WO2011070750A1 - タイヤ形状検査方法、及びタイヤ形状検査装置 - Google Patents

タイヤ形状検査方法、及びタイヤ形状検査装置 Download PDF

Info

Publication number
WO2011070750A1
WO2011070750A1 PCT/JP2010/007038 JP2010007038W WO2011070750A1 WO 2011070750 A1 WO2011070750 A1 WO 2011070750A1 JP 2010007038 W JP2010007038 W JP 2010007038W WO 2011070750 A1 WO2011070750 A1 WO 2011070750A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
height
tire
mask
inspection
Prior art date
Application number
PCT/JP2010/007038
Other languages
English (en)
French (fr)
Inventor
英二 高橋
尚和 迫田
敏之 辻
玄 武田
将雄 村上
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US13/514,285 priority Critical patent/US9097514B2/en
Priority to CN201080055305.2A priority patent/CN103038601B/zh
Priority to EP10835677.5A priority patent/EP2500686B1/en
Publication of WO2011070750A1 publication Critical patent/WO2011070750A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/027Tyres using light, e.g. infrared, ultraviolet or holographic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the present invention relates to a tire inspection technique, and more particularly, to a tire shape inspection method and a tire shape inspection apparatus for inspecting a shape defect of a sidewall surface on which uneven marks are formed using an image processing technique.
  • the tire has a structure in which various materials such as rubber, chemical fiber and steel cord are laminated.
  • a bulge convex part
  • a dent Dent
  • a depression concave
  • Tires in which such shape defects as bulges and dents are generated need to be inspected and excluded from shipment due to safety problems or appearance problems.
  • a display mark (a mark that is normal unevenness) is formed on the sidewall surface of the tire to display the product type and size, the manufacturer's logo, and the like. Therefore, in the shape defect inspection process on the sidewall surface, it is necessary not to erroneously detect this display mark as a shape defect.
  • the surface shape of the tire is detected by capturing an image of line light irradiated on the surface of a relatively rotating tire and performing shape detection by a light cutting method based on the captured image.
  • a tire shape detecting device is disclosed.
  • This apparatus has a line light irradiation means for continuously irradiating a plurality of line lights from a direction different from the detection height direction in the light cutting line so that one light cutting line is formed on the surface of the tire, Imaging means for imaging in the direction in which the principal rays of the plurality of line lights irradiated on the surface of the tire are regularly reflected with respect to the surface of the tire.
  • This tire shape detection device detects a tire surface shape by irradiating a plurality of line lights continuously on the tire surface and capturing images of the irradiated line lights.
  • Patent Document 2 discloses a method for inspecting the three-dimensional shape of one or more figures formed by unevenness on the tire surface.
  • This method includes a step of measuring unevenness height for each area element in a predetermined tire surface area including these figures to obtain unevenness distribution data, and a figure template for each figure in advance.
  • a step of identifying a tire surface portion corresponding to the graphic model in the tire surface area from the three-dimensional shape data of the prepared graphic model and the acquired uneven distribution data, and specifying for each graphic Determining the degree of coincidence between the uneven distribution data of the tire surface portion and the three-dimensional data of the graphic model, and determining the pass / fail of the three-dimensional shape of the graphic based on the degree of coincidence.
  • This method for inspecting tire irregularities particularly calculates the degree of coincidence between the three-dimensional irregularity distribution data obtained by irradiating the tire surface with sheet light and the three-dimensional shape data of the graphic model created from the CAD data.
  • This is a technique for inspecting the presence or absence of defects.
  • a graphic model prepared in advance as a normal concavo-convex figure is used as teaching data.
  • the model is created from tire CAD data and mold CAD data.
  • Patent Document 2 if teaching data (reference data) is created using tire CAD data or mold CAD data, numerical values that are not affected by tire deformation or defects can be obtained.
  • the difficulty of the technique of Patent Document 1 may be avoided.
  • the tire is a rubber product and the tire shape inspection which is the subject of the invention of Patent Document 1 inspects a tire containing air, the amount of deformation of the tire from CAD data is large. Therefore, even if the coordinates of the CAD data and the coordinates of the tire corresponding thereto are matched, the amount of calculation and calculation becomes enormous, so that the method of Patent Document 2 is difficult to apply in practice.
  • An object of the present invention is to provide a tire shape inspection method and a tire shape inspection device.
  • the tire shape inspection method inspects a shape defect of a sidewall surface of an inspection tire using an image of the sidewall surface of a sample tire having a sidewall surface on which concave and convex marks are formed.
  • the tire shape inspection method includes a teaching work process and an inspection work process.
  • the teaching work step in a sample original image that is a two-dimensional image of a sidewall surface of the sample tire, a boundary line that is an outline of the uneven mark is detected, and a mask image that indicates a position of the boundary line is generated
  • the image generation step in the sample original image, the height of the remaining area excluding the area corresponding to the position of the boundary line indicated in the mask image is classified using a plurality of discrete height thresholds.
  • the inspection operation step includes a difference processing step of generating an unevenness removal image by removing the unevenness mark by subtracting the height offset image from an inspection image that is a two-dimensional image of a sidewall surface of the inspection tire; A shape defect inspection step of inspecting a shape defect on the sidewall surface of the inspection tire based on the unevenness removal image obtained as a result of the difference processing step.
  • FIG. 1 is the schematic showing the structure of the tire shape inspection apparatus by embodiment of this invention
  • (b) represents the three-dimensional arrangement
  • FIG. It is a schematic diagram showing the sidewall surface of a tire. It is a flowchart which shows the processing content of the tire shape inspection method by embodiment of this invention.
  • (A) is a flowchart which shows the mask image generation process in the tire shape inspection method by embodiment of this invention
  • (b) is a flowchart which shows the offset image generation process in the tire shape inspection method by embodiment of this invention. is there.
  • (A)-(d) is a schematic diagram which shows the process of the image processing in the tire shape inspection method by embodiment of this invention.
  • (A), (b) is a figure which shows the relationship between a height pixel profile and a label area
  • (A)-(c) is the schematic which shows the method of calculating
  • (A)-(e) is a figure which shows the interpolation method of the height pixel value to the position corresponding to a mask range in the tire shape inspection method by embodiment of this invention.
  • the tire shape inspection apparatus 1 captures an image of line light irradiated on the surface of a rotating tire T with a camera, and performs shape detection by a light cutting method based on the captured image. Measure the height of each part of T. Next, the tire shape inspection apparatus 1 replaces the measured height of each part of the tire T with a corresponding luminance value, and obtains a two-dimensional image (inspection image) of the surface of the tire T.
  • the tire shape inspection apparatus 1 uses the “inspection image” of the tire T and the “mask image” and “height offset image” of the sample tire (defect-free tire) to determine the sidewalls of the tire T.
  • the display mark formed on the surface is removed, and then a defect present on the surface of the tire T is inspected.
  • the “mask image” and “height offset image” are created using a “sample original image” obtained by imaging a sample tire. Details of the “sample original image”, “mask image”, and “height offset image” will be described later.
  • the tread surface and the sidewall surface of the tire T can be the measurement object, but in the present embodiment, the sidewall surface is the measurement object.
  • the sidewall surface of the tire T is a portion between a tread surface in contact with the road surface and a bead portion sandwiched between rims.
  • white portions are display marks (normal figures such as characters, logos, patterns, etc.) formed on the sidewall surface and can be considered as “normal uneven marks”.
  • corrugated mark is comprised by the unevenness
  • the tire shape inspection apparatus 1 includes a tire rotating machine 2, sensor units (imaging units) 3 (3a, 3b), an encoder 4, an image processing device 5, and the like.
  • the tire rotating machine 2 is a rotating device provided with a motor or the like that rotates the tire T that is the object of shape inspection around the rotation axis.
  • the tire rotating machine 2 rotates the tire T at a rotation speed of 60 rpm, for example. During this rotation, the surface shape in a range over the entire circumference of the sidewall surface is detected by the sensor unit 3 described later.
  • the tire shape inspection apparatus 1 includes two sensor units 3 (3a, 3b) used for measuring the shapes of the two sidewall surfaces of the tire T.
  • Each of the sensor units 3a and 3b incorporates a line light irradiation unit that irradiates the surface of the rotating tire T with line light (light cutting line), an imaging camera 6 that captures an image of the line light reflected from the surface of the tire T, and the like. Unit.
  • FIG. 1 (b) is a diagram schematically showing the arrangement of devices provided in the sensor unit 3.
  • the Y axis represents the radial direction of the circular tire T at the shape detection position of the tire T.
  • the Z axis represents the detected height direction from the sidewall surface at the shape detection position of the tire T (the direction of the detected surface height).
  • the X axis represents a direction orthogonal to the Y axis and the Z axis. That is, in the sensor unit 3 used for detecting the shape of the sidewall surface of the tire T, the Z axis is a coordinate axis parallel to the rotation axis of the tire T, and the Y axis is the direction of the normal to the rotation axis of the tire T. Is a coordinate axis representing. Note that the correspondence relationship between the tire T and the coordinate axis may vary depending on the manner of support of the camera 6.
  • the line light irradiation section includes a plurality (three in FIG. 1B) of line light sources 7a, 7b, and 7c.
  • the line light irradiation unit irradiates a plurality of line lights so that one light cutting line is formed on one line Ls on the surface of the tire T by the line light sources 7a, 7b, and 7c. It is.
  • the plurality of line lights are irradiated from a direction different from the detection height direction (Z-axis direction) in the one line Ls (light cutting line).
  • the plurality of line lights are irradiated so as to be continuous on the one line Ls.
  • the imaging camera 6 includes a camera lens 8 and an imaging element 9, and displays a plurality of line light images v1 (images of light cutting lines on one line Ls) irradiated continuously to the sidewall surface of the tire T. Take an image.
  • the tire rotating machine 2 is provided with an encoder 4.
  • the encoder 4 is a sensor that detects the rotation angle of the rotation shaft of the tire rotating machine 2, that is, the rotation angle of the tire T, and outputs the detected rotation angle as a detection signal.
  • the detection signal is used for controlling the imaging timing of the imaging camera 6 provided in the sensor units 3a and 3b.
  • the image processing device 5 receives a detection signal output from the encoder 4 every time the tire T rotating at a speed of 60 rpm rotates by a predetermined angle, and the sensor units 3a and 3b receive the detection signal in accordance with the reception timing of the detection signal. 1 is controlled so that the shutter of the imaging camera 6 is released. Thereby, imaging is performed at a predetermined imaging rate that matches the reception timing of the detection signal.
  • the image processing device 5 may be incorporated in the sensor units 3a and 3b.
  • the control signal from the unit driving device and the rotation speed pulse signal from the encoder 4 are inputted into each sensor unit 3a, 3b, and the final result is sent from each sensor unit 3a, 3b to the host computer. Output each.
  • the unit driving device may not have a role of issuing an instruction to release the shutter.
  • the unit driving device may issue a command such as a laser lighting instruction or a measurement start instruction to the sensor units 3a and 3b. You may have.
  • the instruction to release the shutter is in a form that is controlled by the image processing device 5 incorporated in each of the sensor units 3a and 3b in synchronization with the pulse signal from the encoder 4 in accordance with the amount of movement by the rotation of the tire T. May be.
  • Signals (1-line images) from the sensor units 3a and 3b are input to the image processing device 5.
  • the image processing device 5 applies the principle of the triangulation method to the input one-line image, thereby obtaining the height distribution information of the portion irradiated with the optical cutting line (one line portion on the sidewall surface). obtain.
  • the image processing device 5 replaces the measured height of each part on the surface of the tire T with a corresponding luminance value, and stores each luminance value in a built-in frame memory (imaging memory). A two-dimensional image (inspection image) of the surface of T is obtained.
  • the surface height measurement value (luminance value) of each part in the entire circumferential range (360 ° range) of the sidewall surface represents the radial direction of the tire T.
  • Y This is information arranged in a two-dimensional coordinate system including an axis and an X axis (frame) representing the circumferential direction of the tire T.
  • the height distribution information corresponds to the graph illustrated in FIG. 7B
  • the inspection image and the sample original image correspond to the image illustrated in FIG. 7A.
  • the value on the vertical axis (height pixel value) in the height distribution information and the luminance value of the inspection image have a one-to-one correspondence and are used synonymously in the following description.
  • the image processing apparatus 5 of the present embodiment removes only the normal concavo-convex mark from the inspection image based on the obtained inspection image and the height distribution information corresponding to one line in the inspection image, and after the removal.
  • the image processing device 5 is realized by hardware configured by, for example, a personal computer.
  • FIG. 3 is a flowchart showing the processing contents executed by the image processing apparatus 5.
  • the processing performed by the image processing device 5 includes an “inspection work process” for inspecting irregularities present on the sidewall surface of the tire online. Furthermore, this process has a “teaching work process” as a previous process prior to the inspection work process.
  • the inspection work process includes a “difference processing process (S6)” and a “shape defect inspection process (S7)”.
  • difference processing step (S6) the height offset image is subtracted from the inspection image that is a two-dimensional image of the sidewall surface of the inspection tire, and the boundary region represented by the mask image is removed.
  • shape defect inspection step (S7) each step S6, S7 for inspecting the shape defect of the sidewall surface of the inspection tire based on the normal uneven mark removal image obtained as a result of the difference processing step (S6), This is performed by a difference processing unit and a shape defect inspection unit provided in the image processing apparatus 5.
  • the teaching work process includes a “mask image generation process (S2)” and a “height offset image generation process (S3)”.
  • the mask image generation step (S2) in the sample original image that is a two-dimensional image of the sidewall surface of the sample tire, a boundary line that is an outline of the normal uneven mark is detected, and a mask image indicating the position of the boundary line is generated.
  • the height offset image generation step (S3) in the sample original image, the height of the remaining area excluding the area corresponding to the position of the boundary line shown in the mask image is determined using a plurality of discrete height thresholds.
  • Each of the steps S2 and S3 is performed by a mask image generation unit and a height offset image generation unit provided in the image processing apparatus 5.
  • a setup operation is performed as a registration operation before online inspection for each tire type (TireID).
  • This setup operation is an operation for registering design information related to the tire shape, such as the tire diameter and the width of the contact surface (tread surface) that is different for each TireID, and is indispensable when there are multiple types of tires. is there.
  • the above-described setup work is performed prior to the inspection work process.
  • the height image (raw data) obtained here may have “undetected points”.
  • the undetected point is a point where the height coordinate cannot be obtained because the sheet light does not return to the camera due to the step difference of the normal concave / convex mark and the received light intensity is below a specified value.
  • height coordinate 0 black point
  • a linear interpolation value is calculated using the height coordinates of two pixels that have already been detected in the vicinity of the undetected point and are arranged in the tire circumferential direction with the undetected point in between.
  • the interpolation value is embedded as the coordinates of the undetected point.
  • the method for determining the coordinates of undetected points is not limited to this.
  • the height in the vicinity of the undetected point is copied as it is (zero-order approximation), and a plane is formed by four points surrounding the undetected point (two points in the circumferential direction and two points in the radial direction) to perform plane interpolation.
  • the coordinates of the undetected point can be determined by such a method. If the height coordinates of undetected points are left undefined, an unexpectedly large differential value will appear in the next smooth differential process, which will eventually detect the position (boundary line) of the normal concavo-convex mark. Care must be taken because it may have adverse effects.
  • the height image after the linear interpolation includes low-order curve components in the tire radial direction and the tire circumferential direction. . If the next smooth differentiation process is performed with the curved component left, the differential value increases due to the curved component. In some cases, it is difficult to distinguish the differential value resulting from the curved component from the differential value of the boundary line of the normal uneven mark that is originally desired to be detected. For this reason, it is preferable to perform a planarization process for removing the curved component from the height image after linear interpolation.
  • This low-order bending component which is expected to reflect tire design CAD data and mold CAD data, can be corrected using a shape model from these CAD data.
  • cooperation with CAD data is difficult in terms of system, and in this embodiment, an ideal curved component is acquired from the acquired height image itself.
  • the curved component is mathematically modeled by least square fitting with a quadratic curve of the cross-sectional profile shape, and the curved component that has been mathematically modeled is removed from the height image after the linear interpolation.
  • This mask image generation step (S2) in FIG. 3 will be described.
  • This mask image generation step (S2) is shown as a flowchart of mask image generation in FIG.
  • a differential filter two-dimensional smooth differential filter
  • a Sobel filter or a Laplacian filter is applied to the planarized height image (hereinafter referred to as a sample original image) obtained in the above process (S21).
  • a processed differential image is obtained (S22).
  • the average value (Ave) and variance (1 ⁇ ) are obtained for each line of the differential value image thus obtained.
  • a binarization threshold that can separate the boundary line of the normal uneven mark from the differential value like background noise is determined.
  • the image of the differential value is binarized based on this binarization threshold. Thereby, a binarized image showing the boundary line of the normal uneven mark is obtained (S23).
  • the isolated pixel points in the obtained binarized image are removed by the isolated point removal filter, and further, the boundary portion of the normal concavo-convex mark in the image obtained by removing the isolated pixel points It is preferable to perform a process of expanding with an expansion filter.
  • the image obtained through the above processing is a mask image in which the value of the binary pixel point in the boundary line portion is 1 and the value of the binary pixel point in the portion other than the boundary line is 0, and FIG. As shown in This mask image is stored in a memory in the image processing apparatus 5 (S24).
  • This height offset image generation step (S3) in FIG. 3 will be described with reference to FIG. 4, FIG. 6, and FIG.
  • This height offset image generation step (S3) is shown in FIG. 4B as a flowchart of offset image generation.
  • a sample original image that has undergone linear interpolation and planarization is used (S31).
  • a portion indicated by a solid line is a part of the one-line phase adjustment line and indicates a normal uneven mark portion.
  • the graph of FIG. 7B shows a height pixel profile (cross-sectional shape) of the one-phase phase adjustment line schematically shown in FIG. 7A, for example.
  • the low-frequency height pixel change (low-frequency component), which is the undulation of the sidewall surface, exists as a whole, and the height pixel value changes abruptly at the normal uneven mark portion.
  • the low-frequency height pixel change is, for example, a change indicated by a low frequency of about 20th to 70th order (about 20th to 70th order after discrete Fourier transform).
  • the phase adjustment line will be described.
  • the final setup data (teaching data) is acquired from the height image (raw data) of the sidewall surface of the sample tire, which is a tire with no defects, by the image processing shown in this embodiment. And register with the device.
  • the phase difference is calculated from the shape difference between the two images in the “phase adjustment line”.
  • An arbitrary line for that purpose (for example, designated in the setup) is set as a phase adjustment line.
  • each normal uneven mark shown here is substantially the same height, but is on (formed) the low frequency height pixel change (Runout component) described above, so the low frequency The height is different according to the change in the pixel height. This will be described in more detail with reference to the graph of FIG.
  • a thick solid line P1 indicates a low-frequency height pixel change (Runout component) in the surface portion of each normal concavo-convex mark.
  • the thick solid line P1 is a portion other than the normal uneven mark of the original height pixel profile near the height pixel value 0. Substantially continuous with the runout component (base runout component) in the portion.
  • the low-frequency height pixel change (Runout component) in the surface portion of the normal concavo-convex mark is substantially the same as the base Runout component. It turns out that it is continuous.
  • the difference (P1 ⁇ P2) between the thick solid line P1 and the thick solid line P2 at this time becomes a fixed height value (height threshold) Pth.
  • a thick solid line Q1 indicating a low-frequency height pixel change (Runout component) on the surface portion of the normal uneven mark on the right is offset to the position of the thick solid line Q2, and the thick solid line R1 is the thick solid line R2. Is offset to the position of.
  • the thick solid line Q2 and the thick solid line R2 after the offset are not continuous with the base runout component. Therefore, another height fixed value is obtained by changing the offset amount of the height profile so that the thick solid line R2 is continuous with the base runout component.
  • the offset amount of the height profile is changed so that the thick solid line Q2 is continuous with the base runout component to obtain another height fixed value. In this way, a plurality of discrete height thresholds are obtained (S32).
  • Such a plurality of discrete fixed height values may be determined for each of the divided regions by dividing the sidewall surface into a plurality of regions, in addition to determining them in common over the entire sidewall.
  • a height image is displayed by a display means, and a GUI (mouse operation, etc.) is used while taking into account the meaning of characters and the layout of figures by human and visual inspection.
  • a rectangular area or the like is set as an area to be divided.
  • FIG. 6A is a graph obtained by enlarging several hundred points along the X coordinate in the circumferential direction of the tire in one line of the height profile in the circumferential direction of the sidewall in the sample original image.
  • the rectangular wave in the graph is obtained by superimposing and displaying in the graph the image at the same position as the height profile among the inverted mask images generated by inverting the previously obtained mask image.
  • the inverted mask image is a rectangular wave that oscillates between height pixel values 0 and 1 in the same manner as the mask image before inversion. However, in order to make the graph easier to see, the inverted mask image is moved in the positive direction of the height pixel value (Y The axis is moved upward).
  • the value of the binary pixel point in the boundary line portion is 0, and the value of the binary pixel point in the portion other than the boundary line is 1, so in FIGS.
  • a region corresponding to a height pixel value of 0 in the mask image indicates the boundary line portion of the normal uneven mark.
  • a label number is assigned to each area corresponding to the height pixel value 1 divided by the boundary line portion, and these areas are determined as label areas.
  • the longest label area (in the case of FIG. 6B, the leftmost label area of the graph) W1 is registered as the start area of the height offset calculation. Thereafter, an average height pixel value in the vicinity including the end point in contact with the boundary line of the normal concavo-convex mark is obtained from the height profile of FIG. Next, an average height pixel value in the adjacent label region W2 is determined with the boundary line interposed therebetween (via the boundary line). After that, the height difference between the area pair composed of the label area W1 and the label area W2 is calculated. This height difference is a difference between the two height pixel values obtained as described above. The height offset value of the average height pixel value in the longest label area (calculation start area) W1 is set to zero.
  • the difference between the height difference between the pair of regions consisting of the label region W1 and the label region W2 is compared with the plurality of discrete fixed height values acquired earlier, and the difference between the height difference is the smallest (
  • a substantially fixed height value is assigned as the height offset value of the label area W2 adjacent to the longest label area W1.
  • the fixed height value having the smallest difference is assigned as the height offset value of the region W2 in the rearrangement order among the pair of label regions constituting the region pair.
  • the assigned height offset value is recorded in the offset image memory area.
  • the same method is used to assign height offset values to all the remaining label areas W3, W4,. That is, for the remaining plurality of region pairs other than the region pair of region W1 and region W2 (for example, a region pair composed of region W2 and region W3, a region pair composed of region W3 and region W4, etc.)
  • the height fixed value having the smallest difference from the height difference of each area pair is assigned as the height offset value of the label area whose arrangement order in each area pair is later (S33).
  • the height offset image shown in FIG. 5B is obtained by assigning the height offset values to the lines of the entire range of the sample original image (S34).
  • the “discrete multiple fixed height values” as described above If the height image acquired during teaching has no low-frequency runout component and the normal unevenness mark has the same value as the tire design CAD data itself, the “discrete multiple fixed height values” as described above.
  • the obtained sample original image (height image) itself is registered as a height offset image without using, or the obtained height difference itself without using "discrete multiple fixed height values” (The height difference itself between adjacent regions) may be set as a relative offset value.
  • the mask image and the offset image are registered in the image processing apparatus 5, and the teaching work step is completed.
  • the teaching work step is completed.
  • an inspection work process for inspecting irregularities (Bulge / Dent) on the sidewall surface of the tire to be inspected is performed.
  • the inspection operation process will be described below with reference to FIGS. 3 and 5.
  • image matching is performed so that normal uneven marks (for example, logos) existing on the sidewall surface are matched, and the phase difference is corrected.
  • the height offset image registered at the time of teaching is subtracted from the inspection image. Thereby, the height image of the sidewall surface from which the height of the normal unevenness mark is subtracted is obtained.
  • the boundary line portion is determined based on the mask image. Interpolate. The interpolation process will be described below.
  • the average height coordinates of two positions sandwiching the mask range of the mask image that is, both ends of the normal uneven mark
  • the average height coordinate value is obtained, and the average height coordinate is adopted as the height coordinate value of the mask range to perform linear interpolation.
  • the maximum in a partial range not more than the mask range length with respect to the height pixel value in the mask range of the mask image By selecting a value or a minimum value and adopting the selected height coordinate value as the height coordinate of the mask range, all the height coordinates in the mask range are interpolated.
  • the shape defect inspection step (S7) of FIG. 3 is performed using the image after the character unevenness removal.
  • the image after the character unevenness removal shown in FIG. 5 (d) only the height change of the normal unevenness mark is removed, and the height of the convex defect portion shown in white and oval on the left side of the image is as shown in FIG. 5 (a). It remains unchanged compared to the original image (inspection image).
  • the shape defect inspection step (S7) the convex defect portion or the concave defect portion remaining in the image after the character unevenness removal is thus detected.
  • shape defect inspection step (S7) an existing image processing method can be employed. Defect extraction by binarization and defect extraction by pattern matching may be employed.
  • the tire shape inspection the tire shape can be inspected without being affected by the deformation unique to the rubber product or the deformation caused by inflating the tire.
  • each process such as the mask image generation process (S2) and the height offset image generation process (S3) may be automatically performed, or may be performed manually by the operator with reference to the image. Moreover, you may repeat each process in multiple times.
  • an inspection image, a mask image, a height offset image, an image after removing the normal concave / convex mark, and the like are displayed in parallel or by switching, and the operator confirms each image and originally connects it. It may be possible to confirm whether the boundary line to be made is not cut and whether an inappropriate part is recognized as the boundary line.
  • the set height offset image is confirmed, and it is confirmed whether or not one type of fixed height value set for each label is abnormal. If there is a defective part, it is preferable to change the height offset value by specifying the correction area (increase or decrease by ⁇ 1), and when corrected, recalculate the height offset image.
  • the image after removing the normal irregularity mark shows the flattened state when actually inspecting online based on the teaching information set this time, and after checking the height image after processing, if there is a defective part, It is desirable to return to the confirmation and correction work of the mask image or the height offset image and perform correction and recalculation, respectively.
  • the mask image generated in the present embodiment may have a mask range (mask area) larger than the concavo-convex defect (Bulge / Dent) to be detected.
  • the concavo-convex defect to be detected may be missed because it is masked. Therefore, it is preferable to provide a process for interpolating the height coordinate value. More preferably, the interpolation processing of the mask range is changed depending on the size (length) of the mask range.
  • the X-axis indicates the tire rotation direction (circumferential direction), and the Y-axis indicates the amount of change in the height of the tire surface.
  • a height image of the tire sidewall surface is obtained by subtracting the height offset image registered during teaching from the inspection image.
  • FIG. 8A shows a part of one line of the obtained height image.
  • FIG. 8B shows a portion corresponding to the height image of FIG. 8A in the obtained reverse mask image.
  • the value of the binary pixel point in the mask range corresponding to the normal uneven mark in the height image is 0.
  • the height coordinate value of the position corresponding to the mask range is all 0, so the height coordinate value must be interpolated at the masked position.
  • a method of interpolating the height coordinate value three interpolation processes of linear interpolation, average interpolation, and envelope interpolation are conceivable.
  • the height coordinate value is interpolated by linear interpolation or average interpolation.
  • the position corresponding to the mask range of the post-mask height image has a length exceeding several pixels (for example, 10 pixels or more), the height coordinate value is interpolated by envelope interpolation.
  • the linear interpolation is the height coordinate value of two positions sandwiching the position (region) corresponding to the mask range of the mask image, that is, the height coordinate values of both ends of the normal uneven mark.
  • This is an interpolation method in which values on a straight line that are connected by a straight line and change linearly are assigned as height coordinate values at positions corresponding to the mask range.
  • the average interpolation is the average of the height coordinate values of two positions sandwiching the position (area) corresponding to the mask range of the mask image, that is, the height coordinates of both ends of the normal uneven mark.
  • This is an interpolation method in which the average of the values is obtained and the average of the height coordinate values (average height coordinate value) is assigned as the height coordinate value of the position corresponding to the mask range.
  • the envelope interpolation is a method of setting a window as a partial range at a position (region) corresponding to a mask range along the X-axis direction, and setting the maximum in the window range. Is assigned as the height coordinate value of the position corresponding to the mask range for interpolation.
  • the window in the envelope interpolation is a range that overlaps at least part of the position corresponding to the mask range, is shorter than the mask range, and extends in the direction along the mask range (X-axis direction).
  • the mask range shown in the inverted mask image in FIG. 8B has a length of 40 pixels in the X-axis direction, for example.
  • the point with the smallest X coordinate (leftmost point) of the mask range is set as the window center point.
  • a range including the window center point and several pixels on the left and right of the window center point is set as a window, and the height image in FIG. 8A is set.
  • the window is set to a length of 21 pixels with the leftmost point of the mask range as the window center point.
  • the number of pixels in the window is desirably about half or less than the number of pixels in the mask range.
  • the maximum height coordinate value is detected within the window range set as described above, and the detected value is set as the height coordinate value of the position corresponding to the window center point, and the height after masking in FIG. Assign to an image.
  • the window center point is moved by one pixel in the X-axis direction, and a new window including the moved window center point is set by the method described above.
  • the maximum height coordinate value is detected within the set new window, and the detected value is assigned to the post-mask height image as the height coordinate value of the position corresponding to the window center point.
  • FIG. 8E shows a height image that has been subjected to the above-described envelope interpolation, and almost reproduces the outline of the profile of the normal concave / convex mark indicated by the height image of FIG. 8A.
  • the maximum height coordinate value in the window range is assigned as the height coordinate value of the position corresponding to the window center point, but the minimum height coordinate value is assigned to the height coordinate of the mask range. It may be assigned as a value.
  • the obtained height image substantially reproduces the outline of the profile of the base portion of the normal uneven mark indicated by the height image in FIG.
  • the global unevenness change (indicated by the low frequency component) of the mask range on the tire sidewall surface is evaluated. Can do.
  • the average of the maximum value and the minimum value of the height coordinate values within the window range can be assigned as the height coordinate value of the position corresponding to the window center point.
  • the tire shape inspection method inspects a shape defect on a sidewall surface of an inspection tire using an image of the sidewall surface of a sample tire having a sidewall surface on which concave and convex marks are formed.
  • the tire shape inspection method includes a teaching work process and an inspection work process.
  • the teaching work step in a sample original image that is a two-dimensional image of a sidewall surface of the sample tire, a boundary line that is an outline of the uneven mark is detected, and a mask image that indicates a position of the boundary line is generated
  • the image generation step in the sample original image, the height of the remaining area excluding the area corresponding to the position of the boundary line indicated in the mask image is classified using a plurality of discrete height thresholds.
  • a height offset image generating step for generating a height offset image indicating the height of the concave and convex marks.
  • the inspection work step includes subtracting the height offset image from an inspection image that is a two-dimensional image of a sidewall surface of the inspection tire, thereby removing the uneven mark from the inspection image to generate an unevenness removal image.
  • a processing step, and a shape defect inspection step for inspecting a shape defect on a sidewall surface of the inspection tire based on the unevenness removal image.
  • a differential image is obtained by applying a differential filter to emphasize the boundary line portion of the concave and convex marks, and a predetermined threshold is applied to the obtained differential image. May be used to generate the mask image by binarizing the differential image.
  • the threshold value can be set only in one direction of the differential direction, so that the boundary line portion of the concave and convex marks can be stably Can be extracted.
  • the undetected points in the sample original image are interpolated to remove the undetected points, and the undetected points are determined based on the profile shape of the sidewall surface.
  • the curved component of the sidewall surface may be removed from the removed image, and the image from which the undetected points are removed may be planarized.
  • a height difference between label areas in an area pair composed of adjacent label areas is obtained in order from an area pair including the calculation start area, and (V) the discrete plural heights Among the threshold values, a height threshold value closest to the height difference of each region pair is set as a height offset value of a label region whose arrangement order is later in a pair of label regions constituting each region pair, and the sample
  • the height offset image may be generated by repeating the steps (I) to (V) for all line data of the original image.
  • This configuration shows an example of a procedure (step) for generating an offset image.
  • the mask image is superimposed on the height offset image, and for each of the regions surrounded by the boundary indicated by the mask image, the highest number of heights in the region are present.
  • the offset value may be set as the height offset value of the entire area.
  • the height offset image generating step line data along the tire circumferential direction of the sample original image is extracted, and the extracted line data is duplicated and shifted in the luminance height direction.
  • a duplication line is generated, and the duplication line is such that a curve indicating a low frequency component other than the concave / convex mark portion of the extracted line data and a curve showing the low frequency component of the concave / convex mark portion of the shifted duplication line are substantially continuous.
  • Data may be shifted, the shift amount at that time may be determined, and the shift amount may be used as the discrete height threshold.
  • the height dimension value of the uneven mark obtained from the design drawing of the sample tire or the mold CAD data, or the height dimension of the uneven mark of the sample tire Actual measurement values may be used as the discrete height thresholds.
  • the inspection work step further includes an interpolation step of interpolating height coordinate values in a mask range masked by the mask image used in the difference processing step in the image obtained in the difference processing step. It may be.
  • this method includes the above-described interpolation process, even if there is a mask range (mask area) larger than the uneven defect (Bulge / Dent) to be detected in the generated mask image, the unevenness to be detected It can suppress that a defect is overlooked.
  • the height coordinate value at two positions sandwiching the mask range is selected and linearly changed from one height coordinate value to the other height coordinate value.
  • Interpolation may be performed by assigning the obtained height coordinate value to the mask range.
  • an average obtained by selecting height coordinate values at two positions sandwiching the mask range and obtaining an average value of one height coordinate value and the other height coordinate value You may interpolate by assigning a height coordinate value to the mask range.
  • a window that is at least partly overlapped with the mask range, is shorter than the mask range, and extends in a direction along the mask range is provided, and the window is disposed in the mask range. While moving from one end to the other end, the maximum height coordinate value or the minimum height coordinate value of the position corresponding to the window is selected in the inspection image, and the selected height coordinate value is set in the mask range. You may interpolate by assigning.
  • the processing method for interpolating the mask range may be changed depending on the size (length) of the mask range. For example, when the mask range is small (short), the height coordinate value is interpolated using linear interpolation as in (9) or average interpolation as in (10) above, and the mask range is large (long). In this case, it is also possible to select to interpolate the height coordinate value by envelope interpolation as described in (11) above.
  • the tire shape inspection apparatus inspects a shape defect of the sidewall surface of the inspection tire using an image of the sidewall surface of the sample tire having the sidewall surface on which the concave and convex marks are formed.
  • the tire shape inspection device includes an imaging unit that captures a two-dimensional image of the sidewall surface, and a sample original image that is a two-dimensional image of the sidewall surface of the sample tire.
  • a mask image generation unit that detects and generates a mask image indicating the position of the boundary line; and a height of a remaining area in the sample original image excluding an area corresponding to the position of the boundary line indicated in the mask image
  • a height offset image generation unit that generates a height offset image indicating the height of the concave-convex mark, which is an image obtained by classifying the height using a plurality of discrete height thresholds, and The uneven mark is removed from the inspection image by subtracting the height offset image from the inspection image which is a two-dimensional image of the sidewall surface of the inspection tire.
  • a difference processing section for generating a convex removed image, on the basis of the irregularities removed image, and a, a shape defect inspection unit for inspecting the shape defect in the sidewall surface of the test tire.
  • This device can reliably inspect for irregularities on the sidewall surface without being affected by marks (characters, logos, patterns, etc.) that are normal irregularities present on the sidewall surface of the tire.
  • the imaging unit captures a line light irradiation unit that irradiates the side wall surface with one light cutting line, and an image (reflected light) of the line light irradiated on the sidewall surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

 サンプルタイヤのサイドウォール面の二次元画像であるサンプル原画像において、凹凸マークの輪郭である境界線を検出し、境界線の位置を示すマスク画像を生成する。ついで、サンプル原画像において、マスク画像に示された境界線の位置に対応する領域を除く残りの領域の高さを離散的な複数の高さ閾値を用いて分類することで得られる画像であって前記凹凸マークの高さを示す高さオフセット画像を生成する。そして、検査タイヤのサイドウォール面の二次元画像である検査画像から高さオフセット画像を差し引くことにより、検査画像から凹凸マークを除去して凹凸除去画像を生成する。この凹凸除去画像に基づいて、検査タイヤのサイドウォール面の形状欠陥を検査する。

Description

タイヤ形状検査方法、及びタイヤ形状検査装置
 本発明は、タイヤの検査技術に関し、特に、凹凸のあるマークが形成されたサイドウォール面の形状欠陥を画像処理の手法を用いて検査するタイヤ形状検査方法及びタイヤ形状検査装置に関するものである。
 タイヤは、ゴムや化学繊維、スチールコード等の各種材料が積層された構造を有している。その積層構造に不均一な部分が存在すると、空気が充填されたときに相対的に耐圧性の弱い部分においてバルジ(Bulge)と呼ばれる隆起部(凸部)や、デント(Dent)又はデプレッションと呼ばれる窪み部(凹部)が生じる。そのようなバルジやデント等の形状欠陥が生じるタイヤは、安全上の問題或いは外観不良の問題から、検査して出荷対象から除外する必要がある。
 そこで、タイヤ製造の最終工程(タイヤ材料を加硫した後の検査工程)では、タイヤ表面、特にサイドウォール面での凹凸形状不良の検査が行われている。なお、タイヤのサイドウォール面には、製品の型式やサイズ、メーカのロゴ等を表示する表示マーク(正常凹凸であるマーク)が形成されている。そのため、サイドウォール面の形状欠陥検査処理においては、この表示マークを形状欠陥として誤検知しないようにする必要がある。
 このような凹凸形状不良の検査は、従来、人手による目視検査と触手検査によって行われていたが、近年では、レーザ距離センサ、三次元形状計測装置、又はカメラによる画像検査等の自動化技術、及び正常凹凸であるマークに影響されない検査技術への取組みが行われている。
 例えば、特許文献1には、相対的に回転するタイヤの表面に照射したライン光の像を撮像し、その撮像画像に基づいて光切断法による形状検出を行うことによって前記タイヤの表面形状を検出するタイヤ形状検出装置が開示されている。この装置は、前記タイヤの表面に一の光切断線が形成されるように、該光切断線における検出高さ方向とは異なる方向から複数のライン光を連ねて照射するライン光照射手段と、前記タイヤの表面に照射された前記複数のライン光それぞれの主光線が前記タイヤの表面に対して正反射する方向において撮像する撮像手段と、を備えている。
 このタイヤ形状検出装置は、特に、タイヤ表面に複数のライン光を連ねて照射し、照射された複数のライン光の像を撮像することで、タイヤ表面形状を検出する。
 また、特許文献2には、タイヤ表面の、凹凸により形成された一以上の図形の三次元形状を検査する方法が開示されている。この方法は、これらの図形を含む、所定のタイヤ表面領域内の各面積要素について凹凸の高さを測定して凹凸分布データを取得する工程と、それぞれの図形に対して、図形の雛形として予め準備された図形モデルの三次元形状データと、取得された前記凹凸分布データとから、前記タイヤ表面領域のうち図形モデルに対応するタイヤ表面部分を特定する工程と、それぞれの図形に対して、特定されたタイヤ表面部分の凹凸分布データと図形モデルの三次元データとの一致度を求め、この一致度に基づいて前記図形の三次元形状の合否を判定する工程とを有する。
 このタイヤ凹凸図形の検査方法は、特に、シート光をタイヤ表面に照射して得られた三次元凹凸分布データと、CADデータから作成された図形モデルの三次元形状データとの一致度を計算することで、欠陥の有無を検査する技術である。本技術では、正常な凹凸図形(文字等)そのものの良否判定を行うため、正常な凹凸図形の雛形として予め準備された図形モデルをティーチングデータとして用いる。雛形は、タイヤCADデータや金型CADデータより作成される。
特開2008-221896号公報 特開2005-331274号公報
 特許文献1のタイヤ形状検出装置では、光切断法によってタイヤの表面形状を検出することができるので、タイヤ表面の凹凸形状を検出することが可能である。しかしながら、検出されたタイヤ表面の凹凸形状が、タイヤ表面に形成された正常な図形であるのか、欠陥であるのかを知ることができない。また、正常な図形の位置に欠陥が存在する場合、その欠陥を検出することはなおさら困難となる。
 そこで、特許文献2に開示されているように、タイヤCADデータや金型CADデータを用いてティーチングデータ(参照データ)を作成すれば、タイヤの変形や欠陥に影響されない数値を得ることができ、特許文献1の技術の困難性を回避できるかもしれない。しかしながら、タイヤがゴム製品であることと、特許文献1の発明が対象とするタイヤ形状検査では空気の入ったタイヤを検査することから、CADデータからのタイヤの変形量が大きい。それゆえ、CADデータの座標とこれに対応するタイヤの座標とを合致させるだけでも計算及び演算量が膨大になるので、特許文献2の方法は、実用的には適用し難い。
 さらに、特許文献2に開示された技術であるCADデータを使用する方法基づいて、実際に測定したタイヤの高さデータをティーチングデータとして使用する方法を類推するのは容易である。この方法によれば、簡便に実際の高さデータを取得することができる。
 しかし、この場合、ティーチングデータとして使用するタイヤ高さ画像中には、正常な凹凸図形のみが存在し、且つ検出対象の凹凸欠陥(Bulge/Dent)や、タイヤ周方向の大きなうねり変形成分であるRunout成分の高さ変化が全く無いことが要求される。検出対象の凹凸欠陥やRunout成分が存在する高さ画像データをティーチングデータとして使用した場合、文字等の正常凹凸マークは、オンライン検査時に差分処理によって平面化(除去)されるが、ティーチングデータに存在する凹凸欠陥やRunout成分が検査対象の高さ画像に転写される結果となるため、このような高さ画像データを検査のティーチングデータとして使うことはできない。また、Runout成分が存在しない真平らなタイヤを特にティーチングデータ登録用に製作することは、現実的では無い。
 そこで、本発明は、上記問題点に鑑み、タイヤのサイドウォール面上に存在する正常凹凸であるマーク(文字、ロゴ、模様等)に影響されることなく、サイドウォール面の凹凸欠陥を検査可能なタイヤ形状検査方法、及びタイヤ形状検査装置を提供することを目的とする。
 本発明に係るタイヤ形状検査方法は、凹凸マークが形成されたサイドウォール面を有するサンプルタイヤの前記サイドウォール面の画像を用いて、検査タイヤのサイドウォール面の形状欠陥を検査する。前記タイヤ形状検査方法は、ティーチング作業工程と、検査作業工程とを備えている。前記ティーチング作業工程は、前記サンプルタイヤのサイドウォール面の二次元画像であるサンプル原画像において、前記凹凸マークの輪郭である境界線を検出し、前記境界線の位置を示すマスク画像を生成するマスク画像生成工程と、前記サンプル原画像において、前記マスク画像に示された前記境界線の位置に対応する領域を除く残りの領域の高さを離散的な複数の高さ閾値を用いて分類することで得られる画像であって前記凹凸マークの高さを示す高さオフセット画像を生成する高さオフセット画像生成工程と、を備えている。前記検査作業工程は、前記検査タイヤのサイドウォール面の二次元画像である検査画像から前記高さオフセット画像を差し引くことにより、前記凹凸マークを除去して凹凸除去画像を生成する差分処理工程と、前記差分処理工程の結果として得られた凹凸除去画像に基づいて、検査タイヤのサイドウォール面の形状欠陥を検査する形状欠陥検査工程と、を備えている。
(a)は、本発明の実施形態によるタイヤ形状検査装置の構成を表す概略図であり、(b)は、タイヤ形状検査装置が備えるセンサユニットにおけるライン光照射部及びカメラの三次元配置を表した模式図である。 タイヤのサイドウォール面を表す模式図である。 本発明の実施形態によるタイヤ形状検査方法の処理内容を示すフローチャートである。 (a)は、本発明の実施形態によるタイヤ形状検査方法におけるマスク画像生成処理を示すフローチャートであり、(b)は、本発明の実施形態によるタイヤ形状検査方法におけるオフセット画像生成処理を示すフローチャートである。 (a)~(d)は、本発明の実施形態によるタイヤ形状検査方法における画像処理の過程を示す模式図である。 (a),(b)は、本発明の実施形態によるタイヤ形状検査方法において高さ画素プロファイルとラベル領域との関係を示す図である。 (a)~(c)は、本発明の実施形態によるタイヤ形状検査方法において、離散的な高さ閾値を求める方法を示す概略図である。 (a)~(e)は、本発明の実施形態によるタイヤ形状検査方法において、マスク範囲に対応する位置への高さ画素値の補間方法を示す図である。
 以下、本発明の実施形態を、図を基に説明する。
 本発明の実施形態に係るタイヤ形状検査装置1は、回転するタイヤTの表面に照射したライン光の像をカメラによって撮像し、その撮像画像に基づいて光切断法による形状検出を行うことでタイヤTの各部位の高さを測定する。次にタイヤ形状検査装置1は、測定されたタイヤTの各部の高さをそれぞれ対応する輝度値に置き換え、タイヤTの表面の二次元画像(検査画像)を得る。
 さらに、タイヤ形状検査装置1は、上述のタイヤTの「検査画像」と、サンプルタイヤ(欠陥のないタイヤ)の「マスク画像」及び「高さオフセット画像」とに基づいて、タイヤTのサイドウォール面上に形成された表示マークを除去し、その後、タイヤTの表面に存在する欠陥を検査する。「マスク画像」及び「高さオフセット画像」は、サンプルタイヤを撮像して得られた「サンプル原画像」を用いて作成される。なお、「サンプル原画像」、「マスク画像」、「高さオフセット画像」の詳細は後述する。
 ところで、タイヤTの形状検査の場合、タイヤTのトレッド面及びサイドウォール面が測定対象となりうるが、本実施形態では、サイドウォール面を測定対象とする。
 図2に示す如く、タイヤTにおけるサイドウォール面とは、路面と接するトレッド面とリムに挟み込まれるビード部との間の部分である。図2において、白抜きで示された部分は、サイドウォール面上に形成された表示マーク(文字、ロゴ、模様等の正常図形)であり「正常凹凸マーク」と考えることができる。この正常凹凸マークは、サイドウォール面上で正常凹凸マークが形成されていない部分(基面)に対して、所定の高さを有する凹凸で構成されている。
 まず、図1(a),(b)を参照しながら、本発明の実施形態に係るタイヤ形状検査装置1の全体構成を説明する。
 図1(a)に示すように、タイヤ形状検査装置1は、タイヤ回転機2、センサユニット(撮像部)3(3a、3b)、エンコーダ4、画像処理装置5等を備えている。
 タイヤ回転機2は、その回転軸を中心に形状検査の対象であるタイヤTを回転させるモータ等を備えた回転装置である。タイヤ回転機2は、例えば60rpmの回転速度でタイヤTを回転させる。この回転中に、後述するセンサユニット3によって、サイドウォール面の全周にわたる範囲の表面形状を検出する。
 本実施形態では、タイヤ形状検査装置1は、タイヤTの2つのサイドウォール面それぞれの形状測定に用いられる2つのセンサユニット3(3a、3b)を備えている。センサユニット3a、3bはそれぞれ、回転するタイヤTの表面にライン光(光切断線)を照射するライン光照射部、タイヤTの表面で反射したライン光の像を撮像する撮像カメラ6などが組み込まれたユニットである。
 図1(b)は、センサユニット3が備える機器の配置を模式的に表した図である。図1(b)において、Y軸は、タイヤTの形状検出位置における円形のタイヤTの半径方向を表す。Z軸は、タイヤTの形状検出位置におけるサイドウォール表面からの検出高さ方向(検出する表面高さの方向)を表す。X軸は、Y軸及びZ軸に直交する方向を表す。即ち、タイヤTのサイドウォール面の形状検出に用いられるセンサユニット3においては、Z軸は、タイヤTの回転軸と平行の座標軸であり、Y軸は、タイヤTの回転軸に対する法線の方向を表す座標軸である。なお、タイヤTと座標軸との対応関係は、カメラ6の支持の態様に応じて変わり得る。
 ライン光照射部は、複数(図1(b)では3つ)のライン光源7a、7b、7cを備えている。前記ライン光照射部は、これらのライン光源7a、7b、7cにより、タイヤTの表面の一の線Ls上に1本の光切断線が形成されるように、複数のライン光を照射する装置である。複数のライン光は、前記一の線Ls(光切断線)における検出高さ方向(Z軸方向)とは異なる方向から照射される。複数のライン光は、前記一の線Ls上に連なるように照射される。
 また、撮像カメラ6は、カメラレンズ8及び撮像素子9を備え、タイヤTのサイドウォール面に連ねて照射された複数のライン光の像v1(一の線Ls上の光切断線の像)を撮像する。
 一方、上記のタイヤ回転機2には、エンコーダ4が設けられている。このエンコーダ4は、タイヤ回転機2の回転軸の回転角度、即ちタイヤTの回転角度を検出し、検出した回転角度を検出信号として出力するセンサである。その検出信号は、センサユニット3a、3bが備える撮像カメラ6の撮像タイミングの制御に用いられる。
 例えば、画像処理装置5は、60rpmの速度で回転するタイヤTが所定の角度回転するたびにエンコーダ4から出力される検出信号を受信し、検出信号の受信タイミングに合わせてセンサユニット3a、3bの撮像カメラ6のシャッターが切られるように、図1のユニット駆動装置を制御する。これにより、検出信号の受信タイミングに合った所定の撮像レートで撮像が行われる。
 なお、図1に示す形態の他、例えば画像処理装置5がセンサユニット3a、3bにそれぞれ内蔵された形態であってもよい。この場合、例えば、各センサユニット3a、3bの内部に、ユニット駆動装置からの制御信号と、エンコーダ4からの回転数パルス信号とが入力され、最終結果を各センサユニット3a、3bからホスト計算機にそれぞれ出力する。また、この場合、ユニット駆動装置は、シャッターを切る指示を出す役割を有していなくてもよく、例えばセンサユニット3a、3bに対して、レーザ点灯指示や、測定開始指示などの命令を出す役割を有していてもよい。そして、シャッターを切る指示は、タイヤTの回転による移動分に従って、エンコーダ4からのパルス信号に同期をとって、各センサユニット3a、3b内に内蔵された画像処理装置5がコントロールする形態であってもよい。
 センサユニット3a、3bからの信号(1ライン画像)は、画像処理装置5へと入力される。画像処理装置5は、入力された1ライン画像に対して三角測量法の原理を適用することで、光切断線が照射された部分(サイドウォール面上の1ライン部分)の高さ分布情報を得る。次に、画像処理装置5は、測定されたタイヤTの表面における各部位の高さをそれぞれ対応する輝度値に置き換えると共に、各輝度値を内蔵されたフレームメモリ(撮像メモリ)に記憶し、タイヤTの表面の二次元画像(検査画像)を得る。
 この二次元画像(検査画像)は、そのサイドウォール面の周方向の全範囲(360°の範囲)における各部位の表面高さ測定値(輝度値)が、そのタイヤTの半径方向を表すY軸及びタイヤTの周方向を表すX軸(フレーム)からなる2次元の座標系内に配列された情報である。
 なお、高さ分布情報としては、図7(b)に例示したグラフが相当し、検査画像やサンプル原画像としては、図7(a)に例示した画像が相当する。なお、高さ分布情報における縦軸の値(高さ画素値)と、検査画像の輝度値とは一対一に対応するものであって、以降の説明では同義的に使用することとする。
 さらに、本実施形態の画像処理装置5は、得られた検査画像及びこの検査画像中の1ラインに相当する高さ分布情報を基に、検査画像から正常凹凸マークのみを除去し、除去後の画像に対して、既存の画像処理手法を適用することで、タイヤサイドウォール面における非正常な凹凸マーク部分に存在する凹凸欠陥を検査することができる。なお、画像処理装置5は、例えばパーソナルコンピュータなどで構成されたハードウエアによって実現される。
 続いて、本実施形態のタイヤ形状検査装置1の画像処理装置5が実施する処理について説明する。
 図3は、画像処理装置5が実施する処理内容を示すフローチャートである。この図3から明らかなように、画像処理装置5が実施する処理は、タイヤのサイドウォール面に存在する凹凸欠陥をオンライン検査する「検査作業工程」を有している。更に、この処理は、検査作業工程に先立つ前工程として、「ティーチング作業工程」を有している。
 検査作業工程は、「差分処理工程(S6)」と、「形状欠陥検査工程(S7)」とを備えている。差分処理工程(S6)では、検査タイヤのサイドウォール面の二次元画像である検査画像から、高さオフセット画像を差し引くと共に、マスク画像が表す境界領域を除去する。形状欠陥検査工程(S7)では、差分処理工程(S6)の結果として得られた正常凹凸マーク除去画像に基づいて、検査タイヤのサイドウォール面の形状欠陥を検査するそれぞれの工程S6、S7は、画像処理装置5内に設けられた差分処理部、形状欠陥検査部で行われる。 
 図3に示す如く、ティーチング作業工程は、「マスク画像生成工程(S2)」と、「高さオフセット画像生成工程(S3)」とを備えている。マスク画像生成工程(S2)では、サンプルタイヤのサイドウォール面の二次元画像であるサンプル原画像において、正常凹凸マークの輪郭である境界線を検出し、境界線の位置を示すマスク画像を生成する。高さオフセット画像生成工程(S3)では、サンプル原画像において、マスク画像に示された境界線の位置に対応する領域を除く残りの領域の高さを離散的な複数の高さ閾値を用いて分類することで得られる画像であって正常凹凸マークの高さを示す高さオフセット画像を生成する。それぞれの工程S2、S3は、画像処理装置5内に設けられたマスク画像生成部、高さオフセット画像生成部で行われる。
 なお、通常、検査対象となるタイヤの種別は複数あるため、タイヤの種別(TireID)毎に、オンライン検査前の登録作業として、セットアップ作業を行う。このセットアップ作業は、TireID毎に異なるタイヤ直径や接地面(トレッド面)の幅等のタイヤ形状等に関わる設計情報を検査前に登録する作業であり、タイヤの種別が複数ある場合には必須である。本実施形態によるタイヤ形状検査では、上述のセットアップ作業は、検査作業工程に先立って行われる。
 ところで、本実施形態のタイヤ形状検査方法においては、検査作業工程の「差分処理工程(S6)」、ティーチング作業工程の「マスク画像生成工程(S2)」及び「高さオフセット画像生成工程(S3)」に顕著な特徴がある。そこで、以下では、これらの工程を重点的に説明する。まず、図4を参照して、ティーチング作業工程について詳細に説明する。
 最初に、欠陥のない理想的なタイヤであるサンプルタイヤのサイドウォール面の高さ画像(生データ)を取得する。ここで得られた高さ画像(生データ)には、「未検出点」が存在する場合がある。未検出点とは、正常凹凸マークの段差の影響でシート光がカメラに戻らず受光強度が規定値以下となったために、高さ座標を取得できなかった点のことである。この未検出点に対しては、高さ座標0(黒点)が出力されている。そこで、未検出点の近傍で高さ座標を検出済みであって、且つ未検出点を挟んでタイヤ周方向に並ぶ2つの画素の高さ座標を用いて直線補間値を計算し、計算した直線補間値を未検出点の座標として埋め込む。
 未検出点の座標を決定する方法は、これに限定されない。例えば、未検出点の近傍の高さをそのままコピーする(0次近似)、未検出点を囲む4点(周方向の2点と径方向の2点)により平面を形成して平面補間を行う等の方法により、未検出点の座標を決定することができる。なお、未検出点の高さ座標を不定のままにしておいた場合、次の平滑微分処理において予期せぬ大きな微分値がでてしまい、最終的な正常凹凸マークの位置(境界線)検出に悪影響を及ぼす可能性もあるので注意が必要である。
 ところで、一般的にタイヤの半径方向には低次の湾曲成分が存在するため、上記直線補間後の高さ画像には、タイヤ半径方向及びタイヤ周方向の低次の湾曲成分が含まれている。この湾曲成分を残したまま次の平滑微分処理工程を行うと、湾曲成分に起因して微分値が高くなる。この湾曲成分に起因する微分値は、本来検知したい正常凹凸マークの境界線の微分値との区別が困難な場合がある。このため、直線補間後の高さ画像からこの湾曲成分を除去する平面化処理を行うのが好ましい。
 タイヤ設計CADデータや金型CADデータを反映しているであろうと予測されるこの低次の湾曲成分は、これらCADデータからの形状モデルを使って補正することができる。しかし、一般的にはCADデータとの連携はシステム的にも難しく、本実施形態では、取得した高さ画像そのものから理想的な湾曲成分を取得する。
 まず、湾曲成分方向の平均的な断面プロファイル形状を求める。そして、例えば、断面プロファイル形状の二次曲線による最小二乗フィッティングにより湾曲成分を数式モデル化し、数式モデル化された湾曲成分を、上記直線補間後の高さ画像から除去する。
 これによって、直線補間後の高さ画像は、周回全体に渡って高さ座標が変化する周回図形等の図形凹凸を残したままで高精度に平面化される。これにより、図5(a)に示すサンプル原画像を得る(S21)。
 続いて、図3におけるマスク画像生成工程(S2)について説明する。このマスク画像生成工程(S2)は、図4(a)において、マスク画像生成のフローチャートとして示されている。
 上述の処理(S21)で得られた、平面化された高さ画像(以下、サンプル原画像という)に対して、例えば、ソーベルフィルタやラプラシアンフィルタを用いた微分フィルタ(二次元平滑微分フィルタ)処理を施した微分値の画像を得る(S22)。
 このように得られた微分値の画像に対して、1ラインごとに平均値(Ave)および分散(1σ)を求める。求めた平均値(Ave)および分散(1σ)を用いて、正常凹凸マークの境界線を背景ノイズ的な微分値から分離することのできる二値化閾値を決定する。この二値化閾値を基に微分値の画像を二値化する。これによって、正常凹凸マークの境界線を示す二値化画像が得られる(S23)。
 なお、得られた二値化画像内の孤立した画素点を、孤立点除去フィルタにより除去し、さらに、孤立した画素点を除去して得られた画像内での正常凹凸マークの境界線部分を、膨張フィルタにより膨張する処理を行うことは好ましい。
 以上の処理を経て得られた画像は、境界線部分の二値画素点の値が1、境界線以外の部分の二値画素点の値が0となるマスク画像であり、図5(c)に示されるようなものである。このマスク画像は、画像処理装置5内のメモリに保存される(S24)。
 次に、図4、図6、及び図7を用いて、図3の高さオフセット画像生成工程(S3)について説明する。この高さオフセット画像生成工程(S3)は、図4(b)において、オフセット画像生成のフローチャートとして示されている。本工程では、マスク画像生成工程(S2)と同様に、直線補間と平面化処理を経たサンプル原画像を用いる(S31)。
 図7(a)に模式図として示す平面化後のサンプル原画像中、実線で表す部分は、前記1ラインの位相調整ラインの一部であり、正常凹凸マーク部分を指している。図7(b)のグラフは、例えば、図7(a)で示したような模式的な前記1ラインの位相調整ラインの高さ画素プロファイル(断面形状)を示している。このプロファイルには、サイドウォール面のうねりである低周波の高さ画素変化(低周波成分)が全体的に存在した上で、正常凹凸マークの部分では、高さ画素値が急激に変化していることがわかる。なお、低周波の高さ画素変化とは、例えば、20次~70次程度(離散フーリエ変換後の20次~70次程度)の低周波が示す変化である。
 ここで、位相調整ラインについて説明する。セットアップ作業時(ティーチング時)、欠陥のないタイヤであるサンプルタイヤのサイドウォール面の高さ画像(生データ)から、本実施形態で示す画像処理によって最終的なセットアップデータ(ティーチングデータ)を取得し、装置に登録する。タイヤ検査では、タイヤは、セットアップ作業時とは違う角度で回転しており、登録したセットアップデータと、検査対象の画像の位相(角度=360°中のいくらの回転角度差があるか)とを合わせるために、「位相調整ライン」において、両画像の形状差から位相差を計算する。そのための任意(例えばセットアップに指定される)のラインを位相調整ラインとする。
 図7(b)のグラフに示される高さ画素プロファイルでは、図7(a)のサンプル原画像の実線部分に対応する部分が矢印で示されている。ここに示される各正常凹凸マークは、それぞれほぼ同じ高さであるが、先に説明した低周波の高さ画素変化(Runout成分)の上に乗っている(形成されている)ので、低周波の高さ画素変化に従ってそれぞれ異なった高さとなっている。図7(c)のグラフを見ながら、さらに詳しく説明する。
 この図7(c)における太実線P1は、各正常凹凸マークの表面部分における低周波の高さ画素変化(Runout成分)を示している。この太実線P1で示す部分を含む高さ画素プロファイルを縦軸に沿ってマイナス方向にオフセットすると、高さ画素値0付近において、太実線P1は、元の高さ画素プロファイルの正常凹凸マーク以外の部分におけるRunout成分(ベースRunout成分)と略連続する。例えば、太実線P1が太実線P2の位置となるように高さ画素プロファイルがオフセットされると、正常凹凸マークの表面部分における低周波の高さ画素変化(Runout成分)が、ベースRunout成分と略連続することがわかる。このときの太実線P1と太実線P2との差(P1-P2)が、高さ固定値(高さ閾値)Pthとなる。
 一方、右隣の正常凹凸マークの表面部分における低周波の高さ画素変化(Runout成分)を示す太実線Q1は、太実線Q2の位置にオフセットされており、また太実線R1は、太実線R2の位置にオフセットされている。このとき、オフセット後の太実線Q2及び太実線R2は、ベースRunout成分と連続していない。そこで、太実線R2がベースRunout成分と連続するように高さプロファイルのオフセット量を変更して別の高さ固定値を得る。さらに、太実線Q2がベースRunout成分と連続するように高さプロファイルのオフセット量を変更してさらに別の高さ固定値を得る。このような方法で、離散的な複数の高さ閾値を得る(S32)。
 タイヤのサイドウォール面における正常凹凸マーク(文字、図形等)が数種類の高さオフセット値のみから構成されているようなタイヤを前提とすれば、上記の過程は、その数種類の高さオフセット値に対応する離散的な複数の高さ固定値を、Runout成分等の不規則な高さ変化を含む高さプロファイルの中から(高さプロファイルに基づいて)求める作業であることがわかる。
 このような離散的な複数の高さ固定値は、サイドウォール全面にわたって共通に決定する以外に、サイドウォール面を複数の領域に分割し、分割した各領域においてそれぞれ決定しても良い。複数の領域に分割する方法では、例えば、高さ画像を表示手段により表示した上で、人手及び目視により文字の意味や図形のレイアウト等を考慮しつつ、GUI(マウス操作等)等を用いて、分割すべき領域に矩形領域等を設定する。
 このように得られた離散的な複数の高さ固定値を用いて正常凹凸マークの高さを示す高さオフセット画像を生成する工程について、以下に説明する。
 図6(a),(b)は、本実施形態によるタイヤ形状検査方法において高さ画素プロファイルとラベル領域との関係を示す図である。図6(a)は、サンプル原画像におけるサイドウォールの周方向の高さプロファイルの1ラインにおいて、タイヤの周方向のX座標に沿って数百点分を拡大したグラフである。グラフ中の矩形波は、先に求めたマスク画像を反転して生成された反転マスク画像の内、前記高さプロファイルと同じ位置にある画像をグラフ中に重ねて表示したものである。
 反転マスク画像は、反転前のマスク画像と同じく高さ画素値0と1の間で振動する矩形波であるが、グラフを見やすくするために、反転マスク画像を、高さ画素値正方向(Y軸の上方向)に移動させている。
 反転マスク画像では、境界線部分の二値画素点の値が0となり、境界線以外の部分の二値画素点の値が1となるので、図6(a),(b)においては、反転マスク画像の高さ画素値0に相当する領域が正常凹凸マークの境界線部分を指している。反転マスク画像において、境界線部分で区切られる高さ画素値1に相当する領域にそれぞれラベル番号を割り振り、それらの領域をラベル領域として決定する。
 これらのラベル領域中、最も長いラベル領域(図6(b)の場合、グラフの最左部のラベル領域)W1を高さオフセット計算の開始領域として登録する。その後、図6(b)の高さプロファイルから、上述の最長ラベル領域W1において、正常凹凸マークの境界線と接する端点を含む近傍での平均の高さ画素値を求める。次に、境界線を挟んで(境界線を介して)隣接するラベル領域W2における平均の高さ画素値を求める。その後、ラベル領域W1とラベル領域W2からなる領域対の高さ差を計算する。この高さ差は、上述のようにして求めた2つの高さ画素値の差である。最長ラベル領域(計算開始領域)W1における平均の高さ画素値の高さオフセット値はゼロとする。
 次に、ラベル領域W1とラベル領域W2からなる領域対の高さ差と、先に取得した離散的な複数の高さ固定値とを比較して、当該高さ差との差が最も小さい(略一致する)高さ固定値を、最長ラベル領域W1に隣接するラベル領域W2の高さオフセット値として割り当てる。言い換えると、差が最も小さい前記高さ固定値を、当該領域対を構成する一対のラベル領域のうち並び順が後の領域W2の高さオフセット値として割り当てる。割り当てられた高さオフセット値は、オフセット画像メモリ領域内に記録される。
 以降は、同様の方法で、残りのすべてのラベル領域W3、W4・・・についても順に高さオフセット値をそれぞれ割り当てる。すなわち、領域W1と領域W2の領域対以外の残りの複数の領域対(例えば領域W2と領域W3からなる領域対、領域W3と領域W4からなる領域対など)についても、互いに隣接する2つの領域の高さ差をそれぞれ求め、各領域対の高さ差との差が最も小さい高さ固定値を、各領域対における並び順が後のラベル領域の高さオフセット値として割り当てる(S33)。
 1ラインの1周分に対して高さオフセット値を割り当てると、順に別の1ラインの1周分に対して同様の割り当てを行う。このようにしてサンプル原画像の全範囲のラインに対して高さオフセット値を割り当てることにより、図5(b)に示す高さオフセット画像を得る(S34)。
 もしティーチング時に取得した高さ画像に、低周波数のRunout成分が全く無く、正常凹凸マークがタイヤ設計CADデータそのものと同じ値であれば、上述のような「離散的な複数の高さ固定値」を用いることなく、取得したサンプル原画像(高さ画像)そのものを高さオフセット画像として登録するか、又は、「離散的な複数の高さ固定値」を用いることなく、求めた高さ差そのものを(隣り合う領域間の高さ差そのものを)、相対的なオフセット値として設定すればよい。
 しかしながら、ゴム製品であり空気を入れるタイヤにおいては、Runout成分の無いタイヤは皆無と言え、取得したサンプル原画像そのものをオフセット画像として用いるのは実用的でない。また、求めた高さ差そのものを連続的なオフセット値として登録した場合、1周分を計算する中でRunout成分に起因する誤差が累積して、1ライン終点の高さオフセット値が1ライン始点の高さオフセット値と連続しなくなるという問題が起こる。
 従って、空気を入れた状態でのタイヤ形状を反映しつつ、離散的な複数の高さ固定値を用いて、サイドウォール面の正常凹凸マークの高さを一定のオフセットで推測計算する本手法により、実用的なティーチング時の高さオフセット画像を取得することができる。
 図3の情報登録工程(S4)において、マスク画像とオフセット画像とを画像処理装置5に登録して、ティーチング作業工程を終了する。以上により、ティーチングしたタイヤサンプル画像に対して、コンピュータのGUI上での確認及び修正作業が可能となり、短時間でのティーチング作業を実現できる。
 上述のティーチング処理の後、検査対象タイヤのサイドウォール面の凹凸欠陥(Bulge(膨らみ)/Dent(へこみ))を検査する検査作業工程(オンライン検査)を実施する。図3及び図5を参照しつつ、以下に、検査作業工程について説明する。
 検査作業工程においては、まず、図5(a)に示す検査対象タイヤのサイドウォール面の原画像(検査画像)を取得する。
 次に、図3の座標系ズレ補正工程(S5)で、検査画像の座標系ズレ(主には周回方向の位相差=回転角度)を修正する。位置合わせの手法としては、サイドウォール面に存在する正常凹凸マーク(例えばロゴ)が一致するように画像マッチングを行い、位相差を修正する。
 続いて、図3の差分処理工程(S6)で、検査画像から、ティーチング時に登録された高さオフセット画像を差し引く。これにより、正常凹凸マークの高さが差し引かれたサイドウォール面の高さ画像が得られる。
 この得られた高さ画像では、マスク画像が示す境界線部分(マスク範囲)のデータが必ずしも適正な値を示していない場合があるので、その場合にはマスク画像を基にして境界線部分を補間する。以下に、その補間処理を説明する。
 例えば、1ライン上で周回方向のマスク範囲が、連続するX座標値にして数点分程度である場合、マスク画像のマスク範囲を挟む2つの位置の平均高さ座標、すなわち正常凹凸マークの両端の平均高さ座標値を求め、その平均高さ座標をマスク範囲の高さ座標値に採用することで直線補間する。
 一方、例えば、周回方向のマスク範囲が、X座標値にして数十点分以上連続する場合、マスク画像のマスク範囲内の高さ画素値に対してマスク範囲長以下の部分的な範囲における最大値又は最小値を選択し、その選択された高さ座標値をマスク範囲の高さ座標に採用することで、マスク範囲内の全ての高さ座標を補間する。
 上記のような処理を経て、図5(d)に示す文字凹凸除去後の画像を得る。
 この文字凹凸除去後の画像を用いて、図3の形状欠陥検査工程(S7)を行う。図5(d)に示す文字凹凸除去後の画像では、正常凹凸マークの高さ変化のみが除去され、画像左側に白く楕円状に示される凸欠陥部の高さは、図5(a)の原画像(検査画像)に比較して変化せず残っている。形状欠陥検査工程(S7)では、このように文字凹凸除去後の画像に残っている凸欠陥部又は凹欠陥部を検出する。
 形状欠陥検査工程(S7)としては、既存の画像処理手法が採用可能である。2値化による欠陥抽出やパターンマッチングによる欠陥抽出を採用してもよい。
 以上述べたような本実施形態のタイヤ形状検査方法を用いることで、タイヤサイドウォール面上に存在する正常凹凸であるマーク(文字、ロゴ、模様等)に影響されることなく、正常凹凸マークと同程度の高さ変化を持つ凹凸欠陥(凸欠陥=Bulge、 凹欠陥=Dent)を確実に検査することができる。特に、タイヤ形状の検査において、ゴム製品特有の変形やタイヤに空気を入れたことによる変形等の影響を受けることなくタイヤ形状の検査が可能となる。
 ところで、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 例えば、マスク画像生成工程(S2)や高さオフセット画像生成工程(S3)などの各工程を自動で行うようにしてもよいしオペレータが画像を参照しつつ手動で行うようにしてもよい。また、各工程を複数回繰り返し行ってもよい。
 具体的には、画像処理装置5において、検査画像、マスク画像、高さオフセット画像、正常凹凸マーク除去後の画像などを、並列表示又は切替えて表示し、オペレータは各画像を確認し、本来接続されるべき境界線が切断されていないか、また不適切な部分が境界線として認識されていないかを確認できるようにするとよい。
 仮に確認作業によって、マスク画像に不具合箇所があれば、GUIにより境界線の追加や削除を行い、修正した場合はマスク画像の再計算を行うようにするとよい。次に、設定された高さオフセット画像を確認し、ラベル毎に設定されている一種類の高さ固定値が異常ではないかどうかを確認する。不具合箇所があれば、修正領域を指定して高さオフセット値を変更(±1ずつ増減)し、修正した場合は高さオフセット画像の再計算を行うようにするとよい。 
 正常凹凸マーク除去後の画像は、今回設定したティーチング情報に基づいて実際にオンライン検査した場合の平面化状態を示すものであり、処理後の高さ画像を確認の上、不具合箇所があれば、マスク画像又は高さオフセット画像の確認及び修正作業に戻り、それぞれ修正及び再計算を行うことが望ましい。
 ところで、本実施形態で生成されたマスク画像には、検出したい凹凸欠陥(Bulge/Dent)よりも大きなマスク範囲(マスク領域)が存在することがある。このような大きなマスク範囲に凹凸欠陥が存在する場合、マスクされているがゆえに検出したい凹凸欠陥を見落とすことがある。そのため、高さ座標値を補間する処理を設けることは好ましい。マスク範囲の大きさ(長さ)によってマスク範囲の補間処理を変えると、さらに好ましい。
 そこで図8を参照し、上述の図3における差分処理工程(S6)に続いて行われる補間処理(補間工程)について、詳しく説明する。図8において、X軸は、タイヤ回転方向(周方向)を示し、Y軸は、タイヤ表面の高さ変化量を示している。
 先に説明したように、差分処理工程(S6)では、まず、検査画像からティーチング時に登録された高さオフセット画像を差し引いて、タイヤサイドウォール面の高さ画像を得る。図8(a)は、得られた高さ画像の1ラインにおける一部分を示している。
 図8(a)に示す高さ画像では、タイヤ回転方向であるX軸方向における画素数が少ない(短い)正常凹凸マークが多く存在し、且つ、それら正常凹凸マークの境界線であって高さ座標値(高さ画素値)が急激に変化する部分が近接している。そのため、当該正常凹凸マークは、図4(a)に示すマスク画像生成工程で得られるマスク画像において、ほぼ全てがマスク範囲となる。このように得られたマスク画像を反転し、反転マスク画像を得る。
 図8(b)は、得られた反転マスク画像における、図8(a)の高さ画像に対応する部分を示している。反転マスク画像において、高さ画像の正常凹凸マークに対応するマスク範囲における二値画素点の値は、0である。このような反転マスク画像と高さ画像の論理積をとることで、図8(a)に示す高さ画像におけるマスク範囲に対応する位置をマスクして高さ座標値を0とし、図8(c)に示すマスク後高さ画像を得る。
 このマスク後高さ画像ではマスク範囲に対応する位置の高さ座標値が全て0となっているので、当該マスクした位置に高さ座標値を補間しなくてはならない。高さ座標値を補間する方法として、直線補間、平均補間、及び包絡線補間の3つの補間処理が考えられる。マスク後高さ画像のマスク範囲に対応する位置が、数画素程度(例えば10画素未満)の長さである場合、直線補間又は平均補間によって高さ座標値を補間する。マスク後高さ画像のマスク範囲に対応する位置が、数画素を超える(例えば10画素以上の)長さである場合、包絡線補間によって高さ座標値を補間する。
 直線補間とは、図8(d)に示すように、マスク画像のマスク範囲に対応する位置(領域)を挟む2つの位置の高さ座標値、すなわち正常凹凸マークの両端の高さ座標値を直線で結び、線形的に変化する直線上の値をマスク範囲に対応する位置の高さ座標値として割り当てることで補間する方法である。
 平均補間とは、図8(d)に示すように、マスク画像のマスク範囲に対応する位置(領域)を挟む2つの位置の高さ座標値の平均、すなわち正常凹凸マークの両端の高さ座標値の平均を求め、その高さ座標値の平均(平均高さ座標値)をマスク範囲に対応する位置の高さ座標値として割り当てることで補間する方法である。
 また、包絡線補間とは、図8(e)に示すように、マスク範囲に対応する位置(領域)における部分的な範囲としてのウインドをX軸方向に沿って設定し、当該ウインド範囲における最大の高さ座標値をマスク範囲に対応する位置の高さ座標値として割り当てて補間する方法である。この包絡線補間における前記ウインドは、マスク範囲に対応する位置に少なくとも一部が重なり、マスク範囲よりも短く、マスク範囲に沿った方向(X軸方向)に延びる範囲である。
 ウインドの設定方法について具体的に説明する。以下の説明において、図8(b)の反転マスク画像に示すマスク範囲は、例えば、X軸方向に40画素の長さを持つと仮定する。図8(a)の高さ画像において、マスク範囲のX座標が最も小さい点(最左点)をウインド中心点とする。このウインド中心点とウインド中心点の左右数画素を含む範囲をウインドとして、図8(a)の高さ画像に設定する。例えば、ウインド中心点とその左右10画素を含んでウインドを設定する場合、ウインドは、マスク範囲の最左点をウインド中心点として、21画素分の長さに設定される。一般に、ウインドの画素数は、マスク範囲の画素数の半分程度又は半分以下が望ましい。
 このように設定したウインドの範囲内で、最大の高さ座標値を検出し、検出した値を、ウインド中心点に対応する位置の高さ座標値として、図8(c)のマスク後高さ画像に割り当てる。
 次に、ウインド中心点をX軸方向に1画素分移動させ、上述の方法で、移動後のウインド中心点を含む新たなウインドを設定する。設定された新たなウインド内で、最大の高さ座標値を検出し、検出した値を、ウインド中心点に対応する位置の高さ座標値としてマスク後高さ画像に割り当てる。
 この処理を、ウインド中心点がマスク範囲のX座標が最も大きい点(最右点)に対応する位置に移動するまで繰り返し、最大の高さ座標値で包絡線を描いて補間を行うと、マスク範囲に対応する位置全体にわたって高さ座標値を補間することができる。図8(e)は、上述の包絡線補間を施した高さ画像を示しており、図8(a)の高さ画像が示す正常凹凸マークのプロファイルの概形を、ほぼ再現している。
 なお、上記包絡線補間では、ウインドの範囲内における最大の高さ座標値をウインド中心点に対応する位置の高さ座標値として割り当てたが、最小の高さ座標値をマスク範囲の高さ座標値として割り当ててもよい。
 最小の高さ座標値を割り当てた場合、得られる高さ画像は、図8(a)の高さ画像が示す正常凹凸マークのベース部分のプロファイルの概形をほぼ再現するものとなる。つまり、最大の高さ座標値を割り当てた場合でも、最小の高さ座標値を割り当てた場合でも、タイヤサイドウォール面におけるマスク範囲の大局的な(低周波成分が示す)凹凸変化を評価することができる。また、ウインドの範囲内における高さ座標値の最大値と最小値の平均を、ウインド中心点に対応する位置の高さ座標値として割り当てることもできる。
 [実施形態の概要]
 前記実施形態をまとめると、以下の通りである。
 (1) 前記実施形態に係るタイヤ形状検査方法は、凹凸マークが形成されたサイドウォール面を有するサンプルタイヤの前記サイドウォール面の画像を用いて、検査タイヤのサイドウォール面の形状欠陥を検査する。前記タイヤ形状検査方法は、ティーチング作業工程と、検査作業工程とを備えている。前記ティーチング作業工程は、前記サンプルタイヤのサイドウォール面の二次元画像であるサンプル原画像において、前記凹凸マークの輪郭である境界線を検出し、前記境界線の位置を示すマスク画像を生成するマスク画像生成工程と、前記サンプル原画像において、前記マスク画像に示された前記境界線の位置に対応する領域を除く残りの領域の高さを離散的な複数の高さ閾値を用いて分類することで得られる画像であって前記凹凸マークの高さを示す高さオフセット画像を生成する高さオフセット画像生成工程と、を備えている。前記検査作業工程は、前記検査タイヤのサイドウォール面の二次元画像である検査画像から前記高さオフセット画像を差し引くことにより、前記検査画像から前記凹凸マークを除去して凹凸除去画像を生成する差分処理工程と、前記凹凸除去画像に基づいて、検査タイヤのサイドウォール面の形状欠陥を検査する形状欠陥検査工程と、を備えている。
 この方法では、タイヤのサイドウォール面上に存在する正常凹凸であるマーク(文字、ロゴ、模様等)に影響されることなく、サイドウォール面の凹凸欠陥を確実に検査することができる。
 (2) ここで、前記マスク画像生成工程では、微分フィルタを適用することで前記凹凸マークの前記境界線の部分を強調した微分画像を得て、前記得られた微分画像に対して所定の閾値を適用することで前記微分画像を二値化して前記マスク画像を生成してもよい。
 この構成のように微分フィルタを用いることにより、高さオフセット変化に影響されにくく、また二値化閾値設定においても、微分方向1方向のみに閾値設定できることから、凹凸マークの境界線部分を安定的に抽出することができる。
 (3) また、前記微分フィルタの適用前に、前記サンプル原画像内の未検出点を補間して前記未検出点を除去し、前記サイドウォール面のプロファイル形状を基に、前記未検出点を除去した画像からサイドウォール面の湾曲成分を除去して、前記未検出点を除去した画像を平面化してもよい。
 これにより、微分フィルタの適用時に、予期せぬ大きな微分値がでるのを抑制でき、正常凹凸マークの位置(境界線)の検出精度をより高めることができる。また、この方法では、湾曲成分を除去して平面化するので、微分フィルタの適用時に、湾曲成分に起因して微分値が高くなるのを抑制できる。また、湾曲成分に起因する微分値は、本来検知したい正常凹凸マークの境界線の微分値との区別が困難な場合があるので、未検出点の補間後(直線補間後)の高さ画像からこの湾曲成分を除去する平面化処理を行うのが好ましい。
 (4) さらに、前記高さオフセット画像生成工程では、前記サンプル原画像と、前記マスク画像と、前記凹凸マークに対して設定された前記離散的な複数の高さ閾値とを用いて、(I)前記サンプル原画像のタイヤ周方向に沿った1つのラインデータに対応するラインデータを、前記マスク画像から抽出し、(II)前記サンプル原画像の1ラインデータ上で、マスク画像から抽出した前記ラインデータが示す境界線で区切られる各領域を、それぞれ1つのラベル領域とし、(III)複数の前記ラベル領域のうち、周方向に最も長いラベル領域を高さオフセット値の計算開始領域とし、又は、前記マスク画像が示す境界線で囲まれた領域中、最も面積が大きい領域を高さオフセット値の計算開始領域とし、(IV)前記計算開始領域から順に並ぶ前記複数のラベル領域において、互いに隣接するラベル領域により構成される領域対におけるラベル領域同士の高さ差を、前記計算開始領域を含む領域対から順に求め、(V)前記離散的な複数の高さ閾値のうち、各領域対の前記高さ差に最も近い高さ閾値を、各領域対を構成する一対のラベル領域のうち並び順が後のラベル領域の高さオフセット値として設定し、前記サンプル原画像の全てのラインデータについて、前記(I)から(V)のステップを繰り返すことで高さオフセット画像を生成してもよい。
 この構成は、オフセット画像を生成する手順(ステップ)の一例を示したものである。オフセット画像をこのような手順で計算することにより、正確なオフセット画像を生成することができる。
 (5) さらに、前記高さオフセット画像生成工程では、前記マスク画像を前記高さオフセット画像に重ね合わせ、前記マスク画像が示す境界線で囲まれた領域ごとに、領域内で最も数多く存在する高さオフセット値を、該領域全体の高さオフセット値として設定してもよい。
 この構成では、1ラインのみでオフセット画像を生成する場合に比べ、複数ラインを2次元的に計算することで、微妙なオフセット画像計算誤差を修正し、より安定なオフセット画像を生成し、取得することができる。
 (6) また、前記高さオフセット画像生成工程では、前記サンプル原画像のタイヤ周方向に沿ったラインデータを抽出し、前記抽出されたラインデータを複製して輝度高さ方向にシフトすることで複製ラインを生成し、前記抽出したラインデータの凹凸マーク部以外における低周波成分を示す曲線と、シフトした複製ラインの凹凸マーク部の低周波成分を示す曲線とが略連続するように前記複製ラインデータをシフトして、そのときのシフト量を決定し、前記シフト量を、前記離散的な高さ閾値としてもよい。
 この構成では、凹凸マーク部の各箇所を1箇所ずつ評価するのではなく、1ライン全体をシフトさせて合致度を確認することができ、ミクロで微妙なオフセット値決定時の誤差を少なくすることができる。
 (7) 加えて、前記高さオフセット画像生成工程では、前記サンプルタイヤの設計図又は金型CADデータから得られる前記凹凸マークの高さ寸法数値、又は前記サンプルタイヤの凹凸マークの高さ寸法の実測値を前記離散的な高さ閾値としてもよい。
 この構成のようにCADデータや高さ寸法の実測値を用いることで、より定量的な寸法指標に基づいたオフセット画像の生成が可能になる。
 (8) 前記検査作業工程は、前記差分処理工程で得られた画像内における、当該差分処理工程にて用いたマスク画像でマスクされたマスク範囲において高さ座標値を補間する補間工程をさらに備えていてもよい。
 この方法では、上記補間工程を備えているので、生成されたマスク画像において、検出したい凹凸欠陥(Bulge/Dent)よりも大きなマスク範囲(マスク領域)が存在する場合であっても、検出したい凹凸欠陥が見落とされるのを抑制することができる。
 補間工程の具体例としては、例えば次のような方法が挙げられる。
 (9) 例えば、前記補間工程では、前記マスク範囲を挟む2つの位置での高さ座標値を選び、一方の高さ座標値から他方の高さ座標値に向かって線形的に変化させて得られる高さ座標値を、前記マスク範囲に割り当てることで補間してもよい。
 (10) また、前記補間工程では、前記マスク範囲を挟む2つの位置での高さ座標値を選び、一方の高さ座標値と他方の高さ座標値の平均値を求めることで得られる平均高さ座標値を、前記マスク範囲に割り当てることで補間してもよい。
 (11) さらに、前記補間工程では、前記マスク範囲に少なくとも一部が重なり、前記マスク範囲よりも短く、前記マスク範囲に沿った方向に延びる範囲であるウインドを設け、前記ウインドを前記マスク範囲の一端から他方の一端へ移動させつつ、前記検査画像において前記ウインドに対応する位置の最大の高さ座標値又は最小の高さ座標値を選択して、選択した高さ座標値を前記マスク範囲に割り当てることで補間してもよい。
 マスク範囲の大きさ(長さ)によってマスク範囲を補間する処理方法を変えてもよい。例えば、マスク範囲が小さい(短い)場合には、上記(9)のような直線補間又は上記(10)のような平均補間を用いて高さ座標値を補間し、マスク範囲が大きい(長い)場合には、上記(11)のような包絡線補間によって高さ座標値を補間するという選択も可能である。
 (12) 前記実施形態に係るタイヤ形状検査装置は、凹凸マークが形成されたサイドウォール面を有するサンプルタイヤの前記サイドウォール面の画像を用いて、検査タイヤのサイドウォール面の形状欠陥を検査する。前記タイヤ形状検査装置は、前記サイドウォール面の二次元画像を撮像する撮像部と、前記サンプルタイヤのサイドウォール面の二次元画像であるサンプル原画像において、前記凹凸マークの輪郭である境界線を検出し、前記境界線の位置を示すマスク画像を生成するマスク画像生成部と、前記サンプル原画像において、前記マスク画像に示された前記境界線の位置に対応する領域を除く残りの領域の高さを離散的な複数の高さ閾値を用いて分類することで得られる画像であって前記凹凸マークの高さを示す高さオフセット画像を生成する高さオフセット画像生成部と、を備え、前記検査タイヤのサイドウォール面の二次元画像である検査画像から前記高さオフセット画像を差し引くことにより、前記検査画像から前記凹凸マークを除去して凹凸除去画像を生成する差分処理部と、前記凹凸除去画像に基づいて、検査タイヤのサイドウォール面の形状欠陥を検査する形状欠陥検査部と、を備えている。
 この装置では、タイヤのサイドウォール面上に存在する正常凹凸であるマーク(文字、ロゴ、模様等)に影響されることなく、サイドウォール面の凹凸欠陥を確実に検査することができる。
 (13) ここで、前記撮像部は、前記サイドウォール面に一の光切断線を照射するライン光照射部と、前記サイドウォール面に照射された前記ライン光の像(反射光)を撮像する撮像カメラと、前記撮像カメラが撮像した1ライン画像を逐次蓄えることで、前記サイドウォール面の二次元画像を構成する撮像メモリと、を備えていてもよい。
 1 タイヤ形状検査装置
 2 タイヤ回転機
 3a、3b センサユニット
 4 エンコーダ 
 5 画像処理装置 
 6 撮像カメラ 
 7 ライン光源 
 8 カメラレンズ 
 9 撮像素子

Claims (13)

  1.  凹凸マークが形成されたサイドウォール面を有するサンプルタイヤの前記サイドウォール面の画像を用いて、検査タイヤのサイドウォール面の形状欠陥を検査するタイヤ形状検査方法であって、
     ティーチング作業工程と、検査作業工程とを備え、
     前記ティーチング作業工程は、
     前記サンプルタイヤのサイドウォール面の二次元画像であるサンプル原画像において、前記凹凸マークの輪郭である境界線を検出し、前記境界線の位置を示すマスク画像を生成するマスク画像生成工程と、
     前記サンプル原画像において、前記マスク画像に示された前記境界線の位置に対応する領域を除く残りの領域の高さを離散的な複数の高さ閾値を用いて分類することで得られる画像であって前記凹凸マークの高さを示す高さオフセット画像を生成する高さオフセット画像生成工程と、を備え、
     前記検査作業工程は、 
     前記検査タイヤのサイドウォール面の二次元画像である検査画像から前記高さオフセット画像を差し引くことにより、前記検査画像から前記凹凸マークを除去して凹凸除去画像を生成する差分処理工程と、
     前記凹凸除去画像に基づいて、検査タイヤのサイドウォール面の形状欠陥を検査する形状欠陥検査工程と、を備えているタイヤ形状検査方法。
  2.  前記マスク画像生成工程では、
     微分フィルタを適用することで前記凹凸マークの前記境界線の部分を強調した微分画像を得て、前記得られた微分画像に対して所定の閾値を適用することで前記微分画像を二値化して前記マスク画像を生成する請求項1に記載のタイヤ形状検査方法。
  3.  前記微分フィルタの適用前に、 
     前記サンプル原画像内の未検出点を補間して前記未検出点を除去し、 
     前記サイドウォール面のプロファイル形状を基に、前記未検出点を除去した画像からサイドウォール面の湾曲成分を除去して前記未検出点を除去した画像を平面化する請求項2に記載のタイヤ形状検査方法。
  4.  前記高さオフセット画像生成工程では、
     前記サンプル原画像と、前記マスク画像と、前記凹凸マークに対して設定された前記離散的な複数の高さ閾値とを用いて、
     (I)前記サンプル原画像のタイヤ周方向に沿った1つのラインデータに対応するラインデータを、前記マスク画像から抽出し、
     (II)前記サンプル原画像の1ラインデータ上で、マスク画像から抽出した前記ラインデータが示す境界線で区切られる各領域を、それぞれ1つのラベル領域とし、
     (III)複数の前記ラベル領域のうち、周方向に最も長いラベル領域を高さオフセット値の計算開始領域とし、又は、前記マスク画像が示す境界線で囲まれた領域中、最も面積が大きい領域を高さオフセット値の計算開始領域とし、
     (IV)前記計算開始領域から順に並ぶ前記複数のラベル領域において、互いに隣接するラベル領域により構成される領域対におけるラベル領域同士の高さ差を、前記計算開始領域を含む領域対から順に求め、
     (V)前記離散的な複数の高さ閾値のうち、各領域対の前記高さ差に最も近い高さ閾値を、各領域対を構成する一対のラベル領域のうち並び順が後のラベル領域の高さオフセット値として設定し、
     前記サンプル原画像の全てのラインデータについて、前記(I)から(V)のステップを繰り返すことで高さオフセット画像を生成する請求項1に記載のタイヤ形状検査方法。
  5.  前記高さオフセット画像生成工程では、
     前記マスク画像を前記高さオフセット画像に重ね合わせ、
     前記マスク画像が示す境界線で囲まれた領域ごとに、領域内で最も数多く存在する高さオフセット値を、該領域全体の高さオフセット値として設定する請求項4に記載のタイヤ形状検査方法。
  6.  前記高さオフセット画像生成工程では、
     前記サンプル原画像のタイヤ周方向に沿ったラインデータを抽出し、
     前記抽出されたラインデータを複製して輝度高さ方向にシフトすることで複製ラインを生成し、
     前記抽出したラインデータの凹凸マーク部以外における低周波成分を示す曲線と、シフトした複製ラインの凹凸マーク部の低周波成分を示す曲線とが略連続するように前記複製ラインデータをシフトして、そのときのシフト量を決定し、
     前記シフト量を、前記離散的な高さ閾値とする請求項1に記載のタイヤ形状検査方法。
  7.  前記高さオフセット画像生成工程では、
     前記サンプルタイヤの設計図又は金型CADデータから得られる前記凹凸マークの高さ寸法数値、又は前記サンプルタイヤの凹凸マークの高さ寸法の実測値を前記離散的な高さ閾値とする請求項1に記載のタイヤ形状検査方法。
  8.  前記検査作業工程は、前記差分処理工程で得られた画像内における、当該差分処理工程にて用いたマスク画像でマスクされたマスク範囲において高さ座標値を補間する補間工程をさらに備えている請求項1~7のいずれかに記載のタイヤ形状検査方法。
  9.  前記補間工程では、前記マスク範囲を挟む2つの位置での高さ座標値を選び、一方の高さ座標値から他方の高さ座標値に向かって線形的に変化させて得られる高さ座標値を、前記マスク範囲に割り当てることで補間する請求項8に記載のタイヤ形状検査方法。
  10.  前記補間工程では、前記マスク範囲を挟む2つの位置での高さ座標値を選び、一方の高さ座標値と他方の高さ座標値の平均値を求めることで得られる平均高さ座標値を、前記マスク範囲に割り当てることで補間する請求項8に記載のタイヤ形状検査方法。
  11.  前記補間工程では、前記マスク範囲に少なくとも一部が重なり、前記マスク範囲よりも短く、前記マスク範囲に沿った方向に延びる範囲であるウインドを設け、前記ウインドを前記マスク範囲の一端から他方の一端へ移動させつつ、前記検査画像において前記ウインドに対応する位置の最大の高さ座標値又は最小の高さ座標値を選択して、選択した高さ座標値を前記マスク範囲に割り当てることで補間する請求項8に記載のタイヤ形状検査方法。
  12.  凹凸マークが形成されたサイドウォール面を有するサンプルタイヤの前記サイドウォール面の画像を用いて、検査タイヤのサイドウォール面の形状欠陥を検査するタイヤ形状検査装置であって、
     前記サイドウォール面の二次元画像を撮像する撮像部と、
     前記サンプルタイヤのサイドウォール面の二次元画像であるサンプル原画像において、前記凹凸マークの輪郭である境界線を検出し、前記境界線の位置を示すマスク画像を生成するマスク画像生成部と、
     前記サンプル原画像において、前記マスク画像に示された前記境界線の位置に対応する領域を除く残りの領域の高さを離散的な複数の高さ閾値を用いて分類することで得られる画像であって前記凹凸マークの高さを示す高さオフセット画像を生成する高さオフセット画像生成部と、
     前記検査タイヤのサイドウォール面の二次元画像である検査画像から前記高さオフセット画像を差し引くことにより、前記検査画像から前記凹凸マークを除去して凹凸除去画像を生成する差分処理部と、
     前記凹凸除去画像に基づいて、検査タイヤのサイドウォール面の形状欠陥を検査する形状欠陥検査部と、を備えているタイヤ形状検査装置。
  13.  前記撮像部は、 
     前記サイドウォール面に一の光切断線を照射するライン光照射部と、 
     前記サイドウォール面に照射された前記ライン光の像を撮像する撮像カメラと、 
     前記撮像カメラが撮像した1ライン画像を逐次蓄えることで、前記サイドウォール面の二次元画像を構成する撮像メモリと、を備えている請求項12に記載のタイヤ形状検査装置。
PCT/JP2010/007038 2009-12-07 2010-12-02 タイヤ形状検査方法、及びタイヤ形状検査装置 WO2011070750A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/514,285 US9097514B2 (en) 2009-12-07 2010-12-02 Device and method for inspecting tyre shape
CN201080055305.2A CN103038601B (zh) 2009-12-07 2010-12-02 轮胎形状检查方法以及轮胎形状检查装置
EP10835677.5A EP2500686B1 (en) 2009-12-07 2010-12-02 Device and method for inspecting tyre shape

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009277667 2009-12-07
JP2009-277667 2009-12-07
JP2010068107A JP5371848B2 (ja) 2009-12-07 2010-03-24 タイヤ形状検査方法、及びタイヤ形状検査装置
JP2010-068107 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011070750A1 true WO2011070750A1 (ja) 2011-06-16

Family

ID=44145313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007038 WO2011070750A1 (ja) 2009-12-07 2010-12-02 タイヤ形状検査方法、及びタイヤ形状検査装置

Country Status (7)

Country Link
US (1) US9097514B2 (ja)
EP (1) EP2500686B1 (ja)
JP (1) JP5371848B2 (ja)
CN (1) CN103038601B (ja)
MY (1) MY162918A (ja)
TW (1) TWI453385B (ja)
WO (1) WO2011070750A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018076A1 (ja) * 2010-08-04 2012-02-09 株式会社ブリヂストン タイヤ外形計測データの補正方法、及びタイヤ外観検査装置
CN103292737A (zh) * 2013-06-13 2013-09-11 山东万通模具有限公司 轮胎模具三维检测仪
US20130287287A1 (en) * 2012-04-25 2013-10-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for defect identification
JP2013242257A (ja) * 2012-05-22 2013-12-05 Ricoh Elemex Corp 検査方法及び外観検査装置
WO2014083749A1 (ja) * 2012-11-29 2014-06-05 株式会社神戸製鋼所 計測方法及び計測装置
CN104024792A (zh) * 2011-11-07 2014-09-03 株式会社神户制钢所 轮胎形状检查方法以及轮胎形状检查装置
JP2014208533A (ja) * 2014-07-08 2014-11-06 株式会社ブリヂストン 空気入りタイヤ
CN107894421A (zh) * 2017-10-25 2018-04-10 共享铸钢有限公司 摄影测量系统和光笔测量系统结合检测标识铸件缺陷的方法
CN114812411A (zh) * 2022-05-16 2022-07-29 泰州汇品不锈钢有限公司 一种激光测量法兰厚度的设备

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012202271A1 (de) * 2011-07-11 2013-01-17 Robert Bosch Gmbh Vorrichtung und Verfahren zur Reifenprüfung
JP5912422B2 (ja) * 2011-11-04 2016-04-27 Ntn株式会社 樹脂製保持器の欠陥検査装置及び欠陥検査方法
US20130279750A1 (en) * 2012-04-20 2013-10-24 Dmetrix, Inc. Identification of foreign object debris
JP6019798B2 (ja) * 2012-06-22 2016-11-02 ソニー株式会社 情報処理装置、情報処理システム及び情報処理方法
JP5781481B2 (ja) 2012-09-04 2015-09-24 株式会社神戸製鋼所 タイヤ形状検査方法、及びタイヤ形状検査装置
JP6108751B2 (ja) * 2012-10-12 2017-04-05 リコーエレメックス株式会社 外観検査装置
CA2889896A1 (en) * 2012-11-15 2014-05-22 Android Industries Llc System and method for determining uniformity of a tire
JP6155038B2 (ja) * 2013-02-08 2017-06-28 リコーエレメックス株式会社 外観検査装置および外観検査方法
JP5923054B2 (ja) * 2013-04-08 2016-05-24 株式会社神戸製鋼所 形状検査装置
DE102013207374A1 (de) * 2013-04-23 2014-10-23 Robert Bosch Gmbh Vorrichtung und Verfahren zum Erkennen von Beschriftungen auf Fahrzeugreifen
US9466101B2 (en) * 2013-05-01 2016-10-11 Taiwan Semiconductor Manufacturing Company Limited Detection of defects on wafer during semiconductor fabrication
JP5964788B2 (ja) * 2013-08-07 2016-08-03 株式会社神戸製鋼所 データ生成方法及びデータ生成装置
JP6036625B2 (ja) * 2013-09-19 2016-11-30 株式会社デンソー 溶接部外観検査装置および溶接部外観検査方法
JP6267481B2 (ja) * 2013-10-18 2018-01-24 リコーエレメックス株式会社 外観検査装置および外観検査方法
JP6301627B2 (ja) * 2013-10-18 2018-03-28 リコーエレメックス株式会社 外観検査装置および外観検査方法
JP5775132B2 (ja) * 2013-11-01 2015-09-09 株式会社ブリヂストン タイヤの検査装置
JP5964803B2 (ja) * 2013-12-03 2016-08-03 株式会社神戸製鋼所 データ処理方法及びデータ処理装置
JP6278512B2 (ja) * 2014-03-13 2018-02-14 国立研究開発法人産業技術総合研究所 情報処理方法、情報処理システム、情報処理装置、およびプログラム
WO2015156172A1 (ja) * 2014-04-07 2015-10-15 横浜ゴム株式会社 タイヤモールドの刻印検査方法および装置
JP6405124B2 (ja) * 2014-06-09 2018-10-17 株式会社キーエンス 検査装置、検査方法およびプログラム
FR3022380A1 (fr) * 2014-06-13 2015-12-18 Michelin & Cie Procede de redressement d'image de pneumatiques
BR112017013291B1 (pt) 2014-12-22 2022-05-03 Pirelli Tyre S.P.A. Aparelho para verificar pneus em uma linha de produção de pneu
CN107278261B (zh) 2014-12-22 2020-08-28 倍耐力轮胎股份公司 用于检查生产线中的轮胎的方法和设备
CN105891231B (zh) * 2015-01-26 2019-01-18 青岛农业大学 一种基于图像处理的胡萝卜表面缺陷检测方法
JP6507680B2 (ja) * 2015-01-30 2019-05-08 横浜ゴム株式会社 タイヤのビード部の検査方法及び検査装置
JP6452508B2 (ja) * 2015-03-17 2019-01-16 オリンパス株式会社 3次元形状測定装置
JP6606880B2 (ja) * 2015-06-15 2019-11-20 横浜ゴム株式会社 タイヤ測定用パターン形成方法、タイヤ測定方法
WO2017018045A1 (ja) * 2015-07-24 2017-02-02 オリンパス株式会社 補正情報生成装置及び回転する検査対象の画像補正のための補正情報生成方法
JP6789292B2 (ja) 2015-12-16 2020-11-25 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ タイヤを検査する方法および装置
RU2732671C2 (ru) 2015-12-16 2020-09-21 Пирелли Тайр С.П.А. Способ и устройство контроля шин
JP7074670B2 (ja) 2015-12-16 2022-05-24 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ タイヤを分析するためのデバイス及び方法
EP3640621B1 (en) * 2015-12-17 2022-08-31 Pirelli Tyre S.p.A. Method and apparatus for calibrating optical tools of a tyre checking system
BR112018012692B1 (pt) 2015-12-28 2022-09-20 Pirelli Tyre S.P.A Aparelho e método para verificar um pneu
WO2017141094A1 (en) 2015-12-28 2017-08-24 Pirelli Tyre S.P.A. Apparatus for checking tyres
DE102015017010A1 (de) * 2015-12-30 2017-07-06 Faurecia Innenraum Systeme Gmbh Verfahren zur Ermittlung von Oberflächendefekten sowie Computer-Programmprodukt
CN107121058B (zh) * 2016-02-25 2020-09-15 株式会社三丰 测量方法
JP2017187348A (ja) * 2016-04-04 2017-10-12 新日鐵住金株式会社 表面欠陥検査システム、方法及びプログラム
ITUA20163534A1 (it) 2016-05-18 2017-11-18 Pirelli Metodo e linea di controllo di pneumatici per ruote di veicoli
CN106839931A (zh) * 2016-08-05 2017-06-13 通力轮胎有限公司 一种轮胎断面测量仪及测量方法
CN107632026A (zh) * 2017-09-22 2018-01-26 柳州博泽科技有限公司 一种基于计算机的轮胎印字检测装置
JP7057206B2 (ja) * 2018-05-07 2022-04-19 Toyo Tire株式会社 タイヤ歪検出方法
CN108656721B (zh) * 2018-05-24 2023-10-13 中策橡胶集团股份有限公司 一种反光带热转印贴合设备
JP6585793B2 (ja) * 2018-09-18 2019-10-02 株式会社キーエンス 検査装置、検査方法およびプログラム
JP7018380B2 (ja) * 2018-11-30 2022-02-10 株式会社神戸製鋼所 タイヤ表面の画像表示方法およびその画像表示に用いる画像処理装置
EP3916342A4 (en) * 2019-01-25 2022-09-28 Toray Industries, Inc. INSPECTION METHOD AND MANUFACTURING METHOD FOR STRUCTURE AND INSPECTION DEVICE AND MANUFACTURING DEVICE FOR STRUCTURE
JP7380076B2 (ja) * 2019-10-23 2023-11-15 富士フイルムビジネスイノベーション株式会社 3dモデル評価システム
CN111060527B (zh) * 2019-12-30 2021-10-29 歌尔股份有限公司 一种字符缺陷检测方法及装置
CN111429453A (zh) * 2020-04-15 2020-07-17 深圳宇骏视觉智能科技有限公司 一种圆柱体产品外观在线检测系统
CN114485527A (zh) * 2020-10-26 2022-05-13 王运斌 一种轮胎内轮廓测量方法
JP2023121641A (ja) * 2022-02-21 2023-08-31 株式会社神戸製鋼所 欠陥検出方法、積層造形物の製造方法、欠陥検出装置及び積層造形装置
TWI819914B (zh) * 2022-12-06 2023-10-21 緯創資通股份有限公司 輪胎尺寸辨識方法、輪胎尺寸辨識系統及電腦可讀取儲存媒體
CN117147187B (zh) * 2023-10-30 2023-12-26 南通东来汽车用品有限公司 一种新能源汽车轮胎生产用检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187843A (ja) * 1992-01-14 1993-07-27 Kobe Steel Ltd タイヤ等の被検体の外形状計測装置
JPH10160452A (ja) * 1996-12-03 1998-06-19 Bridgestone Corp タイヤの外形状判定方法及び装置
JP2005331274A (ja) 2004-05-18 2005-12-02 Bridgestone Corp タイヤ凹凸図形の検査方法、および、タイヤ凹凸図形検査装置
JP2006284471A (ja) * 2005-04-04 2006-10-19 Mitsubishi Electric Corp パターン検査方法及びパターン検査装置並びにパターン検査用プログラム
JP2008064486A (ja) * 2006-09-05 2008-03-21 Dainippon Printing Co Ltd 印刷物検査装置、印刷物検査方法
JP2008111671A (ja) * 2006-10-27 2008-05-15 Bridgestone Corp 分離フィルタ決定装置及びタイヤ検査装置
JP2008221896A (ja) 2007-03-08 2008-09-25 Kobe Steel Ltd タイヤ形状検出装置,タイヤ形状検出方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3088567B2 (ja) * 1992-07-21 2000-09-18 中央電子計測株式会社 ホイールアライメント測定装置
JP3949796B2 (ja) * 1997-11-06 2007-07-25 株式会社ブリヂストン タイヤ形状判定装置
DE19849793C1 (de) * 1998-10-28 2000-03-16 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur berührungslosen Erfassung von Unebenheiten in einer gewölbten Oberfläche
JP2000180374A (ja) * 1998-12-15 2000-06-30 Matsushita Electric Ind Co Ltd 欠陥検出方法
DE10062251C2 (de) * 2000-12-14 2002-12-12 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Qualitätsüberprüfung eines Körpers
DE10062254C2 (de) * 2000-12-14 2002-12-19 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Charakterisieren einer Oberfläche und Verfahren und Vorrichtung zur Ermittlung einer Formanomalie einer Oberfläche
JP3658685B2 (ja) * 2001-05-28 2005-06-08 株式会社アルティア橋本 被検体の距離測定装置
JP4034168B2 (ja) * 2002-11-01 2008-01-16 株式会社ブリヂストン タイヤサイド部凹凸状態の検査方法及びその装置
JP4339048B2 (ja) * 2003-08-25 2009-10-07 国際計測器株式会社 タイヤのユニフォーミティ計測方法及び装置、並びにタイヤ修正方法及び装置
US7269997B2 (en) * 2004-06-03 2007-09-18 Snap-On Incorporated Non-contact method and system for tire analysis
JP4977415B2 (ja) * 2006-07-21 2012-07-18 株式会社ブリヂストン タイヤ検査用基準形状データの作成装置および作成方法
WO2009148095A1 (ja) * 2008-06-04 2009-12-10 株式会社神戸製鋼所 タイヤ形状検査方法、タイヤ形状検査装置
JP2010048718A (ja) * 2008-08-22 2010-03-04 Toyota Motor Corp ホイールアライメント測定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187843A (ja) * 1992-01-14 1993-07-27 Kobe Steel Ltd タイヤ等の被検体の外形状計測装置
JPH10160452A (ja) * 1996-12-03 1998-06-19 Bridgestone Corp タイヤの外形状判定方法及び装置
JP2005331274A (ja) 2004-05-18 2005-12-02 Bridgestone Corp タイヤ凹凸図形の検査方法、および、タイヤ凹凸図形検査装置
JP2006284471A (ja) * 2005-04-04 2006-10-19 Mitsubishi Electric Corp パターン検査方法及びパターン検査装置並びにパターン検査用プログラム
JP2008064486A (ja) * 2006-09-05 2008-03-21 Dainippon Printing Co Ltd 印刷物検査装置、印刷物検査方法
JP2008111671A (ja) * 2006-10-27 2008-05-15 Bridgestone Corp 分離フィルタ決定装置及びタイヤ検査装置
JP2008221896A (ja) 2007-03-08 2008-09-25 Kobe Steel Ltd タイヤ形状検出装置,タイヤ形状検出方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9113046B2 (en) 2010-08-04 2015-08-18 Bridgestone Corporation Tire contour measurement data correction method and tire visual inspection device
WO2012018076A1 (ja) * 2010-08-04 2012-02-09 株式会社ブリヂストン タイヤ外形計測データの補正方法、及びタイヤ外観検査装置
EP2789970A4 (en) * 2011-11-07 2015-08-19 Kobe Steel Ltd TIRE FORMULATION METHOD AND TIRE FORMULATION TESTING DEVICE
CN104024792A (zh) * 2011-11-07 2014-09-03 株式会社神户制钢所 轮胎形状检查方法以及轮胎形状检查装置
US8737717B2 (en) * 2012-04-25 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for defect identification
US20130287287A1 (en) * 2012-04-25 2013-10-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for defect identification
JP2013242257A (ja) * 2012-05-22 2013-12-05 Ricoh Elemex Corp 検査方法及び外観検査装置
WO2014083749A1 (ja) * 2012-11-29 2014-06-05 株式会社神戸製鋼所 計測方法及び計測装置
CN103292737A (zh) * 2013-06-13 2013-09-11 山东万通模具有限公司 轮胎模具三维检测仪
JP2014208533A (ja) * 2014-07-08 2014-11-06 株式会社ブリヂストン 空気入りタイヤ
CN107894421A (zh) * 2017-10-25 2018-04-10 共享铸钢有限公司 摄影测量系统和光笔测量系统结合检测标识铸件缺陷的方法
CN107894421B (zh) * 2017-10-25 2020-07-03 共享铸钢有限公司 摄影测量系统和光笔测量系统结合检测标识铸件缺陷方法
CN114812411A (zh) * 2022-05-16 2022-07-29 泰州汇品不锈钢有限公司 一种激光测量法兰厚度的设备

Also Published As

Publication number Publication date
EP2500686A1 (en) 2012-09-19
TWI453385B (zh) 2014-09-21
US9097514B2 (en) 2015-08-04
JP2011141260A (ja) 2011-07-21
CN103038601B (zh) 2015-05-27
EP2500686A4 (en) 2017-11-29
JP5371848B2 (ja) 2013-12-18
CN103038601A (zh) 2013-04-10
TW201131152A (en) 2011-09-16
EP2500686B1 (en) 2020-09-23
US20120242824A1 (en) 2012-09-27
MY162918A (en) 2017-07-31

Similar Documents

Publication Publication Date Title
WO2011070750A1 (ja) タイヤ形状検査方法、及びタイヤ形状検査装置
JP5726045B2 (ja) タイヤ形状検査方法、及びタイヤ形状検査装置
US7012701B2 (en) Measuring for device for contactless measurement of tires
KR20190118614A (ko) 제조 공정의 마지막 단계에서 타이어 상의 결함을 검출하고 검사하기 위한 장치
US11313806B2 (en) Defect inspection method and defect inspection device
JP4894628B2 (ja) 外観検査方法および外観検査装置
WO2014083749A1 (ja) 計測方法及び計測装置
KR20140001205A (ko) 타이어의 트레드 구성을 형성하는 기초 패턴의 식별 및 지정 방법
JP5923054B2 (ja) 形状検査装置
JP4279833B2 (ja) 外観検査方法及び外観検査装置
JP2017194380A (ja) 検査装置、記憶媒体、及びプログラム
JP2014190805A (ja) タイヤ形状検査装置のデータ処理方法、タイヤ形状検査装置のデータ処理プログラム、及び、タイヤ形状検査装置のデータ処理装置
KR100972640B1 (ko) 모아레를 이용한 3차원 측정장치의 기준격자 획득방법 및장치
JP5381846B2 (ja) 物品検査方法
JP2016197043A (ja) タイヤ形状測定装置及びタイヤ形状測定方法
JP2016142559A (ja) タイヤのビード部の検査方法及び検査装置
JP2018044809A (ja) 線状縞模様除去方法、タイヤ内面検査方法、及びタイヤ内面検査装置
Scholz et al. Bead to Bead Tire Measurements

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055305.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13514285

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201002697

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010835677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5830/CHENP/2012

Country of ref document: IN