WO2017175841A1 - サーモサイクリング検査装置及びチップホルダー - Google Patents

サーモサイクリング検査装置及びチップホルダー Download PDF

Info

Publication number
WO2017175841A1
WO2017175841A1 PCT/JP2017/014418 JP2017014418W WO2017175841A1 WO 2017175841 A1 WO2017175841 A1 WO 2017175841A1 JP 2017014418 W JP2017014418 W JP 2017014418W WO 2017175841 A1 WO2017175841 A1 WO 2017175841A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
holder
thermocycling
inspection
peltier element
Prior art date
Application number
PCT/JP2017/014418
Other languages
English (en)
French (fr)
Inventor
関澤 隆一
涼子 麻生
宏 光武
Original Assignee
株式会社メタボスクリーン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メタボスクリーン filed Critical 株式会社メタボスクリーン
Priority to KR1020187031858A priority Critical patent/KR102456030B1/ko
Priority to JP2018510669A priority patent/JP7071738B2/ja
Priority to US16/091,788 priority patent/US11958052B2/en
Publication of WO2017175841A1 publication Critical patent/WO2017175841A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/142Preventing evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0609Holders integrated in container to position an object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00366Several different temperatures used

Definitions

  • the present invention relates to a thermocycling inspection apparatus that performs a sample inspection by polymerase chain reaction using a chip holder, and a chip holder used in the apparatus.
  • a through-flow channel is formed inside, a capillary is embedded in at least a part of the channel, and a dummy rod for closing the channel is further embedded.
  • the capillaries are made of glass or plastic provided in a branched or lattice shape (Patent Document 1).
  • a plurality of grooves connected in parallel or in series are formed on the substrate, and capillaries with different chemical modifications are respectively embedded in the plurality of grooves, and the plurality of embedded A device that can supply fluid to a capillary and acquire detection data has been proposed (Patent Document 2).
  • Patent Document 3 discloses an inspection chip that can manufacture a sample flow path, which is a square hollow groove having a corner of about 100 microns, by a simple method, and can easily introduce a sample solution into the sample flow path.
  • Patent Document 3 discloses an inspection chip that can be used in one place.
  • Patent Document 4 to Patent Document 7 disclose the structure and manufacturing method of this type of inspection chip.
  • thermocycling inspection apparatus In the micro space reaction using the inspection chip, not only can the sample to be used be made minute, but also the reaction can be speeded up and highly efficient. However, in order to utilize this feature, it is necessary to provide a thermocycling inspection apparatus that can use this inspection chip.
  • an object of the present invention is to provide a thermocycling inspection apparatus and a chip holder that can perform a polymerase chain reaction and can perform an inspection using an inspection chip that has performed the polymerase chain reaction.
  • thermocycling inspection apparatus In the thermocycling inspection apparatus according to the first aspect of the present invention, a sample introduction port formed in the center and a plurality of sample channels extending radially from the sample introduction port are formed in the inspection chip, and the sample is formed.
  • a thermocycling test apparatus that houses the test chip with a reagent fixed in a flow path in a chip holder, and uses the chip holder to perform a sample test by a polymerase chain reaction, and a holder housing space that houses the chip holder;
  • a thermocycling unit that heats and cools the inspection chip; and a detector that images the inspection chip.
  • thermocycling unit When the heating and cooling is performed by the thermocycling unit or when imaging is performed with the detector, The thermocycling unit is disposed, the detector is disposed in the other of the holder housing spaces, and the detector As with the optical axis sample inlet is matched, characterized in that the formation of the holder receiving space.
  • the thermocycling unit includes a Peltier element, a heat sink disposed on one surface of the Peltier element, and the other of the Peltier element.
  • thermocycling inspection apparatus in the thermocycling inspection apparatus according to the second aspect, a temperature sensor is disposed between the surface heater and the chip receiving tray.
  • a holder pressing cover is provided to cover the chip holder disposed in the holder accommodating space, and a fluorescence detection window is formed on the holder pressing cover.
  • thermocycling unit in the thermocycling inspection apparatus according to the first aspect, includes a Peltier element, a surface heater, a temperature sensor that detects a temperature of the inspection chip, and the Peltier element. And a control unit for controlling the temperature of the surface heater, wherein the control unit heats the inspection chip by the surface heater, cools the surface heater by the Peltier element, and detects the temperature sensor.
  • the surface heater and the Peltier element are controlled such that the temperature periodically repeats a first set temperature and a second set temperature lower than the first set temperature.
  • thermocycling inspection apparatus when the detected temperature detected by the temperature sensor in the control unit detects the first set temperature, the surface heater Is turned OFF, and the Peltier element is turned ON.
  • the thermocycling inspection device when the detected temperature detected by the temperature sensor in the control unit detects the second set temperature, the Peltier element The second set temperature is maintained for a predetermined time by feedback-controlling the surface heater so that the detected temperature becomes the second set temperature in the OFF state.
  • a chip holder used in the thermocycling inspection apparatus according to the present invention described in claim 8 is a chip holder used in the thermocycling inspection apparatus according to claim 1, and includes a chip storage tray for storing the inspection chip, and the chip storage. A holder that holds the tray in the center; and a chip presser that presses the inspection chip stored in the chip storage tray to the chip storage tray, and the chip presser is positioned by the holder.
  • the inspection chip is formed with a sample introduction port formed in the center and a plurality of sample channels extending radially from the sample introduction port, and the sample channel
  • a chip presser for pressing the chip against the chip receiving tray, and the chip presser is positioned by the holder.
  • a positioning protrusion is formed on the chip receiving tray, and a positioning recess corresponding to the positioning protrusion is formed on the inspection chip.
  • the present invention described in claim 11 is the chip holder according to claim 9, wherein the chip receiving tray is made of a material having a higher thermal conductivity than the holder.
  • a concave portion is provided in the center of the chip receiving tray.
  • thermocycling inspection apparatus of the present invention is a holder accommodation space for accommodating a chip holder, a thermocycling section for heating and cooling the inspection chip, a detector for photographing the inspection chip, and the holder accommodation
  • a holder holding lid that covers the chip holder disposed in the space, and the thermocycling unit includes a Peltier element, a heat sink disposed on one surface of the Peltier element, and a surface disposed on the other surface of the Peltier element.
  • the chip holder of the present invention is a chip storage tray for storing a test chip, a holder for holding the chip storage tray in a central portion, and the test chip stored in the chip storage tray for the chip storage tray. And a chip pressing member that presses the chip receiving portion, and a recess is provided in the center of the chip receiving tray.
  • the polymerase chain reaction can be performed by heating and cooling the inspection chip by the thermocycling unit arranged in one of the holder housing spaces.
  • the inspection chip can be photographed by the detector disposed in the other of the holder housing spaces, and the inspection chip subjected to the polymerase chain reaction can be inspected by photographing, thereby realizing a real-time inspection.
  • the perspective view which shows the principal part structure of the thermocycling inspection apparatus by one Example of this invention The perspective view which shows the principal part of the thermocycling inspection apparatus The perspective view which shows the state which moved a part of main part of the thermocycling inspection apparatus shown in FIG.
  • thermocycling section of the thermocycling inspection apparatus A) The perspective view which shows the thermocycling part of the thermocycling inspection apparatus, (b) The perspective view which shows the state which mounted
  • thermocycling unit is arranged in one of the holder accommodating spaces during heating / cooling by the thermocycling unit or photographing with the detector, and the other of the holder accommodating spaces is arranged.
  • a detector is disposed, and a holder accommodation space is formed so that the optical axis of the detector and the sample introduction port coincide.
  • the polymerase chain reaction can be performed by heating and cooling the inspection chip by the thermocycling unit arranged in one of the holder accommodation spaces, and the detector arranged in the other of the holder accommodation spaces
  • the inspection chip can be photographed by the above, and the inspection chip subjected to the polymerase chain reaction can be inspected by photographing, and POCT can be realized with a small apparatus.
  • the thermocycling unit includes a Peltier element, a heat sink disposed on one surface of the Peltier element, and the other of the Peltier element.
  • a surface heater disposed on the surface, and a cover plate that covers the other surface of the surface heater and the Peltier element, and a holder receiving space is formed to cover the cover plate. Is formed so that the inspection chip accommodated in the chip receiving tray is heated by the surface heater.
  • the Peltier element can be controlled to a stable temperature with the heat sink disposed on one surface of the Peltier element, the inspection chip can be heated with the surface heater, and the surface heater is disposed on the other surface of the Peltier element.
  • the surface heater can be cooled by a Peltier element, a periodic temperature change in a short time can be realized, and the polymerase chain reaction can be stably performed.
  • thermocycling inspection apparatus in the thermocycling inspection apparatus according to the second embodiment, a temperature sensor is arranged between the surface heater and the chip receiving tray. According to the present embodiment, the temperature of the test chip can be detected more accurately, and the polymerase chain reaction can be performed stably.
  • thermocycling inspection apparatus in the thermocycling inspection apparatus according to the second embodiment, a holder pressing cover that covers a chip holder arranged in the holder accommodation space is provided, and a fluorescence detection window is formed in the holder pressing cover. Then, a transparent substrate is provided on the holder holding space side of the holder pressing lid, and the fluorescence detection window is covered with the transparent substrate and the chip holder is pressed. According to the present embodiment, by pressing the chip holder with the transparent substrate, the adhesion between the chip receiving tray and the surface heater is increased, so that the heat of the surface heater can be easily transmitted to the chip receiving tray. The thermal responsiveness of can be improved.
  • the thermocycling unit includes a Peltier element, a surface heater, a temperature sensor that detects the temperature of the inspection chip, and a Peltier element. And a control unit for controlling the temperature of the surface heater.
  • the inspection chip is heated by the surface heater, the surface heater is cooled by the Peltier element, and the detected temperature detected by the temperature sensor is the first set temperature.
  • the surface heater and the Peltier element are controlled so as to periodically repeat the second set temperature lower than the first set temperature.
  • the inspection chip is heated by the surface heater and the surface heater is cooled by the Peltier element, so that the transition from the first set temperature to the second set temperature can be performed particularly quickly.
  • the chain reaction can be performed in a short time.
  • the controller turns off the surface heater when the detected temperature detected by the temperature sensor detects the first set temperature.
  • the Peltier element is turned ON. According to the present embodiment, the transition from the first set temperature to the second set temperature can be quickly performed not only by turning off the surface heater but also by forcibly cooling the Peltier element.
  • the control unit turns off the Peltier element when the detected temperature detected by the temperature sensor detects the second set temperature.
  • the second set temperature is maintained for a predetermined time by feedback-controlling the surface heater so that the detected temperature becomes the second set temperature. According to this embodiment, by performing feedback control of the surface heater while the Peltier element is OFF, hunting can be reduced and stable control can be performed.
  • the chip holder used in the thermocycling inspection apparatus is a chip holder used in the first thermocycling inspection apparatus, and includes a chip storage tray for storing the inspection chip, and a chip storage tray at the center. And a chip presser material that presses the inspection chip stored in the chip storage tray to the chip storage tray, and the chip presser is positioned by the holder.
  • the present embodiment by pressing the inspection chip against the chip receiving tray with the chip presser, the adhesion between the inspection chip and the chip receiving tray is increased, so that the heat of the chip receiving tray can be easily transferred to the inspection chip. In addition, the thermal response of the inspection chip can be improved. Further, according to the present embodiment, by holding the chip receiving tray by the holder and positioning the chip presser material, it is possible to reliably press the test chip to the chip receiving tray by the chip presser material, Damage can be prevented.
  • a chip holder includes a chip receiving tray for receiving an inspection chip, a holder for holding the chip receiving tray in the center, and an inspection chip stored in the chip receiving tray for pressing the chip receiving tray. And a chip presser material that is positioned by the holder.
  • a chip presser material that is positioned by the holder.
  • the tenth embodiment of the present invention is a chip holder according to the ninth embodiment, wherein a positioning protrusion is formed on the chip receiving tray, and a positioning recess corresponding to the positioning protrusion is formed on the inspection chip. is there.
  • the inspection chip can be accurately positioned on the chip receiving tray by the positioning protrusion and the positioning concave portion, the inspection chip can be stably heated and cooled, and photographing can be performed accurately.
  • the chip receiving tray is made of a material having higher thermal conductivity than the holder. According to the present embodiment, it is possible to quickly heat and cool the inspection chip by using a material having high thermal conductivity for the chip receiving tray, while using a material having low thermal conductivity for the holder. Heat diffusion to the holder can be prevented, and the thermal response of the inspection chip can be improved.
  • the twelfth embodiment of the present invention is the chip holder according to the ninth embodiment, wherein a recess is provided in the center of the chip receiving tray. According to the present embodiment, it is possible to prevent the sample liquid injected from the sample introduction port from flowing out to the chip receiving tray.
  • the thirteenth embodiment of the present invention is a chip holder according to the ninth embodiment, comprising a transparent film that is attached to the holder and prevents oil spillage added to the chip receiving tray. According to this embodiment, by sticking the transparent film to the holder, leakage of oil added to the chip receiving tray can be prevented, and the chip holder can be easily handled.
  • the thermocycling unit includes a Peltier element, a heat sink disposed on one surface of the Peltier element, a surface heater disposed on the other surface of the Peltier element, And a cover plate that covers the other surface of the surface heater and the Peltier element, a holder housing space is formed so as to cover the cover plate, an opening is formed in the cover plate, and the holder presser lid is A fluorescence detection window for photographing the inspection chip is formed.
  • the Peltier element can be controlled to a stable temperature with the heat sink disposed on one surface of the Peltier element, the inspection chip can be heated with the surface heater, and the surface heater is disposed on the other surface of the Peltier element.
  • the surface heater can be cooled by a Peltier element, a periodic temperature change in a short time can be realized, and the polymerase chain reaction can be stably performed.
  • a chip holder includes a chip receiving tray for receiving an inspection chip, a holder for holding the chip receiving tray in the center, and an inspection chip stored in the chip receiving tray for pressing the chip receiving tray.
  • a chip presser material, and a recess is provided in the center of the chip receiving tray.
  • FIG. 1 is a perspective view showing a main part configuration of a thermocycling inspection apparatus according to the present embodiment
  • FIG. 2 is a perspective view showing main parts of the thermocycling inspection apparatus
  • FIG. 3 is a main part of the thermocycling inspection apparatus shown in FIG. It is a perspective view which shows the state which moved a part of part.
  • the thermocycling inspection apparatus includes a holder housing space 10 that houses a chip holder, a thermocycling unit 20 that heats and cools the inspection chip, and a detector 30 that photographs the inspection chip.
  • the holder housing space 10 is formed above the thermocycling unit 20.
  • Above the holder accommodation space 10, a holder presser lid 40 that covers the chip holder disposed in the holder accommodation space 10 is provided.
  • the housing 1 has a front door 2 on the front surface and a pair of guiders 3 on both inner side surfaces or the inner bottom surface.
  • the pair of slide rails 4 slide on the pair of guiders 3.
  • the holder accommodating space 10, the thermocycling unit 20, and the holder presser lid 40 can be drawn forward from the front surface of the housing 1 by the pair of slide rails 4.
  • FIGS. 2 and 3 show a state in which the holder housing space 10, the thermocycling unit 20, and the holder presser lid 40 are pulled out from the housing 1, and FIG. 2 shows the holder housing space 10, the thermocycling unit 20, And the state which accommodated the holder pressing lid 40 in the housing
  • the inside of the housing 1 is divided into a front space A and a rear space B.
  • the holder accommodating space 10, the thermocycling unit 20, and the holder presser lid 40 are accommodated in the front space A.
  • the rear space B accommodates a control unit that controls the Peltier element and the surface heater based on the detected temperature detected by the temperature sensor.
  • a fluorescence detection window 41 is formed in the holder pressing lid 40.
  • the holder pressing lid 40 is provided with a torque hinge 42.
  • a cooling fan 5 that discharges air in the housing 1 is provided in the rear space B.
  • the front space A forms an intake port 6 on the bottom surface of the housing 1.
  • a detector 30 is disposed on the top of the housing 1.
  • the detector 30 includes a camera 31, a camera lens 32, an illumination LED 33, and a holding material 34.
  • the camera 31 is held on the top of the housing 1 by a holding material 34.
  • the camera 31 holds a camera lens 32 at the bottom.
  • the pair of illumination LEDs 33 are arranged on both sides of the camera lens 32 and attached to the upper part of the front space A.
  • the optical axis of the camera lens 32 coincides with the center of the fluorescence detection window 41, and the optical axes of the pair of illumination LEDs 33 are directed to the fluorescence detection window 41.
  • the holder accommodating space 10, the thermocycling unit 20, and the holder presser lid 40 are accommodated in the housing 1, that is, when heating / cooling by the thermocycling unit 20 and photographing with the detector 30.
  • the thermocycling unit 20 is disposed in one of the holder housing spaces 10
  • the detector 30 is disposed in the other of the holder housing spaces 10.
  • the holder accommodation space 10 is formed so that the optical axis of the detector 30 and the sample introduction port formed in the center of a test
  • the polymerase chain reaction can be performed by heating and cooling the inspection chip by the thermocycling unit 20 disposed in one side of the holder housing space 10, and disposed in the other side of the holder housing space 10.
  • the inspection chip can be imaged by the detector 30, and the inspection chip subjected to the polymerase chain reaction can be inspected by imaging, and POCT (real-time inspection) can be realized with a small apparatus.
  • FIG. 4A is an exploded perspective view showing a thermocycling portion of the thermocycling inspection apparatus
  • FIG. 4B is a configuration diagram of a temperature sensor.
  • the thermocycling unit 20 includes a Peltier element 21, a heat sink 22 disposed on one surface 21a of the Peltier element 21, a surface heater 23 disposed on the other surface 21b of the Peltier element 21, and the surface heater 23 and the Peltier element 21. It has a cover plate 24 that covers the other surface 21b, a temperature sensor 25 that detects the temperature of the inspection chip, and a fan 26 that increases the heat exchange performance of the heat sink 22.
  • One surface 21 a of the Peltier element 21 is bonded to the heat sink 22 by a heat conductive adhesive transfer tape 27.
  • the surface heater 23 is bonded to the other surface 21 b of the Peltier element 21 by a heat conductive adhesive transfer tape 28.
  • an opening 24a is formed in the center of the cover plate 24, an opening 24a is formed.
  • a temperature sensor 25 is disposed on the surface of the surface heater 23 on the cover plate 24 side.
  • the detection unit 25 a of the temperature sensor 25 is sandwiched between two thermal diffusion sheets 29.
  • the heat diffusion sheet 29 is disposed at a position facing the opening 24 a of the cover plate 24.
  • the thermal diffusion sheet 29 is preferably the same size as the inspection chip, and is not less than the outer diameter of the inspection chip and not more than the opening 24a.
  • a recess is formed on the other surface 21 b of the Peltier element 21. Holes are formed in the heat conductive adhesive transfer tape 28, the surface heater 23, and the two heat diffusion sheets 29.
  • the recess of the Peltier element 21, the hole of the heat conductive adhesive transfer tape 28, the hole of the surface heater 23, and the hole of the two heat diffusion sheets 29 can be used for positioning using a pin at the time of assembly.
  • the fan 26 is disposed to face the fin surface of the heat sink 22. According to the present embodiment, by using the surface heater 23, heat storage due to heating can be reduced, and a temperature change in a short time can be realized.
  • the temperature sensor 25 is not limited to directly detecting the temperature of the inspection chip. As in the present embodiment, the temperature sensor 25 detects the temperature of the surface heater 23 and indirectly detects the temperature of the inspection chip. May be.
  • the temperature sensor 25 preferably includes two thermocouples. As described above, the temperature sensor 25 is constituted by a plurality of thermocouples, and a plurality of circuits are provided in parallel, thereby preventing the control unit from running away.
  • FIG. 5A is a perspective view showing a thermocycling portion of the thermocycling inspection apparatus
  • FIG. 5B is a perspective view showing a state where a chip holder is placed on the thermocycling portion.
  • the cover plate 24 covers the surface heater 23 and the Peltier element 21, and the holder accommodating space 10 is formed above and around the cover plate 24 so as to cover the cover plate 24.
  • the chip holder 50 is disposed in the holder housing space 10.
  • FIG. 6A is a photograph showing the mounting of the chip holder to the thermocycling inspection apparatus
  • FIG. 6B is an enlarged perspective view of the main part showing the mounting of the chip holder to the thermocycling inspection apparatus.
  • FIG. 6 shows a state where the holder presser lid 40 is opened.
  • a transparent substrate 43 and a locking member 44 are provided on the holder holding space 10 side of the holder pressing lid 40.
  • the transparent substrate 43 covers the fluorescence detection window 41 and presses the chip holder 50 when the holder pressing cover 40 is closed.
  • the holder pressing lid 40 is closed, the holder pressing lid 40 is maintained closed by the lock member 44.
  • FIG. 7A is an exploded perspective view of the chip holder used in the thermocycling inspection apparatus
  • FIG. 7B is a perspective view of the chip holder
  • FIG. 7C is a side sectional view of the chip holder.
  • the chip holder 50 according to the present embodiment includes a chip storage tray 51 for storing the inspection chip 60, a holder 52 for holding the chip storage tray 51 in the center, and the inspection chip 60 stored in the chip storage tray 51 for the chip storage tray 51. And a chip presser 53 that presses against the tip.
  • the chip receiving tray 51 is formed of a mounting surface 51a on which the inspection chip 60 is mounted and a wall surface 51b that covers the outer periphery of the mounting surface 51a.
  • the wall surface 51b is formed in a mortar shape so that the upper side is wide.
  • the chip receiving tray 51 is formed in a concave shape by the mounting surface 51a and the wall surface 51b.
  • the upper surface 52a of the holder 52 is formed with a ring-shaped recess 52b, a positioning recess 52c, and a fixing hole 52d.
  • the ring-shaped recess 52b is formed on the outer periphery of the chip receiving tray 51, the positioning recess 52c is continuous with the ring-shaped recess 52b, and the fixing hole 52d is formed in a part of the positioning recess 52c.
  • the tip presser 53 is formed of a ring portion 53a, a positioning leg portion 53b, a fixing projection 53c, and a tip pressing leg portion 53d.
  • the ring portion 53a is attached to the ring-shaped recess 52b
  • the positioning leg portion 53b is attached to the positioning recess 52c
  • the fixing protrusion 53c is attached to the fixing hole 52d.
  • the chip pressing member 53 is positioned on the holder 52 by mounting the ring portion 53a in the ring-shaped recess 52b and mounting the positioning leg portion 53b in the positioning recess 52c. Further, the chip pressing member 53 is fixed to the holder 52 by fitting the fixing protrusion 53 c into the fixing hole 52 d.
  • the tip pressing leg portion 53d includes a horizontal member 53d1 horizontally extending inward from the ring portion 53a, and a vertical member 53d2 vertically extending from the tip of the horizontal member 53d1 toward the placement surface 51a.
  • a protrusion 53d3 protruding upward is provided on the top end of the horizontal member 53d1.
  • the upper surface of the chip pressing member 53 excluding the protrusion 53d3 and the upper surface 52a of the holder 52 form the same plane. Therefore, when the transparent substrate 43 shown in FIG. 7C is brought into contact with the upper surface 52a of the holder 52, the transparent substrate 43 presses the protrusion 53d3.
  • the tip of the horizontal member 53d1 can be bent by the elasticity of the horizontal member 53d1, and the transparent substrate 43 presses the projection 53d3, so that the vertical member 53d2 presses the test chip 60 against the mounting surface 51a of the chip receiving tray 51. .
  • the adhesion between the chip receiving tray 51 and the surface heater 23 is increased, and thus the heat of the surface heater 23 can be easily transmitted to the chip receiving tray 51. And the thermal responsiveness of the chip
  • tip accommodating tray 51 can be improved.
  • the test chip 60 is pressed against the chip receiving tray 51 by the chip pressing member 53, so that the adhesion between the test chip 60 and the chip receiving tray 51 is increased. Heat can be easily transferred to the inspection chip 60, and the thermal responsiveness of the inspection chip 60 can be improved.
  • the chip holding tray 51 is held by the holder 52 and the chip pressing member 53 is positioned, so that the chip pressing member 53 reliably presses the inspection chip 60 onto the chip receiving tray 51. It is possible to prevent the inspection chip 60 from being damaged.
  • a positioning projection 51c is formed on the mounting surface 51a of the chip receiving tray 51, and a positioning recess 61 corresponding to the positioning projection 51c is formed on the inspection chip 60.
  • the inspection chip 60 can be accurately positioned on the chip receiving tray 51 by the positioning protrusion 51c and the positioning recess 61, the heating and cooling of the inspection chip 60 can be performed stably, and imaging can be performed accurately.
  • the chip receiving tray 51 is made of a material having a higher thermal conductivity than the holder 52.
  • the chip receiving tray 51 is made of a metal material such as aluminum, iron, or copper, heat conductive resin, or aluminum nitride having a higher thermal conductivity than the resin of the holder 52. Ceramics with high heat conductivity are used.
  • the inspection chip 60 can be quickly heated and cooled, while the holder 52 has a thermal conductivity.
  • the thermal conductivity By using a low material, heat diffusion to the holder 52 can be prevented, and the thermal response of the inspection chip 60 can be improved.
  • a sample introduction port 62 is formed at the center of the inspection chip 60.
  • a recess 51 d is provided in the center of the chip receiving tray 51.
  • a protrusion protruding toward the thermocycling unit 20 is formed at the center of the recess 51d. This protrusion is formed by a nozzle part when the chip receiving tray 51 is injection molded.
  • the protrusions are formed in the concave portion of the Peltier element 21, the hole of the heat conductive adhesive transfer tape 28, the hole of the surface heater 23, and the two heat diffusion sheets 29. Arranged in the hole. Therefore, the protrusion is not pressed by the thermocycling unit 20. That is, the inspection chip 60 is not pressed by the recess 51d, and the inspection chip 60 can be prevented from being damaged.
  • FIG. 8 shows the appearance of a test chip according to an embodiment of the present invention
  • FIG. 8 (a) is a plan view
  • FIG. 8 (b) is a side view
  • FIG. 8 (c) shows a part of a sample channel.
  • FIG. in the inspection chip 60 a sample introduction port 62 formed in the center and a plurality of sample flow paths 63 extending radially from the sample introduction port 62 are formed.
  • the inspection chip 60 can be configured by bonding a first substrate 60a, a second substrate 60b, and a third substrate 60c.
  • the first substrate 60 a has a sample introduction port 62
  • the second substrate 60 b has a sample flow path 63
  • the third substrate 60 c has a sample discharge port 64.
  • the first substrate 60a, the second substrate 60b, and the third substrate 60c are made of glass or plastic. As glass, silica glass can be used, and other glass and synthetic resin materials can also be used.
  • At least one of the first substrate 60a and the third substrate 60c is made of a light transmissive material, and the light transmissive material is preferably a transparent material.
  • the sample introduction port 62 is formed as a hole penetrating the front and back of the first substrate 60a
  • the sample flow path 63 is formed as a hole penetrating the front and back of the second substrate 60b and a slit extending radially from the hole.
  • 64 is formed as a hole penetrating the front and back of the third substrate 60c.
  • a case where a large number of sample flow paths 63 are formed by eight slits is shown, and the eight slits are arranged at equal intervals in the radial direction with the hole formed in the central portion as the center. Yes.
  • the hole diameter of the sample discharge port 64 is formed to be the same as the hole diameter of the sample introduction port 62, and the hole diameters of the sample discharge port 64 and the sample introduction port 62 are larger than the width of the slit, and further, the second substrate 60b. It is preferable to form larger than the hole of the center part.
  • the inspection chip 60 forms eight sample flow paths 63 around the sample introduction port 62 and the sample discharge port 64.
  • the eight sample channels 63 are radially arranged with the same length centering on the sample introduction port 62 and the sample discharge port 64, and the respective outer peripheral end portions are open ports.
  • the sample channel 63 becomes a square hollow groove having four corners by the first substrate 60a and the third substrate 60c. By forming four sharp (unrounded) corners in this way, the reagent C can be reliably fixed to the sample channel 63.
  • the slit depth of the sample channel 63 (the thickness of the second substrate 60b) larger than the slit width, it is possible to reliably discriminate even a weak fluorescent reaction.
  • FIG. 9 is a perspective view of a reagent coating device suitable for the test chip according to the present embodiment.
  • the reagent coating device 70 has a plurality of reagent pools 71 on the outer peripheral portion, a space 72 in which the test chip 60 can be stacked on the inner peripheral portion, and a reagent supply port 73 for supplying a reagent introduced from the reagent pool 71 on the inner peripheral surface. have. Since the test chip 60 according to the present embodiment has eight sample flow paths 63, eight reagent pools 71 and eight reagent supply ports 73 are provided.
  • Reagents supplied from the reagent pool 71 are introduced by capillary action from the opening of the sample channel 63 through the respective reagent supply ports 73. That is, when a reagent is brought into contact with the open port of the sample channel 63, the reagent actively flows into the sample channel 63 due to capillary action, and due to the surface tension acting at the ends facing the sample inlet 62 and the sample outlet 64. The sample channel 63 is surely filled with the reagent. When the sample channel 63 is dried with the reagent filled, the reagent is fixed in the rectangular hollow groove. The reagent is fixed to the four corners of the rectangular hollow groove, or is fixed in a mesh form in the rectangular hollow groove.
  • a different reagent is introduced and fixed for each sample channel 63.
  • the reagents are sequentially introduced into the respective sample channels 63, or different reagents are introduced into all the sample channels 63 at the same time. After introducing the reagent into all the sample channels 63, the reagent is fixed by drying.
  • the matrix for example, at least one of polyethylene glycol, glycerol, polysaccharides, proteins, surfactants, inorganic salts, or a mixture thereof is used as long as it does not affect the subsequent reaction. Can do.
  • the test chip 60 accommodated in the chip holder 50 shown in FIG. 7 is obtained by fixing a reagent to the sample channel 63.
  • the chip holder 50 shown in FIG. 7 is set in the thermocycling inspection apparatus shown in FIGS. 1 to 3 after introducing the sample liquid (sample solution) to be measured into the inspection chip 60 as described below.
  • FIG. 10 is an explanatory view showing the process of introducing the sample solution into the chip holder according to this embodiment.
  • the collected specimen is added to the nucleic acid extract, and the nucleic acid is extracted by heating and ultrasonic disruption.
  • a sample reagent D is prepared by mixing a detection reagent with the extracted nucleic acid.
  • FIG. 10A shows a step of dropping the sample solution D onto the chip holder 50.
  • the sample solution is introduced from the sample introduction port 62 by capillary action.
  • FIG. 10B when the sample solution D is brought into contact with the sample introduction port 62, the sample solution D actively flows into the sample channel 63 due to capillary action, and at the opening of the sample channel 63.
  • the sample solution D is reliably filled in the sample channel 63 by the surface tension that acts. As described with reference to FIG. 7, since the recess 51 d is provided at the center of the chip receiving tray 51, the sample solution D injected from the sample introduction port 62 can be prevented from flowing out to the chip receiving tray 51.
  • FIG. 10C shows a process of introducing oil (mineral oil) E into the chip receiving tray 51 in order to prevent evaporation and drying of the sample solution D. If oil is added, both ends of the flow path applied to the inspection chip 60 can be closed with mineral oil E. The solution in the oil-sealed channel in this way does not evaporate and is not dried even if the temperature change is repeated. As shown in FIG.
  • a transparent film 54 is stuck on the upper surface 52 a of the holder 52 to prevent the oil E added to the chip receiving tray 51 from spilling. According to the present embodiment, by sticking the transparent film 54 to the holder 52, leakage of the oil E added to the chip receiving tray 51 can be prevented, and handling of the chip holder 50 can be facilitated.
  • FIG. 11 is a block diagram for controlling the thermocycling inspection apparatus according to the present embodiment
  • FIG. 12 is a graph showing a temperature change of the inspection chip.
  • the thermocycling unit 20 includes a Peltier element 21, a surface heater 23, a temperature sensor 25, and a control means 80.
  • the control means 80 includes a control unit 81 that controls the temperature of the Peltier element 21 and the surface heater 23, a storage unit 82 that stores a set temperature and a set time, and a timer unit 83 that measures time.
  • the surface heater 23 heats the inspection chip 60, and the Peltier element 21 cools the surface heater 23.
  • the surface heater 23 and the Peltier element are detected so that the detected temperature detected by the temperature sensor 25 periodically repeats the first set temperature T1 and the second set temperature T2 lower than the first set temperature T1. 21 is controlled.
  • the surface heater 23 is turned off and the Peltier element 21 is turned on.
  • the surface heater 23 is turned on at time t1, and the surface heater 23 is turned off at time t2 when the temperature sensor 25 detects the first set temperature T1. Simultaneously with time t2 when the surface heater 23 is turned off, or with a slight time lag from the time t2, the Peltier element 21 is turned on.
  • the predetermined time S1 is short, the Peltier element 21 is turned on simultaneously with the time t2, and when the predetermined time S1 is long, the Peltier element 21 is turned on with a delay from the time t2.
  • inspection chip 60 falls rapidly by turning off the surface heater 23 and turning on the Peltier device 21 (R2).
  • the Peltier element 21 is turned off.
  • the controller 81 when the detected temperature detected by the temperature sensor 25 detects the second set temperature T2, the surface heater 23 is set so that the detected temperature becomes the second set temperature T2 with the Peltier element 21 in the OFF state.
  • the second set temperature T2 is maintained for a predetermined time S2 by ON / OFF and feedback control.
  • the predetermined time S2 is stored in the storage unit 82.
  • the time measuring unit 83 starts measuring time, and when the time measuring unit 83 measures the predetermined time S2, the control unit 81 Then, the surface heater 23 is turned on to start the second cycle.
  • the inspection chip 60 is heated by the surface heater 23 and the surface heater 23 is cooled by the Peltier element 21, so that the transition from the first set temperature T1 to the second set temperature T2 is particularly quickly performed.
  • the polymerase chain reaction can be performed in a short time.
  • the transition from the first set temperature T1 to the second set temperature T2 can be quickly performed not only by turning off the surface heater 23 but also by forcibly cooling by the Peltier element 21. Can do.
  • the second setting is performed by feedback-controlling the surface heater 23 with the Peltier element 21 turned off. Since the temperature T2 is maintained for a predetermined time S2, hunting can be reduced and stable control can be performed.
  • FIG. 13 is a perspective view showing the configuration of the main part in the housing of the thermocycling inspection apparatus according to the present embodiment
  • FIG. 14 is a side view showing the main part of the thermocycling inspection apparatus
  • FIG. 15 is an external view of the thermocycling inspection apparatus.
  • FIG. 13 and 14 show a state in which the outer cover that covers the housing is removed.
  • description is abbreviate
  • the inside of the housing 1 is divided into a front space A and a rear space B by a partition plate X.
  • the front space A is divided into a lower front space A1 and an upper front space A2 by a partition plate Y.
  • the holder housing space 10 In the lower front space A1, the holder housing space 10, the thermocycling unit 20, the illumination LED 33, the tip of the camera lens 32, and the holder pressing lid 40 are housed.
  • the upper front space A ⁇ b> 2 accommodates the camera 31, a portion excluding the tip of the camera lens 32, and the holding material 34.
  • the rear space B accommodates a printed circuit board (control unit) 80a that controls the Peltier element and the surface heater based on the detected temperature detected by the temperature sensor.
  • the printed circuit board 80a is preferably attached to the partition plate X at a position where a space is interposed, particularly to the rear outer cover 1b.
  • a heat sink exhaust fan 7 for discharging the air in the lower front space A1 is provided on an outer cover (not shown) forming the lower front space A1.
  • the heat sink exhaust fan 7 is disposed at the same height as the heat sink 22 or higher than the heat sink 22. By disposing the heat sink exhaust fan 7 on the upper part of the lower front space A1, the high-temperature air in the lower front space A1 can be efficiently discharged.
  • the heat sink exhaust fan 7 is located at a position where the virtual axis of the rotation axis (fan center) of the heat sink exhaust fan 7 does not pass through the center of the fluorescence detection window (not shown) of the holder presser lid 40, more preferably
  • the shaft center is provided at a position that does not pass through the projection surface of the fluorescence detection window of the holder pressing lid 40. That is, by moving the heat sink exhaust fan 7 away from the fluorescence detection window, light from the outside of the housing 1 due to the opening of the heat sink exhaust fan 7 is less incident on the holder accommodating space 10, and the inside of the holder accommodating space 10. Can be turned into a dark room.
  • a cooling fan 5 that discharges the air in the rear space B is provided on an outer cover (not shown) that forms the rear space B.
  • the cooling fan 5 is disposed on the printed circuit board 80a or at a position higher than the printed circuit board 80a.
  • the cooling fan 5 can be efficiently exhausted from the high-temperature air in the rear space B by being arranged in the upper part of the rear space B.
  • the housing 1 has a front outer cover 1 f and a front door 2 on the front surface, a rear side outer cover 1 sb and a front side outer cover 1 sf on both sides, and an upper surface outer cover 1 t on the upper surface.
  • the lower surface is covered with a lower outer cover 1c and the rear surface is covered with a rear outer cover 1b.
  • a rear space intake port 8 is provided below the outer cover that forms the rear space B, in particular, below the rear side surface outer cover 1 sb.
  • the air absorbed by the heat sink 22 is forcibly discharged out of the housing 1 by the heat sink exhaust fan 7. Therefore, the cooling effect of the heat sink 22 can be enhanced and the temperature in the front space A can be kept constant. Moreover, it can prevent the inside of upper front space A2 becoming high temperature.
  • air is sucked into the housing 1 from the rear space intake port 8 by the cooling fan 5. The air sucked into the rear space B is discharged out of the housing 1 from the suction cooling fan 5.
  • thermocycling unit 20 is disposed on the Peltier element 21, the heat sink 22 disposed on one surface 21 a of the Peltier element 21, and the other surface 21 b of the Peltier element 21.
  • a surface heater 23 and a cover plate 24 that covers the surface heater 23 and the other surface 21 b of the Peltier element 21 are provided.
  • the holder housing space 10 is formed so as to cover the cover plate 24, and the cover plate 24 has an opening through which the chip receiving tray 51 of the chip holder 50 can be brought into contact with the surface heater 23. 24a is formed, and the inspection chip 60 accommodated in the chip accommodating tray 51 is heated by the surface heater 23.
  • the Peltier element 21 can be controlled at a stable temperature by the heat sink 22 disposed on one surface 21 a of the Peltier element 21, the inspection chip 60 can be heated by the surface heater 23, and the other surface 21 b of the Peltier element 21.
  • the surface heater 23 By arranging the surface heater 23 on the surface, the surface heater 23 can be cooled by the Peltier element 21, so that a short-term periodic temperature change can be realized and the polymerase chain reaction can be performed stably.
  • the temperature sensor 25 is disposed between the surface heater 23 and the chip receiving tray 51, so that the temperature of the inspection chip 60 can be detected more accurately and the polymerase chain reaction can be stabilized. Can be done.
  • the chip holder 50 of the present invention is provided with the recess 51 d in the center of the chip receiving tray 51, it is possible to prevent the sample liquid injected from the sample introduction port 62 from flowing out to the chip receiving tray 51.
  • the inspection chip 60 in which the reagent is fixed to the sample channel 63 is accommodated in the chip holder 50, but the inspection chip 60 in which the reagent is not fixed can also be used.
  • thermocycling inspection apparatus and the inspection chip of the present invention it is possible to perform the sample collection and result determination within 15 minutes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

チップホルダー50を収容するホルダー収容空間10と、検査チップ60を加熱し冷却するサーモサイクリング部20と、検査チップ60を撮影する検出器30とを備え、サーモサイクリング部20による加熱冷却時又は検出器30での撮影時には、ホルダー収容空間10の一方にサーモサイクリング部20が配置され、ホルダー収容空間10の他方に検出器30が配置され、検出器30の光軸と試料導入口62とが一致するように、ホルダー収容空間10を形成したことで、ポリメラーゼ連鎖反応を行わせることができ、ポリメラーゼ連鎖反応を行わせた検査チップを用いて検査を行えるサーモサイクリング検査装置及び検査チップを提供する。

Description

サーモサイクリング検査装置及びチップホルダー
 本発明は、チップホルダーを用いてポリメラーゼ連鎖反応による検体検査を行うサーモサイクリング検査装置、及び同装置に用いるチップホルダーに関する。
 既に、この種の検査チップとして、内部に貫通状流路が形成され、その流路の少なくとも一部にキャピラリーが埋設されるとともに流路閉鎖用のダミーロッドがさらに埋設されてなり、流路は、分枝状または格子状に設けられ、キャピラリーは、ガラスまたはプラスチックからなるものを提案している(特許文献1)。
 また、他の検査チップとして、基板上に並列若しくは直列に接続される複数の溝が形成され、互いに異なる化学修飾が施されたキャピラリーが複数の溝にそれぞれ埋設され、これらの埋設された複数のキャピラリーに流体を供給し検出データを取得することができるものを提案している(特許文献2)。
 更に、一片が100ミクロン程度の角を有する方形中空溝である試料流路を簡易な方法で製造できる検査チップであり、試料流路に試料溶液を導入しやすく、更には多種類のマイクロ化学反応場を同時に一つで行える検査チップを提案している(特許文献3)
 その他として、この種の検査チップの構造や製造方法としては、特許文献4から特許文献7に開示されている。
特許第4073023号公報 実用新案登録第3116709号 WO2012/001972号 特開2000-93816号公報 特開2001-157855号公報 特開2000-81406号公報 特表2005-510695号公報
 検査チップを用いた微小空間反応では、使用する試料の微量化が達成できるだけでなく、反応の高速化や高効率化を図ることができる。
 しかし、この特徴を活用するためには、この検査チップを用いることができるサーモサイクリング検査装置を提供する必要がある。
 そこで、本発明は、ポリメラーゼ連鎖反応を行わせることができ、ポリメラーゼ連鎖反応を行わせた検査チップを用いて検査を行えるサーモサイクリング検査装置及びチップホルダーを提供することを目的とする。
 請求項1記載の本発明のサーモサイクリング検査装置は、検査チップには、中央に形成された試料導入口と、前記試料導入口から放射状に延びた複数の試料流路とが形成され、前記試料流路に試薬を固定した前記検査チップをチップホルダーに収容し、前記チップホルダーを用いて、ポリメラーゼ連鎖反応による検体検査を行うサーモサイクリング検査装置であって、前記チップホルダーを収容するホルダー収容空間と、前記検査チップを加熱し冷却するサーモサイクリング部と、前記検査チップを撮影する検出器とを備え、前記サーモサイクリング部による加熱冷却時又は前記検出器での撮影時には、前記ホルダー収容空間の一方に前記サーモサイクリング部が配置され、前記ホルダー収容空間の他方に前記検出器が配置され、前記検出器の光軸と前記試料導入口とが一致するように、前記ホルダー収容空間を形成したことを特徴とする。
 請求項2記載の本発明は、請求項1に記載のサーモサイクリング検査装置において、前記サーモサイクリング部は、ペルチェ素子と、前記ペルチェ素子の一方の面に配置するヒートシンクと、前記ペルチェ素子の他方の面に配置する面ヒータと、前記面ヒータ及び前記ペルチェ素子の前記他方の面を覆うカバー板とを有し、前記カバー板を覆うように前記ホルダー収容空間が形成され、前記カバー板には、前記チップホルダーのチップ収容受け皿を前記面ヒータに当接させることができる開口部が形成され、前記チップ収容受け皿に収容されている前記検査チップを前記面ヒータで加熱することを特徴とする。
 請求項3記載の本発明は、請求項2に記載のサーモサイクリング検査装置において、前記面ヒータと前記チップ収容受け皿との間に温度センサを配置したことを特徴とする。
 請求項4記載の本発明は、請求項2に記載のサーモサイクリング検査装置において、前記ホルダー収容空間に配置する前記チップホルダーを覆うホルダー押え蓋を設け、前記ホルダー押え蓋には蛍光検出窓が形成され、前記ホルダー押え蓋の前記ホルダー収容空間側に透明基板を設け、前記透明基板によって、前記蛍光検出窓を覆うとともに前記チップホルダーを押圧することを特徴とする。
 請求項5記載の本発明は、請求項1に記載のサーモサイクリング検査装置において、前記サーモサイクリング部は、ペルチェ素子と、面ヒータと、前記検査チップの温度を検出する温度センサと、前記ペルチェ素子及び前記面ヒータを温度制御する制御部とを有し、前記制御部では、前記面ヒータによって前記検査チップを加熱し、前記ペルチェ素子によって前記面ヒータを冷却し、前記温度センサで検出される検出温度が、第1設定温度と、前記第1設定温度より低い第2設定温度とを周期的に繰り返すように、前記面ヒータと前記ペルチェ素子を制御することを特徴とする。
 請求項6記載の本発明は、請求項5に記載のサーモサイクリング検査装置において、前記制御部では、前記温度センサで検出される前記検出温度が、前記第1設定温度を検出すると、前記面ヒータをOFFとし、前記ペルチェ素子をONとすることを特徴とする。
 請求項7記載の本発明は、請求項5に記載のサーモサイクリング検査装置において、前記制御部では、前記温度センサで検出される前記検出温度が、前記第2設定温度を検出すると、前記ペルチェ素子をOFFの状態で、前記検出温度が前記第2設定温度となるように前記面ヒータをフィードバック制御することで、前記第2設定温度を所定時間維持することを特徴とする。
 請求項8記載の本発明のサーモサイクリング検査装置に用いるチップホルダーは、請求項1に記載のサーモサイクリング検査装置に用いるチップホルダーであって、前記検査チップを収容するチップ収容受け皿と、前記チップ収容受け皿を中央部に保持するホルダーと、前記チップ収容受け皿に収容した前記検査チップを前記チップ収容受け皿に押圧するチップ押え材とを有し、前記チップ押え材が前記ホルダーによって位置決めされることを特徴とする。
 請求項9記載の本発明のチップホルダーは、検査チップには、中央に形成された試料導入口と、前記試料導入口から放射状に延びた複数の試料流路とが形成され、前記試料流路に試薬を固定した前記検査チップを収容するチップホルダーであって、前記検査チップを収容するチップ収容受け皿と、前記チップ収容受け皿を中央部に保持するホルダーと、前記チップ収容受け皿に収容した前記検査チップを前記チップ収容受け皿に押圧するチップ押え材とを有し、前記チップ押え材が前記ホルダーによって位置決めされることを特徴とする。
 請求項10記載の本発明は、請求項9に記載のチップホルダーにおいて、前記チップ収容受け皿には位置決め突起を形成し、前記検査チップには、前記位置決め突起に対応する位置決め凹部を形成したことを特徴とする。
 請求項11記載の本発明は、請求項9に記載のチップホルダーにおいて、前記チップ収容受け皿を、前記ホルダーよりも熱伝導率が高い材料としたことを特徴とする。
 請求項12記載の本発明は、請求項9に記載のチップホルダーにおいて、前記チップ収容受け皿の中央に凹部を設けたことを特徴とする。
 請求項13記載の本発明は、請求項9に記載のチップホルダーにおいて、前記ホルダーに貼付し、前記チップ収容受け皿に添加するオイルのこぼれを防止する透明フィルムを備えたことを特徴とする。
 請求項14記載の本発明のサーモサイクリング検査装置は、チップホルダーを収容するホルダー収容空間と、前記検査チップを加熱し冷却するサーモサイクリング部と、前記検査チップを撮影する検出器と、前記ホルダー収容空間に配置する前記チップホルダーを覆うホルダー押え蓋とを備え、前記サーモサイクリング部は、ペルチェ素子と、前記ペルチェ素子の一方の面に配置するヒートシンクと、前記ペルチェ素子の他方の面に配置する面ヒータと、前記面ヒータ及び前記ペルチェ素子の前記他方の面を覆うカバー板とを有し、前記カバー板を覆うように前記ホルダー収容空間が形成され、前記カバー板には開口部が形成され、前記ホルダー押え蓋には、前記検出器によって前記検査チップを撮影する蛍光検出窓を形成したことを特徴とする。
 請求項15記載の本発明のチップホルダーは、検査チップを収容するチップ収容受け皿と、前記チップ収容受け皿を中央部に保持するホルダーと、前記チップ収容受け皿に収容した前記検査チップを前記チップ収容受け皿に押圧するチップ押え材とを有し、前記チップ収容受け皿の中央に凹部を設けたことを特徴とする。
 本発明によれば、ホルダー収容空間の一方に配置したサーモサイクリング部によって検査チップを加熱し冷却することで、ポリメラーゼ連鎖反応を行わせることができる。また、ホルダー収容空間の他方に配置した検出器によって検査チップを撮影することができ、ポリメラーゼ連鎖反応を行わせた検査チップに撮影による検査が行え、リアルタイム検査を実現できる。
本発明の一実施例によるサーモサイクリング検査装置の要部構成を示す斜視図 同サーモサイクリング検査装置の主要部分を示す斜視図 図2に示す同サーモサイクリング検査装置の主要部分の一部を動かした状態を示す斜視図 同サーモサイクリング検査装置のサーモサイクリング部を示す分解斜視図及び温度センサの構成図 (a)同サーモサイクリング検査装置のサーモサイクリング部を示す斜視図、(b)同サーモサイクリング部にチップホルダーを載置した状態を示す斜視図 (a)同サーモサイクリング検査装置へのチップホルダーの装着を示す写真、(b)同サーモサイクリング検査装置へのチップホルダーの装着を示す要部拡大斜視図 (a)同サーモサイクリング検査装置で用いるチップホルダーの分解斜視図、(b)同チップホルダーの斜視図、(c)同チップホルダーの側面断面図 (a)本発明の一実施例による検査チップの外観を示す平面図、(b)同検査チップの側面図、(c)同検査チップの試料流路の一部を示す拡大説明図 同検査チップに適した試薬塗り込み装置の斜視図 本実施例によるチップホルダーへの試料溶液の導入工程を示す説明図 本実施例によるサーモサイクリング検査装置の制御を行うためのブロック図 検査チップの温度変化を示すグラフ 本発明の他の実施例によるサーモサイクリング検査装置の筐体内の要部構成配置を示す斜視図 同サーモサイクリング検査装置の主要部分を示す側面図 同サーモサイクリング検査装置の外観を示す斜視図
 10 ホルダー収容空間
 20 サーモサイクリング部
 21 ペルチェ素子
 21a 一方の面
 21b 他方の面
 22 ヒートシンク
 23 面ヒータ
 24 カバー板
 24a 開口部
 25 温度センサ
 30 検出器
 40 ホルダー押え蓋
 41 蛍光検出窓
 43 透明基板
 50 チップホルダー
 51 チップ収容受け皿
 51a載置面
 51b 壁面
 51c 位置決め突起
 51d 凹部
 52 ホルダー
 53 チップ押え材
 54 透明フィルム
 60 検査チップ
 61 位置決め凹部
 62 試料導入口
 63 試料流路
 C 試薬
 D 試料溶液
 E オイル(鉱物油)
 本発明の第1の実施の形態によるサーモサイクリング検査装置は、サーモサイクリング部による加熱冷却時又は検出器での撮影時には、ホルダー収容空間の一方にサーモサイクリング部が配置され、ホルダー収容空間の他方に検出器が配置され、検出器の光軸と試料導入口とが一致するように、ホルダー収容空間を形成したものである。本実施の形態によれば、ホルダー収容空間の一方に配置したサーモサイクリング部によって検査チップを加熱し冷却することで、ポリメラーゼ連鎖反応を行わせることができ、ホルダー収容空間の他方に配置した検出器によって検査チップを撮影することができ、ポリメラーゼ連鎖反応を行わせた検査チップに撮影による検査が行え、POCTを小型の装置で実現できる。
 本発明の第2の実施の形態は、第1の実施の形態によるサーモサイクリング検査装置において、サーモサイクリング部が、ペルチェ素子と、ペルチェ素子の一方の面に配置するヒートシンクと、ペルチェ素子の他方の面に配置する面ヒータと、面ヒータ及びペルチェ素子の他方の面を覆うカバー板とを有し、カバー板を覆うようにホルダー収容空間が形成され、カバー板には、チップホルダーのチップ収容受け皿を面ヒータに当接させることができる開口部が形成され、チップ収容受け皿に収容されている検査チップを面ヒータで加熱するものである。本実施の形態によれば、ペルチェ素子の一方の面に配置するヒートシンクでペルチェ素子を安定した温度に制御でき、面ヒータで検査チップを加熱でき、ペルチェ素子の他方の面に面ヒータを配置することで、面ヒータの冷却をペルチェ素子で行えるため、短時間の周期的な温度変化を実現でき、ポリメラーゼ連鎖反応を安定して行わせることができる。
 本発明の第3の実施の形態は、第2の実施の形態によるサーモサイクリング検査装置において、面ヒータとチップ収容受け皿との間に温度センサを配置したものである。本実施の形態によれば、より正確に検査チップの温度を検出でき、ポリメラーゼ連鎖反応を安定して行わせることができる。
 本発明の第4の実施の形態は、第2の実施の形態によるサーモサイクリング検査装置において、ホルダー収容空間に配置するチップホルダーを覆うホルダー押え蓋を設け、ホルダー押え蓋には蛍光検出窓が形成され、ホルダー押え蓋のホルダー収容空間側に透明基板を設け、透明基板によって、蛍光検出窓を覆うとともにチップホルダーを押圧するものである。本実施の形態によれば、透明基板によってチップホルダーを押圧することで、チップ収容受け皿と面ヒータとの密着性が高まり、よって、面ヒータの熱をチップ収容受け皿に伝えやすくし、チップ収容受け皿の熱応答性を高めることができる。
 本発明の第5の実施の形態は、第1の実施の形態によるサーモサイクリング検査装置において、サーモサイクリング部が、ペルチェ素子と、面ヒータと、検査チップの温度を検出する温度センサと、ペルチェ素子及び面ヒータを温度制御する制御部とを有し、制御部では、面ヒータによって検査チップを加熱し、ペルチェ素子によって面ヒータを冷却し、温度センサで検出される検出温度が、第1設定温度と、第1設定温度より低い第2設定温度とを周期的に繰り返すように、面ヒータとペルチェ素子を制御するものである。本実施の形態によれば、面ヒータによって検査チップを加熱し、ペルチェ素子によって面ヒータを冷却することで、特に第1設定温度から第2設定温度への移行を速やかに行うことができ、ポリメラーゼ連鎖反応を短時間で行わせることができる。
 本発明の第6の実施の形態は、第5の実施の形態によるサーモサイクリング検査装置において、制御部では、温度センサで検出される検出温度が、第1設定温度を検出すると、面ヒータをOFFとし、ペルチェ素子をONとするものである。本実施の形態によれば、第1設定温度から第2設定温度への移行を、面ヒータのOFFだけでなく、ペルチェ素子によって強制的に冷却することで、速やかに行うことができる。
 本発明の第7の実施の形態は、第5の実施の形態によるサーモサイクリング検査装置において、制御部では、温度センサで検出される検出温度が、第2設定温度を検出すると、ペルチェ素子をOFFの状態で、検出温度が第2設定温度となるように面ヒータをフィードバック制御することで、第2設定温度を所定時間維持するものである。本実施の形態によれば、ペルチェ素子をOFFの状態で面ヒータをフィードバック制御することで、ハンチングを小さくして安定した制御を行える。
 本発明の第8の実施の形態によるサーモサイクリング検査装置に用いるチップホルダーは、第1のサーモサイクリング検査装置に用いるチップホルダーであり、検査チップを収容するチップ収容受け皿と、チップ収容受け皿を中央部に保持するホルダーと、チップ収容受け皿に収容した検査チップをチップ収容受け皿に押圧するチップ押え材とを有し、チップ押え材がホルダーによって位置決めされるものである。本実施の形態によれば、チップ押え材によって検査チップをチップ収容受け皿に押圧することで、検査チップとチップ収容受け皿との密着性が高まり、よって、チップ収容受け皿の熱を検査チップに伝えやすくし、検査チップの熱応答性を高めることができる。また、本実施の形態によれば、ホルダーによって、チップ収容受け皿を保持し、チップ押え材を位置決めすることで、チップ押え材による検査チップのチップ収容受け皿への押圧を確実に行え、検査チップの破損を防止できる。
 本発明の第9の実施の形態によるチップホルダーは、検査チップを収容するチップ収容受け皿と、チップ収容受け皿を中央部に保持するホルダーと、チップ収容受け皿に収容した検査チップをチップ収容受け皿に押圧するチップ押え材とを有し、チップ押え材がホルダーによって位置決めされるものである。本実施の形態によれば、チップ押え材によって検査チップをチップ収容受け皿に押圧することで、検査チップとチップ収容受け皿との密着性が高まり、よって、チップ収容受け皿の熱を検査チップに伝えやすくし、検査チップの熱応答性を高めることができる。また、本実施の形態によれば、ホルダーによって、チップ収容受け皿を保持し、チップ押え材を位置決めすることで、チップ押え材による検査チップのチップ収容受け皿への押圧を確実に行え、検査チップの破損を防止できる。
 本発明の第10の実施の形態は、第9の実施の形態によるチップホルダーにおいて、チップ収容受け皿には位置決め突起を形成し、検査チップには、位置決め突起に対応する位置決め凹部を形成したものである。本実施の形態によれば、位置決め突起と位置決め凹部によって、検査チップをチップ収容受け皿に正確に位置決めでき、検査チップの加熱冷却を安定して行え、撮影を正確に行える。
 本発明の第11の実施の形態は、第9の実施の形態によるチップホルダーにおいて、チップ収容受け皿を、ホルダーよりも熱伝導率が高い材料としたものである。本実施の形態によれば、チップ収容受け皿に熱伝導率の高い材料を用いることで検査チップへの加熱冷却を速やかに行うことができ、一方でホルダーに熱伝導率の低い材料を用いることでホルダーへの熱拡散を防止し、検査チップの熱応答性を高めることができる。
 本発明の第12の実施の形態は、第9の実施の形態によるチップホルダーにおいて、チップ収容受け皿の中央に凹部を設けたものである。本実施の形態によれば、試料導入口から注入される検体液がチップ収容受け皿に流出することを防止できる。
 本発明の第13の実施の形態は、第9の実施の形態によるチップホルダーにおいて、ホルダーに貼付し、チップ収容受け皿に添加するオイルのこぼれを防止する透明フィルムを備えたものである。本実施の形態によれば、透明フィルムをホルダーに貼付することで、チップ収容受け皿に添加するオイルの漏出を防止でき、チップホルダーの扱いを容易にすることができる。
 本発明の第14の実施の形態によるサーモサイクリング検査装置は、サーモサイクリング部が、ペルチェ素子と、ペルチェ素子の一方の面に配置するヒートシンクと、ペルチェ素子の他方の面に配置する面ヒータと、面ヒータ及びペルチェ素子の他方の面を覆うカバー板とを有し、カバー板を覆うようにホルダー収容空間が形成され、カバー板には開口部が形成され、ホルダー押え蓋には、検出器によって検査チップを撮影する蛍光検出窓を形成したものである。本実施の形態によれば、ペルチェ素子の一方の面に配置するヒートシンクでペルチェ素子を安定した温度に制御でき、面ヒータで検査チップを加熱でき、ペルチェ素子の他方の面に面ヒータを配置することで、面ヒータの冷却をペルチェ素子で行えるため、短時間の周期的な温度変化を実現でき、ポリメラーゼ連鎖反応を安定して行わせることができる。
 本発明の第15の実施の形態によるチップホルダーは、検査チップを収容するチップ収容受け皿と、チップ収容受け皿を中央部に保持するホルダーと、チップ収容受け皿に収容した検査チップをチップ収容受け皿に押圧するチップ押え材とを有し、チップ収容受け皿の中央に凹部を設けたものである。本実施の形態によれば、チップ押え材によって検査チップをチップ収容受け皿に押圧することで、検査チップとチップ収容受け皿との密着性を高めることで、チップ収容受け皿の熱を検査チップに伝えやすくし、検査チップの熱応答性を高めることができる。また、本実施の形態によれば、試料導入口から注入される検体液がチップ収容受け皿に流出することを防止できる。
 以下に、本発明のサーモサイクリング検査装置の一実施例について説明する。
 図1は本実施例によるサーモサイクリング検査装置の要部構成を示す斜視図、図2は同サーモサイクリング検査装置の主要部分を示す斜視図、図3は図2に示す同サーモサイクリング検査装置の主要部分の一部を動かした状態を示す斜視図である。
 本実施例によるサーモサイクリング検査装置は、チップホルダーを収容するホルダー収容空間10と、検査チップを加熱し冷却するサーモサイクリング部20と、検査チップを撮影する検出器30とを備えている。
 ホルダー収容空間10は、サーモサイクリング部20の上方に形成される。ホルダー収容空間10の上方には、ホルダー収容空間10に配置するチップホルダーを覆うホルダー押え蓋40を設けている。
 筐体1は、前面には前扉2を、内部両側面又は内部底面には一対のガイダー3を有している。一対のスライドレール4は、一対のガイダー3を摺動する。
 ホルダー収容空間10、サーモサイクリング部20、及びホルダー押え蓋40は、一対のスライドレール4によって、筐体1の前面から前方へ引き出すことができる。
 図1及び図3は、ホルダー収容空間10、サーモサイクリング部20、及びホルダー押え蓋40を、筐体1から外へ引き出した状態を示し、図2は、ホルダー収容空間10、サーモサイクリング部20、及びホルダー押え蓋40を、筐体1内に収容した状態を示している。
 図2及び図3に示すように、筐体1内は、前方空間Aと後方空間Bとに区分けされている。ホルダー収容空間10、サーモサイクリング部20、及びホルダー押え蓋40は、前方空間Aに収容される。後方空間Bには、温度センサで検出される検出温度に基づいてペルチェ素子及び面ヒータを制御する制御部を収容する。
 ホルダー押え蓋40には、蛍光検出窓41が形成されている。ホルダー押え蓋40には、トルクヒンジ42を設けている。
 図1に示すように、後方空間Bには、筐体1内の空気を排出する冷却ファン5を設けている。
 図3に示すように、前方空間Aは、筐体1の底面に吸気口6を形成している。
 冷却ファン5の駆動によって、吸気口6から筐体1内に吸入される空気は、前方空間Aに設けた排気口から排出される。
 筐体1の上部には、検出器30を配置している。検出器30は、カメラ31と、カメラレンズ32と、照明用LED33と、保持材34とから構成される。
 カメラ31は保持材34によって筐体1の上部に保持される。カメラ31は下部にカメラレンズ32を保持している。
 一対の照明用LED33は、カメラレンズ32の両側に配置され、前方空間Aの上部に取り付けられる。
 カメラレンズ32の光軸は、蛍光検出窓41の中心に一致し、一対の照明用LED33の光軸は、蛍光検出窓41に向けられている。
 図2に示すように、ホルダー収容空間10、サーモサイクリング部20、及びホルダー押え蓋40が筐体1内に収容された状態、すなわち、サーモサイクリング部20による加熱冷却時及び検出器30での撮影時には、ホルダー収容空間10の一方にサーモサイクリング部20が配置され、ホルダー収容空間10の他方に検出器30が配置される。
 そして、ホルダー収容空間10は、検出器30の光軸と、検査チップの中央に形成された試料導入口とが一致するように形成している。
 本実施例によれば、ホルダー収容空間10の一方に配置したサーモサイクリング部20によって検査チップを加熱し冷却することで、ポリメラーゼ連鎖反応を行わせることができ、ホルダー収容空間10の他方に配置した検出器30によって検査チップを撮影することができ、ポリメラーゼ連鎖反応を行わせた検査チップに撮影による検査が行え、POCT(リアルタイム検査)を小型の装置で実現できる。
 図4(a)は同サーモサイクリング検査装置のサーモサイクリング部を示す分解斜視図、図4(b)は温度センサの構成図である。
 サーモサイクリング部20は、ペルチェ素子21と、ペルチェ素子21の一方の面21aに配置するヒートシンク22と、ペルチェ素子21の他方の面21bに配置する面ヒータ23と、面ヒータ23及びペルチェ素子21の他方の面21bを覆うカバー板24と、検査チップの温度を検出する温度センサ25と、ヒートシンク22の熱交換性能を増大させるファン26とを有している。
 ペルチェ素子21の一方の面21aは、熱伝導性接着剤転写テープ27によってヒートシンク22に接着する。面ヒータ23は、熱伝導性接着剤転写テープ28によってペルチェ素子21の他方の面21bに接着する。カバー板24の中央には、開口部24aを形成している。面ヒータ23のカバー板24側の面には、温度センサ25を配置する。温度センサ25の検知部25aは、2枚の熱拡散シート29で挟み込まれる。熱拡散シート29は、カバー板24の開口部24aに対向する位置に配置される。熱拡散シート29は、検査チップと同じ大きさであることが好ましく、検査チップの外径以上で開口部24a以下の大きさである。
 ペルチェ素子21の他方の面21bには凹部を形成している。熱伝導性接着剤転写テープ28、面ヒータ23、及び2枚の熱拡散シート29には孔を形成している。ペルチェ素子21の凹部、熱伝導性接着剤転写テープ28の孔、面ヒータ23の孔、及び2枚の熱拡散シート29の孔は組立時にピンを用いて位置決めとして利用できる。
 ファン26は、ヒートシンク22のフィン面に対向して配置する。
 本実施例によれば、面ヒータ23を用いることで、加熱による蓄熱を低減することができ、短時間での温度変化を実現できる。
 なお、温度センサ25は検査チップの温度を直接検出する場合に限らず、本実施例のように、温度センサ25で面ヒータ23の温度を検知して、検査チップの温度を間接的に検知してもよい。
 また、図4(b)に示すように、温度センサ25は2つの熱電対を備えていることが好ましい。このように温度センサ25を複数の熱電対で構成し、並列に複数回路を設けることで制御部の暴走を未然に防止できる。
 図5(a)は同サーモサイクリング検査装置のサーモサイクリング部を示す斜視図、図5(b)は同サーモサイクリング部にチップホルダーを載置した状態を示す斜視図である。
 図5(a)に示すように、カバー板24は、面ヒータ23及びペルチェ素子21を覆い、カバー板24の上方及び周囲に、カバー板24を覆うようにホルダー収容空間10が形成される。
 そして、図5(b)に示すように、ホルダー収容空間10にチップホルダー50が配置される。
 図6(a)は同サーモサイクリング検査装置へのチップホルダーの装着を示す写真、図6(b)は同サーモサイクリング検査装置へのチップホルダーの装着を示す要部拡大斜視図である。
 図6では、ホルダー押え蓋40を開いた状態を示している。
 ホルダー押え蓋40のホルダー収容空間10側には、透明基板43と、ロック部材44を設けている。
 透明基板43は、蛍光検出窓41を覆うとともに、ホルダー押え蓋40を閉じた状態ではチップホルダー50を押圧する。ホルダー押え蓋40を閉じた状態では、ホルダー押え蓋40はロック部材44によって閉じた状態が維持される。
 図7(a)は同サーモサイクリング検査装置で用いるチップホルダーの分解斜視図、図7(b)は同チップホルダーの斜視図、図7(c)は同チップホルダーの側面断面図である。
 本実施例によるチップホルダー50は、検査チップ60を収容するチップ収容受け皿51と、チップ収容受け皿51を中央部に保持するホルダー52と、チップ収容受け皿51に収容した検査チップ60をチップ収容受け皿51に押圧するチップ押え材53とを有する。
 チップ収容受け皿51は、検査チップ60を載置する載置面51aと、載置面51aの外周を覆う壁面51bとで形成される。壁面51bは上方が広くなるようにすり鉢状に形成される。チップ収容受け皿51は、載置面51aと壁面51bとによって凹状に形成される。
 ホルダー52の上面52aには、リング状凹部52bと、位置決め用凹部52cと、固定用孔52dとを形成している。リング状凹部52bはチップ収容受け皿51の外周に形成し、位置決め用凹部52cはリング状凹部52bに連続し、固定用孔52dは位置決め用凹部52cの一部に形成している。
 チップ押え材53は、リング部53aと、位置決め用脚部53bと、固定用突起53cと、チップ押圧用脚部53dとで形成される。リング部53aはリング状凹部52bに装着され、位置決め用脚部53bは位置決め用凹部52cに装着され、固定用突起53cは固定用孔52dに装着される。
 リング部53aがリング状凹部52bに装着され、位置決め用脚部53bが位置決め用凹部52cに装着されることで、チップ押え材53はホルダー52に位置決めされる。また、固定用突起53cが固定用孔52dに嵌合することで、チップ押え材53はホルダー52に固定される。
 チップ押圧用脚部53dは、リング部53aから内方に水平に延出させた水平部材53d1と、水平部材53d1の先端から載置面51aに向かって鉛直に延出させた鉛直部材53d2とで構成され、水平部材53d1の先端上面には上方へ突出させた突起53d3を設けている。
 チップ押え材53がホルダー52に固定された状態では、突起53d3を除くチップ押え材53の上面とホルダー52の上面52aとは同一平面を形成する。従って、図7(c)に示す透明基板43をホルダー52の上面52aに当接させると、透明基板43は突起53d3を押圧する。
 水平部材53d1の弾性によって水平部材53d1の先端は撓むことができ、透明基板43が突起53d3を押圧することで、鉛直部材53d2は検査チップ60をチップ収容受け皿51の載置面51aに押圧する。
 本実施例によれば、透明基板43によってチップホルダー50を押圧することで、チップ収容受け皿51と面ヒータ23との密着性が高まり、よって、面ヒータ23の熱をチップ収容受け皿51に伝えやすくし、チップ収容受け皿51の熱応答性を高めることができる。
 また、本実施例によれば、チップ押え材53によって検査チップ60をチップ収容受け皿51に押圧することで、検査チップ60とチップ収容受け皿51との密着性が高まり、よって、チップ収容受け皿51の熱を検査チップ60に伝えやすくし、検査チップ60の熱応答性を高めることができる。
 また、本実施例によれば、ホルダー52によって、チップ収容受け皿51を保持し、チップ押え材53を位置決めすることで、チップ押え材53による検査チップ60のチップ収容受け皿51への押圧を確実に行え、検査チップ60の破損を防止できる。
 チップ収容受け皿51の載置面51aには位置決め突起51cを形成し、検査チップ60には、位置決め突起51cに対応する位置決め凹部61を形成している。
 本実施例によれば、位置決め突起51cと位置決め凹部61によって、検査チップ60をチップ収容受け皿51に正確に位置決めでき、検査チップ60の加熱冷却を安定して行え、撮影を正確に行える。
 チップ収容受け皿51は、ホルダー52よりも熱伝導率が高い材料とする。例えば、ホルダー52を樹脂とした場合に、チップ収容受け皿51には、ホルダー52の樹脂よりも熱伝導率が高い、アルミニウム、鉄、銅などの金属材料、熱伝導性樹脂、又は窒化アルミニウムのような高熱伝導率であるセラミックスを用いる。なお、チップ収容受け皿51全体よりも、載置面51aだけ、又は載置面51aの中でも検査チップ60が載置される部分だけをホルダー52よりも熱伝導率が高い材料とすることが好ましい。
 本実施例によれば、チップ収容受け皿51又は載置面51aに熱伝導率の高い材料を用いることで検査チップ60への加熱冷却を速やかに行うことができ、一方でホルダー52に熱伝導率の低い材料を用いることでホルダー52への熱拡散を防止し、検査チップ60の熱応答性を高めることができる。
 なお、検査チップ60には、中央に試料導入口62が形成されている。また、チップ収容受け皿51の中央には凹部51dを設けている。凹部51dの中央には、サーモサイクリング部20側に突出する突起が形成されている。この突起はチップ収容受け皿51をインジェクション成形する際のノズル部によって形成される。この突起は、チップホルダー50をサーモサイクリング部20に装着する際には、ペルチェ素子21の凹部、熱伝導性接着剤転写テープ28の孔、面ヒータ23の孔、及び2枚の熱拡散シート29の孔に配置される。従って、サーモサイクリング部20によってこの突起が押圧されることがない。すなわち、検査チップ60が凹部51dによって押圧されることがなく、検査チップ60が破損することを防止できる。
 図8は、本発明の一実施例による検査チップの外観を示し、図8(a)は平面図、図8(b)は側面図、図8(c)は試料流路の一部を示す拡大説明図である。
 検査チップ60には、中央に形成された試料導入口62と、試料導入口62から放射状に延びた複数の試料流路63とが形成されている。
 図8(b)の側面図に示すように、検査チップ60は、第1基板60aと第2基板60bと第3基板60cとを貼り合わせて構成することができる。
 第1基板60aは試料導入口62を、第2基板60bは試料流路63を、第3基板60cは試料排出口64を有する。第1基板60a、第2基板60b、及び第3基板60cは、ガラスまたはプラスチックで構成される。ガラスとしては、シリカガラスを用いることができ、他のガラスや合成樹脂材なども用いることができる。少なくとも第1基板60a及び第3基板60cの一方は、透光性材料で構成し、更に、透光性材料は透明な材料であることが好ましい。
 試料導入口62は、第1基板60aの表裏を貫通する孔として形成され、試料流路63は第2基板60bの表裏を貫通する孔及びこの孔から放射状に延びるスリットとして形成され、試料排出口64は第3基板60cの表裏を貫通する孔として形成されている。本実施例では、8本のスリットによって多数の試料流路63を形成する場合を示しており、8本のスリットは、中央部に形成した孔を中心として、径方向に等間隔に配置されている。また、試料排出口64の孔径は、試料導入口62の孔径と同じ大きさで形成し、試料排出口64及び試料導入口62の孔径は、スリットの幅よりも大きく、更には第2基板60bの中央部の孔よりも大きく形成することが好ましい。
 本実施例による検査チップ60は、試料導入口62及び試料排出口64を中心として8本の試料流路63を形成している。
 8本の試料流路63は、試料導入口62及び試料排出口64を中心として放射状に同一長さで配置され、それぞれの外周側端部は開放口となっている。
 図8(c)に示すように、試料流路63は、第1基板60a及び第3基板60cによって、4つの角を有する方形中空溝となる。このように鋭利な(丸みのない)4つの角を形成することで、試薬Cを試料流路63に確実に固定することができる。
 試料流路63のスリット深さ(第2基板60bの板厚)をスリット幅よりも大きくすることで、弱い蛍光反応でも確実に判別することができる。
 図9は、本実施例による検査チップに適した試薬塗り込み装置の斜視図である。
 試薬塗り込み装置70は、外周部に複数の試薬プール71を、内周部に検査チップ60を積層できる空間72を、内周面に試薬プール71から導入される試薬を供給する試薬供給口73を有している。
 本実施例による検査チップ60は、8本の試料流路63を有しているため、試薬プール71及び試薬供給口73は8つ設けている。
 試薬プール71から供給される試薬は、それぞれの試薬供給口73を通って試料流路63の開放口から毛細管現象により導入する。
 すなわち、試料流路63の開放口に試薬を接触させると、試薬は毛細管現象により試料流路63内に能動的に流れ込み、試料導入口62及び試料排出口64に臨む端部で働く表面張力により試料流路63内に確実に試薬が満たされる。
 そして、試料流路63内に試薬を満たした状態で乾燥させると、方形中空溝内に試薬が固定される。試薬は、方形中空溝の4つの角に固定され、又は方形中空溝内に網目状に固定される。
 本実施例では、それぞれの試料流路63毎に、異なる試薬を導入して固着させる。この場合には、それぞれの試料流路63に順に試薬を導入するか、同時に全ての試料流路63に異なる試薬を導入する。全ての試料流路63に試薬を導入した後に、乾燥によって試薬を固定する。
 また、適当なマトリックスを用い、試薬に適度な粘性を持たせることで、試料流路63内部の試薬濃度のむらを防止することができる。ここで、マトリックスには、後の反応に影響を与えない範囲であれば、例えば、ポリエチレングリコール、グリセロール、多糖類、タンパク質、界面活性剤、無機塩類の少なくともいずれか、又はこれらの混合物を用いることができる。
 図7に示すチップホルダー50に収容する検査チップ60は、試料流路63に試薬を固定したものである。
 図7に示すチップホルダー50は、以下に説明するように測定対象とする検体液(試料溶液)を検査チップ60に導入した後に、図1~図3に示すサーモサイクリング検査装置にセットする。
 図10は本実施例によるチップホルダーへの試料溶液の導入工程を示す説明図である。
 採取した検体を核酸抽出液に添加し、加熱及び超音波破砕により核酸を抽出する。抽出した核酸に検出試薬を混合して試料溶液Dを作る。
 図10(a)は、この試料溶液Dをチップホルダー50に滴下する工程を示している。
 試料溶液は、試料導入口62から毛細管現象により導入する。
 図10(b)に示すように、試料溶液Dを試料導入口62に接触させると、試料溶液Dは、毛細管現象により試料流路63内に能動的に流れ込み、試料流路63の開放口において働く表面張力により試料流路63内に確実に試料溶液Dが満たされる。
 なお、図7で説明したように、チップ収容受け皿51の中央に凹部51dを設けているため、試料導入口62から注入される試料溶液Dがチップ収容受け皿51に流出することを防止できる。
 試料流路63内に導入された試料溶液Dには、既に固定されている試薬Cが溶け出し、試料溶液Dと試薬Cとが混合され、更に最適な温度条件に管理することで、試料溶液Dと試薬Cとの反応が開始される。
 図10(c)は、試料溶液Dの蒸発乾燥を防止するために、チップ収容受け皿51にオイル(鉱物油)Eを導入する工程を示している。オイルを添加すれば、検査チップ60に施された流路の両端を鉱物油Eで塞ぐことができる。このようにしてオイルシーリングされた流路内の溶液は蒸発せず、温度変化を繰り返しても乾燥されることはない。
 図10(d)に示すように、チップ収容受け皿51にオイルEを導入した後に、透明フィルム54をホルダー52の上面52aに貼付し、チップ収容受け皿51に添加したオイルEのこぼれを防止する。
 本実施例によれば、透明フィルム54をホルダー52に貼付することで、チップ収容受け皿51に添加するオイルEの漏出を防止でき、チップホルダー50の扱いを容易にすることができる。
 図11は本実施例によるサーモサイクリング検査装置の制御を行うためのブロック図、図12は検査チップの温度変化を示すグラフである。
 サーモサイクリング部20は、ペルチェ素子21と、面ヒータ23と、温度センサ25と、制御手段80とを備えている。
 制御手段80は、ペルチェ素子21及び面ヒータ23を温度制御する制御部81と、設定温度や設定時間を記憶する記憶部82と、時間を計時する計時部83とを備えている。
 面ヒータ23は検査チップ60を加熱し、ペルチェ素子21は面ヒータ23を冷却する。
 制御部81では、温度センサ25で検出される検出温度が、第1設定温度T1と、第1設定温度T1より低い第2設定温度T2とを周期的に繰り返すように、面ヒータ23とペルチェ素子21を制御する。
 制御部81では、温度センサ25で検出される検出温度が、第1設定温度T1を検出すると、面ヒータ23をOFFとし、ペルチェ素子21をONとする。
 図12では、時刻t1において面ヒータ23をONとし、温度センサ25が第1設定温度T1を検出した時刻t2において面ヒータ23をOFFとする。面ヒータ23をOFFとした時刻t2と同時、又は時刻t2から若干のタイムラグを設けてペルチェ素子21をONとする。所定時間S1が短い場合には時刻t2と同時にペルチェ素子21をONし、所定時間S1が長い場合には時刻t2から遅らせてペルチェ素子21をONとする。
 制御部81では、面ヒータ23をOFF、ペルチェ素子21をONとすることで、検査チップ60の温度は急激に低下する(R2)。温度センサ25が第2設定温度T2を検出した時刻t3においてペルチェ素子21をOFFとする。
 制御部81では、温度センサ25で検出される検出温度が、第2設定温度T2を検出すると、ペルチェ素子21をOFFの状態で、検出温度が第2設定温度T2となるように面ヒータ23をON/OFFしてフィードバック制御することで、第2設定温度T2を所定時間S2維持する。ここで、所定時間S2は記憶部82に記憶されており、第2設定温度T2を検出することで計時部83で計時を開始し、計時部83で所定時間S2を計時すると、制御部81では、面ヒータ23をONとして2サイクル目を開始する。
 本実施例によれば、面ヒータ23によって検査チップ60を加熱し、ペルチェ素子21によって面ヒータ23を冷却することで、特に第1設定温度T1から第2設定温度T2への移行を速やかに行うことができ、ポリメラーゼ連鎖反応を短時間で行わせることができる。
 また、本実施例によれば、第1設定温度T1から第2設定温度T2への移行を、面ヒータ23のOFFだけでなく、ペルチェ素子21によって強制的に冷却することで、速やかに行うことができる。
 また、本実施例によれば、温度センサ25で検出される検出温度が、第2設定温度T2を検出すると、ペルチェ素子21をOFFの状態で面ヒータ23をフィードバック制御することで、第2設定温度T2を所定時間S2維持するため、ハンチングを小さくして安定した制御を行える。
 以下に、本発明のサーモサイクリング検査装置の他の実施例について説明する。
 図13は本実施例によるサーモサイクリング検査装置の筐体内の要部構成配置を示す斜視図、図14は同サーモサイクリング検査装置の主要部分を示す側面図、図15は同サーモサイクリング検査装置の外観を示す斜視図である。図13及び図14は筐体を覆う外カバーを取り外した状態を示している。なお、上記実施例と同一構成、同一機能については説明を省略し、本実施例の特徴的な構成について以下に説明する。
 図13及び図14に示すように、筐体1内は、仕切板Xによって前方空間Aと後方空間Bとに区分けされている。また、前方空間Aは、仕切板Yによって下部前方空間A1と上部前方空間A2とに区分けされている。
 下部前方空間A1には、ホルダー収容空間10、サーモサイクリング部20、照明用LED33、カメラレンズ32の先端部、及びホルダー押え蓋40が収容される。上部前方空間A2には、カメラ31、カメラレンズ32の先端部を除く部分、及び保持材34が収容される。後方空間Bには、温度センサで検出される検出温度に基づいてペルチェ素子及び面ヒータを制御するプリント基板(制御部)80aが収容される。プリント基板80aは、仕切板Xとは空間を介在させた位置、特に後面外カバー1bに取り付けることが好ましい。
 下部前方空間A1を形成する外カバー(図示せず)には、下部前方空間A1内の空気を排出するヒートシンク用排気ファン7を設けている。ヒートシンク用排気ファン7は、ヒートシンク22と同じ高さか、ヒートシンク22よりも高い位置に配置する。ヒートシンク用排気ファン7は、下部前方空間A1の上部に配置することで、下部前方空間A1内の高温空気を効率よく排出できる。ヒートシンク用排気ファン7は、ヒートシンク用排気ファン7の回転軸(ファン中心)による仮想軸心が、ホルダー押え蓋40の蛍光検出窓(図示せず)の中心を通らない位置、より好ましくはこの仮想軸心がホルダー押え蓋40の蛍光検出窓の投影面を通らない位置に設ける。すなわち、ヒートシンク用排気ファン7を蛍光検出窓から遠ざけることで、ヒートシンク用排気ファン7の開口による筐体1外からの光がホルダー収容空間10内に入射することを少なくし、ホルダー収容空間10内を暗室にすることができる。
 後方空間Bを形成する外カバー(図示せず)には、後方空間B内の空気を排出する冷却ファン5を設けている。冷却ファン5は、プリント基板80aの上部か、プリント基板80aよりも高い位置に配置する。冷却ファン5は、後方空間Bの上部に配置することで、後方空間B内の高温空気を効率よく排出できる。
 図14及び図15に示すように、筐体1は、前面を前面外カバー1f及び前扉2で、両側面を後方側面外カバー1sb及び前方側面外カバー1sfで、上面を上面外カバー1tで、下面を下面外カバー1cで、後面を後面外カバー1bで、それぞれ覆われている。
 図15に示すように、後方空間Bを形成する外カバー、特に後方側面外カバー1sbの下方には、後方空間用吸気口8を設けている。
 この構成によって、下部前方空間A1では、ファン26によって吸気口6から筐体1内に空気が吸入される。吸気口6から吸入された空気は、ヒートシンク22で吸熱される。ヒートシンク22で吸熱された空気は、ヒートシンク用排気ファン7によって筐体1外へ強制排出される。従って、ヒートシンク22の冷却効果を高めるとともに、前方空間A内の温度を一定に保持することができる。また、上部前方空間A2内が高温になることを防止できる。
 後方空間Bでは、冷却ファン5によって後方空間用吸気口8から筐体1内に空気が吸入される。後方空間B内に吸入された空気は、吸入冷却ファン5から筐体1外へ排出される。
 以上のように本発明のサーモサイクリング検査装置は、サーモサイクリング部20が、ペルチェ素子21と、ペルチェ素子21の一方の面21aに配置するヒートシンク22と、ペルチェ素子21の他方の面21bに配置する面ヒータ23と、面ヒータ23及びペルチェ素子21の他方の面21bを覆うカバー板24とを有している。そして、サーモサイクリング検査装置は、カバー板24を覆うようにホルダー収容空間10が形成され、カバー板24には、チップホルダー50のチップ収容受け皿51を面ヒータ23に当接させることができる開口部24aが形成され、チップ収容受け皿51に収容されている検査チップ60を面ヒータ23で加熱するものである。
 本発明によれば、ペルチェ素子21の一方の面21aに配置するヒートシンク22でペルチェ素子21を安定した温度に制御でき、面ヒータ23で検査チップ60を加熱でき、ペルチェ素子21の他方の面21bに面ヒータ23を配置することで、面ヒータ23の冷却をペルチェ素子21で行えるため、短時間の周期的な温度変化を実現でき、ポリメラーゼ連鎖反応を安定して行わせることができる。
 また、本発明のサーモサイクリング検査装置は、面ヒータ23とチップ収容受け皿51との間に温度センサ25を配置しているので、より正確に検査チップ60の温度を検出でき、ポリメラーゼ連鎖反応を安定して行わせることができる。
 また、本発明のチップホルダー50は、チップ収容受け皿51の中央に凹部51dを設けているので、試料導入口62から注入される検体液がチップ収容受け皿51に流出することを防止できる。
 なお、本発明では、試料流路63に試薬を固定した検査チップ60をチップホルダー50に収容したが、試薬を固定しない検査チップ60を用いることもできる。
 本発明のサーモサイクリング検査装置及び検査チップを用いることで、検体の採取から結果判定までを15分以内で行うことができる。

Claims (15)

  1.  検査チップには、中央に形成された試料導入口と、前記試料導入口から放射状に延びた複数の試料流路とが形成され、
    前記試料流路に試薬を固定した前記検査チップをチップホルダーに収容し、
    前記チップホルダーを用いて、ポリメラーゼ連鎖反応による検体検査を行うサーモサイクリング検査装置であって、
    前記チップホルダーを収容するホルダー収容空間と、
    前記検査チップを加熱し冷却するサーモサイクリング部と、
    前記検査チップを撮影する検出器と
    を備え、
    前記サーモサイクリング部による加熱冷却時又は前記検出器での撮影時には、
    前記ホルダー収容空間の一方に前記サーモサイクリング部が配置され、
    前記ホルダー収容空間の他方に前記検出器が配置され、
    前記検出器の光軸と前記試料導入口とが一致するように、前記ホルダー収容空間を形成した
    ことを特徴とするサーモサイクリング検査装置。
  2.  前記サーモサイクリング部は、
    ペルチェ素子と、
    前記ペルチェ素子の一方の面に配置するヒートシンクと、
    前記ペルチェ素子の他方の面に配置する面ヒータと、
    前記面ヒータ及び前記ペルチェ素子の前記他方の面を覆うカバー板と
    を有し、
    前記カバー板を覆うように前記ホルダー収容空間が形成され、
    前記カバー板には、前記チップホルダーのチップ収容受け皿を前記面ヒータに当接させることができる開口部が形成され、
    前記チップ収容受け皿に収容されている前記検査チップを前記面ヒータで加熱する
    ことを特徴とする請求項1に記載のサーモサイクリング検査装置。
  3.  前記面ヒータと前記チップ収容受け皿との間に温度センサを配置した
    ことを特徴とする請求項2に記載のサーモサイクリング検査装置。
  4.  前記ホルダー収容空間に配置する前記チップホルダーを覆うホルダー押え蓋を設け、
    前記ホルダー押え蓋には蛍光検出窓が形成され、
    前記ホルダー押え蓋の前記ホルダー収容空間側に透明基板を設け、
    前記透明基板によって、前記蛍光検出窓を覆うとともに前記チップホルダーを押圧する
    ことを特徴とする請求項2に記載のサーモサイクリング検査装置。
  5.  前記サーモサイクリング部は、
    ペルチェ素子と、
    面ヒータと、
    前記検査チップの温度を検出する温度センサと、
    前記ペルチェ素子及び前記面ヒータを温度制御する制御部と
    を有し、
    前記制御部では、
    前記面ヒータによって前記検査チップを加熱し、
    前記ペルチェ素子によって前記面ヒータを冷却し、
    前記温度センサで検出される検出温度が、第1設定温度と、前記第1設定温度より低い第2設定温度とを周期的に繰り返すように、前記面ヒータと前記ペルチェ素子を制御する
    ことを特徴とする請求項1に記載のサーモサイクリング検査装置。
  6.  前記制御部では、
    前記温度センサで検出される前記検出温度が、前記第1設定温度を検出すると、前記面ヒータをOFFとし、前記ペルチェ素子をONとする
    ことを特徴とする請求項5に記載のサーモサイクリング検査装置。
  7.  前記制御部では、
    前記温度センサで検出される前記検出温度が、前記第2設定温度を検出すると、前記ペルチェ素子をOFFの状態で、前記検出温度が前記第2設定温度となるように前記面ヒータをフィードバック制御することで、前記第2設定温度を所定時間維持する
    ことを特徴とする請求項5に記載のサーモサイクリング検査装置。
  8.  請求項1に記載のサーモサイクリング検査装置に用いるチップホルダーであって、
    前記検査チップを収容するチップ収容受け皿と、
    前記チップ収容受け皿を中央部に保持するホルダーと、
    前記チップ収容受け皿に収容した前記検査チップを前記チップ収容受け皿に押圧するチップ押え材と
    を有し、
    前記チップ押え材が前記ホルダーによって位置決めされる
    ことを特徴とするサーモサイクリング検査装置に用いるチップホルダー。
  9.  検査チップには、中央に形成された試料導入口と、前記試料導入口から放射状に延びた複数の試料流路とが形成され、
    前記試料流路に試薬を固定した前記検査チップを収容するチップホルダーであって、
    前記検査チップを収容するチップ収容受け皿と、
    前記チップ収容受け皿を中央部に保持するホルダーと、
    前記チップ収容受け皿に収容した前記検査チップを前記チップ収容受け皿に押圧するチップ押え材と
    を有し、
    前記チップ押え材が前記ホルダーによって位置決めされる
    ことを特徴とするチップホルダー。
  10.  前記チップ収容受け皿には位置決め突起を形成し、
    前記検査チップには、前記位置決め突起に対応する位置決め凹部を形成した
    ことを特徴とする請求項9に記載のチップホルダー。
  11.  前記チップ収容受け皿を、前記ホルダーよりも熱伝導率が高い材料とした
    ことを特徴とする請求項9に記載のチップホルダー。
  12.  前記チップ収容受け皿の中央に凹部を設けた
    ことを特徴とする請求項9に記載のチップホルダー。
  13.  前記ホルダーに貼付し、前記チップ収容受け皿に添加するオイルのこぼれを防止する透明フィルムを備えた
    ことを特徴とする請求項9に記載のチップホルダー。
  14.  チップホルダーを収容するホルダー収容空間と、
    前記検査チップを加熱し冷却するサーモサイクリング部と、
    前記検査チップを撮影する検出器と、
    前記ホルダー収容空間に配置する前記チップホルダーを覆うホルダー押え蓋と
    を備え、
    前記サーモサイクリング部は、
    ペルチェ素子と、
    前記ペルチェ素子の一方の面に配置するヒートシンクと、
    前記ペルチェ素子の他方の面に配置する面ヒータと、
    前記面ヒータ及び前記ペルチェ素子の前記他方の面を覆うカバー板と
    を有し、
    前記カバー板を覆うように前記ホルダー収容空間が形成され、
    前記カバー板には開口部が形成され、
    前記ホルダー押え蓋には、前記検出器によって前記検査チップを撮影する蛍光検出窓を形成した
    ことを特徴とするサーモサイクリング検査装置。
  15.  検査チップを収容するチップ収容受け皿と、
    前記チップ収容受け皿を中央部に保持するホルダーと、
    前記チップ収容受け皿に収容した前記検査チップを前記チップ収容受け皿に押圧するチップ押え材と
    を有し、
    前記チップ収容受け皿の中央に凹部を設けた
    ことを特徴とするチップホルダー。
PCT/JP2017/014418 2016-04-07 2017-04-06 サーモサイクリング検査装置及びチップホルダー WO2017175841A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187031858A KR102456030B1 (ko) 2016-04-07 2017-04-06 서모 사이클링 검사 장치 및 칩 홀더
JP2018510669A JP7071738B2 (ja) 2016-04-07 2017-04-06 サーモサイクリング検査装置
US16/091,788 US11958052B2 (en) 2016-04-07 2017-04-06 Thermocycling inspection device and chip holder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016077655 2016-04-07
JP2016-077655 2016-04-07

Publications (1)

Publication Number Publication Date
WO2017175841A1 true WO2017175841A1 (ja) 2017-10-12

Family

ID=60001238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014418 WO2017175841A1 (ja) 2016-04-07 2017-04-06 サーモサイクリング検査装置及びチップホルダー

Country Status (4)

Country Link
US (1) US11958052B2 (ja)
JP (1) JP7071738B2 (ja)
KR (1) KR102456030B1 (ja)
WO (1) WO2017175841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188091A (zh) * 2022-07-13 2022-10-14 国网江苏省电力有限公司泰州供电分公司 一种融合电力输变配设备的无人机网格化巡检系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102355377B1 (ko) * 2019-08-28 2022-01-25 (주)레보스케치 Pcr 용 시료 용기의 히팅 및 쿨링 시스템
US20230053732A1 (en) * 2020-03-16 2023-02-23 Siemens Healthcare Diagnostics Inc. Sample holders, pcr station assemblies, and methods of operating pcr testing system
CN111790462B (zh) * 2020-08-13 2024-01-09 河南默深智工医疗科技有限公司 一种微流控检测用加热装置
KR102596867B1 (ko) 2020-08-21 2023-11-02 주식회사 포리버 시료 분석용 칩의 분석 장치, 그리고 분석 장치를 이용한 시료 분석 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126494A (ja) * 2000-10-26 2002-05-08 Sugino Mach Ltd 偏心回転テーブル装置とそれを用いた処理装置
WO2011040504A1 (ja) * 2009-09-30 2011-04-07 凸版印刷株式会社 核酸分析装置
JP2011203181A (ja) * 2010-03-26 2011-10-13 Seiko Epson Corp マイクロ流体チップ
WO2012001972A1 (ja) * 2010-06-30 2012-01-05 株式会社メタボスクリーン マイクロ化学チップ、その製造方法、及びその使用方法
JP2013224960A (ja) * 2013-07-04 2013-10-31 Nsk Ltd 液体供給装置
JP2013544490A (ja) * 2010-08-31 2013-12-19 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド 高分解能熱融解の検出のための光学システム
JP2014010109A (ja) * 2012-07-02 2014-01-20 Sony Corp 核酸増幅反応用マイクロチップ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116709B2 (ja) 1994-03-18 2000-12-11 富士電機株式会社 ネットワークにおける親局交替方法
JP3419691B2 (ja) 1998-09-04 2003-06-23 日本電信電話株式会社 極微少量フローセル、及びその製造方法
JP2000093816A (ja) 1998-09-26 2000-04-04 Hoya Corp 小型実験プレートの製造方法及びインライン型小型実験プレートの製造装置
US6337435B1 (en) * 1999-07-30 2002-01-08 Bio-Rad Laboratories, Inc. Temperature control for multi-vessel reaction apparatus
JP3441058B2 (ja) 1999-12-03 2003-08-25 理化学研究所 キャピラリーゲル電気泳動用マイクロチップおよびその製造方法
US6981522B2 (en) 2001-06-07 2006-01-03 Nanostream, Inc. Microfluidic devices with distributing inputs
JP4073023B2 (ja) 2003-11-07 2008-04-09 財団法人新産業創造研究機構 微小流路デバイスおよびその作製方法
US7051536B1 (en) * 2004-11-12 2006-05-30 Bio-Rad Laboratories, Inc. Thermal cycler with protection from atmospheric moisture
KR100634545B1 (ko) * 2005-06-17 2006-10-13 삼성전자주식회사 마이크로 칩 조립체
US8232091B2 (en) * 2006-05-17 2012-07-31 California Institute Of Technology Thermal cycling system
CL2008003008A1 (es) * 2007-10-12 2009-10-02 Bigtec Private Ltd Un micro dispositivo portatil de reaccion en cadena de polimerasa (pcr) basado en un micro chip de ceramica de coccion conjunta de baja temperatura (ltcc) que comprende camara de reaccion, calentador, control de temperatura del calentador, deteccion optica de interfaz de comunicacion, y el metodo para monitorearlo y controlarlo.
JP2009244017A (ja) * 2008-03-31 2009-10-22 Tama Tlo Ltd Dnaチップホルダー
US20100240051A1 (en) * 2009-03-02 2010-09-23 The Johns Hopkins University Device and Method for Preparing and Performing Multiple Polymerase Chain Reactions
US9114399B2 (en) 2010-08-31 2015-08-25 Canon U.S. Life Sciences, Inc. System and method for serial processing of multiple nucleic acid assays
US9168531B2 (en) * 2011-03-24 2015-10-27 Fluidigm Corporation Method for thermal cycling of microfluidic samples
JP5912034B2 (ja) * 2011-11-28 2016-04-27 公益財団法人神奈川科学技術アカデミー 液体還流型高速遺伝子増幅装置
US20130331298A1 (en) * 2012-06-06 2013-12-12 Great Basin Scientific Analyzer and disposable cartridge for molecular in vitro diagnostics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126494A (ja) * 2000-10-26 2002-05-08 Sugino Mach Ltd 偏心回転テーブル装置とそれを用いた処理装置
WO2011040504A1 (ja) * 2009-09-30 2011-04-07 凸版印刷株式会社 核酸分析装置
JP2011203181A (ja) * 2010-03-26 2011-10-13 Seiko Epson Corp マイクロ流体チップ
WO2012001972A1 (ja) * 2010-06-30 2012-01-05 株式会社メタボスクリーン マイクロ化学チップ、その製造方法、及びその使用方法
JP2013544490A (ja) * 2010-08-31 2013-12-19 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド 高分解能熱融解の検出のための光学システム
JP2014010109A (ja) * 2012-07-02 2014-01-20 Sony Corp 核酸増幅反応用マイクロチップ
JP2013224960A (ja) * 2013-07-04 2013-10-31 Nsk Ltd 液体供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAMICHI SAKAGUCHI ET AL.: "Development of Heat Interface That Can Control Its Temperature Fast", THE VIRTUAL REALITY SOCIETY OF JAPAN DAI 12 KAI TAIKAI RONBUNSHU, 2007 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188091A (zh) * 2022-07-13 2022-10-14 国网江苏省电力有限公司泰州供电分公司 一种融合电力输变配设备的无人机网格化巡检系统及方法
CN115188091B (zh) * 2022-07-13 2023-10-13 国网江苏省电力有限公司泰州供电分公司 一种融合电力输变配设备的无人机网格化巡检系统及方法

Also Published As

Publication number Publication date
JP7071738B2 (ja) 2022-05-19
JPWO2017175841A1 (ja) 2019-02-14
US11958052B2 (en) 2024-04-16
KR20180128054A (ko) 2018-11-30
KR102456030B1 (ko) 2022-10-19
US20190099757A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2017175841A1 (ja) サーモサイクリング検査装置及びチップホルダー
US20190118184A1 (en) Rapid thermal cycling for sample analyses and processing
JP4943445B2 (ja) 流体試料をセンサーアレイにデリバリーするための方法及びシステム
TWI714844B (zh) 流體控制及處理卡匣
US20110207137A1 (en) Methods for measuring samples using consumer electronic devices and systems
US20140065702A1 (en) Polymerase chain reaction
US11768158B2 (en) Implement analyzing device and method for utilizing the same
CN110191758A (zh) 具有可变温度循环的微流控热化芯片、使用该芯片的系统及用于检测dna序列的pcr方法
ITTO20081001A1 (it) Microreattore autosigillante e metodo per eseguire una reazione
EP3463669B1 (en) Rapid thermal cycling for sample analyses and processing
JP2015517088A5 (ja)
US11971377B2 (en) Method and apparatus for temperature gradient microfluidics
KR101513273B1 (ko) 회전형 pcr 장치 및 pcr 칩
CN112113906A (zh) 一种样本检测装置及其制造方法
TWI596332B (zh) 具樣品加熱能力之高輸出螢光成像系統與裝置以及相關方法
CA3201904A1 (en) System for controlling the temperature of a microfluidic chip and a microfluidic apparatus for monitoring a substance in a microfluidic chip including such system
US11732973B2 (en) Device for the thermal treatment of test samples
JPWO2009131043A1 (ja) マイクロチップ
KR102560947B1 (ko) 일체형 실시간 pcr 칩
WO2020034479A1 (zh) 一种数字pcr系统及数字pcr液滴形成方法
WO2020034482A1 (zh) 一种数字pcr系统及数字pcr液滴形成方法
JP2007212267A (ja) サンプル検査装置及び方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187031858

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779219

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779219

Country of ref document: EP

Kind code of ref document: A1