WO2011090149A1 - 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2011090149A1
WO2011090149A1 PCT/JP2011/051045 JP2011051045W WO2011090149A1 WO 2011090149 A1 WO2011090149 A1 WO 2011090149A1 JP 2011051045 W JP2011051045 W JP 2011051045W WO 2011090149 A1 WO2011090149 A1 WO 2011090149A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
ring
substituted
unsubstituted
Prior art date
Application number
PCT/JP2011/051045
Other languages
English (en)
French (fr)
Inventor
加藤 朋希
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN2011800067627A priority Critical patent/CN102712612A/zh
Priority to EP11734755.9A priority patent/EP2527334A4/en
Priority to KR1020127019055A priority patent/KR101516062B1/ko
Priority to JP2011550964A priority patent/JPWO2011090149A1/ja
Priority to US13/522,870 priority patent/US20120319091A1/en
Publication of WO2011090149A1 publication Critical patent/WO2011090149A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure

Definitions

  • the present invention relates to an aromatic amine derivative and an organic electroluminescence device using the same, and more particularly to an organic electroluminescence device having a long lifetime and high luminous efficiency and an aromatic amine derivative that realizes the organic electroluminescence device.
  • An organic EL element is a self-luminous element utilizing the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field.
  • Eastman Kodak's C.I. W. Organized organic materials since Tang et al. Reported on low voltage drive organic EL devices using stacked devices (CW Tang, SA Vanslyke, Applied Physics Letters, 51, 913, 1987, etc.) Research on organic EL elements as materials has been actively conducted. Tang et al. Use tris (8-quinolinolato) aluminum for the light emitting layer and a triphenyldiamine derivative for the hole transporting layer.
  • the stacked structure includes a hole transport (injection) layer, a two-layer type of an electron transport light emitting layer, or a hole transport (injection) layer, a light emitting layer, and an electron transport (injection) layer A three-layer type is well known.
  • the element structure and the formation method are devised in order to increase the recombination efficiency of injected holes and electrons.
  • Patent Documents 1 to 3 have been reported as compounds having dibenzofuran in the central skeleton of the diamine compound, while Patent Documents 4 to 7 have been reported as compounds having dibenzofuran via an aryl group in a monoamine. .
  • the performance as these organic EL elements is not sufficient.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an organic EL device having a long lifetime and high luminous efficiency and an aromatic amine derivative that realizes the organic EL device.
  • the present inventors have achieved the above object by using an aromatic amine derivative represented by the following formula (1) as a material for an organic EL device. As a result, the present invention has been completed. That is, the present invention provides an aromatic amine derivative represented by the following formula (1).
  • ALB (1) [In Formula (1), L is represented by following formula (2).
  • R 3 and R 4 each independently represents a linear or branched alkyl group having 1 to 15 carbon atoms, a linear or branched alkenyl group having 2 to 15 carbon atoms, or a cyclohexane having 3 to 15 carbon atoms.
  • a plurality of R 3 adjacent to or adjacent to each other and R 4 may be bonded to each other to form a saturated or unsaturated divalent group forming a ring. Adjacent R 3 and R 4 may be bonded to each other to form a substituted or unsubstituted fluorenylene group. c and d each independently represents an integer of 0 to 4. ) In the formula (1), A is represented by the following formula (3).
  • Ar 1 represents a substituted or unsubstituted ring aryl group having 6 to 25, or a substituted or unsubstituted heteroaryl group ring atoms 5 to 25
  • Ar 3 is Is represented by the following formula (4).
  • X 1 represents O (oxygen atom), S (sulfur atom), NRa, or CRbRc.
  • Ra represents an aryl group having 6 to 25 ring carbon atoms, or 5 ring forming atoms.
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 15 carbon atoms, a linear or branched alkenyl group having 2 to 15 carbon atoms, or a cyclohexane having 3 to 15 carbon atoms.
  • a plurality of adjacent R 1 and R 2 , and R 1 and R 2 may be bonded to each other to form a saturated or unsaturated divalent group that forms a ring.
  • a represents an integer of 0 to 3 independently.
  • each b independently represents an integer of 0 to 4; ) ⁇
  • B is represented by the following Formula (5).
  • Ar 2 or Ar 4 represents a substituted or unsubstituted aryl group having 6 to 25 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 25 ring atoms.
  • the present invention provides an organic EL device in which an organic thin film layer comprising at least one light emitting layer or a plurality of light emitting layers is sandwiched between a cathode and an anode, wherein at least one layer of the organic thin film layer contains the aromatic amine derivative.
  • the present invention provides an organic EL device contained alone or as a component of a mixture.
  • the organic EL device using the aromatic amine derivative of the present invention has a high luminous efficiency and is not easily deteriorated even when used for a long time, and has a long life.
  • the present invention provides an aromatic amine derivative represented by the following formula (1).
  • ALB (1) In the formula (1), L is represented by the following formula (2).
  • n represents an integer of 0 to 3, preferably 0 to 1.
  • R 3 and R 4 each independently represents a linear or branched alkyl group having 1 to 15 carbon atoms, a linear or branched alkenyl group having 2 to 15 carbon atoms, or a cyclohexane having 3 to 15 carbon atoms.
  • a plurality of R 3 adjacent to or adjacent to each other and R 4 may be bonded to each other to form a saturated or unsaturated divalent group forming a ring. Adjacent R 3 and R 4 may be bonded to each other to form a substituted or unsubstituted fluorenylene group.
  • c and d each independently represents an integer of 0 to 4, preferably 0 to 2.
  • alkyl group for R 3 and R 4 examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, Stearyl group, 2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, benzyl group, ⁇ -phenoxybenzyl group, ⁇ , ⁇ -dimethylbenzyl group, ⁇ , ⁇ -methylphenylbenzyl group, ⁇ , ⁇ -ditrifluoro A methylbenzyl group, a triphenylmethyl group, an ⁇ -benzyloxybenzyl group and the like can be mentioned.
  • Examples of the alkenyl group for R 3 and R 4 include a vinyl group, an allyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, a 1,3-butanedienyl group, a 1-methylvinyl group, a styryl group, Examples include 2,2-diphenylvinyl group and 1,2-diphenylvinyl group.
  • Examples of the cycloalkyl group represented by R 3 and R 4 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a bicycloheptyl group, a bicyclooctyl group, and a tricycloheptyl group.
  • Examples of the alkyl group of the trialkylsilyl group of R 3 and R 4 include the same examples as the alkyl group.
  • Examples of the aryl group of R 3 and R 4 include a phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-ethylphenyl group, biphenyl group, 4-methylbiphenyl group, 4 -Ethylbiphenyl group, 4-cyclohexylbiphenyl group, terphenyl group, 3,5-dichlorophenyl group, naphthyl group, 5-methylnaphthyl group, anthryl group, pyrenyl group, chrysenyl group, fluoranthenyl group, perylenyl group, etc.
  • Examples of the aryl group of the triarylsilyl group of R 3 and R 4 include the same examples as the aryl group.
  • Examples of the alkylarylsilyl group for R 3 and R 4 include the same examples as the alkyl group and aryl group.
  • Examples of the heteroaryl group represented by R 3 and R 4 include imidazole, benzimidazole, pyrrole, furan, thiophene, oxadiazoline, indoline, carbazole, pyridine, quinoline, isoquinoline, benzoquinone, pyrarodine, imidazolidine, piperidine and the like.
  • Examples of the halogen atom for R 3 and R 4 include fluorine, chlorine, bromine and iodine.
  • L As a saturated or unsaturated divalent group in which a plurality of adjacent or adjacent R 3 s , R 4 s , or R 3 and R 4 are bonded to each other to form a ring, for example, a fluorenylene group, 9 , 9-dimethylfluorenylene group, phenanthrenylene group and the like.
  • Specific examples of L include the following structures.
  • A is represented by the following formula (3).
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 25 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 25 ring atoms
  • Ar 3 represents It is represented by the following formula (4).
  • Specific examples of the aryl group and heteroaryl group of Ar 1 include the same examples as R 3 and R 4 .
  • X 1 represents O (oxygen atom), S (sulfur atom), NRa, or CRbRc.
  • Ra represents a group selected from the group consisting of an aryl group having 6 to 25 ring carbon atoms and a heteroaryl group having 5 to 25 ring atoms.
  • Rb and Rc each independently represents a group selected from the group consisting of an aryl group having 6 to 25 ring carbon atoms and a heteroaryl group having 5 to 25 ring atoms. Examples of the aryl group and heteroaryl group represented by Ra, Rb and Rc include the same examples as R 3 and R 4 .
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 15 carbon atoms, a linear or branched alkenyl group having 2 to 15 carbon atoms, or a cyclohexane having 3 to 15 carbon atoms.
  • a plurality of adjacent R 1 and R 2 , and R 1 and R 2 may be bonded to each other to form a saturated or unsaturated divalent group that forms a ring.
  • Examples of the alkyl group, alkenyl group, cycloalkyl group, trialkylsilyl group, triarylsilyl group, alkylarylsilyl group, aryl group, heteroaryl group, and halogen atom represented by R 1 and R 2 include R 3 and Examples similar to R 4 are given.
  • R 3 and R 4 are bonded to each other.
  • Each a independently represents an integer of 0 to 3, preferably 0 to 2.
  • Each b independently represents an integer of 0 to 4, preferably 0 to 2.
  • Specific examples of the formula (4) include the following structures. Moreover, in the following structure, a structure in which S or O is changed to the above-mentioned NRa or CRbRc can be mentioned.
  • B is represented by the following Formula (5).
  • Ar 2 or Ar 4 represents a substituted or unsubstituted aryl group having 6 to 25 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 25 ring atoms.
  • Specific examples of the aryl group and heteroaryl group of Ar 2 and Ar 4 include the same examples as R 3 and R 4 .
  • Ar 3 is preferably represented by any one of the following formulas (6) to (8), more preferably (6) or (8), and particularly preferably (6).
  • X 1 , R 1 , R 2 , a and b have the same meanings as those used in the formula (4).
  • Ar 1 or Ar 4 is preferably represented by the following Formula (9).
  • X 2 represents O (oxygen atom), S (sulfur atom), NRa, or CRbRc.
  • Ra represents a group selected from the group consisting of an aryl group having 6 to 25 ring carbon atoms and a heteroaryl group having 5 to 25 ring atoms.
  • Rb and Rc each independently represents a group selected from the group consisting of an aryl group having 6 to 25 ring carbon atoms and a heteroaryl group having 5 to 25 ring atoms.
  • Specific examples of the aryl group and heteroaryl group represented by Ra, Rb and Rc include the same examples as R 3 and R 4 .
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 15 carbon atoms, a linear or branched alkenyl group having 2 to 15 carbon atoms, or a cyclohexane having 3 to 15 carbon atoms.
  • a plurality of adjacent R 1 and R 2 , and R 1 and R 2 may be bonded to each other to form a saturated or unsaturated divalent group that forms a ring.
  • Examples of the alkyl group, alkenyl group, cycloalkyl group, trialkylsilyl group, triarylsilyl group, alkylarylsilyl group, aryl group, heteroaryl group, and halogen atom represented by R 1 and R 2 include R 3 and Examples similar to R 4 are given.
  • R 3 and R 4 are bonded to each other.
  • Each a independently represents an integer of 0 to 3, preferably 0 to 2.
  • Each b independently represents an integer of 0 to 4, preferably 0 to 2.
  • Specific examples of the formula (9) include the following structures.
  • Ar 1 or Ar 4 is preferably represented by any one of the formulas (6) to (8).
  • formula (1) if A and B are the same, hole mobility can be expected to improve. If A and B are different, the symmetry is lost and crystallization of the material is suppressed. Therefore, it can be expected that the stability of the thin film is improved.
  • the formula (1) when the formula (4) and / or (9) is bonded at the 3-position, the hole mobility increases due to the expansion of the conjugation of the ⁇ electron system.
  • an interaction with an electron-accepting compound having high planarity represented by the following (A) and (B) is caused by a heterocycle having high planarity as in the formula (4) or (9). improves.
  • the aromatic amine derivative of the present invention can expand a singlet energy gap and a triplet energy gap when a hetero ring similar to a fluorene structure is directly bonded to a nitrogen atom, and emits light from a host material.
  • a layer hole transport layer
  • the emission efficiency decreases due to the movement of carriers from the light emitting layer, or the movement of singlet energy and triplet energy. Can be reduced.
  • the glass transition temperature (Tg) can be increased, and the stability of the organic thin film layer can be improved.
  • the singlet energy gap and triplet energy gap are further expanded by bonding the heterocycle with a nitrogen atom at a position that further reduces the conjugated system (for example, in the case of dibenzofuran, positions other than the 3-position).
  • the triplet energy gap can be 2.6 eV or more, which is more preferable.
  • any one of Ar 1 , Ar 2 and Ar 4 is preferably represented by the following Formula (10).
  • n is preferably 0 to 3, more preferably 0 to 1, and particularly preferably 0. Further, by making the bonding position of the benzene ring other than the para position, the conjugated system in the molecule can be reduced, and the singlet energy gap and the triplet energy gap can be further expanded. Specific examples of the substitution represented by formula (10) include, but are not limited to, the following.
  • any one of the Ar 1 , Ar 2 , and Ar 4 is represented by a phenyl group, a biphenyl group, or a metaterphenyl group.
  • Specific examples of the aromatic amine derivative represented by the formula (1) of the present invention are shown below, but are not limited to these exemplified compounds.
  • the present invention provides an organic EL device in which an organic thin film layer composed of a single layer or a plurality of layers including at least a light emitting layer is sandwiched between a cathode and an anode, and at least one layer of the organic thin film layer contains the aromatic amine derivative alone or
  • the organic EL element contained as a component of the mixture is provided.
  • the element structure of the organic EL element of the present invention will be described.
  • the aromatic amine derivative of the present invention preferably contains the aromatic amine derivative of the present invention in the hole transport layer and / or hole injection layer. Moreover, it is preferable that a layer containing an electron accepting compound is bonded to the hole transport layer and / or the hole injection layer. Further, the light-emitting layer containing the electron-accepting compound bonded to the layer containing the aromatic amine derivative of the present invention and containing the host material and the dopant material that emits light is the electron-accepting compound. In the case of bonding on the opposite surface to the layer containing, it is expected to lower the voltage and reduce the manufacturing cost by simplifying the element structure.
  • the electron-accepting compound is preferably a compound having a highly planar skeleton such as a compound represented by the following formula (A) or (B).
  • R 7 to R 12 are each independently a cyano group, —CONH 2 , carboxyl group, or —COOR 13 (R 13 is an alkyl group having 1 to 20 carbon atoms).
  • R 7 and R 8 , R 9 and R 10 , or R 11 and R 12 together represent a group represented by —CO—O—CO—.
  • Examples of the alkyl group for R 13 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • Ar 1 is a condensed ring having 6 to 24 ring carbon atoms or a heterocyclic ring having 6 to 24 ring atoms.
  • ar 1 and ar 2 may be the same or different from each other and are represented by the following formula (i) or (ii). ⁇ Wherein X 1 and X 2 may be the same or different from each other, and are any of the divalent groups shown in the following (a) to (g).
  • R 21 to R 24 may be the same as or different from each other, and each represents a hydrogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon atom having 1 to 20 carbon atoms).
  • Adjacent ones of R 1 to R 4 may be bonded to each other to form a ring.
  • Y 1 to Y 4 may be the same or different from each other, and are —N ⁇ , —CH ⁇ , or C (R 5 ) ⁇ , and R 5 is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • each group of R 1 to R 5 are as follows.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the aryl group include a phenyl group, a biphenyl group, a naphthyl group, a fluorophenyl group, and a trifluoromethylphenyl group.
  • heterocyclic group examples include residues such as pyridine, pyrazine, furan, imidazole, benzimidazole, and thiophene.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • fluoroalkyl group examples include a trifluoromethyl group, a pentafluoroethyl group, a perfluorocyclohexyl group, and a perfluoroadamantyl group.
  • alkoxy group and the fluoroalkoxy group examples include a methoxy group, an ethoxy group, and a trifluoromethoxy group.
  • aryloxy group examples include phenyloxy group, pentaphenyloxy group, 4-trifluorophenyloxy group and the like. Examples of these substituents include those similar to the halogen atom, cyano group, alkyl group, aryl group, fluoroalkyl group, or heterocyclic group mentioned above.
  • R 1 to R 4 that are adjacent to each other may be bonded to each other to form a ring.
  • the ring include a benzene ring, a naphthalene ring, a pyrazine ring, a pyridine ring, and a furan ring.
  • the organic EL element of this invention is produced on a translucent board
  • the translucent substrate referred to here is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • Anode of the organic EL device of the present invention has a function of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), tin oxide (NESA), indium-zinc oxide (IZO), gold, silver, platinum, copper and the like.
  • the anode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering. Thus, when light emission from the light emitting layer is taken out from the anode, it is preferable that the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the light emitting layer of the organic EL device has the following functions (1) to (3).
  • Injection function holes can be injected from the anode or hole injection layer when an electric field is applied, Function that can inject electrons from cathode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Luminescent function A function to provide a field for recombination of electrons and holes and connect it to light emission.
  • the transport ability represented by the mobility of holes and electrons may be large or small, it is preferable to move one of the charges.
  • the light emitting layer As a method for forming the light emitting layer, for example, a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state. Can be distinguished from the thin film (molecular accumulation film) formed by the LB method by the difference in the aggregated structure and the higher order structure and the functional difference resulting therefrom.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thinned by a spin coating method or the like.
  • a light emitting layer can be formed.
  • the aromatic amine derivative of the present invention may be used as a light emitting material or a doping material in a light emitting layer.
  • light emitting materials or doping materials include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, and fluorescein.
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 ring carbon atoms.
  • Ar ′ is a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms.
  • X is a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted ring group having 1 to 50 carbon atoms.
  • alkyl group a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 ring atoms, substituted or unsubstituted, An unsubstituted arylthio group having 5 to 50 ring atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, and a hydroxy group.
  • a, b and c are each an integer of 0 to 4.
  • n is an integer of 1 to 3. When n is 2 or more, the numbers in [] may be the same or different. )
  • R 1 to R 10 are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 ring atoms.
  • Ar and Ar ′ are each a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms.
  • L and L ′ are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
  • m is an integer from 0 to 2
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 ring carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms.
  • R 1 to R 10 are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 ring atoms.
  • Ar 1 , Ar 2 , R 9 and R 10 may each be plural, and adjacent ones may form a saturated or unsaturated cyclic structure.
  • groups that are symmetrical with respect to the XY axis shown on the anthracene do not bond to the 9th and 10th positions of the central anthracene.
  • R 1 to R 10 are each independently a hydrogen atom, alkyl group, cycloalkyl group, optionally substituted aryl group, alkoxyl group, aryloxy group, alkylamino group, alkenyl group, arylamino group or A heterocyclic group which may be substituted; a and b each represent an integer of 1 to 5, and when they are 2 or more, R 1 s or R 2 s may be the same or different from each other; R 1 or R 2 may be bonded to form a ring, and R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 9 and R 10 are stratified.
  • L 1 is a single bond, —O—, —S—, —N (R) — (where R is an alkyl group or an optionally substituted aryl group), Represents an alkylene group or an arylene group.)
  • R 11 to R 20 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group or an optionally substituted multicyclic group C, d, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 11 , R 12 , R 16 or R 17 are the same in each case But may be different, also R 11 together, R 12 together, R 16 s or R 17 s may be bonded to each other to form a ring, R 13 and R 14, R 18 and R 19 Gatagai And L 2 is a single bond, —O—, —S—, —N (R) — (R is an alkyl group or an optionally substituted aryl group), Represents an alkylene group or an arylene group.)
  • a 5 to A 8 are each independently a substituted or unsubstituted biphenylyl group or a substituted or unsubstituted naphthyl group.
  • R 21 to R 23 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 carbon atom
  • a fluorene compound represented by the following general formula (ix) is represented by the following general formula (ix).
  • R 1 and R 2 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, or a substituted amino group
  • R 1 and R 2 bonded to different fluorene groups may be the same or different, and R 1 and R 2 bonded to the same fluorene group are the same.
  • R 3 and R 4 may be a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic ring.
  • R 3 which binds to a different fluorene group, R 4 each other or different be the same, R 3 and R 4 bonded to the same fluorene group may be the same Is .
  • Ar 1 and Ar 2 optionally the sum total is more than two substituted or unsubstituted 3 or more substituted or unsubstituted fused polycyclic aromatic group or a benzene ring and a heterocyclic ring of the benzene ring
  • a condensed polycyclic heterocyclic group bonded to a fluorene group at carbon of Ar 1 , Ar 1 and Ar 2 may be the same or different, and n represents an integer of 1 to 10.
  • anthracene derivatives are preferable, monoanthracene derivatives are more preferable, and asymmetric anthracene is particularly preferable.
  • a phosphorescent compound can also be used as the dopant light-emitting material.
  • the phosphorescent compound a compound containing a carbazole ring in the host material is preferable.
  • the dopant is a compound that can emit light from triplet excitons and is not particularly limited as long as it emits light from triplet excitons, but at least one selected from the group consisting of Ir, Ru, Pd, Pt, Os, and Re.
  • a metal complex containing two metals is preferable, and a porphyrin metal complex or an orthometalated metal complex is preferable.
  • ligands that form orthometalated metal complexes.
  • Preferred ligands include 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, and 2- (2-thienyl) pyridine derivatives.
  • fluorinated compounds and trifluoromethyl groups are preferred as blue dopants.
  • the content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is 0.1 to 70% by mass, and preferably 1 to 30% by mass. . When the content of the phosphorescent compound is less than 0.1% by mass, the light emission is weak and the effect of the content is not sufficiently exhibited. When the content exceeds 70% by mass, a phenomenon called concentration quenching becomes prominent, and the device performance is remarkable. Decreases.
  • a host suitable for phosphorescence emission comprising a compound containing a carbazole ring is a compound having a function of causing the phosphorescence emission compound to emit light as a result of energy transfer from the excited state to the phosphorescence emission compound.
  • the host compound is not particularly limited as long as it is a compound capable of transferring exciton energy to the phosphorescent compound, and can be appropriately selected according to the purpose. You may have arbitrary heterocyclic rings other than a carbazole ring.
  • host compounds include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcones.
  • the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary. Further, the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If the thickness exceeds 50 nm, the driving voltage may increase.
  • the dopant material in this case is preferably a metal complex compound containing a metal selected from Ir, Pt, Os, Cu, Ru, Re, and Au, and is represented by the following formulas (21) to (29).
  • a metal complex compound having a partial structure or an interchangeable isomer thereof is preferable.
  • R 11 and R 12 are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an aryl group having 6 to 25 ring carbon atoms, or an aryl group having 5 to 25 ring atoms.
  • R 13 to R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • Z 2 represents an aryl ring having 6 to 25 ring carbon atoms or an atomic group forming a heteroaryl ring having 5 to 25 ring atoms
  • Z 3 represents a nitrogen-containing heteroaryl having 5 to 25 ring atoms.
  • m 1 and m 2 each independently represents an integer of 0 to 4.
  • n 1 represents an integer of 1 to 3.
  • R 11 to R 15 , Z 2 , Z 3 , m 1 , m 2 , and n 1 are the same as those used in the formulas (21) and (22). .
  • R 21 to R 25 are each independently a hydrogen atom, cyano group, nitro group, halogen atom, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted amino group, substituted Or an unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted alkylsilyl group having 1 to 20 carbon atoms, a substituted or unsubstituted acyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted carbon number 1 to 30 aromatic groups, and R 21 and R 22 , R 23 and R 24 , and R 24 and R 25 may be bonded to each other to form a ring structure.
  • M is a metal atom of iridium (Ir), rhodium (Rh), platinum (Pt) or palladium (Pd).
  • dopant materials include, for example, PQIr (iridium (III) bis (2-phenylquinolyl-N, C 2 ′ ) acetylacetonate), Ir (ppy) 3 (fac-tris (2-phenylpyridine) iridium).
  • PQIr iridium (III) bis (2-phenylquinolyl-N, C 2 ′ ) acetylacetonate
  • Ir (ppy) 3 fac-tris (2-phenylpyridine) iridium.
  • the following compounds may be mentioned.
  • the phosphorescent dopant preferably has a wavelength of maximum emission luminance of 470 nm to 700 nm. More preferably, they are 480 nm or more and 700 nm or less, Especially preferably, they are 500 nm or more and 650 nm or less.
  • the host material is preferably a compound having a substituted or unsubstituted polycyclic fused aromatic skeleton, and the polycyclic fused aromatic skeleton is substituted or unsubstituted, phenanthrene diyl, It is preferably selected from the group of chrysenediyl, fluoranthenediyl, triphenylenediyl.
  • the polycyclic fused aromatic skeleton is preferably a compound represented by any of the following formulas (12) to (15).
  • Ar 18 to Ar 22 represent a substituted or unsubstituted condensed ring structure having 4 to 10 ring carbon atoms.
  • the polycyclic fused aromatic skeleton of the compound having a polycyclic fused aromatic skeleton is preferably substituted with a group having phenanthrene, chrysene, fluoranthene, or triphenylene.
  • Examples of the compound represented by the formula (12) include substituted or unsubstituted phenanthrene and chrysene.
  • Examples of the compound represented by the formula (13) include substituted or unsubstituted acenaphthylene, acenaphthene, fluoranthene, and the like.
  • Examples of the compound represented by the formula (14) include substituted or unsubstituted benzofluoranthene.
  • Examples of the compound represented by the formula (15) include substituted or unsubstituted naphthalene.
  • the polycyclic fused aromatic skeleton is preferably a simple substance or a derivative of phenanthrene represented by the following formula (50).
  • Examples of the substituent of the phenanthrene derivative include alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl Group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, amino group, nitro group, silyl group, and siloxanyl group.
  • Examples of such phenanthrene derivatives include those represented by the following formula (50A).
  • each of R 1 to R 10 independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms Group, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms is a single or a plurality of combinations.
  • Specific examples of the phenanthrene derivative represented by the formula (50) include the following.
  • the polycyclic fused aromatic skeleton is preferably a simple substance or a derivative of chrysene represented by the following formula (51).
  • chrysene derivatives include those of the following formula (51A).
  • R 1 to R 12 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms Group, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms is a single or a plurality of combinations.
  • Specific examples of the chrysene derivative represented by the formula (51) include the following.
  • the polycyclic fused aromatic skeleton is preferably a simple substance or a derivative of a compound (benzo [c] phenanthrene) represented by the following formula (52).
  • R 1 to R 9 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms Group, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms is a single or a plurality of combinations.
  • Specific examples of the benzo [c] phenanthrene derivative represented by the formula (52) include the following.
  • the polycyclic fused aromatic skeleton is preferably a simple substance or a derivative of a compound (benzo [c] chrysene) represented by the following formula (53).
  • R 1 to R 11 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms Group, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms is a single or a plurality of combinations.
  • Specific examples of the benzo [c] chrysene derivative represented by the formula (53) include the following.
  • the polycyclic fused aromatic skeleton is preferably a simple substance or a derivative of a compound (dibenzo [c, g] phenanthrene) represented by the following formula (54).
  • Examples of derivatives of such compounds include the following.
  • the polycyclic fused aromatic skeleton is preferably a simple substance or a derivative of fluoranthene represented by the following formula (55).
  • Examples of such a fluoranthene derivative include those represented by the following formula (55A).
  • X 12 to X 21 each represents a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, or a substituted or unsubstituted aryl group.
  • the aryl group represents a carbocyclic aromatic group such as a phenyl group or a naphthyl group, for example, a heterocyclic aromatic group such as a furyl group, a thienyl group, or a pyridyl group.
  • X 12 to X 21 are preferably a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom), a linear, branched or cyclic alkyl group having 1 to 16 carbon atoms (for example, a methyl group, an ethyl group, Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl Group, 3,3-dimethylbutyl group, cyclohexyl group, n-heptyl group, cyclohexylmethyl group, n-octyl group, tert-octyl group, 2-ethyl
  • a hydrogen atom preferably a fluorine atom, a chlorine atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a carbocyclic aromatic group having 6 to 10 carbon atoms.
  • fluoranthene derivative represented by the formula (55) include the following.
  • substituted or unsubstituted benzofluoranthene examples include, for example, a simple substance or derivative of benzo [b] fluoranthene represented by the following formula (551), a simple substance of benzo [k] fluoranthene represented by the formula (552), or Derivatives.
  • X 1 to X 24 are a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, or substituted or unsubstituted aryl.
  • the aryl group represents a carbocyclic aromatic group such as a phenyl group or a naphthyl group, for example, a heterocyclic aromatic group such as a furyl group, a thienyl group, or a pyridyl group.
  • X 1 to X 24 are preferably a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom), a linear, branched or cyclic alkyl group having 1 to 16 carbon atoms (for example, a methyl group, an ethyl group, Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl Group, 3,3-dimethylbutyl group, cyclohexyl group, n-heptyl group, cyclohexylmethyl group, n-octyl group, tert-octyl group, 2-ethyl
  • a hydrogen atom preferably a fluorine atom, a chlorine atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a carbocyclic aromatic group having 6 to 10 carbon atoms.
  • Examples of the benzo [b] fluoranthene derivative represented by the formula (551) include the following.
  • Examples of the benzo [k] fluoranthene derivative represented by the formula (552) include the following.
  • the polycyclic fused aromatic skeleton is preferably a simple substance or a derivative of triphenylene represented by the following formula (56).
  • triphenylene derivative examples include those represented by the following formula (56A).
  • R 1 to R 6 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms Group, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms is a single or a plurality of combinations.
  • Specific examples of the triphenylene derivative represented by the formula (56) include the following.
  • the polycyclic fused aromatic skeleton is preferably a simple substance or a derivative of naphthalene.
  • a naphthalene derivative the thing of a following formula (57A) is mentioned, for example.
  • R 1 to R 8 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms Group, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms is a single or a plurality of combinations.
  • Specific examples of naphthalene derivatives include the following.
  • the polycyclic fused aromatic skeleton may contain a nitrogen atom, and for example, the following may be used.
  • the polycyclic fused aromatic skeleton is preferably a substituted or unsubstituted phenanthrene or chrysene.
  • phenanthrene or chrysene include those described above. If the polycyclic fused aromatic skeleton is a substituted or unsubstituted phenanthrene or chrysene, the difference between Eg (S) and Eg (T) is small, and the organic EL element can be reduced in voltage and extended in life. .
  • the electron injection / transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
  • the electron injecting / transporting layers it is a layer made of a material having particularly good adhesion to the cathode.
  • an electrode in this case, a cathode
  • the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several ⁇ m.
  • the electron mobility is preferably at least 10 ⁇ 5 cm 2 / Vs or more when an electric field of V / cm is applied.
  • 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), for example, tris (8-quinolinol) aluminum is injected. It can be used as a material.
  • Z 1 , Z 2 and Z 3 are each independently a nitrogen atom or a carbon atom.
  • R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 carbon atoms, an alkyl group having 1 to 20 carbon atoms, halogen, An alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms substituted with an atom.
  • n is an integer of 0 to 5, and when n is an integer of 2 or more, the plurality of R 1 may be the same or different from each other.
  • R 1 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 50 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 50 carbon atoms.
  • Ar 2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms substituted by a halogen atom, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted 6 to 50 carbon atoms.
  • Ar 1 or Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 50 carbon atoms or a substituted or unsubstituted hetero condensed ring group having 9 to 50 ring atoms.
  • Ar 3 is a substituted or unsubstituted arylene group having 6 to 50 carbon atoms or a substituted or unsubstituted heteroarylene group having 3 to 50 carbon atoms.
  • L 1 , L 2 and L 3 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 50 carbon atoms, a substituted or unsubstituted hetero condensed ring group having 9 to 50 ring atoms, or a substituted group. Or it is an unsubstituted fluorenylene group.
  • Specific examples of the aryl group, heteroaryl group and alkyl group represented by R 1 , R 2 , Ar 1 and Ar 2 include the same examples as R 3 and R 4 in the general formula (1). Is an example in which an oxygen atom is bonded to the alkyl group.
  • Examples of the arylene group represented by Ar 3 , L 1 , L 2, and L 3 include a divalent example of the aryl group, and examples of the hetero condensed ring group include a condensed ring group having a suitable number of carbon atoms in the hetero aryl group.
  • X is a condensed ring containing a nitrogen atom or a sulfur atom
  • Y is a single bond, alkyl chain, alkylene chain, cycloalkyl chain, aryl chain, heterocyclic chain, silyl chain, ether chain, or thioether chain.
  • q is a natural number of 2 or more.
  • the molecular weight of the compound represented by Formula (34) is 480 or more.
  • A is a substituent having a phenanthroline skeleton or a benzoquinoline skeleton.
  • B is a p-valent organic group having a structure represented by the following formula (35A). P is a natural number of 2 or more.
  • R 4 and R 5 are each independently an alkyl group or an aryl group (including an aryl group condensed to a phenyl group).
  • L and m are each independently a natural number from 0 to 5.
  • Z is at least one selected from the following formula (35B).
  • R 6 and R 7 may be the same or different and are each a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, Aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, ester group, carbamoyl group, amino group, silyl group, and a condensed ring formed between adjacent substituents Ar 4 represents an aryl group or a heteroaryl group.
  • the optional substituent is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, substituted or unsubstituted.
  • Aryloxy group having ⁇ 50, substituted or unsubstituted arylthio group having 6 to 50 ring carbon atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, amino group, halogen atom, cyano group, nitro group, A hydroxyl group, a carboxyl group, etc. are mentioned.
  • alkyl group having 1 to 10 carbon atoms a cycloalkyl group having 5 to 7 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms are preferable, an alkyl group having 1 to 6 carbon atoms, and a cyclohexane having 5 to 7 carbon atoms.
  • Alkyl groups are more preferred, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group. Is particularly preferred.
  • a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in the region for transporting electrons or the interface region between the cathode and the organic layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1 .95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV).
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs. .
  • alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element.
  • a reducing dopant having a work function of 2.9 eV or less a combination of these two or more alkali metals is also preferable.
  • a combination containing Cs for example, Cs and Na, Cs and K, Cs and Rb, A combination of Cs, Na and K is preferred.
  • Cs the reducing ability can be efficiently exhibited, and by adding to the electron injection region, the emission luminance and the lifetime of the organic EL element can be improved.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS, and CaSe
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • Electrode in order to inject electrons into the electron injecting / transporting layer or the light emitting layer, a material having a small work function (4 eV or less) metal, alloy, electrically conductive compound and a mixture thereof are used as electrode materials. Used. Specific examples of such electrode materials include sodium, sodium / potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, and rare earth metals. This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance with respect to the light emitted from the cathode is larger than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • Insulating layer Since an organic EL element applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leakage or short circuit. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, Examples thereof include germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and a mixture or a laminate thereof may be used.
  • anode, a light emitting layer, a hole injection / transport layer as required, and an electron injection / transport layer as necessary are formed by the materials and formation methods exemplified above, and a cathode is further formed.
  • an organic EL element can be produced.
  • an organic EL element can also be produced from the cathode to the anode in the reverse order.
  • an example of manufacturing an organic EL element having a structure in which an anode / a hole injection layer / a light emitting layer / an electron injection layer / a cathode are sequentially provided on a translucent substrate will be described.
  • a thin film made of an anode material is formed on a suitable light-transmitting substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a uniform film can be easily obtained and pinholes are hardly generated. From the point of view, it is preferable to form by vacuum deposition.
  • the deposition conditions vary depending on the compound used (the material of the hole injection layer), the crystal structure of the target hole injection layer, the recombination structure, etc.
  • the source temperature is preferably selected from the range of 50 to 450 ° C., the degree of vacuum of 10 ⁇ 7 to 10 ⁇ 3 Torr, the deposition rate of 0.01 to 50 nm / sec, the substrate temperature of ⁇ 50 to 300 ° C., and the film thickness of 5 nm to 5 ⁇ m.
  • the formation of the light emitting layer in which the light emitting layer is provided on the hole injection layer is also performed by thinning the organic light emitting material using a desired organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting.
  • a vacuum deposition method from the viewpoint that a homogeneous film is easily obtained and pinholes are hardly generated.
  • the light emitting layer is formed by vacuum vapor deposition, the vapor deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the hole injection layer.
  • an electron injection layer is provided on the light emitting layer.
  • an organic EL element can be obtained by laminating a cathode.
  • the cathode is made of metal, and vapor deposition or sputtering can be used.
  • vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
  • the organic EL element is preferably manufactured from the anode to the cathode consistently by a single vacuum.
  • each layer of the organic EL element of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is prepared by vacuum evaporation, molecular beam evaporation (MBE), a solution dipping method dissolved in a solvent, spin It can be formed by a known method such as a coating method, a casting method, a bar coating method, a roll coating method or the like.
  • the film thickness of each organic layer of the organic EL element of the present invention is not particularly limited. Generally, if the film thickness is too thin, defects such as pinholes are likely to occur.
  • the range of several nm to 1 ⁇ m is usually preferable.
  • a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to a negative polarity. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when alternating voltage is applied, uniform light emission is observed only when the anode has a positive polarity and the cathode has a negative polarity.
  • the waveform of the alternating current to be applied may be arbitrary.
  • the reaction solution was poured into 1 L of water, and the precipitated crystals were collected by filtration and washed with water and methanol.
  • the obtained crystals were dissolved by heating in 300 mL of tetrahydrofuran, treated with activated carbon and concentrated, and acetone was added to precipitate crystals. This was collected by filtration to obtain 15.1 g of white powder.
  • the powder was identified as Intermediate 14 by FD-MS analysis.
  • Example 1-1 production of organic EL element
  • a glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after washing is attached to the substrate holder of the vacuum deposition apparatus, and the electron-accepting compound (C-) is first covered so that the transparent electrode is covered on the surface where the transparent electrode line is formed. 1) was vapor-deposited to form a C-1 film having a thickness of 10 nm.
  • the aromatic amine derivative (H1) obtained in Synthesis Example 1 was vapor-deposited as a hole transport material to form a hole transport layer having a thickness of 70 nm. Further, the following compound EM1 was vapor-deposited to form a 40 nm-thick luminescent layer. At the same time, the following styrylamine derivative (D1) was deposited as a luminescent molecule so that the weight ratio of EM1 to D1 (EM1: D1) was 40: 2. On this film, the following organometallic complex (Alq) was formed to a thickness of 10 nm. This layer functions as an electron injection layer.
  • Li Li source: manufactured by Saesgetter Co.
  • Alq Alq
  • Alq Alq
  • Alq Alq
  • Metal Al was vapor-deposited on this Alq: Li film to form a metal cathode to form an organic EL device.
  • Table 1 shows the results obtained by observing the emission color of the obtained organic EL device and measuring the luminous intensity, drive voltage, and half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Examples 1-2 to 1-10 production of organic EL elements
  • An organic EL device was produced in the same manner as in Example 1-1 except that each aromatic amine derivative shown in Table 1 was used instead of the aromatic amine derivative (H1) as the hole transport material.
  • Table 1 shows the results obtained by observing the emission color of the obtained organic EL device and measuring the luminous intensity, drive voltage, and half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 1-11 (Production of organic EL device)
  • An organic EL device was produced in the same manner as in Example 1-1 except that the following arylamine derivative (D2) was used instead of the styrylamine derivative (D1).
  • Table 1 shows the results obtained by observing the emission color of the obtained organic EL device and measuring the luminous intensity, drive voltage, and half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 1-12 (Production of organic EL device)
  • An organic EL device was produced in the same manner as in Example 1-1 except that the following benzimidazole derivative (ET1) was used instead of the organometallic complex (Alq) as the electron transport material.
  • Table 1 shows the results obtained by observing the emission color of the obtained organic EL device and measuring the luminous intensity, drive voltage, and half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 1-13 production of organic EL device
  • An organic EL device was produced in the same manner as in Example 1-1 except that the following phenanthroline derivative (ET2) was used instead of the organometallic complex (Alq) as the electron transport material.
  • Table 1 shows the results obtained by observing the emission color of the obtained organic EL device and measuring the luminous intensity, drive voltage, and half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 1-14 (Production of organic EL device)
  • An organic EL device was produced in the same manner as in Example 1-1 except that the following phosphine oxide derivative (ET3) was used instead of the organometallic complex (Alq) as the electron transport material.
  • Table 1 shows the results obtained by observing the emission color of the obtained organic EL device and measuring the luminous intensity, drive voltage, and half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 1-1 an organic EL device was prepared in the same manner except that any of the following comparative compounds 1 to 3 was used as the hole transport material instead of the aromatic amine derivative (H1) as shown in Table 1. did.
  • Table 1 shows the results obtained by observing the emission color of the obtained organic EL device and measuring the luminous intensity, drive voltage, and half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 1-4 An organic EL device was produced in the same manner as in Example 1-11, except that the comparative compound 1 was used instead of the aromatic amine derivative (H1) as the hole transport material.
  • Table 1 shows the results obtained by observing the emission color of the obtained organic EL device and measuring the luminous intensity, drive voltage, and half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Comparative Example 1-5 An organic EL device was produced in the same manner as in Example 1-12 except that Comparative Compound 1 was used instead of the aromatic amine derivative (H1) as the hole transport material. Table 1 shows the results obtained by observing the emission color of the obtained organic EL device and measuring the luminous intensity, drive voltage, and half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • the organic EL device using the aromatic amine derivative of the present invention can obtain high luminous efficiency at a low driving voltage as compared with the organic EL device using a known aromatic amine derivative, and further the device lifetime. It can be seen that is extended.
  • Example 2-1 (Production of organic EL element)
  • a glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after washing is attached to the substrate holder of the vacuum deposition apparatus, and the electron-accepting compound (C--) is first covered so that the transparent electrode is covered on the surface where the transparent electrode line is formed. 2) was vapor-deposited to form a C-2 film having a thickness of 10 nm.
  • the aromatic amine derivative (H1) obtained in Synthesis Example 1 was vapor-deposited as a hole transport material to form a 70 nm-thick hole transport layer. Further, the compound EM1 was deposited to form a light emitting layer having a thickness of 40 nm. At the same time, the styrylamine derivative (D1) was deposited as a luminescent molecule so that the weight ratio of EM1 to D1 (EM1: D1) was 40: 2. On this film, the organometallic complex (Alq) was formed to a thickness of 10 nm. This layer functions as an electron injection layer.
  • Li Li source: manufactured by Saesgetter Co.
  • Alq Alq
  • Alq Alq
  • Metal Al was vapor-deposited on this Alq: Li film to form a metal cathode to form an organic EL device.
  • the light emission color of the obtained organic EL element was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 2.
  • Example 2-2 to 2-10 (Production of organic EL elements)
  • An organic EL device was produced in the same manner as in Example 2-1, except that each aromatic amine derivative shown in Table 2 was used instead of the aromatic amine derivative (H1) as the hole transport material.
  • the light emission color of the obtained organic EL element was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 2.
  • Example 2-11 production of organic EL device
  • An organic EL device was produced in the same manner as in Example 2-1, except that the arylamine derivative (D2) was used instead of the styrylamine derivative (D1).
  • the light emission color of the obtained organic EL element was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 2.
  • Example 2-12 (Production of organic EL device)
  • An organic EL device was produced in the same manner as in Example 2-1, except that the benzimidazole derivative (ET1) was used instead of the organometallic complex (Alq) as the electron transport material.
  • the light emission color of the obtained organic EL element was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 2.
  • Example 2-13 production of organic EL device
  • An organic EL device was produced in the same manner as in Example 2-1, except that the phenanthroline derivative (ET2) was used instead of the organometallic complex (Alq) as the electron transport material.
  • the light emission color of the obtained organic EL element was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 2.
  • Example 2-14 (Production of organic EL element)
  • An organic EL device was produced in the same manner as in Example 2-1, except that the phosphine oxide derivative (ET3) was used instead of the organometallic complex (Alq) as the electron transport material.
  • the light emission color of the obtained organic EL element was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 2.
  • Example 2-1 An organic EL device was prepared in the same manner as in Example 2-1, except that any one of the comparative compounds 1 to 3 was used as the hole transport material instead of the aromatic amine derivative (H1) as shown in Table 2. did.
  • the light emission color of the obtained organic EL element was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 2.
  • Example 2-4 An organic EL device was produced in the same manner as in Example 2-11 except that the comparative compound 1 was used instead of the aromatic amine derivative (H1) as the hole transport material. The light emission color of the obtained organic EL element was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 2.
  • Example 2-5 An organic EL device was produced in the same manner as in Example 2-12 except that the comparative compound 1 was used instead of the aromatic amine derivative (H1) as the hole transport material. The light emission color of the obtained organic EL element was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 2.
  • the organic EL device using the aromatic amine derivative of the present invention can obtain high luminous efficiency at a low driving voltage as compared with the organic EL device using a known aromatic amine derivative, and further the device lifetime. It can be seen that is extended.
  • Example 3-1 production of organic EL device
  • a glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and the following aromatic tertiary amine derivative is first formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed.
  • H232 was deposited, and an H232 film having a thickness of 60 nm was formed as a hole injection layer.
  • the aromatic amine derivative (H1) obtained in Synthesis Example 1 was vapor-deposited as a hole transport material to form a 20 nm-thick hole transport layer. Further, the compound EM1 was deposited to form a light emitting layer having a thickness of 40 nm. At the same time, the styrylamine derivative (D1) was deposited as a luminescent molecule so that the weight ratio of EM1 to D1 (EM1: D1) was 40: 2. On this film, the organometallic complex (Alq) was formed to a thickness of 10 nm. This layer functions as an electron injection layer.
  • Li Li source: manufactured by Saesgetter Co.
  • Alq Alq
  • Alq Alq
  • Alq Alq
  • Metal Al was vapor-deposited on this Alq: Li film to form a metal cathode to form an organic EL device.
  • Table 3 shows the results obtained by observing the emission color of the obtained organic EL element, and measuring the emission efficiency, drive voltage, and half-life of emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 3-2 to 3-10 (Production of organic EL elements)
  • An organic EL device was produced in the same manner as in Example 3-1, except that each aromatic amine derivative shown in Table 3 was used instead of the aromatic amine derivative (H1) as the hole transport material.
  • Table 3 shows the results obtained by observing the emission color of the obtained organic EL element, and measuring the emission efficiency, drive voltage, and half-life of emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 3-11 production of organic EL device
  • An organic EL device was produced in the same manner as in Example 3-1, except that the arylamine derivative (D2) was used instead of the styrylamine derivative (D1).
  • Table 3 shows the results obtained by observing the emission color of the obtained organic EL element, and measuring the emission efficiency, drive voltage, and half-life of emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 3-12 production of organic EL device
  • An organic EL device was produced in the same manner as in Example 3-1, except that the benzimidazole derivative (ET1) was used instead of the organometallic complex (Alq) as the electron transport material.
  • Table 3 shows the results obtained by observing the emission color of the obtained organic EL element, and measuring the emission efficiency, drive voltage, and half-life of emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 3-13 production of organic EL device
  • An organic EL device was produced in the same manner as in Example 3-1, except that the following compound H16 was used as shown in Table 3 instead of the aromatic amine derivative (H1) as the hole transport material.
  • Table 3 shows the results obtained by observing the emission color of the obtained organic EL element, and measuring the emission efficiency, drive voltage, and half-life of emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 3-3 An organic EL device was prepared in the same manner as in Example 3-1, except that any one of the comparative compounds 1 to 3 was used as the hole transport material instead of the aromatic amine derivative (H1) as shown in Table 3. did.
  • Table 3 shows the results obtained by observing the emission color of the obtained organic EL element, and measuring the emission efficiency, drive voltage, and half-life of emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Comparative Example 3-4 An organic EL device was produced in the same manner as in Example 3-11 except that Comparative Compound 1 was used instead of the aromatic amine derivative (H1) as the hole transport material.
  • Table 3 shows the results obtained by observing the emission color of the obtained organic EL element, and measuring the emission efficiency, drive voltage, and half-life of emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 3-5 An organic EL device was produced in the same manner as in Example 3-12 except that the comparative compound 1 was used instead of the aromatic amine derivative (H1) as the hole transport material.
  • Table 3 shows the results obtained by observing the emission color of the obtained organic EL element, and measuring the emission efficiency, drive voltage, and half-life of emission at an initial luminance of 5000 cd / m 2 , room temperature and DC constant current drive.
  • Example 4-1 (Production of organic EL element)
  • a glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • the cleaned glass substrate with the transparent electrode line is attached to a substrate holder of a vacuum deposition apparatus, and the electron-accepting compound (C--) is first covered on the surface on which the transparent electrode line is formed so as to cover the transparent electrode. 1) was deposited to form a C-1 film having a thickness of 5 nm.
  • the following aromatic amine derivative (X1) was vapor-deposited as a first hole transport material to form a first hole transport layer having a thickness of 50 nm.
  • the aromatic amine derivative (H1) obtained in Synthesis Example 1 is deposited as a second hole transport material, and a second hole transport layer having a thickness of 60 nm is formed.
  • a film was formed.
  • the following compound (EM2) was vapor-deposited on the second hole transport layer to form a light emitting layer having a thickness of 45 nm.
  • the following compound (D3) was co-deposited as a phosphorescent material.
  • the concentration of Compound D1 was 7.5% by mass.
  • This co-deposited film functions as a light emitting layer.
  • the following compound (ET4) was formed to a thickness of 30 nm.
  • This ET1 film functions as an electron transport layer.
  • LiF was used as an electron injecting electrode (cathode), and the film thickness was 1 nm at a film forming rate of 0.1 angstrom / min.
  • Metal Al was vapor-deposited on this LiF film, and a metal cathode was formed with a film thickness of 80 nm to produce an organic EL device.
  • Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • Eg (T) of the aromatic amine derivative (H1) was measured as shown below.
  • Eg (T) (triplet energy gap): Measurement was based on the phosphorescence emission spectrum. The material was dissolved in an EPA solvent (volume ratio of diethyl ether: isopentane: ethanol 5: 5: 2) at 10 ⁇ mol / L to obtain a sample for phosphorescence measurement. This sample for phosphorescence measurement was put in a quartz cell, cooled to 77K, irradiated with excitation light, and the wavelength of the emitted phosphorescence was measured.
  • a tangent line was drawn with respect to the rise of the phosphorescence spectrum on the short wavelength side, and a value obtained by converting the wavelength value at the intersection of the tangent line and the base line into energy was defined as an excited triplet energy gap Eg (T).
  • Eg excited triplet energy gap
  • F-4500 manufactured by Hitachi
  • Example 4-1 the Tg of the aromatic amine derivative (H1) was measured as shown below. Tg used was Perkin Elmer DSC “Pyris1”, and the value of the second heating under the following measurement conditions was used. [Measurement condition] (I) Heating from 30 ° C.
  • Example 4-1 an organic EL device was prepared in the same manner as in Example 4-1, except that the aromatic amine derivative shown in Table 4 was used instead of the aromatic amine derivative (H1) as the second hole transport material. An element was produced. Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 4-5 (Production of organic EL element)
  • An organic EL device was produced in the same manner as in Example 4-1, except that the phenanthroline derivative (ET2) was used instead of (ET4) as the electron transport material.
  • Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 4-6 (Production of organic EL element)
  • An organic EL device was produced in the same manner as in Example 4-1, except that the phosphine oxide derivative (ET3) was used instead of (ET4) as the electron transport material.
  • Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 4-7 (Production of organic EL element)
  • organic EL as in Example 4-1 except that the following aromatic amine derivative (X2) was used instead of the aromatic amine derivative (X1) as the first hole transport material.
  • An element was produced.
  • Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 4-7 organic EL was conducted in the same manner as in Example 4-7, except that the aromatic amine derivative shown in Table 4 was used instead of the aromatic amine derivative (H1) as the second hole transport material. An element was produced.
  • Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 4-11 (Production of organic EL device)
  • organic EL was obtained in the same manner as in Example 4-5, except that the aromatic amine derivative (X2) was used instead of the aromatic amine derivative (X1) as the first hole transport material.
  • An element was produced.
  • Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 4-12 (Production of organic EL element)
  • organic EL was obtained in the same manner as in Example 4-6, except that the aromatic amine derivative (X2) was used instead of the aromatic amine derivative (X1) as the first hole transport material.
  • An element was produced.
  • Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 4-1 an organic EL device was prepared in the same manner as in Example 4-1, except that the aromatic amine derivative shown in Table 4 was used instead of the aromatic amine derivative (H1) as the second hole transport material. An element was produced.
  • Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 4-7 organic EL was conducted in the same manner as in Example 4-7, except that the aromatic amine derivative shown in Table 4 was used instead of the aromatic amine derivative (H1) as the second hole transport material. An element was produced.
  • Table 4 shows the results of measuring the light emission efficiency of the obtained organic EL device at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving.
  • the organic EL device using the aromatic amine derivative of the present invention has high luminous efficiency and is not easily deteriorated even when used for a long time and has a long life. For this reason, it is useful as a light source such as a flat light emitter of a wall-mounted television and a backlight of a display.

Abstract

 ジベンゾフラン、ジベンゾチオフェン、置換カルバゾール、置換フルオレンからなる末端置換基が窒素原子を介して特定構造の中心骨格に結合した芳香族アミン誘導体、並びに陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、前記芳香族アミン誘導体を単独又は混合物の成分として含有する有機エレクトロルミネッセンス素子であり、寿命が長く、高発光効率な有機エレクトロルミネッセンス素子及びそれを実現する芳香族アミン誘導体を提供する。

Description

芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
 本発明は、芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子に関し、特に、寿命が長く、高発光効率の有機エレクトロルミネッセンス素子及びそれを実現する芳香族アミン誘導体に関するものである。
 有機EL素子は、電界を印加することより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC.W.Tangらによる積層型素子による低電圧駆動有機EL素子の報告(C.W. Tang, S.A. Vanslyke, アプライドフィジックスレターズ(Applied Physics Letters),51巻、913頁、1987年等)がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。Tangらは、トリス(8-キノリノラト)アルミニウムを発光層に、トリフェニルジアミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。この例のように有機EL素子の素子構造としては、正孔輸送(注入)層、電子輸送発光層の2層型、又は正孔輸送(注入)層、発光層、電子輸送(注入)層の3層型等がよく知られている。こうした積層型構造素子では注入された正孔と電子の再結合効率を高めるため、素子構造や形成方法の工夫がなされている。
 通常、高温環境下で有機EL素子を駆動させたり、保管すると、発光色の変化、発光効率の低下、駆動電圧の上昇、発光寿命の短時間化等の悪影響が生じる。
 この様な悪影響を防ぐために、ジベンゾフラン骨格を有する芳香族アミン誘導体が提案されている。ジアミン化合物の中心骨格にジベンゾフランを有する化合物としては、特許文献1~3が報告されており、一方、モノアミンにアリール基を介してジベンゾフランを有する化合物としては、特許文献4~7が報告されている。しかしながら、これらの有機EL素子としての性能は十分ではない。
 また、N-カルバゾールがアリール基を介してアミンに結合したアミン化合物の報告は多数有り、その一例としては特許文献8~10があるが、有機EL素子としての性能は十分ではない。
 さらに、3-カルバゾールが直接アミンに結合したアミン化合物の報告としては、特許文献11~12があるが、有機EL素子としての性能は十分ではない。また3-カルバゾールがアリール基を介してアミンに結合したアミン化合物の報告としては、特許文献13~14があるが、有機EL素子としての性能は十分ではない。
 以上のように、高効率、長寿命の有機EL素子の報告はあるものの、十分な性能ではなく、より優れた性能を有する有機EL素子の開発が強く望まれていた。
特開2005-112765号公報 特開平11-111460号公報 WO2006/122630号公報 WO2006/128800号公報 特開2006-151844号公報 特開2008-021687号公報 WO2007/125714号公報 米国特許第6,242,115号明細書 特開2007-284431号公報 特開2003-031371号公報 特開2007-318101号公報 特開2006-151979号公報 特開2005-290000号公報 WO2008/062636号公報
 本発明は、前記の課題を解決するためになされたもので、寿命が長く、高発光効率な有機EL素子及びそれを実現する芳香族アミン誘導体を提供することを目的とするものである。
 本発明者等は、前記目的を達成するために、鋭意研究を重ねた結果、下記式(1)で表される芳香族アミン誘導体を有機EL素子用材料として用いることにより、前記の目的を達成することを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記式(1)で表される芳香族アミン誘導体を提供するものである。
   A-L-B   (1)
[式(1)において、Lは、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000024
(式(2)において、nは0~3の整数を表す。
 R3及びR4は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。
 隣接、又は近接する複数のR3同士、R4同士は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
 隣接するR3とR4は互いに結合して、Lが置換もしくは無置換のフルオレニレン基を形成してもよい。
 c、dはそれぞれ独立に0~4の整数を表す。)
 式(1)において、Aは、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000025
{式(3)において、Ar1は、置換もしくは無置換の環形成炭素数6~25のアリール基、又は置換もしくは無置換の環形成原子数5~25のヘテロアリール基を表し、Ar3は、下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000026
(式(4)において、X1は、O(酸素原子)、又はS(硫黄原子)、NRa、又はCRbRcを表す。Raは、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。Rb又はRcは、それぞれ独立に、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。
 R1及びR2は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。隣接した複数のR1及びR2同士、並びにR1とR2は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
 aはそれぞれ独立に0~3の整数を表す。
 bはそれぞれ独立に0~4の整数を表す。)}
 式(1)において、Bは、下記式(5)で表される。
Figure JPOXMLDOC01-appb-C000027
(式(5)において、Ar2又はAr4は、置換もしくは無置換の環形成炭素数6~25のアリール基、又は置換もしくは無置換の環形成原子数5~25のヘテロアリール基を表す。)]
 また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも一層が、前記芳香族アミン誘導体を単独又は混合物の成分として含有する有機EL素子を提供するものである。
 本発明の芳香族アミン誘導体を用いた有機EL素子は、発光効率が高く、長時間使用しても劣化しづらく寿命が長い。
 本発明の下記式(1)で表される芳香族アミン誘導体を提供するものである。
   A-L-B   (1)
 式(1)において、Lは、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000028
 式(2)において、nは0~3の整数を表し、0~1が好ましい。
 R3及びR4は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。
 隣接、又は近接する複数のR3同士、R4同士は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
 隣接するR3とR4は互いに結合して、Lが置換もしくは無置換のフルオレニレン基を形成してもよい。
 c、dは、それぞれ独立に、0~4の整数を表し、0~2が好ましい。
 R3及びR4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、2-フェニルイソプロピル基、トリクロロメチル基、トリフルオロメチル基、ベンジル基、α-フェノキシベンジル基、α,α-ジメチルベンジル基、α,α-メチルフェニルベンジル基、α,α-ジトリフルオロメチルベンジル基、トリフェニルメチル基、α-ベンジルオキシベンジル基等が挙げられる。
 R3及びR4のアルケニル基としては、例えば、ビニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタンジエニル基、1-メチルビニル基、スチリル基、2,2-ジフェニルビニル基、1,2-ジフェニルビニル基等が挙げられる。
 R3及びR4のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基、シクロノニル基、ビシクロヘプチル基、ビシクロオクチル基、トリシクロヘプチル基、アダマンチル基等が挙げられ、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロヘプチル基、ビシクロオクチル基、アダマンチル基が好ましい。
 R3及びR4のトリアルキルシリル基のアルキル基としては、前記アルキル基と同様の例が挙げられる。
 R3及びR4のアリール基としては、例えば、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-エチルフェニル基、ビフェニル基、4-メチルビフェニル基、4-エチルビフェニル基、4-シクロヘキシルビフェニル基、ターフェニル基、3,5-ジクロロフェニル基、ナフチル基、5-メチルナフチル基、アントリル基、ピレニル基、クリセニル基、フルオランテニル基、ペリレニル基等が挙げられる。
 R3及びR4のトリアリールシリル基のアリール基としては、前記アリール基と同様の例が挙げられる。
 R3及びR4のアルキルアリールシリル基としては、前記アルキル基、アリール基と同様の例が挙げられる。
 R3及びR4のヘテロアリール基としては、例えば、イミダゾール、ベンゾイミダゾール、ピロール、フラン、チオフェン、オキサジアゾリン、インドリン、カルバゾール、ピリジン、キノリン、イソキノリン、ベンゾキノン、ピラロジン、イミダゾリジン、ピペリジン等の残基が挙げられる。
 R3及びR4のハロゲン原子としては、フッ素、塩素、臭素及びヨウ素が挙げられる。
 また、隣接、又は近接する複数のR3同士、R4同士、あるいはR3とR4は互いに結合して環を形成する飽和もしくは不飽和の2価の基としては、例えば、フルオレニレン基、9,9-ジメチルフルオレニレン基、フェナントレニレン基等が挙げられる。
 Lの具体例としては、下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000029
 式(1)において、Aは、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000030
 式(3)において、Ar1は、置換もしくは無置換の環形成炭素数6~25のアリール基、又は置換もしくは無置換の環形成原子数5~25のヘテロアリール基を表し、Ar3は、下記式(4)で表される。
 Ar1のアリール基、ヘテロアリール基の具体例としては、前記R3、R4と同様の例が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 式(4)において、X1は、O(酸素原子)、又はS(硫黄原子)、NRa、又はCRbRcを表す。Raは、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。Rb又はRcは、それぞれ独立に、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。
 Ra、Rb及びRcの示す、アリール基、ヘテロアリール基の例としては、前記R3及びR4と同様の例が挙げられる。
 R1及びR2は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。隣接した複数のR1及びR2同士、並びにR1とR2は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
 R1及びR2の示す、アルキル基、アルケニル基、シクロアルキル基、トリアルキルシリル基、トリアリールシリル基、アルキルアリールシリル基、アリール基、ヘテロアリール基、ハロゲン原子の例としては、R3及びR4と同様の例が挙げられる。
 また、隣接した複数のR1及びR2同士、並びにR1とR2は互いに結合して環を形成する飽和もしくは不飽和の2価の基としては、R3同士、R4同士が互いに結合して環を形成する飽和もしくは不飽和の2価の基と同様の例が挙げられる。
 aは、それぞれ独立に、0~3の整数を表し、0~2が好ましい。
 bは、それぞれ独立に、0~4の整数を表し、0~2が好ましい。
  式(4)の具体例としては、下記構造が挙げられる。また下記構造において、S又はOを、前記NRa又はCRbRcに変えた構造が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 式(1)において、Bは、下記式(5)で表される。
Figure JPOXMLDOC01-appb-C000033
 式(5)において、Ar2又はAr4は、置換もしくは無置換の環形成炭素数6~25のアリール基、又は置換もしくは無置換の環形成原子数5~25のヘテロアリール基を表す。
 Ar2及びAr4のアリール基、ヘテロアリール基の具体例としては、前記R3、R4と同様の例が挙げられる。
 式(1)において、前記Ar3は、下記式(6)~(8)のいずれかで表されると好ましく、(6)又は(8)がさらに好ましく、(6)が特に好ましい。
Figure JPOXMLDOC01-appb-C000034
(式(6)~(8)において、X1、R1、R2、a、bは、式(4)において用いられたものと同義である。)
 また、式(1)において、前記Ar1又はAr4が下記式(9)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000035
 式(9)において、X2は、O(酸素原子)、S(硫黄原子)、NRa、又はCRbRcを表す。Raは、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。Rb又はRcは、それぞれ独立に、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。
 Ra、Rb及びRcの示す、アリール基、ヘテロアリール基の具体例としては、前記R3、R4と同様の例が挙げられる。
 R1及びR2は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。隣接した複数のR1及びR2同士、並びにR1とR2は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
 R1及びR2の示す、アルキル基、アルケニル基、シクロアルキル基、トリアルキルシリル基、トリアリールシリル基、アルキルアリールシリル基、アリール基、ヘテロアリール基、ハロゲン原子の例としては、R3及びR4と同様の例が挙げられる。
 また、隣接した複数のR1及びR2同士、並びにR1とR2は互いに結合して環を形成する飽和もしくは不飽和の2価の基としては、R3同士、R4同士が互いに結合して環を形成する飽和もしくは不飽和の2価の基と同様の例が挙げられる。
 aはそれぞれ独立に0~3の整数を表し、0~2が好ましい。
 bはそれぞれ独立に0~4の整数を表し、0~2が好ましい。
  式(9)の具体例としては、下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000036
 Ar1又はAr4は、前記式(6)~(8)のいずれかで表されることが好ましい。
 式(1)において、AとBとが同一であると、正孔移動度が向上することが期待でき、AとBとが異なっていると、対称性が崩れることにより材料の結晶化が抑制され、薄膜の安定性が向上することが期待できる。
 式(1)において、式(4)及び/又は(9)が3位で結合する場合、π電子系の共役が拡大することにより正孔移動度が増加する。
 式(1)は、式(4)又は(9)のような平面性の高いヘテロ環により、下記(A)及び(B)に代表される平面性の高い電子受容性化合物との相互作用が向上する。
 また、式(4)又は(9)のような平面性の高いヘテロ環が窒素原子に直結することにより、電子密度が上昇することでイオン化ポテンシャル値が小さくなり、正孔輸送材としてだけではなく、正孔注入材としても用いることができる。
 さらに、式(1)は、ジアミン構造を有することから、ホッピングサイトが増加することにより、正孔注入量、正孔移動度が向上する。
本発明の芳香族アミン誘導体は、フルオレン構造類似のヘテロ環が窒素原子と直接結合することにより、1重項エネルギーギャップ、および3重項エネルギーギャップを拡大させることができ、ホスト材料と発光を示すドーパント材料とを含有する発光層に隣接する層(正孔輸送層)として用いた場合に発光層からのキャリアの移動、あるいは1重項エネルギー、および3重項エネルギーの移動による発光効率の低下を低減することができる。さらに、該ヘテロ環を有することにより、ガラス転移温度(Tg)を大きくすることができ、有機薄膜層の安定性を向上させることができる。
 特に、前記ヘテロ環が共役系をより縮小させる位置で窒素原子と結合することにより(例えばジベンゾフランの場合、3位以外の位置)、1重項エネルギーギャップ、および3重項エネルギーギャップをさらに拡大させることができ、例えば3重項のエネルギーギャップを2.6eV以上とすることができるため、より好ましい。
 また、式(1)において、前記Ar1、Ar2、Ar4のいずれかが下記式(10)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000037
(式(10)において、R3、R4、c、d、nは、式(2)において用いられたものと同義である。)1重項エネルギーギャップ、および3重項エネルギーギャップを拡大させる観点から、nは好ましくは0~3であり、より好ましくは0~1であり、特に好ましくは0である。また、ベンゼン環の結合位置をパラ位以外とすることで分子内の共役系を縮小させることができ、1重項エネルギーギャップ、および3重項エネルギーギャップをより拡大させることもできる。
 式(10)で表される置換の具体例としては以下が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000038
 また、前記Ar1、Ar2、Ar4のいずれかがフェニル基、ビフェニル基、メタターフェニル基で表されると好ましい。
 本発明の式(1)で表される芳香族アミン誘導体の具体例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
 本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも一層が、前記芳香族アミン誘導体を単独又は混合物の成分として含有する有機EL素子を提供するものである。
 以下、本発明の有機EL素子の素子構成について説明する。
(1)有機EL素子の構成
 本発明の有機EL素子の代表的な素子構成としては、
(1) 陽極/発光層/陰極
(2) 陽極/正孔注入層/発光層/陰極
(3) 陽極/発光層/電子注入層/陰極
(4) 陽極/正孔注入層/発光層/電子注入層/陰極
(5) 陽極/有機半導体層/発光層/陰極
(6) 陽極/有機半導体層/電子障壁層/発光層/陰極
(7) 陽極/有機半導体層/発光層/付着改善層/陰極
(8) 陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(9) 陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子(輸送)注入層/陰極
などの構造を挙げることができる。
 これらの中で通常(8)の構成が好ましく用いられるが、これらに限定されるものではない。
 本発明の芳香族アミン誘導体は、前記正孔輸送層及び/又は正孔注入層に、本発明の芳香族アミン誘導体を含有することが好ましい。
 また、前記正孔輸送層及び/又は正孔注入層に、電子受容性化合物を含有する層が接合することが好ましい。
 さらに、本発明の芳香族アミン誘導体を含有する層に、電子受容性化合物を含有する層が接合し、かつ、ホスト材料と発光を示すドーパント材料とを含有する発光層が、前記電子受容性化合物を含有する層との反対面において接合した場合、素子構成を単純化することで、低電圧化及び製造コストの低減が期待される。
 前記電子受容性化合物としては下記式(A)又は(B)で表される化合物等の平面性の高い骨格を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000062
(上記式(A)中、R7~R12は、それぞれ独立にシアノ基、-CONH2、カルボキシル基、もしくは-COOR13(R13は、炭素数1~20のアルキル基である。)を表すか、又は、R7及びR8、R9及びR10、もしくはR11及びR12が一緒になって-CO-O-CO-で示される基を表す。)
 R13のアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000063
[上記式(B)中、Ar1は、環形成炭素数6~24の縮合環、又は環形成原子数6~24の複素環である。ar1及びar2は、それぞれ互いに同一でも異なっていてもよく、下記式(i)もしくは(ii)である。
Figure JPOXMLDOC01-appb-C000064
{式中、X1及びX2は互いに同一でも異なっていてもよく、下記(a)~(g)に示す二価の基のいずれかである。
Figure JPOXMLDOC01-appb-C000065
(式中、R21~R24は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数3~50の複素環基であり、R22とR23は互いに結合して環を形成してもよい。)}
 式(B)中のR1~R4は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50の炭素数6~50のアリール基、置換もしくは無置換の環形成原子数3~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数6~50の炭素数6~50のアリールオキシ基、又はシアノ基である。R1~R4のうち互いに隣接するものは互いに結合して環を形成してもよい。Y1~Y4は互いに同一でも異なっていてもよく、-N=、-CH=、又はC(R5)=であり、R5は、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の環形成原子数3~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数6~50の炭素数6~50のアリールオキシ基、又はシアノ基である。]
 R1~R5の各基の例としては以下の通りである。
 アルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アリール基としては、フェニル基、ビフェニル基、ナフチル基、フルオロフェニル基、トリフルオロメチルフェニル基等が挙げられる。
 複素環基としては、ピリジン、ピラジン、フラン、イミダゾール、ベンズイミダゾール、チオフェン等の残基が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が挙げられる。
 フルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロシクロヘキシル基、パーフルオロアダマンチル基等が挙げられる。
 アルコキシ基及びフルオロアルコキシ基としては、メトキシ基、エトキシ基、トリフルオロメトキシ基等が挙げられる。
 アリールオキシ基の例としては、フェニルオキシ基、ペンタフェニルオキシ基、4-トリフロフェニルオキシ基等が挙げられる。
 また、これらの置換基の例としては、上記で挙げたハロゲン原子、シアノ基、アルキル基、アリール基、フルオロアルキル基、又は複素環基と同様なものが挙げられる。
 R1~R4のうち互いに隣接するものは、互いに結合して環を形成していてもよい。環の例としては、ベンゼン環、ナフタレン環、ピラジン環、ピリジン環、フラン環等が挙げられる。
(2)透光性基板
 本発明の有機EL素子は、透光性の基板上に作製する。ここでいう透光性基板は有機EL素子を支持する基板であり、400~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。
 具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
(3)陽極
 本発明の有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する機能を有するものであり、4.5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、インジウム-亜鉛酸化物(IZO)、金、銀、白金、銅等が挙げられる。
 陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。
 このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選択される。
(4)発光層
 有機EL素子の発光層は以下(1) ~(3) の機能を併せ持つものである。
(1) 注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、
   陰極又は電子注入層より電子を注入することができる機能
(2) 輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能
(3) 発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能
 ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、また、正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電荷を移動することが好ましい。
 この発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
 また、特開昭57-51781号公報に開示されているように、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 本発明の芳香族アミン誘導体を発光材料又はドーピング材料として発光層に用いても良いが、他の発光材料又はドーピング材料としては、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるものではない。
 本発明の有機EL素子の発光層に使用できるホスト材料としては、下記(i)~(ix)で表される化合物が好ましい。
下記一般式(i)で表される非対称アントラセン。
Figure JPOXMLDOC01-appb-C000066
(式中、Arは置換もしくは無置換の環形成炭素数10~50の縮合芳香族基である。
 Ar’は置換もしくは無置換の環形成炭素数6~50の芳香族基である。
 Xは、置換もしくは無置換の環形成炭素数6~50の芳香族基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数6~50のアラルキル基、置換もしくは無置換の環形成原子数5~50のアリールオキシ基、置換もしくは無置換の環形成原子数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基である。
 a、b及びcは、それぞれ0~4の整数である。
 nは1~3の整数である。また、nが2以上の場合は、[ ]内は、同じでも異なっていてもよい。)
 下記一般式(ii)で表される非対称モノアントラセン誘導体。
Figure JPOXMLDOC01-appb-C000067
(式中、Ar1及びAr2は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族環基であり、m及びnは、それぞれ1~4の整数である。ただし、m=n=1でかつAr1とAr2のベンゼン環への結合位置が左右対称型の場合には、Ar1とAr2は同一ではなく、m又はnが2~4の整数の場合にはmとnは異なる整数である。
 R1~R10は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50の芳香族環基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数6~50のアラルキル基、置換もしくは無置換の環形成原子数5~50のアリールオキシ基、置換もしくは無置換の環形成原子数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基である。)
 下記一般式(iii) で表される非対称ピレン誘導体。
Figure JPOXMLDOC01-appb-C000068
[式中、Ar及びAr’は、それぞれ置換もしくは無置換の環形成炭素数6~50の芳香族基である。
 L及びL’は、それぞれ置換もしくは無置換のフェニレン基、置換もしくは無置換のナフタレニレン基、置換もしくは無置換のフルオレニレン基又は置換もしくは無置換のジベンゾシロリレン基である。
 mは0~2の整数、nは1~4の整数、sは0~2の整数、tは0~4の整数である。
 また、L又はArは、ピレンの1~5位のいずれかに結合し、L’又はAr’は、ピレンの6~10位のいずれかに結合する。
 ただし、n+tが偶数の時、Ar,Ar’,L,L’は下記(1) 又は(2) を満たす。
(1) Ar≠Ar’及び/又はL≠L’(ここで≠は、異なる構造の基であることを示す。)
(2) Ar=Ar’かつL=L’の時
 (2-1) m≠s及び/又はn≠t、又は
 (2-2) m=sかつn=tの時、
   (2-2-1) L及びL’、又はピレンが、それぞれAr及びAr’上の異なる結合位置に結合しているか、(2-2-2) L及びL’、又はピレンが、Ar及びAr’上の同じ結合位置で結合している場合、L及びL’又はAr及びAr’のピレンにおける置換位置が1位と6位、又は2位と7位である場合はない。]
 下記一般式(iv)で表される非対称アントラセン誘導体。
Figure JPOXMLDOC01-appb-C000069
(式中、A1及びA2は、それぞれ独立に、置換もしくは無置換の環形成炭素数10~20の縮合芳香族環基である。
 Ar1及びAr2は、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50の芳香族環基である。
 R1~R10は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50の芳香族環基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数6~50のアラルキル基、置換もしくは無置換の環形成原子数5~50のアリールオキシ基、置換もしくは無置換の環形成原子数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基又はヒドロキシ基である。
 Ar1、Ar2、R9及びR10は、それぞれ複数であってもよく、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していてもよい。
 ただし、一般式(1)において、中心のアントラセンの9位及び10位に、該アントラセン上に示すX-Y軸に対して対称型となる基が結合する場合はない。)
 下記一般式(v)で表されるアントラセン誘導体。
Figure JPOXMLDOC01-appb-C000070
(式中、R1~R10は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換しても良いアリール基,アルコキシル基,アリールオキシ基,アルキルアミノ基,アルケニル基,アリールアミノ基又は置換しても良い複素環式基を示し、a及びbは、それぞれ1~5の整数を示し、それらが2以上の場合、R1同士又はR2同士は、それぞれにおいて、同一でも異なっていてもよく、またR1同士又はR2同士が結合して環を形成していてもよいし、R3とR4,R5とR6,R7とR8,R9とR10がたがいに結合して環を形成していてもよい。L1は単結合、-O-,-S-,-N(R)-(Rはアルキル基又は置換しても良いアリール基である)、アルキレン基又はアリーレン基を示す。)
 下記一般式(vi)で表されるアントラセン誘導体。
Figure JPOXMLDOC01-appb-C000071
(式中、R11~R20は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,アリール基,アルコキシル基,アリールオキシ基,アルキルアミノ基,アリールアミノ基又は置換しても良い複数環式基を示し、c,d,e及びfは、それぞれ1~5の整数を示し、それらが2以上の場合、R11同士,R12同士,R16同士又はR17同士は、それぞれにおいて、同一でも異なっていてもよく、またR11同士,R12同士,R16同士又はR17同士が結合して環を形成していてもよいし、R13とR14,R18とR19がたがいに結合して環を形成していてもよい。L2は単結合、-O-,-S-,-N(R)-(Rはアルキル基又は置換しても良いアリール基である)、アルキレン基又はアリーレン基を示す。)
 下記一般式(vii) で表されるスピロフルオレン誘導体。
Figure JPOXMLDOC01-appb-C000072
(式中、A5~A8は、それぞれ独立に、置換もしくは無置換のビフェニリル基又は置換もしくは無置換のナフチル基である。)
 下記一般式(viii)で表される縮合環含有化合物。
Figure JPOXMLDOC01-appb-C000073
(式中、A9~A14は前記と同じ、R21~R23は、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~6のアルコキシル基、炭素数5~18のアリールオキシ基、炭素数7~18のアラルキルオキシ基、炭素数5~16のアリールアミノ基、ニトロ基、シアノ基、炭素数1~6のエステル基又はハロゲン原子を示し、A9~A14のうち少なくとも1つは3環以上の縮合芳香族環を有する基である。)
 下記一般式(ix)で表されるフルオレン化合物。
Figure JPOXMLDOC01-appb-C000074
(式中、R1及びR2は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換アミノ基、シアノ基又はハロゲン原子を表わす。異なるフルオレン基に結合するR1同士、R2同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR1及びR2は、同じであっても異なっていてもよい。R3及びR4は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基又は置換あるいは無置換の複素環基を表わし、異なるフルオレン基に結合するR3同士、R4同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR3及びR4は、同じであっても異なっていてもよい。Ar1及びAr2は、ベンゼン環の合計が3個以上の置換あるいは無置換の縮合多環芳香族基又はベンゼン環と複素環の合計が3個以上の置換あるいは無置換の炭素でフルオレン基に結合する縮合多環複素環基を表わし、Ar1及びAr2は、同じであっても異なっていてもよい。nは、1乃至10の整数を表す。)
 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノアントラセン誘導体、特に好ましくは非対称アントラセンである。
 また、ドーパントの発光材料としては、燐光発光性の化合物を用いることもできる。燐光発光性の化合物としては、ホスト材料にカルバゾール環を含む化合物が好ましい。ドーパントとしては三重項励起子から発光することのできる化合物であり、三重項励起子から発光する限り特に限定されないが、Ir、Ru、Pd、Pt、Os及びReからなる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。
 オルトメタル化金属錯体を形成する配位子としては種々のものがあるが、好ましい配位子としては、2-フェニルピリジン誘導体、7,8-ベンゾキノリン誘導体、2-(2-チエニル)ピリジン誘導体、2-(1-ナフチル)ピリジン誘導体、2-フェニルキノリン誘導体等が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特に、フッ素化物、トリフルオロメチル基を導入したものが、青色系ドーパントとしては好ましい。さらに補助配位子としてアセチルアセトナート、ピクリン酸等の上記配位子以外の配位子を有していても良い。
 燐光発光性のドーパントの発光層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.1~70質量%であり、1~30質量%が好ましい。燐光発光性化合物の含有量が0.1質量%未満では発光が微弱でありその含有効果が十分に発揮されず、70質量%を超える場合は、濃度消光と言われる現象が顕著になり素子性能が低下する。
 カルバゾール環を含む化合物からなる燐光発光に好適なホストは、その励起状態から燐光発光性化合物へエネルギー移動が起こる結果、燐光発光性化合物を発光させる機能を有する化合物である。ホスト化合物としては励起子エネルギーを燐光発光性化合物にエネルギー移動できる化合物ならば特に制限はなく、目的に応じて適宜選択することができる。カルバゾール環以外に任意の複素環などを有していても良い。
 このようなホスト化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。ホスト化合物は単独で使用しても良いし、2種以上を併用しても良い。
 具体例としては、以下のような化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000075
 また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含有しても良い。
 さらに、発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、最も好ましくは10~50nmである。5nm未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、50nmを超えると駆動電圧が上昇する恐れがある。
 さらに、本発明の芳香族アミン誘導体を含有する層に、ホスト材料と発光を示すドーパント材料とを含有する発光層が接合した場合、素子構成を単純化することで、低電圧化及び製造コストの低減が期待される。
 この場合のドーパント材料としては、Ir,Pt,Os,Cu,Ru,Re,Auから選択される金属を含有する金属錯体化合物であると好ましく、下記式(21)~(29)で表される部分構造を有する金属錯体化合物又はその互換異性体であると好ましい。
Figure JPOXMLDOC01-appb-C000076
(式中、R11、R12はそれぞれ独立に炭素数1~20のアルキル基、炭素数1~20のアルケニル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基を表す。隣接する複数のR11同士、R12同士は、それぞれ独立に、飽和又は不飽和の2価の基を形成しても良い。
 R13~R15は、それぞれ独立に、水素原子、炭素数1~20のアルキル基を表す。
 Z2は環形成炭素数6~25のアリール環、もしくは環形成原子数5~25のヘテロアリール環を形成する原子団を表し、Z3は、環形成原子数5~25の含窒素へテロアリール環を形成する原子団を表す。
 m1、m2は、それぞれ独立に、0~4の整数を表す。
 n1は、1~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000077
(式(23)~(28)において、R11~R15、Z2、Z3、m1、m2、n1は、式(21)及び(22)において用いられたものと同義である。)
Figure JPOXMLDOC01-appb-C000078
(式中、R21~R25は、それぞれ独立に、水素原子、シアノ基、ニトロ基、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数1~20のアルコキシル基、置換もしくは無置換の炭素数1~20のアルキルシリル基、置換もしくは無置換の炭素数1~20のアシル基、又は置換もしくは無置換の炭素数1~30の芳香族基を表し、また、R21とR22、R23とR24、R24とR25は、互いに結合して環構造を形成していてもよい。
 p及びqは、それぞれ、0~3の整数であり、p+qは2又は3である。また、pが2以上の整数のとき、複数のR23は互いに結合して環構造を形成していてもよく、qが2以上の整数のとき、複数のR25は互いに結合して環構造を形成していてもよい。
 M は、イリジウム(Ir)、ロジウム(Rh)、白金(Pt)又はパラジウム(Pd)の金属原子である。)
 これらドーパント材料の具体例としては、例えば、PQIr(iridium(III) bis(2-phenyl quinolyl-N,C2') acetylacetonate)、Ir(ppy)3(fac-tris(2-phenylpyridine) iridium)の他、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
 本発明では、前記燐光ドーパントは、最高発光輝度の波長が470nm以上700nm以下であることが好ましい。さらに好ましくは、480nm以上700nm以下であり、特に好ましくは、500nm以上650nm以下である。
 このような発光波長の燐光ドーパントを本発明のホストにドープして燐光発光層を構成することにより、高効率な有機EL素子とできる。
 また、この場合のホスト材料は、置換もしくは無置換の多環式縮合芳香族骨格部を有する化合物であると好ましく、この多環式縮合芳香族骨格部が、置換もしくは無置換の、フェナントレンジイル、クリセンジイル、フルオランテンジイル、トリフェニレンジイルの群から選ばれることが好ましい。
 前記多環式縮合芳香族骨格部は、下記の式(12)~(15)のいずれかで表される化合物であると好ましい。
Figure JPOXMLDOC01-appb-C000083
(式中、Ar18~Ar22は、置換もしくは無置換の環形成炭素数4~10の縮合環構造を表す。)
 前記多環式縮合芳香族骨格部を有する化合物の多環式縮合芳香族骨格部が、フェナントレン、クリセン、フルオランテン、トリフェニレンを有する基で置換されていることが好ましい。
 式(12)で表される化合物としては、例えば、置換もしくは無置換の、フェナントレン、クリセンなどが挙げられる。
 式(13)で表される化合物としては、例えば、置換もしくは無置換の、アセナフチレン、アセナフテン、フルオランテンなどが挙げられる。
 式(14)で表される化合物としては、例えば、置換もしくは無置換のベンゾフルオランテンなどが挙げられる。
 式(15)で表される化合物としては、例えば、置換もしくは無置換のナフタレンなどが挙げられる。
 本発明では、前記多環式縮合芳香族骨格部は、下記式(50)で表されるフェナントレンの単体又は誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000084
 フェナントレン誘導体の置換基としては、例えば、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、アミノ基、ニトロ基、シリル基、シロキサニル基が挙げられる。
 このようなフェナントレン誘導体としては、例えば、下記式(50A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000085
 式(50A)中、R1~R10は、それぞれ独立に、水素原子又は、環形成炭素数5~30の置換基もしくは無置換のアリール基、炭素数1から30の分岐又は直鎖のアルキル基、炭素数3から20の置換若又は無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 式(50)で表されるフェナントレン誘導体の具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
 本発明では、前記多環式縮合芳香族骨格部は、下記式(51)で表されるクリセンの単体又は誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000095
 このようなクリセン誘導体としては、例えば、下記式(51A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000096
 式(51A)中、R1~R12は、それぞれ独立に、水素原子又は、環形成炭素数5~30の置換基もしくは無置換のアリール基、炭素数1から30の分岐又は直鎖のアルキル基、炭素数3から20の置換若又は無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 式(51)で表されるクリセン誘導体の具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
 本発明では、前記多環式縮合芳香族骨格部は、下記式(52)で表される化合物(ベンゾ[c]フェナントレン)の単体又は誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000101
 このようなベンゾ[c]フェナントレン誘導体としては、例えば、下記式(52A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000102
 式(52A)中、R1~R9は、それぞれ独立に、水素原子又は、環形成炭素数5~30の置換基もしくは無置換のアリール基、炭素数1から30の分岐又は直鎖のアルキル基、炭素数3から20の置換若又は無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 式(52)で表されるベンゾ[c]フェナントレン誘導体の具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
 本発明では、前記多環式縮合芳香族骨格部は、下記式(53)で表される化合物(ベンゾ[c]クリセン)の単体又は誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000106
 このようなベンゾ[c]クリセン誘導体としては、例えば、下記式(53A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000107
 式(53A)中、R1~R11は、それぞれ独立に、水素原子又は、環形成炭素数5~30の置換基もしくは無置換のアリール基、炭素数1から30の分岐又は直鎖のアルキル基、炭素数3から20の置換もしくは無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 式(53)で表されるベンゾ[c]クリセン誘導体の具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000108
 本発明では、前記多環式縮合芳香族骨格部は、下記式(54)で表される化合物(ジベンゾ[c、g]フェナントレン)の単体又は誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000109
 このような化合物の誘導体としては、例えば、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000110
 本発明では、前記多環式縮合芳香族骨格部は、下記式(55)で表されるフルオランテンの単体又は誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000111
 このようなフルオランテン誘導体としては、例えば、下記式(55A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000112
 式(55A)中、X12~X21は水素原子、ハロゲン原子、直鎖、分岐又は環状のアルキル基、直鎖、分岐又は環状のアルコキシ基、あるいは置換もしくは未置換のアリール基を表す。
 なお、アリール基とは、例えば、フェニル基、ナフチル基などの炭素環式芳香族基、例えば、フリル基、チエニル基、ピリジル基などの複素環式芳香族基を表す。
 X12~X21は、好ましくは、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、炭素数1~16の直鎖、分岐又は環状のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、3,3-ジメチルブチル基、シクロヘキシル基、n-ヘプチル基、シクロヘキシルメチル基、n-オクチル基、tert-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基、n-ヘキサデシル基など)、炭素数1~16の直鎖、分岐又は環状のアルコキシ基(例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、3,3-ジメチルブチルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基、n-ヘキサデシルオキシ基など)、あるいは炭素数4~16の置換もしくは未置換のアリール基(例えば、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-エチルフェニル基、4-n-プロピルフェニル基、4-イソプロピルフェニル基、4-n-ブチルフェニル基、4-tert-ブチルフェニル基、4-イソペンチルフェニル基、4-tert-ペンチルフェニル基、4-n-ヘキシルフェニル基、4-シクロヘキシルフェニル基、4-n-オクチルフェニル基、4-n-デシルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、3,4-ジメチルフェニル基、5-インダニル基、1,2,3,4-テトラヒドロ-5-ナフチル基、1,2,3,4-テトラヒドロ-6-ナフチル基、2-メトキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3-エトキシフェニル基、4-エトキシフェニル基、4-n-プロポキシフェニル基、4-イソプロポキシフェニル基、4-n-ブトキシフェニル基、4-n-ペンチルオキシフェニル基、4-n-ヘキシルオキシフェニル基、4-シクロヘキシルオキシフェニル基、4-n-ヘプチルオキシフェニル基、4-n-オクチルオキシフェニル基、4-n-デシルオキシフェニル基、2,3-ジメトキシフェニル基、2,5-ジメトキシフェニル基、3,4-ジメトキシフェニル基、2-メトキシ-5-メチルフェニル基、3-メチル-4-メトキシフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、4-ブロモフェニル基、4-トリフルオロメチルフェニル基、3,4-ジクロロフェニル基、2-メチル-4-クロロフェニル基、2-クロロ-4-メチルフェニル基、3-クロロ-4-メチルフェニル基、2-クロロ-4-メトキシフェニル基、4-フェニルフェニル基、3-フェニルフェニル基、4-(4’-メチルフェニル)フェニル基、4-(4’-メトキシフェニル)フェニル基、1-ナフチル基、2-ナフチル基、4-エトキシ-1-ナフチル基、6-メトキシ-2-ナフチル基、7-エトキシ-2-ナフチル基、2-フリル基、2-チエニル基、3-チエニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基など)であり、より好ましくは、水素原子、フッ素原子、塩素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又は炭素数6~12のアリール基であり、さらに好ましくは、水素原子、フッ素原子、塩素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~10の炭素環式芳香族基である。
 式(55)で表されるフルオランテン誘導体の具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
 置換もしくは無置換のベンゾフルオランテンとしては、例えば、下記式(551)で表されるベンゾ[b]フルオランテンの単体又は誘導体や、式(552)で表されるベンゾ[k]フルオランテンの単体又は誘導体が挙げられる。
Figure JPOXMLDOC01-appb-C000116
 式(551)及び式(552)中、X1~X24は水素原子、ハロゲン原子、直鎖、分岐又は環状のアルキル基、直鎖、分岐又は環状のアルコキシ基、あるいは置換もしくは未置換のアリール基を表す。
 なお、アリール基とは、例えば、フェニル基、ナフチル基などの炭素環式芳香族基、例えば、フリル基、チエニル基、ピリジル基などの複素環式芳香族基を表す。
 X1~X24は、好ましくは、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、炭素数1~16の直鎖、分岐又は環状のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、3,3-ジメチルブチル基、シクロヘキシル基、n-ヘプチル基、シクロヘキシルメチル基、n-オクチル基、tert-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基、n-ヘキサデシル基など)、炭素数1~16の直鎖、分岐又は環状のアルコキシ基(例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、3,3-ジメチルブチルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基、n-ヘキサデシルオキシ基など)、あるいは炭素数4~16の置換もしくは未置換のアリール基(例えば、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-エチルフェニル基、4-n-プロピルフェニル基、4-イソプロピルフェニル基、4-n-ブチルフェニル基、4-tert-ブチルフェニル基、4-イソペンチルフェニル基、4-tert-ペンチルフェニル基、4-n-ヘキシルフェニル基、4-シクロヘキシルフェニル基、4-n-オクチルフェニル基、4-n-デシルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、3,4-ジメチルフェニル基、5-インダニル基、1,2,3,4-テトラヒドロ-5-ナフチル基、1,2,3,4-テトラヒドロ-6-ナフチル基、2-メトキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3-エトキシフェニル基、4-エトキシフェニル基、4-n-プロポキシフェニル基、4-イソプロポキシフェニル基、4-n-ブトキシフェニル基、4-n-ペンチルオキシフェニル基、4-n-ヘキシルオキシフェニル基、4-シクロヘキシルオキシフェニル基、4-n-ヘプチルオキシフェニル基、4-n-オクチルオキシフェニル基、4-n-デシルオキシフェニル基、2,3-ジメトキシフェニル基、2,5-ジメトキシフェニル基、3,4-ジメトキシフェニル基、2-メトキシ-5-メチルフェニル基、3-メチル-4-メトキシフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、4-ブロモフェニル基、4-トリフルオロメチルフェニル基、3,4-ジクロロフェニル基、2-メチル-4-クロロフェニル基、2-クロロ-4-メチルフェニル基、3-クロロ-4-メチルフェニル基、2-クロロ-4-メトキシフェニル基、4-フェニルフェニル基、3-フェニルフェニル基、4-(4’-メチルフェニル)フェニル基、4-(4’-メトキシフェニル)フェニル基、1-ナフチル基、2-ナフチル基、4-エトキシ-1-ナフチル基、6-メトキシ-2-ナフチル基、7-エトキシ-2-ナフチル基、2-フリル基、2-チエニル基、3-チエニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基など)であり、より好ましくは、水素原子、フッ素原子、塩素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又は炭素数6~12のアリール基であり、さらに好ましくは、水素原子、フッ素原子、塩素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~10の炭素環式芳香族基である。
 式(551)で表されるベンゾ[b]フルオランテン誘導体としては、例えば、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000117
 式(552)で表されるベンゾ[k]フルオランテン誘導体としては、例えば、下記のも
のが挙げられる。
Figure JPOXMLDOC01-appb-C000118
 本発明では、前記多環式縮合芳香族骨格部は、下記式(56)で表されるトリフェニレンの単体又は誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000119
 このようなトリフェニレン誘導体としては、例えば、下記式(56A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000120
 式(56A)中、R1~R6は、それぞれ独立に、水素原子又は、環形成炭素数5~30の置換基もしくは無置換のアリール基、炭素数1から30の分岐又は直鎖のアルキル基、炭素数3から20の置換若又は無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 式(56)で表されるトリフェニレン誘導体の具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
 本発明では、前記多環式縮合芳香族骨格部は、ナフタレンの単体又は誘導体であることが好ましい。
 ナフタレン誘導体としては、例えば、下記式(57A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000126
 式(57A)中、R1~R8は、それぞれ独立に、水素原子又は、環形成炭素数5~30の置換基もしくは無置換のアリール基、炭素数1から30の分岐又は直鎖のアルキル基、炭素数3から20の置換若又は無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 ナフタレン誘導体の具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
 なお、多環式縮合芳香族骨格部には、窒素原子が含まれていてもよく、例えば、下記のものであってもよい。
Figure JPOXMLDOC01-appb-C000129
 本発明では、前記多環式縮合芳香族骨格部は、置換もしくは無置換の、フェナントレン又はクリセンであることが好ましい。
 フェナントレン又はクリセンとしては、例えば、上述のものが挙げられる。
 多環式縮合芳香族骨格部が、置換もしくは無置換の、フェナントレン又はクリセンであれば、Eg(S)とEg(T)の差が小さく、有機EL素子の低電圧化及び長寿命化が図れる。
(5)電子注入・輸送層
 次に、電子注入・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きく、また付着改善層は、この電子注入・輸送層の中で特に陰極との付着が良い材料からなる層である。
 また、有機EL素子は発光した光が電極(この場合は陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子注入・輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、104~106V/cmの電界印加時に電子移動度が少なくとも10-5cm2/Vs以上であることが好ましい。
 電子注入・輸送層に用いられる材料としては、8-ヒドロキシキノリン又はその誘導体の金属錯体やオキサジアゾール誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを電子注入材料として用いることができる。
 また、本発明においては、前記発光層よりも前記陰極側に設けられた電子輸送層及び/又は電子注入層を有し、下記式(31)~(33)のいずれかで表される含窒素複素環誘導体、式(34)及び(35)のいずれかで表される化合物、(36)で表される化合物が該電子輸送層及び/又は電子注入層に含有されていると好ましい。
Figure JPOXMLDOC01-appb-C000130
(式(31)~(33)中、Z1、Z2及びZ3は、それぞれ独立に、窒素原子又は炭素原子である。
 R1及びR2は、それぞれ独立に、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の炭素数3~50のヘテロアリール基、炭素数1~20のアルキル基、ハロゲン原子が置換した炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基である。
 nは、0~5の整数であり、nが2以上の整数であるとき、複数のR1は互いに同一でも異なっていてもよい。また、隣接する複数のR1同士が互いに結合して、置換もしくは無置換の芳香族炭化水素環を形成していてもよい。
 Ar1は、置換もしくは無置換の炭素数6~50のアリール基又は置換もしくは無置換の炭素数3~50のヘテロアリール基である。
 Ar2は、水素原子、炭素数1~20のアルキル基、ハロゲン原子が置換した炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数6~50のアリール基又は置換もしくは無置換の炭素数3~50のヘテロアリール基である。
 但し、Ar1、Ar2のいずれか一方は、置換もしくは無置換の炭素数10~50の縮合環基又は置換もしくは無置換の環形成原子数9~50のヘテロ縮合環基である。
 Ar3は、置換もしくは無置換の炭素数6~50のアリーレン基又は置換もしくは無置換の炭素数3~50のヘテロアリーレン基である。
 L1、L2及びL3は、それぞれ独立に、単結合、置換もしくは無置換の炭素数6~50のアリーレン基、置換もしくは無置換の環形成原子数9~50のヘテロ縮合環基又は置換もしくは無置換のフルオレニレン基である。)
 R1、R2、Ar1、Ar2の示すアリール基、ヘテロアリール基、アルキル基の具体例としては、一般式(1)のR3及びR4と同様の例が挙げられ、アルコキシ基としては、そのアルキル基に酸素原子が結合した例が挙げられる。Ar3、L1、L2及びL3の示すアリーレン基としては、そのアリール基の2価の例、ヘテロ縮合環基としてはヘテロアリール基のうち炭素数が適合する縮合環基が挙げられる。
Figure JPOXMLDOC01-appb-C000131
(式中、Xは窒素原子あるいは硫黄原子を含んだ縮合環であり、Yは単結合、アルキル鎖、アルキレン鎖、シクロアルキル鎖、アリール鎖、複素環鎖、シリル鎖、エーテル鎖、あるいはチオエーテル鎖のいずれかより単独又は組み合わせたものより選ばれる。qは2以上の自然数である。
 また、式(34)で表される化合物の分子量は480以上である。)
Figure JPOXMLDOC01-appb-C000132
(式中、Aはフェナントロリン骨格又はベンゾキノリン骨格を有する置換基である。Bは下記式(35A)で表される構造を有するp価の有機基である。pは2以上の自然数である。)
Figure JPOXMLDOC01-appb-C000133
(式中、R4とR5はそれぞれ独立にアルキル基又はアリール基(フェニル基に縮合したアリール基を含む)のいずれかである。lとmはそれぞれ独立に0~5までの自然数である。Zは下記式(35B)から選ばれた少なくとも1種である。)
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
(式中、R6及びR7は同じでも異なっていてもよく、それぞれ、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Ar4はアリール基又はヘテロアリール基を表す。)
 なお、本発明において、上記各式の「置換もしくは無置換の・・・基」において、任意の置換基としては、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の環形成炭素数7~50のアラルキル基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、アミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基、カルボキシル基等が挙げられる。
 これらの中でも、炭素数1~10のアルキル基、炭素数5~7のシクロアルキル基、炭素数1~10のアルコキシ基が好ましく、炭素数1~6のアルキル基、炭素数5~7のシクロアルキル基がより好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基が特に好ましい。
 本発明の有機EL素子の好ましい形態に、電子を輸送する領域又は陰極と有機層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。
 また、より具体的に、好ましい還元性ドーパントとしては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)及びCs(仕事関数:1.95eV)からなる群から選択される少なくとも一つのアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0~2.5eV)、及びBa(仕事関数:2.52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、K、Rb及びCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、Rb又はCsであり、最も好ましのは、Csである。これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、Li2O、K2O、Na2S、Na2Se及びNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS、及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2及びBeF2といったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
(6)陰極
 陰極としては、電子注入・輸送層又は発光層に電子を注入するため、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム・カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。
 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μm、好ましくは50~200nmである。
(7)絶縁層
 有機EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することが好ましい。
 絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セ  シウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられ、これらの混合物や積層物を用いてもよい。
(8)有機EL素子の製造方法
 以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入・輸送層、及び必要に応じて電子注入・輸送層を形成し、さらに陰極を形成することにより有機EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有機EL素子を作製することもできる。
 以下、透光性基板上に陽極/正孔注入層/発光層/電子注入層/陰極が順次設けられた構成の有機EL素子の作製例を記載する。
 まず、適当な透光性基板上に陽極材料からなる薄膜を1μm以下、好ましくは10~200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述したように真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、その蒸着条件は使用する化合物(正孔注入層の材料)、目的とする正孔注入層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度50~450℃、真空度10-7~10-3Torr、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚5nm~5μmの範囲で適宜選択することが好ましい。
 次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発光材料を薄膜化することにより形成できるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一般的に正孔注入層と同じような条件範囲の中から選択することができる。
 次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔注入層、発光層と同様の条件範囲から選択することができる。
 本発明の芳香族アミン誘導体は、発光帯域や正孔輸送帯域のいずれの層に含有させるかによって異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をすることができる。また、スピンコート法を用いる場合は、他の材料と混合することによって含有させることができる。
 最後に陰極を積層して有機EL素子を得ることができる。
 陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。しかし下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。
 この有機EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製することが好ましい。
 本発明の有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有機EL素子に用いる、前記一般式(1)で示される化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
 本発明の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
 なお、有機EL素子に直流電圧を印加する場合、陽極を+、陰極を-の極性にして、5~40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が+、陰極が-の極性になった時のみ均一な発光が観測される。印加する交流の波形は任意でよい。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
<合成例1(中間体1の合成)>
 アルゴン気流下、1000mLの三つ口フラスコに4-ブロモビフェニルを47g、ヨウ素を23g、過ヨウ素酸2水和物を9.4g、水を42mL、酢酸を360mL、硫酸を11mL入れ65℃で30分撹拌後、90℃で6時間反応した。反応物を氷水に注入し、ろ過した。水で洗浄後、メタノールで洗浄することにより67gの白色粉末を得た。フィールドディソープションマススペクトル(以下、FD-MS)の分析により、C128BrI=359に対し、m/z=358と360の主ピークが得られたので、中間体1と同定した。
<合成例2(中間体2の合成)>
 アルゴン気流下、ジ-4-ビフェニリルアミン10g、4,4’-ジブロモビフェニル9.7g、t-ブトキシナトリウム3g、ビス(トリフェニルホスフィン)塩化パラジウム(II)0.5g及びキシレン500mLを入れ、130℃にて24時間反応した。
 冷却後、水1000mLを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、9.1gの白色粉末を得た。FD-MSの分析により、該白色粉末を中間体2と同定した。
<合成例3(中間体3の合成)>
 アルゴン雰囲気下、ジベンゾフラン78.0gに脱水テトラヒドロフラン600mLを加え、-30℃に冷却し、n-ブチルリチウムヘキサン溶液(1.65M)300mLを滴下して、攪拌しながら1時間かけて室温まで昇温した。室温で5時間撹拌後、-60℃まで冷却し、1,2-ジブロモエタン60mLを1時間かけて滴下した。
 室温で15時間撹拌した後、氷水1000mLに注ぎ、有機層をジクロロメタンで抽出した。飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、ろ別後、濃縮した。得られた固体を、シリカゲルクロマトグラフィー(トルエン)で精製し、テトラヒドロフラン/メタノールで洗浄し、減圧乾燥したところ、70gの固体を得た。FD-MSの分析により、中間体3と同定した。
<合成例4(中間体4の合成)>
 窒素雰囲気下、ジベンゾフラン150gに酢酸1000mLを加え、加熱溶解させた。臭素188gを時々水冷しながら滴下した後、空冷下に20時間撹拌した。析出した結晶を濾別し、酢酸、水で順次洗浄し、減圧下乾燥させた。得られた結晶を、減圧蒸留にて精製した後、メタノールで数回再結晶を繰り返し、66.8gの固体を得た。FD-MSの分析により、該固体を中間体4と同定した。
<合成例5(中間体5の合成)>
 アルゴン雰囲気下、1-ブロモ-3-フルオロ-4-ヨードベンゼン120.0g、2-メトキシフェニルボロン酸72.7g、テトラキス(トリフェニルホスフィン)パラジウム(0) 9.2g(にトルエン1000ミリリットル、2M濃度の炭酸ナトリウム水溶液500ミリリットルを加え、10時間還流させながら加熱した。
 反応終了後、直ちにろ過した後、水層を除去した。有機層を硫酸ナトリウムで乾燥させた後、濃縮した。残渣をシリカゲルカラムクロマトグラフィで精製し、4-ブロモ-2-フルオロ-2’-メトキシビフェニルの白色結晶89.6gを得た(収率80%)。
 アルゴン雰囲気下、4-ブロモ-2-フルオロ-2’-メトキシビフェニル89.6gにジクロロメタン900ミリリットルを加え、氷冷下撹拌した。三臭化ホウ素95.9gを滴下して加え、その後、室温で12時間撹拌した。反応終了後、水200ミリリットルを加え、1時間攪拌後、水層を除去した。有機層を硫酸マグネシウムで乾燥させた後、濃縮した。残渣をシリカゲルカラムクロマトグラフィで精製し、4-ブロモ-2-フルオロ-2’-ヒドロキシビフェニルの白色結晶68.1gを得た(収率70%)。
 4-ブロモ-2-フルオロ-2’-ヒドロキシビフェニル68.1g、炭酸カリウム70.4gにN-メチルピロリドン1500ミリリットルを加え、180℃で3時間撹拌した。反応終了後、水を加え、トルエンで抽出した。有機層を硫酸ナトリウムで乾燥させた後、濃縮した。残渣をトルエンから再結晶して精製し、3-ブロモジベンゾフランの白色結晶44.2gを得た(収率60%)。FD-MSの分析により、中間体5と同定した。
<合成例6(中間体6の合成)>
 アルゴン気流下、中間体3を24.7g、アニリン14.0g、t-ブトキシナトリウム28.8g、トリス(ジベンジリデンアセトン)ジパラジウム(0)1.4g、2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチル1.9g及びトルエン350mLを入れ、130℃にて24時間反応した。
 冷却後、混合物をセライト濾過し、濾液を減圧下で濃縮した。得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、20.7gの白色粉末を得た。FD-MSの分析により、該白色粉末を中間体6と同定した。
<合成例7(中間体7の合成)>
 合成例6において、中間体3の代わりに中間体4を24.7g用いた以外は同様に反応を行ったところ、22.6gの白色粉末を得た。FD-MSの分析により、中間体7と同定した。
<合成例8(中間体8の合成)>
 合成例6において、中間体3の代わりに中間体5を24.7g用いた以外は同様に反応を行ったところ、23.8gの白色粉末を得た。FD-MSの分析により、中間体8と同定した。
<合成例9(中間体9の合成)>
 9-フェニルカルバゾール17.7g、ヨウ化カリウム6.03g及びヨウ素酸カリウム7.78gに、硫酸5.90mL及びエタノールを加え、75℃にて2時間反応した。
 冷却後、水、酢酸エチルを加えて分液、抽出した後、重曹水、水を用いて有機層を洗浄し、濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒:トルエン)で精製し、得られた固体を減圧乾燥したところ、21.8gの白色固体を得た。FD-MSの分析により、該白色固体を中間体9と同定した。
<合成例10(中間体10の合成)>
 合成例6において、中間体3の代わりに中間体9を36.9g用いた以外は同様に反応を行ったところ、26.8gの白色粉末を得た。FD-MSの分析により、中間体10と同定した。
<合成例11(中間体11の合成)>
 合成例6において、中間体3の代わりに中間体1を35.9g用い、アニリンの代わりに中間体10を33.4g用いた以外は同様に反応を行ったところ、43.8gの白色粉末を得た。FD-MSの分析により、中間体11と同定した。
<合成例12(中間体12の合成)>
 アルゴン気流下、1-アセトアミド37.0g、中間体3を49.4g、炭酸カリウム109g、銅粉2.5g及びデカリン400mLを仕込み、190℃にて4日間反応した。反応後冷却し、トルエン200mLを添加し、不溶分を濾取した。濾取物をクロロホルム500mLに溶解し、不溶分を除去後、活性炭処理し、濃縮した。これにアセトン300mLを加え、析出晶を27.6g濾取した。FD-MSの分析により、中間体12と同定した。
<合成例13(中間体13の合成)>
 合成例12において、1-アセトアミドの代わりに中間体12を22.5g用い、中間体3の代わりに1-ブロモナフタレンを20.7g用いた以外は同様に反応を行ったところ、21.0gの淡黄色粉末を得た。FD-MSの分析により、中間体13と同定した。
<合成例14(中間体14の合成)>
 アルゴン気流下、中間体13を21.0g、キシレン500mL、水50mLに懸濁し、85%水酸化カリウム水溶液21gを添加後、120℃で8時間反応した。反応後、水1L中に反応液を注加し、析出晶を濾取し、水、メタノールで洗浄した。得られた結晶をテトラヒドロフラン300mLに加熱溶解し、活性炭処理後濃縮し、アセトンを加えて結晶を析出させた。これを濾取し、15.1gの白色粉末を得た。FD-MSの分析により、中間体14と同定した。
<合成例15(中間体15の合成)>
 合成例13において、中間体3の代わりに4-ブロモビフェニルを23.3g用いた以外は同様に反応を行ったところ、22.6gの淡黄色粉末を得た。FD-MSの分析により、中間体15と同定した。
<合成例16(中間体16の合成)>
 合成例14において、中間体13の代わりに中間体15を22.6g用いた以外は同様に反応を行ったところ、16.0gの淡黄色粉末を得た。FD-MSの分析により、中間体16と同定した。
<合成例17(中間体17の合成)>
 合成例12において、中間体3の代わりに中間体4を49.4g用いた以外は同様に反応を行ったところ、25.3gの淡黄色粉末を得た。FD-MSの分析により、中間体17と同定した。
<合成例18(中間体18の合成)>
 合成例13において、中間体12の代わりに中間体17を22.5g用いた以外は同様に反応を行ったところ、23.2gの淡黄色粉末を得た。FD-MSの分析により、中間体18と同定した。
<合成例19(中間体19の合成)>
 合成例14において、中間体13の代わりに中間体18を23.2g用いた以外は同様に反応を行ったところ、16.7gの淡黄色粉末を得た。FD-MSの分析により、中間体19と同定した。
<合成例20(中間体20の合成)>
 合成例12において、中間体3の代わりに中間体5を49.4g用いた以外は同様に反応を行ったところ、24.7gの淡黄色粉末を得た。FD-MSの分析により、中間体20と同定した。
<合成例21(中間体21の合成)>
 合成例13において、中間体12の代わりに中間体20を22.5g用いた以外は同様に反応を行ったところ、21.8gの淡黄色粉末を得た。FD-MSの分析により、中間体21と同定した。
<合成例22(中間体22の合成)>
 合成例14において、中間体13の代わりに中間体21を21.8g用いた以外は同様に反応を行ったところ、13.5gの淡黄色粉末を得た。FD-MSの分析により、中間体22と同定した。
<合成例23(中間体23の合成)>
 合成例13において、中間体12の代わりに中間体20を22.5g、中間体3の代わりに4-ブロモビフェニルを23.3g用いた以外は同様に反応を行ったところ、21.4gの淡黄色粉末を得た。FD-MSの分析により、中間体23と同定した。
<合成例24(中間体24の合成)>
 合成例14において、中間体13の代わりに中間体23を21.4g用いた以外は同様に反応を行ったところ、13.8gの淡黄色粉末を得た。FD-MSの分析により、中間体24と同定した。
 合成例1~24で合成した中間体の構造式は下記の通りである。
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
<合成実施例1(芳香族アミン誘導体(H1)の製造)>
 アルゴン気流下、中間体6を5.2g、4,4’-ジヨードビフェニルを4.1g、t-ブトキシナトリウム1.3g、トリス(ジベンジリデンアセトン)ジパラジウム46mg、トリ-t-ブチルホスフィン21mg及び脱水トルエン50mLを入れ、80℃にて2時間反応させた。
 冷却後、水500mLを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、4.7gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H1)と同定した。
<合成実施例2(芳香族アミン誘導体(H2)の製造)>
 合成実施例1において、中間体6の代わりに中間体8を5.2g用いた以外は同様に反応を行ったところ、4.3gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H2)と同定した。
<合成実施例3(芳香族アミン誘導体(H3)の製造)>
 合成実施例1において、中間体6を2.6g用い、4,4’-ジヨードビフェニルの代わりに中間体2を5.5g用いた以外は同様に反応を行ったところ、5.0gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H3)と同定した。
<合成実施例4(芳香族アミン誘導体(H4)の製造)>
 合成実施例1において、中間体6の代わりに中間体7を2.6g用い、4,4’-ジヨードビフェニルの代わりに中間体2を5.5g用いた以外は同様に反応を行ったところ、5.1gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H4)と同定した。
<合成実施例5(芳香族アミン誘導体(H5)の製造)>
 合成実施例1において、中間体6の代わりに中間体8を2.6g用い、4,4’-ジヨードビフェニルの代わりに中間体2を5.5g用いた以外は同様に反応を行ったところ、4.9gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H5)と同定した。
<合成実施例6(芳香族アミン誘導体(H6)の製造)>
 合成実施例1において、中間体6の代わりに中間体16を6.7g用いた以外は同様に反応を行ったところ、5.7gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H6)と同定した。
<合成実施例7(芳香族アミン誘導体(H7)の製造)>
 合成実施例1において、中間体6の代わりに中間体24を6.7g用いた以外は同様に反応を行ったところ、5.5gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H7)と同定した。
<合成実施例8(芳香族アミン誘導体(H8)の製造)>
 合成実施例1において、中間体6の代わりに中間体14を6.2g用いた以外は同様に反応を行ったところ、5.3gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H8)と同定した。
<合成実施例9(芳香族アミン誘導体(H9)の製造)>
 合成実施例1において、中間体6の代わりに中間体19を6.2g用いた以外は同様に反応を行ったところ、5.2gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H9)と同定した。
<合成実施例10(芳香族アミン誘導体(H10)の製造)>
 合成実施例1において、中間体6の代わりに中間体22を6.2g用いた以外は同様に反応を行ったところ、4.8gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H10)と同定した。
<合成実施例11(芳香族アミン誘導体(H11)の製造)>
 合成実施例1において、4,4’-ジヨードビフェニルの代わりに4,4’-ジヨード-p-ターフェニル4.8g用いた以外は同様に反応を行ったところ、5.5gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H11)と同定した。
<合成実施例12(芳香族アミン誘導体(H12)の製造)>
 合成実施例1において、中間体6の代わりに中間体7を5.2g用い、4,4’-ジヨードビフェニルの代わりに4,4’-ジヨード-p-ターフェニル4.8g用いた以外は同様に反応を行ったところ、6.0gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H12)と同定した。
<合成実施例13(芳香族アミン誘導体(H13)の製造)>
 合成実施例1において、中間体6を2.6g用い、4,4’-ジヨードビフェニルの代わりに中間体11を5.7g用いた以外は同様に反応を行ったところ、5.0gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H13)と同定した。
<合成実施例14(芳香族アミン誘導体(H14)の製造)>
 合成実施例1において、中間体6の代わりに中間体7を2.6g用い、4,4’-ジヨードビフェニルの代わりに中間体11を5.7g用いた以外は同様に反応を行ったところ、4.8gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H14)と同定した。
<合成実施例15(芳香族アミン誘導体(H15)の製造)>
 合成実施例1において、中間体6の代わりに中間体8を2.6g用い、4,4’-ジヨードビフェニルの代わりに中間体11を5.7g用いた以外は同様に反応を行ったところ、5.3gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H15)と同定した。
 合成実施例1~15で合成した芳香族アミン誘導体の構造式は下記の通りである。
Figure JPOXMLDOC01-appb-C000138
[実施例1-1(有機EL素子の製造)]
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして下記電子受容性化合物(C-1)を蒸着し、膜厚10nmのC-1膜を成膜した。このC-1膜上に、正孔輸送材料として前記合成実施例1で得た芳香族アミン誘導体(H1)を蒸着し、膜厚70nmの正孔輸送層を成膜した。さらに下記化合物EM1を蒸着し、膜厚40nmの発光層を成膜した。同時に発光分子として、下記のスチリルアミン誘導体(D1)を、EM1とD1の重量比(EM1:D1)が40:2になるように蒸着した。
 この膜上に、下記有機金属錯体(Alq)を膜厚10nmとなるよう成膜した。この層は、電子注入層として機能する。この後、還元性ドーパントであるLi(Li源:サエスゲッター社製)とAlqを二元蒸着させ、電子注入層(陰極)としてAlq:Li膜(膜厚10nm)を形成した。このAlq:Li膜上に金属Alを蒸着させ金属陰極を形成し有機EL素子を形成した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000139
[実施例1-2~1-10(有機EL素子の製造)]
 実施例1-1において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに表1に記載の各芳香族アミン誘導体を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
[実施例1-11(有機EL素子の製造)]
 実施例1-1において、スチリルアミン誘導体(D1)の代わりに下記アリールアミン誘導体(D2)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000140
[実施例1-12(有機EL素子の製造)]
 実施例1-1において、電子輸送材料として有機金属錯体(Alq)の代わりに下記ベンゾイミダゾール誘導体(ET1)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000141
[実施例1-13(有機EL素子の製造)]
 実施例1-1において、電子輸送材料として有機金属錯体(Alq)の代わりに下記フェナントロリン誘導体(ET2)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000142
[実施例1-14(有機EL素子の製造)]
 実施例1-1において、電子輸送材料として有機金属錯体(Alq)の代わりに下記フォスフィンオキサイド誘導体(ET3)を用いた以外は同様にして有機EL素子を作製した。得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000143
[比較例1-1~1-3]
 実施例1-1において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに表1に示す様に下記比較化合物1~3のいずれかを用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000144
[比較例1-4]
 実施例1-11において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに前記比較化合物1を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
[比較例1-5]
 実施例1-12において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに前記比較化合物1を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000145
 表1より、本発明の芳香族アミン誘導体を用いた有機EL素子は、公知の芳香族アミン誘導体を用いた有機EL素子に比べ、低駆動電圧で高発光効率を得ることができ、さらに素子寿命が延びていることがわかる。
[実施例2-1(有機EL素子の製造)]
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして下記電子受容性化合物(C-2)を蒸着し、膜厚10nmのC-2膜を成膜した。このC-2膜上に、正孔輸送材料として前記合成実施例1で得た芳香族アミン誘導体(H1)を蒸着し、膜厚70nmの正孔輸送層を成膜した。さらに前記化合物EM1を蒸着し、膜厚40nmの発光層を成膜した。同時に発光分子として、前記のスチリルアミン誘導体(D1)を、EM1とD1の重量比(EM1:D1)が40:2になるように蒸着した。
 この膜上に、前記有機金属錯体(Alq)を膜厚10nmとなるよう成膜した。この層は、電子注入層として機能する。この後、還元性ドーパントであるLi(Li源:サエスゲッター社製)とAlqを二元蒸着させ、電子注入層(陰極)としてAlq:Li膜(膜厚10nm)を形成した。このAlq:Li膜上に金属Alを蒸着させ金属陰極を形成し有機EL素子を形成した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-C000146
[実施例2-2~2-10(有機EL素子の製造)]
 実施例2-1において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに表2に記載の各芳香族アミン誘導体を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表2に示す。
[実施例2-11(有機EL素子の製造)]
 実施例2-1において、スチリルアミン誘導体(D1)の代わりに前記アリールアミン誘導体(D2)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表2に示す。
[実施例2-12(有機EL素子の製造)]
 実施例2-1において、電子輸送材料として有機金属錯体(Alq)の代わりに前記ベンゾイミダゾール誘導体(ET1)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表2に示す。
[実施例2-13(有機EL素子の製造)]
 実施例2-1において、電子輸送材料として有機金属錯体(Alq)の代わりに前記フェナントロリン誘導体(ET2)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表2に示す。
[実施例2-14(有機EL素子の製造)]
 実施例2-1において、電子輸送材料として有機金属錯体(Alq)の代わりに前記フォスフィンオキサイド誘導体(ET3)を用いた以外は同様にして有機EL素子を作製した。得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表2に示す。
[比較例2-1~2-3]
 実施例2-1において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに表2に示す様に前記比較化合物1~3のいずれかを用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表2に示す。
[比較例2-4]
 実施例2-11において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに前記比較化合物1を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表2に示す。
[比較例2-5]
 実施例2-12において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに前記比較化合物1を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000147
 表2より、本発明の芳香族アミン誘導体を用いた有機EL素子は、公知の芳香族アミン誘導体を用いた有機EL素子に比べ、低駆動電圧で高発光効率を得ることができ、さらに素子寿命が延びていることがわかる。
[実施例3-1(有機EL素子の製造)]
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして下記芳香族第三級アミン誘導体(H232)を蒸着し、膜厚60nmのH232膜を正孔注入層として成膜した。このH232膜上に、正孔輸送材料として前記合成実施例1で得た芳香族アミン誘導体(H1)を蒸着し、膜厚20nmの正孔輸送層を成膜した。さらに前記化合物EM1を蒸着し、膜厚40nmの発光層を成膜した。同時に発光分子として、前記のスチリルアミン誘導体(D1)を、EM1とD1の重量比(EM1:D1)が40:2になるように蒸着した。
 この膜上に、前記有機金属錯体(Alq)を膜厚10nmとなるよう成膜した。この層は、電子注入層として機能する。この後、還元性ドーパントであるLi(Li源:サエスゲッター社製)とAlqを二元蒸着させ、電子注入層(陰極)としてAlq:Li膜(膜厚10nm)を形成した。このAlq:Li膜上に金属Alを蒸着させ金属陰極を形成し有機EL素子を形成した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表3に示す。
Figure JPOXMLDOC01-appb-C000148
[実施例3-2~3-10(有機EL素子の製造)]
 実施例3-1において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに表3に記載の各芳香族アミン誘導体を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表3に示す。
[実施例3-11(有機EL素子の製造)]
 実施例3-1において、スチリルアミン誘導体(D1)の代わりに前記アリールアミン誘導体(D2)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表3に示す。
[実施例3-12(有機EL素子の製造)]
 実施例3-1において、電子輸送材料として有機金属錯体(Alq)の代わりに前記ベンゾイミダゾール誘導体(ET1)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表3に示す。
[実施例3-13(有機EL素子の製造)]
 実施例3-1において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに表3に示す様に下記化合物H16を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表3に示す。
Figure JPOXMLDOC01-appb-C000149
[比較例3-1~3-3]
 実施例3-1において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに表3に示す様に前記比較化合物1~3のいずれかを用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表3に示す。
[比較例3-4]
 実施例3-11において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに前記比較化合物1を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表3に示す。
[比較例3-5]
 実施例3-12において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに前記比較化合物1を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m2、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000150
[実施例4-1(有機EL素子の製造)]
25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして前記電子受容性化合物(C-1)を蒸着し、膜厚5nmのC-1膜を成膜した。このC-1膜上に、第1正孔輸送材料として下記芳香族アミン誘導体(X1)を蒸着し、膜厚50nmの第1正孔輸送層を成膜した。第1正孔輸送層の成膜に続けて、第2正孔輸送材料として前記合成実施例1で得た芳香族アミン誘導体(H1)を蒸着し、膜厚60nmの第2正孔輸送層を成膜した。
 さらに、この第2正孔輸送層上に、下記化合物(EM2)を蒸着し、膜厚45nmの発光層を成膜した。同時に燐光発光材料として下記化合物(D3)を共蒸着した。化合物D1の濃度は7.5質量%であった。この共蒸着膜は発光層として機能する。
 そして、この発光層成膜に続けて下記化合物(ET4)を膜厚30nmで成膜した。このET1膜は電子輸送層として機能する。
 次に、LiFを電子注入性電極(陰極)として成膜速度0.1オングストレーム/minで膜厚を1nmとした。このLiF膜上に金属Alを蒸着させ、金属陰極を膜厚80nmで形成し有機EL素子を作製した。
得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-C000151
 実施例4-1において、芳香族アミン誘導体(H1)のEg(T)は以下に示すようにして測定した。
Eg(T)(3重項エネルギーギャップ):
 燐光発光スペクトルに基づいて測定した。
 材料をEPA溶媒(容積比でジエチルエーテル:イソペンタン:エタノール=5:5:2)に10μmol/Lで溶解し、燐光測定用試料とした。この燐光測定用試料を石英セルに入れ、77Kに冷却し、励起光を照射し、放射される燐光の波長を測定した。
 得られた燐光スペクトルの短波長側の立ちあがりに対して接線を引き、この接線とベースラインとの交点の波長値をエネルギーに換算した値を励起3重項エネルギーギャップEg(T)とした。
 なお、測定には市販の測定装置F-4500(日立製)を用いた。
 実施例4-1において、芳香族アミン誘導体(H1)のTgは以下に示すようにして測定した。
 Tgはパーキンエルマー社DSC「Pyris1」を使用し、下記測定条件での2回目のヒーティングの値を用いた。
[測定条件]
(i)30℃からMAX温度へ加熱(10℃/分)
(ii)MAX温度で3分間保持
(iii)MAX温度から-50℃へ冷却(200℃/分)
(iv)-50℃で10分間保持
(v)-50℃からMAX温度へ加熱(10℃/分)
 MAX温度はTg-DTAでの融点プラス約30℃、分解温度が近い場合はそれに応じて修正した。
[実施例4-2~4-4(有機EL素子の製造)]
 実施例4-1において、第2正孔輸送材料として芳香族アミン誘導体(H1)の代わりに、表4に示す芳香族アミン誘導体を用いた以外は、実施例4-1と同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
[実施例4-5(有機EL素子の製造)]
 実施例4-1において、電子輸送材料として(ET4)の代わりに前記フェナントロリン誘導体(ET2)を用いた以外は同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-C000152
[実施例4-6(有機EL素子の製造)]
 実施例4-1において、電子輸送材料として(ET4)の代わりに前記フォスフィンオキサイド誘導体(ET3)を用いた以外は同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-C000153
 [実施例4-7(有機EL素子の製造)]
 実施例4-1において、第1正孔輸送材料として芳香族アミン誘導体(X1)の代わりに、下記芳香族アミン誘導体(X2)を用いた以外は、実施例4-1と同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-C000154
[実施例4-8~4-10(有機EL素子の製造)]
 実施例4-7において、第2正孔輸送材料として芳香族アミン誘導体(H1)の代わりに、表4に示す芳香族アミン誘導体を用いた以外は、実施例4-7と同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
[実施例4-11(有機EL素子の製造)]
 実施例4-5において、第1正孔輸送材料として芳香族アミン誘導体(X1)の代わりに、前記芳香族アミン誘導体(X2)を用いた以外は、実施例4-5と同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
[実施例4-12(有機EL素子の製造)]
 実施例4-6において、第1正孔輸送材料として芳香族アミン誘導体(X1)の代わりに、前記芳香族アミン誘導体(X2)を用いた以外は、実施例4-6と同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
[実施例4-13、4-14(有機EL素子の製造)]
 実施例4-1において、第2正孔輸送材料として芳香族アミン誘導体(H1)の代わりに、表4に示す芳香族アミン誘導体を用いた以外は、実施例4-1と同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
[実施例4-15、4-16(有機EL素子の製造)]
 実施例4-7において、第2正孔輸送材料として芳香族アミン誘導体(H1)の代わりに、表4に示す芳香族アミン誘導体を用いた以外は、実施例4-7と同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m2、室温及びDC定電流駆動での発光効率を測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000155
 以上詳細に説明したように、本発明の芳香族アミン誘導体を用いた有機EL素子は、発光効率が高く、長時間使用しても劣化しづらく寿命が長い。このため、壁掛テレビの平面発光体やディスプレイのバックライト等の光源として有用である。

Claims (33)

  1.  下記式(1)で表される芳香族アミン誘導体。
       A-L-B   (1)
    [式(1)において、Lは、下記式(2)で表される。
    Figure JPOXMLDOC01-appb-C000001
    (式(2)において、nは0~3の整数を表す。
     R3及びR4は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。
     隣接、又は近接する複数のR3同士、R4同士は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
     隣接するR3とR4は互いに結合して、Lが置換もしくは無置換のフルオレニレン基を形成してもよい。
     c、dはそれぞれ独立に0~4の整数を表す。)
     式(1)において、Aは、下記式(3)で表される。
    Figure JPOXMLDOC01-appb-C000002
    {式(3)において、Ar1は、置換もしくは無置換の環形成炭素数6~25のアリール基、又は置換もしくは無置換の環形成原子数5~25のヘテロアリール基を表し、Ar3は、下記式(4)で表される。
    Figure JPOXMLDOC01-appb-C000003
    (式(4)において、X1は、O(酸素原子)、又はS(硫黄原子)、NRa、又はCRbRcを表す。Raは、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。Rb又はRcは、それぞれ独立に、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。
     R1及びR2は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。隣接した複数のR1及びR2同士、並びにR1とR2は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
     aはそれぞれ独立に0~3の整数を表す。
     bはそれぞれ独立に0~4の整数を表す。)}
     式(1)において、Bは、下記式(5)で表される。
    Figure JPOXMLDOC01-appb-C000004
    (式(5)において、Ar2又はAr4は、置換もしくは無置換の環形成炭素数6~25のアリール基、又は置換もしくは無置換の環形成原子数5~25のヘテロアリール基を表す。)]
  2.  前記Ar3は、下記式(6)~(8)のいずれかで表されることを特徴とする請求項1に記載の芳香族アミン誘導体。
    Figure JPOXMLDOC01-appb-C000005
    (式(6)~(8)において、X1は、O(酸素原子)、又はS(硫黄原子)、NRa、又はCRbRcを表す。Raは、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。Rb又はRcは、それぞれ独立に、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。
     R1及びR2は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。隣接した複数のR1及びR2同士、並びにR1とR2は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
     aはそれぞれ独立に0~3の整数を表す。
     bはそれぞれ独立に0~4の整数を表す。)
  3.  前記X1が、O(酸素原子)又はS(硫黄原子)である請求項1に記載の芳香族アミン誘導体。
  4.  前記X1が、O(酸素原子)である請求項1に記載の芳香族アミン誘導体。
  5.  前記Ar3が、前記式(6)又は(8)で表されることを特徴とする請求項1に記載の芳香族アミン誘導体。
  6.  前記Ar3が、前記式(6)で表されることを特徴とする請求項1に記載の芳香族アミン誘導体。
  7.  前記Ar3が、前記式(6)で表されることを特徴とする請求項4に記載の芳香族アミン誘導体。
  8.  前記Ar1又はAr4が下記式(9)で表されることを特徴とする請求項1~4に記載の芳香族アミン誘導体。
    Figure JPOXMLDOC01-appb-C000006
    (式(9)において、X2は、O(酸素原子)、S(硫黄原子)、NRa、又はCRbRcを表す。Raは、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。Rb又はRcは、それぞれ独立に、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基からなる群より選ばれる基を表す。
     R1及びR2は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。隣接した複数のR1及びR2同士、並びにR1とR2は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
     aはそれぞれ独立に0~3の整数を表す。
     bはそれぞれ独立に0~4の整数を表す。)
  9.  前記Ar1又はAr4は、前記式(6)~(8)のいずれかで表されることを特徴とする請求項1に記載の芳香族アミン誘導体。
  10.  前記Ar1、Ar2、Ar4のいずれかが下記式(10)で表されることを特徴とする請求項1に記載の芳香族アミン誘導体。
    Figure JPOXMLDOC01-appb-C000007
    (式(10)において、nは0~3の整数を表す。
     R3及びR4は、それぞれ独立に、炭素数1~15の直鎖状もしくは分岐状のアルキル基、炭素数2~15の直鎖状もしくは分岐状のアルケニル基、炭素数3~15のシクロアルキル基、炭素数1~15のアルキル基を有するトリアルキルシリル基、環形成炭素数6~25のアリール基を有するトリアリールシリル基、炭素数1~15のアルキル基及び環形成炭素数6~25のアリール基を有するアルキルアリールシリル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基からなる群より選ばれる基を表す。
     隣接、又は近接する複数のR3同士、R4同士は互いに結合して環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
     隣接するR3とR4は互いに結合して、Lが置換もしくは無置換のフルオレニレン基を形成してもよい。
     c、dはそれぞれ独立に0~4の整数を表す。)
  11.  前記Ar1、Ar2、Ar4のいずれかがフェニル基、ビフェニル基、メタターフェニル基で表されることを特徴とする請求項1に記載の芳香族アミン誘導体。
  12.  AとBとが同一であることを特徴とする請求項1に記載の芳香族アミン誘導体。
  13.  AとBとが異なることを特徴とする請求項1に記載の芳香族アミン誘導体。
  14.  陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、請求項1~13のいずれかに記載の芳香族アミン誘導体を単独又は混合物の成分として含有する有機エレクトロルミネッセンス素子。
  15.  前記有機薄膜層として少なくとも正孔輸送層及び/又は正孔注入層を有し、該正孔輸送層及び/又は正孔注入層に前記芳香族アミン誘導体を含有することを特徴とする請求項14に記載の有機エレクトロルミネッセンス素子。
  16.  前記芳香族アミン誘導体を含有する層に、電子受容性化合物を含有する層が接合することを特徴とする請求項14に記載の有機エレクトロルミネッセンス素子。
  17.  前記電子受容性化合物が下記式(A)で表されることを特徴とする請求項16に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000008
    (上記式(A)中、R7~R12は、それぞれ独立にシアノ基、-CONH2、カルボキシル基、もしくは-COOR13(R13は、炭素数1~20のアルキル基である。)を表すか、又は、R7及びR8、R9及びR10、もしくはR11及びR12が一緒になって-CO-O-CO-で示される基を表す。)
  18.  前記電子受容性化合物が下記式(B)で表されることを特徴とする請求項16に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000009
    [上記式(B)中、Ar1は、環形成炭素数6~24の縮合環、又は環形成原子数6~24の複素環である。ar1及びar2は、それぞれ互いに同一でも異なっていてもよく、下記式(i)もしくは(ii)である。
    Figure JPOXMLDOC01-appb-C000010
    {式中、X1及びX2は互いに同一でも異なっていてもよく、下記(a)~(g)に示す二価の基のいずれかである。
    Figure JPOXMLDOC01-appb-C000011
    (式中、R21~R24は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数3~50の複素環基であり、R22とR23は互いに結合して環を形成してもよい。)}
     式(B)中のR1~R4は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50の炭素数6~50のアリール基、置換もしくは無置換の環形成原子数3~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数6~50の炭素数6~50のアリールオキシ基、又はシアノ基である。R1~R4のうち互いに隣接するものは互いに結合して環を形成してもよい。Y1~Y4は互いに同一でも異なっていてもよく、-N=、-CH=、又はC(R5)=であり、R5は、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の環形成原子数3~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数6~50の炭素数6~50のアリールオキシ基、又はシアノ基である。]
  19.  前記芳香族アミン誘導体を含有する層に、ホスト材料と発光を示すドーパント材料とを含有する発光層が接合することを特徴とする請求項14に記載の有機エレクトロルミネッセンス素子。
  20.  前記芳香族アミン誘導体を含有する層に、ホスト材料と発光を示すドーパント材料とを含有する発光層が、前記電子受容性化合物を含有する層との反対面において接合することを特徴とする請求項16に記載の有機エレクトロルミネッセンス素子。
  21.  前記ドーパント材料が、Ir,Pt,Os,Cu,Ru,Re,Auから選択される金属を含有する金属錯体化合物である請求項19に記載の有機エレクトロルミネッセンス素子。
  22.  前記ドーパント材料が下記式(21)又は(22)で表される部分構造を有する金属錯体化合物又はその互変異性体からなることを特徴とする請求項19に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000012
    (式中、R11、R12はそれぞれ独立に炭素数1~20のアルキル基、炭素数1~20のアルケニル基、環形成炭素数6~25のアリール基、環形成原子数5~25のヘテロアリール基、ハロゲン原子又はシアノ基を表す。隣接する複数のR11同士、R12同士は、それぞれ独立に、飽和又は不飽和の2価の基を形成しても良い。
    13~R15は、それぞれ独立に、水素原子、炭素数1~20のアルキル基を表す。
     Z2は環形成炭素数6~25のアリール環、もしくは環形成原子数5~25のヘテロアリール環を形成する原子団を表し、Z3は、環形成原子数5~25の含窒素へテロアリール環を形成する原子団を表す。
     m1、m2は、それぞれ独立に、0~4の整数を表す。
     n1は、1~3の整数を表す。)
  23.  前記ドーパント材料が下記式(23)又は(24)で表される部分構造を有する金属錯体化合物又はその互変異性体からなることを特徴とする請求項19に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000013
    (式(23)及び(24)において、R11~R15、Z2、Z3、m1、m2、n1は、式(21)及び(22)において用いられたものと同義である。)
  24.  前記ドーパント材料が下記式(25)又は(26)で表される部分構造を有する金属錯体化合物又はその互変異性体からなることを特徴とする請求項19に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000014
    (式(25)及び(26)において、R11~R15、Z2、Z3、m1、m2、n1は、式(21)及び(22)において用いられたものと同義である。)
  25.  前記ドーパント材料が下記式(27)又は(28)で表される部分構造を有する金属錯体化合物又はその互変異性体からなることを特徴とする請求項19に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015
    (式(27)及び(28)において、R11~R15、Z2、Z3、m1、m2、n1は、式(21)及び(22)において用いられたものと同義である。)
  26.  前記ドーパント材料が下記式(29)で表される部分構造を有する金属錯体化合物又はその互変異性体からなることを特徴とする請求項19に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000016
    (式中、R21~R25は、それぞれ独立に、水素原子、シアノ基、ニトロ基、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数1~20のアルコキシル基、置換もしくは無置換の炭素数1~20のアルキルシリル基、置換もしくは無置換の炭素数1~20のアシル基、又は置換もしくは無置換の炭素数1~30の芳香族基を表し、また、R21とR22、R23とR24、R24とR25は、互いに結合して環構造を形成していてもよい。
     p及びqは、それぞれ、0~3の整数であり、p+qは2又は3である。また、pが2以上の整数のとき、複数のR23は互いに結合して環構造を形成していてもよく、qが2以上の整数のとき、複数のR25は互いに結合して環構造を形成していてもよい。
     M は、イリジウム(Ir)、ロジウム(Rh)、白金(Pt)又はパラジウム(Pd)
    の金属原子である。)
  27.  前記ホスト材料は、置換または無置換の多環式縮合芳香族骨格部を有する化合物である請求項19に記載の有機エレクトロルミネッセンス素子。
  28.  前記多環式縮合芳香族骨格部を有する化合物の多環式縮合芳香族骨格部が、置換または無置換の、フェナントレンジイル、クリセンジイル、フルオランテンジイル、トリフェニレンジイルの群から選ばれることを特徴とする請求項27に記載の有機エレクトロルミネッセンス素子。
  29.  前記多環式縮合芳香族骨格部は、下記の式(12)~(15)のいずれかで表されることを特徴とする請求項27に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000017
    (式中、Ar18~Ar22は、置換または無置換の核炭素数4から10の縮合環構造を表す。)
  30.  前記多環式縮合芳香族骨格部を有する化合物の多環式縮合芳香族骨格部が、フェナントレン、クリセン、フルオランテン又はトリフェニレンを有する基で置換されていることを特徴とする請求項27に記載の有機エレクトロルミネッセンス素子。
  31.  前記有機薄膜層として前記発光層よりも前記陰極側に設けられた電子輸送層及び/又は電子注入層を有し、下記式(31)~(33)のいずれかで表される含窒素複素環誘導体が該電子輸送層及び/又は電子注入層に含有されている、請求項14に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000018
    (式(31)~(33)中、Z1、Z2及びZ3は、それぞれ独立に、窒素原子又は炭素原子である。
     R1及びR2は、それぞれ独立に、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の炭素数3~50のヘテロアリール基、炭素数1~20のアルキル基、ハロゲン原子が置換した炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基である。
     nは、0~5の整数であり、nが2以上の整数であるとき、複数のR1は互いに同一でも異なっていてもよい。また、隣接する複数のR1同士が互いに結合して、置換もしくは無置換の芳香族炭化水素環を形成していてもよい。
     Ar1は、置換もしくは無置換の炭素数6~50のアリール基又は置換もしくは無置換の炭素数3~50のヘテロアリール基である。
     Ar2は、水素原子、炭素数1~20のアルキル基、ハロゲン原子が置換した炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数6~50のアリール基又は置換もしくは無置換の炭素数3~50のヘテロアリール基である。
     但し、Ar1、Ar2のいずれか一方は、置換もしくは無置換の炭素数10~50の縮合環基又は置換もしくは無置換の環形成原子数9~50のヘテロ縮合環基である。
     Ar3は、置換もしくは無置換の炭素数6~50のアリーレン基又は置換もしくは無置換の炭素数3~50のヘテロアリーレン基である。
     L1、L2及びL3は、それぞれ独立に、単結合、置換もしくは無置換の炭素数6~50のアリーレン基、置換もしくは無置換の環形成原子数9~50のヘテロ縮合環基又は置換もしくは無置換のフルオレニレン基である。)
  32.  前記有機薄膜層として前記発光層よりも前記陰極側に設けられた電子輸送層及び/又は電子注入層を有し、下記式(34)及び(35)のいずれかで表される化合物が該電子輸送層及び/又は電子注入層に含有されている、請求項14に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000019
    (式(34)中、Xは窒素原子あるいは硫黄原子を含んだ縮合環であり、Yは単結合、アルキル鎖、アルキレン鎖、シクロアルキル鎖、アリール鎖、複素環鎖、シリル鎖、エーテル鎖、あるいはチオエーテル鎖のいずれかより単独又は組み合わせたものより選ばれる。qは2以上の自然数である。
     また、式(34)で表される化合物の分子量は480以上である。)
    Figure JPOXMLDOC01-appb-C000020
    (式(35)中、Aはフェナントロリン骨格又はベンゾキノリン骨格を有する置換基である。Bは下記式(35A)で表される構造を有するp価の有機基である。pは2以上の自然数である。)
    Figure JPOXMLDOC01-appb-C000021
    (式(35A)中、R4とR5はそれぞれ独立にアルキル基又はアリール基(フェニル基に縮合したアリール基を含む)のいずれかである。lとmはそれぞれ独立に0~5までの自然数である。Zは下記式(35B)から選ばれた少なくとも1種である。)
    Figure JPOXMLDOC01-appb-C000022
  33.  前記有機薄膜層として前記発光層よりも前記陰極側に設けられた電子輸送層及び/又は電子注入層を有し、下記式(36)で表される化合物が該電子輸送層及び/又は電子注入層に含有されている、請求項14に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000023
    (式(36)中、R6及びR7は同じでも異なっていてもよく、それぞれ、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Ar4はアリール基又はヘテロアリール基を表す。)
PCT/JP2011/051045 2010-01-21 2011-01-21 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 WO2011090149A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800067627A CN102712612A (zh) 2010-01-21 2011-01-21 芳香族胺衍生物和使用其的有机电致发光元件
EP11734755.9A EP2527334A4 (en) 2010-01-21 2011-01-21 AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT THEREWITH
KR1020127019055A KR101516062B1 (ko) 2010-01-21 2011-01-21 방향족 아민 유도체 및 그것을 이용한 유기 전기 발광 소자
JP2011550964A JPWO2011090149A1 (ja) 2010-01-21 2011-01-21 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US13/522,870 US20120319091A1 (en) 2010-01-21 2011-01-21 Aromatic amine derivative, and organic electroluminescent element comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010011414 2010-01-21
JP2010-011415 2010-01-21
JP2010-011414 2010-01-21
JP2010011415 2010-01-21

Publications (1)

Publication Number Publication Date
WO2011090149A1 true WO2011090149A1 (ja) 2011-07-28

Family

ID=44306949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051045 WO2011090149A1 (ja) 2010-01-21 2011-01-21 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20120319091A1 (ja)
EP (1) EP2527334A4 (ja)
JP (1) JPWO2011090149A1 (ja)
KR (1) KR101516062B1 (ja)
CN (1) CN102712612A (ja)
TW (1) TW201139402A (ja)
WO (1) WO2011090149A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120302762A1 (en) * 2011-05-27 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Carbazole Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
WO2013118846A1 (ja) 2012-02-10 2013-08-15 出光興産株式会社 芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器
WO2014104144A1 (ja) * 2012-12-26 2014-07-03 出光興産株式会社 含酸素縮合環アミン化合物、含硫黄縮合環アミン化合物及び有機エレクトロルミネッセンス素子
WO2015004875A1 (ja) * 2013-07-12 2015-01-15 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2015120679A (ja) * 2013-08-30 2015-07-02 日本放送協会 化合物および有機エレクトロルミネッセンス素子
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
JP2017010969A (ja) * 2015-06-17 2017-01-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2017022196A (ja) * 2015-07-08 2017-01-26 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US9660202B2 (en) 2013-12-27 2017-05-23 Samsung Display Co., Ltd. Organic electroluminescence device
US9761812B2 (en) 2012-11-26 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9966539B2 (en) 2012-08-31 2018-05-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US9972787B2 (en) 2014-09-25 2018-05-15 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US10347844B2 (en) 2014-11-07 2019-07-09 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754445B1 (ko) * 2009-05-29 2017-07-05 이데미쓰 고산 가부시키가이샤 안트라센 유도체 및 그것을 이용한 유기 전계 발광 소자
KR101390587B1 (ko) * 2012-03-28 2014-04-30 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014044722A1 (en) 2012-09-20 2014-03-27 Basf Se Azadibenzofurans for electronic applications
TWI588238B (zh) * 2012-10-26 2017-06-21 捷恩智股份有限公司 苯并茀化合物、使用該化合物的發光層用材料、有機電場發光元件、顯示裝置及照明裝置
US9190623B2 (en) * 2012-11-20 2015-11-17 Universal Display Corporation Organic electroluminescent materials and devices
KR101682765B1 (ko) * 2013-08-27 2016-12-05 주식회사 엘지화학 아민계 화합물 및 이를 포함하는 유기 발광 소자
KR101682766B1 (ko) * 2013-08-27 2016-12-05 주식회사 엘지화학 아민계 화합물 및 이를 포함하는 유기 발광 소자
KR20150026960A (ko) * 2013-08-30 2015-03-11 간토 가가꾸 가부시키가이샤 정공 수송 재료
TW201512373A (zh) * 2013-08-30 2015-04-01 Kanto Kagaku 化合物及有機電致發光元件
US10662193B2 (en) 2014-01-21 2020-05-26 Ac Immune Sa Carbazole and carboline compounds for use in the diagnosis, treatment, alleviation or prevention of disorders associated with amyloid or amyloid-like proteins
KR20150098181A (ko) * 2014-02-17 2015-08-27 삼성디스플레이 주식회사 유기 일렉트로루미네센스 소자
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
KR102560940B1 (ko) 2015-06-17 2023-08-01 삼성디스플레이 주식회사 모노 아민 유도체 및 이를 포함하는 유기 전계 발광 소자
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
KR101614738B1 (ko) * 2015-11-02 2016-04-22 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP3423542B1 (de) 2016-03-03 2020-07-22 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
CN105669466B (zh) * 2016-03-16 2018-08-10 上海道亦化工科技有限公司 一种基于荧蒽的化合物及其有机电致发光器件
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US20180370999A1 (en) 2017-06-23 2018-12-27 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
KR102608415B1 (ko) 2018-04-27 2023-12-01 삼성디스플레이 주식회사 다이아민 화합물을 포함한 유기 발광 소자 및 다이아민 화합물
CN108863918B (zh) * 2018-06-19 2022-02-11 长春海谱润斯科技股份有限公司 一种芳胺衍生物及其有机电致发光器件
KR102630639B1 (ko) 2018-06-20 2024-01-30 삼성디스플레이 주식회사 다이아민 화합물을 포함한 유기 발광 소자 및 다이아민 화합물
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
CN112794798A (zh) * 2019-11-14 2021-05-14 材料科学有限公司 氘化芳香族化合物的中间产物及利用该中间产物的氘化芳香族化合物的制备方法
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A3 (en) 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPH1135532A (ja) * 1997-05-19 1999-02-09 Canon Inc 有機化合物及び該有機化合物を用いた発光素子
JPH11111460A (ja) 1997-10-06 1999-04-23 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
US6242115B1 (en) 1997-09-08 2001-06-05 The University Of Southern California OLEDs containing thermally stable asymmetric charge carrier materials
JP2003031371A (ja) 2001-07-17 2003-01-31 Mitsubishi Chemicals Corp 有機電界発光素子及び青色発光素子
JP2005112765A (ja) 2003-10-07 2005-04-28 Mitsui Chemicals Inc 複素環化合物および該化合物を含有する有機電界発光素子
JP2005290000A (ja) 2004-04-02 2005-10-20 Samsung Sdi Co Ltd フルオレン系化合物、及びそれを利用した有機電界発光素子
JP2006151844A (ja) 2004-11-26 2006-06-15 Canon Inc アミノアントリル誘導基置換化合物および有機発光素子
JP2006151979A (ja) 2004-11-29 2006-06-15 Samsung Sdi Co Ltd フェニルカルバゾール系化合物とその製造方法及び有機電界発光素子
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006128800A1 (en) 2005-05-30 2006-12-07 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
JP2007284431A (ja) 2006-03-20 2007-11-01 Semiconductor Energy Lab Co Ltd 芳香族アミン化合物、および芳香族アミン化合物を用いた発光素子、発光装置、電子機器
WO2007125714A1 (ja) 2006-04-26 2007-11-08 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP2007318101A (ja) 2006-05-29 2007-12-06 Samsung Sdi Co Ltd 有機発光素子および有機発光素子を備える平板表示装置
JP2008021687A (ja) 2006-07-10 2008-01-31 Mitsubishi Chemicals Corp 有機電界発光素子用材料、有機電界発光素子用組成物及び有機電界発光素子
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2009084512A1 (ja) * 2007-12-28 2009-07-09 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009292806A (ja) * 2008-05-07 2009-12-17 Chemiprokasei Kaisha Ltd 新規な9,10−ジフェニルアントラセン誘導体、それよりなるホール輸送材料、発光材料およびそれを用いた有機エレクトロルミネッセンス素子
WO2010013675A1 (ja) * 2008-07-28 2010-02-04 出光興産株式会社 有機発光媒体及び有機el素子
WO2010013676A1 (ja) * 2008-07-28 2010-02-04 出光興産株式会社 有機発光媒体及び有機el素子
WO2010122810A1 (ja) * 2009-04-24 2010-10-28 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20100123172A (ko) * 2009-05-14 2010-11-24 덕산하이메탈(주) 아릴아미노 구조를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517957B1 (en) * 1997-05-19 2003-02-11 Canon Kabushiki Kaisha Organic compound and electroluminescent device using the same
CN100397678C (zh) * 2000-12-26 2008-06-25 Lg化学株式会社 包含具有p-型半导体特性的有机化合物的电子器件
DE10203328A1 (de) * 2002-01-28 2003-08-07 Syntec Ges Fuer Chemie Und Tec Neue Triarylamin-Derivate mit raumfüllenden Flügelgruppen und ihre Einsatz in elektro-fotografischen und organischen elektrolumineszenten Vorrichtungen
JP2006096964A (ja) * 2003-11-07 2006-04-13 Sony Corp 有機発光材料および有機材料の製造方法
CN1906267A (zh) * 2003-11-07 2007-01-31 索尼株式会社 有机发光材料和制备有机材料的方法
EP1790631A4 (en) * 2004-09-17 2007-10-31 Idemitsu Kosan Co AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE DERIVATIVE
KR20070068419A (ko) * 2004-10-29 2007-06-29 이데미쓰 고산 가부시키가이샤 방향족 아민 화합물 및 이를 이용한 유기 전기발광 소자
WO2006073059A1 (ja) * 2005-01-05 2006-07-13 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4358884B2 (ja) * 2005-03-18 2009-11-04 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008038607A1 (en) * 2006-09-28 2008-04-03 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, and light emitting element, light emitting device, and electronic device using the anthracene derivative
CN101679337A (zh) * 2007-05-21 2010-03-24 出光兴产株式会社 蒽衍生物以及利用该衍生物的有机电致发光元件
US8025815B2 (en) * 2007-07-07 2011-09-27 Idemitsu Kosan Co., Ltd. Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
JP5115061B2 (ja) * 2007-07-09 2013-01-09 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR100910153B1 (ko) * 2007-11-20 2009-07-30 (주)그라쎌 신규한 적색 인광 화합물 및 이를 발광재료로서 채용하고있는 유기발광소자
WO2009069717A1 (ja) * 2007-11-30 2009-06-04 Idemitsu Kosan Co., Ltd. アザインデノフルオレンジオン誘導体、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
EP2321376B1 (en) * 2008-06-30 2013-06-19 Universal Display Corporation Hole transport materials having a sulfur-containing group
KR101587307B1 (ko) * 2008-09-04 2016-01-20 유니버셜 디스플레이 코포레이션 백색 인광성 유기 발광 디바이스
EP2332931B1 (en) * 2008-09-23 2015-04-22 LG Chem, Ltd. Novel compound, method for preparing same and organic electronic device using same
US20100295445A1 (en) * 2009-05-22 2010-11-25 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
KR101322828B1 (ko) * 2009-11-05 2013-10-25 덕산하이메탈(주) 유기화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011055932A2 (ko) * 2009-11-05 2011-05-12 덕산하이메탈(주) 유기화합물 및 이를 이용한 유기전기소자, 그 단말

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPH1135532A (ja) * 1997-05-19 1999-02-09 Canon Inc 有機化合物及び該有機化合物を用いた発光素子
US6242115B1 (en) 1997-09-08 2001-06-05 The University Of Southern California OLEDs containing thermally stable asymmetric charge carrier materials
JPH11111460A (ja) 1997-10-06 1999-04-23 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2003031371A (ja) 2001-07-17 2003-01-31 Mitsubishi Chemicals Corp 有機電界発光素子及び青色発光素子
JP2005112765A (ja) 2003-10-07 2005-04-28 Mitsui Chemicals Inc 複素環化合物および該化合物を含有する有機電界発光素子
JP2005290000A (ja) 2004-04-02 2005-10-20 Samsung Sdi Co Ltd フルオレン系化合物、及びそれを利用した有機電界発光素子
JP2006151844A (ja) 2004-11-26 2006-06-15 Canon Inc アミノアントリル誘導基置換化合物および有機発光素子
JP2006151979A (ja) 2004-11-29 2006-06-15 Samsung Sdi Co Ltd フェニルカルバゾール系化合物とその製造方法及び有機電界発光素子
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006128800A1 (en) 2005-05-30 2006-12-07 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
JP2007284431A (ja) 2006-03-20 2007-11-01 Semiconductor Energy Lab Co Ltd 芳香族アミン化合物、および芳香族アミン化合物を用いた発光素子、発光装置、電子機器
WO2007125714A1 (ja) 2006-04-26 2007-11-08 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP2007318101A (ja) 2006-05-29 2007-12-06 Samsung Sdi Co Ltd 有機発光素子および有機発光素子を備える平板表示装置
JP2008021687A (ja) 2006-07-10 2008-01-31 Mitsubishi Chemicals Corp 有機電界発光素子用材料、有機電界発光素子用組成物及び有機電界発光素子
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2009084512A1 (ja) * 2007-12-28 2009-07-09 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009292806A (ja) * 2008-05-07 2009-12-17 Chemiprokasei Kaisha Ltd 新規な9,10−ジフェニルアントラセン誘導体、それよりなるホール輸送材料、発光材料およびそれを用いた有機エレクトロルミネッセンス素子
WO2010013675A1 (ja) * 2008-07-28 2010-02-04 出光興産株式会社 有機発光媒体及び有機el素子
WO2010013676A1 (ja) * 2008-07-28 2010-02-04 出光興産株式会社 有機発光媒体及び有機el素子
WO2010122810A1 (ja) * 2009-04-24 2010-10-28 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20100123172A (ko) * 2009-05-14 2010-11-24 덕산하이메탈(주) 아릴아미노 구조를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. W. TANG; S. A. VANSLYKE, APPLIED PHYSICS LETTERS, vol. 51, 1987, pages 913
See also references of EP2527334A4

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120302762A1 (en) * 2011-05-27 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Carbazole Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
JP2013010749A (ja) * 2011-05-27 2013-01-17 Semiconductor Energy Lab Co Ltd カルバゾール化合物、発光素子、発光装置、電子機器、および照明装置
US9079855B2 (en) * 2011-05-27 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Carbazole compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2013118846A1 (ja) 2012-02-10 2013-08-15 出光興産株式会社 芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器
US9871203B2 (en) 2012-02-10 2018-01-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element and electronic device
US9966539B2 (en) 2012-08-31 2018-05-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US10629823B2 (en) 2012-11-26 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9761812B2 (en) 2012-11-26 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9755156B2 (en) 2012-12-26 2017-09-05 Idemitsu Kosan Co., Ltd. Oxygen-containing fused ring amine compound, sulfur-containing fused ring amine compound and organic electroluminescence device
WO2014104144A1 (ja) * 2012-12-26 2014-07-03 出光興産株式会社 含酸素縮合環アミン化合物、含硫黄縮合環アミン化合物及び有機エレクトロルミネッセンス素子
JPWO2014104144A1 (ja) * 2012-12-26 2017-01-12 出光興産株式会社 含酸素縮合環アミン化合物、含硫黄縮合環アミン化合物及び有機エレクトロルミネッセンス素子
US10270040B2 (en) 2012-12-26 2019-04-23 Idemitsu Kosan Co., Ltd. Oxygen-containing fused ring amine compound, sulfur-containing fused ring amine compound and organic electroluminescence device
JP5753635B1 (ja) * 2013-07-12 2015-07-22 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2015092581A (ja) * 2013-07-12 2015-05-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2015004875A1 (ja) * 2013-07-12 2015-01-15 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2015120679A (ja) * 2013-08-30 2015-07-02 日本放送協会 化合物および有機エレクトロルミネッセンス素子
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3916822A1 (en) 2013-12-20 2021-12-01 UDC Ireland Limited Highly efficient oled devices with very short decay times
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US9660202B2 (en) 2013-12-27 2017-05-23 Samsung Display Co., Ltd. Organic electroluminescence device
US10333076B2 (en) 2014-09-25 2019-06-25 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US10333075B2 (en) 2014-09-25 2019-06-25 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US9972787B2 (en) 2014-09-25 2018-05-15 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US10347844B2 (en) 2014-11-07 2019-07-09 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US10937969B2 (en) 2014-11-07 2021-03-02 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP4060757A1 (en) 2015-06-03 2022-09-21 UDC Ireland Limited Highly efficient oled devices with very short decay times
JP2017010969A (ja) * 2015-06-17 2017-01-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2017022196A (ja) * 2015-07-08 2017-01-26 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
KR101516062B1 (ko) 2015-04-29
US20120319091A1 (en) 2012-12-20
CN102712612A (zh) 2012-10-03
EP2527334A4 (en) 2013-10-16
EP2527334A1 (en) 2012-11-28
TW201139402A (en) 2011-11-16
JPWO2011090149A1 (ja) 2013-05-23
KR20120096097A (ko) 2012-08-29

Similar Documents

Publication Publication Date Title
KR101516062B1 (ko) 방향족 아민 유도체 및 그것을 이용한 유기 전기 발광 소자
JP6807341B2 (ja) アミン誘導体、有機発光材料及びそれを用いた有機エレクトロルミネッセンス素子
KR102139423B1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
KR102134523B1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
JP5329429B2 (ja) アザインデノフルオレンジオン誘導体、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP5619853B2 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP6088161B2 (ja) 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
EP2371812B1 (en) Indenofluorenedione derivative, material for organic electroluminescent element, and organic electroluminescent element
TWI502048B (zh) 具有9,10-二氫吖啶環構造的化合物及有機電致發光元件
KR101447961B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
TWI393705B (zh) Compounds containing m-carbazole phenyl and their use
KR101401639B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
TW201345877A (zh) 新穎之聯三伸苯衍生物及使用該衍生物的有機電致發光元件
JP6814156B2 (ja) 有機エレクトロルミネッセンス素子
CN107534093A (zh) 有机电致发光器件
KR20170082995A (ko) 화합물 및 이를 포함하는 유기 전자 소자
TWI790287B (zh) 有機電致發光元件
KR20210010409A (ko) 화합물 및 이를 포함하는 유기 발광 소자
TW201840811A (zh) 有機電致發光元件
KR102181841B1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
KR20140004549A (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
JP6672774B2 (ja) 新規カルバゾール化合物及びその用途
KR20160041223A (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20190027343A (ko) 유기 발광 소자
KR101640478B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006762.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734755

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550964

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13522870

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127019055

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011734755

Country of ref document: EP