WO2011040504A1 - 核酸分析装置 - Google Patents
核酸分析装置 Download PDFInfo
- Publication number
- WO2011040504A1 WO2011040504A1 PCT/JP2010/067030 JP2010067030W WO2011040504A1 WO 2011040504 A1 WO2011040504 A1 WO 2011040504A1 JP 2010067030 W JP2010067030 W JP 2010067030W WO 2011040504 A1 WO2011040504 A1 WO 2011040504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- oil
- unit
- analyzer according
- reagent
- Prior art date
Links
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 293
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 293
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 293
- 238000004458 analytical method Methods 0.000 claims abstract description 160
- 238000006243 chemical reaction Methods 0.000 claims abstract description 132
- 238000000746 purification Methods 0.000 claims abstract description 32
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 106
- 239000007788 liquid Substances 0.000 claims description 77
- 238000000605 extraction Methods 0.000 claims description 52
- 238000001821 nucleic acid purification Methods 0.000 claims description 43
- 239000000243 solution Substances 0.000 claims description 43
- 238000007789 sealing Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 20
- 239000012491 analyte Substances 0.000 claims description 19
- 230000007246 mechanism Effects 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 17
- 239000002699 waste material Substances 0.000 claims description 17
- 238000002347 injection Methods 0.000 claims description 15
- 239000007924 injection Substances 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 13
- 230000005284 excitation Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 239000006096 absorbing agent Substances 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims 1
- 230000035699 permeability Effects 0.000 claims 1
- 239000003921 oil Substances 0.000 description 69
- 239000000523 sample Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 26
- 238000001179 sorption measurement Methods 0.000 description 21
- 239000010408 film Substances 0.000 description 20
- 238000003752 polymerase chain reaction Methods 0.000 description 15
- 230000035772 mutation Effects 0.000 description 13
- 230000002068 genetic effect Effects 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 11
- 238000011084 recovery Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 230000032258 transport Effects 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- 210000000078 claw Anatomy 0.000 description 8
- 210000004602 germ cell Anatomy 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000003480 eluent Substances 0.000 description 7
- 238000005842 biochemical reaction Methods 0.000 description 6
- 239000003129 oil well Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 4
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 4
- 206010069755 K-ras gene mutation Diseases 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 239000012620 biological material Substances 0.000 description 4
- 230000009089 cytolysis Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 239000013615 primer Substances 0.000 description 4
- 239000002987 primer (paints) Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 102000054765 polymorphisms of proteins Human genes 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 108700042226 ras Genes Proteins 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 2
- 108091006109 GTPases Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010781 infectious medical waste Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 101710113436 GTPase KRas Proteins 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 108010041758 cleavase Proteins 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6452—Individual samples arranged in a regular 2D-array, e.g. multiwell plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5082—Test tubes per se
- B01L3/50825—Closing or opening means, corks, bungs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/07—Centrifugal type cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0615—Loss of fluid by dripping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0673—Handling of plugs of fluid surrounded by immiscible fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0689—Sealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/14—Process control and prevention of errors
- B01L2200/141—Preventing contamination, tampering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
- B01L2300/044—Connecting closures to device or container pierceable, e.g. films, membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0803—Disc shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1805—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5085—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
- B01L3/50851—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N2021/0325—Cells for testing reactions, e.g. containing reagents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00346—Heating or cooling arrangements
- G01N2035/00356—Holding samples at elevated temperature (incubation)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/046—General conveyor features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N2035/1027—General features of the devices
- G01N2035/103—General features of the devices using disposable tips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
- G01N35/00069—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/0099—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
Definitions
- the present invention relates to a nucleic acid analyzer.
- This application claims priority based on Japanese Patent Application No. 2009-228809 filed in Japan on Sep. 30, 2009, the contents of which are incorporated herein by reference.
- Single nucleotide polymorphisms are polymorphisms having a mutation at one base in a DNA sequence composed of a plurality of bases. It is known that this difference in base sequence may cause individual differences in, for example, drug metabolism function.
- nucleic acid is extracted from a specimen such as a biological sample collected from a patient, for example, and a genetic difference such as a single nucleotide polymorphism is detected. This gene difference suggests the possibility of predicting drug sensitivity in advance. Thereby, for example, it is considered that so-called tailor-made medical care (or also called tailor-made medical care) that provides optimal medical care (medicine) for each patient by reducing the side effects of pharmaceuticals can be used.
- Patent Document 1 describes a nucleic acid analyzer that supplies a whole blood sample collected from a patient to a cartridge and performs purification and analysis of the nucleic acid using the cartridge. ing.
- the burden on the user in nucleic acid analysis can be reduced by reducing the portion that depends on the user's manual work.
- the reproducibility of nucleic acid analysis can be improved without variation in the nucleic acid recovery rate due to the difference in skill of users.
- Patent Document 2 describes a gene detection / determination apparatus that can measure a plurality of SNPs at a time by forming a plurality of reaction chambers for measuring a plurality of SNPs. According to this gene detection determination apparatus, the occurrence of human errors and contamination can be reduced, and the accuracy of genetic testing can be increased.
- the nucleic acid analyzer described in Patent Document 1 is configured to perform one type of reaction using one cartridge, the types of SNPs that can be measured in one analysis are limited. For this reason, when measuring a plurality of types of SNPs at a time, it is necessary to supply the same sample to a plurality of cartridges and perform a plurality of analyzes, which is complicated. Further, since it is necessary to use a plurality of disposable cartridges for the same specimen, there is a problem that the cost of consumables when operating the nucleic acid analyzer is high.
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a nucleic acid analyzer capable of easily performing a highly accurate genetic test.
- a nucleic acid analyzer includes a nucleic acid purification kit that separates and purifies nucleic acid from a specimen to obtain a nucleic acid solution; a rotation shaft is located in the center, and a plurality of the plurality of A nucleic acid analysis chip in which the nucleic acid purified by the nucleic acid purification kit is sent to the reaction container by centrifugal force around the rotation axis; and a specimen on which the nucleic acid purification kit is placed
- the analysis unit is in contact with an outer surface of the reaction container of the nucleic acid analysis chip, and the temperature of the reaction container follows a predetermined temperature change. It is preferable to provide a temperature control mechanism for heating or cooling.
- the analysis unit irradiates excitation light having a predetermined wavelength for exciting the fluorescent substance in the reaction container of the nucleic acid analysis chip, and the fluorescent substance It is preferable to provide a fluorescence measuring unit that measures the intensity of the fluorescence emitted by.
- the nucleic acid purification kit includes an oil supplied to the nucleic acid analysis chip; and an oil that dispenses at least the oil It is preferable to include a dispensing tip container in which a dispensing tip is accommodated; and an oil removing unit that removes excess oil attached to the outer surface of the tip end side of the oil dispensing tip.
- the oil removing unit includes an oleophilic wiping unit that contacts an outer surface of the oil dispensing tip by inserting a tip of the oil dispensing tip. It is preferable to have.
- the nucleic acid purification kit includes: a box-shaped reagent cartridge; and a plurality of reagent dispensing chips housed in the dispensing chip container.
- the reagent cartridge includes: a sample storage unit that stores the sample; an oil storage unit that stores the oil; a reagent storage unit that stores a liquid reagent that performs the separation and purification of the nucleic acid; It is preferable to include a waste liquid storage unit that stores the waste liquid to be purified; and an extraction filter cartridge that purifies the nucleic acid of the specimen.
- the oil container and the reagent container are sealed, and are formed so as to be pierced by the reagent dispensing tip or the tip of the oil dispensing tip. It is preferable that a hole sealing film is provided in the reagent cartridge.
- the reagent cartridge has a holding unit that detachably holds the extraction filter cartridge.
- the holding unit preferably has an absorber that absorbs the liquid that has passed through the extraction filter cartridge.
- the nucleic acid analyzer according to (6) further includes a cartridge sealing film that seals an opening in the reagent cartridge.
- the reagent cartridge has a positioning mechanism that positions the reagent cartridge in the analyte introduction unit.
- the nucleic acid analysis chip is positioned on the rotating shaft side with respect to the plurality of reaction vessels and is connected to each of the plurality of reaction vessels; It is preferable that the injection port is formed so as to open further on the rotating shaft side than the flow path.
- the injection port opens coaxially with the rotation shaft and protrudes from the outer surface of the nucleic acid analysis chip so as to surround the injection port. It is preferable to further provide a wall.
- the protruding wall portion preferably has elasticity.
- the flow path is provided on the rotating shaft side of the reaction vessel and communicates with the injection port; branched from the main flow path, and It is preferable to have a plurality of branch channels connected to each of the reaction vessels and formed narrower than the main channel.
- the main channel has a mountain shape protruding along the rotation axis.
- the nucleic acid analysis chip includes a chip body in which a concave portion that becomes the reaction container and the flow path is formed on one surface; and the one of the chip bodies It is preferable to have a lid provided on the surface so as to cover the concave portion.
- the chip body and the lid body has light transmittance.
- the chip body is formed of a light-transmitting resin material and the lid is formed of a metal material.
- the steps from the purification of the nucleic acid to the analysis of the nucleic acid can be automatically performed, so that a highly accurate genetic test can be easily performed.
- FIG. 1 is a perspective view showing an overview of a nucleic acid analyzer of one embodiment of the present invention. It is a top view which shows the structure of the nucleic acid analyzer. It is a perspective view which shows the structure of the nucleic acid purification kit in the nucleic acid analyzer. It is a perspective view which shows the structure of the nucleic acid purification kit in the nucleic acid analyzer. It is sectional drawing which shows the structure of the extraction filter cartridge in the nucleic acid purification kit. It is an expanded sectional view which shows the structure of the oil removal part in the nucleic acid purification kit. It is a disassembled perspective view which shows the structure of a part of the oil removal part.
- FIG. 1 is a perspective view showing the appearance of the nucleic acid analyzer 1 of the present embodiment.
- FIG. 2 is a plan view showing a partial configuration of the nucleic acid analyzer 1.
- the nucleic acid analyzer 1 purifies nucleic acid from a subject, amplifies a region containing SNP (Single Nucleotide Polymorphisms) to be examined with respect to the purified nucleic acid, and the amplified nucleic acid A series of operations of measuring SNP by the Invader method (registered trademark) is automatically performed.
- SNP Single Nucleotide Polymorphisms
- the nucleic acid analyzer 1 is provided, for example, inside a stationary casing 31.
- a terminal 2 is connected to the nucleic acid analyzer 1 via a signal line (not shown).
- the terminal 2 can input a user operation on the nucleic acid analyzer 1 and can display the result of analyzing the nucleic acid on the terminal 2.
- the nucleic acid analyzer 1 includes a nucleic acid purification kit 10 that separates and purifies a nucleic acid from a specimen to obtain a nucleic acid solution; a central axis (rotation axis) O is located at the center, and the central axis A nucleic acid analysis chip 20 having a plurality of reaction vessels 22 on the outer side in the radial direction of O, and the nucleic acid purified by the nucleic acid purification kit 10 being sent to the reaction vessel 22 by centrifugal force around the central axis O; 10 includes an object introduction unit 40 on which 10 is placed; and an analysis apparatus main body 30.
- a nucleic acid purification kit 10 that separates and purifies a nucleic acid from a specimen to obtain a nucleic acid solution
- a central axis (rotation axis) O is located at the center, and the central axis
- a nucleic acid analysis chip 20 having a plurality of reaction vessels 22 on the outer side in the radial
- the nucleic acid purification kit 10 destroys cells contained in a specimen such as a biological sample, and adsorbs the nucleic acids contained in the cells to a carrier for separation and purification.
- the nucleic acid analysis chip 20 performs a biochemical reaction on the nucleic acid purified by the nucleic acid purification kit 10.
- each of the nucleic acid purification kit 10 and the nucleic acid analysis chip 20 is disposed inside, and performs purification and analysis operations on the nucleic acid purification kit 10 and the nucleic acid analysis chip 20. Specifically, as shown in FIG.
- the analyzer main body 30 is provided in the subject introduction unit 40 and performs an analysis chip holder 42 that supports the nucleic acid analysis chip 20;
- a purification treatment unit 50 for injecting a nucleic acid solution containing the purified nucleic acid into the nucleic acid analysis chip 20; and rotating the nucleic acid analysis chip 20 around the central axis O to send the nucleic acid solution to each of the reaction vessels 22.
- a conveying section (conveying means) 55 that conveys automatically.
- FIGS. 3 to 7C are perspective views showing the configuration of the nucleic acid purification kit 10.
- FIG. 5 is a cross-sectional view showing the configuration of the extraction filter cartridge 150 in the nucleic acid purification kit 10.
- 6A is an enlarged cross-sectional view showing the configuration of the oil removing unit 128 in the nucleic acid purification kit 10
- FIG. 6B is an exploded perspective view showing the configuration of the wiping unit 129.
- 7A, 7B, and 7C are plan views showing a partial configuration of the oil removing unit 128.
- the nucleic acid purification kit 10 includes a reagent cartridge 100 containing a reagent for extracting nucleic acid from a subject, and a dispensing chip (oil dispensing chip, reagent for dispensing a liquid).
- a dispensing tip rack (dispensing tip container) 200 in which a plurality of dispensing tips) 201 are accommodated is provided.
- the dispensing tip rack 200 includes a plurality of dispensing tips 201.
- the liquid stored in the reagent cartridge 100 is dispensed or stirred by any of the plurality of dispensing tips 201, and no cross contamination occurs between the liquids by the dispensing tips 201.
- the dispensing tip rack 200 is also a container for collecting the dispensing tips 201 after use, and dispenses the dispensing tips 201 as infectious waste after the use of the dispensing tips 201 in the nucleic acid analyzer 1 is finished. Note: The entire tip rack 200 can be discarded.
- the reagent cartridge 100 includes a main body 101 formed in a box shape having an opening, and a claw portion 102 formed to protrude from the outer surface of the main body 101 to the side.
- the claw part 102 fixes the reagent cartridge 100 to a subject introduction part 40 described later in the analyzer main body 30.
- a thin sealing film 103 that is removed when the nucleic acid purification kit 10 is used is preferably attached to a part of the outer surface of the main body 101.
- the opening of the main body 101 is sealed by the sealing film 103.
- an extraction filter cartridge 150 which will be described later, disposed inside the main body 101 from dropping from the main body 101.
- foreign matters such as dust from entering the main body 101.
- a main body 101 contains a sample well (subject storage unit) 110 into which a subject such as a biological sample is put, a reagent for extracting a nucleic acid from the subject, and the like.
- a reagent well part 120, a waste liquid well (waste liquid storage part) 130 for discarding an unnecessary solution separated in the step of extracting nucleic acid from the specimen, a recovery well 140 for collecting the nucleic acid extracted from the specimen, are integrally formed.
- the reagent cartridge 100 has an extraction filter cartridge 150 containing a carrier that adsorbs nucleic acids, and the reagent cartridge 100 is integrally formed with a holding portion 160 in which the extraction filter cartridge 150 is accommodated.
- the reagent well section 120 has a plurality of reagent wells (reagent storage sections) 121, 122, 123, 124, 125, 126, an oil well (oil storage section) 127, and an oil removal section 128.
- the openings of the plurality of reagent wells 121, 122, 123, 124, 125, and 126 and the opening of the oil well 127 are sealed with the sealing film 104 shown in FIG.
- the sealing film 104 suppresses gas permeation to the main body 101.
- tip 201 in the sealing film 104 for example, a metal thin film, a plastic film, etc. can be used.
- a lysis solution 121A that dissolves biological materials such as cell membranes
- a lysis solution 122A that dissolves biological materials such as cytoplasm that cannot be dissolved in the lysis solution 121A and clogs the carrier
- Washing solutions 123A and 124A for washing away unnecessary substances other than the nucleic acid adsorbed on the carrier
- an eluent 125A for eluting the nucleic acid from the carrier
- a diluting solution 126A for adjusting the nucleic acid concentration in the eluate, respectively. It is housed individually in the well.
- the analysis reagent is arranged on the nucleic acid analysis chip.
- PCR Polymerase Chain Reaction
- analysis reagent premix in which a part of reagents for SNP measurement by Invader (registered trademark) method are mixed in advance are individually accommodated in each reagent well. be able to.
- the analysis reagent premix consists of a DNA polymerase and a base for PCR, Cleavase (registered trademark) used in the Invader (registered trademark) method, and a buffer solution (buffer) for performing the reaction by the PCR and Invader (registered trademark) method. ).
- the analysis reagent premix is preferably stored in the reagent well in a state of being concentrated more than the optimum concentration during the reaction in order to suppress the enzyme activity in the state of being stored in the reagent well.
- oil well 127 for example, a well-known oil 127A used in a PCR reaction in a layered manner is accommodated.
- oil 127A for example, mineral oil or silicon oil can be preferably used.
- the oil removing unit 128 preferably has a wiping portion 129 for removing the oil 127A attached to the outer surface of the dispensing tip 201 (see FIG. 4).
- the wiping portion 129 includes a lipophilic wiping filter 129A and cylindrical support portions 129B and 129D that support the wiping filter 129A inside the oil removal portion 128.
- the wiping filter 129A is formed in a substantially cylindrical shape or a substantially disc shape along the inner diameter of the oil removing portion 128, and a cut portion formed in the center of the wiping filter 129A penetrating in the central axis direction of the wiping filter 129A.
- 129C is provided.
- the cut portion 129C is located in the center of the wiping filter 129A when the wiping filter 129A is viewed in the central axis direction, and is formed in a cross shape.
- the wipe filter 129A may have a cut portion 129E formed in a true circle when viewed in the central axis direction.
- a circular cut portion 129 ⁇ / b> F instead of the cut portion 129 ⁇ / b> C, a circular cut portion 129 ⁇ / b> F having a bulging portion that bulges radially inward of the wiping filter 129 ⁇ / b> A may be provided.
- the waste well 130 is a recess formed along the outer diameter shape of the extraction filter cartridge 150, and has a shape capable of supporting the extraction filter cartridge 150. In the state where the extraction filter cartridge 150 is attached to the waste well 130, the extraction filter cartridge 150 does not fall within the reagent cartridge 100.
- the recovery well 140 has a shape that can support the extraction filter cartridge 150 in the same manner as the waste well 130.
- the bottom of the recovery well 140 has a container shape that can store the nucleic acid solution eluted from the carrier of the extraction filter cartridge 150 by the eluent 125A.
- the waste liquid well 130 and the recovery well 140 are provided adjacent to each other in the reagent cartridge 100. This arrangement is for shortening the flow line of the extraction filter cartridge 150 when the extraction filter cartridge 150 is moved to the recovery well 140 after the extraction filter cartridge 150 is washed in the waste liquid well 130. Thereby, the possibility that the extraction filter cartridge 150 passing over the reagent cartridge 100 contaminates the reagent cartridge 100 or the like can be reduced.
- the extraction filter cartridge 150 includes a substantially cylindrical main body 151 serving as an outer frame of the extraction filter cartridge, and an extraction filter unit 152 provided inside the main body 151.
- the main body 151 has an upper end 151A and a lower end 151B that are both open. Further, the main body 151 is formed in a funnel shape having an opening diameter smaller than the opening on the upper end 151A side on the lower end 151B side than the extraction filter unit 152. The lower end 151B is provided with a nozzle-like discharge port 151C protruding downward.
- the lysate 121A in which the analyte is dissolved, the cleaning solutions 123A and 124A, the eluent 125A, and the like are supplied from the opening on the upper end 151A side, pass through the filter unit 152, and are discharged from the discharge port 151C. This is a configuration.
- the filter unit 152 includes an adsorption filter 152A containing a carrier having a property of adsorbing nucleic acids, and a support member 152B that is disposed on the lower end 151B side of the adsorption filter 152A and prevents deformation of the adsorption filter 152A.
- the adsorption filter 152A is formed in a film shape by a porous material that can adsorb nucleic acid.
- the material of the adsorption filter 152A is preferably a material having a property that the nucleic acid is adsorbed in the cleaning liquids 123A and 124A, and the adsorbed state of the nucleic acid is weakened in the eluate 125A.
- the adsorption filter 152A is preferably a porous material in which a hydroxyl group is introduced as a hydrophilic group. Specifically, the adsorption filter 152A is formed of silica or by combining silica on another substance.
- the material of the adsorption filter 152A is not particularly limited as long as it is a material that can adsorb a biological substance in the presence of an organic substance.
- the adsorption filter 152A may have porosity by overlapping and forming fiber materials such as glass wool.
- the support member 152B is preferably formed of a material that has at least low adsorptivity to nucleic acids and does not inhibit the reaction of extracting nucleic acids from the specimen.
- the support member 152B can be formed to have porosity by baking and solidifying resin particles.
- the rigidity of the support member 152B is higher than that of the adsorption filter 152A, and the support member 152B prevents the adsorption filter 152A from being deformed in the main body 151.
- an absorber (not shown) that absorbs liquid at the bottom of the holding unit 160 shown in FIG.
- the absorber when the extraction filter cartridge 150 is accommodated in the holding unit 160, the absorber is brought into contact with the outer surface of the extraction filter cartridge 150 on the discharge port 151C side.
- the cleaning liquid 123A when the cleaning liquid 123A is attached to the outer surface of the outlet 151C when the cleaning liquid 123A is supplied into the extraction filter cartridge 150, the cleaning liquid 123A can be removed by absorbing the cleaning liquid 123A into the absorber.
- the nucleic acid analysis chip 20 has a disk-shaped chip body 21 and a lid 29 attached to the chip body 21.
- the chip body 21 is provided in communication with each of the reaction containers 22 on the chip body 21 and a plurality of reaction containers 22 arranged side by side in the circumferential direction of the chip body 21 so as to be equidistant from the center of the chip body 21.
- the flow path 23 is provided.
- 23 reaction vessels 22 are provided in the chip body 21.
- an injection port 26 for feeding a nucleic acid solution containing a nucleic acid purified by the above-described nucleic acid purification kit 10 to the reaction vessel 22 and a vicinity of the injection port 26 are formed in the center of the chip body 21.
- Outlet 27 is provided. The inlet 26 and the outlet 27 communicate with the flow path 23.
- the chip body 21 is provided with a protruding wall portion 28 that protrudes from the outer surface of the chip body 21 so as to surround the injection port 26 and the outlet 27.
- the material of the chip body 21 is preferably a material that does not affect nucleic acid analysis.
- the material of the chip body 21 is preferably a resin material containing at least one of polypropylene, polycarbonate, and acrylic.
- polypropylene homopolypropylene or a random copolymer of polypropylene and polyethylene can be used.
- acrylic polymethyl methacrylate or a copolymer of methyl methacrylate and other monomers such as methacrylic acid ester, acrylic acid ester and styrene can be used.
- the chip body 21 is preferably light transmissive at least in the reaction vessel 22, and can detect fluorescence, coloring, and the like generated by a biochemical reaction occurring in the reaction vessel 22 from the outside of the reaction vessel 22. Is preferred. Specifically, it is preferable that light in the visible light region (wavelength 350 nm or more and 780 nm or less) can be transmitted with a light transmittance of 70% or more. Further, the chip body 21 may be formed of a resin material having optical transparency.
- the reaction vessel 22 is formed in the chip body 21 as a substantially hemispherical recess capable of storing a liquid therein.
- Reagents for performing a biochemical reaction are arranged on the inner wall surface of the reaction vessel 22.
- each reaction container 22 includes at least a pair of primer sets for amplifying a gene region containing a SNP to be tested, and an Invader (registered trademark) oligo used in the Invader (registered trademark) method. And a signal probe. It is preferable that a plurality of types of primer sets, Invader (registered trademark) oligos, and signal probes are arranged differently for each reaction container 22 in advance according to the gene region to be examined. In this case, different types of SNPs can be measured for each reaction vessel 22, and for example, according to the nucleic acid analysis chip 20 of the present embodiment, it is possible to simultaneously measure 23 types of SNPs.
- the flow path 23 is provided by forming a recess on the chip body 21 radially inward of the reaction vessel 22.
- the flow path 23 includes a main flow path 24 and a branch flow path 25.
- the main flow path 24 is formed to extend in the circumferential direction of the chip body 21 while meandering between the center of the chip body 21 and the radially outer side of the chip body 21.
- the branch channel 25 is formed to branch from the main channel 24 so as to connect the main channel 24 and each of the reaction vessels 22.
- One end 24A of the main flow path 24 communicates with the inlet 26, and the other end 24B of the main flow path 24 communicates with the outlet 27.
- the main flow path 24 is formed to have a chevron 24 ⁇ / b> C protruding along the central axis O between the reaction vessels 22 adjacent in the circumferential direction of the chip body 21.
- the nucleic acid analysis chip 20 is stored in the main flow path 24 when rotated around the central axis O.
- the liquid is interrupted at the apex 24D of the mountain shape 24C, and the liquid is sent to each of the reaction vessels 22.
- the branch channel 25 is formed to be narrower than the channel area of the main channel 24 at the connection portion with the main channel 24.
- a portion of the branch channel 25 connected to the main channel 24 is a flow restricting portion 25 ⁇ / b> A that restricts the liquid from flowing from the main channel 24 to the branch channel 25.
- the lid 29 is provided on the chip body 21 on the side where the reaction vessel 22 and the flow path 23 are formed. By attaching the lid body 29 to the chip body 21, the concave portions that become the reaction vessel 22 and the flow path 23 are covered, and independent reaction spaces and flow paths are formed.
- the material of the lid 29 is preferably a material having high thermal conductivity, and for example, metal materials such as aluminum, copper, silver, nickel, brass, and gold can be employed.
- the portion having thermal conductivity may be at least in the portion where the reaction vessel 22 is located. Further, if heat can be transferred to the liquid inside the reaction vessel 22 at a rate sufficient for a biochemical reaction (for example, PCR reaction) in the reaction vessel 22, the resin material similar to that of the above-described chip body 21 is formed.
- the lid 29 may be constituted by the thin plate material.
- the nucleic acid analysis chip 20 of the present embodiment sends the liquid stored in the main flow path 24 to each of the branch flow paths 25 by centrifugal force generated by the rotation of the nucleic acid analysis chip 20 around the central axis O, and the branch flow The liquid is sent to each of the reaction containers 22 through the passage 25.
- the analyzer main body 30 includes an analyte introduction unit 40 in which the above-described nucleic acid purification kit 10 and the nucleic acid analysis chip 20 are disposed, and a purification processing unit 50 that performs an operation of extracting nucleic acid from the analyte using the nucleic acid purification kit 10.
- a centrifugal liquid feeding unit 60 that rotates the nucleic acid analysis chip 20 around the central axis O, and an analysis unit 70 that analyzes nucleic acids in the reaction container 22 of the nucleic acid analysis chip 20.
- the analyte introduction unit 40 includes a tray 41 on which the reagent cartridge 100 and the dispensing chip rack 200 of the nucleic acid purification kit 10 are arranged, and an analysis chip holder 42 on which the nucleic acid analysis chip 20 is placed.
- the tray 41 is detachably provided in the subject introduction section 40, and can be disposed of as a sterilization process or an infectious waste when the subject adheres. Further, the tray 41 is provided with an engaged portion 43 to which the above-described claw portion 102 formed in the reagent cartridge 100 is engaged, so that the reagent cartridge 100 does not fall on the tray 41.
- the claw portion 102 is a positioning mechanism for positioning the reagent cartridge 100 in the subject introduction portion 40.
- the analysis chip holder 42 can support the nucleic acid analysis chip 20 by fitting the nucleic acid analysis chip 20 into a circular through hole.
- the purification processing unit 50 transports the dispensing tips 201 arranged in the dispensing tip rack 200 and uses the robot hand 51 and the dispensing tips 201 to suck, hold, and discharge the liquid. And a pressurizing unit 53 that pressurizes the inside of the extraction filter cartridge 150 by flowing air from the upper end of the extraction filter cartridge 150 accommodated in the reagent cartridge 100.
- a dispensing tip 201 is detachably connected to the dispensing unit 52 by press-fitting. In this state, using the dispensing tip 201, dispensing work and transportation of each liquid are performed (FIGS. 10 and 11). Also, a plurality of dispensing tips 201 are prepared and are appropriately replaced from the viewpoint of preventing contamination.
- the dispensing tip 201 When replacing the dispensing tip 201, the dispensing tip 201 can be released from the dispensing portion 52 by pushing down the upper end of the dispensing tip 201 downward with a release portion (not shown).
- the release part is provided in the dispensing part 52.
- a protruding portion that easily engages with the release portion may be provided at the upper end of the dispensing tip 201.
- the extraction filter cartridge 150 is moved by the robot hand 51 and pressurized by the pressure unit 53. At the time of this pressurization, the pressurizing unit 53 and the extraction filter cartridge 150 can be airtightly engaged (FIG. 12).
- the inside of the extraction filter cartridge 150 can be pressurized using the pressurization unit 53 in a state where the pressurization unit 53 and the extraction filter cartridge 150 are engaged.
- the centrifugal liquid feeding unit 60 As the centrifugal liquid feeding unit 60, a known centrifugal device can be appropriately adopted, and the nucleic acid analysis chip 20 can be rotated around the central axis O while supporting the nucleic acid analysis chip 20.
- the speed at which the nucleic acid analysis chip 20 is rotated in the centrifugal liquid feeding unit 60 is such a speed that the liquid flows from the main channel 24 into the branch channel 25 by the centrifugal force applied to the liquid supplied to the inside of the nucleic acid analysis chip 20. It is preferable.
- the optimum speed for rotating the nucleic acid analysis chip depends on the shape of the nucleic acid analysis chip.
- the speed at which the nucleic acid analysis chip 20 is rotated in the centrifugal liquid feeding unit 60 is preferably 1000 rpm or more.
- the analysis unit 70 contacts the nucleic acid analysis chip 20 and changes the temperature of the reaction container 22 of the nucleic acid analysis chip 20 so as to follow a predetermined temperature change, and the fluorescence in the reaction container 22 of the nucleic acid analysis chip 20. And a fluorescence measuring unit 90 for measuring.
- the temperature control mechanism 80 includes an upper heat plate 81 and a lower heat plate 82 having opposing planes, and a temperature control unit (not shown). Although details will be described later, as shown in FIG. 16, the nucleic acid analysis chip 20 is sandwiched between an upper heat plate 81 and a lower heat plate 82.
- the upper heat plate 81 is provided with a ring-shaped convex region 81A. Due to the convex region 81A, the upper heat plate 81 contacts at least the region of the reaction solution 22 of the nucleic acid analysis chip 20 and the protruding wall portion 28.
- a metal material having a high thermal conductivity such as aluminum, gold, silver, or copper can be used.
- the contact surface of each heat plate with the nucleic acid analysis chip may be made of an elastic body having good thermal conductivity.
- the upper heat plate 81 and the lower heat plate 82 change in temperature according to the temperature change set in advance in the temperature control unit.
- a temperature control method in the temperature control unit a known temperature control method in a thermal cycler can be appropriately employed. Thereby, reaction by PCR and the Invader (registered trademark) method can be performed in the reaction container 22 of the nucleic acid analysis chip 20.
- the fluorescence measuring unit 90 is a fluorescent substance in the reaction vessel 22 via an optical fiber (not shown) from a light source unit such as an LED, a light receiving unit such as a PMT, an optical unit 91 including an excitation optical filter and a light receiving optical filter. Excitation light for exciting the reaction vessel 22 is irradiated to measure the fluorescence intensity of the fluorescent substance.
- the excitation light can obtain an arbitrary wavelength by a combination of a light source and a filter.
- the analyzer main body 30 includes a transport unit (transport unit) 55 that moves the subject introduction unit 40 and the analysis unit 70 inside the housing 31.
- a transport unit including a rail 56 provided inside the housing 31 and a moving stage 57 that moves along the rail 56 can be employed.
- the subject introduction unit 40 and the analysis unit 70 may be moved inside the housing 31 by the robot hand 51.
- the transport means of the present invention is not limited to the above example, and the analyte introduction unit 40 in which the nucleic acid purification kit 10 and the nucleic acid analysis chip 20 are arranged includes a purification processing unit 50, a centrifugal liquid feeding unit 60, What is necessary is just to have the mechanism conveyed so that each can be processed in the analysis part 70.
- the purification processing unit 50, the centrifugal liquid feeding unit 60, and the analysis unit 70 may be moved so that the subject introduction unit 40 is relatively transported to each processing unit.
- the analyte introduction unit 40 can be linearly moved by the transport unit in the X direction shown in FIG. 2 inside the housing 31 of the analyzer main body 30. It can be conveyed to the position of the purification processing unit 50, the centrifugal liquid feeding unit 60, and the analysis unit 70. Further, the analysis unit 70 has a moving mechanism of the analysis unit 70 as a transport unit different from the transport unit of the subject introduction unit 40. This moving mechanism enables linear movement in the Y direction shown in FIG. 2 inside the housing 31 of the analyzer main body 30.
- the processing unit that performs processing on the nucleic acid analysis chip 20 can be switched between the temperature control mechanism 80 and the fluorescence measurement unit 90. Specifically, during the PCR reaction, the temperature of the nucleic acid analysis chip 20 is controlled by the upper heat plate 81 and the lower heat plate 82, and the upper heat plate 81 moves in the Y direction before the invader reaction shifts. 20 is located at the top. As a result, while controlling the temperature to the invader reaction temperature with the lower heat plate 82, the optical fiber moves through the upper part of the nucleic acid analysis chip 20 and the fluorescence intensity in the reaction vessel 22 can be measured.
- the sealing film 103 of the reagent cartridge 100 shown in FIG. 3 is removed manually by the user. Subsequently, for example, a whole blood sample is injected into the sample well 110 of the reagent cartridge 100 manually by the user. Subsequently, the user places the reagent cartridge 100 and the dispensing tip rack 200 on the tray 41 as shown in FIG. At this time, the claw portion 102 provided in the reagent cartridge 100 is engaged with the engaged portion 43 of the tray 41, and the reagent cartridge 100 is fixed to the tray 41. Further, the nucleic acid analysis chip 20 is placed on the analysis chip holder 42 by the user's manual work.
- the subject introduction unit 40 is moved to the purification processing unit 50 (S1).
- purification process part 50 as shown in FIG. 10, the dispensing part 52 is moved.
- the various reagents stored in the reagent wells 121 to 126 are fed (pressurized) or sucked (depressurized) by the dispensing unit 52 according to a predetermined procedure, and the reagent is supplied to the dispensing tip 201. Take in and out, dispense and mix. Thereby, the cells in the whole blood sample supplied to the sample well 110 are lysed to obtain a cell lysate.
- the tip of the dispensing tip 201 is inserted into the sealing film 104 that seals the reagent wells 121 to 126.
- a through hole is formed in the sealing film 104, and various reagents in the reagent wells 121 to 126 are sucked by the dispensing tip 201.
- the extraction filter cartridge 150 is conveyed to the waste well 130, and the solution in which the cells are dissolved is supplied to the extraction filter cartridge 150 as shown in FIG. Thereafter, as shown in FIG. 12, after the dispensing tip 201 is returned to the dispensing tip rack 200, the pressurizing unit 53 and the upper end 151 ⁇ / b> A of the extraction filter cartridge 150 are brought into contact with each other. Then, the pressurizing unit 53 sends gas into the extraction filter cartridge 150 from the upper end 151A of the extraction filter cartridge 150, and the liquid passes through the adsorption filter 152A.
- the speed at which the liquid passes through the adsorption filter 152A can be increased.
- the solution in which the cells are lysed passes through the adsorption filter 152A, and the nucleic acid is adsorbed to the adsorption filter 152A. Thereafter, the adsorption filter 152A is washed with a solution 122A for dissolving the biological material.
- the biological material is cytoplasm that is not completely dissolved in the lysis solution 121A and clogs the carrier.
- the cleaning liquids 123A and 124A are supplied to the adsorption filter 152A, and the adsorption filter 152A is cleaned with the cleaning liquids 123A and 124A.
- the extraction filter cartridge 150 is transported to the recovery well 140 by the robot hand 51, and the eluent 125A is supplied to the adsorption filter 152A by the dispensing unit 52 and the dispensing tip 201.
- the nucleic acid adsorbed by the adsorption filter 152A is eluted in the eluent 125A, and the nucleic acid solution containing the nucleic acid is recovered in the recovery well 140.
- the diluted solution 126A and the eluent 125A containing nucleic acid are mixed, and the sample preparation is completed.
- the nucleic acid separation and purification by the nucleic acid purification kit 10 is thus completed.
- the nucleic acid solution containing the nucleic acid is transported from the recovery well 140 to the nucleic acid analysis chip 20 by the dispensing unit 52 using the dispensing chip 201 ( S3). Further, the nucleic acid solution is sent from the inlet 26 of the nucleic acid analysis chip 20 to the main flow path 24 of the nucleic acid analysis chip 20. At this time, the nucleic acid solution does not enter the branch channel 25 from the main channel 24.
- the specimen introduction unit 40 moves to the centrifugal liquid feeding unit 60 as shown in FIG. 13 (S4). Further, the nucleic acid analysis chip 20 is rotated around the central axis O by the centrifugal liquid feeding unit 60, and centrifugal force is applied to the nucleic acid solution stored in the main flow path 24 of the nucleic acid analysis chip 20, so that the nucleic acid solution is subjected to nucleic acid analysis.
- the solution is sent to each of the reaction containers 22 of the chip 20 (S5).
- the analyte introducing unit 40 moves again to the purification processing unit 50 with the nucleic acid analysis chip 20 mounted (see FIG. 9, S6).
- the oil 127A may adhere to the outer surface of the dispensing tip 201 in the form of droplets as shown in FIG. 14A.
- the dispensing unit 52 moves the dispensing tip 201 to the oil removing unit 128 as shown in FIG. 14A. Furthermore, as shown in FIG. 14B, the dispensing unit 52 inserts the tip 201A of the dispensing tip 201 into the cut portion 129C of the wiping filter 129A of the oil removing unit 128. The oil 127A adhering to the outer peripheral surface of the tip 201A of the dispensing tip 201 is sucked by the wiping filter 129A and removed from the outer peripheral surface of the dispensing tip 201.
- the outer peripheral surface of the dispensing tip 201 comes into contact with the wiping filter 129A again, and the oil 127A attached to the outer peripheral surface of the dispensing tip 201 is wiped off.
- the dispensing chip 201 in which the oil 127A is held and the oil 127A on the outer peripheral surface is removed is conveyed to the nucleic acid analysis chip 20 by the dispensing unit 52. Further, the tip 201A of the dispensing tip 201 is inserted into the inlet 26 of the nucleic acid analysis chip 20 shown in FIG. 8A, and the oil 127A is fed from the inlet 26 to the main channel 24 (S7). At this time, the oil 127 ⁇ / b> A is filled in the main channel 24, but does not enter the branch channel 25.
- the nucleic acid solution is located on the radially outer side of the nucleic acid analysis chip 20. Thereby, the oil 127A does not enter the reaction container 22 in a state where the reaction container 22 is filled with the nucleic acid solution.
- the analyte introduction unit 40 moves to the temperature control mechanism 80 of the analysis unit 70 with the nucleic acid analysis chip 20 mounted (S10).
- the nucleic acid analysis chip 20 is inserted between the upper heat plate 81 and the lower heat plate 82. Further, the nucleic acid analysis chip 20 is sandwiched between the upper heat plate 81 and the lower heat plate 82 as shown in FIG.
- the protruding wall portion 28 comes into close contact with the upper heat plate 81 by abutting against the upper heat plate 81 and elastically deforming. Thereby, the inlet 26 and the outlet 27 (see FIG. 8A) are sealed by the protruding wall portion 28.
- Both the upper heat plate 81 and the lower heat plate 82 are heated or cooled according to a preset temperature change. Thereby, the temperature of the nucleic acid solution accommodated in the reaction container 22 of the nucleic acid analysis chip 20 changes according to a preset temperature change. Thereafter, a nucleic acid amplification reaction (PCR reaction) corresponding to the specificity of the primer set accommodated in the reaction container 22 is performed inside each reaction container 22 (S11).
- PCR reaction nucleic acid amplification reaction
- the reaction container 22 is heated at 99 ° C. for 10 minutes, for example, in order to deactivate the DNA polymerase in the reaction container 22 (S13).
- bubbles may be generated from reagents or the like stored in the reaction vessel 22 and may remain in the reaction vessel 22.
- the bubble removing step (S12) for removing bubbles generated in the reaction vessel 22 in the PCR reaction may be performed after the PCR reaction and before the DNA polymerase is deactivated (S13). good.
- the bubble removal step (S14) may be performed after the DNA polymerase is deactivated (S13). That is, the bubble removal step (S12, S14) may be performed once or twice.
- the temperature of the reaction vessel 22 of the nucleic acid analysis chip 20 is rapidly cooled to room temperature by the temperature control mechanism 80, and the nucleic acid analysis chip 20 is moved from the analysis unit 70 to the centrifugal liquid feeding unit 60.
- This is a step of rotating around the central axis O.
- the bubbles in the reaction container 22 are pushed out toward the flow path 23 by the centrifugal force applied to the liquid in the reaction container 22 and the flow path 23.
- the steps including S4 to S13 or S14 can be automatically performed, so that the timing of sending the nucleic acid solution to each of the reaction containers 22 can be matched. it can.
- the time interval from the delivery of the nucleic acid solution to the start of the PCR reaction (S11) can be minimized.
- unintended artificial influence on the nucleic acid amplification reaction can be prevented, and the accuracy of the measurement result can be improved.
- the analysis unit 70 moves relative to the analyte introduction unit 40 so that the fluorescence measurement unit 90 of the analysis unit 70 is superimposed on the nucleic acid analysis chip 20 (S15).
- the temperature of the lower heat plate 82 is controlled so that the temperature of the liquid inside the reaction vessel 22 is between 60 ° C. and 70 ° C., preferably 63 ° C.
- the enzymatic reaction by the Invader (registered trademark) method is performed in the nucleic acid analysis chip 20.
- the fluorescence measurement unit 90 irradiates the reaction vessel 22 with excitation light generated by the optical unit 91 via an optical fiber (not shown).
- the Invader (registered trademark) method since measurement by the Invader (registered trademark) method is used, two types of excitation light having wavelengths of 480 nm and 545 nm are used. Specifically, the fluorescent substances used in the Invader (registered trademark) method are FAM and RedmondRed. Since the reaction vessel 22 is transparent and can transmit light having a wavelength of 350 nm or more and 780 nm or less, the excitation light reaches the inside of the reaction vessel 22 and reaches the fluorescent substance released from the signal probe inside the reaction vessel 22. Inside the reaction vessel 22, the fluorescence intensity increases in proportion to the amount of the released fluorescent substance.
- the fluorescence measuring unit 90 measures the fluorescence intensity inside the reaction vessel 22 in order in the circumferential direction of the nucleic acid analysis chip 20 for each of FAM and RedmondRed (S16). Information measured in the fluorescence measuring unit 90 is displayed on the terminal 2 shown in FIG. 1 (S17), and the user can know what SNP is contained in the nucleic acid.
- nucleic acid analyzer 1 of the present embodiment purification of the nucleic acid using the nucleic acid purification kit 10 is performed by the purification processing unit 50. Then, after the nucleic acid solution is fed to each of the reaction containers 22 of the nucleic acid analysis chip 20 by the centrifugal liquid feeding unit 60, the analysis of the nucleic acid is performed in the analysis unit 70. As described above, the nucleic acid analysis is performed in conjunction with each other, and the steps from the purification of the nucleic acid to the analysis of the nucleic acid can be automatically performed by the analyzer main body 30, so that a highly accurate genetic test can be easily performed. it can.
- a process in which a user's manual operation is generated is to supply a specimen (whole blood sample) to the sample well 11 of the nucleic acid purification kit 10 and place the nucleic acid purification kit 10 on the tray 41. It is the process of mounting. This process does not require highly accurate liquid operation, and all highly accurate liquid operations are performed by the analyzer main body 30. Therefore, even if the user is not skilled in the liquid operation, a genetic test with high reproducibility can be performed.
- the analysis unit 70 includes the temperature control mechanism 80, the PCR reaction can be immediately performed inside the reaction container 22 of the nucleic acid analysis chip 20 after supplying the nucleic acid solution and oil 127A to the nucleic acid analysis chip 20. . For this reason, since no manual work is involved, the operation is simple, and further, the specificity of the PCR reaction can be increased and the genetic test can be performed with high accuracy.
- the analysis unit 70 includes the fluorescence measurement unit 90, the fluorescence of the fluorescent material excited by the excitation light inside the reaction vessel 22 can be measured.
- the nucleic acid purification kit 10 includes the oil removing unit 128, the oil 127A attached to the outer peripheral surface of the tip 201A of the dispensing tip 201 can be removed by the wiping filter 129A of the oil removing unit 128.
- the tip 201A of the dispensing chip 201 is inserted into the injection port 26 of the nucleic acid analysis chip 20, it is possible to suppress the oil 127A from adhering to the outer surface of the nucleic acid analysis chip 20 around the injection port 26. .
- the nucleic acid analysis chip 20 is rotated in the centrifugal liquid feeding unit 60, it is possible to suppress the oil 127A from being scattered by the centrifugal force.
- a sample is added to the sample well 110 and the sample introduction unit 40 has a sample. Since only the operation of placing on the tray 41 may be performed manually, genetic testing can be performed easily. Further, since the waste liquid well 130 is integrally provided in the reagent cartridge 100, the reagent cartridge 100 may be removed from the tray 41 and discarded after the genetic test is completed. For this reason, waste liquid processing is simple and there is no possibility that the surroundings will be contaminated by residual liquid such as a subject.
- each of the reagent well portions 120 is sealed by the sealing film 104 provided in the reagent cartridge 100, and the reagent 201 or the like can be sucked through the sealing film 104 by the tip 201A of the dispensing tip 201. Therefore, the reagent well portion 120 can be sealed until just before a reagent is required.
- the reagent cartridge 100 is provided with a holding unit 160 that holds the extraction filter cartridge 150.
- the extraction filter cartridge 150 does not fall within the reagent cartridge 100, and the extraction filter cartridge 150 does not shift in position within the reagent cartridge 100. For this reason, the posture of the extraction filter cartridge 150 can be stabilized and nucleic acid purification can be automated.
- the sealing film 103 that seals the opening of the reagent cartridge 100 is provided, it is possible to prevent foreign matter from entering the extraction filter cartridge 150, the sample well 110, the recovery well 140, and the like.
- the reagent cartridge 100 since the reagent cartridge 100 is provided with a claw portion 102 for fixing to the tray 41, the reagent cartridge 100 may fall down or the reagent cartridge even if the analyte introducing portion 40 moves inside the analyzer main body 30. The position of 100 does not shift.
- each of the reaction containers 22 from the flow path 23 is rotated by rotating the nucleic acid analysis chip 20 around the central axis O. Liquid can be fed to
- the injection port 26 is located on the central axis O, the centrifugal force applied to the liquid such as reagent and oil adhering to the outer surface around the injection port 26 is small. Thereby, when the nucleic acid analysis chip 20 rotates around the central axis O in the centrifugal liquid feeding part 60, it is suppressed that liquids such as reagents and oils are scattered.
- the protruding wall portion 28 is provided so as to protrude from the outer surface of the nucleic acid analysis chip body 21 so as to surround the injection port 26, the protruding wall portion 28 is brought into contact with the upper heat plate 81 or the like.
- the periphery of the inlet 26 can be sealed. For this reason, it is possible to prevent liquid or the like from being blown out from the inlet 26.
- the protruding wall portion 28 has elasticity, the protruding wall portion 28 and the upper heat plate 81 can be brought into close contact with each other.
- the flow restricting portion 25A is provided between the main flow path 24 and the branch flow path 25, the liquid is filled in the entire main flow path 24, and then liquid is applied to the reaction vessel 22 through the branch flow path 25 by centrifugal force. Can be fed.
- the mountain shape 24C is formed in the main channel 24, an equal amount of liquid can be stored in each of the main channels 24 partitioned by the mountain shape 24C. For this reason, the quantity of the liquid sent to each reaction container 22 can be equalized, and the error of the biochemical reaction for every reaction container 22 can be reduced.
- reaction vessel 22 since the reaction vessel 22 has optical transparency, optical measurement of the inside of the reaction vessel 22 can be performed from the outside of the nucleic acid analysis chip 20.
- the nucleic acid analysis chip 20 includes the chip body 21 in which the reaction container 22 and the flow path 23 are formed, and the lid body 29 bonded to the chip body 21, It is easy to place different probes, primers and reagents.
- biochemical reactions can be suitably performed using each of the reaction vessels 22 as an independent reaction space.
- the reaction vessel 22 can be heated and cooled quickly.
- Examples of gene analysis using the nucleic acid analyzer 1 include detection of K-ras gene mutation and detection of germ cell mutation.
- the K-ras gene is known as a virus-derived oncogene and is a gene encoding a kind of G protein having GTPase activity. It is believed that when a point mutation occurs in the K-ras gene, the GTPase activity decreases, causing cell canceration.
- Germline mutations are characteristic mutations of individuals who have germline mutations, and all cells of an individual have the same mutation. For example, it is considered that a difference in drug sensitivity can be estimated by analyzing a germ cell mutation.
- Each reaction vessel 22 contains in advance the probes corresponding to each of the K-ras gene wild type and 13 mutant types, and the above-described enzymes and salts for amplifying the nucleic acid. . In this case, since there are 14 types of probes, 14 reaction vessels 22 are used in the nucleic acid analysis chip 20.
- the user supplies a specimen suspected of pancreatic cancer or colon cancer to the sample well 110 of the reagent cartridge 100 of the nucleic acid purification kit 10 and operates the nucleic acid analyzer 1 as described above to extract the nucleic acid.
- the gene amplification reaction and the fluorescence intensity are measured. This makes it possible to know whether or not the subject has a K-ras gene mutation, and which of the mutant forms of K-ras.
- Germ cell mutations are mutations common to all cells of an individual, so that germ cell mutations can be detected using, for example, whole blood samples. Specifically, germline mutations can be detected by specifying the subject's SNP. For example, a PCR-PHFA (PCR-Preference Modulation Formation Assay) method is known as such a SNP identification method.
- PCR-PHFA PCR-Preference Modulation Formation Assay
- the amount of liquid sent to each of the reaction vessels 22 can be made uniform, so that measurement between a plurality of reaction vessels 22 is possible.
- the error is reduced, and the detection accuracy when detecting the presence or absence of SNP can be increased by the difference in fluorescence intensity in the plurality of reaction vessels 22.
- the nucleic acid analyzer 1 of this embodiment can be preferably used. it can.
- the analysis unit 70 includes the temperature control mechanism 80 and the fluorescence measurement unit 90. However, even if the analysis unit 70 does not include the temperature control mechanism 80 and the fluorescence measurement unit 90, the analysis unit 70 has high accuracy. Genetic testing can be performed more easily.
- the nucleic acid purification kit 10 also removes excess oil attached to the outer surface of the tip side of the dispensing tip rack 200 and the oil dispensing tip 201 containing the oil 127A and at least the oil dispensing tip 201 for dispensing the oil. It is preferable to include an oil removing unit 128 that performs the above operation.
- the nucleic acid purification kit 10 includes a box-shaped reagent cartridge 100 and a reagent dispensing chip 201.
- the reagent cartridge 100 includes a sample well 110, an oil well 127, and reagent wells 121, 122, 123, 124, 125, 126, a waste well 130, and an extraction filter cartridge 150.
- the reagent film 100 is provided with the sealing film (hole sealing film) 104 formed so as to be pierced by the tip of the reagent dispensing chip 201 or the oil dispensing chip 201.
- the present invention is not limited to this.
- the reagent cartridge 100 has a structure in which the holding portion 160 in which the extraction filter cartridge 150 is accommodated is integrally formed, the present invention is not limited to this.
- the claw portion 102 is provided as a positioning mechanism for positioning the reagent cartridge 100 in the subject introducing portion 40, the present invention is not limited to this.
- the nucleic acid analysis chip 20 is configured to include the flow path 23 and the inlet 26, but is not limited thereto, and is configured to include the chip body 21 and the lid 29. It is not limited to. It is preferable that at least one of the chip body 21 and the lid body 29 has light transmittance.
- the projecting wall portion 28 is provided so as to project from the outer surface of the chip body 21 so as to surround the inlet 26 and the outlet 27, the present invention is not limited to this.
- the protruding wall part 28 has elasticity, it is not limited to this.
- the flow path 23 is configured to include the main flow path 24 and the branch flow path 25, the present invention is not limited to this, and further, the main flow path 24 has a mountain shape. It is not limited to.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本願は、2009年09月30日に、日本に出願された特願2009-228809号に基づき優先権を主張し、その内容をここに援用する。
近年の遺伝子検査技術の発達により、例えば患者から採取した生体試料などの被検体から核酸を抽出して一塩基多型のような遺伝子の差異を検出する。この遺伝子の差異により、医薬品に対する感受性をあらかじめ予測できる可能性が示唆されている。これにより、例えば医薬品の副作用を低減して患者個人毎に最適な医療(薬剤)を提供するいわゆるテーラーメイド医療(またはオーダーメイド医療とも呼ばれる)が利用可能になると考えられている。
(1)本発明の一態様に係る核酸分析装置は、被検体から核酸を分離精製して核酸溶液とする核酸精製キットと;中央に回転軸が位置し、前記回転軸の径方向外側に複数の反応容器を有し、前記核酸精製キットによって精製された前記核酸が前記回転軸回りの遠心力によって前記反応容器に送液される核酸分析チップと;前記核酸精製キットが載置される被検体導入部と;前記被検体導入部に設けられ、前記核酸分析チップを支持する分析チップホルダと;前記核酸を含有する前記核酸溶液を前記核酸分析チップの内部に注入する精製処理部と;前記回転軸回りに前記核酸分析チップを回転動作させて前記反応容器のそれぞれに前記核酸溶液を送液する遠心送液部と;前記反応容器の内部の反応産物の分析を行う分析部と;前記精製処理部と前記遠心送液部と前記分析部とのそれぞれに前記被検体導入部を相対的に搬送する搬送手段と;を備える。
まず、本実施形態の核酸分析装置1の全体の構成について図1及び図2を参照して説明する。図1は、本実施形態の核酸分析装置1の外観を示す斜視図である。また、図2は核酸分析装置1の一部の構成を示す平面図である。
本実施形態では、核酸分析装置1は、被検体から核酸を精製し、精製された核酸に対して検査対象となるSNP(Single Nucleotide Polymorphisms)を含む領域を増幅し、増幅された核酸に対してインベーダー法(登録商標)によってSNPの測定をするという一連の動作を自動的に行う。
具体的には、核酸精製キット10は、生体試料などの被検体に含まれる細胞を破壊し、細胞内に含まれる核酸を担体に吸着させて分離精製する。核酸分析チップ20は、核酸精製キット10によって精製された核酸に対して生化学反応を行う。
また、分析装置本体30は、核酸精製キット10と核酸分析チップ20とのそれぞれが内部に配置されて核酸精製キット10及び核酸分析チップ20に対して精製や分析の操作を行う。
具体的には、図2に示すように、分析装置本体30は、被検体導入部40に設けられ、核酸分析チップ20を支持する分析チップホルダ42と;核酸精製キット10による分離精製を行い、精製された核酸を含有する核酸溶液を核酸分析チップ20の内部に注入する精製処理部50と;中心軸線O回りに核酸分析チップ20を回転動作させて反応容器22のそれぞれに核酸溶液を送液する遠心送液部60と;反応容器22の内部の反応産物の分析を行う分析部70と;精製処理部50と遠心送液部60と分析部70とのそれぞれに被検体導入部40を相対的に搬送する搬送部(搬送手段)55と;を備えている。
本体101の外面の一部には、核酸精製キット10の使用時には取り外される薄膜状の封止フィルム103が貼り付けられていることが好ましい。封止フィルム103によって本体101の開口は封止される。これにより、本体101の内部に配置された後述する抽出フィルターカートリッジ150などが、本体101から落下するのを防止することができる。さらには、本体101内部に埃などの異物が混入することを防止することができる。
また後述の使用様態では、分析用の試薬は核酸分析チップに配置した構成としているが、これとは別に試薬ウエルに分析用の試薬を収容した使用方法としても良い。例えば、核酸に対してPCR(Polymerase Chain Reaction)、及びインベーダー(登録商標)法によるSNP測定を行う試薬の一部があらかじめ混合された分析試薬プレミックスと、をそれぞれの試薬ウエルに個別に収容することができる。
本実施形態では、被検体が溶解された状態の溶解液121Aや、洗浄液123A、124A、溶出液125Aなどが上端151A側の開口から供給されてフィルターユニット152を通過して排出口151Cから排出される構成である。
核酸分析チップ20は、円板状のチップ本体21と、チップ本体21に貼り付けられた蓋体29とを有している。
分析装置本体30は、上述の核酸精製キット10と核酸分析チップ20とが配置される被検体導入部40と、核酸精製キット10を用いて被検体から核酸を抽出する操作を行う精製処理部50と、核酸分析チップ20を中心軸線O回りに回転させる遠心送液部60と、核酸分析チップ20の反応容器22内で核酸の分析を行う分析部70と、を備えている。
分析チップホルダ42は、円形の貫通孔に核酸分析チップ20が嵌合することで核酸分析チップ20を支持することができる。
分注部52には、分注チップ201が圧入によって着脱可能に接続される。この状態で、分注チップ201を用いて、分注作業や、各液の運搬が行われる(図10、11)。また、分注チップ201は複数用意され、コンタミネーション防止の観点から適宜交換される。
分注チップ201を交換するときは、分注チップ201の上端をリリース部(不図示)で下方に押し下げることにより、分注チップ201を分注部52から開放することができる。リリース部は分注部52に備えられる。例えば、分注チップ201の上端に、リリース部と容易に係合する突出部を設けてもよい。
抽出フィルターカートリッジ150は、ロボットハンド51により移動され、加圧部53によって加圧される。この加圧時、加圧部53と抽出フィルターカートリッジ150とは気密に係合可能である(図12)。係合状態を気密にするために適する構成としては、例えば、加圧部53の下端、あるいは、抽出フィルターカートリッジ150の上端151Aに弾性部材を設けた構成が挙げられる。このように加圧部53と抽出フィルターカートリッジ150とを係合させた状態で、加圧部53を用いて抽出フィルターカートリッジ150の内部を加圧することができる。
核酸分析装置1を動作させる前に、まず、ユーザの手作業によって図3に示す試薬カートリッジ100の封止フィルム103が取り外される。続いて、試薬カートリッジ100のサンプルウエル110に例えば全血試料をユーザの手作業によって注入する。続いて、ユーザは試薬カートリッジ100及び分注チップラック200を図2に示すようにトレイ41上に載置する。このとき、試薬カートリッジ100に設けられた爪部102がトレイ41の被係合部43に係合して、試薬カートリッジ100はトレイ41に固定される。
さらに、ユーザの手作業によって、核酸分析チップ20は分析チップホルダ42に載置される。
以上で核酸精製キット10による核酸の分離精製は終了する。
本実施形態の核酸分析装置1では、特に上記S4~S13、あるいは、S14を含む工程を自動的に行うことができるため、反応容器22のそれぞれに核酸溶液を送液するタイミングを一致させることができる。また、核酸溶液を送液後、PCR反応(S11)を開始するまでの時間間隔を最小限に短縮できる。この結果、核酸増幅反応への意図しない人為的な影響を防ぎ、測定結果の精度を向上できる。
また、突出壁部28が弾性を有するので、突出壁部28と上部ヒートプレート81とを密着させることができる。
核酸分析装置1を使用した遺伝子解析の例としては、例えばK-ras遺伝子変異の検出や、生殖細胞変異の検出を挙げることができる。
K-ras遺伝子は、ウイルス由来の癌遺伝子として知られており、GTPase活性を有するG蛋白の一種をコードする遺伝子である。K-ras遺伝子に点突然変異が発生すると、GTPase活性が低下することで細胞の癌化を引き起こすと考えられている。
生殖細胞変異は、生殖細胞に変異を有する状態で発生した個体に特徴的な変異で、個体のすべての細胞に同一の変異がある。生殖細胞変異を解析することで例えば薬剤感受性の差などの推定ができると考えられている。
まず、K-ras遺伝子変異の検出に本実施形態の核酸分析装置1を使用する例を説明する。
反応容器22のそれぞれの内部には、K-ras遺伝子の野生型と、13種の変異型とのそれぞれに対応するプローブと、核酸を増幅するための上述の酵素及び塩があらかじめ収容されている。この場合、プローブの種類は14種類となるので、核酸分析チップ20において14個の反応容器22を使用するようになっている。
生殖細胞変異は、個体のすべての細胞に共通する変異であるので、例えば全血試料などを用いて生殖細胞変異の検出を行うことができる。具体的には、生殖細胞変異は、被検体のSNPを特定することによって検出することができる。このようなSNPの特定方法としては、例えばPCR-PHFA(PCR-Preferential Homoduplex Formation Assay)法が知られている。
例えば、分析部70が、温度制御機構80と蛍光測定部90とを備えた構成としたが、分析部70が、温度制御機構80と蛍光測定部90とを備えていなくても、精度の高い遺伝子検査をより簡便に行うことができる。
また、核酸精製キット10は、オイル127Aと少なくともオイルの分注を行うオイル分注チップ201が収容された分注チップラック200とオイル分注チップ201の先端側の外面に付着した余剰オイルを除去するオイル除去部128とを備えることが好ましい。
また、核酸精製キット10は、箱状の試薬カートリッジ100と試薬分注チップ201とを有し、試薬カートリッジ100は、サンプルウエル110とオイルウエル127と試薬ウエル121、122、123、124、125、126と廃液ウエル130と抽出フィルターカートリッジ150とを有することが好ましい。
また、試薬カートリッジ100を被検体導入部40に位置決めするための位置決め機構として、爪部102を設けたが、これに限定されることはない。
また、核酸分析チップ20は、流路23と、注入口26とを有する構成としたが、これに限定されることはなく、チップ本体21と、蓋体29とを有する構成としたが、これに限定されることはない。このチップ本体21と蓋体29の少なくともいずれかは光透過性を有することが好ましい。
さらに、注入口26及び出口27を取り囲むようにチップ本体21の外面から突出して形成された突出壁部28が設けられた構成としたが、これに限定されることはない。
また、突出壁部28は、弾性を有したが、これに限定されることはない。また、流路23が、主流路24と、分岐流路25とを有する構成としたが、これに限定されることはなく、さらには、主流路24は山形状を有する形状としたが、これに限定されることはない。
2 端末
10 核酸精製キット
20 核酸分析チップ
21 チップ本体
22 反応容器
23 流路
24 主流路
24A 一端
24B 他端
24C 山形状
24D 頂点
25 分岐流路
25A 流動制限部
26 注入口
27 出口
28 突出壁部
29 蓋体
30 分析装置本体
31 筐体
40 被検体導入部
41 トレイ
42 分析チップホルダ
43 被係合部
50 精製処理部
51 ロボットハンド
52 分注部
53 加圧部
55 搬送部(搬送手段)
60 遠心送液部
70 分析部
80 温度制御機構
81 上部ヒートプレート
81A 凸部領域81A
82 下部ヒートプレート
90 蛍光測定部
91 光学部
100 試薬カートリッジ
101 本体
102 爪部(位置決め機構)
103 封止フィルム
104 封止フィルム
110 サンプルウエル(被検体収容部)
120 試薬ウエル部
121、122、123、124、125、126 試薬ウエル(試薬収容部)
121A、122A 溶解液
123A、124A 洗浄液
125A 溶出液
126A 希釈液
127 オイルウエル(オイル収容部)
127A オイル
128 オイル除去部
129 拭い部
129A 拭いフィルター
129B、129D 支持部
129C 切り込み部(貫通孔)
129E 切り込み部(真円形)
129F 切り込み部(膨出部のある円形)
130 廃液ウエル(廃液収容部)
140 回収ウエル
150 抽出フィルターカートリッジ
151 本体(略筒状)
151A 上端
151B 下端
151C 排出口(ノズル状)
152 抽出フィルターユニット
152A 吸着フィルター
152B サポート部材
160 保持部
200 分注チップラック
201 分注チップ(オイル分注チップ、試薬分注チップ)
201A 先端
O 中心軸線(回転軸)
Claims (20)
- 被検体から核酸を分離精製して核酸溶液とする核酸精製キットと;
中央に回転軸が位置し、前記回転軸の径方向外側に複数の反応容器を有し、前記核酸精製キットによって精製された前記核酸が前記回転軸回りの遠心力によって前記反応容器に送液される核酸分析チップと;
前記核酸精製キットが載置される被検体導入部と;
前記被検体導入部に設けられ、前記核酸分析チップを支持する分析チップホルダと;
前記核酸を含有する前記核酸溶液を前記核酸分析チップの内部に注入する精製処理部と;
前記回転軸回りに前記核酸分析チップを回転動作させて前記反応容器のそれぞれに前記核酸溶液を送液する遠心送液部と;
前記反応容器の内部の反応産物の分析を行う分析部と;
前記精製処理部と前記遠心送液部と前記分析部とのそれぞれに前記被検体導入部を相対的に搬送する搬送手段と;
を備えることを特徴とする核酸分析装置。 - 前記分析部は、前記核酸分析チップの前記反応容器の外面に接触し、前記反応容器の温度が所定の温度変化に従うように前記反応容器を加熱あるいは冷却する温度制御機構を備えることを特徴とする請求項1に記載の核酸分析装置。
- 前記分析部は、前記核酸分析チップの前記反応容器の内部における蛍光物質を励起する所定の波長の励起光を照射して、前記蛍光物質が発する蛍光の強度を測定する蛍光測定部を備えることを特徴とする請求項2に記載の核酸分析装置。
- 前記核酸精製キットは、
前記核酸分析チップに供給されるオイルと;
少なくとも前記オイルの分注を行うオイル分注チップが収容された分注チップ収容体と;
前記オイル分注チップの先端側の外面に付着した余剰オイルを除去するオイル除去部と;
を備えることを特徴とする請求項1から3のいずれか一項に記載の核酸分析装置。 - 前記オイル除去部は、前記オイル分注チップの先端が挿入されることで前記オイル分注チップの外面に接触する親油性の拭い部を有することを特徴とする請求項4に記載の核酸分析装置。
- 前記核酸精製キットは、
箱状の試薬カートリッジと;
前記分注チップ収容体に収容された複数の試薬分注チップと;を有し、
前記試薬カートリッジは、
前記被検体を収容する被検体収容部と;
前記オイルを収容するオイル収容部と;
前記核酸の前記分離精製を行う液体試薬を収容する試薬収容部と;
前記分離精製において発生する廃液を収容する廃液収容部と;
前記被検体の前記核酸を精製する抽出フィルターカートリッジと;を有することを特徴とする請求項4に記載の核酸分析装置。 - 前記オイル収容部と前記試薬収容部とをそれぞれ封止し、前記試薬分注チップあるいは前記オイル分注チップの先端によって貫通可能に形成された穴部封止フィルムが前記試薬カートリッジに設けられていることを特徴とする請求項6に記載の核酸分析装置。
- 前記試薬カートリッジは、前記抽出フィルターカートリッジを着脱自在に保持する保持部を有することを特徴とする請求項6に記載の核酸分析装置。
- 前記保持部は、前記抽出フィルターカートリッジを通過した液体を吸収する吸収体を有することを特徴とする請求項8に記載の核酸分析装置。
- 前記試薬カートリッジにおいて開口を封止するカートリッジ封止フィルムをさらに有することを特徴とする請求項6に記載の核酸分析装置。
- 前記試薬カートリッジは、前記被検体導入部に位置決めする位置決め機構を有することを特徴とする請求項6に記載の核酸分析装置。
- 前記核酸分析チップは、
前記複数の反応容器よりも前記回転軸側に位置し、前記複数の反応容器のそれぞれに繋がる流路と;
前記流路よりもさらに前記回転軸側において開口して形成された注入口と;
を有することを特徴とする請求項1に記載の核酸分析装置。 - 前記注入口は、前記回転軸と同軸上に開口し、
前記注入口を取り囲むように前記核酸分析チップの外面から突出して設けられた突出壁部をさらに備えることを特徴とする請求項12に記載の核酸分析装置。 - 前記突出壁部は、弾性を有することを特徴とする請求項13に記載の核酸分析装置。
- 前記流路は、
前記反応容器よりも前記回転軸側に設けられ前記注入口に連通する主流路と;
前記主流路から分岐して前記反応容器のそれぞれに繋がり前記主流路よりも細く形成された複数の分岐流路と;
を有することを特徴とする請求項12に記載の核酸分析装置。 - 前記主流路は、前記回転軸に沿って突出する山形を有することを特徴とする請求項12に記載の核酸分析装置。
- 前記反応容器の少なくとも一部は光透過性を有することを特徴とする請求項12に記載の核酸分析装置。
- 前記核酸分析チップは、
前記反応容器と前記流路とになる凹部が一方の面に形成されたチップ本体と;
前記チップ本体の前記一方の面に、前記凹部に蓋をするように貼り合わせて設けられた蓋体と;
を有することを特徴とする請求項12に記載の核酸分析装置。 - 前記チップ本体と前記蓋体との少なくともいずれかは光透過性を有することを特徴とする請求項18に記載の核酸分析装置。
- 前記チップ本体は光透過性を有する樹脂材料で形成され、前記蓋体は金属材料で形成されていることを特徴とする請求項18に記載の核酸分析装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080043522.XA CN102549140B (zh) | 2009-09-30 | 2010-09-30 | 核酸分析装置 |
US13/498,818 US9267890B2 (en) | 2009-09-30 | 2010-09-30 | Nucleic acid analyzer |
JP2011527917A JP5003845B2 (ja) | 2009-09-30 | 2010-09-30 | 核酸分析装置 |
EP10820619.4A EP2484748B1 (en) | 2009-09-30 | 2010-09-30 | Nucleic acid analyzer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-228809 | 2009-09-30 | ||
JP2009228809 | 2009-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011040504A1 true WO2011040504A1 (ja) | 2011-04-07 |
Family
ID=43826316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/067030 WO2011040504A1 (ja) | 2009-09-30 | 2010-09-30 | 核酸分析装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9267890B2 (ja) |
EP (1) | EP2484748B1 (ja) |
JP (2) | JP5003845B2 (ja) |
CN (1) | CN102549140B (ja) |
TW (1) | TWI523950B (ja) |
WO (1) | WO2011040504A1 (ja) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013077391A1 (ja) * | 2011-11-25 | 2013-05-30 | 凸版印刷株式会社 | 試料分析チップ並びに試料分析方法及び遺伝子解析方法 |
JP2013108774A (ja) * | 2011-11-17 | 2013-06-06 | Toppan Printing Co Ltd | 圧力検査装置 |
WO2014025033A1 (ja) * | 2012-08-10 | 2014-02-13 | 浜松ホトニクス株式会社 | 表面増強ラマン散乱ユニット及びその使用方法 |
JP2014070904A (ja) * | 2012-09-27 | 2014-04-21 | Toppan Printing Co Ltd | 生化学物質を処理または分析するための生化学反応チップ及びその分析方法 |
JP2014070991A (ja) * | 2012-09-28 | 2014-04-21 | Toppan Printing Co Ltd | 複数試料を分析するための試料分析チップとその分析装置 |
KR101415001B1 (ko) | 2012-10-30 | 2014-07-04 | 한국해양과학기술원 | 핵산 추출 또는 증폭을 위한 휴대용 장치 |
US9267894B2 (en) | 2012-08-10 | 2016-02-23 | Hamamatsu Photonics K.K. | Method for making surface enhanced Raman scattering device |
US9354245B2 (en) | 2011-11-25 | 2016-05-31 | Toppan Printing Co., Ltd. | Pipette tip set to be used in dispensing device and method for perforating reagent cartridge film using same |
JP2016535264A (ja) * | 2013-11-08 | 2016-11-10 | インテリジェント・フィンガープリンティング・リミテッドIntelligent Fingerprinting Limited | スキンプリント蛍光分析方法および装置 |
US9612201B2 (en) | 2012-08-10 | 2017-04-04 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element |
JP2017118835A (ja) * | 2015-12-28 | 2017-07-06 | 凸版印刷株式会社 | 試薬カートリッジ及び核酸精製キット |
US9726608B2 (en) | 2012-08-10 | 2017-08-08 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element |
WO2017175841A1 (ja) * | 2016-04-07 | 2017-10-12 | 株式会社メタボスクリーン | サーモサイクリング検査装置及びチップホルダー |
US9846123B2 (en) | 2012-08-10 | 2017-12-19 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element |
US9857306B2 (en) | 2012-08-10 | 2018-01-02 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element |
US9863884B2 (en) | 2012-08-10 | 2018-01-09 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element, and method for producing same |
US9863883B2 (en) | 2012-08-10 | 2018-01-09 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element |
US9874523B2 (en) | 2012-08-10 | 2018-01-23 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element including a conductor layer having a base part and a plurality of protusions |
US9976961B2 (en) | 2012-08-10 | 2018-05-22 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element including a conductor layer having a base part and a plurality of protusions |
US10132755B2 (en) | 2012-08-10 | 2018-11-20 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element, and method for manufacturing surface-enhanced Raman scattering element |
CN108918467A (zh) * | 2018-05-14 | 2018-11-30 | 中国科学院苏州生物医学工程技术研究所 | 一种高通量干式化学检测装置 |
WO2019097984A1 (ja) * | 2017-11-15 | 2019-05-23 | コニカミノルタ株式会社 | 検査パッケージ |
US10408761B2 (en) | 2012-08-10 | 2019-09-10 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element |
US10551322B2 (en) | 2012-08-10 | 2020-02-04 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering unit including integrally formed handling board |
JP2021501887A (ja) * | 2017-11-02 | 2021-01-21 | メメド ダイアグノスティクス リミテッド | 体液分析用カートリッジおよびシステム |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5867668B2 (ja) | 2010-12-01 | 2016-02-24 | セイコーエプソン株式会社 | 熱サイクル装置及び熱サイクル方法 |
JP5896100B2 (ja) * | 2011-03-01 | 2016-03-30 | セイコーエプソン株式会社 | 熱サイクル装置 |
US9993820B2 (en) | 2013-03-15 | 2018-06-12 | Abbott Laboratories | Automated reagent manager of a diagnostic analyzer system |
US10393738B2 (en) * | 2013-11-12 | 2019-08-27 | Boditech Med Inc. | Multi-well cuvette provided with integrated reaction and detection means |
CN103831140B (zh) | 2014-03-07 | 2015-12-30 | 博奥生物集团有限公司 | 一种多指标检测的微流控芯片 |
JP6334251B2 (ja) * | 2014-05-09 | 2018-05-30 | 東洋鋼鈑株式会社 | 遺伝子検査装置 |
WO2015192331A1 (zh) * | 2014-06-17 | 2015-12-23 | 深圳迈瑞生物医疗电子股份有限公司 | 核酸提取装置及其工作方法 |
JP6410194B2 (ja) * | 2014-07-24 | 2018-10-24 | 国立大学法人九州大学 | 温度制御モジュールおよび光測定装置 |
KR102186835B1 (ko) * | 2014-11-03 | 2020-12-04 | 주식회사 람다트 | 체외진단용 분석장치의 카트리지 |
JP6812797B2 (ja) * | 2014-11-04 | 2021-01-13 | 凸版印刷株式会社 | 核酸導入方法、核酸検出方法、生体成分解析方法、生体成分定量用アレイデバイス、及び生体成分解析キット |
JP6467047B2 (ja) * | 2015-06-17 | 2019-02-06 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
WO2017183298A1 (ja) * | 2016-04-20 | 2017-10-26 | シスメックス株式会社 | 核酸分析装置および核酸分析方法 |
CN108884430B (zh) * | 2016-04-20 | 2019-11-19 | 希森美康株式会社 | 核酸分析装置及核酸分析方法 |
JP6831539B2 (ja) * | 2017-05-22 | 2021-02-17 | 栄研化学株式会社 | 試薬カートリッジ |
US10117615B1 (en) * | 2017-08-01 | 2018-11-06 | Nova Biomedical Corporation | Analyzer cartridge with capillary wiper |
CN107356587B (zh) * | 2017-08-24 | 2024-03-01 | 北京贝泰科技有限公司 | 一种光激化学发光即时检测系统 |
US10435713B2 (en) * | 2017-09-30 | 2019-10-08 | Inscripta, Inc. | Flow through electroporation instrumentation |
WO2019181655A1 (ja) * | 2018-03-19 | 2019-09-26 | 凸版印刷株式会社 | 収容容器、試薬容器用蓋材、試薬容器、および、試薬カートリッジ |
JP2019174188A (ja) * | 2018-03-27 | 2019-10-10 | 凸版印刷株式会社 | 試薬カートリッジ、核酸抽出セットおよび溶液廃棄方法 |
CN108414737B (zh) * | 2018-06-13 | 2024-06-04 | 安徽为臻生物工程技术有限公司 | 一种全自动化学发光免疫分析仪 |
CN110501488B (zh) * | 2019-08-19 | 2024-06-07 | 江苏汇先医药技术有限公司 | 一种微流控样品处理设备的托盘装置 |
CN113234589B (zh) * | 2021-05-10 | 2024-03-26 | 宁波康程德诺生物医药有限公司 | 一种核酸快速提取四联管装置、试剂盒和提取方法 |
CN113546701B (zh) * | 2021-07-26 | 2022-06-24 | 绿叶诊断产品技术(广东)有限公司 | 一种检测装置及检测方法 |
CN113877639A (zh) * | 2021-11-18 | 2022-01-04 | 天长市万宏实验仪器设备有限公司 | 一种具备空气过滤装置的化学试剂柜 |
USD979093S1 (en) | 2022-05-05 | 2023-02-21 | Singular Genomics Systems, Inc. | Reagent cartridge |
USD970036S1 (en) | 2022-05-05 | 2022-11-15 | Singular Genomics Systems, Inc. | Reagent cartridge |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003310260A (ja) * | 2002-04-30 | 2003-11-05 | Olympus Optical Co Ltd | 遺伝子検査システムおよび遺伝子検査方法 |
WO2005118803A1 (ja) * | 2004-06-02 | 2005-12-15 | Arkray, Inc. | 核酸抽出用容器、固体マトリックスの洗浄方法および洗浄機構、ならびに核酸精製方法 |
JP2005537911A (ja) * | 2001-12-21 | 2005-12-15 | スリーエム イノベイティブ プロパティズ カンパニー | サンプル処理装置の遠心充填 |
WO2005118772A1 (ja) | 2004-06-02 | 2005-12-15 | Arkray, Inc. | 核酸増幅用容器、核酸調製キット、および核酸分析装置 |
WO2008123019A1 (ja) * | 2007-03-05 | 2008-10-16 | Olympus Corporation | 遺伝子変化の検出方法および検出装置 |
WO2009005001A1 (ja) | 2007-06-29 | 2009-01-08 | Toppan Printing Co., Ltd. | 遺伝子検出判定装置、遺伝子反応装置、およびインキュベータ |
JP2009228809A (ja) | 2008-03-24 | 2009-10-08 | Ntn Corp | 等速自在継手 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623767B2 (ja) * | 1989-03-07 | 1994-03-30 | 出光石油化学株式会社 | 液体試料の分析方法およびその装置 |
WO1997005492A1 (fr) | 1995-07-31 | 1997-02-13 | Precision System Science Co., Ltd | Recipient |
US6734401B2 (en) * | 2000-06-28 | 2004-05-11 | 3M Innovative Properties Company | Enhanced sample processing devices, systems and methods |
CA2423552A1 (en) * | 2000-10-13 | 2002-04-18 | Irm Llc | High throughput processing system and method of using |
EP1906186B1 (en) * | 2001-05-09 | 2016-06-29 | Axis-Shield ASA | Assay system |
JP2004309145A (ja) * | 2003-04-02 | 2004-11-04 | Hitachi High-Technologies Corp | 化学分析装置及び化学分析用構造体 |
JP2005062084A (ja) | 2003-08-19 | 2005-03-10 | Fuji Photo Film Co Ltd | 核酸抽出装置用ラック |
JP2005192558A (ja) | 2003-10-20 | 2005-07-21 | Fuji Photo Film Co Ltd | 核酸分離精製用の核酸吸着性多孔性膜及び核酸分離精製装置 |
JP2005204579A (ja) | 2004-01-23 | 2005-08-04 | Fuji Photo Film Co Ltd | 抽出装置 |
JP2005257337A (ja) * | 2004-03-09 | 2005-09-22 | Brother Ind Ltd | 検査対象受体、検査装置、及び検査方法 |
CN1965080A (zh) | 2004-06-02 | 2007-05-16 | 爱科来株式会社 | 核酸提取用容器、固体基件的洗净方法及洗净机构、和核酸精制方法 |
JP3699721B1 (ja) * | 2004-10-28 | 2005-09-28 | 株式会社石川製作所 | 検体試料の遠心分注方法及び遠心分注装置 |
JP4742050B2 (ja) | 2004-11-19 | 2011-08-10 | 株式会社島津製作所 | 検査試薬キットとそれを用いる遺伝子多型検出装置 |
JP2007330845A (ja) | 2006-06-12 | 2007-12-27 | Fujifilm Corp | 特定物質抽出装置 |
JP2008083017A (ja) * | 2006-09-26 | 2008-04-10 | Taiyo Yuden Co Ltd | 液体試料の流路を有する分析用媒体及び液体試料を流動させる方法 |
US8133671B2 (en) * | 2007-07-13 | 2012-03-13 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
JP5011012B2 (ja) | 2007-07-18 | 2012-08-29 | 株式会社日立ハイテクノロジーズ | 核酸抽出装置 |
JP2009041984A (ja) | 2007-08-07 | 2009-02-26 | Arkray Inc | 分析装置、分析用具、および光学検知システム |
JP2009097936A (ja) | 2007-10-16 | 2009-05-07 | Panasonic Corp | 生体サンプル判別用プレート及びそれを用いた溶液充填方法 |
-
2010
- 2010-09-29 TW TW099133014A patent/TWI523950B/zh not_active IP Right Cessation
- 2010-09-30 US US13/498,818 patent/US9267890B2/en not_active Expired - Fee Related
- 2010-09-30 WO PCT/JP2010/067030 patent/WO2011040504A1/ja active Application Filing
- 2010-09-30 EP EP10820619.4A patent/EP2484748B1/en not_active Not-in-force
- 2010-09-30 JP JP2011527917A patent/JP5003845B2/ja active Active
- 2010-09-30 CN CN201080043522.XA patent/CN102549140B/zh not_active Expired - Fee Related
-
2012
- 2012-05-24 JP JP2012118973A patent/JP2012161340A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005537911A (ja) * | 2001-12-21 | 2005-12-15 | スリーエム イノベイティブ プロパティズ カンパニー | サンプル処理装置の遠心充填 |
JP2003310260A (ja) * | 2002-04-30 | 2003-11-05 | Olympus Optical Co Ltd | 遺伝子検査システムおよび遺伝子検査方法 |
WO2005118803A1 (ja) * | 2004-06-02 | 2005-12-15 | Arkray, Inc. | 核酸抽出用容器、固体マトリックスの洗浄方法および洗浄機構、ならびに核酸精製方法 |
WO2005118772A1 (ja) | 2004-06-02 | 2005-12-15 | Arkray, Inc. | 核酸増幅用容器、核酸調製キット、および核酸分析装置 |
WO2008123019A1 (ja) * | 2007-03-05 | 2008-10-16 | Olympus Corporation | 遺伝子変化の検出方法および検出装置 |
WO2009005001A1 (ja) | 2007-06-29 | 2009-01-08 | Toppan Printing Co., Ltd. | 遺伝子検出判定装置、遺伝子反応装置、およびインキュベータ |
JP2009228809A (ja) | 2008-03-24 | 2009-10-08 | Ntn Corp | 等速自在継手 |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013108774A (ja) * | 2011-11-17 | 2013-06-06 | Toppan Printing Co Ltd | 圧力検査装置 |
TWI582425B (zh) * | 2011-11-25 | 2017-05-11 | 凸版印刷股份有限公司 | 樣本分析晶片、樣本分析方法及基因解析方法 |
EP2784513A4 (en) * | 2011-11-25 | 2015-07-15 | Toppan Printing Co Ltd | CHIP FOR SAMPLE ANALYSIS, SAMPLE ANALYSIS METHOD, AND GENE ANALYSIS METHOD |
WO2013077391A1 (ja) * | 2011-11-25 | 2013-05-30 | 凸版印刷株式会社 | 試料分析チップ並びに試料分析方法及び遺伝子解析方法 |
JPWO2013077391A1 (ja) * | 2011-11-25 | 2015-04-27 | 凸版印刷株式会社 | 試料分析チップ並びに試料分析方法及び遺伝子解析方法 |
US9453255B2 (en) | 2011-11-25 | 2016-09-27 | Toppan Printing Co., Ltd. | Sample analysis chip, sample analysis method and gene analysis method |
CN103988082A (zh) * | 2011-11-25 | 2014-08-13 | 凸版印刷株式会社 | 试样分析芯片和试样分析方法以及基因分析方法 |
US9354245B2 (en) | 2011-11-25 | 2016-05-31 | Toppan Printing Co., Ltd. | Pipette tip set to be used in dispensing device and method for perforating reagent cartridge film using same |
US10132755B2 (en) | 2012-08-10 | 2018-11-20 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element, and method for manufacturing surface-enhanced Raman scattering element |
JP2017138328A (ja) * | 2012-08-10 | 2017-08-10 | 浜松ホトニクス株式会社 | 表面増強ラマン散乱ユニット |
US9658166B2 (en) | 2012-08-10 | 2017-05-23 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering unit, and method for using same |
JPWO2014025033A1 (ja) * | 2012-08-10 | 2016-07-25 | 浜松ホトニクス株式会社 | 表面増強ラマン散乱ユニット及びその使用方法 |
US9612201B2 (en) | 2012-08-10 | 2017-04-04 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element |
US10551322B2 (en) | 2012-08-10 | 2020-02-04 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering unit including integrally formed handling board |
US9588049B2 (en) | 2012-08-10 | 2017-03-07 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering unit, and method for using same |
US10184895B2 (en) | 2012-08-10 | 2019-01-22 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering unit, and method for using same |
WO2014025033A1 (ja) * | 2012-08-10 | 2014-02-13 | 浜松ホトニクス株式会社 | 表面増強ラマン散乱ユニット及びその使用方法 |
US10408761B2 (en) | 2012-08-10 | 2019-09-10 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element |
US9696202B2 (en) | 2012-08-10 | 2017-07-04 | Hamamatsu Photonics K.K. | Method for making surface enhanced Raman scattering device |
US9976961B2 (en) | 2012-08-10 | 2018-05-22 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element including a conductor layer having a base part and a plurality of protusions |
US9726608B2 (en) | 2012-08-10 | 2017-08-08 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element |
US9267894B2 (en) | 2012-08-10 | 2016-02-23 | Hamamatsu Photonics K.K. | Method for making surface enhanced Raman scattering device |
JP2018059954A (ja) * | 2012-08-10 | 2018-04-12 | 浜松ホトニクス株式会社 | 表面増強ラマン散乱ユニット |
US9846123B2 (en) | 2012-08-10 | 2017-12-19 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element |
US9857306B2 (en) | 2012-08-10 | 2018-01-02 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element |
US9863884B2 (en) | 2012-08-10 | 2018-01-09 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element, and method for producing same |
US9863883B2 (en) | 2012-08-10 | 2018-01-09 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element |
US9874523B2 (en) | 2012-08-10 | 2018-01-23 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element including a conductor layer having a base part and a plurality of protusions |
JP2014070904A (ja) * | 2012-09-27 | 2014-04-21 | Toppan Printing Co Ltd | 生化学物質を処理または分析するための生化学反応チップ及びその分析方法 |
JP2014070991A (ja) * | 2012-09-28 | 2014-04-21 | Toppan Printing Co Ltd | 複数試料を分析するための試料分析チップとその分析装置 |
KR101415001B1 (ko) | 2012-10-30 | 2014-07-04 | 한국해양과학기술원 | 핵산 추출 또는 증폭을 위한 휴대용 장치 |
JP2016535264A (ja) * | 2013-11-08 | 2016-11-10 | インテリジェント・フィンガープリンティング・リミテッドIntelligent Fingerprinting Limited | スキンプリント蛍光分析方法および装置 |
JP2017118835A (ja) * | 2015-12-28 | 2017-07-06 | 凸版印刷株式会社 | 試薬カートリッジ及び核酸精製キット |
WO2017175841A1 (ja) * | 2016-04-07 | 2017-10-12 | 株式会社メタボスクリーン | サーモサイクリング検査装置及びチップホルダー |
JPWO2017175841A1 (ja) * | 2016-04-07 | 2019-02-14 | 株式会社メタボスクリーン | サーモサイクリング検査装置及びチップホルダー |
JP7071738B2 (ja) | 2016-04-07 | 2022-05-19 | 株式会社メタボスクリーン | サーモサイクリング検査装置 |
US11958052B2 (en) | 2016-04-07 | 2024-04-16 | Metaboscreen Co., Ltd. | Thermocycling inspection device and chip holder |
JP2021501887A (ja) * | 2017-11-02 | 2021-01-21 | メメド ダイアグノスティクス リミテッド | 体液分析用カートリッジおよびシステム |
JP7403447B2 (ja) | 2017-11-02 | 2023-12-22 | メメド ダイアグノスティクス リミテッド | 体液分析用カートリッジおよびシステム |
US11883825B2 (en) | 2017-11-02 | 2024-01-30 | Memed Diagnostics Ltd. | Cartridge and system for analyzing body liquid |
WO2019097984A1 (ja) * | 2017-11-15 | 2019-05-23 | コニカミノルタ株式会社 | 検査パッケージ |
JPWO2019097984A1 (ja) * | 2017-11-15 | 2020-11-19 | コニカミノルタ株式会社 | 検査パッケージ |
JP7237008B2 (ja) | 2017-11-15 | 2023-03-10 | 大塚製薬株式会社 | 検査パッケージ |
CN108918467A (zh) * | 2018-05-14 | 2018-11-30 | 中国科学院苏州生物医学工程技术研究所 | 一种高通量干式化学检测装置 |
CN108918467B (zh) * | 2018-05-14 | 2021-05-18 | 中国科学院苏州生物医学工程技术研究所 | 一种高通量干式化学检测装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2484748A1 (en) | 2012-08-08 |
EP2484748B1 (en) | 2017-02-22 |
US9267890B2 (en) | 2016-02-23 |
EP2484748A4 (en) | 2016-05-11 |
JP5003845B2 (ja) | 2012-08-15 |
JPWO2011040504A1 (ja) | 2013-02-28 |
CN102549140B (zh) | 2014-04-02 |
TW201116631A (en) | 2011-05-16 |
JP2012161340A (ja) | 2012-08-30 |
CN102549140A (zh) | 2012-07-04 |
TWI523950B (zh) | 2016-03-01 |
US20120184025A1 (en) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5003845B2 (ja) | 核酸分析装置 | |
JP6838127B2 (ja) | 統合された移送モジュールを有する試験カートリッジ | |
JP4965651B2 (ja) | 核酸増幅装置を用いた核酸含有液体サンプル分析用使い捨て装置 | |
JP6449017B2 (ja) | 直動型反応処理装置およびその方法 | |
JP4133803B2 (ja) | 核酸精製構造体 | |
WO2005116202A1 (ja) | 反応容器、反応測定装置、および液回転処理装置 | |
JP2021073445A (ja) | サンプル作成のための装置、システムおよび方法 | |
US20090227006A1 (en) | Apparatus for Performing Nucleic Acid Analysis | |
WO2006013926A1 (ja) | 反応容器、反応容器液導入装置、液導入反応測定装置、および液導入装置 | |
JP4268968B2 (ja) | 分注用シリンダ、大容量分注装置および大容量分注装置の使用方法 | |
JP2013130577A (ja) | コンタミネーションの防止方法 | |
WO2007097230A1 (ja) | 反応キット処理装置 | |
JP5625305B2 (ja) | 試薬カートリッジ及び核酸精製キット | |
JP6645493B2 (ja) | 容器、核酸精製キット、及び容器の製造方法 | |
JP5384903B2 (ja) | 温度制御反応処理装置および温度制御反応処理方法 | |
WO2007132740A1 (ja) | 反応容器キット | |
JP2006121935A (ja) | 前処理手段および廃液貯留部を有する生体物質検査用マイクロリアクタ | |
JP2007127621A (ja) | 核酸試料検査装置 | |
JP6672790B2 (ja) | 試薬カートリッジ及び核酸精製キット | |
JP2009095267A (ja) | 遺伝子検出検査用容器、遺伝子検出検査用試薬キットおよび遺伝子検出検査方法 | |
WO2008001691A1 (fr) | Procédé de traitement d'échantillon | |
JP2007183140A (ja) | 化学分析装置 | |
JP2022545830A (ja) | フィルタ器具、キット、及びサンプルを前処理する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080043522.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10820619 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011527917 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13498818 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010820619 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010820619 Country of ref document: EP |