesenchymal stem cells according to the present invention, respectively.
  • the description of the “proliferation step” and the “pre-proliferation step” in the section “(1) Method for producing cell preparation containing mesenchymal stem cells” in the present specification is referred to as “culture step A” and It can be read as an explanation for “culture step B”.
  • the culture method according to the present invention includes the step of simultaneously adding FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid to the basal medium.
  • the culture method according to the present invention may include a step of simultaneously adding FGF, PDGF, EGF, at least one phospholipid, and at least one fatty acid to the basal medium.
  • the basal medium is not particularly limited as long as it is a medium for animal cells well known in the art as described above.
  • mesenchymal stem cells can be grown at a rate equal to or higher than that in a serum-containing medium.
  • the immunosuppressive ability of the proliferated mesenchymal stem cells is maintained or improved.
  • the mesenchymal stem cells proliferated in the present invention are selectively increased in mesenchymal stem cells not having tumorigenicity.
  • the mesenchymal stem cells proliferated in the present invention maintain or improve the differentiation ability (see Patent Document 1).
  • the mesenchymal stem cells contained in the cell preparation produced by the present invention can be said to maintain the function of affecting the immune effector cells inherent in the mesenchymal stem cells, the mesenchymal stem cells further
  • the cell preparation produced according to the present invention can be expected to be applied to treatments that have an immunomodulatory action and an immunotolerant action and that expect these actions.
  • a function as an anti-inflammatory agent in transplantation treatment can be expected due to the anti-inflammatory action of mesenchymal stem cells.
  • the cell preparation is also expected to have an anti-aging effect due to anti-inflammatory action.
  • the cell preparation produced according to the present invention is not only for treatment of local diseases administered to sites requiring transplantation of mesenchymal stem cells (local administration), but also systemically administered by being administered intravenously etc. Therefore, it is expected that treatment for strong immune rejection caused by acute GVHD caused by bone marrow transplantation and the like will be more effectively performed, and the survival rate of human beings will be significantly improved.
  • the cell preparation produced by the present invention is produced by serum-free culture, useful growth factors and differentiation factors are not non-specifically adsorbed to serum and other transplant materials such as ceramics. . Therefore, the tissue regeneration ability by transplantation of the cell preparation produced according to the present invention is much higher, and as a result, the therapeutic effect is also high. Furthermore, it goes without saying that treatment can be performed by combining local administration and systemic administration.
  • the mesenchymal stem cells contained in the cell preparation produced according to the present invention maintain or improve immunosuppressive ability and suppress immune rejection at the time of transplantation, so that tissues and cells other than self are transplanted to others. It can be applied to the treatment by autologous transplantation (different donor and recipient). Furthermore, it can be said that it can be suitably used not only for allotransplantation (allogeneic transplantation) using human tissues or human cells but also for xenotransplantation (xenotransplantation) using animal tissues or animal cells other than humans.
  • the cell preparation produced by the present invention exerts an immunosuppressive effect earlier than mesenchymal stem cells obtained using only conventional serum-containing media, the therapeutic effect can be expressed early at the time of transplantation. Expected and expected to increase healing rate.
  • the method for producing a cell preparation containing mesenchymal stem cells according to the present invention further includes a serum culture step of culturing the mesenchymal stem cells after the above-described proliferation step in a medium containing serum before the above-described screening step. You may do it.
  • the method for producing a cell preparation containing mesenchymal stem cells according to the present invention includes a serum-free medium B containing FGF, PDGF, EGF, at least one phospholipid, and at least one fatty acid before the above-described proliferation step. It is preferable that the method further includes a pre-growth step for growing mesenchymal stem cells.
  • a second screening step of screening mesenchymal stem cells not having tumorigenicity from mesenchymal stem cells after the above-described proliferation step may be further included.
  • the method for producing a cell preparation containing mesenchymal stem cells it is preferable to proliferate the mesenchymal stem cells using a culture container suitable for the proliferation of the mesenchymal stem cells in the proliferation step. .
  • the serum-free medium A further contains a cell adhesion molecule in the growth step.
  • the mesenchymal stem cells may be passaged at least once in the proliferation step.
  • the method for producing a cell preparation containing mesenchymal stem cells uses the cell peeling agent that does not contain a component derived from a mammal or a microorganism, when performing subculture in the growth step. It is preferable to exfoliate leaf stem cells.
  • the method for producing a cell preparation containing mesenchymal stem cells according to the present invention further includes a culture vessel selection step of selecting a culture vessel suitable for the growth of mesenchymal stem cells before the above-described proliferation step. Also good.
  • the phospholipid is phosphatidic acid, lysophosphatidic acid, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine. , Phosphatidylcholine, and phosphatidylglycerol.
  • the fatty acid is a group consisting of linoleic acid, oleic acid, linolenic acid, arachidonic acid, myristic acid, palmitoyl acid, palmitic acid, and stearic acid. It is characterized by being more selected.
  • the medium additive according to the present invention may further contain a cell adhesion molecule.
  • kit according to the present invention may further include a medium additive B containing FGF, PDGF, EGF, at least one phospholipid, and at least one fatty acid.
  • ⁇ 2-2 Stimulation with anti-CD3 / anti-CD28>
  • Mouse spleen cells (1 ⁇ 10 5 ) were seeded in each well of a 96-well plate and stimulated with 2.5 ⁇ g / ml anti-CD3 and 0.5 ⁇ g / ml anti-CD28.
  • FIG. 1 is a graph showing the immunosuppressive effect of bone marrow-derived hMSCs on anti-CD3 and anti-CD28 stimulated T cell proliferation responses when mouse-derived activated T cells and bone marrow-derived hMSCs are co-cultured in MSCGM medium.
  • 2 is a graph showing the immunosuppressive effect of bone marrow-derived hMSCs on anti-CD3 and anti-CD28 stimulated T cell proliferation responses when mouse-derived activated T cells and bone marrow-derived hMSCs are co-cultured in medium 1.
  • FIG. 3 is a graph showing the immunosuppressive effect of bone marrow-derived hMSCs on PMA and ionomycin-stimulated (mitogen-stimulated) T cell proliferation responses when mouse-derived activated T cells and bone marrow-derived hMSCs were co-cultured in MSCGM medium.
  • FIG. 4 is a graph showing the immunosuppressive effect of bone marrow-derived hMSCs on PMA and ionomycin-stimulated (mitogen-stimulated) T cell proliferation responses when mouse-derived activated T cells and bone marrow-derived hMSCs were co-cultured in medium 1. is there.
  • bone marrow-derived hMSCs cultured in medium 1 were stimulated by mitogen-stimulated T cells and anti-CD3 / anti-CD28 stimulation, as were bone marrow-derived hMSCs cultured in serum-containing MSCGM medium. Inhibited the proliferation of activated T cells. That is, it was shown that the bone marrow-derived hMSC cultured using the serum-free medium 1 maintains the immunosuppressive effect.
  • Example 2 The immunosuppressive effect of bone marrow-derived hMSC on T cell proliferation by mouse lymphocyte mixed reaction (MLR) was examined.
  • the experimental method and the cells and medium used are the same as in Example 1.
  • 2 ⁇ 10 4 bone marrow-derived hMSCs were seeded in each well of a 96-well plate and performed in the same manner as in Example 1.
  • mouse spleen cells (2 ⁇ 10 5 ) and mouse bone marrow-derived dendritic cells (BMDC) (3.3 ⁇ 10 4 ) are co-cultured in each well of a 96-well plate. (MLR stimulation).
  • BMDC collects bone marrow cells from C3H (H-2k) purchased from Charles River Japan Co., Ltd., hemolyzes them, and then uses 1% FBS / Advanced PRMI (GIBCO) containing GM-CSF for one day. The medium was changed every other day, stimulated with 100 ng / ml LPS on the 6th day of culture, cultured overnight, washed, irradiated with gamma rays using a Gamma cell 40 executor, and used for experiments in which cell division was inhibited. .
  • C3H H-2k
  • GEBCO FBS / Advanced PRMI
  • FIGS. 5 and 6 are graphs showing the immunosuppressive effect of bone marrow-derived hMSCs on T cell proliferation by MLR. Values are shown as mean ⁇ standard deviation. Similar results were obtained from three or more independent experimental results.
  • FIG. 5 shows the results on the third day of culture
  • FIG. 6 shows the results on the fourth day of culture.
  • M shows the result when pre-cultured with MSCGM medium and then cultured with serum-containing medium
  • S shows the result of pre-culture with medium 1 and then cultured with serum-containing medium.
  • bone marrow-derived hMSC pre-cultured in medium 1 maintained the effect of inhibiting activated T cell proliferation in the same manner as bone marrow-derived hMSC pre-cultured in MSCGM medium.
  • bone marrow-derived hMSC pre-cultured in MSCGM medium showed an immunosuppressive effect on the 4th day from the start of co-culture, whereas bone marrow-derived hMSC pre-cultured in medium 1 was 3 days after the start of co-culture.
  • the bone marrow origin hMSC pre-cultured with the culture medium 1 showed the same result also with respect to mitogen stimulation T cell proliferation and anti-CD3 / anti-CD28 stimulation T cell proliferation.
  • bone marrow-derived hMSCs cultured in medium 1 not only maintained the cytostatic effect of activated T cells, but were also cultured in MSCGM medium (serum-containing medium). It was confirmed that the cell proliferation inhibitory effect of activated T cells was exhibited earlier than bone marrow-derived hMSC.
  • MSCGM medium serum-containing medium
  • the cell proliferation inhibitory effect of activated T cells was exhibited earlier than bone marrow-derived hMSC.
  • MSCGM medium serum-containing medium
  • culturing bone marrow-derived hMSCs in medium 1 is not only advantageous for growing a necessary number of cells in a short period of time, but also has an immunosuppressive effect maintained. From this, it can be said that the culture medium 1 is particularly effective for culturing bone marrow-derived hMSC aimed at clinical application.
  • adipose tissue-derived mesenchymal stem cells (adipose tissue-derived hMSC) were isolated and cultured by the following procedures (i) to (vii).
  • Adipose tissue was collected from a human and the adipose tissue was washed 2 to 3 times using serum-free DMEM medium.
  • the washed adipose tissue was finely cut with scissors (1 mm 3 ).
  • Adipose tissue was treated using a 0.1-0.2% collagenase (GIBCO 17100-017) solution with stirring with a stir bar (37 ° C., 30-60 minutes).
  • the washed cells are seeded on a culture plate (BECTON, DICKINSON (Falcon) 353047), and a serum-free medium 1 shown in Table 1 or a MEM medium (sigma D6046) containing 10% FBS (“ 10% FBS-MEM ").
  • FIG. 7 is a diagram showing the growth state of adipose tissue-derived hMSC on the 8th day from the start of culture.
  • the adipose tissue-derived hMSC was observed at a magnification of 40 times.
  • the number of cells significantly increased (2 to 3 times) in the adipose tissue-derived hMSC cultured in medium 1 as compared with the adipose tissue-derived hMSC cultured in 10% FBS-MEM. It was shown that.
  • the initial synovium-derived hMSC obtained by centrifugation was cultured using the following medium.
  • the medium 2 as the serum-free medium B is a medium obtained by removing HGF and TGF- ⁇ from the medium 1 shown in Table 1.
  • -DMEM containing 10% FBS (10% FBS-DMEM) (sigma D6046, FBS; Hyclone, PS (+)) -Medium 1 -Medium 2
  • the culture was performed in a carbon dioxide incubator (95% air and 5% CO 2 ) maintained at 37 ° C.
  • FIG. 8 is a graph showing the growth-promoting effect of medium 1 and medium 2 on the initial synovial-derived hMSC
  • (a) is a graph showing the number of synovial-derived hMSC cells on the 12th day from the start of culture.
  • (B) is a figure which shows the proliferation state of synovium origin hMSC of the 12th day from culture
  • synovial membrane-derived hMSCs were observed at a magnification of 10 times.
  • the growth promoting effect of the medium 2 is remarkable for the initial synovial membrane-derived hMSC (8 times the case of using the medium 1 and 10% FBS-containing DMEM). It was confirmed that it was higher (40 times or more than when using).
  • the initial synovium-derived hMSCs obtained by centrifugation were cultured for 11 days using medium 2 and then cultured using the following medium.
  • -DMEM containing 10% FBS (10% FBS-DMEM) (sigma D6046, FBS; Hyclone, PS (+)) -Medium 1 -Medium 2
  • the culture was performed in a carbon dioxide incubator (95% air and 5% CO 2 ) maintained at 37 ° C.
  • FIG. 9 is a graph showing changes over time in the number of synovial cell-derived hMSCs from day 0 to day 68 of the start of culture.
  • the synovial-derived hMSC is cultured by using the medium 2 and then culturing the synovial-derived hMSC using the medium 1 for the initial synovial-derived hMSC.
  • synovial membrane-derived hMSCs obtained by centrifugation were transferred to a flask, and culture medium 2 was used from the first culture (P0) to the third passage (P3).
  • the culture medium 1 shown in Table 1 was used between the first round (P1) and the fourth passage (P4).
  • the culture was performed in a carbon dioxide incubator (95% air and 5% CO 2 ) maintained at 37 ° C.
  • -Flask 1 75 cm 2 flask made of Falcon-Flask 2: 75 cm 2 flask made of Sumitomo Bakelite (culture solution) The following culture solutions were used.
  • -DMEM containing 10% FBS (10% FBS-DMEM) (sigma D6046, FBS; Hyclone, PS (+))
  • -Medium 1 Medium 1 + fibronectin (final concentration 5 ⁇ g / mL)
  • the following bone marrow-derived mesenchymal stem cells (bone marrow-derived hMCS) were used.
  • -Cell 1 (P2) 1 ⁇ 10 6 cells that were generated and passaged on day 12 of culture.
  • -Cell 2 (P3) 1 ⁇ 10 6 cells, which were raised and passaged on the 30th day of culture. The growth speed is slow.
  • -Cell 3 (P1) 1 ⁇ 10 6 cells that were generated and passaged on day 12 of culture.
  • ⁇ Cell 2> At the fourth passage, cells were seeded in a flask and culture was started. On the fifth day from the start of culture, the growth state of the cells was visually observed using an optical microscope.
  • ⁇ Cell 3> At the second passage, cells were seeded in a flask and culture was started. On the fifth day from the start of culture, the growth state of the cells was visually observed using an optical microscope.
  • FIG. 10 is a diagram showing the proliferation state of bone marrow-derived hMSC (cell 1) on the fifth day from the start of culture.
  • FIG. 10 bone marrow-derived hMSCs were observed with a magnification of 40 times.
  • FIG. 11 is a diagram showing the state of proliferation of bone marrow-derived hMSC (cell 2) on the fifth day from the start of culture.
  • bone marrow-derived hMSCs were observed with a magnification of 40 times.
  • condition B cell 2 proliferated to about 70 to 80% of the confluent state
  • condition E it proliferated to about 90% of the confluent state and was almost confluent.
  • condition B and condition E compared to condition A and condition D, the cells were atrophied and a hole-like space was formed.
  • condition C and condition F cell 2 grew to about 80% of the confluent state.
  • the cell adhesion state was the same as in Condition B and Condition E, but the number of cells was slightly smaller.
  • FIG. 12 is a diagram showing the proliferation state of bone marrow-derived hMSC (cell 3) on the fifth day from the start of culture.
  • FIG. 12 bone marrow-derived hMSCs were observed with a magnification of 40 times.
  • condition A and D the cells 3 grew to about 80 to 90% of the confluent state and were in a slightly confluent state. Further, in condition B and condition E, part of the cells was detached in condition B, but in other cases, the cells proliferated to about 80 to 90% of the confluent state. Furthermore, in condition C and condition F, cell detachment was not observed as compared with condition B and condition E, and the cells grew to about 90% of the confluent state.
  • condition B and condition E cell proliferation ability was higher in condition E regardless of which cell line of cells 1 to 3 was used. That is, it was confirmed that flask 2 was more suitable than flask 1 for the growth of cells 1 to 3.
  • a soft agar medium (DMEM-10% FCS-0.6% agar) was added to each well, and after gelation, cells were suspended (DMEM-10% FCS-0. 4% agar) was added.
  • the cells were human chondrosarcoma cell line (OUMS-27, purchased from JCRB cell bank), normal human dermal fibroblasts (NHDF, purchased from Lonza), and the number of cells seeded per well was 0-10000. did.
  • the human chondrosarcoma cell line is a cancerous mesenchymal cell. Groups with 10% and 20% serum content of the culture solution added on the soft agar medium were prepared. The reason why serum was added to the culture solution in this experiment was to make the condition that the cells would proliferate more actively.
  • -DMEM containing 4.5 g / L glucose (DMEM 4.5 g / L glucose) Medium 1 (see Table 1)
  • DMEM 4.5 g / L glucose
  • OUMS-27 was considered to have poor colony formation in a low concentration glucose medium (1 g / ml), and a high concentration glucose-containing medium (commercially available product) was selected and used for culture.
  • FIG. 13 is a graph showing the effect of medium 1 on the growth of normal human dermal fibroblasts and human chondrosarcoma cell lines, where (a) shows the number of colonies of normal human dermal fibroblasts on day 14 from the start of culture. (B) is a graph showing the number of colonies of the human chondrosarcoma cell line on the 14th day from the start of culture. FIG. 13 shows the number of colonies having a size of 25 ⁇ m or more.
  • the culture medium 1 was used as the culture solution when 4.5 g / L glucose-containing DMEM was used as the culture solution.
  • the number of colonies formed is significantly larger than that of the case where the cells were formed, the cells were judged to be tumorigenic, and the culture solution used DMEM containing 4.5 g / L glucose.
  • the culture solution used DMEM containing 4.5 g / L glucose was used as the culture solution.
  • the present invention can provide a safer and more useful transplantation treatment material using mesenchymal stem cells, it can be suitably used for regenerative medicine such as transplantation treatment using mesenchymal stem cells. .

Abstract

 免疫抑制能を維持した間葉系幹細胞を含む細胞製剤を無血清又は低血清培養により製造する。FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する培地において、間葉系幹細胞を増殖させる増殖工程と、上記増殖工程後の間葉系幹細胞から、免疫抑制能を維持又は向上した間葉系幹細胞をスクリーニングするスクリーニング工程とを包含することを特徴とする間葉系幹細胞を含む細胞製剤の製造方法。

Description

間葉系幹細胞を含む細胞製剤及びその製造方法
 本発明は、間葉系幹細胞を含む細胞製剤及びその製造方法に関し、さらに当該製造方法に用いられる培地用添加剤、培養培地及びキット、並びにこれらを用いた培養方法に関する。
 間葉系幹細胞(Mesenchymal Stem Cell、MSC)は、骨髄、脂肪、滑膜、歯槽骨、歯根膜等の成人の組織からだけでなく、胎盤、臍帯血、臍帯の種々の細胞等から単離することができ、しかも生体外で培養し増幅できる。さらに、間葉系幹細胞は、複数の間葉系(骨芽細胞、脂肪細胞、軟骨細胞)だけでなく、非間葉系(神経前駆細胞、肝細胞)の系譜の細胞に分化可能な多分化能を有することから、再生医療や細胞治療の細胞源としての利用が期待されている。
 従来、間葉系幹細胞の培養には、ウシ胎児血清(FBS)を含有する培地が用いられている。ウシの血清にはロット差があるだけでなく、異種動物由来の血清タンパク質が間葉系幹細胞に混入し、移植の際に免疫応答を引き起こしてしまうという問題がある。仮に、ヒト血清を用いて培養したとしても、個体差により安定した培養が困難であり、またドナーの肉体的負担が大きい上に、高額となってしまう。
 したがって、より安全で安定した品質の間葉系幹細胞を供給するためには、その培養過程で、異種動物由来のタンパク質の混入が少ない無血清培地を用いるのがよいことが知られている。つまり間葉系幹細胞を無血清で培養して増殖させることが好ましい。特許文献1及び非特許文献1には、間葉系幹細胞の無血清培養が記載されている。特許文献1及び非特許文献1に記載のとおり間葉系幹細胞を無血清培養することによって、5~15%FBS含有培地における間葉系幹細胞の培養よりも優れた増殖促進効果が得られる上に、この培養により多分化能を維持(こう進)した間葉系幹細胞が得られる。
 また、間葉系幹細胞は、自身の免疫原性が低いだけでなく、様々な免疫エフェクター細胞(T細胞、B細胞、NK細胞、樹状細胞)の機能に影響を及ぼすことが示されている(非特許文献2~5)。したがって、免疫反応が関わる種々の疾患の治療に、間葉系幹細胞を応用することが期待されている(非特許文献6)。非特許文献7には、マウスリンパ球混合反応(MLR)によるT細胞の増殖を、間葉系幹細胞が抑制することが記載されている。
国際公開WO2007/080919号パンフレット(2007年7月19日公開)
加藤幸夫、第五回医療機器フォーラム予稿集、33-35, 2007 Keating, A., Cell Stem Cell, 2, 106-108, 2008 Corcione, A. et. al., Blood 107, 367-372, 2006 Ramasamy, R. et. al., Transplantation 83, 71-76, 2007 Aggarwal, S. et. al., Blood 105, 1815-1822, 2005 Le Blanc K. et. al., J Intern Med., 262, 509-525, 2007 Djouad, F. et. al., Blood 102, 3837-3844, 2003
 再生医療においては、移植時の免疫学的拒絶反応が重要な問題であり、これを抑えるために免疫抑制剤が使用されている。しかしながら、免疫抑制剤の副作用等が問題となっていた。一方で、間葉系幹細胞は免疫抑制能を有するため、これを利用すれば、免疫抑制剤を使用する必要がない。したがって、異種タンパク質、合成培地が混入の危険性の低い無血清又は低血清培養によって、免疫抑制能を有する間葉系幹細胞を得ることができれば有利である。特に、FBS含有培地は、ウシ血清アルブミンの量のみならず、アレルギー性を有する他の可溶性物質が混在していることからも問題があり、これを含まない培養培地の使用が不可欠である。
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、免疫抑制能を維持した間葉系幹細胞を含む細胞製剤を、無血清又は低血清培養により製造するための製造方法を提供することにある。
 本発明者らは、上記の課題を解決するために、間葉系幹細胞の免疫抑制能に及ぼす無血清培養の影響について鋭意検討した結果、特定の添加剤を含む無血清培地で培養した間葉系幹細胞が免疫抑制能を維持している、さらには、その免疫抑制効果が向上していることを見出し、本発明を完成させるに至った。
 すなわち、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法は、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する無血清培地Aにおいて、間葉系幹細胞を増殖させる増殖工程と、上記増殖工程後の間葉系幹細胞から、免疫抑制能を維持又は向上した間葉系幹細胞をスクリーニングするスクリーニング工程とを包含することを特徴としている。
 本発明に係る間葉系幹細胞を含む細胞製剤は、上述した製造方法によって製造されたことを特徴としている。
 本発明に係る培地用添加剤は、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清の培地用添加剤であって、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有することを特徴としている。
 本発明に係る培養培地は、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清の培養培地であって、上記培地用添加剤を含有していることを特徴としている。
 本発明に係る培養方法は、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための培養方法であって、上記培養培地において間葉系幹細胞を培養する工程を包含することを特徴としている。
 本発明に係るキットは、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するためのキットであって、上記培地用添加剤を少なくとも備えていることを特徴としている。
 本発明に係る間葉系幹細胞を含む細胞製剤の製造方法は、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する無血清培地Aにおいて、間葉系幹細胞を増殖させる増殖工程と、上記増殖工程後の間葉系幹細胞から、免疫抑制能を維持又は向上した間葉系幹細胞をスクリーニングするスクリーニング工程とを包含しているので、無血清又は低血清培養によって、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造することが可能である。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
MSCGM培地においてマウス由来活性化T細胞とhMSCとを共培養したときの、抗CD3及び抗CD28刺激T細胞増殖反応に対するhMSCの免疫抑制効果を示すグラフである。 本発明の一実施形態に係る無血清培地Aにおいてマウス由来活性化T細胞とhMSCとを共培養したときの、抗CD3及び抗CD28刺激T細胞増殖反応に対するhMSCの免疫抑制効果を示すグラフである。 MSCGM培地においてマウス由来活性化T細胞とhMSCとを共培養したときの、マイトジェン刺激T細胞増殖反応に対するhMSCの免疫抑制効果を示すグラフである。 本発明の一実施形態に係る無血清培地Aにおいてマウス由来活性化T細胞とhMSCとを共培養したときの、マイトジェン刺激T細胞増殖反応に対するhMSCの免疫抑制効果を示すグラフである。 マウスリンパ混合反応刺激T細胞増殖反応に対するhMSCの免疫抑制効果を示すグラフ(培養3日目の結果)である。 マウスリンパ混合反応刺激T細胞増殖反応に対するhMSCの免疫抑制効果を示すグラフ(培養4日目の結果)である。 培養開始から8日目の脂肪組織由来hMSCの増殖状態を示す図である。 初期の滑膜由来hMSCに対する培地1および培地2の増殖促進効果を示す図であり、(a)は、培養開始から12日目の滑膜由来hMSCの細胞数を示すグラフであり、(b)は、培養開始から12日目の滑膜由来hMSCの増殖状態を示す図である。 培養開始0日目から68日目までの滑膜由来hMSCの細胞数の経時的な変化を示すグラフである。 培養開始から5日目の骨髄由来hMSC(細胞1)の増殖状態を示す図である。 培養開始から5日目の骨髄由来hMSC(細胞2)の増殖状態を示す図である。 培養開始から5日目の骨髄由来hMSC(細胞3)の増殖状態を示す図である。 正常ヒト皮膚線維芽細胞およびヒト軟骨肉腫細胞株の増殖に対する培地1の効果を示すグラフであり、(a)は、培養開始から14日目の正常ヒト皮膚線維芽細胞のコロニー数を示すグラフであり、(b)は、培養開始から14日目のヒト軟骨肉腫細胞株のコロニー数を示すグラフである。
 以下、本発明の実施の形態について、詳細に説明する。ただし、本発明はこれに限定されるものではなく、記述した範囲内で種々の変形を加えた態様で実施できるものである。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
 上述したように、特許文献1及び非特許文献1には、血清を含まない培地(無血清培地)において増殖性を失わせることなく細胞を培養するための培地が記載されている。この培地は、特定の増殖因子群、リン脂質及び脂肪酸の複合物を基礎培地に添加したものであり、これを用いることにより、無血清条件下であっても10%血清の場合と同等以上の細胞増殖促進効果を導いている。また、この培地においては、間葉系幹細胞を、分化能を維持し、かつその維持能を高めたまま無血清培養することが可能である。さらに、この培地においては、骨髄由来のMSC、脂肪由来のMSC、滑膜由来のMSCの無血清培養が可能である。
 本発明によれば、このような、無血清条件下において間葉系幹細胞を大量に増殖させることが可能な培地のさらなる効果として、免疫抑制能の維持又はこう進した間葉系幹細胞の培養を実現するものであり、再生医療用途に特に有用な、間葉系幹細胞を含む細胞製剤を製造することを可能にする。
 (1)間葉系幹細胞を含む細胞製剤の製造方法
 本発明は、無血清条件下において免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤の製造方法を提供する。本発明に係る細胞製剤の製造方法は、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する無血清培地Aにおいて、間葉系幹細胞を増殖させる増殖工程と、上記増殖工程後の間葉系幹細胞から、免疫抑制能を維持又は向上した間葉系幹細胞をスクリーニングするスクリーニング工程とを包含している。
 (増殖工程)
 本発明に係る製造方法の増殖工程においては、間葉系幹細胞を、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する無血清培地Aにおいて培養し、間葉系幹細胞を増殖させる。
 本明細書中で使用される場合、「無血清培地」とは、血清を含まない培地であることが意図され、「無血清培養」とは、血清を用いない培養であることが意図される。また、「低血清培養」とは、一般的な血清含有培地(例えば、10%FBS含有培地)よりも、含有する血清量が少ない培地を用いた培養、及び一般的な血清含有培地を用いた培養よりも、血清含有培地を用いた培養期間が短い培養であることが意図される。
 本明細書中において、「細胞製剤」は、再生医療用材料として再生医療等に用いられる、細胞を製剤化した治療薬であり、細胞を元の状態のまま機能を変化させることなく製剤化したもののみならず、特定の条件の下で培養及び増殖させることによって、分化能、免疫抑制能等の機能を向上させた細胞を製剤化したものも含む。
 また、本明細書中において、「間葉系幹細胞」は、骨髄、脂肪細胞、滑膜細胞、歯槽骨、歯根膜等の成人の組織からだけでなく、胎盤、臍帯血、胎児の種々の細胞等から単離されるものも含み、ヒト間葉系幹細胞であることが好ましいが、ラット、マウス等の非ヒト動物由来間葉系幹細胞であってもよい。
 増殖工程において用いる無血清培地Aを構成するための基礎培地は、当該分野において周知の動物細胞用培地であれば特に限定されず、好ましい基礎培地としては、例えば、Ham’s F12培地、DMEM培地、RPMI-1640培地、MCDB培地などが挙げられる。これらの基礎培地は、単独で使用されても、複数を混合して使用されてもよい。一実施形態において、無血清培地Aを構成するための基礎培地は、MCDBとDMEMとを1:1の比率で混合した培地が好ましい。
 一実施形態において、上記の基礎培地に、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を添加した無血清培地Aを増殖工程に用いればよい。基礎培地に対するFGFの含有量は、終濃度で、0.1~100ng/mlであることが好ましく、さらに好ましくは3ng/mlである。基礎培地に対するPDGFの含有量は、終濃度で、0.5~100ng/mlであることが好ましく、さらに好ましくは10ng/mlである。基礎培地に対するTGF-βの含有量は、終濃度で、0.5~100ng/mlであることが好ましく、さらに好ましくは10ng/mlである。
 基礎培地に対するHGFの含有量は、終濃度で、0.1~50ng/mlであることが好ましく、さらに好ましくは5ng/mlである。基礎培地に対するEGFの含有量は、終濃度で、0.5~200ng/mlであることが好ましく、さらに好ましくは20ng/mlである。基礎培地に対するリン脂質の総含有量は、終濃度で、0.1~30μg/mlであることが好ましく、さらに好ましくは10μg/mlである。基礎培地に対する脂肪酸の総含有量は、基礎培地の1/1000~1/10であることが好ましく、さらに好ましくは1/100である。
 このような無血清培地Aを使用することによって、異種タンパク質の混入を防ぎつつ、血清含有培地と同等以上の増殖促進効果が得られ、間葉系幹細胞を所望の通り増殖させることができる。
 本発明に係る製造方法の増殖工程において、無血清培地Aが含有しているリン脂質としては、例えば、フォスファチジン酸、リゾフォスファチジン酸、フォスファチジルイノシトール、フォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン及びフォスファチジルグリセロールなどが挙げられ、これらのリン脂質を単独で含有しても組み合わせて含有してもよい。一実施形態において、無血清培地Aは、フォスファチジン酸とフォスファチジルコリンとを組み合わせて含有していてもよく、これらのリン脂質は、動物由来であっても、植物由来であってもよい。
 無血清培地Aが含有している脂肪酸としては、例えば、リノール酸、オレイン酸、リノレイン酸、アラキドン酸、ミリスチン酸、パルミトイル酸、パルミチン酸及びステアリン酸等が挙げられ、本実施形態に係る培地用添加剤はこれらの脂肪酸を単独で含有しても組み合わせて含有してもよい。また、本実施形態に係る無血清培地Aは、上記脂肪酸以外にさらにコレステロールを含有していてもよい。
 本明細書中で使用される場合、FGFは、線維芽細胞増殖因子(FGF:fibroblast growth factor)ファミリーから選択される増殖因子が意図され、FGF-2(bFGF)であることが好ましいが、FGF-1など他のFGFファミリーから選択されてもよい。また、本明細書中で使用される場合、PDGFは、血小板由来増殖因子(PDGF:platelet derived growth factor)ファミリーから選択される増殖因子が意図され、PDGF-BBまたはPDGF-ABであることが好ましい。さらに、本明細書中で使用される場合、TGF-βは、トランスフォーミング増殖因子-β(TGF-β:transforming growth factor-β)ファミリーから選択される増殖因子が意図され、TGF-β3であることが好ましいが、他のTGF-βファミリーから選択されてもよい。
 本明細書中で使用される場合、HGFは、肝細胞増殖因子(hepatocyte growth factor)ファミリーから選択される増殖因子が意図され、EGFは、上皮増殖因子(EGF:epidermal growth factor)ファミリーから選択される増殖因子が意図される。
 また、一実施形態において、無血清培地Aは、結合組織増殖因子(CTGF:connective tissue growth factor)、血管内皮増殖因子(VEGF:vascular endothelial growth factor)及びアスコルビン酸化合物からなる群より選択される少なくとも2つの因子をさらに含有していてもよい。
 本明細書中で使用される場合、アスコルビン酸化合物は、アスコルビン酸(ビタミンC)もしくはアスコルビン酸2リン酸、またはこれらに類似する化合物が意図される。
 なお、無血清培地Aに含有されている上述した増殖因子は、天然のものであっても、遺伝子組換えによって製造されたものであってもよい。
 1つの局面において、無血清培地Aは、脂質酸化防止剤を含有していることが好ましい。一実施形態において、無血清培地Aに含有される脂質酸化防止剤は、DL-α-トコフェロールアセテート(ビタミンE)であり得る。無血清培地Aはまた、界面活性剤をさらに含有していてもよい。一実施形態において、無血清培地Aに含有される界面活性剤はPluronic F-68またはTween 80であり得る。
 無血清培地Aは、インスリン、トランスフェリンおよびセレネートをさらに含有していてもよい。本明細書中で使用される場合、インスリンは、インスリン様増殖因子であってもよく、天然の細胞由来であっても、遺伝子組換えによって製造されたものでもよい。本発明に係る培地用添加剤はさらに、デキサメタゾン、あるいは他のグルココルチコイドを含有していてもよい。
 増殖工程においては、上述した無血清培地Aに、ヒト等の動物組織又は細胞から従来公知の方法により単離された間葉系幹細胞を播種し、所望の数に増殖するまで培養する。培養条件として、培地1mlに対して1~2×10個の間葉系幹細胞を播種することが好ましく、培養温度は37℃±1℃、培養時間は48~96時間、かつ5%CO下であることが好ましい。このように培養することによって、免疫抑制能を維持又は向上した間葉系幹細胞を効率よく大量に得ることができる。
 増殖工程では、培養に用いる培養容器は、間葉系幹細胞が増殖し得るものであれば特に限定されない。例えば、ファルコン製75cmフラスコ、住友ベークライト製75cmフラスコ等を好適に用いることができる。但し、細胞によっては、用いる培養容器の種類によって細胞の増殖が影響を受ける場合がある。このため、間葉系幹細胞をより効率よく増殖させるために、増殖工程において増殖させる対象となる間葉系幹細胞(以下、「増殖対象細胞」ともいう)毎に、増殖に適した培養容器を用いて増殖工程を行うことが好ましい。
 増殖対象細胞の増殖に適した培養容器の選択方法としては、例えば、最適な培養容器を増殖対象細胞に選択させる方法を挙げることができる。具体的に説明すると、複数種類の培養容器を準備し、培養容器の種類が異なる以外は同一の培養条件で増殖対象細胞を増殖させ、培養開始から2週間後の細胞数を公知の方法によって計測し、細胞数が多いものから順に増殖対象細胞の増殖に適した培養容器であると判断することができる。また、増殖対象細胞の増殖速度が速い場合は、培養開始から2週間経過する前であっても、コンフルエント状態の80~90%の細胞数に達する期間が短いものから順に増殖対象細胞の増殖に適した培養容器であると判断することができる。
 本発明に係る製造方法の増殖工程においては、増殖対象細胞の増殖に適した培養容器が既に明らかになっている場合は、その培養容器を用いればよい。これに対して、増殖対象細胞の増殖に適した培養容器が明らかになっていない等の場合には、本発明に係る製造方法は、増殖対象細胞の増殖に適した培養容器を選択するための「培養容器選択工程」(後述する)を増殖工程の前にさらに包含していてもよい。
 なお、間葉系幹細胞の増殖には、細胞が培養容器に接着することが必須条件であるので、培養容器に対する増殖対象細胞の接着が弱い場合は、増殖工程において、上記無血清培地Aに、細胞接着分子をさらに含有させることが好ましい。上記「細胞接着分子」としては、例えば、フィブロネクチン、コラーゲン、ゼラチン等を挙げることができる。これらの細胞接着分子は、一種類を単独で用いてもよく、複数種類を組み合わせて用いてもよい。
 無血清培地Aに対する細胞接着分子の含有量は、終濃度で、1~50μg/mlであることが好ましく、さらに好ましくは5μg/mlである。一実施形態において、細胞接着分子としてフィブロネクチン用いる場合は、無血清培地Aに対するフィブロネクチンの終濃度が5μg/mlとなるように添加することによって、培養容器に対する増殖対象細胞の接着効率を向上させることができる。
 また、増殖工程では、間葉系幹細胞を少なくとも1回継代してもよい。間葉系幹細胞は足場依存的に増殖するので、間葉系幹細胞が局所的に偏って増殖している等の場合に、増殖工程の途中で間葉系幹細胞を継代することによって培養条件を改善することができる。
 間葉系幹細胞の継代方法としては特に限定されず、従来公知の間葉系幹細胞の継代方法を用いて継代することできる。継代後の間葉系幹細胞の状態が良好であることから、上記増殖工程では、継代を行う場合に哺乳類および微生物由来の成分を含有していない細胞剥離剤を用いて上記間葉系幹細胞を剥離することが好ましい。上記「哺乳類および微生物由来の成分を含有していない細胞剥離剤」としては、例えば、ACCUTASE(Innovative Cell Technologies, Inc.)を挙げることができる。
 ここで、上記「哺乳類および微生物由来の成分を含有していない細胞剥離剤」としてACCUTASEを用いる場合の継代方法の一例を説明する。(i)~(vi)の手順によって間葉系幹細胞を剥離し、継代する。なお、以下に説明する継代方法では、培養容器としてT-25フラスコ(ファルコン製)を用いたと仮定する。
(i)細胞層をPBS(-)5mLを用いて洗浄する。
(ii)ACCUTASEを2mL添加する。
(iii)室温にて2分程度静置し、細胞の剥離を確認のうえ遠心管に細胞浮遊液を移す。
(iv)培養容器にPBS(―)を7mL添加し、フラスコ底面をリンスする。
(v)上記(iii)の遠心管に上記(iv)の溶液を移し、1500rpm(200×g)で5分間遠心する。
(vi)上清を除き、5,000個/cmの播種濃度にて、無血清培地Aを用いて播種する。
 なお、増殖工程には、ヒト等の動物組織から採取してから継代1回目(P1)以降の間葉系幹細胞を供することが好ましい。
 (スクリーニング工程)
 本発明に係る製造方法のスクリーニング工程(「第1スクリーニング工程」ともいう。)においては、上記増殖工程後の間葉系幹細胞から、免疫抑制能を維持又は向上した間葉系幹細胞をスクリーニングする。上述した無血清培地Aにおいて増殖した増殖工程後の間葉系幹細胞は、免疫抑制能が少なくとも維持されており、さらに免疫抑制能がこう進している。したがって、このような間葉系幹細胞を、免疫抑制能を基準としてスクリーニングすることによって、免疫抑制能を維持または向上した間葉系幹細胞を選別することができる。そして、選別した間葉系幹細胞を細胞製剤として使用することによって、免疫抑制剤を併用することなく、免疫学的拒絶反応を抑制した間葉系幹細胞の移植治療が実現する。
 上述した無血清培地Aは異種タンパク質を含まず、さらに当該培地で培養した間葉系幹細胞は幹細胞としての機能を維持している。また、上述した無血清培地Aで培養した間葉系幹細胞は、ウシ胎児血清含有培地で培養した間葉系幹細胞と比較して、増殖能が高く、かつ免疫抑制効果を示す活性も高い。したがって、上述した無血清培地Aで培養した間葉系幹細胞を移植治療に用いた場合、その特性を保持する細胞が増加すると共に、個々の細胞の活性も高いことから、相乗効果が期待できる。
 一方、本発明者らは、上述した無血清培地Aの増殖能の効果から懸念される造腫瘍性について、in vitroの軟寒天培養法とin vivoの高感度免疫不全マウス(NOGマウス)による造腫瘍性試験法とによりそれぞれ検討した。具体的には、3ロットの滑膜由来のヒト間葉系幹細胞と、1ロットの骨髄由来のヒト間葉系幹細胞とを上述した無血清培地Aで培養し、培養細胞1,000,000個を軟寒天培養用の培地及びNOGマウスの皮下10ヵ所に移植した。その結果、軟寒天培養ではHela細胞1,000個の移植で腫瘍コロニーが認められるのに対し、間葉系幹細胞の3ロットはいずれも陰性であった。一方、NOGマウスでは、わずか1個のHepG2細胞が混在していても腫瘍結節が検出されるような実験条件下であっても、何れの移植組織においても腫瘍結節が認められなかった(データ示さず)。このことからも、本発明により製造した細胞製剤が移植治療における有用性は明確である。
 本明細書中において、「免疫抑制能」とは、異種又は同種の細胞等を他家移植した際に生じる免疫拒絶反応を抑制する能力であり、T細胞の増殖を抑制する等、様々な免疫エフェクター細胞の機能に影響を及ぼすことによってこれらに起因する免疫反応を抑制する能力を意図している。これは抗炎症能の一部である。本明細書中において、「免疫抑制能を維持した」とは、間葉系幹細胞が本来有する免疫抑制能が上記増殖工程によって失われていないことを意図しており、「免疫抑制能を向上した」とは、上記増殖工程の前後で間葉系幹細胞が有する免疫抑制能が向上していることを意図している。
 スクリーニング工程においては、上記増殖工程後の無血清培地Aにおいて、増殖した間葉系幹細胞と免疫細胞とを共培養し、共培養後の培地中の免疫細胞数を評価することによって、免疫抑制能を維持又は向上した間葉系幹細胞をスクリーニングすることができるが、これに限定されない。例えば、免疫細胞としてT細胞を用いた場合には、後述する実施例に示すように、T細胞の増加量又はサイトカインの産生量を評価し、免疫細胞としてB細胞又は活性化NK細胞を用いた場合には、これらの細胞の増加量を評価することによって、免疫抑制能を維持又は向上した間葉系幹細胞をスクリーニングすることができる。また、免疫細胞として樹状細胞を用いた場合には、その分化、成熟、活性化等を評価することによって、免疫抑制能を維持又は向上した間葉系幹細胞をスクリーニングすることができる。このようなスクリーニングに用いる免疫細胞は、T細胞、B細胞、又は活性化NK細胞であることが好ましく、より好ましくはT細胞又はB細胞であり、最も好ましくはT細胞である。
 (第2スクリーニング工程)
 本発明に係る製造方法は、上記増殖工程後の間葉系幹細胞から、造腫瘍性を有していない間葉系幹細胞をスクリーニングする第2スクリーニング工程をさらに包含していてもよい。
 上述した無血清培地Aにおいて増殖した増殖工程後の間葉系幹細胞は、造腫瘍性を有していない間葉系幹細胞が選択的に増加している。したがって、このような間葉系幹細胞を、造腫瘍性を基準としてスクリーニングすることによって、造腫瘍性を有していない間葉系幹細胞を選別することができる。そして、選別した間葉系幹細胞を細胞製剤として使用することによって、造腫瘍性を有していない間葉系幹細胞の移植治療が実現する。それゆえ、本発明は、無血清条件下において造腫瘍性を有していない間葉系幹細胞を含む細胞製剤の製造方法を提供することもできる。
 間葉系幹細胞が造腫瘍性を有しているか否かについては、上記「スクリーニング工程」において説明したように、従来公知のin vitroの軟寒天培養法、in vivoの高感度免疫不全マウス(NOGマウス)による造腫瘍性試験法等によって確認することができるが、これらに限定されない。すなわち、本明細書中において、「造腫瘍性を有していない間葉系幹細胞」とは、上述した造腫瘍性の有無を確認する方法によって造腫瘍性を有さないことが確認された間葉系幹細胞を意図している。
 なお、本発明に係る製造方法において、第2スクリーニング工程をさらに包含する場合、上記第1スクリーニング工程と当該第2スクリーニング工程とを行う順序は特に制限されない。すなわち第2スクリーニング工程の前に第1スクリーニング工程を行ってもよく、第2スクリーニング工程の後で第1スクリーニング工程を行ってもよい。
 (血清培養工程)
 本発明に係る製造方法は、さらに、増殖工程後の間葉系幹細胞を、スクリーニング工程の前に、血清含有培地において培養する血清培養工程を包含していてもよい。血清培養工程においては、増殖工程において無血清培養した間葉系幹細胞を、血清含有培地において培養する。血清培養工程を行う場合、血清培養工程後の間葉系幹細胞をスクリーニング工程に供する。
 血清培養工程において使用する血清含有培地としては、従来公知の血清含有培地を使用することが可能であり、上述した基礎培地に10%FBSを添加した10%FBS含有培地を血清含有培地として使用してもよい。血清培養工程においては、このような血清含有培地に、増殖工程で得られた間葉系幹細胞を播種して培養する。培養条件として、培地1mlに対して間葉系幹細胞の数が1~2×10個であることが好ましく、培養温度は37℃±1℃、培養時間は48~96時間、かつ5%CO下であることが好ましい。このように培養することによって、より早期に免疫抑制能を発揮する間葉系幹細胞を効率よく大量に得ることができる。
 そして、血清含有培地において培養した間葉系幹細胞をスクリーニング工程に供し、免疫抑制能を維持又は向上した間葉系幹細胞を選別する。
 このように、間葉系幹細胞を、無血清培地Aにおいて前培養した後、血清含有培地において本培養することによって、前培養及び本培養共に血清含有培地で培養した場合と同等以上の免疫抑制効果が得られる上に、間葉系幹細胞の免疫抑制効果をより早期に発揮させることができる。また、血清を使用するのは本培養時だけなので、血清の含有量が少なく、低血清培養を実現できる。
 (前増殖工程)
 本発明に係る製造方法は、上記増殖工程の前に、FGF、PDGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する無血清培地Bにおいて、間葉系幹細胞を増殖させる前増殖工程をさらにしていてもよい。
 ここで、上記「無血清培地B」は、HGFおよびTGF-βを含有していない点で、上記「増殖工程」の項で説明した無血清培地Aとは異なる。HGFおよびTGF-β以外の成分(FGF、PDGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸)および基礎培地については、上記「増殖工程」の項で無血清培地Aに関して説明したとおりであるので、ここでは説明を省略する。
 また、1つの局面において、無血清培地Bは、無血清培地Aと同様、脂質酸化防止剤を含有していることが好ましい。また、無血清培地Bは、界面活性剤をさらに含有していてもよい。また、無血清培地Bは、インスリン、トランスフェリンおよびセレネートをさらに含有していてもよい。また、無血清培地Bは、さらに、デキサメタゾン、あるいは他のグルココルチコイドを含有していてもよい。これらの成分についても、上記「増殖工程」の項で無血清培地Aに関して説明したとおりであるので、ここでは説明を省略する。
 なお、無血清培地Bに含有されている上記成分の含有量は、上記「増殖工程」の項で無血清培地Aに関して説明した含有量の範囲内であれば、無血清培地Aに含有されている各成分の含有量と同じであってもよく、異なっていてもよい。
 前増殖工程においては、上述した無血清培地Bに、ヒト等の動物組織から従来公知の方法により単離された間葉系幹細胞を播種し、所望の数に増殖するまで培養する。培養条件として、培地1mlに対して1~500mgの組織片(MSCを含む)を分離し、間葉系幹細胞を播種することが好ましく、培養温度は37℃±1℃、培養時間は3~14日間、かつ5%CO下であることが好ましい。
 前増殖工程に供される間葉系幹細胞に特に制限はないが、初期の間葉系幹細胞、すなわち、ヒト等の動物組織から採取してから一度も継代培養を経ていない細胞であることが好ましい。後述する実施例に示すように、増殖工程に供する前に無血清培地Bにおいて初期の間葉系幹細胞を予め増殖させることによって、増殖工程において得られる間葉系幹細胞の数を極めて顕著に増幅させることが可能となる。
 一実施形態において、前増殖工程における間葉系幹細胞の培養方法としては、例えば、2×10個/cmの播種濃度にて無血清培地Bにおいて間葉系幹細胞を播種し、その後1週間程度は、播種時培養液量の10%の無血清培地Bを2日毎に追加して添加し、細胞数がコンフルエント状態の70~80%となるまで細胞を増殖させる。このように無血清培地Bにおいて予め培養した間葉系幹細胞を増殖工程に供することによって、免疫抑制能を維持又は向上した間葉系幹細胞を効率よく大量に得ることができる。
 また、前増殖工程において間葉系幹細胞をより効率よく増殖させるために、前増殖工程において増殖させる対象となる間葉系幹細胞(以下、「前増殖対象細胞」ともいう)毎に、増殖に適した培養容器を用いて前増殖工程を行うことが好ましい。前増殖対象細胞の増殖に適した培養容器の選択方法としては、上記「増殖工程」の項で説明したとおりであるのでここでは説明を省略する。
 また、増殖工程と同様に、前増殖工程では、培養容器に対する前増殖対象細胞の接着が弱い場合に、上記無血清培地Bに、細胞接着分子をさらに含有させてもよい。上記細胞接着分子については、上記「増殖工程」の項で説明したとおりであるのでここでは説明を省略する。
 また、増殖工程と同様に、前増殖工程では、間葉系幹細胞を少なくとも1回継代してもよい。前増殖工程の途中で間葉系幹細胞を継代することによって培養条件を改善することができる。なお、前増殖工程は、初代培養(P0)~継代3回目(P3)までの期間行うことが好ましい。前増殖工程の途中で間葉系幹細胞を継代する方法および前増殖工程後の細胞を増殖工程に供する際の継代方法については、上記「増殖工程」の項で説明したとおりであるのでここでは説明を省略する。
 (培養容器選択工程)
 本発明に係る製造方法は、上記増殖工程の前(または上記前増殖工程の前)に、間葉系幹細胞の増殖に適した培養容器を選択する培養容器選択工程をさらに包含していてもよい。間葉系幹細胞の増殖に適した培養容器の選択方法としては、上記「増殖工程」の項で説明したとおりであるのでここでは説明を省略する。
 (2)細胞製剤を製造するための無血清の培地用添加剤
 本発明は、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清の培地用添加剤を提供する。本発明に係る培地用添加剤は、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有している。本発明に係る培地用添加剤は、従来公知の基礎培地に添加して、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清培地(無血清培地A)として使用することができる。
 本発明に係る培地用添加剤が含有しているリン脂質としては、例えば、フォスファチジン酸、リゾフォスファチジン酸、フォスファチジルイノシトール、フォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン及びフォスファチジルグリセロールなどが挙げられ、本発明に係る培地用添加剤はこれらのリン脂質を単独で含有しても組み合わせて含有してもよい。一実施形態において、本発明に係る培地用添加剤はフォスファチジン酸とフォスファチジルコリンとを組み合わせて含有している。また、これらのリン脂質は、動物由来であっても、植物由来であってもよい。
 本実施形態に係る培地用添加剤が含有している脂肪酸としては、例えば、リノール酸、オレイン酸、リノレイン酸、アラキドン酸、ミリスチン酸、パルミトイル酸、パルミチン酸及びステアリン酸等が挙げられ、本実施形態に係る培地用添加剤はこれらの脂肪酸を単独で含有しても組み合わせて含有してもよい。また、本実施形態に係る培地用添加剤は、上記脂肪酸以外にさらにコレステロールを含有していてもよい。
 本明細書中で使用される場合、FGFは、線維芽細胞増殖因子(FGF:fibroblast growth factor)ファミリーから選択される増殖因子が意図され、FGF-2(bFGF)であることが好ましいが、FGF-1など他のFGFファミリーから選択されてもよい。また、本明細書中で使用される場合、PDGFは、血小板由来増殖因子(PDGF:platelet derived growth factor)ファミリーから選択される増殖因子が意図され、PDGF-BBまたはPDGF-ABであることが好ましい。さらに、本明細書中で使用される場合、TGF-βは、トランスフォーミング増殖因子-β(TGF-β:transforming growth factor-β)ファミリーから選択される増殖因子が意図され、TGF-β3であることが好ましいが、他のTGF-βファミリーから選択されてもよい。
 本明細書中で使用される場合、HGFは、肝細胞増殖因子(hepatocyte growth factor)ファミリーから選択される増殖因子が意図され、EGFは、上皮増殖因子(EGF:epidermal growth factor)ファミリーから選択される増殖因子が意図される。
 また、一実施形態において、無血清培地Aは、結合組織増殖因子(CTGF:connective tissue growth factor)、血管内皮増殖因子(VEGF:vascular endothelial growth factor)及びアスコルビン酸化合物からなる群より選択される少なくとも2つの因子をさらに含有していてもよい。
 本明細書中で使用される場合、アスコルビン酸化合物は、アスコルビン酸(ビタミンC)もしくはアスコルビン酸2リン酸、またはこれらに類似する化合物が意図される。
 なお、本発明に係る培地用添加剤に含有されている増殖因子は、天然のものであっても、遺伝子組換えによって製造されたものであってもよい。
 1つの局面において、本発明に係る培地用添加剤は、脂質酸化防止剤を含有していることが好ましい。一実施形態において、本実施形態に係る培地用添加剤に含有される脂質酸化防止剤は、DL-α-トコフェロールアセテート(ビタミンE)であり得る。本発明に係る培地用添加剤はまた、界面活性剤をさらに含有していてもよい。一実施形態において、本実施形態に係る培地用添加剤に含有される界面活性剤はPluronic F-68またはTween 80であり得る。
 本発明に係る培地用添加剤は、インスリン、トランスフェリンおよびセレネートをさらに含有していてもよい。本明細書中で使用される場合、インスリンは、インスリン様増殖因子であってもよく、天然の細胞由来であっても、遺伝子組換えによって製造されたものでもよい。本発明に係る培地用添加剤はさらに、デキサメタゾン、あるいは他のグルココルチコイドを含有していてもよい。
 (3)動物細胞を無血清培養するためのキット
 本発明は、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清の培地用添加剤を提供する。本発明に係る培地用添加剤(培地用添加剤A)は、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有している。また、本発明に係る培地用添加剤は、細胞接着分子をさらに含有していてもよい。
 本発明に係る培地用添加剤キットは、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸とを同一容器内に備えていても、これらの成分を別々に備えていてもよい。また、本発明に係る培地用添加剤キットは、細胞接着分子をさらに含有していてもよい。
 上記細胞接着分子については、本明細書における上記「(1)間葉系幹細胞を含む細胞製剤の製造方法」の項の「増殖工程」において説明したとおりであるのでここでは説明を省略する。
 本発明に係る培地用添加剤キットは、従来公知の基礎培地に添加して、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清培地(無血清培地A)として使用することができる。
 本明細書中で使用される場合、「組成物」は各主成分が一物質中に含有されている形態であり、「キット」は各主成分の少なくとも1つが別物質中に含有されている形態であることが意図される。よって、本発明に係る培地用添加剤キットに備えられている増殖因子、リン脂質及び脂肪酸は、培地用添加剤について上述したものと同一であることが容易に理解される。
 また、本発明にかかるキットは、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するためのキットであって、本発明にかかる培地用添加剤(培地用添加剤A)を少なくとも備えている。また、本発明にかかるキットは、FGF、PDGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する培地用添加剤Bをさらに備えていてもよい。なお、「無血清培地B」についての説明を「培地用添加剤B」についての説明として読み替えることができる。
 (4)細胞製剤を製造するための無血清の培養培地
 本発明は、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清の培養培地を提供する。本発明に係る培養培地は、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有している。本発明に係る培養培地は、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清培地(無血清培地A)として使用することができる。
 本発明に係る培養培地は、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有していればよく、これらの成分は基礎培地に同時に添加されても別々に添加されてもよい。すなわち、本発明に係る培養培地は、上述した培地用添加剤に含有されている成分または培地用添加剤キット中に備えられている成分を含んでいればよいといえる。
 本発明に係る培養培地を構成するための基礎培地は、当該分野において周知の動物細胞用培地であれば特に限定されず、好ましい基礎培地としては、例えば、Ham’s F12培地、DMEM培地、RPMI-1640培地、MCDB培地などが挙げられる。これらの基礎培地は、単独で使用されても、複数を混合して使用されてもよい。一実施形態において、本発明に係る培養培地を構成するための基礎培地は、MCDBとDMEMとを1:1の比率で混合した培地が好ましい。
 (5)細胞製剤を製造するための培養方法
 本発明は、免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための培養方法を提供する。本発明に係る培養方法は、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有している無血清培地(無血清培地A)中において間葉系幹細胞を培養する工程(培養工程A)を包含している。本発明に係る培養方法は、間葉系幹細胞を培養する際に、上述した無血清の培養培地を用いればよいといえる。
 また、本発明に係る培養方法は、上記培養工程Aの前に、FGF、PDGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する無血清培地Bにおいて、間葉系幹細胞を培養する工程(培養工程B)をさらに包含していてもよい。
 なお、上記「培養工程A」および上記「培養工程B」は、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法における「増殖工程」および「前増殖工程」にそれぞれ対応している。このため、本明細書における上記「(1)間葉系幹細胞を含む細胞製剤の製造方法」の項の「増殖工程」および「前増殖工程」についての説明を、それぞれ、「培養工程A」および「培養工程B」についての説明として読み替えることができる。
 一実施形態において、本発明に係る培養方法は、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を、基礎培地に同時に添加する工程を包含してもよい。また、一実施形態において、本発明に係る培養方法は、FGF、PDGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を、基礎培地に同時に添加する工程を包含してもよい。上記基礎培地は、上述したように当該分野において周知の動物細胞用培地であれば特に限定されない。
 (6)さらなる用途
 上述したように、本発明によれば、無血清又は低血清培地であっても血清含有培地において培養した場合と同等又はそれ以上の速度で、間葉系幹細胞を増殖させることが可能である上に、増殖させた間葉系幹細胞の免疫抑制能が維持又は向上している。さらに、本発明において増殖させた間葉系幹細胞は、造腫瘍性を有していない間葉系幹細胞が選択的に増加している。さらに、本発明において増殖させた間葉系幹細胞は、分化能が維持又は向上している(特許文献1参照のこと)。したがって、このような間葉系幹細胞を含む細胞製剤を患者に投与した場合、間葉系幹細胞による優れた移植治療が実現できるのみならず、移植治療の大きな問題の1つである免疫拒絶反応を効果的に抑制し、患者の負担を軽減すると共に、安定した治療を実現し得る。また、血清を用いて製造した従来の細胞製剤と比較して、血清のロット差を考慮する必要がなく、移植治療において安定した治癒率を実現できる。
 さらに、本発明により製造した細胞製剤に含まれる間葉系幹細胞は、間葉系幹細胞が本来有する免疫エフェクター細胞に影響を及ぼす機能を維持していると言えるので、さらに、当該間葉系幹細胞は免疫調節作用及び免疫寛容作用を有し、これらの作用を期待した治療にも本発明により製造した細胞製剤を適用することが期待できる。さらに、本発明により製造した細胞製剤によれば、間葉系幹細胞の抗炎症作用により、移植治療における抗炎症剤としての機能も期待できる。また、本細胞製剤には、抗炎症作用による老化抑制効果も期待される。
 さらに、本発明により製造した細胞製剤は、間葉系幹細胞の移植を必要とする箇所に投与(局所投与)する局所疾患の治療のみならず、静脈内等に投与して全身に運搬させる全身投与により、骨髄移植等により引き起こされる急性GVHD等による強い免疫拒絶反応に対する治療をより効果的に行い、ヒトの救命率を著しく向上させること期待される。また、本発明により製造した細胞製剤は、無血清培養により製造したものであるので、有用な成長因子や分化因子が血清タンパク質と共に、セラミックス等の移植材料に非特異的に吸着されることがない。したがって、本発明により製造した細胞製剤の移植による組織再生能力は一段と高く、その結果、治療効果も高い。さらに、局所投与と全身投与とを併合した治療も行い得ることは言うまでもない。
 また、本発明により製造した細胞製剤に含まれる間葉系幹細胞は、免疫抑制能を維持又は向上しており、移植時の免疫拒絶反応を抑制するので、自己以外の組織及び細胞を他人に移植する(ドナーとレシピエントとが異なる)他家移植による治療に適用することが可能である。さらに、ヒト組織又はヒト細胞を用いたアロ移植(同種移植)のみならず、ヒト以外の動物組織又は動物細胞を用いたゼノ移植(異種移植)にも好適に使用可能であると言える。
 さらに、本発明により製造した細胞製剤は、従来の血清含有培地のみを用いて得られた間葉系幹細胞よりも早期に免疫抑制効果を発揮させるので、移植時に治療効果を早期に発現させることが期待され、治癒率の増加が見込まれる。
 また、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法は、上記増殖工程後の間葉系幹細胞を、上記スクリーニング工程の前に、血清を含む培地において培養する血清培養工程をさらに包含していてもよい。
 また、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法は、上記増殖工程の前に、FGF、PDGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する無血清培地Bにおいて、間葉系幹細胞を増殖させる前増殖工程をさらに包含していることが好ましい。
 上記増殖工程後の間葉系幹細胞から、造腫瘍性を有していない間葉系幹細胞をスクリーニングする第2スクリーニング工程をさらに包含していてもよい。
 また、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法は、上記増殖工程において、上記間葉系幹細胞の増殖に適した培養容器を用いて当該間葉系幹細胞を増殖させることが好ましい。
 また、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法は、上記増殖工程において、上記無血清培地Aに、細胞接着分子をさらに含有させることが好ましい。
 また、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法は、上記増殖工程において、上記間葉系幹細胞を少なくとも1回継代してもよい。
 また、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法は、上記増殖工程において、継代を行う場合に、哺乳類および微生物由来の成分を含有していない細胞剥離剤を用いて上記間葉系幹細胞を剥離することが好ましい。
 また、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法は、上記増殖工程の前に、間葉系幹細胞の増殖に適した培養容器を選択する培養容器選択工程をさらに包含していてもよい。
 さらに、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法において、上記リン脂質が、フォスファチジン酸、リゾフォスファチジン酸、フォスファチジルイノシトール、フォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン、及びフォスファチジルグリセロールからなる群より選択されることを特徴としている。
 また、本発明に係る間葉系幹細胞を含む細胞製剤の製造方法において、上記脂肪酸が、リノール酸、オレイン酸、リノレイン酸、アラキドン酸、ミリスチン酸、パルミトイル酸、パルミチン酸、及びステアリン酸からなる群より選択されることを特徴としている。
 また、本発明にかかる培地用添加剤は、細胞接着分子をさらに含有していてもよい。
 また、本発明にかかるキットは、FGF、PDGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を含有する培地用添加剤Bをさらに備えていてもよい。
 なお、発明を実施するための形態の項においてなした具体的な実施態様および以下の実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、当業者は、本発明の精神および添付の特許請求の範囲内で変更して実施することができる。
 また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。
 以下、本発明を実施例により具体的に説明するが、本発明は実施例によって限定されるものではない。
 〔実施例1〕
 以下の実験を行った。
 (1.細胞培養)
 ヒト骨髄由来間葉系幹細胞(骨髄由来hMSC)は、Lonza Walkersville, Inc.(以下、Lonza社)より購入し、Mesenchymal Stem Cell Basal Medium(MSCBM)(Lonza社)にMesenchymal Cell Growth Supplement(MCGS)(Lonza社)を加えた血清含有培地(MSCGM培地)、又は表1に示す無血清の培地1で培養した。
 マウス脾細胞(splenocyte)として、日本チャールズリバー株式会社より購入したBALB/c(H-2d)の脾臓をすりつぶして溶血させた後、1%FBS/Advanced PRM1(GIBCO社)に懸濁したものを実験に用いた。
 (2.脾臓細胞の活性化)
 <2-1:マイトジェンによる刺激>
 96ウエルプレートの各ウエルに、マウス脾臓細胞(1×10)を播種し、2.5ng/ml Phorbol 12-myristate 13-acetate(以下、PMAと称する)、125ng/ml ionomycinで刺激した。
 <2-2:anti-CD3/anti-CD28による刺激>
 96ウエルプレートの各ウエルにマウス脾臓細胞(1×10)を播種し、2.5μg/ml anti-CD3、0.5μg/ml anti-CD28で刺激した。
 (3.活性化脾臓細胞と骨髄由来hMSCとの共培養)
 骨髄由来hMSCの前処理として、96ウエルプレートの各ウエルに、骨髄由来hMSC1×10を播種し、張り付いたのを確認してから(数時間から一晩培養)、ガンマセル40イグザクターを用いてガンマ線照射を行い、細胞分裂を阻害した。その上に、上述したように活性化したマウス脾臓細胞を播種し、骨髄由来hMSCと共培養した。
 (4.細胞増殖測定)
 共培養開始から3日目及び4日目に、各ウエルに[H]-Thymidineを加え、さらに8時間培養した。培養細胞をガラスフィルターに吸着させた後、液体シンチレーションカウンターでThymidineの取り込みを測定し、細胞増殖を測定した。
 (5.結果)
 骨髄由来hMSCとマウス由来活性化T細胞との共培養を、10%FBS含有のMSCGM培地又は無血清培地Aである培地1(STK2(登録商標))で培養した結果を、図1~4に示す。図1~4おいて、値は平均±標準偏差で示している。同様の結果が、3回以上の独立した実験結果から得られた。#4及び#5は、それぞれ独立した骨髄由来hMSCの結果を示している。
 図1は、MSCGM培地においてマウス由来活性化T細胞と骨髄由来hMSCとを共培養したときの、抗CD3及び抗CD28刺激T細胞増殖反応に対する骨髄由来hMSCの免疫抑制効果を示すグラフであり、図2は、培地1においてマウス由来活性化T細胞と骨髄由来hMSCとを共培養したときの、抗CD3及び抗CD28刺激T細胞増殖反応に対する骨髄由来hMSCの免疫抑制効果を示すグラフである。
 図3は、MSCGM培地においてマウス由来活性化T細胞と骨髄由来hMSCとを共培養したときの、PMA及びイオノマイシン刺激(マイトジェン刺激)T細胞増殖反応に対する骨髄由来hMSCの免疫抑制効果を示すグラフであり、図4は、培地1においてマウス由来活性化T細胞と骨髄由来hMSCとを共培養したときの、PMA及びイオノマイシン刺激(マイトジェン刺激)T細胞増殖反応に対する骨髄由来hMSCの免疫抑制効果を示すグラフである。
 図1~4に示すように、培地1で培養した骨髄由来hMSCは、血清を含有するMSCGM培地で培養した骨髄由来hMSCと同様に、マイトジェン刺激により活性化したT細胞及び抗CD3/抗CD28刺激により活性化したT細胞の増殖を抑制した。すなわち、無血清の培地1を用いて培養した骨髄由来hMSCが、免疫抑制作用を維持していることが示された。
 〔実施例2〕
 マウスリンパ球混合反応(MLR)によるT細胞増殖に対する骨髄由来hMSCの免疫抑制効果を調べた。実験方法、並びに使用した細胞及び培地は、実施例1と同様である。骨髄由来hMSCの前処理として、96ウエルプレートの各ウエルに2×10の骨髄由来hMSCを播種し、実施例1と同様に行った。また、マウス脾臓細胞の活性化を、96ウエルプレートの各ウエルにおいて、マウス脾臓細胞(2×10)とマウス骨髄由来樹状細胞(BMDC)(3.3×10)とを共培養することによって行った(MLR刺激)。
 なお、BMDCは、日本チャールズリバー株式会社より購入したC3H(H-2k)から骨髄細胞を回収して溶血させた後、GM-CSFを入れた1%FBS/Advanced PRMI(GIBCO社)で一日おきに培地を交換し、培養6日目に100ng/ml LPSで刺激を与えて一晩培養した後洗浄し、ガンマセル40イグザクターを用いてガンマ線照射を行い、細胞分裂阻害したものを実験に用いた。
 骨髄由来hMSCをMSCGM培地及び培地1でそれぞれ前培養した後、前培養後のそれぞれの骨髄由来hMSCと、上記のように活性化したマウス脾臓細胞とを、MSCGM培地で共培養した。結果を図5及び6に示す。図5及び6は、MLRによるT細胞増殖に対する骨髄由来hMSCの免疫抑制効果を示すグラフである。値は平均±標準偏差で示している。同様の結果が、3回以上の独立した実験結果から得られた。図5は、培養3日目の結果を示し、図6は、培養4日目の結果を示している。図中、MはMSCGM培地で前培養した後に血清含有培地で培養した場合の結果を示しており、Sは培地1で前培養した後に血清含有培地で培養した結果を示している。
 図5及び6に示すように、培地1で前培養した骨髄由来hMSCは、MSCGM培地で前培養した骨髄由来hMSCと同様に、活性化T細胞増殖抑制効果を維持していた。また、MSCGM培地で前培養した骨髄由来hMSCは、共培養開始から4日目に免疫抑制効果を示したのに対して、培地1で前培養した骨髄由来hMSCは、共培養開始から3日目にすでに免疫抑制効果を示した。すなわち、培地1で前培養した骨髄由来hMSCのほうが、より早期に免疫抑制効果を示した。さらに、データを示していないが、マイトジェン刺激T細胞増殖及び抗CD3/抗CD28刺激T細胞増殖に対しても、培地1で前培養した骨髄由来hMSCは、同様の結果を示した。
 実施例1及び2の結果に示すように、培地1で培養した骨髄由来hMSCは、活性化T細胞の細胞増殖抑制効果を維持しているだけでなく、MSCGM培地(血清含有培地)で培養した骨髄由来hMSCよりも早期に活性化T細胞の細胞増殖抑制効果を発揮することが確認できた。また、MSCGM培地で前培養した骨髄由来hMSCと活性化マウス脾臓細胞とを共培養した場合、骨髄由来hMSCが免疫抑制効果を示すより前のT細胞の増殖が、コントロール培地(骨髄由来hMSCを含まない活性化マウス脾臓細胞の培養培地)におけるT細胞の増殖よりも活発になる時期があった。
 このように、培地1において骨髄由来hMSCを培養すると、短期間で必要な数の細胞を増殖させるのに有利であるだけでなく、免疫抑制効果も維持されていることが示された。このことから、培地1は、特に臨床応用を目指した骨髄由来hMSCの培養に有効であると言える。
 〔実施例3〕
 以下の実験を行った。
 (1.細胞培養)
 ヒト脂肪組織由来間葉系幹細胞(脂肪組織由来hMSC)は、以下の(i)~(vii)の手順にて分離し、培養した。
(i)ヒトから脂肪組織を採取し、無血清DMEM培地を用いて脂肪組織を2~3回洗浄した。
(ii)洗浄後の脂肪組織を、ハサミを用いて細かく切断した(1mm)。
(iii)0.1~0.2%コラゲナーゼ(GIBCO 17100-017)溶液を用いて、スターラーバーで攪拌しながら脂肪組織を処理した(37℃、30~60分)。
(iv)100mmのフィルターを用いてコラゲナーゼ処理後の脂肪組織を濾過した後、100×g、10分間遠心分離を行い、脂肪組織由来hMSCを分離した。
(v)Red lysis buffer(sigma R7757)を用いて、スターラーバーで攪拌しながら遠心分離後の細胞を処理した(5~10分)。
(vi)Red lysis buffer処理後の細胞を、無血清DMEM培地を用いて2~3回洗浄した。
(vii)洗浄後の細胞を培養用プレート(BECTON, DICKINSON (Falcon)353047)に播種し、表1に示した無血清の培地1、又は10%FBSを含有するMEM培地(sigma D6046)(「10%FBS-MEM」と称する。)を用いて培養した。
 (2.細胞増殖測定)
 培養開始から8日目に、細胞の増殖状態を光学顕微鏡を用いて目視で観察した。
 (3.結果)
 結果を図7に示す。図7は、培養開始から8日目の脂肪組織由来hMSCの増殖状態を示す図である。図7では、脂肪組織由来hMSCを40倍に拡大して観察した。図7に示すように、培地1で培養した脂肪組織由来hMSCは、10%FBS-MEMで培養した脂肪組織由来hMSCと比較して、顕著に(2~3倍)細胞数が増加していることが示された。
 〔実施例4〕
 以下の実験を行った。
 (1.細胞培養)
 ヒト滑膜由来間葉系幹細胞(滑膜由来hMSC)は、以下の(i)~(iii)の手順にて分離した。
(i)ヒトから滑膜を採取した。
(ii)得られた滑膜細胞をPBSで洗浄後、組織を0.4%コラゲナーゼ溶液10ml中に加えて混和し、37℃で1~4時間反応させた。
(iii)フィルタリング後、遠心分離した。
 遠心分離によって得られた初期の滑膜由来hMSCを、以下の培地を用いて培養した。なお、無血清培地Bである培地2は、表1に示した培地1からHGFおよびTGF-βを除いた培地である。
・10%FBS含有DMEM(10%FBS-DMEM)(sigma D6046、FBS;Hyclone,PS(+))
・培地1
・培地2
 培養は、37℃に保った炭酸ガスインキュベータ内(95% air and 5% CO2)で行った。
 (2.細胞増殖測定)
 培養開始から12日目(継代0回目)に、細胞の増殖状態を光学顕微鏡を用いて目視で観察した。また、細胞の数をコールターカウンターによって測定した。
 (3.結果)
 結果を図8に示す。図8は、初期の滑膜由来hMSCに対する培地1および培地2の増殖促進効果を示す図であり、(a)は、培養開始から12日目の滑膜由来hMSCの細胞数を示すグラフであり、(b)は、培養開始から12日目の滑膜由来hMSCの増殖状態を示す図である。図8の(b)では、滑膜由来hMSCを10倍に拡大して観察した。
 図8の(a)のグラフに示したように、初期の滑膜由来hMSCに対しては、培地2の増殖促進効果が顕著に(培地1を用いた場合の8倍、10%FBS含有DMEMを用いた場合の40倍以上)高いことが確認された。
 〔実施例5〕
 以下の実験を行った。
 (1.細胞培養)
 ヒト滑膜由来間葉系幹細胞(滑膜由来hMSC)は、実施例4の「1.細胞培養」の項に示した(i)~(iii)の手順によって分離した。
 遠心分離によって得られた初期の滑膜由来hMSCを、培地2を用いて11日間培養し、その後、以下の培地を用いて培養した。
・10%FBS含有DMEM(10%FBS-DMEM)(sigma D6046、FBS;Hyclone,PS(+))
・培地1
・培地2
 培養は、37℃に保った炭酸ガスインキュベータ内(95% air and 5% CO2)で行った。
 (2.細胞増殖測定)
 細胞の数をコールターカウンターによって測定した。
 (3.結果)
 結果を図9に示す。図9は、培養開始0日目から68日目までの滑膜由来hMSCの細胞数の経時的な変化を示すグラフである。
 図9のグラフに示したように、初期の滑膜由来hMSCに対しては、培地2を用いて培養し、その後、培地1を用いて滑膜由来hMSCを培養することによって、滑膜由来hMSCを効率よく増幅させ得ることが確認された(培養開始から48日目において、培養開始から11日目より10%FBS-DMEMを用いた場合の10万倍、培養開始0日目から68日目まで培地2を用いた場合の1万倍)。
 〔実施例6〕
 以下の実験を行った。
 (1.細胞培養)
 ヒト滑膜由来間葉系幹細胞(滑膜由来hMSC)は、実施例4の「1.細胞培養」の項に示した(i)~(iii)の手順によって分離した。
 滑膜由来hMSCを分離・増殖するために、遠心分離によって得られた滑膜由来hMSCをフラスコに移し、初代培養(P0)から継代3回目(P3)までは培地2を用い、継代1回目(P1)~継代4回目(P4)の間では表1に示した培地1を用いて培養した。培養は、37℃に保った炭酸ガスインキュベータ内(95% air and 5% CO2)で培養した。
 培養中の培地の交換は週に2回行った。細胞の継代は、7~21日間隔で行った。滑膜由来hMSCは、培地1mlに対して1~2×10個の間葉系幹細胞を播種し、37℃、5%CO培養条件下にて増殖させた。
 (2.結果)
 1gの滑膜組織から培地2と培地1を組み合わせて培養することによって、3~4週間で1000人分(変形性関節症の最大移植細胞数:1.5×10個)の増殖を取得することができた。
 〔実施例7〕
 以下の実験を行った。
 (フラスコ)
 以下のフラスコを用いた。
・フラスコ1:ファルコン製75cmフラスコ
・フラスコ2:住友ベークライト製75cmフラスコ
 (培養液)
 以下の培養液を用いた。
・10%FBS含有DMEM(10%FBS-DMEM)(sigma D6046、FBS;Hyclone,PS(+))
・培地1
・培地1+フィブロネクチン(終濃度5μg/mL)
 (細胞)
 以下の骨髄由来間葉系幹細胞(骨髄由来hMCS)を用いた。
・細胞1(P2):1×10個、細胞を起して培養12日目に継代したもの。
・細胞2(P3):1×10個、細胞を起して培養30日目に継代したもの。増殖スピードが遅い。
・細胞3(P1):1×10個、細胞を起して培養12日目に継代したもの。
 (培養方法)
 5,000個/cmの播種密度で、以下の条件にてそれぞれの骨髄由来hMCS(細胞1~細胞3)を培養した。なお、培養液3を用いる場合は、播種時のみフィブロネクチンを添加した。
・条件A:フラスコ1+10%FBS-DMEM(ポジティブコントロール)
・条件B:フラスコ1+培地1
・条件C:フラスコ1+培地1+フィブロネクチン
・条件D:フラスコ2+10%FBS-DMEM(ネガティブコントロール)
・条件E:フラスコ2+培地1
・条件F:フラスコ2+培地1+フィブロネクチン
 (2.細胞増殖測定)
 <細胞1>
 継代3回目になった時点でフラスコに細胞を播種し、培養を開始した。培養開始から5日目に、細胞の増殖状態を光学顕微鏡を用いて目視で観察した。
 <細胞2>
 継代4回目になった時点でフラスコに細胞を播種し、培養を開始した。培養開始から5日目に、細胞の増殖状態を光学顕微鏡を用いて目視で観察した。
 <細胞3>
 継代2回目になった時点でフラスコに細胞を播種し、培養を開始した。培養開始から5日目に、細胞の増殖状態を光学顕微鏡を用いて目視で観察した。
 (3.結果)
 <細胞1>
 結果を図10に示す。図10は、培養開始から5日目の骨髄由来hMSC(細胞1)の増殖状態を示す図である。図10では、骨髄由来hMSCを40倍に拡大して観察した。
 図10に示すように、条件Aおよび条件Dでは、死細胞が認められるが、3割前後の接着した細胞も認められた。また、条件Bおよび条件Eでは、局所的に細胞が増殖していた。条件Aおよび条件Dで培養した細胞とは、細胞の接着状態が明らかに異なり、2割前後の細胞の接着が認められた。さらに、条件Cおよび条件Fでは、条件Bおよび条件Eと同様に、局所的に細胞が増殖していた。条件Fでは、フラスコごとに細胞のバラつきが認められるが、条件Bおよび条件Eと同様に、2割前後の細胞の接着が認められた。
 <細胞2>
 結果を図11に示す。図11は、培養開始から5日目の骨髄由来hMSC(細胞2)の増殖状態を示す図である。図11では、骨髄由来hMSCを40倍に拡大して観察した。
 図11に示すように、条件Aおよび条件Dでは、細胞2は、順調に増殖し、コンフルエント状態の約7割程度に増殖した。細胞の状態は良好であった。また、条件Bでは、細胞2は、コンフルエント状態の7~8割程度に増殖し、条件Eでは、コンフルエント状態の9割程度に増殖し、ほぼコンフルエント状態になっていた。条件Bおよび条件Eでは、条件Aおよび条件Dと比較して、細胞が萎縮して穴のような空間ができていた。さらに、条件Cおよび条件Fでは、共に、細胞2は、コンフルエント状態の8割程度に増殖した。細胞の接着状態は、条件Bおよび条件Eと同じ状態であったが、細胞の数はやや少なめであった。
 <細胞3>
 結果を図12に示す。図12は、培養開始から5日目の骨髄由来hMSC(細胞3)の増殖状態を示す図である。図12では、骨髄由来hMSCを40倍に拡大して観察した。
 図12に示すように、条件Aおよび条件Dでは、細胞3は、コンフルエント状態の8~9割程度に増殖し、ややコンフルエントの状態になっていた。また、条件Bおよび条件Eでは、条件Bにおいて細胞の剥離が一部認められたが、それ以外は、コンフルエント状態の8~9割程度に増殖した。さらに、条件Cおよび条件Fでは、条件Bおよび条件Eと比較して、細胞の剥離が認められず、コンフルエント状態の9割程度に増殖していた。
 以上の結果から、条件Bおよび条件Eでは、細胞1~3の何れの細胞株を用いた場合であっても、条件Eの方が、細胞増殖能が高いことが確認された。すなわち、細胞1~3の増殖には、フラスコ1よりもフラスコ2の方が適していることが確認された。
 また、条件Cおよび条件Fのように、細胞接着分子としてのフィブロネクチンを添加することによって細胞の接着率が向上することが確認された。
 〔実施例8〕
 以下の実験を行った。
 (1.軟寒天コロニー法)
 96ウェルプレートを用いて、各ウェルに軟寒天培地(DMEM-10%FCS-0.6%寒天)を加え、ゲル化した後に細胞を懸濁した軟寒天培地(DMEM-10%FCS-0.4%寒天)を添加した。細胞は、ヒト軟骨肉腫細胞株(OUMS-27、JCRB細胞バンクから購入)、正常ヒト皮膚線維芽細胞(NHDF、ロンザ社から購入)を用いて、ウェルあたりの細胞播種数は0~10000個とした。ヒト軟骨肉腫細胞株は、間葉系の細胞がガン化したものである。軟寒天培地上に添加する培養液の血清含有量が10%、20%の群を作製した。なお、本実験において培養液に血清を添加したのは、細胞がより活発に増殖すると考えられる条件とするためである。
 培養開始から2週間後に、コロニーをp-iodonitrotetrazolium Violet(Sigma product.)によって染色し、顕微鏡下で各ウェル内に形成されたコロニー数を数えた。コロニーの直径が25μm以上のものを形成されたコロニーとして数えた。
 (培養液)
 以下の培養液を用いた。
・4.5g/Lグルコース含有DMEM(DMEM 4.5g/L glucose)
・培地1(表1を参照)
 なお、4.5g/Lグルコース含有DMEMにおいて、グルコースは、コロニー形成・増殖促進を目的として添加している。OUMS-27は、低濃度のグルコース培地(1g/ml)ではコロニー形成が悪いと考え、高濃度グルコース含有培地(市販品)を選んで、培養に使用した。
 (2.結果)
 図13は、正常ヒト皮膚線維芽細胞およびヒト軟骨肉腫細胞株の増殖に対する培地1の効果を示すグラフであり、(a)は、培養開始から14日目の正常ヒト皮膚線維芽細胞のコロニー数を示すグラフであり、(b)は、培養開始から14日目のヒト軟骨肉腫細胞株のコロニー数を示すグラフである。なお、図13では、大きさが25μm以上のコロニーの数を示す。
 図13の(a)のグラフに示したように、正常ヒト皮膚線維芽細胞では、培地1を用いて正常ヒト皮膚線維芽細胞を培養した場合に、4.5g/Lグルコース含有DMEMを用いて培養した場合と比較して形成されるコロニーの数が顕著に増加した。一方、図13の(b)のグラフに示したように、ヒト軟骨肉腫細胞株では、培地1を用いて正常ヒト皮膚線維芽細胞を培養した場合に、4.5g/Lグルコース含有DMEMを用いて培養した場合と比較して形成されるコロニーの数が顕著に減少した。
 この結果から、培養液として培地1を用いて細胞を培養した場合、正常ヒト皮膚線維芽細胞にある幹細胞、すなわち造腫瘍性を有していない細胞は、増殖が促進され、一方、ヒト軟骨肉腫細胞株のような造腫瘍性を有している細胞は、増殖が抑制されることが明らかになった。すなわち、培養液として培地1を用いて細胞を培養することによって、造腫瘍性を有している細胞の増殖を選択的に抑制しつつ、造腫瘍性を有していない正常な細胞を選択的に効率よく増殖させ得ることが明らかになった。
 さらに、この結果から、培養液が異なる以外は同一の条件で軟寒天コロニー法を行った場合に、培養液として4.5g/Lグルコース含有DMEMを用いた方が、培養液として培地1を用いた場合よりも形成されるコロニーの数が有意に多い場合に、その細胞は造腫瘍性を有している細胞であると判断し、培養液として4.5g/Lグルコース含有DMEMを用いた方が、培養液として培地1を用いた場合よりも形成されるコロニーの数が有意に少ない場合に、その細胞は造腫瘍性を有していない細胞であると判断できることが示唆された。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明を用いれば、間葉系幹細胞を用いたより安全かつ利用価値の高い移植治療材料を提供することができるので、間葉系幹細胞を用いた移植治療等の再生医療に好適に利用可能である。

Claims (18)

  1.  FGF、
     PDGF、
     TGF-β、
     HGF、
     EGF、
     少なくとも1つのリン脂質、及び
     少なくとも1つの脂肪酸を
    含有する無血清培地Aにおいて、間葉系幹細胞を増殖させる増殖工程と、
     上記増殖工程後の間葉系幹細胞から、免疫抑制能を維持又は向上した間葉系幹細胞をスクリーニングするスクリーニング工程と
    を包含することを特徴とする間葉系幹細胞を含む細胞製剤の製造方法。
  2.  上記増殖工程後の間葉系幹細胞を、上記スクリーニング工程の前に、血清を含む培地において培養する血清培養工程をさらに包含することを特徴とする請求項1に記載の製造方法。
  3.  上記増殖工程の前に、
     FGF、
     PDGF、
     EGF、
     少なくとも1つのリン脂質、及び
     少なくとも1つの脂肪酸を
    含有する無血清培地Bにおいて、間葉系幹細胞を増殖させる前増殖工程をさらに包含することを特徴とする請求項1又は2に記載の製造方法。
  4.  上記増殖工程後の間葉系幹細胞から、造腫瘍性を有していない間葉系幹細胞をスクリーニングする第2スクリーニング工程をさらに包含することを特徴とする請求項1~3の何れか1項に記載の製造方法。
  5.  上記増殖工程では、上記間葉系幹細胞の増殖に適した培養容器を用いて当該間葉系幹細胞を増殖させることを特徴とする請求項1~4のいずれか1項に記載の製造方法。
  6.  上記増殖工程では、上記無血清培地Aに、細胞接着分子をさらに含有させることを特徴とする請求項1~5のいずれか1項に記載の製造方法。
  7.  上記増殖工程では、上記間葉系幹細胞を少なくとも1回継代することを特徴とする請求項1~6の何れか1項に記載の製造方法。
  8.  上記増殖工程では、継代を行う場合に、哺乳類および微生物由来の成分を含有していない細胞剥離剤を用いて上記間葉系幹細胞を剥離することを特徴とする請求項7に記載の製造方法。
  9.  上記増殖工程の前に、間葉系幹細胞の増殖に適した培養容器を選択する培養容器選択工程をさらに包含していることを特徴とする請求項5に記載の製造方法。
  10.  上記リン脂質が、フォスファチジン酸、リゾフォスファチジン酸、フォスファチジルイノシトール、フォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン、及びフォスファチジルグリセロールからなる群より選択されることを特徴とする請求項1~9のいずれか1項に記載の製造方法。
  11.  上記脂肪酸が、リノール酸、オレイン酸、リノレイン酸、アラキドン酸、ミリスチン酸、パルミトイル酸、パルミチン酸、及びステアリン酸からなる群より選択されることを特徴とする請求項1~10のいずれか1項に記載の製造方法。
  12.  請求項1~11のいずれか1項に記載の製造方法によって製造された間葉系幹細胞を含む細胞製剤。
  13.  FGF、
     PDGF、
     TGF-β、
     HGF、
     EGF、
     少なくとも1つのリン脂質、及び
     少なくとも1つの脂肪酸を
    含有することを特徴とする免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清の培地用添加剤。
  14.  細胞接着分子をさらに含有していることを特徴とする請求項13に記載の培地用添加剤。
  15.  請求項13又は14に記載の培地用添加剤を含有していることを特徴とする免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための無血清の培養培地。
  16.  請求項15に記載の培養培地において間葉系幹細胞を培養する工程を包含することを特徴とする免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するための培養方法。
  17.  請求項13又は14に記載の培地用添加剤Aを少なくとも備えていることを特徴とする免疫抑制能を維持又は向上した間葉系幹細胞を含む細胞製剤を製造するためのキット。
  18.  FGF、
     PDGF、
     EGF、
     少なくとも1つのリン脂質、及び
     少なくとも1つの脂肪酸を
    含有する培地用添加剤Bをさらに備えていることを特徴とする請求項17に記載のキット。
PCT/JP2011/055683 2010-03-10 2011-03-10 間葉系幹細胞を含む細胞製剤及びその製造方法 WO2011111787A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201180012941.1A CN102791276B (zh) 2010-03-10 2011-03-10 含有间充质干细胞的细胞制品及其制造方法
CA2792802A CA2792802C (en) 2010-03-10 2011-03-10 Cell preparation containing mesenchymal stem cells, and method for producing same
DK11753445.3T DK2545928T3 (en) 2010-03-10 2011-03-10 CELL PREPARATION CONTAINING MESENYKYMAL STEM CELLS AND METHOD OF PRODUCING THEREOF
AU2011225158A AU2011225158C1 (en) 2010-03-10 2011-03-10 Cell preparation containing mesenchymal stem cells, and method for producing same
SG2012066262A SG183570A1 (en) 2010-03-10 2011-03-10 Cell preparation containing mesenchymal stem cells, and method for producing same
JP2012504519A JP5804385B2 (ja) 2010-03-10 2011-03-10 間葉系幹細胞を含む細胞製剤及びその製造方法
US13/583,150 US9394521B2 (en) 2010-03-10 2011-03-10 Cell preparation containing mesenchymal stem cells, and method for producing same
KR1020127026184A KR101443478B1 (ko) 2010-03-10 2011-03-10 간엽계 줄기 세포를 포함한 세포 제제 및 그의 제조 방법
EP11753445.3A EP2545928B1 (en) 2010-03-10 2011-03-10 Cell preparation containing mesenchymal stem cells, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010053179 2010-03-10
JP2010-053179 2010-03-10

Publications (2)

Publication Number Publication Date
WO2011111787A1 true WO2011111787A1 (ja) 2011-09-15
WO2011111787A8 WO2011111787A8 (ja) 2011-12-01

Family

ID=44563585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055683 WO2011111787A1 (ja) 2010-03-10 2011-03-10 間葉系幹細胞を含む細胞製剤及びその製造方法

Country Status (10)

Country Link
US (1) US9394521B2 (ja)
EP (1) EP2545928B1 (ja)
JP (1) JP5804385B2 (ja)
KR (1) KR101443478B1 (ja)
CN (1) CN102791276B (ja)
AU (1) AU2011225158C1 (ja)
CA (1) CA2792802C (ja)
DK (1) DK2545928T3 (ja)
SG (1) SG183570A1 (ja)
WO (1) WO2011111787A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034407A1 (ja) * 2012-08-31 2014-03-06 Abe Hiroyuki 間葉系幹細胞を未分化増殖させる方法、および間葉系幹細胞を濃縮する方法
WO2015016357A1 (ja) * 2013-08-01 2015-02-05 株式会社ツーセル 軟骨損傷治療剤及びその製造方法
WO2015121471A1 (en) 2014-02-14 2015-08-20 National University Of Ireland, Galway Serum-free medium
JP2016007214A (ja) * 2014-06-24 2016-01-18 ステムピューティクス リサーチ ピーブイティー.リミテッドStempeutics Research Pvt. Ltd. 間葉系間質細胞生産をスケールアップする方法、その組成物及びキット
JP2017104106A (ja) * 2015-12-07 2017-06-15 株式会社Cells Power 単一種幹細胞
JP2017104094A (ja) * 2015-12-07 2017-06-15 株式会社Cells Power 幹細胞培養方法
WO2017099067A1 (ja) * 2015-12-07 2017-06-15 株式会社Cells Power 幹細胞培養方法
WO2017155055A1 (ja) * 2016-03-10 2017-09-14 株式会社Cells Power 培養生成液製造方法
JP2017163979A (ja) * 2016-03-10 2017-09-21 株式会社Cells Power 培養生成液
JP2017163977A (ja) * 2016-03-10 2017-09-21 株式会社Cells Power 培養生成液製造方法
DE202018103067U1 (de) 2018-05-30 2018-06-20 Caire Medical-Biotechnology International Co. Zur Vermehrung und Gewinnung mesenchymaler Stammzellen geeignetes serumfreies Zellkulturmedium
WO2018123968A1 (ja) 2016-12-28 2018-07-05 株式会社ツーセル 生体組織損傷の修復剤および当該修復剤の製造方法
WO2019026910A1 (ja) * 2017-07-31 2019-02-07 株式会社ツーセル 凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット
JP2019506431A (ja) * 2016-02-23 2019-03-07 ユニバーシティ−インダストリー コーオペレイション グループ オブ キョンヒ ユニバーシティUniversity−Industry Cooperation Group Of Kyung Hee University 幹細胞の効能改善のための組成物及び方法
WO2021060460A1 (ja) 2019-09-26 2021-04-01 株式会社ツーセル 生体組織損傷の修復剤の製造方法および生体組織損傷の修復剤
JP2022013636A (ja) * 2020-06-30 2022-01-18 ミラセルバイオ カンパニー リミテッド 類似間葉系幹細胞の製造方法及びこれにより製造された類似間葉系幹細胞
WO2022049977A1 (ja) 2020-09-03 2022-03-10 株式会社ツーセル 中枢神経疾患の治療用組成物、中枢神経疾患の治療用組成物の製造方法および中枢神経疾患の治療用製剤の製造方法
KR20220047879A (ko) 2019-08-29 2022-04-19 아지노모토 가부시키가이샤 간엽계 줄기세포를 포함한 생체 유래 세포 시료로부터 간엽계 줄기세포를 제조하는 방법
CN114736858A (zh) * 2022-06-13 2022-07-12 广东先康达生物科技有限公司 一种脐带血nkt细胞的培养液及培养方法
JP2022550245A (ja) * 2020-05-25 2022-12-01 青島瑞思徳生物科技有限公司 間葉系幹細胞のインビトロスクリーニング、活性化、増幅、凍結保存及びその細胞バンクの作成方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201202319D0 (en) 2012-02-10 2012-03-28 Orbsen Therapeutics Ltd Stromal stem cells
WO2014011407A2 (en) * 2012-07-12 2014-01-16 Imstem Biotechnology, Inc. Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof
US8835175B2 (en) * 2012-11-13 2014-09-16 Grifols, S.A. Culture medium for human mesenchymal stem cells
AU2014255755B2 (en) 2013-04-16 2018-10-25 Orbsen Therapeutics Limited Medical use of syndecan-2
CN103484427A (zh) * 2013-08-28 2014-01-01 中国人民解放军南京军区福州总医院 一种经卵磷脂处理的脂肪基质血管组分制备技术
EP3074506A1 (en) 2014-02-12 2016-10-05 National University of Ireland, Galway Selection and use of stem cells
KR102635212B1 (ko) * 2015-03-04 2024-02-13 메조블라스트 인터내셔널 에스에이알엘 중간엽 줄기 세포를 위한 세포 배양 방법
WO2016150884A1 (en) 2015-03-20 2016-09-29 Orbsen Therapeutics Limited Modulators of syndecan-2 and uses thereof
CN104762259A (zh) * 2015-04-21 2015-07-08 广州赛莱拉干细胞科技股份有限公司 一种间充质干细胞的培养基及其大规模培养方法
CN106282103A (zh) * 2015-06-03 2017-01-04 周宇璠 动物间充质干细胞免疫抑制能增强无血清培养液
CN106282102A (zh) * 2015-06-03 2017-01-04 朱轶 动物间充质干细胞无血清培养液
EP3402489B1 (en) 2016-01-15 2021-06-09 Orbsen Therapeutics Limited Sdc-2 exosome compositions and methods of isolation and use
EP3533801A4 (en) * 2016-10-31 2020-06-17 Biomimetics Sympathies Inc. SYNOVIOLIN EXPRESSION INHIBITOR COMPRISING A MESENCHYMAL STEM CELL OR A CULTURE SURNANTANT
US11268067B2 (en) 2017-07-14 2022-03-08 Orbsen Therapeutics Limited Methods of isolation and use of CD39 stromal stem cells
KR20200025210A (ko) * 2018-08-29 2020-03-10 주식회사 스템모어 모유두 세포의 배양용 조성물 및 이를 이용한 모유두 세포의 배양 방법
CN112899223A (zh) * 2019-12-04 2021-06-04 陕西光子动力航天科技有限公司 宫血干细胞制备方法
AU2021247767A1 (en) 2020-03-30 2022-10-20 Oriental Yeast Co., Ltd. Chromosome-stabilizing agent for stem cells
EP4144830A1 (en) 2020-04-30 2023-03-08 Oriental Yeast Co., Ltd. Stem cell medium and stem cell culturing method
KR102296986B1 (ko) * 2021-01-21 2021-08-31 정덕수 우태아혈청 성분의 유해함을 극복하기 위한 화학적으로 정의된 줄기세포배양액 개발
CN112708596A (zh) * 2021-01-22 2021-04-27 华夏源细胞工程集团股份有限公司 一种间充质干细胞体外抑制淋巴细胞增殖抑制的检测方法
KR102303948B1 (ko) * 2021-03-09 2021-09-24 주식회사 스마트셀랩 중간엽 줄기세포 및 면역세포 공동배양액을 포함하는 피부 재생용 화장료 조성물
CN113832099A (zh) * 2021-10-13 2021-12-24 浙江领蔚生物技术有限公司 用于制备治疗类风湿性关节炎药物的间充质干细胞制剂
CN114292811A (zh) * 2021-12-16 2022-04-08 优赛医疗科技(天津)有限公司 免疫调节功能增强型脐带间充质干细胞、干细胞制剂及脐带间充质干细胞的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080919A1 (ja) 2006-01-13 2007-07-19 Japan Science And Technology Agency 動物細胞を無血清培養するための培地用添加剤、キット及びこれらの利用
JP2007536935A (ja) * 2004-05-14 2007-12-20 ベクトン・ディキンソン・アンド・カンパニー 間葉幹細胞の無血清増殖のための細胞培養環境

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO162160C (no) 1987-01-09 1989-11-15 Medi Cult As Serumfritt vekstmedium, samt anvendelse derav.
JPH08308561A (ja) 1995-05-16 1996-11-26 Sumitomo Electric Ind Ltd 動物細胞培養用無血清培地
JPH09191874A (ja) 1996-01-22 1997-07-29 Kurabo Ind Ltd 正常ヒトメラニン細胞培養用無血清培地
US5834418A (en) 1996-03-20 1998-11-10 Theratechnologies, Inc. Process for the preparation of platelet growth factors extract
ATE316795T1 (de) * 1998-03-18 2006-02-15 Osiris Therapeutics Inc Mesenchymale stammzellen für die prävention und behandlung von immunantworten bei transplantationen
ATE342348T1 (de) 1998-11-09 2006-11-15 Consorzio Per La Gestione Del Serum-freies medium für chondrozyt-ähnliche zellen
IL149942A0 (en) 1999-12-07 2002-11-10 Univ Monash Cellular compositions capable of long term culture, methods for preparing the same and modified animals derived therefrom
JPWO2002022788A1 (ja) * 2000-09-12 2004-01-22 加藤 幸夫 間葉系幹細胞の培養方法
JP2005515777A (ja) 2002-01-25 2005-06-02 ジェンザイム・コーポレーション 軟骨細胞のための無血清培地およびその使用法
CA2488425A1 (en) 2002-06-07 2003-12-18 Es Cell International Pte Ltd Methods of regulating differentiation in stem cells
US7807458B2 (en) 2003-01-30 2010-10-05 The United States Of America As Represented By The Secretary Of The Department Of Veterans Affairs Multilineage-inducible cells and uses thereof
US20050032122A1 (en) 2003-08-06 2005-02-10 Shiaw-Min Hwang Optimizing culture medium for CD34<+> hematopoietic cell expansion
US20060216821A1 (en) 2004-02-26 2006-09-28 Reliance Life Sciences Pvt. Ltd. Pluripotent embryonic-like stem cells derived from corneal limbus, methods of isolation and uses thereof
JP2007000077A (ja) 2005-06-23 2007-01-11 Hitachi Medical Corp 付着性動物細胞の無血清培養方法及び付着性動物細胞の無血清培養用培地
RU2008128451A (ru) 2005-12-14 2010-01-20 Огенодженесис, Инк. (US) Композиция для лечения и ухода за кожей, способ ее получения, способ ее использования
WO2009114860A2 (en) * 2008-03-14 2009-09-17 The Board Of Trustees Of The University Of Illinois Activated mesenchymal stem cells for the prevention and repair of inflammatory states

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536935A (ja) * 2004-05-14 2007-12-20 ベクトン・ディキンソン・アンド・カンパニー 間葉幹細胞の無血清増殖のための細胞培養環境
WO2007080919A1 (ja) 2006-01-13 2007-07-19 Japan Science And Technology Agency 動物細胞を無血清培養するための培地用添加剤、キット及びこれらの利用

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
AGGARWAL, S., BLOOD, vol. 105, 2005, pages 1815 - 1822
CHRISTELLE DOUCET ET AL.: "Platelet Lysates Promote Mesenchymal Stem Cell Expansion: A Safety Substitute for Animal Serum in Cell- Based Therapy Applications", JOURNAL OF CELLULAR PHYSIOLOGY, vol. 205, 2005, pages 228 - 236, XP002454867 *
CORCIONE, A., BLOOD, vol. 107, 2006, pages 367 - 372
DJOUAD, F., BLOOD, vol. 102, 2003, pages 3837 - 3844
KATO YUKIO: "Proceedings of Fifth Iryokiki Forum", 2007, MEDICAL EQUIPMENT FORUM, pages: 33 - 35
KEATING, A., CELL STEM CELL, vol. 2, 2008, pages 106 - 108
LE BLANC K., J INTERN MED., vol. 262, 2007, pages 509 - 525
MASSIMO DI NICOLA ET AL.: "Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli", BLOOD, vol. 99, no. 10, 2002, pages 3838 - 3843, XP002982803 *
PANAGIOTA A. SOTIROPOULOU ET AL.: "Characterization of the Optimal Culture Conditions for Clinical Scale Production of Human Mesenchymal Stem Cells", STEM CELLS, vol. 24, 2006, pages 462 - 471, XP009066391 *
RAMASAMY, R., TRANSPLANTATION, vol. 83, 2007, pages 71 - 76
RUMI SAWADA ET AL.: "Hito Kotsuzui Yurai Kan'yokei Kansaibo no in vitro Baiyo-ji ni Okeru Idenshi Hatsugen no Henka ni Tsuite, Mukessei Baichi no Eikyo", REGENERATIVE MEDICINE, vol. 8, 2009, pages 248 *
See also references of EP2545928A4 *
YUKIO KATO: "Mukessei Baichi de Kan'yokei Kansaibo no STEMNESS Bunshi Kiko o Kasseika suru: Kessei Saisei Iryo kara Mukessei Saisei Iryo eno Tenkan", JAPAN SOCIETY OF PLASTIC AND RECONSTRUCTIVE SURGERY KISO GAKUJUTSU SHUKAI PROGRAM SHOROKUSHU, vol. 18TH, 2009, pages 54 - 55 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670461B2 (en) 2012-08-31 2017-06-06 Hiroyuki Abe Method for undifferentiated growth of mesenchymal stem cell and method for concentration of mesenchymal stem cell
WO2014034407A1 (ja) * 2012-08-31 2014-03-06 Abe Hiroyuki 間葉系幹細胞を未分化増殖させる方法、および間葉系幹細胞を濃縮する方法
US10507266B2 (en) 2013-08-01 2019-12-17 Two Cells Co., Ltd. Cartilage-damage treatment agent and method for producing same
WO2015016357A1 (ja) * 2013-08-01 2015-02-05 株式会社ツーセル 軟骨損傷治療剤及びその製造方法
JPWO2015016357A1 (ja) * 2013-08-01 2017-03-02 株式会社ツーセル 軟骨損傷治療剤及びその製造方法
WO2015121471A1 (en) 2014-02-14 2015-08-20 National University Of Ireland, Galway Serum-free medium
JP2016007214A (ja) * 2014-06-24 2016-01-18 ステムピューティクス リサーチ ピーブイティー.リミテッドStempeutics Research Pvt. Ltd. 間葉系間質細胞生産をスケールアップする方法、その組成物及びキット
JP2017104106A (ja) * 2015-12-07 2017-06-15 株式会社Cells Power 単一種幹細胞
WO2017099067A1 (ja) * 2015-12-07 2017-06-15 株式会社Cells Power 幹細胞培養方法
JP2017104094A (ja) * 2015-12-07 2017-06-15 株式会社Cells Power 幹細胞培養方法
JP7154586B2 (ja) 2016-02-23 2022-10-18 ユニバーシティ-インダストリー コーオペレイション グループ オブ キョンヒ ユニバーシティ 幹細胞の効能改善のための組成物及び方法
JP2019506431A (ja) * 2016-02-23 2019-03-07 ユニバーシティ−インダストリー コーオペレイション グループ オブ キョンヒ ユニバーシティUniversity−Industry Cooperation Group Of Kyung Hee University 幹細胞の効能改善のための組成物及び方法
WO2017155055A1 (ja) * 2016-03-10 2017-09-14 株式会社Cells Power 培養生成液製造方法
JP2017163979A (ja) * 2016-03-10 2017-09-21 株式会社Cells Power 培養生成液
JP2017163977A (ja) * 2016-03-10 2017-09-21 株式会社Cells Power 培養生成液製造方法
KR20190102015A (ko) 2016-12-28 2019-09-02 가부시키가이샤 투셀 생체 조직 손상의 수복제 및 그 수복제의 제조 방법
JPWO2018123968A1 (ja) * 2016-12-28 2019-10-31 株式会社ツーセル 生体組織損傷の修復剤および当該修復剤の製造方法
WO2018123968A1 (ja) 2016-12-28 2018-07-05 株式会社ツーセル 生体組織損傷の修復剤および当該修復剤の製造方法
JP7113430B2 (ja) 2016-12-28 2022-08-05 株式会社ツーセル 生体組織損傷の修復剤および当該修復剤の製造方法
WO2019026910A1 (ja) * 2017-07-31 2019-02-07 株式会社ツーセル 凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット
DE202018103067U1 (de) 2018-05-30 2018-06-20 Caire Medical-Biotechnology International Co. Zur Vermehrung und Gewinnung mesenchymaler Stammzellen geeignetes serumfreies Zellkulturmedium
KR20220047879A (ko) 2019-08-29 2022-04-19 아지노모토 가부시키가이샤 간엽계 줄기세포를 포함한 생체 유래 세포 시료로부터 간엽계 줄기세포를 제조하는 방법
KR20220066959A (ko) 2019-09-26 2022-05-24 가부시키가이샤 투셀 생체 조직 손상 수복제의 제조 방법 및 생체 조직 손상 수복제
WO2021060460A1 (ja) 2019-09-26 2021-04-01 株式会社ツーセル 生体組織損傷の修復剤の製造方法および生体組織損傷の修復剤
JP2022550245A (ja) * 2020-05-25 2022-12-01 青島瑞思徳生物科技有限公司 間葉系幹細胞のインビトロスクリーニング、活性化、増幅、凍結保存及びその細胞バンクの作成方法
JP7390473B2 (ja) 2020-05-25 2023-12-01 青島瑞思徳生物科技有限公司 間葉系幹細胞のインビトロスクリーニング、活性化、増幅、凍結保存及びその細胞バンクの作成方法
JP7069492B2 (ja) 2020-06-30 2022-05-18 ミラセルバイオ カンパニー リミテッド 類似間葉系幹細胞の製造方法及びこれにより製造された類似間葉系幹細胞
JP2022013636A (ja) * 2020-06-30 2022-01-18 ミラセルバイオ カンパニー リミテッド 類似間葉系幹細胞の製造方法及びこれにより製造された類似間葉系幹細胞
WO2022049977A1 (ja) 2020-09-03 2022-03-10 株式会社ツーセル 中枢神経疾患の治療用組成物、中枢神経疾患の治療用組成物の製造方法および中枢神経疾患の治療用製剤の製造方法
KR20230054445A (ko) 2020-09-03 2023-04-24 가부시키가이샤 투셀 중추신경 질환의 치료용 조성물, 중추신경 질환의 치료용 조성물의 제조 방법 및 중추신경 질환의 치료용 제재의 제조 방법
CN114736858A (zh) * 2022-06-13 2022-07-12 广东先康达生物科技有限公司 一种脐带血nkt细胞的培养液及培养方法
CN114736858B (zh) * 2022-06-13 2022-08-19 广东先康达生物科技有限公司 一种脐带血nkt细胞的培养液及培养方法

Also Published As

Publication number Publication date
US9394521B2 (en) 2016-07-19
CA2792802A1 (en) 2011-09-15
KR101443478B1 (ko) 2014-09-22
EP2545928A4 (en) 2013-09-04
CN102791276B (zh) 2015-03-04
JP5804385B2 (ja) 2015-11-04
CN102791276A (zh) 2012-11-21
KR20120137404A (ko) 2012-12-20
US20120329087A1 (en) 2012-12-27
EP2545928A1 (en) 2013-01-16
WO2011111787A8 (ja) 2011-12-01
AU2011225158C1 (en) 2014-01-23
EP2545928B1 (en) 2016-07-20
JPWO2011111787A1 (ja) 2013-06-27
SG183570A1 (en) 2012-10-30
AU2011225158A1 (en) 2012-11-01
DK2545928T3 (en) 2016-10-03
CA2792802C (en) 2017-10-31
AU2011225158B2 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5804385B2 (ja) 間葉系幹細胞を含む細胞製剤及びその製造方法
JP4385076B2 (ja) 動物細胞を無血清培養するための培地用添加剤、キット及びこれらの利用
EP2374871B1 (en) Pluripotent stem cells, method for preparation thereof and uses thereof
Wu et al. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy
KR101211913B1 (ko) 양막유래 중간엽 줄기세포 배양을 위한 배지조성물 및 이를 이용한 양막유래 중간엽 줄기세포의 배양방법
JP6662777B2 (ja) 人工心筋(ehm)を産生するための方法
EP2865749A1 (en) High-concentration stem cell production method
EP1981971A2 (en) Adult stem cell-derived connective tissue progenitors for tissue engineering
WO2012040465A2 (en) Multipotent stem cells and uses thereof
KR102292132B1 (ko) 무혈청 배지 조성물
WO2009080794A1 (en) Method for preparing cell-specific extracellular matrices
WO2003050273A1 (fr) Milieu de culture pour des cellules humaines et methode de culture
JP6958939B2 (ja) 凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット
EP2746386A1 (en) Materials and methods for cell culture
CN115362252A (zh) 增殖细胞和细胞生产物的生产法、间充质干细胞群和干细胞培养上清及其生产法、治疗剂
CN108517313B (zh) 一种用于培养扩增牙髓干细胞的血清/血浆替代物
JP2003235548A (ja) ヒト細胞の培養用培地および培養方法
JPWO2005078070A1 (ja) 胚性幹細胞用フィーダー細胞作成培地およびフィーダー細胞
Ferro Isolation, characterization and Ex-Vivo expansion of human synovial tissue derived-mesenchymal stem/stromal cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012941.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504519

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13583150

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2792802

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8432/CHENP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2011753445

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011753445

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127026184

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011225158

Country of ref document: AU

Date of ref document: 20110310

Kind code of ref document: A