WO2019026910A1 - 凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット - Google Patents

凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット Download PDF

Info

Publication number
WO2019026910A1
WO2019026910A1 PCT/JP2018/028677 JP2018028677W WO2019026910A1 WO 2019026910 A1 WO2019026910 A1 WO 2019026910A1 JP 2018028677 W JP2018028677 W JP 2018028677W WO 2019026910 A1 WO2019026910 A1 WO 2019026910A1
Authority
WO
WIPO (PCT)
Prior art keywords
cryopreservation
cells
cell
composition
registered trademark
Prior art date
Application number
PCT/JP2018/028677
Other languages
English (en)
French (fr)
Inventor
金昌 邵
俊輔 谷川
昌紀 中佐
加藤 幸夫
辻 紘一郎
彰裕 大礒
Original Assignee
株式会社ツーセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ツーセル filed Critical 株式会社ツーセル
Priority to AU2018310000A priority Critical patent/AU2018310000B2/en
Priority to JP2019534534A priority patent/JP6958939B2/ja
Priority to US16/634,820 priority patent/US20200205399A1/en
Publication of WO2019026910A1 publication Critical patent/WO2019026910A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0278Physical preservation processes
    • A01N1/0284Temperature processes, i.e. using a designated change in temperature over time

Definitions

  • the present invention relates to a composition for cryopreservation, a method for producing a cryopreserved substance, a cell preparation, a method for producing a cell preparation and a kit for cryopreservation.
  • Patent Document 1 describes that scaffold-type cell preparations can be frozen by devising the composition and form of nanofibers and collagen sheets used as scaffolds.
  • Patent Document 2 discloses a cell suspension-type cell therapeutic drug provided in a cryopreservation form in which autologous serum and DMSO are added to a cryopreservation solution.
  • Japanese Patent Publication Japanese Patent Application Laid-Open No. 2015-198604
  • Japanese Patent Publication Japanese Patent Publication "Japanese Patent Application Laid-Open No. 2009-107929”
  • One aspect of the present invention has been made based on the above circumstances, and it is an object of the present invention to provide a cryopreservation composition which is less likely to produce dead cells and can be cryopreserved with good quality. Do.
  • the composition for cryopreservation is a composition for cryopreservation for cryopreservation of cells, and contains a fatty acid.
  • composition for cryopreservation is a composition for cryopreservation for cryopreservation of cells, wherein the cells form a cell mass having a three-dimensional structure. It may be for cryopreservation of the cell mass and comprises at least one component selected from the group consisting of fatty acids and fatty acid esters.
  • the method for producing a cryopreserved material is a method for producing a cryopreserved product in which cells are cryopreserved, and is characterized by including the following steps (a) and (c) in this order: It is a manufacturing method of frozen preservation thing which is said.
  • the method for producing a cryopreserved material is a method for producing a cryopreserved product in which cells are cryopreserved, wherein the cells form a cell mass having a three-dimensional structure.
  • it is a method of producing a cryopreserved article characterized by including the following steps (a) and (c) in this order:
  • a cell preparation according to an aspect of the present invention contains cells and a composition for cryopreservation containing a fatty acid, and is cryopreserved.
  • a cell preparation according to one aspect of the present invention comprises a cell and a composition for cryopreservation comprising at least one component selected from the group consisting of fatty acids and fatty acid esters, and the cells have a three-dimensional structure.
  • the cell mass may be formed and cryopreserved.
  • the method for producing a cell preparation is a method for producing a cell preparation containing cells, and the cells may form a cell mass having a three-dimensional structure. It is a manufacturing method characterized by including the following processes (a) and (c) in this order.
  • a method for producing a cell preparation is a method for producing a cell preparation containing cells, comprising the following steps (a) and (c) in this order: Manufacturing method.
  • the kit for cryopreservation which concerns on 1 aspect of this invention is a kit for cryopreservation for cryopreservation of a cell, Comprising: A fatty acid is provided.
  • kits for cryopreservation are kits for cryopreservation for cryopreservation of cells, which is a kit for cryopreservation of the cells having formed a cell mass having a three-dimensional structure. It is a kit for cryopreservation characterized by comprising at least one component selected from the group consisting of fatty acids and fatty acid esters.
  • the generation of dead cells is less likely to occur after thawing, and it is possible to achieve high quality cryopreservation.
  • FIG. 1 shows the results of the cryopreservation experiment. It is a figure which shows the result of the cryopreservation experiment of MSC as cell suspension. It is a figure which shows the result of the cryopreservation experiment of MSC as cell suspension. It is a figure which shows the result of the cryopreservation experiment of MSC as cell suspension. It is a figure which shows the result of the cryopreservation experiment of MSC as cell suspension.
  • FIG. 6 shows the confirmation result of bone differentiation ability
  • B is a figure which shows the confirmation result of fat differentiation ability.
  • FIG. 7 shows the results of Example 3 (gMSC (registered trademark) 1). It is a graph which shows the result of the cryopreservation experiment of gMSC (registered trademark) 1. It is a graph which shows the result of the cryopreservation experiment of gMSC (registered trademark) 1.
  • composition for cryopreservation is a composition for cryopreservation for cryopreservation of cells, and contains a fatty acid.
  • the composition for cryopreservation according to one aspect of the present invention is a composition for cryopreservation for cryopreservation of cells, wherein the cells form a cell mass having a three-dimensional structure. It may be for cryopreservation of the cell mass, and may comprise at least one component selected from the group consisting of fatty acids and fatty acid esters.
  • the composition for cryopreservation when simply referred to as “the composition for cryopreservation”, “the composition for cryopreservation for cryopreservation of cells” and “the composition for cryopreservation for cryopreservation of cells”, wherein the cells are It forms a cell mass that is a three-dimensional structure, and refers to any of the composition for cryopreservation for cryopreserving the cell mass.
  • the composition for cryopreservation according to one aspect of the present invention it may be one aspect of the composition for cryopreservation for cryopreservation of cells suspended in a suspension, and has a three-dimensional structure. It may also be one aspect of a cryopreservation composition for cryopreserving cells forming a certain cell mass.
  • mesenchymal stem cells are described here as an example, but cells to be cryopreserved are not limited to mesenchymal cells.
  • the cells such as mesenchymal stem cells are well frozen with good recovery rate and viability, and cells obtained after cryopreservation and thawing The number was also found to be good.
  • a composition for cryopreservation comprising at least one component selected from the group consisting of fatty acids and fatty acid esters, cells forming a cell mass having a three-dimensional structure have a good recovery rate and survival. It was found that the ratio was well frozen and that the recovery rate and survival rate after freezing and thawing were also good.
  • the “recovery rate” is the ratio of the total number of cells (whether alive or dead) to the number of cells before cryopreservation and thawing.
  • the total cell number refers to the number of cells recovered by cryopreservation and thawing without breaking, outflow, and the like.
  • the "survival rate” is the ratio of the number of surviving cells to the number of all cells recovered after cryopreservation and thawing.
  • the quality of cells after thawing was normal, and that the properties of the cells were not changed even by cryopreservation and thawing.
  • the composition for cryopreservation according to one aspect of the present invention does not use a component that is not present in animal cells such as trihalos, polyethylene glycol, polylysine, etc., and there is a significant difference between lots at risk of biological contamination.
  • the safety and the quality are also excellent because they can be suitably cryopreserved without using serum.
  • freeze storage refers to freezing and storing cells, but preferably refers to freezing and storage in a very low temperature environment such as ⁇ 80 ° C. or less.
  • Target cells to be frozen with the composition for cryopreservation include, for example, mesenchymal stem cells, CD34 cells, embryonic stem cells (ES cells), iPS (induced pluripotent stem cells) cells, chondrocytes, Examples include osteoblasts, fibroblasts, epidermal cells, epithelial cells, adipocytes, liver cells, pancreatic cells, muscle cells, nerve cells, neural stem cells, hematopoietic stem cells, and precursor cells thereof. Alternatively, the cells may be positive for a desired marker.
  • the species from which the cell is derived is also not particularly limited, and examples of the species include microorganisms, non-human mammals, and humans.
  • the cells may be cultured by a conventionally known method.
  • cultivates the said cell is suitably selected according to the cell to culture.
  • a culture vessel suitable for cell growth is also selected appropriately depending on the cells to be cultured.
  • “cells” in another aspect of the present invention (a method for producing a cryopreserved product, a cell preparation, a method for producing a cell preparation, a kit for cryopreservation) described below are also based on the description herein.
  • mesenchymal stem cells A mesenchymal stem cell (Mesenchymal stem cell, hereinafter also referred to as “MSC”), which is an example of a target to be frozen by the composition for cryopreservation according to one embodiment of the present invention, will be described.
  • MSC mesenchymal stem cell
  • Mesenchymal stem cells are considered to be one of the most promising cells in regenerative medicine due to their advantages such as the ability to differentiate into cells belonging to the mesenchymal system and also having an immunosuppressive action.
  • mesenchymal stem cells refer to somatic stem cells that differentiate into tissues belonging to the mesenchymal system.
  • mesenchymal stem cells those from which mesenchymal stem cells further having specific properties are isolated, those from which some kind of stimulation such as cytokine stimulation is applied to mesenchymal stem cells, and those into which genes are introduced are included.
  • MUSE cells, MAPC cells, SP-1 cells and the like are also included.
  • Mesenchymal stem cells have proliferation ability and differentiation ability to bone cells, chondrocytes, muscle cells, stromal cells, tendon cells, adipocytes and the like.
  • mesenchymal stem cells are preferably human mesenchymal stem cells, but they may be mesenchymal stem cells derived from non-human animals such as rats and mice.
  • Mesenchymal stem cells may be cultured by a conventionally known method, preferably serum-free culture or low-serum culture, and more preferably serum-free culture. If serum-free culture, culture components are known. In other words, since serum is derived from natural components, differences in components occur between lots, but such differences do not occur in serum-free media. Therefore, serum-free cultured mesenchymal stem cells are excellent in safety and quality. In addition, it is possible to minimize risks such as biological contamination and contamination of immunogenic substances, and to minimize substances that are not present in the body. In addition, since the biological material to be contained is clear, quality control is easy.
  • mesenchymal stem cells cultured in a serum-free manner in a part of serum-free medium such as STK (registered trademark) medium are excellent in proliferation rate.
  • the cells cultured in the serum-free culture as described above are subjected to freezing. Therefore, even after repeated passaging, the mesenchymal stem cells in such a good state are in a youthful state where aging does not occur, such as generation of pseudopods or change to a flat shape.
  • mesenchymal stem cells can be cultured and used at an excellent proliferation rate even after cryopreservation and thawing.
  • serum free culture is intended to be culture that does not use serum. For example, it is intended to culture using a serum free medium, which is a medium free of serum.
  • low serum culture refers to culture using a medium containing a smaller amount of serum than general serum-containing medium (eg, medium containing 10% FBS), and general serum-containing medium It is intended that the culture period using a serum-containing medium is shorter than the culture.
  • the basal medium for constructing the serum-free medium is not particularly limited as long as it is a medium for animal cells well known in the art, and preferable basal media include, for example, Ham's F12 medium, DMEM medium, RPMI-1640 medium , MCDB medium and the like. These basal media may be used alone or in combination of two or more.
  • a basal medium for constituting a serum-free medium is preferably a medium in which MCDB and DMEM are mixed at a ratio of 1: 1.
  • a serum-free medium obtained by adding FGF, PDGF, TGF- ⁇ , HGF, EGF, at least one phospholipid, and at least one fatty acid to the above-described basal medium may be used in the growth step.
  • the content of FGF relative to the basal medium is preferably 0.1 to 100 ng / ml, more preferably 3 ng / ml, at a final concentration.
  • the content of PDGF relative to the basal medium is preferably 0.5 to 100 ng / ml, more preferably 10 ng / ml, at a final concentration.
  • the content of TGF- ⁇ in the basal medium is preferably 0.5 to 100 ng / ml, more preferably 10 ng / ml, at a final concentration.
  • the content of HGF relative to the basal medium is preferably 0.1 to 50 ng / ml, more preferably 5 ng / ml, at a final concentration.
  • the content of EGF relative to the basal medium is preferably 0.5 to 200 ng / ml, more preferably 20 ng / ml, at a final concentration.
  • the total content of phospholipids to the basal medium is preferably 0.1 to 30 ⁇ g / ml at final concentration, more preferably 10 ⁇ g / ml.
  • the total content of fatty acids relative to the basal medium is preferably 1/1000 to 1/10 of the basal medium, more preferably 1/100.
  • Serum-free media may contain phospholipids.
  • phospholipids include phosphatidic acid, lysophosphatidic acid, phosphatidyl inositol, phosphatidyl serine, phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl glycerol and the like.
  • the phospholipid may be contained alone or in combination.
  • the serum-free medium may contain a combination of phosphatidic acid and phosphatidyl choline, and these phospholipids may be of animal or plant origin. .
  • Serum-free media may contain fatty acids.
  • fatty acids include linoleic acid, oleic acid, linolenic acid, arachidonic acid, myristic acid, palmitic acid, palmitic acid, stearic acid and the like, and the culture medium additive according to the present embodiment contains only these fatty acids. It may be contained or in combination.
  • the serum-free medium according to this embodiment may further contain cholesterol in addition to the above-mentioned fatty acids.
  • FGF is intended a growth factor selected from the fibroblast growth factor (FGF) family, preferably FGF-2 (bFGF), although It may be selected from other FGF families such as -1.
  • FGF fibroblast growth factor
  • PDGF is intended a growth factor selected from the platelet derived growth factor (PDGF) family and is preferably PDGF-BB or PDGF-AB .
  • TGF- ⁇ is a TGF- ⁇ 1 intended growth factor selected from the transforming growth factor- ⁇ (TGF- ⁇ ) family. Although preferred, it may be selected from other TGF- ⁇ families.
  • HGF is intended a growth factor selected from the hepatocyte growth factor family and EGF is selected from the epidermal growth factor (EGF) family Growth factors are contemplated.
  • EGF epidermal growth factor
  • the serum-free medium is at least 2 selected from the group consisting of connective tissue growth factor (CTGF), connective tissue growth factor (VEGF) and ascorbic acid compounds. It may further contain one factor.
  • CTGF connective tissue growth factor
  • VEGF connective tissue growth factor
  • ascorbic acid compounds may further contain one factor.
  • Ascorbic acid compounds as used herein are contemplated as ascorbic acid (vitamin C) or ascorbic acid diphosphate, or compounds similar thereto.
  • the above-mentioned growth factor contained in the serum-free medium may be natural or may be one produced by genetic recombination.
  • the serum-free medium preferably contains a lipid antioxidant.
  • the lipid antioxidant contained in the serum free medium may be DL- ⁇ -tocopherol acetate (Vitamin E).
  • the serum free medium may also further contain a surfactant.
  • the surfactant contained in the serum free medium may be Pluronic F-68 or Tween 80.
  • the serum free medium may further contain insulin, transferrin and selenate.
  • insulin may be an insulin-like growth factor and may be of natural cell origin or recombinantly produced.
  • the culture medium additive according to the present invention may further contain dexamethasone or another glucocorticoid.
  • mesenchymal stem cells isolated by conventional methods from animal tissues or cells such as humans are seeded in the above-described serum-free medium, and cultured until they grow to a desired number.
  • culture conditions it is preferable to inoculate 1 to 2 ⁇ 10 4 mesenchymal stem cells to 1 ml of culture medium, culture temperature is 37 ° C. ⁇ 1 ° C., culture time is 48 to 96 hours, and 5% CO 2 It is preferable to be below. By culturing in this manner, it is possible to efficiently obtain a large amount of mesenchymal stem cells that maintain or improve the immunosuppressive ability.
  • the culture container used for culture is not particularly limited as long as mesenchymal stem cells can be proliferated.
  • a Falcon 75 cm 2 flask, a Sumitomo Bakelite 75 cm 2 flask, etc. can be suitably used.
  • cell growth may be affected by the type of culture vessel used. Therefore, in order to proliferate mesenchymal stem cells more efficiently, a culture vessel suitable for proliferation is used for each mesenchymal stem cell to be proliferated in the proliferation step (hereinafter also referred to as "proliferation target cell"). It is preferable to carry out the proliferation step.
  • a method of selecting a culture vessel suitable for the growth of the cells to be grown for example, a method of selecting an optimal culture vessel as the cells to be grown can be mentioned. Specifically, a plurality of types of culture vessels are prepared, cells to be grown are grown under the same culture conditions except for different types of culture vessels, and the number of cells two weeks after the start of culture is measured by a known method In addition, it can be judged that the culture vessels are suitable for the proliferation of the cells to be proliferated in descending order of cell number.
  • the growth period of the cells to be grown in ascending order of time to reach 80 to 90% of confluent cell number It can be determined that it is a suitable culture vessel.
  • the cell adhesion molecule is further contained.
  • cell adhesion molecules include fibronectin, collagen, gelatin and the like. These cell adhesion molecules may be used alone or in combination of two or more.
  • the content of cell adhesion molecules to the serum-free medium is preferably 1 to 50 ⁇ g / ml, more preferably 5 ⁇ g / ml, at a final concentration.
  • the adhesion efficiency of the proliferation target cells to the culture vessel can be improved by adding the final concentration of fibronectin to the serum-free medium to 5 ⁇ g / ml. .
  • mesenchymal stem cells may be passaged at least once. Since mesenchymal stem cells proliferate in a anchorage-dependent manner, culture conditions can be increased by passaging mesenchymal stem cells in the middle of the proliferation step when mesenchymal stem cells are locally biased and proliferated, etc. It can be improved.
  • the passaging method for mesenchymal stem cells is not particularly limited, and passaging can be performed using a conventionally known passaging method for mesenchymal stem cells. Since the state of mesenchymal stem cells after passaging is good, in the above-mentioned proliferation step, when passaging, the above mesenchymal stem cells using a cell exfoliating agent which does not contain components derived from mammals and microorganisms It is preferable to peel off. Examples of the above-mentioned "cell release agent not containing components derived from mammals and microorganisms" include TrypLE Select CTS (Thermo Fisher Scientific Inc.), ACCUTASE (Innovative Cell Technologies, Inc.), and the like.
  • the processed product of the cells to be frozen by the composition for cryopreservation may be in any form, for example, a suspension of cells, one cultured in a sheet form, A cell mass of a three-dimensional structure etc. are mentioned. Among them, mesenchymal stem cells forming a three-dimensional cell mass are more preferable, and mesenchymal stem cells forming a scaffold-free cell mass are more preferable.
  • the cell mass is preferably composed only of mesenchymal stem cells, but may contain polysaccharides such as collagen and hyaluronic acid.
  • collagen or polysaccharide such as hyaluronic acid is contained, it is preferably 0.1 to 50% (v / v) of the cell mass.
  • the cell mass may or may not be subjected to treatment (equilibration) to make the cell mass penetrate the cryopreservation solution which is one aspect of the composition for cryopreservation of the present invention before it is frozen.
  • treatment equilibration
  • the cell mass of a three-dimensional structure can also be frozen suitably.
  • a cell suspension is administered to the affected area, it is reported that even mesenchymal stem cells that are said to have immunoprivileged migration from the affected area are considered to be administered by the host immune cells. There are reports that it does not stay in the affected area.
  • a cell mass of a three-dimensional structure it is possible to prevent cells from migrating and dropping out from the affected area, and exert a therapeutic effect for a long time.
  • the cell preparation in a form processed into a three-dimensional structure is extremely difficult to cryopreserve the cell suspension type of cell preparation.
  • the size and thickness of a cell mass to be frozen increase as in a three-dimensional structure, it becomes difficult to uniformly freeze the inside from the viewpoint of heat conduction.
  • the cell mass of three-dimensional structure one obtained by processing the cell mass into a three-dimensional structure by a conventionally known method may be used.
  • a “three-dimensional structure” when referred to a cell mass, a matrix is three-dimensionally oriented, and a cell in which cells are three-dimensionally arrayed and retains intercellular binding and orientation refers to an object that extends in three dimensions including
  • the shape of the three-dimensional structure may be determined, for example, according to the purpose of treatment.
  • the area, thickness, and strength may be set as appropriate depending on the part to be transplanted, and those skilled in the art can set the size as appropriate.
  • This size can be set according to the environment to be transplanted.
  • Cell clusters of small size have the merit of being able to be injected into a body cavity with an injection needle.
  • there is an advantage that it is easy to administer a sufficient number of cells for example, because it is easy to handle, for example, it is easy to grip with pincent at the time of surgery.
  • a certain size is, for example, 1 cm 2 or more, preferably 2 cm 2 or more, more preferably 3 cm 2 or more. More preferably, it is 4 cm 2 or more, 5 cm 2 or more, 6 cm 2 or more, 7 cm 2 or more, 8 cm 2 or more, 9 cm 2 or more, 10 cm 2 or more, 15 cm 2 or more Or 20 cm 2 or more, and may be, for example, 40 cm 2 or less, 30 cm 2 or less, 20 cm 2 or less, but is not limited thereto, and the area is 1 cm 2 or less or 40 cm 2 or more depending on the application It can be.
  • the size is preferably 2 mm 3 or more, more preferably 40 mm 3 or more, and may be, for example, 40 cm 3 or less, or 20 cm 3 or less, but is not limited thereto. It may be 2 mm 3 or less.
  • the sufficient thickness in the implantable artificial tissue may vary depending on the portion intended for transplantation, but one skilled in the art can appropriately set the thickness.
  • This thickness can be set according to the environment to be implanted. May exceed 5 mm.
  • the above, more preferably 3 mm or more, further preferably 5 mm or more is intended.
  • it when applied to bones, cartilages, ligaments, tendons, etc., it may be, for example, 1 mm or more, preferably 2 mm or more, more preferably 3 mm or more, still more preferably 5 mm or more, like the heart. Further, in any case, it may be 1 mm or less, 10 mm or less, or 5 mm or less.
  • the number of cells constituting the cell mass may be appropriately selected, and may be, for example, 50 to 200 masses, or 1,000,000 to 100,000,000 mass.
  • the mass may be a small mass or a large mass.
  • the migration of cells from the affected area can be more effectively prevented, and the therapeutic effect is exhibited for a longer time.
  • the composition for cryopreservation which concerns on 1 aspect of this invention is used, even if it is a cell mass of such a size, a dead cell is less likely to be generated after thawing, and the property of a cell is also after cryopreservation and thawing. Allows cryopreservation without change.
  • the cell mass of mesenchymal stem cells is preferably transplanted in an undifferentiated state where differentiation is not induced.
  • it is finely cut Is preferred. It is because the differentiation-inducing medium more easily penetrates into the inside of the tissue when the cell mass is finely cut. It does not specifically limit as a method used in order to cut
  • the size of the cell mass is more preferably about 10 mg to 20 mg.
  • the cell mass to be frozen with the composition for cryopreservation according to one aspect of the present invention is a scaffold-free three-dimensional structure.
  • natural products such as collagen may be used as scaffolds.
  • Such natural products differ in ingredients from lot to lot.
  • the components are known by being a scaffold-free three-dimensional structure, it is excellent in safety and quality stability.
  • natural products as described above are at risk of biological contamination and inclusion of immunogenic substances. Such a risk can be reduced by being a scaffold-free three-dimensional structure.
  • methods of cryopreserving even three-dimensional cell masses are being developed.
  • these methods devise the composition and form of nanofibers or collagen sheets used as scaffolds. Therefore, it can not be used in principle for "scaffold free" cell preparations.
  • such scaffold-free three-dimensional cell mass is also less likely to produce dead cells after thawing, and is cryopreserved without changing cell properties by freezing and thawing. it can.
  • a method of obtaining a scaffold-free three-dimensional cell aggregate including mesenchymal stem cells as an example of a freezing target in the present invention for example, a method using a conventionally known low adhesion plate, micropattern surface plate, etc. And, a hanging drop method can be adopted. Moreover, you may produce using the method as described in Japanese Patent 4522994. In addition, commercially available products may be used, and for example, gMSC (registered trademark) 1 (manufactured by Two Cell Co., Ltd.) can be suitably used.
  • the composition for cryopreservation according to one aspect of the present invention contains a fatty acid.
  • the cryopreservation composition can freeze cells with high viability, and does not cause changes in cell properties after thawing.
  • fatty acids examples include linoleic acid, oleic acid, linolenic acid, arachidonic acid, myristic acid, palmitic acid, palmitic acid and stearic acid.
  • fatty acid it is preferable that as the fatty acid, at least one of linoleic acid and linolenic acid is contained in the composition for cryopreservation.
  • the composition for cryopreservation can freeze mesenchymal stem cells with higher viability.
  • short chain fatty acid, medium chain fatty acid, long chain fatty acid may be used.
  • highly unsaturated fatty acids may be used. These may be individual or multiple types may be mixed. Among them, a mixture of a plurality of fatty acids is preferable, and a mixture in which the type and the amount of the contained fatty acids are specified is more preferable.
  • Chemically defined lipid concentrate manufactured by Thermo Fisher Scientific Inc., product number 11905-031
  • CD lipid registered trademark
  • the composition of the stock solution of CD lipid is as follows.
  • the fatty acids exemplified above may be used alone or in combination of two or more, but it is more preferable to use a mixture of two or more.
  • the survival rate is better, mesenchymal stem cells can be frozen, and the change in cell properties after thawing does not occur.
  • the content of the fatty acid in the composition for cryopreservation according to one aspect of the present invention is not particularly limited, and for example, the final concentration is 0.01 ⁇ g / ml to 500 ⁇ g / ml with respect to the total amount of the composition for cryopreservation Is preferred. For example, 1/1000 to 1/10 (v / v) is more preferable with respect to the total amount of the composition for cryopreservation.
  • CD lipid registered trademark
  • 1/1000 to 1/10 (v / v) PA: 0.5 to 100 ⁇ g / ml, PC: 0) relative to the total amount of the composition for cryopreservation .5 to 100 ⁇ g / ml
  • the fatty acid content is preferably higher in the above range. That is, it is more preferable that fatty acid be contained abundantly in the composition for cryopreservation, and it is more preferable to be rich in various fatty acids. Thereby, the survival rate is better, mesenchymal stem cells can be frozen, and there is no change in cell properties after thawing.
  • the composition for cryopreservation according to one aspect of the present invention contains a fatty acid ester.
  • the composition for cryopreservation can freeze cells with high viability.
  • fatty acid esters examples include phospholipids and neutral fats. Among them, it is preferable that a phospholipid is contained in the composition for cryopreservation.
  • Phospholipids include, for example, phosphatidic acid (hereinafter, the sodium salt of phosphatidic acid is referred to as PA, and when simply referred to as “phosphatidic acid", salts thereof are also included), lysophosphatidic acid, Phosphatidyl inositol, phosphatidyl serine, phosphatidyl ethanolamine, phosphatidyl choline (hereinafter referred to as PC), and phosphatidyl glycerol may be mentioned.
  • phosphatidic acid hereinafter, the sodium salt of phosphatidic acid is referred to as PA, and when simply referred to as “phosphatidic acid”, salts thereof are also included
  • lysophosphatidic acid Phosphatidyl inositol
  • phosphatidyl serine phosphatidyl serine
  • phosphatidyl ethanolamine phosphatidyl choline
  • PC phosphatidyl gly
  • the final concentration in the cryopreservation composition at the time of use is 0.01 ⁇ g / ml to 500 ⁇ g / ml with respect to the total amount of the cryopreservation composition Is preferred.
  • composition for cryopreservation may further contain a substance that aids in the water solubility (emulsification) of a fatty acid or fatty acid ester, such as a surfactant.
  • a surfactant may be Pluronic F-68 or Tween 80.
  • the composition for cryopreservation which further contains both a fatty acid or at least any one of a fatty acid ester and a surfactant.
  • a composition for cryopreservation containing phosphatidic acid and Pluronic F-68 is preferable.
  • the components of the composition for cryopreservation according to one aspect of the present invention described above may contain a lyoprotectant, which suppresses the growth of ice crystals in cells during the freezing and thawing process.
  • a lyoprotectant dimethyl sulfoxide
  • the amount is more preferably 0.5% to 50% (v / v) with respect to the total amount of the composition for cryopreservation.
  • composition for cryopreservation may contain components other than fatty acids, and examples thereof include a basal medium, a thickener, a pH adjuster, a lyoprotectant and the like.
  • composition for cryopreservation more preferably contains insulin, albumin, transferrin.
  • Insulin, albumin, transferrin can enhance the action of fatty acids.
  • the concentration when these are added is preferably such that the final concentration in the cryopreservation solution at the time of use is 0.5 ⁇ g / ml to 500 ⁇ g / ml.
  • composition for cryopreservation which concerns on 1 aspect of this invention should just mix each component mentioned above, such as a fatty acid, suitably.
  • the cryopreservation composition according to one aspect of the present invention can be provided in various forms. For example, it may be a liquid, or a solid such as a powder or a tablet. When provided as a solid, the user may appropriately dissolve in a solvent and use it as a cryopreservation solution, but the composition for cryopreservation according to one embodiment of the present invention may be used together with an instruction specifying a suitable solvent. It may be provided.
  • the cryopreservation method is a method for producing a cryopreserved product in which cells are cryopreserved, and includes the following steps (a) and (c) in this order.
  • a cryopreservation method is a method for producing a cryopreserved article in which cells are cryopreserved, wherein the cells form a cell mass having a three-dimensional structure, The steps (a) and (c) are included in this order.
  • cryopreserved refers to a cryopreserved substance.
  • the cryopreservation solution used in the method of producing a cryopreserved product according to one aspect of the present invention contains at least one component selected from the group consisting of fatty acids and fatty acid esters.
  • the cryopreservation solution may use a liquid form of the composition for cryopreservation in the above-mentioned one aspect of the present invention, and is a solid form among the composition for cryopreservation in one aspect of the present invention As for things, a solution obtained by dissolving the solid in a solvent may be used.
  • step (a) cells to be frozen are immersed in a cryopreservation solution containing fatty acid.
  • a method of immersing for example, it is preferable to put a cryopreservation solution in a container that can be cryopreserved and put cells in the cryopreservation solution. It is because freezing of the below-mentioned (c) process can be performed as it is.
  • the ratio of the amount of the cryopreservation solution to the cells to be frozen upon immersion is not particularly limited as long as it can be cryopreserved, for example, about 1: 1 to 1: 1000 (50 cells / cell volume). (approximately 100 ml / ml). With such an amount, cells can be sufficiently impregnated with the cryopreservation solution. Moreover, when using the cell mass of the above-mentioned three-dimensional structure, a cryopreservation solution can fully permeate a cell mass.
  • the amount of the cryopreservation solution to the cells is reduced from the state in which the cells are immersed in the cryopreservation solution (b). It is more preferable to freeze the said cell after the said (b) process in the (c) process mentioned later including a process.
  • the thawing time after storage can be made short, which can further improve the cell recovery rate by cryopreservation, the total cell number, and the survival rate.
  • the cryopreservation solution may be removed from the cryopreservation solution containing mesenchymal stem cells, or the mesenchymal stem cells may be removed.
  • the mesenchymal stem cells it is more preferable that the mesenchymal stem cells be not immersed in the cryopreservation solution. As a result, the thawing time can be further shortened, and the cell recovery rate by cryopreservation, the total cell number, and the survival rate can be further improved.
  • cryopreservation solution is stored in a container in which the mesenchymal stem cells are stored. May remain.
  • the cryopreservation solution may be aspirated from a container stored with mesenchymal stem cells immersed in the cryopreservation solution, or mesenchymal stem cells may be removed.
  • a conventionally known suction device such as a pipette may be used.
  • step (c) mesenchymal stem cells are frozen.
  • the freezing temperature may be appropriately set to a temperature at which the mesenchymal stem cells to be frozen are frozen, and examples thereof include ⁇ 80 ° C. or less, or ⁇ 196 ° C. or less.
  • freezing at ⁇ 80 ° C. or less for example, conventionally known examples may be used, and in the case of freezing at ⁇ 196 ° C. or less, liquid nitrogen may be used.
  • the container used for cryopreservation should just be able to withstand freezing temperature. For example, it is preferable to be able to withstand -80 ° C, and more preferable to be able to withstand -196 ° C.
  • a container made of a synthetic resin such as polyethylene, polypropylene or polyethylene terephthalate is more preferable.
  • the container may be, for example, a commercially available cryovial (freeze vessel).
  • the method of recovering cells after cryopreservation is not particularly limited, and for example, those cryopreserved may be thawed. As a method of thawing, it is sufficient to melt at a temperature at which cells are not damaged, and known methods are used. Examples of the method include general methods such as water bath melting method, heat block method, room temperature melting method and the like. The melting method by a water bath and the heat block method are preferable, and in particular, the melting method by a water bath is more preferable from the viewpoint of melting temperature, melting time and the like.
  • the melting temperature is preferably 10 ° C. or more and 45 ° C. or less, more preferably 20 ° C. or more and 40 ° C. or less, and more preferably 35 ° C. or more and 40 ° C. or less.
  • it may be allowed to stand at room temperature (25.degree. C.), but as shown in the examples, it is more preferable to melt using a 35-38.degree. C. water bath. This is because the cell recovery rate and survival rate are higher.
  • the cell preparation according to one aspect of the present invention comprises a cell, a composition for cryopreservation containing a fatty acid, and is cryopreserved. Further, a cell preparation according to one aspect of the present invention comprises a cell, and a composition for cryopreservation containing at least one component selected from the group consisting of fatty acids and fatty acid esters, and the cells have a three-dimensional structure. It forms a cell mass that is a structure, and is cryopreserved. In addition, about the cell preparation which concerns on 1 aspect of this invention, having demonstrated about the composition for cryopreservation which concerns on 1 aspect of this invention is applied correspondingly.
  • the "cell preparation” is a therapeutic agent prepared by formulating cells, which is used for regenerative medicine as a material for regenerative medicine, and is formulated without changing the function of cells in the original state. It includes not only ones, but also those in which cells having improved functions such as differentiation ability and immunosuppression ability are formulated by culturing and proliferating under specific conditions.
  • the cell preparation according to one aspect of the present invention is suitably obtained by the method for producing a cell preparation according to one aspect of the present invention described later.
  • the process (b) is performed in the method for producing a cell preparation according to one aspect of the present invention, the components of the composition for cryopreservation permeate into the cells.
  • the method for producing a cell preparation according to one aspect of the present invention is a method for producing a cell preparation containing cells, and comprises the following steps (a) and (c) in this order.
  • a method for producing a cell preparation comprising mesenchymal stem cells comprising the steps of (a) and (c) below in this order: (A) immersing the cells in a cryopreservation solution containing at least one component selected from the group consisting of fatty acids and fatty acid esters; (C) freezing the cells.
  • the method for producing a cell preparation according to one aspect of the present invention may be one aspect of the method for producing a cryopreserved substance of the present invention.
  • kits for frozen cells are a kit for cryopreservation for cryopreservation of cells, which comprises fatty acid.
  • the kit for frozen cells according to one aspect of the present invention is a kit for cryopreservation for cryopreservation of cells, which is a kit for cryopreservation of the cells in which cell masses having a three-dimensional structure are formed. And at least one component selected from the group consisting of fatty acids and fatty acid esters.
  • kits for frozen cells when simply referred to as a “kit for frozen cells”, “a kit for cryopreservation for cryopreserving mesenchymal stem cells” and “a kit for cryopreservation for cryopreservation of cells”, said cells are 3 It is forming a cell mass which is a dimensional structure, and refers to any of "a kit for cryopreservation for cryopreserving the cell mass".
  • kit for frozen cells when referring to “kit for frozen cells according to one aspect of the present invention”, it may be one aspect of a kit for cryopreservation for cryopreservation of cells, and cells forming a cell mass having a three-dimensional structure It may also be one aspect of a cryopreservation kit for cryopreservation.
  • the composition for cryopreservation and cell preparation according to one aspect of the present invention described above can be suitably obtained, and to the above-mentioned one aspect of the present invention
  • the method for producing such a cryopreserved product and the method for producing a cell preparation can be suitably carried out.
  • the kit for cryopreservation which concerns on 1 aspect of this invention having demonstrated about the cryopreservation composition which concerns on 1 aspect of this invention is applied mutatis mutandis, and a different point is mainly demonstrated here.
  • the configuration of the kit for frozen cells according to one aspect of the present invention is not particularly limited as long as it comprises at least one component of fatty acid in some aspects, fatty acid in some aspects, and fatty acid esters in other aspects.
  • An appliance may be included.
  • components other than fatty acids and fatty acid esters of the composition for cryopreservation according to one aspect of the present invention described above may be provided.
  • reagents, buffers, etc. for stably holding mesenchymal stem cells may be provided, and a serum-free medium for serum-free culture of mesenchymal stem cells may be provided.
  • Reagents and devices may be provided to obtain scaffold-free cell clusters processed into three-dimensional structures from stem cells in a system.
  • the kit for frozen cells according to one aspect of the present invention may be prepared by mixing a plurality of different reagents in an appropriate volume and / or form, or may be provided by separate containers.
  • kit for frozen cells may include an instruction describing a procedure for obtaining the composition for cryopreservation and the like. It may be written or printed on paper or other medium, or may be attached to an electronic medium such as a magnetic tape, a readable disc such as a computer, or a CD-ROM.
  • the cells are more preferably mesenchymal stem cells.
  • the cells have a three-dimensional structure and form scaffold-free cell clusters, and the cell clusters are cryopreserved. It is more preferable that
  • the cells form a scaffold-free cell mass.
  • composition for cryopreservation according to one aspect of the present invention, it is more preferable that the cells are cultured without serum.
  • the component is a fatty acid ester, and it is more preferable to further include a surfactant.
  • the fatty acid is more preferably at least one of linoleic acid and linolenic acid.
  • the fatty acid ester is more preferably a phospholipid.
  • the phospholipid is more preferably phosphatidic acid.
  • the fatty acid ester is preferably phosphatidic acid
  • the surfactant is more preferably Pluronic F-68.
  • composition for cryopreservation according to one aspect of the present invention is more preferably for cryopreservation at -80 ° C. or lower.
  • the cryopreservation solution for the cells is placed from the state in which the cells are immersed in the cryopreservation solution. It is more preferable to freeze the said cell after the said (b) process in the said (c) process including the process of reducing a quantity.
  • the cells are not immersed in the cryopreservation solution.
  • the cryopreservation of the cells is performed from the state where the cells are immersed in the cryopreservation solution (b) after the step (a). It is more preferable to freeze the said cell after the said (b) process in the said (c) process including the process of reducing the amount of liquids.
  • the cells are not immersed in the cryopreservation solution.
  • Example 1 Active ingredient identification test for cryopreservation of cell suspension: Cryopreservation experiment for examining the influence on cell viability> In order to identify the active ingredient for cryopreservation of the cell suspension, the composition of the cell cryopreservation solution was shaken to evaluate the cryopreservation effect on MSC in the form of test cell suspension. The following protocol was followed in this example unless otherwise noted.
  • Cell culture The primary cells of human synovial membrane-derived MSCs are immersed in a culture solution (STK (registered trademark) 1) in a culture vessel according to the following procedures (1) to (4) or shredding the tissues and The cells were obtained by outgrowth from a piece.
  • STK registered trademark
  • the primary cells obtained by the above method are passaged, and STK (registered trademark) 2 (serum free medium for MSC growth culture, marketed by DS Pharma Biomedical Co., Ltd .; same in the following description) by the manufacturer. It was made to grow by repeating subculture according to the instruction.
  • Cell freezing MSCs grown by repeating subculture were further subjected to planar culture in STK (registered trademark) 2 medium and washed once with PBS in a subconfluent state.
  • the cells were detached and single-celled with TrypLE Select CTS (Thermo Fisher Scientific Inc.), collected in a tube for centrifugation, and diluted with a washing medium (DMEM, Sigma).
  • TrypLE Select CTS TrypLE Select CTS (Thermo Fisher Scientific Inc.)
  • the cell suspension was divided into "1,000,000 cells per tube for centrifugation" and pelleted again in the same manner as above.
  • each cryopreservation solution used under each condition was dispensed into each centrifuge tube and suspended.
  • the composition of each cryopreservation solution is as described in Table 1, Table 2 and Table 3 below.
  • cryovials used cryogenic vial (2 ml, WHEATON).
  • the frozen vial was transferred to a -80 ° C freezer (Panasonic Healthcare Co., Ltd.) and cryopreserved.
  • Cell count 1. The thawed cells were washed once with washing medium (DMEM, Sigma) and then suspended again in washing medium. 2. 10 ⁇ L each of the cell suspension and trypan blue solution were mixed in a microtube, and the number of cells was counted using a One-Cell Counter (registered trademark) to calculate the viability.
  • cryopreservation experiments of MSC in the form of cell suspension were carried out using each of the following three cryopreservation solutions.
  • cryopreservation solution "a mixture of MCDB and DMEM in a ratio of 1: 1" was used as the basal medium.
  • cryopreservation fluid i
  • cryopreservation fluid ii
  • cryopreservation fluid ii
  • FIG. 1 (a) is a view for briefly explaining the component comparison of each cryopreservation solution
  • FIG. 1 (b) is a view showing the result of the cryopreservation experiment.
  • Live indicates “the number of viable cells per frozen vial (vial)”
  • viability indicates the ratio of "the number of viable cells per frozen vial” to "the total number of cells per frozen vial”.
  • “before storage” is the result when the number of cells is measured without performing the cryopreservation, and the other is the result of performing the cryopreservation and thawing.
  • cryopreservation solution (ii) when stored in the cryopreservation solution (ii) and the cryopreservation solution (iii) as compared with the cryopreservation solution (i), the number of MSC cells after cryopreservation / thawing is Significantly more (P ⁇ 0.001) and cell viability was also high. In addition, no difference in cell number and cell viability after cryopreservation and thawing was observed between the MSC stored in the cryopreservation solution (ii) and the MSC stored in the cryopreservation solution (iii). In cryopreserving MSCs, it has been shown that in addition to being able to be cryopreserved well according to one aspect of the present invention, cytokines are not essential.
  • FIG. 2 shows the results of a cryopreservation experiment of MSCs.
  • total cell number indicates “total cell number after freezing storage / thawing per frozen vial”
  • living cells indicates “freeze storage / thawing per frozen vial”
  • viability indicates the ratio of "the number of viable cells per frozen vial” to "the total number of cells per frozen vial”.
  • basic medium described in each table etc. shown after this embodiment intends what mixed MCDB which is a basal medium, and DMEM by the ratio of 1: 1.
  • STK2 (cytokine free) and STK (registered trademark) 2 are each (of parts other than DMSO) of the cryopreservation solutions (ii) and (iii) of the above [Result 1]. See FIG. 1 (a)).
  • STK2 (cytokine free) may be abbreviated as STK2 (-) or the like.
  • the composition contained in STK2 (cytokine free) is the same composition as the STK (registered trademark) 2 medium except that it does not contain a cytokine.
  • FIG. 3 shows the results of a cryopreservation experiment of MSCs.
  • total cell number indicates “total cell number after freezing storage / thawing per frozen vial”
  • living cells indicates “freeze storage / thawing per frozen vial”
  • the number of viable cells after is shown.
  • N 3, all the results are shown as “mean value ⁇ standard deviation” (mean ⁇ SD).
  • “Viability” means “total cell number per frozen vial”. The ratio of "the number of viable cells per frozen vial” is shown.
  • FIG. 4 shows the results of a cryopreservation experiment of MSCs.
  • total cell number indicates “total cell number after freezing storage / thawing per frozen vial”
  • living cells indicates “freeze storage / thawing per frozen vial”
  • the number of viable cells after is shown.
  • N 3, all the results are shown as “mean value ⁇ standard deviation” (mean ⁇ SD).)
  • “Viability” means “total cell number per frozen vial”. The ratio of "the number of viable cells per frozen vial” is shown.
  • Example 2 Cryopreservation experiment using a cell mass of mesenchymal stem cells having scaffold-free three-dimensional structure>
  • the cryopreservation solution described in [Result 1] of Example 1 (ii) And cryopreservation solution (iii) were used to conduct a cryopreservation experiment of gMSC (registered trademark) 1.
  • the primary cells obtained by the above-mentioned method were passaged and expanded by repeating subculture with STK (registered trademark) 2 according to the manufacturer's instruction.
  • the cell exfoliant TrypLE Select CTS After stripping and collecting with (Thermo Fisher Scientific Inc.) and suspending with washing medium (DMEM, Sigma), it was transferred to a tube for centrifugation and centrifuged at 1500 rpm for 5 minutes at room temperature. The separated single cells were again suspended in the washing medium, and the cell number was counted by trypan blue staining.
  • PBS Phosphate buffered saline, calcium and magnesium free, PBS (-), Inc., Cell Science Research Institute, Inc.
  • DMEM washing medium
  • the tissue is mechanically detached from the culture dish, and a plurality of mesenchymal stem cells are collected and brought into a state of aggregation, thereby forming a scaffold-free three-dimensional structure.
  • a cell mass of gMSC (registered trademark) 1 is obtained.
  • the freeze preservation method of gMSC (registered trademark) 1
  • Materials (1) Freeze preservation solution (in-house): As the cryopreservation solution, the cryopreservation solutions (ii) and (iii) described in [Result 1] of Example 1 were used respectively. These compositions are as described above (see FIG. 1 (a), etc.).
  • Cryopreservation container WHEATON cryogenic vial, model number: W985868
  • Storage solution consumption 1.0 mL / g MSC (registered trademark) 1 / cryovial 2.
  • Preparation of gMSC (registered trademark) 1 and preparation of cryopreserved gMSC (registered trademark) 1 are performed according to the description of the above-mentioned “Preparation of gMSC (registered trademark) 1”. More preferably, it is desirable to perform an operation (equilibration) to allow the cryopreservation solution to penetrate the cell mass as described below.
  • the equilibration may be performed "before processing the culture into gMSC (registered trademark) 1 shape" (see (2) below), or “after processing into gMSC (registered trademark) 1 shape” (described below Although (4) may be performed, in this embodiment, an example in which both are performed will be described. In particular, in order to explain the equilibration step "before processing into gMSC (registered trademark) 1 shape" in this example, the steps of preparation of gMSC (registered trademark) 1 detailed above are also briefly described. .
  • MSCs with high density culture were physically exfoliated from the culture vessel using P200 pipetman (registered trademark) with a tip attached, and collected. It was processed into a three-dimensional shape gMSC (registered trademark) 1 by being put into a state.
  • gMSC registered trademark 1 was transferred to a cryopreservation container in which 1 mL of a cryopreservation solution was previously placed, and was allowed to stand in a refrigerator (4 ° C.) for 10 minutes.
  • the melting method of gMSC (registered trademark) 1
  • Frozen gMSC.RTM. 1 (stored in a frozen vial) was removed from the -80.degree. C. freezer. 2. The frozen vial was warmed in a 37 ° C. water bath for 2.5 minutes. 3. After visually confirming that the globular gMSC 1 was completely thawed, the frozen vial was removed from the water bath.
  • Method of measuring cell number of thawed gMSC (registered trademark) 1
  • Materials (1) Collagenase-A (Animal Origin Free). Worthington Biochemical Corporation, Model Number: LS004154 (2) 0.4% trypan blue solution. Thermo Fisher Scientific Inc. Model number: 15250 (3) A collagenase solution of 560 U (unit) / mL prepared in DMEM was filtered with a 0.45 mm filter (Millipore model number: SLHV 033 RS). 2. Method (1) gMSC (registered trademark) 1 was added to 1 mL of a collagenase solution in a 15 mL centrifuge tube.
  • FIG. 5 is a diagram showing the results of a cryopreservation experiment using gMSC (registered trademark) 1.
  • “Live” indicates "the number of living cells per" gMSC (registered trademark) 1 "
  • Total indicates “indicates the total number of cells per one" gMSC (registered trademark) 1 ""Is shown.
  • cryopreservation solution As described above, as the cryopreservation solution, the cryopreservation solutions (ii) and (iii) described in column [Result 1] of Example 1 were respectively used. Although these compositions are as above-mentioned (refer FIG. 1 (a) etc.), CD lipid (trademark), PA, and PC were contained by the above-mentioned composition in each case.
  • cryopreservation solution of one embodiment of the present invention can well cryopreserve cell clusters of mesenchymal stem cells having scaffold-free three-dimensional structure.
  • cryopreservation solution of one embodiment of the present invention can well cryopreserve cell clusters of mesenchymal stem cells having scaffold-free three-dimensional structure.
  • significant differences in total cell number and cell viability are obtained depending on the presence or absence of cytokines. It turned out that it was not recognized.
  • the bone differentiation ability was evaluated by the following method in any of gMSC (registered trademark) 1 before cryopreservation and gMSC (registered trademark) 1 after cryopreservation and thawing. That is, gMSC (registered trademark) 1 is brought into a single cell state by collagenase treatment, washed, cultured in STK (registered trademark) 2 respectively, and when confluent, the medium is exchanged and the medium used is for bone differentiation The medium was switched to culture medium (STK (registered trademark) 3 (manufactured by DS Pharma Biomedical Co., Ltd.)) and cultured. The subsequent medium change was performed approximately once every three days. After 21 days of culture, gMSC (registered trademark) 1 after culture was stained with alizarin red S (Nacalai Tesque: 01303-52) to confirm whether or not bone differentiation was induced.
  • the bone differentiation ability was evaluated by the following method in any of gMSC (registered trademark) 1 before cryopreservation and gMSC (registered trademark) 1 after cryopreservation and thawing. That is, the cells are put into a single cell state by collagenase treatment, washed, cultured in 6 well plates using STK (registered trademark) 2 respectively, and when confluent, the medium is exchanged and the medium used is a medium for fat differentiation.
  • gMSC registered trademark 1 before cryopreservation
  • gMSC registered trademark 1 after cryopreservation and thawing. That is, the cells are put into a single cell state by collagenase treatment, washed, cultured in 6 well plates using STK (registered trademark) 2 respectively, and when confluent, the medium is exchanged and the medium used is a medium for fat differentiation.
  • FIG. 6 is a diagram showing the results of a confirmation experiment of bone / fat differentiation ability of cells after cryopreservation and thawing, and FIG. 6 (a) shows the confirmation result of bone differentiation ability, and FIG. 6 (b) Is a figure which shows the confirmation result of fat differentiation ability. As shown in FIG.
  • cryopreservation / thawing in the cell mass of mesenchymal stem cells having a scaffold-free three-dimensional structure, even when frozen using any of the cryopreservation solutions (ii) and (iii), cryopreservation / thawing It has been confirmed that they have good bone differentiation ability and fat differentiation ability also later.
  • Cartilage differentiation is induced in the following manner in any of gMSC (registered trademark) 1 before cryopreservation and gMSC (registered trademark) 1 after cryopreservation and thawing. Specifically, after gMSC (registered trademark) 1 is divided into four equal parts (approximately 10 mg to 20 mg in wet weight), the cells are washed once with a basal medium for cartilage differentiation, and then transferred one by one to a 15 mL conical tube.
  • the medium was replaced with the same differentiation-inducing medium every 2 to 3 days sulfated glycosaminoglycan (GAG)
  • GAG sulfated glycosaminoglycan
  • the amount of sulfated glycosaminoglycan (GAG) of gMSC (registered trademark) 1 after culture was quantified using a kit for quantification (manufactured by Biocolor)
  • the amount of GAG was normalized according to the DNA content of cells .
  • FIG. 7 is a diagram showing the results of a confirmation experiment of the cartilage differentiation ability of cells after cryopreservation and thawing, and FIG. 7 (a) shows a result of photographing a sample for which a confirmation experiment of the cartilage differentiation ability was performed. 7 (b) shows the result of sulfated glycosaminoglycan (GAG) assay. As shown in FIG.
  • cryopreservation / thawing is also performed on the cell mass of mesenchymal stem cells having a scaffold-free three-dimensional structure. It has been confirmed that it has good cartilage differentiation ability also later.
  • the cell pellet was suspended and mixed in 5 mL of DMEM.
  • PBS PBS
  • HSA human albumin
  • HSA human albumin
  • FIG. 8 shows the results of experiments to confirm the expression of cell surface antigen markers after cryopreservation and thawing.
  • FIG. 8 when cryopreserved and thawed using either of the cryopreservation solutions (ii) and (iii), also in the cell mass of mesenchymal stem cells having a scaffold-free three-dimensional structure, changes in the expression profile of cell surface antigens markers before and after cryopreservation after the decomposition of the cell mass were not.
  • Example 3 Cryopreservation experiment using a cell mass of mesenchymal stem cells having a scaffold-free three-dimensional structure and the influence of the liquid volume of the cryopreservation solution at the time of thawing>
  • the effect of the volume of the cryopreservation solution at the time of freezing (thawing) is evaluated The experiment to do was done as follows.
  • Step 7b in Table 5 is one form of the above-mentioned "b (step)".
  • FIG. 9 is a diagram showing the results of this example.
  • Live indicates “the number of living cells per“ gMSC (registered trademark) 1 ”
  • “ total ” indicates the total number of cells per“ “gMSC (registered trademark) 1” "Is shown.
  • “before storage” is the result when the number of cells is measured without performing the cryopreservation of gMSC (registered trademark) 1, and in the other cases, it is the result after freezing and thawing.
  • mesenchymal stem cells having scaffold-free three-dimensional structure could be cryopreserved with good viability. Furthermore, the total cell number and the survival rate were significantly higher in the method (7b) in which the cryopreservation solution was removed before cryopreservation, as compared to the method (7a) in which the cryopreservation solution was not removed. Thus, it was shown that the "liquid-freezing" in which the "(b) step" is performed is capable of cryopreservation with higher total cell number and survival rate.
  • Example 4 Test for identifying active ingredient for cryopreservation of mesenchymal stem cells, in particular, cell mass of mesenchymal stem cells having scaffold-free three-dimensional structure: cryopreservation experiment for examining influence on cell viability>
  • each of the cell cryopreservation solutions having different compositions is used for freezing using gMSC (registered trademark) 1 The preservation effect was evaluated.
  • viability indicates the ratio of "the number of viable cells per one" gMSC (registered trademark) 1 "to the” the total number of cells per one "gMSC (registered trademark) 1". Also, “before storage” is the result when the number of cells is measured without performing the cryopreservation of gMSC (registered trademark) 1, and in the other cases, it is the result after freezing and thawing.
  • the number of cells after thawing of gMSC (registered trademark) 1 cryopreserved in (1) was significantly higher than that in the control group (6-2) (P ⁇ 0.05).
  • the cryopreservation solution (6-3) in which CD lipid (registered trademark) (which is a mixture of fatty acids) is added to the above (6-2)
  • the number of cells after thawing is in the control group (6-2). It was significantly more than that.
  • (6-2) will be linoleic acid (50.0 ⁇ g / mL), PA (10.0 ⁇ g / mL), PA (50.0 ⁇ g / mL), linolenic acid (10.0 ⁇ g / mL)
  • gMSC registered trademark
  • the cryopreservation of the cell mass of mesenchymal stem cells having a scaffold-free three-dimensional structure includes a plurality of components of the group consisting of fatty acids and fatty acid esters as in (6-1) or (6-3)
  • the addition of a solution of linoleic acid, PA and linolenic acid was shown to be effective as well as the cryopreservation solution to which the above composition was added.
  • FIG. 11 is a graph showing the results of a cryopreservation experiment of gMSC (registered trademark) 1 using a cryopreservation solution containing linoleic acid, linolenic acid, and PA, respectively.
  • FIG. 12 is a graph showing the results of a cryopreservation experiment of gMSC (registered trademark) 1.
  • live indicates “the number of living cells per" gMSC (registered trademark) 1 "
  • viability indicates the ratio of "the number of viable cells per one" gMSC (registered trademark) 1 "to the” the total number of cells per one "gMSC (registered trademark) 1".
  • before storage is the result when the number of cells is measured without performing the cryopreservation of gMSC (registered trademark) 1, and in the other cases, it is the result after freezing and thawing.
  • the number (total cell number) was significantly higher (P ⁇ 0.05, P ⁇ 0.01, respectively).
  • the cryopreservation solution containing linoleic acid solution has the cryopreservation effect of cryopreserving mesenchymal stem cells having scaffold-free three-dimensional structure with good survival rate, and it is of methyl- ⁇ -cyclodextrin Compared to the effect, the freeze preservation effect of linoleic acid is high, and it is supported that the main effect of the effect is in linoleic acid.
  • FIG. 13 is a graph showing the results of a cryopreservation experiment of gMSC (registered trademark) 1.
  • live indicates “the number of living cells per" gMSC (registered trademark) 1 "
  • viability indicates the ratio of "the number of viable cells per one" gMSC (registered trademark) 1 "to the” the total number of cells per one "gMSC (registered trademark) 1".
  • before storage is the result when the number of cells is measured without performing the cryopreservation of gMSC (registered trademark) 1, and in the other cases, it is the result after freezing and thawing.
  • cryopreservation solution containing linoleic acid solution and Pluronic F-68 has a cryopreservation effect of cryopreserving mesenchymal stem cells having scaffold-free three-dimensional structure with good survival rate. It was found that the addition of both causes a synergistic effect and exerts a higher cryopreservation effect.
  • FIG. 14 is a graph showing the results of a cryopreservation experiment of gMSC (registered trademark) 1.
  • “live” indicates "the number of living cells per" gMSC (registered trademark) 1 "
  • total indicates the total number of cells per one" gMSC (registered trademark) 1 "
  • viability indicates the ratio of "the number of viable cells per one" gMSC (registered trademark) 1 "to the” the total number of cells per one "gMSC (registered trademark) 1". Also, “before storage” is the result when the number of cells is measured without performing the cryopreservation of gMSC (registered trademark) 1, and in the other cases, it is the result after freezing and thawing.
  • cryopreservation solution containing PA solution has a cryopreservation effect of cryopreserving mesenchymal stem cells having scaffold-free three-dimensional structure with good survival rate, and dissolution that assists PA dissolution It can be seen that the addition of the adjuvant (Tween 80) alone has no effect on cryopreservation. Therefore, it was confirmed that the active ingredient was PA, and it was shown that PA has a cryopreservation effect.
  • FIG. 15 is a graph showing the results of a cryopreservation experiment of gMSC (registered trademark) 1.
  • gMSC registered trademark
  • gMSC registered trademark
  • PA and Pluronic F-68 were used in combination, rather than the above (11-4) and (11-5) to which each was added alone. It was also found that the number of cells was 1 and it was shown that the effect was further enhanced (P ⁇ 0.01).
  • cryopreservation solution containing PA and Pluronic F-68 has the cryopreservation effect of cryopreserving mesenchymal stem cells having scaffold-free three-dimensional structure with good survival rate, and both of them It was found that the addition produces a synergistic effect, and a higher storage and preservation effect is exhibited.
  • a safer and more valuable transplantation therapeutic material using mesenchymal stem cells can be provided, so that it can be suitably used for regenerative medicine such as transplantation therapy using mesenchymal stem cells. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

死細胞が生じにくく、品質良く凍結保存することを可能にする。 本発明の一態様に係る凍結保存用組成物は、細胞を凍結保存するための凍結保存用組成物であって、脂肪酸を含む。

Description

凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット
 本発明は凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法及び凍結保存用キットに関する。
 特許文献1には、スキャフォールドとして用いるナノファイバーやコラーゲンシートの組成や形態を工夫することでスキャフォールド型の細胞製剤を凍結可能であることが記載されている。
 また、特許文献2には、凍結保存液に自己血清とDMSOを加えた凍結保存形態で提供される細胞懸濁液型の細胞治療薬が開示されている。
日本国公開特許公報「特開2015-198604号公報」 日本国公開特許公報「特開2009-107929号公報」
 再生医療製品の製造に用いる培地及び薬剤等において、成分既知であること、生物的汚染及び免疫原性のある物質の混在等のリスクを最小限度にすること、体内に存在しない物質を最小限度にすることが要求される。出願人らはこのような要求に応えて無血清でかつ化学的に規定されたSTK(登録商標)培地を開発した。
 ところで、再生医療製品の産業化においては、工場において一元集中的に培養、製剤化しドナーとは異なる患者に投与するセントラル型の他家同種再生医療が重要であるが、凍結保存が出来ないと作り貯めが出来ないのでコスト面及び生産管理面で著しく不利である。そのため、解凍後に死細胞の発生がより生じにくく、品質良く凍結保存する技術が求められている。
 本発明の一態様はこのような事情に基づいて成されたものであり、死細胞が生じにくく、品質良く凍結保存することを可能とするための凍結保存用組成物を提供することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る凍結保存用組成物は、細胞を凍結保存するための凍結保存用組成物であって、脂肪酸を含む。
 また、本発明の一態様に係る凍結保存用組成物は、細胞を凍結保存するための凍結保存用組成物であって、前記細胞は、3次元構造である細胞塊を形成しているものであってよく、当該細胞塊を凍結保存するためのものであってよく、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む。
 また、本発明の一態様に係る凍結保存物の製造方法は、細胞を凍結保存した凍結保存物の製造方法であって、以下の(a)、(c)の工程をこの順に含むことを特徴とする凍結保存物の製造方法である。
 (a)前記細胞を、脂肪酸を含む凍結保存液に浸漬する工程、(c)前記細胞を凍結する工程。
 また、本発明の一態様に係る凍結保存物の製造方法は、細胞を凍結保存した凍結保存物の製造方法であって、前記細胞は、3次元構造である細胞塊を形成しているものであり、以下の(a)、(c)の工程をこの順に含むことを特徴とする凍結保存物の製造方法である。
 (a)前記細胞を、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存液に浸漬する工程、(c)前記細胞を凍結する工程。
 また、本発明の一態様に係る細胞製剤は、細胞と、脂肪酸を含む凍結保存用組成物と、を含み、凍結保存されている。
 また、本発明の一態様に係る細胞製剤は、細胞と、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存用組成物と、を含み、前記細胞は、3次元構造である細胞塊を形成してよく、凍結保存されている。
 また、本発明の一態様に係る細胞製剤の製造方法は、細胞を含む細胞製剤の製造方法であって、前記細胞は、3次元構造である細胞塊を形成しているものであってもよく、以下の(a)、(c)の工程をこの順に含むことを特徴とする製造方法である。
 (a)前記細胞を、脂肪酸を含む凍結保存液に浸漬する工程、(c)前記細胞を凍結する工程。
 また、本発明の一態様に係る細胞製剤の製造方法は、細胞を含む細胞製剤の製造方法であって、以下の(a)、(c)の工程をこの順に含むことを特徴とする細胞製剤の製造方法である。
 (a)前記細胞を、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存液に浸漬する工程、
 (c)前記細胞を凍結する工程。
 また、本発明の一態様に係る凍結保存用キットは、細胞を凍結保存するための凍結保存用キットであって、脂肪酸を備える。
 また、本発明の一態様に係る凍結保存用キットは、細胞を凍結保存するための凍結保存用キットであって、3次元構造である細胞塊を形成した前記細胞を凍結保存するためのキットであり、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を備えることを特徴とする凍結保存用キットである。
 本発明の一態様によれば、解凍後に死細胞の発生がより生じにくく、品質良く凍結保存することを可能にするという効果を奏する。
細胞懸濁液状の間葉系幹細胞(Mesenchymal stem cell、以下「MSC」ともいう。)の凍結保存実験の結果を示す図であり、図1の(a)は各凍結保存液の成分比較を簡単に説明するための図であり、図1の(b)は凍結保存実験の結果を示す図である。 細胞懸濁液状のMSCの凍結保存実験の結果を示す図である。 細胞懸濁液状のMSCの凍結保存実験の結果を示す図である。 細胞懸濁液状のMSCの凍結保存実験の結果を示す図である。 gMSC(登録商標)1を用いた凍結保存実験の結果を示す図である。 gMSC(登録商標)1の凍結保存・解凍後の細胞の骨・脂肪分化能の確認実験の結果を示す図であり、図6の(a)は骨分化能の確認結果を示し、図6の(b)は脂肪分化能の確認結果を示す図である。 凍結保存・解凍後、gMSC(登録商標)1を細切した後、細胞の軟骨分化能の確認実験を行った結果を示す図であり、図7の(a)は軟骨分化能の確認実験を行なったサンプルを撮影した結果を示し、図7の(b)は硫酸化グリコサミノグリカン(glycosaminoglycan:GAG)assayの結果を示す図である。 凍結保存・解凍後のgMSC(登録商標)1から分離した細胞の表面抗原マーカーの発現確認実験の結果を示す図である。 実施例3の結果(gMSC(登録商標)1を)を示す図である。 gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。 gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。 gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。 gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。 gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。 gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。
 本発明の実施の形態について説明すれば以下のとおりであるが、本発明はこれに限定されるものではない。なお、本明細書において特記しない限り、数値範囲を示す「A~B」は、「A以上、B以下」であることを示す。
 〔凍結保存用組成物〕
 本発明の一態様に係る凍結保存用組成物は、細胞を凍結保存するための凍結保存用組成物であって、脂肪酸を含む。また、本発明の一態様に係る凍結保存用組成物は、細胞を凍結保存するための凍結保存用組成物であって、前記細胞は、3次元構造である細胞塊を形成しているものであってよく、当該細胞塊を凍結保存するためのものであり、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む。以下、単に「凍結保存用組成物」という場合、「細胞を凍結保存するための凍結保存用組成物」と、「細胞を凍結保存するための凍結保存用組成物であって、前記細胞は、3次元構造である細胞塊を形成しているものであり、当該細胞塊を凍結保存するための凍結保存用組成物」と、のいずれをも指すものとする。例えば、「本発明の一態様に係る凍結保存用組成物」という場合、懸濁液状に懸濁された細胞を凍結保存するための凍結保存用組成物の一態様でもあり得、3次元構造である細胞塊を形成している細胞を凍結保存するための凍結保存用組成物の一態様でもあり得る。なお、後述する通り、ここでは間葉系幹細胞を一例に説明しているが、凍結保存対象となる細胞は、間葉系細胞に限定されない。
 本発明者らは、脂肪酸を含む凍結保存用組成物を用いることによって、例えば間葉系幹細胞等の細胞が、良好な回収率及び生存率で良好に凍結され、凍結保存・解凍後に得られる細胞数も良好であることを見出した。また、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存用組成物を用いることによって、3次元構造である細胞塊を形成している細胞が、良好な回収率及び生存率で良好に凍結され、凍結保存・解凍後の回収率及び生存率も良好であることを見出した。なお、「回収率」とは、凍結保存・解凍前の細胞数に対する、全細胞数(生死は問わない)の比である。ここで、全細胞数とは、凍結保存・解凍によって破砕・流出等無く回収された細胞の数のことである。また、「生存率」とは、凍結保存・解凍後に回収できた全細胞数に対する、生存していた細胞数の割合である。
 また、解凍後の細胞の品質(3方向分化能、マーカー等)も正常であり、凍結保存及び解凍によっても細胞の性質が変化していないことも確認した。また、本発明の一態様に係る凍結保存用組成物は、トリハロース、ポリエチレングリコール、ポリリジン等の動物細胞には存在しない成分を用いなくても、また、生物汚染のリスクがあるロット間差が著しい血清を用いなくても好適に凍結保存できるため、安全性も品質も優れている。
 本明細書において「凍結保存」とは、細胞を凍結して保存することをいうが、好ましくは-80℃以下等の超低温環境で凍結保存することをいう。
 (細胞)
 本発明の一態様に係る凍結保存用組成物で凍結する対象の細胞は、例えば、間葉系幹細胞、CD34細胞、胚性幹細胞(ES細胞)、iPS(induced pluripotent stem cells)細胞、軟骨細胞、骨芽細胞、線維芽細胞、表皮細胞、上皮細胞、脂肪細胞、肝細胞、膵細胞、筋細胞、神経細胞、神経幹細胞、造血幹細胞又はこれらの前駆細胞等が挙げられる。また、所望のマーカーに対して陽性を示す細胞であってもよい。細胞が由来する生物種も特に限定されず、生物種は、例えば微生物、非ヒト哺乳類またはヒト等が挙げられる。
 上記細胞は従来公知の方法で培養されたものを用いればよい。また、上記細胞を培養する培地は、培養する細胞に応じて適宜選択される。さらに、細胞の増殖に適した培養容器も、培養する細胞に応じて適宜選択される。また、後述する本発明の別の態様(凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット)における「細胞」についてもここの説明に準拠する。
 (間葉系幹細胞)
 本発明の一態様に係る凍結保存用組成物で凍結する対象の一例である間葉系幹細胞(Mesenchymal stem cell、以下「MSC」ともいう。)について説明する。間葉系幹細胞は間葉系に属する細胞への分化能を有し、免疫抑制作用も併せ持つこと等といった利点により、再生医療において最も有望な細胞の一つと考えられている。
 本明細書において「間葉系幹細胞」は、間葉系に属する組織に分化する体性幹細胞を意味する。また、間葉系幹細胞から、さらに特定の性質を有するものを単離したもの、間葉系幹細胞に対して、サイトカイン刺激等何らかの刺激を与えたもの、遺伝子導入したものも包含される。例えば、MUSE細胞、MAPC細胞、SP-1細胞なども包含される。間葉系幹細胞は、増殖能と、骨細胞、軟骨細胞、筋肉細胞、ストローマ細胞、腱細胞、脂肪細胞等への分化能とを有する。例えば、骨髄、脂肪細胞、滑膜細胞、歯槽骨、歯根膜等の成人の組織からだけでなく、胎盤、臍帯、臍帯血、胎児の種々の細胞等から単離されるものも含む。ヒト間葉系幹細胞であることが好ましいが、ラット、マウス等の非ヒト動物由来間葉系幹細胞であってもよい。
 間葉系幹細胞は従来公知の方法で培養されたものを用いればよく、無血清培養又は低血清培養されたものであることが好ましく、無血清培養されたものであることがより好ましい。無血清培養であれば、培養成分が既知である。つまり、血清は天然成分由来であるためロット毎に成分の差が生じるが無血清培地ではこのような差が生じない。よって、無血清培養された間葉系幹細胞は安全性も品質も優れる。また、生物的汚染や免疫原性のある物質の混在等のリスクを最小限度にすること、体内に存在しない物質を最小限度することができる。また、含有される生物原料も明確であるため、品質の管理が容易である。
 また、STK(登録商標)培地等の一部の無血清培地で無血清培養される間葉系幹細胞は増殖率に優れている。本発明の凍結保存方法や細胞製剤の一態様によれば、前記のような無血清培養で培養した細胞を凍結に供する。従って、ある程度継代を重ねた後であっても、仮足の発生や扁平形状への変化といった老化が生じていない若々しい状態であり、このような性質の良い状態の間葉系幹細胞を凍結に供することで、凍結保存、及び解凍後も優れた増殖率で間葉系幹細胞を培養、使用することができる。
 本明細書において「無血清培養」とは、血清を用いない培養であることが意図される。例えば、血清を含まない培地である無血清培地を用いて培養することが意図される。また、「低血清培養」とは、一般的な血清含有培地(例えば、10%FBS含有培地)よりも、含有する血清量が少ない培地を用いた培養、及び一般的な血清含有培地を用いた培養よりも、血清含有培地を用いた培養期間が短い培養であることが意図される。
 (無血清培養の一例)
 まず、本発明の一態様に係る凍結保存用組成物で凍結する対象となる細胞を無血清培養するために用いる無血清培地の一例について説明する。無血清培地を構成するための基礎培地は、当該分野において周知の動物細胞用培地であれば特に限定されず、好ましい基礎培地としては、例えば、Ham’s F12培地、DMEM培地、RPMI-1640培地、MCDB培地などが挙げられる。これらの基礎培地は、単独で使用されても、複数を混合して使用されてもよい。一実施形態において、無血清培地を構成するための基礎培地は、MCDBとDMEMとを1:1の比率で混合した培地が好ましい。
 一実施形態において、上記の基礎培地に、FGF、PDGF、TGF-β、HGF、EGF、少なくとも1つのリン脂質、及び少なくとも1つの脂肪酸を添加した無血清培地を増殖工程に用いればよい。基礎培地に対するFGFの含有量は、終濃度で、0.1~100ng/mlであることが好ましく、さらに好ましくは3ng/mlである。基礎培地に対するPDGFの含有量は、終濃度で、0.5~100ng/mlであることが好ましく、さらに好ましくは10ng/mlである。基礎培地に対するTGF-βの含有量は、終濃度で、0.5~100ng/mlであることが好ましく、さらに好ましくは10ng/mlである。
 基礎培地に対するHGFの含有量は、終濃度で、0.1~50ng/mlであることが好ましく、さらに好ましくは5ng/mlである。基礎培地に対するEGFの含有量は、終濃度で、0.5~200ng/mlであることが好ましく、さらに好ましくは20ng/mlである。基礎培地に対するリン脂質の総含有量は、終濃度で、0.1~30μg/mlであることが好ましく、さらに好ましくは10μg/mlである。基礎培地に対する脂肪酸の総含有量は、基礎培地の1/1000~1/10であることが好ましく、さらに好ましくは1/100である。
 このような無血清培地を使用することによって、異種タンパク質の混入を防ぎつつ、血清含有培地と同等以上の増殖促進効果が得られ、間葉系幹細胞を所望の通り増殖させることができる。
 無血清培地はリン脂質を含んでもよい。リン脂質としては、例えば、フォスファチジン酸、リゾフォスファチジン酸、フォスファチジルイノシトール、フォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン及びフォスファチジルグリセロールなどが挙げられ、これらのリン脂質を単独で含有しても組み合わせて含有してもよい。一実施形態において、無血清培地は、フォスファチジン酸とフォスファチジルコリンとを組み合わせて含有していてもよく、これらのリン脂質は、動物由来であっても、植物由来であってもよい。
 無血清培地は脂肪酸を含んでもよい。脂肪酸としては、例えば、リノール酸、オレイン酸、リノレン酸、アラキドン酸、ミリスチン酸、パルミトイル酸、パルミチン酸及びステアリン酸等が挙げられ、本実施形態に係る培地用添加剤はこれらの脂肪酸を単独で含有しても組み合わせて含有してもよい。また、本実施形態に係る無血清培地は、上記脂肪酸以外にさらにコレステロールを含有していてもよい。
 本明細書中で使用される場合、FGFは、線維芽細胞増殖因子(FGF:fibroblast growth factor)ファミリーから選択される増殖因子が意図され、FGF-2(bFGF)であることが好ましいが、FGF-1など他のFGFファミリーから選択されてもよい。また、本明細書中で使用される場合、PDGFは、血小板由来増殖因子(PDGF:platelet derived growth factor)ファミリーから選択される増殖因子が意図され、PDGF-BB又はPDGF-ABであることが好ましい。さらに、本明細書中で使用される場合、TGF-βは、トランスフォーミング増殖因子-β(TGF-β:transforming growth factor-β)ファミリーから選択される増殖因子が意図され、TGF-β1であることが好ましいが、他のTGF-βファミリーから選択されてもよい。
 本明細書中で使用される場合、HGFは、肝細胞増殖因子(hepatocyte growth factor)ファミリーから選択される増殖因子が意図され、EGFは、上皮増殖因子(EGF:epidermal growth factor)ファミリーから選択される増殖因子が意図される。
 また、一実施形態において、無血清培地は、結合組織増殖因子(CTGF:connective tissue growth factor)、血管内皮増殖因子(VEGF:vascular endothelial growth factor)及びアスコルビン酸化合物からなる群より選択される少なくとも2つの因子をさらに含有していてもよい。
 本明細書中で使用される場合、アスコルビン酸化合物は、アスコルビン酸(ビタミンC)もしくはアスコルビン酸2リン酸、又はこれらに類似する化合物が意図される。
 なお、無血清培地に含有されている上述した増殖因子は、天然のものであっても、遺伝子組換えによって製造されたものであってもよい。
 1つの局面において、無血清培地は、脂質酸化防止剤を含有していることが好ましい。一実施形態において、無血清培地に含有される脂質酸化防止剤は、DL-α-トコフェロールアセテート(ビタミンE)であり得る。無血清培地はまた、界面活性剤をさらに含有していてもよい。一実施形態において、無血清培地に含有される界面活性剤はPluronic F-68又はTween 80であり得る。
 無血清培地は、インスリン、トランスフェリン及びセレネートをさらに含有していてもよい。本明細書中で使用される場合、インスリンは、インスリン様増殖因子であってもよく、天然の細胞由来であっても、遺伝子組換えによって製造されたものでもよい。本発明に係る培地用添加剤はさらに、デキサメタゾン、あるいは他のグルココルチコイドを含有していてもよい。
 無血清培養をするときは、上述した無血清培地に、ヒト等の動物組織又は細胞から従来公知の方法により単離された間葉系幹細胞を播種し、所望の数に増殖するまで培養する。培養条件として、培地1mlに対して1~2×10個の間葉系幹細胞を播種することが好ましく、培養温度は37℃±1℃、培養時間は48~96時間、かつ5%CO下であることが好ましい。このように培養することによって、免疫抑制能を維持又は向上した間葉系幹細胞を効率よく大量に得ることができる。
 培養に用いる培養容器は、間葉系幹細胞が増殖し得るものであれば特に限定されない。例えば、ファルコン製75cmフラスコ、住友ベークライト製75cmフラスコ等を好適に用いることができる。但し、細胞によっては、用いる培養容器の種類によって細胞の増殖が影響を受ける場合がある。このため、間葉系幹細胞をより効率よく増殖させるために、増殖工程において増殖させる対象となる間葉系幹細胞(以下、「増殖対象細胞」ともいう)毎に、増殖に適した培養容器を用いて増殖工程を行うことが好ましい。
 増殖対象細胞の増殖に適した培養容器の選択方法としては、例えば、最適な培養容器を増殖対象細胞に選択させる方法を挙げることができる。具体的に説明すると、複数種類の培養容器を準備し、培養容器の種類が異なる以外は同一の培養条件で増殖対象細胞を増殖させ、培養開始から2週間後の細胞数を公知の方法によって計測し、細胞数が多いものから順に増殖対象細胞の増殖に適した培養容器であると判断することができる。また、増殖対象細胞の増殖速度が速い場合は、培養開始から2週間経過する前であっても、コンフルエント状態の80~90%の細胞数に達する期間が短いものから順に増殖対象細胞の増殖に適した培養容器であると判断することができる。
 なお、間葉系幹細胞の増殖には、細胞が培養容器に接着することが必須条件であるので、培養容器に対する増殖対象細胞の接着が弱い場合は、無血清培養する工程において、無血清培地に、細胞接着分子をさらに含有させることが好ましい。細胞接着分子としては、例えば、フィブロネクチン、コラーゲン、ゼラチン等を挙げることができる。これらの細胞接着分子は、一種類を単独で用いてもよく、複数種類を組み合わせて用いてもよい。
 無血清培地に対する細胞接着分子の含有量は、終濃度で、1~50μg/mlであることが好ましく、さらに好ましくは5μg/mlである。一実施形態において、細胞接着分子としてフィブロネクチン用いる場合は、無血清培地に対するフィブロネクチンの終濃度が5μg/mlとなるように添加することによって、培養容器に対する増殖対象細胞の接着効率を向上させることができる。
 また、無血清培養では、間葉系幹細胞を少なくとも1回継代してもよい。間葉系幹細胞は足場依存的に増殖するので、間葉系幹細胞が局所的に偏って増殖している等の場合に、増殖工程の途中で間葉系幹細胞を継代することによって培養条件を改善することができる。
 間葉系幹細胞の継代方法としては特に限定されず、従来公知の間葉系幹細胞の継代方法を用いて継代することできる。継代後の間葉系幹細胞の状態が良好であることから、上記増殖工程では、継代を行う場合に哺乳類及び微生物由来の成分を含有していない細胞剥離剤を用いて上記間葉系幹細胞を剥離することが好ましい。上記「哺乳類及び微生物由来の成分を含有していない細胞剥離剤」としては、例えば、TrypLE Select CTS(Thermo Fisher Scientific Inc.)、ACCUTASE(Innovative Cell Technologies, Inc.)等を挙げることができる。
 (凍結保存対象の形態)
 本発明の一態様に係る凍結保存用組成物で凍結する対象の細胞の加工物は、どのような形態のものであってもよく、例えば、細胞の懸濁液、シート状に培養したもの、3次元構造の細胞塊等が挙げられる。中でも3次元構造の細胞塊を形成している間葉系幹細胞がより好ましく、スキャフォールドフリーの細胞塊を形成している間葉系幹細胞がさらに好ましい。
 細胞塊は間葉系幹細胞のみから構成されることが好ましいが、コラーゲンやヒアルロン酸などの多糖体が入っていてもよい。コラーゲンやヒアルロン酸などの多糖体が入る場合は細胞塊の0.1~50%(v/v)であることが好ましい。
 また、細胞塊は、凍結させる前に、本発明の凍結保存用組成物の一態様である凍結保存液を該細胞塊へ浸透させる処理(平衡化)を行ってもよく、行わなくてもよいが、特に後述(表5参照)の液抜き凍結を行う場合には、平衡化の工程を行うことが望ましい。
 (3次元構造)
 本発明の一態様に係る凍結保存用組成物によれば、3次元構造の細胞塊も好適に凍結することができる。細胞懸濁液を患部に投与する場合、投与される細胞が免疫特権を持つと言われる間葉系幹細胞ですら患部から遊走するという報告、及び、ホストの免疫細胞により攻撃される等の理由で患部に留まらないという報告がある。しかし、3次元構造の細胞塊を用いれば、細胞が患部から遊走、脱落することを防ぐことができ、長時間治療効果を発揮させる。
 また、3次元構造体状に加工した形態の細胞製剤は、細胞懸濁液型の細胞製剤に対して凍結保存が格段に困難である。また、3次元構造体のように凍結させる細胞塊のサイズや厚みが大きくなると、熱伝導の観点から内部まで均一に凍結させることが困難になる。しかし、本発明の一態様によれば、このような3次元構造の細胞塊であっても、解凍後の死細胞が生じにくく、凍結保存・解凍後にも細胞の性質を変えることなく凍結保存することができる。また、3次元構造の細胞塊は、従来公知の方法で細胞塊を3次元構造に加工したものを用いればよい。本明細書において細胞塊に対して「3次元構造」という場合、マトリクスが3次元的に配向され、また、細胞が3次元に配列しており、細胞間の結合及び配向を保持している細胞を含む3次元方向に広がる物体を指す。
 3次元構造の形状としては、例えば、治療の目的に応じて定めればよい。例えば、移植を目的とする部分に応じて、面積、厚み、強度を適宜設定すればよく、当業者は適宜、その大きさを設定することができる。この大きさは、移植される環境に応じて設定することができる。サイズの小さな細胞塊では、注射針で体腔内に注入するといったことも可能であるといったメリットがある。また、サイズの大きな細胞塊では、例えば手術時にピンセントで把持し易いなど、ハンドリングが容易であることなどから、充分な細胞数を投与しやすいというメリットがある。
 移植される場合は少なくとも一定の大きさを有することが好ましく、そのような大きさは、例えば、面積について1cm以上であり、好ましくは2cm以上であり、より好ましくは3cm以上である。さらに好ましくは4cm以上であり、5cm以上であり、6cm以上であり、7cm以上であり、8cm以上であり、9cm以上であり、10cm以上であり、15cm以上であり、あるいは20cm以上であり、また、例えば、40cm以下、30cm以下、20cm以下であり得るが、それらに限定されず、面積は、用途に応じて1cm以下、又は、40cm以上であり得る。
 容積で表す場合は、上記大きさは、好ましくは2mm以上であり、より好ましくは40mm以上であり、また、例えば、40cm以下、又は、20cm以下であり得るがそれに限定されず、2mm以下でもあり得る。
 移植可能な人工組織において十分な厚みは、移植を目的とする部分に依存して変動するが、当業者は適宜、その厚みを設定することができる。この厚みは、移植される環境に応じて設定することができる。5mmを超えてもよい。心臓へ移植する場合は、この最低限の厚みさえ有していればよいが、他の用途が意図される場合、厚みはより厚い方がよい場合があり得、そのような場合、例えば、2mm以上、より好ましくは3mm以上、さらに好ましくは5mm以上であることが意図される。例えば、骨、軟骨、靭帯、腱等に適用される場合、心臓と同様に、例えば1mm以上であり得、好ましくは2mm以上、より好ましくは3mm以上、さらに好ましくは5mm以上であり得る。また、いずれの場合も1mm以下であってもよく、10mm以下であっても、5mm以下であってもよい。
 細胞塊を構成する細胞の数は、適宜選択すればよいが、例えば、50~200個の塊であってもよく、100万個~1億個の塊であってもよい。またその塊は、小さな塊であってもよく、大きな塊であってもよい。上述のように、細胞塊が大きくなると熱伝導の観点から内部まで均一に凍結させることが難しいため、従来法では良好な凍結保存が著しく困難になるが、本発明の一態様によれば、このように大きな細胞塊であっても、解凍後の死細胞が生じにくく、凍結保存・解凍後にも細胞の性質が変わることもなく凍結保存することができる。
 以上に例示した大きさの3次元構造の細胞塊を用いれば、細胞が患部から遊走することをより効果的に防ぐことができ、より長時間治療効果を発揮させる。また、本発明の一態様に係る凍結保存用組成物を用いれば、このような大きさの細胞塊であっても、解凍後に死細胞がより生じにくく、凍結保存・解凍後にも細胞の性質が変わることもなく凍結保存を可能にする。
 (細胞塊自体に対する軟骨分化誘導試験)
 間葉系幹細胞の細胞塊は分化誘導を行わない未分化な状態で移植するのが好ましい。細胞塊を移植した後の軟骨分化能をin vitroで評価する試験する場合には、凍結保存しない状態の細胞塊であっても、凍結保存・解凍後の細胞塊であっても、細かく切断することが好ましい。細胞塊を細かく切断した方が、分化誘導培地が組織内部までより浸透し易いためである。細胞塊を切断するために用いられる手法としては、特に限定されず、例えば、滅菌済みメスあるいはハサミ等が用いられる。また、切断する際、細胞塊の大きさは、概ね10mg~20mgにすることがより好ましい。
 (スキャフォールドフリー)
 本発明の一態様に係る凍結保存用組成物で凍結する対象の細胞塊は、スキャフォールドフリーの3次元構造体であることがより好ましい。本明細書において「スキャフォールドフリー(足場フリー、基盤材料なし;scaffold-free)」とは、人工組織を生産するときに従来使用されている材料(基盤材料=スキャフォールド)を実質的に含まないことをいう。
 従来、細胞を付着又は保持させて、その生育を可能とするための、細胞及び組織の足場となる材料、即ちスキャフォールドを人為的に加えることで3次元構造体状に加工した「スキャフォールド型」の細胞製剤が主流である。しかし、最近では人為的に素材を加えるリスクを懸念し、スキャフォールドを人為的に加えずに、例えば細胞自身を刺激して自らの足場となるような環境を自ら産生させる等といった方法で製造される「スキャフォールドフリー型」の細胞製剤の開発が進められている。スキャフォールドフリーの3次元構造体であることにより、細胞製剤に含まれる間葉系幹細胞以外の素材を少なくすることができる。また、スキャフォールドフリーの3次元構造体であることにより、成分が既知であること、生物的汚染及び免疫原性のある物質の混在等のリスクを最小限度にすること、体内に存在しない物質を最小限度にすることを実現できる。例えば、スキャフォールドとしてコラーゲン等の天然物が用いられることがある。このような天然物は、成分がロット毎に異なる。しかし、スキャフォールドフリーの3次元構造体であることにより、成分が既知となるため、安全性及び品質安定性に優れる。また、前記のような天然物は、生物的汚染及び免疫原性のある物質が含まれるリスクがある。スキャフォールドフリーの3次元構造体であることにより、このようなリスクを低減できる。ところで近年、3次元形態の細胞塊であっても凍結保存する方法が開発されつつある。しかしながら、これらの方法はスキャフォールドとして用いるナノファイバー又はコラーゲンシートの組成及び形態を工夫したものである。従って「スキャフォールドフリー型」の細胞製剤には原理的に用いることができない。本発明の一態様においては、このようなスキャフォールドフリーの3次元構造の細胞塊も、解凍後の死細胞が生じにくく、凍結・解凍によって細胞の性質が変わることもなく凍結保存をすることができる。
 本発明における凍結対象の一例である間葉系幹細胞を含むスキャフォールドフリーの3次元構造体の細胞塊を得る方法としては、例えば、従来公知の低接着プレート、マイクロパターン表面プレート等を用いる方法、及び、ハンギングドロップ法を採用できる。また、日本国特許第4522994号公報に記載の方法を用いて作製してもよい。また、市販の物を用いてもよく、例えば、gMSC(登録商標)1(株式会社ツーセル製)を好適に用いることができる。
 (脂肪酸)
 本発明の一態様に係る凍結保存用組成物は脂肪酸を含む。脂肪酸を含むことによって、凍結保存用組成物は、細胞を生存率よく凍結することができ、解凍後の細胞の性質の変化も生じない。
 脂肪酸としては、リノール酸、オレイン酸、リノレン酸、アラキドン酸、ミリスチン酸、パルミトイル酸、パルミチン酸及びステアリン酸等が挙げられる。中でも、脂肪酸としてはリノール酸及びリノレン酸のうち少なくとも1種が凍結保存用組成物に含まれていることが好ましい。リノール酸及びリノレン酸のうち少なくとも1種が凍結保存用組成物に含まれていることにより、該凍結保存用組成物は、間葉系幹細胞をより生存率よく凍結するができる。また、短鎖脂肪酸、中鎖脂肪酸、長鎖脂肪酸でも良い。さらに高度不飽和脂肪酸でもよい。これらは単独でもよく複数種が混合されていてもよい。中でも複数の脂肪酸の混合物が好ましく、含有される脂肪酸の種類と量とが特定されている混合物がより好ましい。例えば、Chemically defined lipid concentrate(Thermo Fisher Scientific Inc.製、品番11905-031)(以下、「CD lipid(登録商標)」という。)がより好ましい。なお、CD lipid(登録商標)の原液の組成は次の通りである。Arachidonic Acid 2.0μg/ml, Cholesterol 220.00μg/ml, DL-α-Tocopherol-Acetate 70.00μg/ml, Linoleic Acid 540.00μg/ml, Linolenic Acid 10.00μg/ml,
 Myristic Acid 10.00μg/ml, Oleic Acid 10.00μg/ml, Palmitoleic Acid 10.00μg/ml, Palmitic Acid 10.00μg/ml, Stearic Acid 10.00μg/ml, Pluronic F-68 100mg/ml, Tween 80 2.2mg/ml。
 以上に例示した脂肪酸は前述のように、単独で用いてもよく、複数種を混ぜてもよいが、複数種を混合して用いることがより好ましい。凍結保存用組成物中により多くの種類の脂肪酸の混合物が含まれることにより、生存率をよりよく、間葉系幹細胞を凍結することができ、解凍後の細胞の性質の変化も生じない。
 本発明の一態様に係る凍結保存用組成物における脂肪酸の含有量は特に限定されないが、例えば、凍結保存用組成物の全量に対して、最終濃度で0.01μg/ml~500μg/mlであることが好ましい。例えば、凍結保存用組成物の全量に対して1/1000~1/10(v/v)がより好ましい。
 また、例えば、CD lipid(登録商標)を用いる場合、凍結保存用組成物の全量に対して1/1000~1/10(v/v)(PA:0.5~100μg/ml,PC:0.5~100μg/ml)がより好ましい。脂肪酸の含有量は、前記の範囲のうち、より多い方が好ましい。つまり、凍結保存用組成物中に豊富に脂肪酸が含まれることがより好ましく、また、多様な脂肪酸を豊富に含むことがより好ましい。これにより、生存率をよりよく、間葉系幹細胞を凍結することができ、解凍後の細胞の性質の変化も生じない。
 (脂肪酸エステル)
 本発明の一態様に係る凍結保存用組成物は、脂肪酸エステルを含む。脂肪酸エステルを含むことによって、凍結保存用組成物は、細胞を生存率よく凍結することができる。
 脂肪酸エステルとしては、リン脂質、中性脂肪等が挙げられる。中でも、リン脂質が凍結保存用組成物に含まれていることが好ましい。
 リン脂質としては、例えば、フォスファチジン酸(以下、フォスファチジン酸のナトリウム塩をPAという。また、単に「フォスファチジン酸」という場合、その塩も含む。)、リゾフォスファチジン酸、フォスファチジルイノシトール、フォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン(以下、PCという。)、フォスファチジルグリセロールが挙げられる。
 リン脂質等の脂肪酸エステルを用いる場合、その含有量は使用時の凍結保存組成物における最終濃度が、凍結保存用組成物の全量に対して0.01μg/ml~500μg/mlとなるようにすることが好ましい。
 (界面活性剤等)
 本発明の一態様に係る凍結保存用組成物は、界面活性剤のような、脂肪酸あるいは脂肪酸エステルの水溶(乳化)を補助する物質をさらに含有していてもよい。界面活性剤としては、Pluronic F-68又はTween 80であり得る。
 なお、脂肪酸、あるいは脂肪酸エステルの少なくともいずれかと、界面活性剤との両方が、さらに含まれている凍結保存用組成物用いることが好ましい。該組成物の例として、例えば、フォスファチジン酸とPluronic F-68とが含まれる凍結保存用組成物であることが好ましい。該凍結保存用組成物を用いることで、細胞を生存率よく凍結することができる。
 (DMSO等の凍結保護剤)
 上述した本発明の一態様に係る凍結保存用組成物の成分には、凍結・解凍過程で細胞内に氷結晶が成長することを抑制する、凍結保護剤が含まれていてもよい。凍結保護剤としてはDMSO(ジメチルスルホキシド)等が挙げられる。本発明の一態様に係る凍結保存用組成物が凍結保護剤を含む場合、その量は、凍結保存用組成物の全量に対して0.5%~50%(v/v)がより好ましい。
 (その他の成分)
 本発明の一態様に係る凍結保存用組成物は脂肪酸以外の成分を含んでもよく、例えば、基礎培地、増粘剤、pH調整剤、凍結保護剤等が挙げられる。
 また、本発明の一態様に係る凍結保存用組成物はインスリン、アルブミン、トランスフェリンを含むことがより好ましい。インスリン、アルブミン、トランスフェリンは脂肪酸の作用を増強することができる。これらを加える場合の濃度は、使用時の凍結保存液における最終濃度が0.5μg/ml~500μg/mlとなるようにすることが好ましい。
 (凍結保存用組成物の製造方法)
 本発明の一態様に係る凍結保存用組成物は、脂肪酸等の上述した各成分を適宜混合すればよい。
 (提供形態)
 本発明の一態様に係る凍結保存用組成物は様々な形態で提供され得る。例えば、液体であってもよく、粉末、錠剤等の固体等であってもよい。固体で提供する場合は、使用者が適宜溶媒で溶解して凍結保存液にして使用すればよいが、本発明の一態様に係る凍結保存用組成物は、好適な溶媒を指定する説明書と共に提供されてもよい。
 〔凍結保存物の製造方法〕
 本発明の一態様に係る凍結保存方法は、細胞を凍結保存した凍結保存物の製造方法であって、以下の(a)、(c)の工程をこの順に含む。
 (a)前記細胞を、脂肪酸を含む凍結保存液に浸漬する工程、
 (c)前記細胞を凍結する工程。
 また、本発明の一態様に係る凍結保存方法は、細胞を凍結保存した凍結保存物の製造方法であって、前記細胞は、3次元構造である細胞塊を形成しているものであり、以下の(a)、(c)の工程をこの順に含む。
 (a)前記細胞を、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存液に浸漬する工程、
 (c)前記細胞を凍結する工程。
 なお、本発明の一態様に係る凍結保存物の製造方法については、本発明の一態様に係る凍結保存組成物について説明したことが準用され、ここでは異なる点について主に説明する。また、「凍結保存物」とは、凍結保存された物のことを言う。
 (凍結保存液)
 本発明の一態様に係る凍結保存物の製造方法で用いる凍結保存液は脂肪酸及び脂肪酸エステルからなる群より少なくとも1種の成分を含む。凍結保存液は、前述の本発明の一態様における凍結保存用組成物のうち液体の形態であるものを用いてもよく、本発明の一態様における凍結保存用組成物のうち固体の形態であるものについては、溶媒に当該固体を溶解して得られる溶液を用いてもよい。
 ((a)工程)
 (a)工程では、凍結対象の細胞を、脂肪酸を含む凍結保存液に浸漬する。浸漬する方法としては、例えば、凍結保存可能な容器に凍結保存液を入れ、当該凍結保存液中に細胞を入れることが好ましい。そのまま後述の(c)工程の凍結を行なうことができるからである。
 浸漬するときの凍結保存液と凍結対象の細胞との量比は、凍結保存可能な量であれば特に限定されないが、例えば、細胞容積に対して1:1~1:1000程度(50個/ml~1億個/ml程度)である。このような量であれば、細胞中に十分に凍結保存液を浸透させることができる。また、上述の3次元構造の細胞塊を用いる際に、細胞塊中に十分に凍結保存液を浸透させることができる。
 ((b)工程)
 本発明の一態様に係る凍結保存物の製造方法では、(a)工程の後に、(b)前記凍結保存液に前記細胞が浸漬された状態から、前記細胞に対する前記凍結保存液の量を減らす工程を含み、後述する(c)工程では、前記(b)工程後の前記細胞を凍結することがより好ましい。保存後の融解時間を短時間にすることができ、これにより、凍結保存による細胞の回収率、全細胞数、生存率をより向上させることができる。
 (b)工程の具体的な方法としては、間葉系幹細胞が含まれる凍結保存液から、凍結保存液を除去してもよく、間葉系幹細胞を取り出してもよい。また、(b)工程では、間葉系幹細胞が、前記凍結保存液に浸漬されていない状態にすることがより好ましい。これにより、融解時間をより短時間にすることができ、凍結保存による細胞の回収率、全細胞数、生存率をより向上させることができる。ただし、浸漬されていない状態にする形態においても、完全に凍結保存液を間葉系幹細胞と分離することは必須の要件とはされず、間葉系幹細胞が格納されている容器に凍結保存液が残存してもよい。また、例えば、間葉系幹細胞が凍結保存液に浸漬した状態で格納されている容器から、凍結保存液を吸引してもよく、間葉系幹細胞を取り出してもよい。凍結保存液を吸引する場合には、ピペット等の従来公知の吸引器具を用いればよい。
 ((c)工程)
 (c)工程では、間葉系幹細胞を凍結する。(b)工程を行なった場合には、(b)工程によって浸漬されていない状態とした間葉系幹細胞を凍結する。凍結温度は凍結対象の間葉系幹細胞が凍結する温度に適宜設定すればよいが、例えば-80℃以下、又は-196℃以下が挙げられる。-80℃以下で凍結する場合は、例えば、従来公知の例等を用いればよく、-196℃以下で凍結する場合は、液体窒素を用いればよい。
 (凍結保存容器)
 凍結保存に用いる容器は、凍結温度に耐え得るものであればよい。例えば、-80℃に耐え得るものであることが好ましく、-196℃に耐え得るものであることがより好ましい。具体的には、ポリエチレン、ポリプロピレン又はポリエチレンテレフタレート等の合成樹脂製の容器がより好ましい。該容器は、例えば、市販のクライオバイアル(凍結ベッセル)を使えば良い。
 (細胞回収方法)
 凍結保存後に細胞を回収する方法は特に限定されず、例えば、凍結保存されたものを融解すればよい。融解させる方法としては、細胞が損傷しない温度で融解させればよく、公知の方法が用いられる。該方法としては例えば、ウォーターバスによる融解法、ヒートブロック法、室温融解法等の一般的な方法が挙げられる。ウォーターバスによる融解法、ヒートブロック法が好ましく、中でも融解温度および融解時間等の観点から、ウォーターバスによる融解法がさらに好ましい。
 融解温度は10℃以上、45℃以下が好ましく、20℃以上、40℃以下がより好ましく、35℃以上、40℃以下がより好ましい。例えば、室温(25℃)に静置してもよいが、実施例で示すように35~38℃の湯浴(ウォーターバス)を用いて融解することがより好ましい。迅速且つ、細胞の回収率、生存率がより高いからである。
 〔細胞製剤〕
 本発明の一態様に係る細胞製剤は、細胞を含み、脂肪酸を含む凍結保存用組成物と、を含み、凍結保存されている。また、本発明の一態様に係る細胞製剤は、細胞を含み、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存用組成物と、を含み、前記細胞は、3次元構造である細胞塊を形成しているものであり、凍結保存されている。なお、本発明の一態様に係る細胞製剤については、本発明の一態様に係る凍結保存用組成物について説明したことが準用される。
 本明細書中において、「細胞製剤」は、再生医療用材料として再生医療等に用いられる、細胞を製剤化した治療薬であり、細胞を元の状態のまま機能を変化させることなく製剤化したもののみならず、特定の条件の下で培養及び増殖させることによって、分化能、免疫抑制能等の機能を向上させた細胞を製剤化したものも含む。
 本発明の一態様に係る細胞製剤は、後述の本発明の一態様に係る細胞製剤の製造方法によって好適に得られる。なお、本発明の一態様に係る細胞製剤の製造方法において(b)工程を行なった場合にも、細胞中には凍結保存用組成物の成分が浸透している。
 〔細胞製剤の製造方法〕
 本発明の一態様に係る細胞製剤の製造方法は、細胞を含む細胞製剤の製造方法であって、以下の(a)、(c)の工程をこの順に含む。
 (a)前記細胞を、脂肪酸を含む凍結保存液に浸漬する工程、
 (c)前記細胞を凍結する工程。
 間葉系幹細胞を含む細胞製剤の製造方法であって、以下の(a)、(c)の工程をこの順に含むことを特徴とする細胞製剤の製造方法、
 (a)前記細胞を、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存液に浸漬する工程、
 (c)前記細胞を凍結する工程。
 なお、本発明の一態様に係る細胞製剤の製造方法については、本発明の一態様に係る凍結保存物の製造方法について説明したことが準用される。
 本発明の一態様に係る細胞製剤の製造方法は、本発明の凍結保存物の製造方法の一態様であり得る。
 〔凍結細胞用キット〕
 本発明の一態様に係る凍結細胞用キットは、細胞を凍結保存するための凍結保存用キットであって、脂肪酸を備える。また、本発明の一態様に係る凍結細胞用キットは、細胞を凍結保存するための凍結保存用キットであって、3次元構造である細胞塊を形成した前記細胞を凍結保存するためのキットであり、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を備える。以下、単に「凍結細胞用キット」という場合、「間葉系幹細胞を凍結保存するための凍結保存用キット」と、「細胞を凍結保存するための凍結保存用キットであり、前記細胞は、3次元構造である細胞塊を形成しているものであり、当該細胞塊を凍結保存するための凍結保存用キット」と、のいずれをも指すものとする。例えば、「本発明の一態様に係る凍結細胞用キット」という場合、細胞を凍結保存するための凍結保存用キットの一態様でもあり得、3次元構造である細胞塊を形成している細胞を凍結保存するための凍結保存用キットの一態様でもあり得る。
 本発明の一態様に係る凍結細胞用キットによれば、上述した本発明の一態様に係る凍結保存用組成物及び細胞製剤を好適に得ることができ、また、上述した本発明の一態様に係る凍結保存物の製造方法及び細胞製剤を製造する方法を好適に実施できる。なお、本発明の一態様に係る凍結保存用キットについては、本発明の一態様に係る凍結保存組成物について説明したことが準用され、ここでは異なる点について主に説明する。
 本発明の一態様に係る凍結細胞用キットの構成は、態様によっては脂肪酸、態様によっては脂肪酸及び脂肪酸エステルのうち少なくとも1種の成分を備える限り、特に限定されるものではなく、他の試薬や器具を含んでもよい。例えば、上述した本発明の一態様に係る凍結保存用組成物の脂肪酸及び脂肪酸エステル以外の成分を備えていてもよい。また、間葉系幹細胞を安定的に保持するための試薬、バッファー等を備えていてもよく、間葉系幹細胞を無血清培養するための無血清培地を備えていてもよく、培養した間葉系幹細胞からスキャフォールドフリーで3次元構造に加工された細胞塊を得るための試薬、器具を備えていてもよい。また、本発明の一態様に係る凍結細胞用キットは、複数の異なる試薬を、適切な容量及び/又は形態で混合していてもよいし、それぞれ別の容器により提供してもよい。
 また、本発明の一態様に係る凍結細胞用キットには、凍結保存用組成物を得るための手順等を記載した指示書を含んでもよい。紙若しくはその他の媒体に書かれていても印刷されていてもよく、又は磁気テープ、コンピューター等の読み取り可能なディスク又はCD-ROM等のような電子媒体に付されてもよい。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態中にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 〔付記事項〕
 以上のように、本発明の一態様に係る凍結保存用組成物では、細胞は、間葉系幹細胞であることがより好ましい。
 また、本発明の一態様に係る凍結保存用組成物では、前記細胞は、3次元構造であり、スキャフォールドフリーの細胞塊を形成しているものであり、当該細胞塊を凍結保存するためのものであることがより好ましい。
 また、本発明の一態様に係る凍結保存用組成物では、前記細胞は、スキャフォールドフリーの細胞塊を形成しているものであることがより好ましい。
 また、本発明の一態様に係る凍結保存用組成物では、前記細胞は無血清培養されたものであることがより好ましい。
 また、本発明の一態様に係る凍結保存用組成物では、前記成分は脂肪酸エステルであり、界面活性剤をさらに含むことがより好ましい。
 また、本発明の一態様に係る凍結保存用組成物では、前記脂肪酸はリノール酸及びリノレン酸のうち少なくとも1種であることがより好ましい。
 また、本発明の一態様に係る凍結保存用組成物では、前記脂肪酸エステルはリン脂質であることがより好ましい。
 また、本発明の一態様に係る凍結保存用組成物では、前記リン脂質はフォスファチジン酸であることがより好ましい。
 また、本発明の一態様に係る凍結保存用組成物では、前記脂肪酸エステルはフォスファチジン酸であり、前記界面活性剤はPluronic F-68であることがより好ましい。
 また、本発明の一態様に係る凍結保存用組成物は、-80℃以下で凍結保存するためのものであることがより好ましい。
 また、本発明の一態様に係る凍結保存物の製造方法では、前記(a)工程の後に、(b)前記凍結保存液に前記細胞が浸漬された状態から、前記細胞に対する前記凍結保存液の量を減らす工程を含み、前記(c)工程では、前記(b)工程後の前記細胞を凍結することがより好ましい。
 また、本発明の一態様に係る凍結保存物の製造方法では、前記(b)工程では、前記細胞が、前記凍結保存液に浸漬されていない状態にすることがより好ましい。
 また、本発明の一態様に係る凍結保存物の製造方法では、前記(c)工程において、-80℃以下で凍結することがより好ましい。
 また、本発明の一態様に係る細胞を含む細胞製剤の製造方法では、前記(a)工程の後に、(b)前記凍結保存液に前記細胞が浸漬された状態から、前記細胞に対する前記凍結保存液の量を減らす工程を含み、前記(c)工程では、前記(b)工程後の前記細胞を凍結することがより好ましい。
 また、本発明の一態様に係る細胞を含む細胞製剤の製造方法では、前記(b)工程では、前記細胞が、前記凍結保存液に浸漬されていない状態にすることがより好ましい。
 <実施例1:細胞懸濁液の凍結保存に対する有効成分特定試験:細胞生存率への影響検討のための凍結保存実験>
 細胞懸濁液の凍結保存に対する有効成分を特定するために、細胞凍結保存液の組成を振って、試験細胞懸濁液状のMSCに対する凍結保存効果を評価した。本実施例では特に断りの無い限り、以下のプロトコールに従った。
 〔プロトコール〕
 「細胞培養」
 ヒト滑膜由来MSCの初代細胞は、以下の(1)から(4)の手順、もしくは、組織を細断して培養容器中で培養液(STK(登録商標)1)中に浸漬し、組織片から細胞をOutgrowthさせることで得た。
 (1)ヒトから滑膜を採取した。
 (2)得られた滑膜組織をPBS(Phosphate buffered saline、カルシウム及びマグネシウムフリー、PBS(-)、株式会社細胞科学研究所)で洗浄後、組織を0.4%コラゲナーゼ溶液10ml中に加えて混和し、37℃で1~4時間反応させた。
 (3)フィルタリング後、遠心分離した。
 (4)メーカーの指示に従い、STK(登録商標)1(MSCの初代培養用無血清培地、ツーセル株式会社/DSファーマバイオメディカル株式会社から販売、以下の説明において同じ。)中で初代培養を行った。
 上記の方法で得られた初代細胞を継代し、STK(登録商標)2(MSC増殖培養用無血清培地、株式会社DSファーマバイオメディカルより発売。以下の説明において同じ。)にて、メーカーの指示に従って継代培養を繰り返すことで、増殖させた。
 「細胞凍結」
 継代培養を繰り返すことで増殖されたMSCを、STK(登録商標)2培地中でさらに平面培養し、サブコンフルエントになった状態で、PBSで1回洗浄した。
 その後、TrypLE Select CTS(Thermo Fisher Scientific Inc.)で剥離・シングルセル化し、遠心分離用のチューブ中に回収し、洗浄培地(DMEM, Sigma)を用いて希釈した。
 その後、室温で5分間、1500rpmで遠心分離することで、ペレットダウンした。
 上記のペレットダウンされたMSCを再び洗浄培地中に懸濁し、この細胞懸濁液とトリパンブルー溶液とを10μLずつ混合し、ワンセルカウンター(登録商標)を用いて細胞数をカウントした。
 その結果に基づき、細胞懸濁液を「遠心分離用のチューブ1本あたり100万cells」となるように小分けし、再び、同上の方法でペレットダウンした。
 それぞれの遠心チューブ中から懸濁用の培地(上澄)を除去した後、それぞれの条件で用いる各凍結保存液をそれぞれの遠心チューブに1.0ml分注し、懸濁した。各凍結保存液の組成は、以下の表1、表2及び表3に記載の通りである。
 上記の、凍結保存液中に懸濁されたMSCを凍結バイアル中に収容した。ここで、凍結バイアルはcryogenic vial(2ml、WHEATON社)を用いた。
 その後、前記の凍結バイアルを-80℃フリーザー(Panasonic Healthcare Co., Ltd.)に移動し、凍結保存した。
 「細胞融解」
1.-80℃フリーザー中で1週間凍結保存したMSC(凍結バイアル中に保存)を取り出した。
2.前記の凍結バイアルを37℃湯浴(ウォーターバス)にて2.5分間温めた。
3.目視で氷の塊が完全に融解したことを確認し、前記の凍結バイアルをウォーターバスから取り出した。
 「細胞数測定」
1.融解した細胞を洗浄培地(DMEM, Sigma)で1回洗浄した後、再び洗浄培地にて懸濁した。
2.マイクロチューブ内で細胞懸濁液とトリパンブルー溶液を10μLずつ混合し、ワンセルカウンター(登録商標)を用いて細胞数をカウントし、生存率を算出した。
 〔結果1〕
 まず、次の3つの凍結保存液それぞれを用いて、細胞懸濁液状のMSCの凍結保存実験を行なった。以下の凍結保存液において、基礎培地は、「MCDBとDMEMとを1:1の比率で混合したもの」を用いた。以降、以下の(i)から(iii)の凍結保存液を、必要に応じ、それぞれ凍結保存液(i)、凍結保存液(ii)、凍結保存液(iii)等と略記することがある。
 (i)基礎培地を用いた保存液:
 基礎培地
 +Albumin(1.25mg/ml,Millipore,CellPrime rAlbumin:AF-S)+10%DMSO(Wako 031-24051)
 (ii)STK2(サイトカインフリー)を用いた保存液:
 基礎培地
+Albumin(1.25 mg/ml, Millipore, CellPrime rAlbumin AF-S)
+ Insulin(10 μg/ml, Wako, 090-06481)
+ Transferrin(5.5 μg/ml, Wako, 201-18081)
+ Ascorbic acid 2-phosphate(VC)(50μg/ml, SIGMA, A8960)
+ Dexamethasone (Dex)(10-8M, SIGMA(Fluka), 31375)
+ Na2SeO3(6.7 ng/ml, Wako, 194-10842)
+CD lipid(登録商標)(原液の1/100, Thermo Fisher Scientific Inc., 11905-031)
+Phosphatidic acid sodium salt (PA)(10μg/ml, Sigma, P9511)
+Phosphatidylcholine(PC)(10 μg/ml, Sigma P3556)
+L-Glutathione (reduced) (2μg/ml, メルクミリポア, 104090)
+Lithium chloride(LiCl)(1mM, メルクミリポア, 105679)
 (iii)STK(登録商標)2を用いた保存液:
STK(登録商標)2+10%DMSO(Wako 031-24051)
 結果を図1に示す。図1(a)は各凍結保存液の成分比較を簡単に説明するための図であり、図1(b)は凍結保存実験の結果を示す図である。この棒グラフのそれぞれの項目において、「Live」は「凍結バイアル(vial)一本あたりの生細胞数」を示し、「Total」は「凍結バイアル一本あたりの全細胞数」を示している(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)。また、「生存率」とは、「凍結バイアル一本あたりの全細胞数」に対する「凍結バイアル一本あたりの生細胞数」の比を示している。また、「保存前」とは、凍結保存を行わずに細胞数を測定した場合の結果であり、それ以外は凍結保存・解凍を行った結果である。
 図1(b)に示すように、凍結保存液(i)と比較して、凍結保存液(ii)及び凍結保存液(iii)で保存した場合、凍結保存・解凍後におけるMSCの細胞数は有意に多く(P<0.001)、細胞生存率も高かった。また、凍結保存液(ii)で保存したMSCと、凍結保存液(iii)で保存したMSCとの間で、凍結保存・解凍後の細胞数及び細胞生存率の差は認められなかった。MSCの凍結保存を行なう際に、本発明の一態様によれば良好に凍結保存できることに加え、サイトカインが必須ではないことが示された。
 〔結果2〕
 表1の凍結保存液それぞれを用いて細胞懸濁液状のMSCの凍結保存実験を行なった結果を図2に示す。図2はMSCの凍結保存実験の結果を示す図である。この棒グラフのそれぞれの項目において、「全細胞数」は「凍結バイアル一本あたりの凍結保存・解凍後の全細胞数」を示し、「生細胞」は「凍結バイアル一本あたりの凍結保存・解凍後の生細胞数」を示している(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)。また、「生存率」とは、「凍結バイアル一本あたりの全細胞数」に対する「凍結バイアル一本あたりの生細胞数」の比を示している。
 なお、本実施形態以降に示す各表等に記載の「基礎培地」は、基礎培地であるMCDBとDMEMとを1:1の比率で混合したものを意図する。また、STK2(サイトカインフリー)及びSTK(登録商標)2は、それぞれ、上記〔結果1〕の凍結保存液(ii)、(iii)の凍結保存液の(DMSO以外の部分の)ことである(図1(a)参照)。以降、STK2(サイトカインフリー)のことを、STK2(-)等と略記することもある。STK2(サイトカインフリー)に含まれる組成は、サイトカインを含まない以外は、前記STK(登録商標)2培地と同一の組成である。
Figure JPOXMLDOC01-appb-T000001
 図2に示すように脂肪酸及びPA、PCを添加した凍結保存液を用いた条件(1-4、1-6)では、そうでない条件(前記以外)に比べ、凍結保存・解凍後の細胞数が多く、生存率が高かった。従って、脂肪酸およびPA、PCは、MSCの凍結保存に効果があると認められた。また、NaSeOの単独添加又は抗酸化剤「L-Glutathione (reduced)+Lithium chloride (LiCl)」の添加では効果がなかった。
 〔結果3〕
 表2に記載の凍結保存液それぞれを用いて細胞懸濁液状のMSCの凍結保存実験を行なった結果を図3に示す。図3はMSCの凍結保存実験の結果を示す図である。この棒グラフのそれぞれの項目において、「全細胞数」は「凍結バイアル一本あたりの凍結保存・解凍後の全細胞数」を示し、「生細胞」は「凍結バイアル一本あたりの凍結保存・解凍後の生細胞数」を示している。(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)また、「生存率」とは、「凍結バイアル一本あたりの全細胞数」に対する「凍結バイアル一本あたりの生細胞数」の比を示している。
Figure JPOXMLDOC01-appb-T000002
 図3に示すように脂肪酸を添加した凍結保存液を用いた条件(2-7、2-10、2-11)では、そうでない条件(前記以外)に比べ、凍結保存・解凍後の全細胞数及び生存率が高く、MSCの凍結保存に効果があると認められた。
 〔結果4〕
 表3に記載のそれぞれの凍結保存液を用いて細胞懸濁液状のMSCの凍結保存実験を行なった結果を図4に示す。図4はMSCの凍結保存実験の結果を示す図である。この棒グラフのそれぞれの項目において、「全細胞数」は「凍結バイアル一本あたりの凍結保存・解凍後の全細胞数」を示し、「生細胞」は「凍結バイアル一本あたりの凍結保存・解凍後の生細胞数」を示している。(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)また、「生存率」とは、「凍結バイアル一本あたりの全細胞数」に対する「凍結バイアル一本あたりの生細胞数」の比を示している。
Figure JPOXMLDOC01-appb-T000003
 図4に示すように脂肪酸を添加した凍結保存液を用いた条件((3-2)から(3-5)、(3-7))では、そうでない条件(前記以外)に比べ、凍結保存・解凍後の細胞数が多く、生存率が高かった。従って、脂肪酸は、MSCの凍結保存に効果があると認められた。
 <実施例2:スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊を用いた凍結保存実験>
 本発明の一形態における凍結保存液のスキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊に対する効果を評価する為、実施例1の〔結果1〕に記載の凍結保存液(ii)及び凍結保存液(iii)を用いて、gMSC(登録商標)1の凍結保存実験を行なった。
 〔プロトコール(gMSC(登録商標)1の作製、凍結・解凍、セルカウント)〕
 「gMSC(登録商標)1の作製」
 ヒト滑膜由来MSCの初代細胞は、以下の(1)から(4)の手順、もしくは、組織を細断して培養容器中で培養液(STK1)中に浸漬し、組織片から細胞をOutgrowthさせることで得た。
 (1)ヒトから滑膜を採取した。
 (2)得られた滑膜組織をPBSで洗浄後、組織を0.4%コラゲナーゼ溶液10ml中に加えて混和し、37℃で1~4時間反応させた。
 (3)フィルタリング後、遠心分離した。 
 (4)メーカーの指示に従い、STK(登録商標)1中で初代培養を行った。
 上記の方法で得られた初代細胞を継代し、STK(登録商標)2にて、メーカーの指示に従って継代培養を繰り返すことで、増殖させた。
 サブコンフルエントになったMSC(5継代目:P5)をPBS(Phosphate buffered saline、カルシウム及びマグネシウムフリー、PBS(-)、株式会社細胞科学研究所)で1回洗浄した後、細胞剥離剤TrypLE Select CTS(Thermo Fisher Scientific Inc.)で剥離、回収して洗浄培地(DMEM, Sigma)にて懸濁した後、遠心分離用のチューブに移し、室温で5分、1500rpmで遠心分離した。分離した単一細胞を再び洗浄培地にて懸濁し、トリパンブルー染色により細胞数をカウントした。STK(登録商標)2にて6well-plate(住友ベークライト株式会社)に40×10cells/cmの播種密度で細胞を播種し、37℃、5%COインキュベーターで7日間培養(高密度培養)した。培地交換は、播種から3日目、5日目に行った。
 通常は、播種から7日目に機械的に培養皿から組織を剥離して、複数の間葉系幹細胞が集合し、たぐまった状態にすることで、スキャフォールドフリーの3次元構造体である、gMSC(登録商標)1の細胞塊が得られる。
 「gMSC(登録商標)1の凍結保存方法」
1.材料
 (1)凍結保存液(自社製):
凍結保存液は、実施例1の〔結果1〕に記載の(ii)及び(iii)の凍結保存液をそれぞれ用いた。これらの組成は前述の通り(図1(a)、等参照)である。
 (2)凍結保存容器:WHEATON cryogenic vial、型番:W985868
 (3)保存液使用量:1.0mL/gMSC(登録商標)1/cryovial
2.gMSC(登録商標)1の作製及び、凍結保存
 gMSC(登録商標)1の作製は、前述の「gMSC(登録商標)1の作製」欄の記載に準拠して行う。より好適には、以下に記載するように凍結保存液を細胞塊へ浸透させるための動作(平衡化)を行うのが望ましい。
 平衡化は、培養物を「gMSC(登録商標)1形状に加工する前」(以下の(2)参照)に行っても良く、「gMSC(登録商標)1形状に加工した後」(以下の(4)参照)に行っても良いが、本実施例では両方を行った場合の一例を説明する。特に、本実施例では「gMSC(登録商標)1形状に加工する前」の平衡化工程も説明する為、先に詳述したgMSC(登録商標)1の作製の工程も併せて簡潔に記載する。
 (1)6well-plate上に高密度培養されたMSC(day 7)の培養上清を全てアスピレートした。
 (2)前記の6well-plateをPBS(-)2mLで2回洗浄した後、凍結保存液2mLを加え、安全キャビネット内にて室温で10分間静置した。
 (3)前記の凍結保存液の入った6well-plateにおいて、チップをつけたP200のピペットマン(登録商標)を用い、高密度培養されたMSCを培養容器から物理的に剥離させ、たぐまった状態にすることで3次元形状のgMSC(登録商標)1に加工した。
 (4)その後、凍結保存液の入った同じ6well-plate上でさらに室温で10分間静置した。
 (5)予め1mLの凍結保存液を入れた凍結保存容器にgMSC(登録商標)1を移し、冷蔵庫(4℃)にて10分間静置した。
 (6)-80℃フリーザーに移動し、凍結保存した。
 「gMSC(登録商標)1の融解方法」
1.-80℃フリーザーから凍結したgMSC(登録商標)1(凍結バイアル中に収容されている)を取り出した。
2.前記の凍結バイアルを37℃湯浴(ウォーターバス)にて2.5分間温めた。
3.目視で氷塊状のgMSC(登録商標)1が完全に融解されたことを確認し、前記の凍結バイアルをウォーターバス中から取り出した。
 「融解したgMSC(登録商標)1の細胞数測定方法」
1.材料
 (1)Collagenase-A (Animal Origin Free)。Worthington Biochemical Corporation、型番:LS004154
 (2)0.4%トリパンブルー溶液。Thermo Fisher Scientific Inc. 型番:15250
 (3)DMEMにて調製した560U(unit)/mLのコラゲナーゼ溶液を0.45mmフィルター(ミリポア 型番:SLHV033RS)にて、フィルトレーションした。
2.方法
 (1)gMSC(登録商標)1を15mL遠沈管のコラゲナーゼ溶液1mLへ入れた。
 (2)37℃のCOインキュベーター内で90分間静置する。30分毎に混和(ボルテックス)しながら加温した。
 (3)反応時間終了時にgMSC(登録商標)1がシングルセルサスペンジョン状態まで完全に分解されたことを確認し、よく混和した。
 (4)マイクロチューブ内で細胞懸濁液とトリパンブルー溶液を10μLずつ混合し、ワンセルカウンターを用いて細胞数をカウントした。
 〔実験の結果(上述のgMSC(登録商標)1の作製、凍結保存・解凍後のセルカウント)〕
 上記の実験の結果を図5に示す。即ち、図5はgMSC(登録商標)1を用いた凍結保存実験の結果を示す図である。この棒グラフのそれぞれの項目において、「Live」は「『gMSC(登録商標)1』一個当たりの生細胞数」を示し、「Total」は「『gMSC(登録商標)1』一個当たりの全細胞数」を示している。(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)。また、「生存率」とは、「『gMSC(登録商標)1』一個当たりの全細胞数」に対する「『gMSC(登録商標)1』一個当たりの生細胞数」の比を示している。また、「保存前」とは、gMSC(登録商標)1の凍結保存を行わずに細胞数を測定した場合の結果であり、それ以外は凍結保存・解凍後の結果である。
 前述の通り、凍結保存液は、実施例1の〔結果1〕欄に記載の(ii)及び(iii)の凍結保存液をそれぞれ用いた。これらの組成は前述の通り(図1(a)、等参照)であるが、いずれにおいてもCD lipid(登録商標)、PA、PCを前述の組成で含有させた。
 図5に示すとおり、上記の(ii)、(iii)のいずれの凍結保存液を用いることで、三次元形態であるgMSC(登録商標)1においても、凍結前の状態と同様に、全細胞数及び、生細胞数(細胞の生存率)が良好であることが示された。このことから、本発明の一態様の凍結保存液によって、スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊を良好に凍結保存できることが示された。また、(ii)、(iii)の比較から、スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊においても、サイトカインの有無によっては全細胞数及び細胞の生存率に有意な差は認められないことが判った。
 〔凍結保存前後の細胞の骨・脂肪分化能の確認〕
 次に、凍結保存前のgMSC(登録商標)1、及び凍結保存液(ii)、(iii)を用いて凍結保存・解凍した後のgMSC(登録商標)1を用いて、骨・脂肪分化能の評価を行った。
 (骨分化能評価の方法)
 凍結保存前のgMSC(登録商標)1、凍結保存・解凍後のgMSC(登録商標)1のいずれにおいても、以下の方法で骨分化能を評価した。即ち、gMSC(登録商標)1をコラゲナーゼ処理によりシングルセル状態にし、洗浄した後に、それぞれSTK(登録商標)2で培養し、コンフルエントになった時点で、培地交換を行い、用いる培地を骨分化用培地(STK(登録商標)3(株式会社DSファーマバイオメディカル製))に切り替えて培養した。この後の培地交換は、概ね3日に1回行った。培養21日後に、培養後のgMSC(登録商標)1を、アリザリンレッドS(ナカライテスク:01303-52)で染色し、骨分化誘導されているか否かを確認した。
 (脂肪分化能評価の方法)
 凍結保存前のgMSC(登録商標)1、凍結保存・解凍後のgMSC(登録商標)1のいずれにおいても、以下の方法で骨分化能を評価した。即ち、コラゲナーゼ処理によりシングルセル状態にし、洗浄した後にそれぞれSTK(登録商標)2を用いて6well-plate中で培養し、コンフルエントになった時点で、培地交換を行い、用いる培地を脂肪分化用培地(DMEM(sigma:D5796)、FBS(Hyclone)、ペニシリン-ストレプトマイシン(Sigma:P0781)、インスリン(Wako:093-06471)、デキサメタゾン(Sigma:D1756)、インドメタシン(Wako:097-02471)、3-イソブチル-1-メチルキサンチン(Calbiochem:410957))に切り替えて3日間培養した。その後、脂肪分化誘導培地と脂肪分化維持培地(MEM(sigma:D5796)、FBS(Hyclone)、ペニシリン-ストレプトマイシン(Sigma:P0781)、インスリン(Wako:093-06471))とを3日おきに交互に交換し分化培養を続けた。培養21日後にオイルレッドO(WAKO:154-02072)で染色し、脂肪分化誘導されているか否かを確認した。
 (骨分化能・脂肪分化能評価の結果)
 以上の実験を3株のgMSC(登録商標)1について行なった。結果を図6に示す。図6は、凍結保存・解凍後の細胞の骨・脂肪分化能の確認実験の結果を示す図であり、図6の(a)は骨分化能の確認結果を示し、図6の(b)は脂肪分化能の確認結果を示す図である。図6に示すとおり、スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊においても、凍結保存液(ii)、(iii)の何れを用いて凍結した場合にも、凍結保存・解凍後にも良好な骨分化能及び脂肪分化能を有することが確認できた。
 〔凍結保存前後の細胞の軟骨分化能の確認〕
 次に、凍結保存前のgMSC(登録商標)1、及び凍結保存液(ii)、(iii)を用いて凍結保存・解凍した後のgMSC(登録商標)1を用いて、軟骨分化能の評価を行なった。なお、以下に記載のように、軟骨分化誘導を行う前に、凍結保存前のgMSC(登録商標)1、凍結保存・解凍後のgMSC(登録商標)1のいずれにおいても、これを滅菌済みメスあるいはハサミで4等分(湿重量で概ね10mg~20mg)した。
 (軟骨分化能評価の方法)
 凍結保存前のgMSC(登録商標)1、凍結保存・解凍後のgMSC(登録商標)1のいずれにおいても、以下の方法で軟骨分化誘導を行う。即ち、gMSC(登録商標)1を4等分(湿重量で概ね10mg~20mg)した後、軟骨分化用基礎培地で1回洗浄後、1個ずつを15mLコニカルチューブに移し、軟骨分化誘導培地(高グルコースα-MEM中に、10ng/mlのTGF-β3、100nMのDexamethasone、50μg/mlのL-Ascorbic acid 2‐phosphate、100μg/mlのSodium pyruvate、ITS-プラス(6.25μg/mlのTransferrin、6.25μg/mlのInsulin、6.25ng/mlのselenate、5.35μg/mlのlinoleic acid、1.25mg/mlのウシ血清アルブミン(BSA)を含む。)を前記のコニカルチューブに分注(1.0~1.8ml/本)し、5%炭酸ガス存在下にて37℃で28日間培養した。なお、2~3日おきに同一の分化誘導培地と交換した。硫酸化グリコサミノグリカン(glycosaminoglycan:GAG)定量用キット(Biocolor社製)を用いて培養後のgMSC(登録商標)1の硫酸化グリコサミノグリカン(glycosaminoglycan:GAG)の量を定量した。なおGAGの量は細胞のDNA含量によってノーマライズした。
 (軟骨分化能評価の結果)
 以上の手順を3株のgMSC(登録商標)1について行なった。結果を図7に示す。図7は凍結保存・解凍後の細胞の軟骨分化能の確認実験の結果を示す図であり、図7の(a)は軟骨分化能の確認実験を行なったサンプルを撮影した結果を示し、図7の(b)は硫酸化グリコサミノグリカン(glycosaminoglycan:GAG)assayの結果を示す図である。図7に示すとおり、凍結保存液(ii)、(iii)の何れを用いて凍結した場合にも、スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊においても、凍結保存・解凍後にも良好な軟骨分化能を有することが確認できた。
 〔凍結保存前後の細胞表面抗原マーカーの発現確認〕
 次に、凍結保存前のgMSC(登録商標)1、及び凍結保存液(ii)、(iii)を用いて凍結保存・解凍した後のgMSC(登録商標)1を用いて、細胞表面抗原マーカーの発現確認を行った。Fluorescence Activated Cell Sorting(FACS解析)によって細胞表面抗原マーカーの発現の確認を評価した。FACS解析に用いたフローサイトメータは、BD社製FACSVERSE(登録商標)を用いた。
 (細胞サンプルの準備)
 (1)上述の方法で凍結保存・解凍後に融解して得られた細胞懸濁液の細胞数と細胞濃度を確認して、洗浄工程後に500万個の細胞を分取した。
 (2)分取した細胞懸濁液を回転数1,500rpmで5分間、遠心分離を行い、遠心終了後、ほぼ全量の上清を除去した。
 (3)5mLのDMEMにて細胞ペレットを懸濁混和した。
 (4)回転数1,500rpmで5分間、遠心分離を行い、遠心終了後、ほぼ全量の上清を除去した。
 (5)0.5%HSA(ヒトアルブミン)含有PBS(-)、1.7mLを用いて得られた細胞ペレットを懸濁混和してから、100μLずつ2.0mLチューブ16本に分注した。
 (FACS抗体反応)
 (1)各抗体を薬用冷蔵ショーケース(4℃)より取り出して、前記の各チューブに添加した。各抗体の添加量は規定濃度(/1,000,000cells)より算出した。
 (2)遮光(4℃)で一晩反応させた。
 (3)反応終了後、回転数1,500rpmで5分間、遠心分離を行なった。
 (4)遠心終了後、ほぼ全量の上清を除去した。
 (5)各チューブに0.5%HSA(ヒトアルブミン)/PBSを300μLずつ添加して、懸濁した。
 (6)回転数1,500rpmで5分間、遠心分離を行い、遠心終了後、ほぼ全量の上清を除去した。
 (7)各チューブに0.5%HSA(ヒトアルブミン)含有PBS(-)を300μLずつ添加し、蛍光色素(7-Amino-ActinomycinD;Biolegend社製の420403)をメーカーの推奨通り加え懸濁した。
 (8)各サンプルをそれぞれ、手動ピペット(100-1000μL)を用いてセルストレーナー付きチューブを通した。
 (9)FACS Calibur(BD社FACSAriaIIセルソーター)で解析を行なった。
Figure JPOXMLDOC01-appb-T000004
 (凍結保存前後の細胞表面抗原マーカーの発現確認の結果)
 以上の解析を3株のgMSC(登録商標)1について行なった。結果を図8に示す。図8は凍結保存・解凍後の細胞表面抗原マーカーの発現確認実験の結果を示す図である。図8に示すように、凍結保存液(ii)、(iii)の何れを用いて凍結保存・解凍した場合にも、スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊においても、細胞塊の分解後の凍結保存前の細胞表面抗原マーカーの発現プロファイルに変化はなかった。
 以上の骨分化能、脂肪分化能、軟骨分化能及び細胞表面抗原マーカーの発現確認実験の結果より、本発明の一態様によれば、スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊においても、凍結解凍後に細胞の性質が変わらないことが示された。
 <実施例3:スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊を用いた凍結保存実験と融解時の凍結保存液の液量の影響>
 本発明の一態様の方法で凍結保存されたスキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊の凍結保存実験において、凍結(融解)時の凍結保存液の液量の影響を評価する為の実験を以下のように行った。
 「gMSC(登録商標)1の作製」、「gMSC(登録商標)1の融解方法」及び「融解したgMSC(登録商標)1の細胞数測定方法」については、特に断りの無い限り、実施例2と同じ操作を行なった。「gMSC(登録商標)1の凍結保存方法」については、表5に示す2通りの方法、即ち「液有り凍結」または「液抜き凍結」のいずれか、を行なった。
Figure JPOXMLDOC01-appb-T000005
 なお、表5の工程7bは、即ち、前述の「b(工程)」の一形態である。
 本実験の結果を図9に示す。図9は本実施例の結果を示す図である。この棒グラフのそれぞれの項目において、「Live」は「『gMSC(登録商標)1』一個当たりの生細胞数」を示し、「total」は「『gMSC(登録商標)1』一個当たりの全細胞数」を示している。また、「保存前」とは、gMSC(登録商標)1の凍結保存を行わずに細胞数を測定した場合の結果であり、それ以外は凍結・解凍後の結果である。
 いずれの保存方法であっても、スキャフォールドフリーの3次元構造を有する間葉系幹細胞を、良好な生存率で凍結保存できた。さらに、凍結保存前に凍結保存液を除去した方法(7b)の方が、凍結保存液を除去しない方法(7a)に比べて、全細胞数及び生存率が有意に高かった。これにより、「(b)工程」を行なう「液抜き凍結」の方が全細胞数及び生存率のより高い凍結保存が可能であることが示された。
 <実施例4:間葉系幹細胞、特にスキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊の凍結保存に対する有効成分特定試験:細胞生存率への影響検討のための凍結保存実験>
 本発明の一態様の方法で凍結保存された細胞の凍結保存効果に対する有効成分をさらに詳細に特定する為に、組成の異なる細胞凍結保存液をそれぞれ用いてgMSC(登録商標)1を用いて凍結保存効果を評価した。
 なお、本実施例において、「細胞培養」、「gMSC(登録商標)1の作製」、「gMSC(登録商標)1の凍結保存方法」及び「融解したgMSC(登録商標)1の細胞数測定方法」は、実施例2と同じ操作であるが、評価した凍結保存液の組成は、以下の〔結果4-1〕~〔結果4-6〕欄の各表に記載の通りである。
 また、〔結果4-1〕~〔結果4-6〕欄に記載の実験の結果は、後述のように、それぞれ、図10~図15のグラフに記載されている。
 〔結果4-1〕
 表6の凍結保存液を用いて実施例2と同様の条件で凍結保存したgMSC(登録商標)1の解凍後の細胞数(生細胞数と全細胞数)を評価した。その結果を図10に示す。この棒グラフのそれぞれの項目において、「live」は「『gMSC(登録商標)1』一個当たりの生細胞数」を示し、「total」は「『gMSC(登録商標)1』一個当たりの全細胞数」を示している(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)。また、「生存率」とは、「『gMSC(登録商標)1』一個当たりの全細胞数」に対する「『gMSC(登録商標)1』一個当たりの生細胞数」の比を示している。また、「保存前」とは、gMSC(登録商標)1の凍結保存を行わずに細胞数を測定した場合の結果であり、それ以外は凍結・解凍後の結果である。
Figure JPOXMLDOC01-appb-T000006
 ベースとなる対照群である「10%DMSO+基礎培地+アルブミンの凍結保存液」(6-2)と比較して、「10%DMSO+STK2(サイトカインフリー)を含む凍結保存液(実施例1結果(ii)の凍結保存液)」(6-1)で凍結保存したgMSC(登録商標)1の解凍後の細胞数は、対照群(6-2)に比べ有意に多かった(P<0.05)。また、前記(6-2)に(脂肪酸のミクスチャーである)CD lipid(登録商標)を加えた凍結保存液(6-3)においても、解凍後の細胞数は対照群(6-2)に比べ有意に多かった。
 これらに加え、前記(6-2)にリノール酸(50.0μg/mL)、PA(10.0μg/mL)、PA(50.0μg/mL)、リノレン酸(10.0μg/mL)となるように、それぞれの溶液を添加することによって作製した凍結保存液(6-4)、(6-7)、(6-8)及び(6-13)により凍結保存したgMSC(登録商標)1において、解凍後の細胞数は、対照群の(6-2)よりも多かった。
 以上から、スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊の凍結保存に、脂肪酸及び脂肪酸エステルからなる群の成分を複数種類含む(6-1)や(6-3)のような組成を加えた凍結保存液以外にも、リノール酸、PA、リノレン酸の溶液の添加が有効であることが示された。
 〔結果4-2〕
 表7の凍結保存液を用いて、実施例2と同様の条件で凍結保存したgMSC(登録商標)1の解凍後の細胞数(生細胞数と全細胞数)を評価した。その結果を図11に示す。図11はリノール酸、リノレン酸、及びPAがそれぞれ含まれている凍結保存液を用いた、gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。この棒グラフのそれぞれの項目において、「live」は「『gMSC(登録商標)1』一個当たりの生細胞数」を示し「total」は「『gMSC(登録商標)1』一個当たりの全細胞数」を示している(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)。また、「生存率」とは、「『gMSC(登録商標)1』一個当たりの全細胞数」に対する「『gMSC(登録商標)1』一個当たりの生細胞数」の比を示している。また、「保存前」とは、gMSC(登録商標)1の凍結保存を行わずに細胞数を測定した場合の結果であり、それ以外は凍結・解凍後の結果である。
Figure JPOXMLDOC01-appb-T000007
 ベースとなる対照群である「10%DMSO+基礎培地+アルブミンの凍結保存液」(7-2)と比較して、「STK2(-)を含む凍結保存液(実施例1の凍結保存液(ii)」(7-1)、「(脂肪酸のミクスチャーである)CD lipid(登録商標)を含む凍結保存液」(7-3)、「リノール酸溶液を含む凍結保存液(リノール酸50.0μg/mL含)」(7-4)、「リノレン酸溶液を含む凍結保存液(リノレン酸10.0μg/mL含)」(7-5)、「PA溶液を含む凍結保存液(PA50.0μg/mL含)」(7-6)のいずれも、全細胞数、生細胞数が多かった。
 以上から、スキャフォールドフリーの3次元構造を有する間葉系幹細胞の細胞塊の凍結保存において、これらの成分の添加が有効であることが示された。
 〔結果4-3〕
 表8の組成の凍結保存液を用いて、実験2と同様の条件で凍結保存したgMSC(登録商標)1の解凍後の細胞数を評価した。その結果を図12に示す。
 図12は、gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。この棒グラフのそれぞれの項目において、「live」は「『gMSC(登録商標)1』一個当たりの生細胞数」を示し、「total」は「『gMSC(登録商標)1』一個当たりの全細胞数」を示している(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)。また、「生存率」とは、「『gMSC(登録商標)1』一個当たりの全細胞数」に対する「『gMSC(登録商標)1』一個当たりの生細胞数」の比を示している。また、「保存前」とは、gMSC(登録商標)1の凍結保存を行わずに細胞数を測定した場合の結果であり、それ以外は凍結・解凍後の結果である。
Figure JPOXMLDOC01-appb-T000008
 本実験は、gMSC(登録商標)1の凍結保存におけるリノール酸の効果を確認するためのものである。ここで、「リノール酸溶液を含む凍結保存液」である(8-4)及び(8-5)においては、リノール酸を可溶とするための溶解補助剤として、環状オリゴ糖の一種であるmethyl-β-cyclodextrinを予め添加した。即ち、10μg/mL濃度のリノール酸溶液には、0.34mg/mL濃度のmethyl-β-cyclodextrinを予め添加して、50μg/mL濃度のリノール酸溶液には1.7mg/mL濃度のmethyl-β-cyclodextrinを予め添加した。
 そのため、上記の(8-4)、(8-5)の条件に加え、これらの溶液中に添加された濃度に相当するmethyl-β-cyclodextrinのみを(8-2)に加えた、(8-6)、(8-7)の条件も対照群として用意した。
 さらに、(8-4)~(8-7)に共通する成分のみからなる、ベースとなる対照群として、「10%DMSO+基礎培地+アルブミンの凍結保存液」(この組成は(6-2)、(7-2)等と同一)も用意した。
 (8-2)と比較して、(8-4)、(8-5)の各凍結保存液を用いた場合に、凍結保存・解凍後のgMSC(登録商標)1の細胞数(全細胞数、総細胞数)は有意に多かった(それぞれ、P<0.05、P<0.01)。
 一方、(8-7)の、溶解補助剤(methyl-β-cyclodextrin)を単独で比較的高濃度(1.7mg/mL)添加した凍結保存液を用いた場合において、全細胞数のみに限っては(8-2)の保存液を用いた場合より有意に多い(P<0.05)ものの、methyl-β-cyclodextrin単独では、(8-5)の、「リノール酸を含み、(8-7)と同濃度のmethyl-β-cyclodextrinを含む条件」には平均値も有意水準も劣っている。
 以上の結果から、リノール酸溶液を含む凍結保存液には、スキャフォールドフリーの3次元構造を有する間葉系幹細胞を良好な生存率で凍結保存する凍結保存効果があり、methyl-β-cyclodextrinの効果に比べて、リノール酸の凍結保存効果が高く、効果の主体はリノール酸のほうにあることが裏付けられた。
 〔結果4-4〕
 表9の組成の凍結保存液を用いて、実施例2と同様の条件で凍結保存したgMSC(登録商標)1の解凍後の細胞数(生細胞数と全細胞数)を評価した。その結果を図13に示す。
 図13は、gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。この棒グラフのそれぞれの項目において、「live」は「『gMSC(登録商標)1』一個当たりの生細胞数」を示し、「total」は「『gMSC(登録商標)1』一個当たりの全細胞数」を示している(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)。また、「生存率」とは、「『gMSC(登録商標)1』一個当たりの全細胞数」に対する「『gMSC(登録商標)1』一個当たりの生細胞数」の比を示している。また、「保存前」とは、gMSC(登録商標)1の凍結保存を行わずに細胞数を測定した場合の結果であり、それ以外は凍結・解凍後の結果である。
Figure JPOXMLDOC01-appb-T000009
 本実験ではリノール酸とPluronic F-68と相乗効果の有無を調べた。なお、本実験で用いたリノール酸溶液には、〔結果4-3〕で用いられたリノール酸溶液と同様にPluronic F-68を含めなかった。
 ベースとなる対照群である「10%DMSO+基礎培地+アルブミンの凍結保存液」(9-2)と比較して、「Pluronic F-68(0.9mg/mL)を加えた凍結保存液」(9-4)及び「リノール酸溶液を加えた凍結保存液(リノール酸50.0μg/mL含)」(9-5)を用いた場合に、それぞれの凍結保存・解凍後のgMSC(登録商標)1の細胞数は有意に多かった(P<0.05、リノール酸は全細胞数のみ)。さらに、リノール酸とPluronic F-68との併用(9-6)により、さらに細胞数が多かったことが示された(P<0.01、全細胞数のみ)。
 以上の結果から、リノール酸溶液及びPluronic F-68を含む凍結保存液には、スキャフォールドフリーの3次元構造を有する間葉系幹細胞を良好な生存率で凍結保存する凍結保存効果があり、これらを両方加えることで相乗効果が生じ、より高い凍結保存効果が発揮されることが判った。
 〔結果4-5〕
 表10の組成の凍結保存液を用いて、表記の条件で凍結保存したgMSC(登録商標)1の解凍後の細胞数(生細胞数と全細胞数)を評価した。その結果を図14に示す。図14は、gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。この棒グラフのそれぞれの項目において、「live」は「『gMSC(登録商標)1』一個当たりの生細胞数」を示し、「total」は「『gMSC(登録商標)1』一個当たりの全細胞数」を示している(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)。また、「生存率」とは、「『gMSC(登録商標)1』一個当たりの全細胞数」に対する「『gMSC(登録商標)1』一個当たりの生細胞数」の比を示している。また、「保存前」とは、gMSC(登録商標)1の凍結保存を行わずに細胞数を測定した場合の結果であり、それ以外は凍結・解凍後の結果である。
Figure JPOXMLDOC01-appb-T000010
 本実験は、gMSC(登録商標)1凍結保存におけるPAの効果を確認するためのものである。ここで、「PA溶液を含む凍結保存液」(10-4)及び(10-5)においては、PAを乳化させ可溶とするための溶解補助剤として、界面活性剤であるTween 80を添加した。即ち、10μg/mL濃度のPA溶液には、1.0μg/mL濃度のTween 80が予め添加して、50μg/mL濃度のPA溶液に、5.0μg/mL濃度のTween 80が予め添加した。
 そのため、(10-4)、(10-5)の条件に加え、これらの溶液中に添加された濃度に相当するTween 80のみを(10-2)に加えた、(10-6)、(10-7)の条件も対照群として用意した。
 さらに、(10-4)~(10-7)に共通する成分のみからなる対照群(ベースとなる条件)である「10%DMSO+基礎培地+アルブミンの凍結保存液」(この組成は(6-2)、(7-2)等と同一)も用意した。
 対照群の1つ(ベースとなる条件)である「10%DMSO+基礎培地+アルブミンの凍結保存液」(10-2)と比較して、「PA溶液を加えた凍結保存液(PA 10.0μg/mL含)」(10-4)及び「PA溶液を加えた凍結保存液(50.0μg/mL含)」(10-5)、それぞれの添加により、凍結保存・解凍後のgMSC(登録商標)1の細胞数は有意に多かった(共に、P<0.05)。一方で、Tween 80のみを単独添加した場合(10-6及び10-7)では、効果が認められなかった。
 以上の結果から、PA溶液を含む凍結保存液には、スキャフォールドフリーの3次元構造を有する間葉系幹細胞を良好な生存率で凍結保存する凍結保存効果があり、PAの溶解を補助する溶解補助剤(Tween 80)単独の添加では凍結保存効果が認められないことが判る。従って、有効成分はPAのほうであることが裏付けられ、PAには凍結保存効果があることが示された。
 〔結果4-6〕
 表11の組成の凍結保存液で実施例2に記載した条件で凍結保存したgMSC(登録商標)1の解凍後の細胞数(生細胞数と全細胞数)を評価した。その結果を図15に示す。図15は、gMSC(登録商標)1の凍結保存実験の結果を示すグラフである。この棒グラフのそれぞれの項目において、「live」は「『gMSC(登録商標)1』一個当たりの生細胞数」を示し、「total」は「『gMSC(登録商標)1』一個当たりの全細胞数」を示している(n=3、結果は全て、「平均値±標準偏差」(mean±SD)で示されている。)。また、「生存率」とは、「『gMSC(登録商標)1』一個当たりの全細胞数」に対する「『gMSC(登録商標)1』一個当たりの生細胞数」の比を示している。また、「保存前」とは、gMSC(登録商標)1の凍結保存を行わずに細胞数を測定した場合の結果であり、それ以外は凍結・解凍後の結果である。
Figure JPOXMLDOC01-appb-T000011
 本実験ではPAとPluronic F-68と相乗効果の有無を調べた。なお、本実験で用いたPA溶液には、〔結果4-5〕で用いられたPA溶液と同様にPluronic F-68を含めなかった。
 まず、PA、Pluronic F-68の単独の効果を、ベースとなる対照群である「10%DMSO+基礎培地+アルブミンの凍結保存液」(11-2)と比較した。その結果、「PA溶液を加えた凍結保存液(PA10.0μg/mL含)」(11-4)及び「Pluronic F-68(0.9mg/mL)を加えた凍結保存液」(11-5)において、凍結保存・解凍後のgMSC(登録商標)1の細胞数は、(11-2)に比べて多いことが判る。
 さらに、PAとPluronic F-68を併用した(11-6)が、それぞれを単独で加えた前記(11-4)、(11-5)よりも、凍結保存・解凍後のgMSC(登録商標)1の細胞数が多いことも判り、さらに効果を高めたことが示された(P<0.01)。
 以上の結果から、PA及びPluronic F-68を含む凍結保存液には、スキャフォールドフリーの3次元構造を有する間葉系幹細胞を良好な生存率で凍結保存する凍結保存効果があり、これらを両方加えることで相乗効果が生じ、より高い結保存効果が発揮されることが判った。
 本発明を用いれば、間葉系幹細胞を用いたより安全かつ利用価値の高い移植治療材料を提供することができるので、間葉系幹細胞を用いた移植治療等の再生医療に好適に利用可能である。

Claims (26)

  1.  細胞を凍結保存するための凍結保存用組成物であって、
     脂肪酸を含むことを特徴とする凍結保存用組成物。
  2.  前記細胞は、間葉系幹細胞であることを特徴とする、請求項1に記載の凍結保存用組成物。
  3.  前記間葉系幹細胞は、3次元構造であり、スキャフォールドフリーの細胞塊を形成しているものであり、当該細胞塊を凍結保存するためのものであることを特徴とする請求項2に記載の凍結保存用組成物。
  4.  細胞を凍結保存するための凍結保存用組成物であって、
     前記細胞は、3次元構造である細胞塊を形成しているものであり、当該細胞塊を凍結保存するためのものであり、
     脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含むことを特徴とする凍結保存用組成物。
  5.  前記細胞は、間葉系幹細胞であることを特徴とする、請求項4に記載の凍結保存用組成物。
  6.  前記間葉系幹細胞は、スキャフォールドフリーの細胞塊を形成しているものである、請求項5に記載の凍結保存用組成物。
  7.  前記間葉系幹細胞は無血清培養されたものであることを特徴とする請求項2、3及び5のいずれか1項に記載の凍結保存用組成物。
  8.  前記成分は脂肪酸エステルであり、界面活性剤をさらに含む、請求項4に記載の凍結保存用組成物。
  9.  前記脂肪酸はリノール酸及びリノレン酸のうち少なくとも1種である、請求項1~8のいずれか1項に記載の凍結保存用組成物。
  10.  前記脂肪酸エステルはリン脂質である、請求項8に記載の凍結保存用組成物。
  11.  前記リン脂質はフォスファチジン酸である、請求項10に記載の凍結保存用組成物。
  12.  前記脂肪酸エステルはフォスファチジン酸であり、前記界面活性剤はPluronic F-68である、請求項8に記載の凍結保存用組成物。
  13.  -80℃以下で凍結保存するためのものであることを特徴とする請求項1~12のいずれか1項に記載の凍結保存用組成物。
  14.  細胞を凍結保存した凍結保存物の製造方法であって、以下の(a)、(c)の工程をこの順に含むことを特徴とする凍結保存物の製造方法、
     (a)前記細胞を、脂肪酸を含む凍結保存液に浸漬する工程、
     (c)前記細胞を凍結する工程。
  15.  細胞を凍結保存した凍結保存物の製造方法であって、前記細胞は、3次元構造である細胞塊を形成しているものであり、以下の(a)、(c)の工程をこの順に含むことを特徴とする凍結保存物の製造方法、
     (a)前記細胞を、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存液に浸漬する工程、
     (c)前記細胞を凍結する工程。
  16.  前記(a)工程の後に、(b)前記凍結保存液に前記細胞が浸漬された状態から、前記細胞に対する前記凍結保存液の量を減らす工程を含み、
     前記(c)工程では、前記(b)工程後の前記細胞を凍結する、請求項14又は15に記載の凍結保存物の製造方法。
  17.  前記(b)工程では、前記細胞が、前記凍結保存液に浸漬されていない状態にする、請求項14~16のいずれか1項に記載の凍結保存物の製造方法。
  18.  前記(c)工程において、-80℃以下で凍結することを特徴とする請求項14~16のいずれか1項に記載の凍結保存物の製造方法。
  19.  細胞と、
     脂肪酸を含む凍結保存用組成物と、を含み、
     凍結保存されていることを特徴とする細胞製剤。
  20.  細胞と、
     脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存用組成物と、を含み、
     前記細胞は、3次元構造である細胞塊を形成しているものであり、
     凍結保存されていることを特徴とする細胞製剤。
  21.  細胞を含む細胞製剤の製造方法であって、前記細胞は、3次元構造である細胞塊を形成しているものであり、以下の(a)、(c)の工程をこの順に含むことを特徴とする細胞製剤の製造方法、
     (a)前記細胞を、脂肪酸を含む凍結保存液に浸漬する工程、
     (c)前記細胞を凍結する工程。
  22.  細胞を含む細胞製剤の製造方法であって、以下の(a)、(c)の工程をこの順に含むことを特徴とする細胞製剤の製造方法、
     (a)前記細胞を、脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を含む凍結保存液に浸漬する工程、
     (c)前記細胞を凍結する工程。
  23.  前記(a)工程の後に、(b)前記凍結保存液に前記細胞が浸漬された状態から、前記細胞に対する前記凍結保存液の量を減らす工程を含み、
     前記(c)工程では、前記(b)工程後の前記細胞を凍結する、請求項22に記載の細胞製剤の製造方法。
  24.  前記(b)工程では、前記細胞が、前記凍結保存液に浸漬されていない状態にする、請求項23に記載の細胞製剤の製造方法。
  25.  細胞を凍結保存するための凍結保存用キットであって、
     脂肪酸を備えることを特徴とする凍結保存用キット。
  26.  細胞を凍結保存するための凍結保存用キットであって、3次元構造である細胞塊を形成した前記細胞を凍結保存するためのキットであり、
     脂肪酸及び脂肪酸エステルからなる群より選ばれる少なくとも1種の成分を備えることを特徴とする凍結保存用キット。
PCT/JP2018/028677 2017-07-31 2018-07-31 凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット WO2019026910A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018310000A AU2018310000B2 (en) 2017-07-31 2018-07-31 Composition for cryopreservation, method for producing cryopreserved material, cell preparation, method for producing cell preparation, and kit for cryopreservation
JP2019534534A JP6958939B2 (ja) 2017-07-31 2018-07-31 凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット
US16/634,820 US20200205399A1 (en) 2017-07-31 2018-07-31 Composition for cryopreservation, method for producing cryopreserved material, cell preparation, method for producing cell preparation, and kit for cryopreservation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-148607 2017-07-31
JP2017148607 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026910A1 true WO2019026910A1 (ja) 2019-02-07

Family

ID=65232776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028677 WO2019026910A1 (ja) 2017-07-31 2018-07-31 凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット

Country Status (4)

Country Link
US (1) US20200205399A1 (ja)
JP (1) JP6958939B2 (ja)
AU (1) AU2018310000B2 (ja)
WO (1) WO2019026910A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111602648A (zh) * 2020-04-26 2020-09-01 河南侨创生命科技有限公司 一种免疫细胞无血清冻存液及冻存方法
CN113966466A (zh) * 2019-04-15 2022-01-21 奥瑟姆健康公司 用于骨髓提取和冷冻保存的系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577389B2 (ja) * 1987-07-09 1993-10-26 Rikagaku Kenkyusho
JPH0646840A (ja) * 1992-08-04 1994-02-22 Nippon Zenyaku Kogyo Kk 細胞凍結保存液
JP2006306821A (ja) * 2005-05-02 2006-11-09 Japan Science & Technology Agency 細胞・組織の凍結障害防止液及び凍結保存法
JP4522994B2 (ja) * 2003-08-01 2010-08-11 憲正 中村 スキャフォールドフリー自己組織性三次元人工組織(Scaffold−freeSelf−Organized3Dsynthetictissue)
WO2011111787A1 (ja) * 2010-03-10 2011-09-15 株式会社ツーセル 間葉系幹細胞を含む細胞製剤及びその製造方法
WO2015016357A1 (ja) * 2013-08-01 2015-02-05 株式会社ツーセル 軟骨損傷治療剤及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257842A1 (en) * 2003-05-29 2006-11-16 Pettegrew Jay W Cryopreservation media and molecules
EP2825635B1 (en) * 2012-03-14 2020-04-15 Membrane Protective Technologies, Inc. System and substances for cryopreservation of viable cells
WO2014051173A1 (ko) * 2012-09-27 2014-04-03 (주)세포바이오 식물 유래의 재조합 인간 혈청 알부민, 지질 및 식물 단백질 가수분해물을 유효성분으로 포함하는 줄기세포 또는 일차배양세포의 동결보존용 조성물
CN106795475B (zh) * 2014-10-23 2021-01-29 三菱制纸株式会社 细胞或组织的冷冻保存用夹具及冷冻保存方法
US20160281055A1 (en) * 2015-03-20 2016-09-29 Dow Agrosciences Llc Incorporation of phosphatidylcholine in a media composition
WO2017044393A1 (en) * 2015-09-09 2017-03-16 Allergy Research Group, Llc Phospholipid compositions and use thereof to enhance spermatozoa motility and viability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577389B2 (ja) * 1987-07-09 1993-10-26 Rikagaku Kenkyusho
JPH0646840A (ja) * 1992-08-04 1994-02-22 Nippon Zenyaku Kogyo Kk 細胞凍結保存液
JP4522994B2 (ja) * 2003-08-01 2010-08-11 憲正 中村 スキャフォールドフリー自己組織性三次元人工組織(Scaffold−freeSelf−Organized3Dsynthetictissue)
JP2006306821A (ja) * 2005-05-02 2006-11-09 Japan Science & Technology Agency 細胞・組織の凍結障害防止液及び凍結保存法
WO2011111787A1 (ja) * 2010-03-10 2011-09-15 株式会社ツーセル 間葉系幹細胞を含む細胞製剤及びその製造方法
WO2015016357A1 (ja) * 2013-08-01 2015-02-05 株式会社ツーセル 軟骨損傷治療剤及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Separate volume of Experimental medicine: Cultured cell experiment handbook - both basis and analytical method for cell culture", 5 August 2004 (2004-08-05), pages 69 - 71, ISBN: 4-89706-844-3 *
CELL CULTURE Q&A: UNEXPECTEDLY UNKNOWN BASIC KNOWLEDGE + IMMEDIATELY HELPFUL TECHNIQUE, 1 January 2004 (2004-01-01), pages 166 - 169, ISBN: 4-89706-878-9 *
TANIKAWA, SHUNSUKE ET AL.: "Metabolism measurement of medicine gMSC1 for treating human synovial membrane-derived mesenchymal stem cell (MSC) and cartilage regeneration cell in serum-free medium STK2", PROGRAMS AND ABSTRACTS OF THE 30TH THE JAPANESE SOCIETY OF CARTILAGE METABOLISM, vol. 98, March 2017 (2017-03-01) *
TANIKAWA, SHUNSUKE ET AL.: "Review on long-term cryopreservation medicine ''gMSC1'' treating cartilage regeneration cell", PROGRAMS AND ABSTRACTS OF THE 31TH THE JAPANESE SOCIETY OF CARTILAGE METABOLISM, February 2018 (2018-02-01), pages 87 *
TANIKAWA, SHUNSUKE ET AL.: "Review on long-term cryopreservation medicine ''gMSCl'' treating cartilage regeneration cell", REGENERATIVE MEDICINE, vol. 16, no. 369, 1 February 2017 (2017-02-01), pages 01 - 028 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113966466A (zh) * 2019-04-15 2022-01-21 奥瑟姆健康公司 用于骨髓提取和冷冻保存的系统和方法
CN111602648A (zh) * 2020-04-26 2020-09-01 河南侨创生命科技有限公司 一种免疫细胞无血清冻存液及冻存方法
CN111602648B (zh) * 2020-04-26 2021-04-06 河南侨创生命科技有限公司 一种免疫细胞无血清冻存液及冻存方法

Also Published As

Publication number Publication date
US20200205399A1 (en) 2020-07-02
AU2018310000B2 (en) 2021-08-05
JPWO2019026910A1 (ja) 2020-07-27
JP6958939B2 (ja) 2021-11-02
AU2018310000A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP5804385B2 (ja) 間葉系幹細胞を含む細胞製剤及びその製造方法
JP4385076B2 (ja) 動物細胞を無血清培養するための培地用添加剤、キット及びこれらの利用
JP6662777B2 (ja) 人工心筋(ehm)を産生するための方法
JP5067949B2 (ja) 霊長類動物胚性幹細胞の培養及び継代方法、並びにその分化誘導方法
RU2467066C2 (ru) Способ конструирования массы миокардиальных клеток и применение массы миокардиальных клеток
KR101782963B1 (ko) 연골 손상 치료제 및 그 제조 방법
KR101712501B1 (ko) 분화 유도 배지용 첨가제 및 그의 용도
US20050014255A1 (en) Stem cells for clinical and commercial uses
KR20190055790A (ko) 세포 배양 배지를 사용한 제대 양막(umbilical cord amniotic membrane)으로부터 중간엽 줄기세포를 분리하는 방법
KR20090076989A (ko) 태반 줄기세포군으로 뼈의 결함을 치료하기 위한 방법과 조성물
WO2021254296A1 (zh) 一种生物活性物质组合物、包含所述组合物的无血清培养基及其用途
US20230117670A1 (en) Bioactive substance composition, serum-free medium comprising the composition, and uses thereof
JP2017506511A (ja) 無血清培地
AU2019250653A1 (en) A method of inducing or improving wound healing properties of mesenchymal stem cells
KR20100084620A (ko) 조직 재생을 위한 세포 조성물
CN113403271A (zh) 一种间充质干细胞无血清培养基
JP6958939B2 (ja) 凍結保存用組成物、凍結保存物の製造方法、細胞製剤、細胞製剤の製造方法、凍結保存用キット
Hashemi et al. Comparison between human cord blood serum and platelet-rich plasma supplementation for human wharton's jelly stem cells and dermal fibroblasts culture
US20120207715A1 (en) Methods and systems for storing and prolonging viability of matrix dependent cells
CN116396930B (zh) 间充质干细胞无血清培养基及其应用
JP2007525193A (ja) 臨床用及び商用幹細胞
JP2004166604A (ja) 細胞分化誘導方法および細胞培養物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018310000

Country of ref document: AU

Date of ref document: 20180731

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18842165

Country of ref document: EP

Kind code of ref document: A1