WO2020034482A1 - 一种数字pcr系统及数字pcr液滴形成方法 - Google Patents

一种数字pcr系统及数字pcr液滴形成方法 Download PDF

Info

Publication number
WO2020034482A1
WO2020034482A1 PCT/CN2018/117310 CN2018117310W WO2020034482A1 WO 2020034482 A1 WO2020034482 A1 WO 2020034482A1 CN 2018117310 W CN2018117310 W CN 2018117310W WO 2020034482 A1 WO2020034482 A1 WO 2020034482A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital pcr
droplet
pcr system
droplet ejection
base
Prior art date
Application number
PCT/CN2018/117310
Other languages
English (en)
French (fr)
Inventor
吴炫烨
关一民
Original Assignee
上海新微技术研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新微技术研发中心有限公司 filed Critical 上海新微技术研发中心有限公司
Priority to US17/044,500 priority Critical patent/US20210220831A1/en
Publication of WO2020034482A1 publication Critical patent/WO2020034482A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/1844Means for temperature control using fluid heat transfer medium using fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces

Definitions

  • the invention belongs to the field of biomedicine, in particular to the field of disease detection, and relates to an integrated in-situ digital PCR system and a droplet formation method.
  • PCR Polymerase chain reaction
  • dPCR digital PCR
  • Digital PCR also called single-molecule PCR
  • Digital PCR generally includes two parts, namely, PCR amplification and fluorescent signal analysis.
  • digital PCR In the PCR amplification stage, unlike traditional techniques, digital PCR generally requires diluting a sample to the level of a single molecule and distributing it evenly to tens to tens of thousands of units for reaction.
  • digital PCR technology collects the fluorescence signal of each reaction unit after the amplification is completed. Finally, the original concentration or content of the sample was calculated by direct counting or Poisson distribution formula.
  • digital PCR is an absolute quantification technology for nucleic acid molecules, compared to qPCR, it can directly count the number of DNA molecules. It is an absolute quantification of the starting sample. Therefore, it is especially suitable for applications that cannot be distinguished by CT values. For example, copy number variation, mutation detection, relative gene expression studies (such as allelic imbalanced expression), second-generation sequencing results verification, miRNA expression analysis, single-cell gene expression analysis, etc.
  • an object of the present invention is to provide an integrated in-situ digital PCR system and a droplet formation method, which are used to solve the problems of slow droplet formation speed, small flux and complicated operation in the prior art The problem of low PCR oil utilization.
  • the present invention provides a digital PCR system, including:
  • a droplet forming component includes a cover plate and at least one annular step connected to a lower surface of the cover plate;
  • the liquid droplet ejection hole assembly is connected below the liquid droplet forming assembly, and includes a plurality of liquid droplet ejection holes.
  • the liquid droplet ejection holes are opened from the upper surface of the liquid droplet ejection hole assembly and are directed to the liquid droplet ejection holes.
  • the lower surface of the component extends in the direction, but does not penetrate the lower surface of the liquid droplet ejection hole component, wherein the upper surface of the liquid droplet ejection hole component, the lower surface of the cover plate and the annular step together form a liquid.
  • a droplet forming chamber, the droplet ejection hole is in communication with the droplet forming chamber, and a vaporization part is provided in the droplet ejection hole, for making the digital PCR solution liquid layer in the droplet ejection hole Vaporize and quickly push into the droplet-forming oil in the droplet-forming chamber to form digital PCR droplets.
  • the droplet ejection hole assembly includes a thermal bubble printing chip.
  • the height of the circular step is less than twice the diameter of the digital PCR droplets to be formed, so that the obtained digital PCR droplets are tiled into a layer structure in the droplet formation chamber.
  • the droplet formation assembly further includes at least one droplet formation oil injection hole, the droplet formation oil injection hole penetrates the cover plate, and communicates with the droplet formation chamber.
  • the droplet formation assembly further includes at least one droplet formation chamber exhaust hole, and the droplet formation chamber exhaust hole penetrates the cover plate and communicates with the droplet formation chamber.
  • the vaporization member is disposed on a bottom surface or a side wall of the droplet ejection hole.
  • the opening shape of the droplet ejection hole includes any one of a circle, an oval, and a polygon.
  • the vaporization component includes a heating component, and the digital PCR solution liquid layer is heated to vaporize it.
  • the heating component includes at least one metal layer.
  • the PCR system further includes at least one PCR reagent chamber for storing a digital PCR solution.
  • the droplet spray hole assembly is provided with a flow channel, and the droplet spray hole passes through the flow channel and the The PCR reagent chamber is connected.
  • the flow channel includes at least one main flow channel and a plurality of branch flow channels connected to the main flow channel, and each of the droplet ejection holes is respectively connected to one of the branch flow channels.
  • the digital PCR system further includes a base, and the PCR reagent chamber is opened from the upper surface of the base and extends toward the lower surface of the base, but does not pass through the base of the base.
  • the droplet spray hole assembly is connected to the upper surface of the base and covers the opening of the PCR reagent chamber.
  • At least one digital PCR solution injection hole is provided on the lower surface of the base, and the digital PCR solution injection hole is in communication with the PCR reagent chamber.
  • At least one PCR reagent chamber exhaust hole is provided on the lower surface of the base, and the PCR reagent chamber exhaust hole is in communication with the PCR reagent chamber.
  • the digital PCR system further includes a flexible circuit board, which is connected above the base, and the flexible circuit board is provided with a channel for accommodating the droplet ejection hole assembly. Holes, and the surface of the flexible circuit board is provided with a plurality of first connection pads and a plurality of second connection pads, and the droplet spray hole assembly is connected to the first connection pads through a wire.
  • the flexible circuit board is connected to the base by an adhesive method.
  • the cross-sectional area of the droplet spray hole assembly is larger than the opening area of the PCR reagent chamber, and at least one area of the base surface covered by the droplet spray hole assembly is provided for preventing Glue flows to a channel on the droplet ejection hole assembly.
  • the surface of the base is provided with an annular channel for preventing glue from flowing onto the droplet ejection hole assembly, and the annular channel surrounds the periphery of the droplet ejection hole assembly.
  • the flexible circuit board is provided with at least two positioning perforations, and the base surface is provided with positioning protrusions corresponding to the positioning perforation positions.
  • the digital PCR system further includes a controller.
  • the controller includes a controller housing and a controller circuit board located in the controller housing.
  • the controller housing has a base for placing the base.
  • a plurality of circuit-connecting conductive pins connected to the controller circuit connection board on the surface of the bearing-portion, and the circuit-connecting conductive pins correspond to the positions of the second connection pads.
  • one end of the base is provided with at least one limiting slot
  • the controller housing is provided with at least one limiting member corresponding to the limiting slot.
  • the base is provided with a limiting through hole
  • the limiting through hole penetrates the front and back of the base
  • the controller housing is provided with a limiting position corresponding to the limiting through hole. Pieces.
  • the controller further includes a machine cover, and the machine cover is connected to the controller housing for covering the base.
  • the digital PCR system further includes a heating module for heating the droplet forming chamber.
  • the heating module is integrated in the droplet ejection hole assembly.
  • the digital PCR system is further configured with an external cooling fan for cooling the droplet forming chamber.
  • the digital PCR system is further configured with an external semiconductor refrigerator for cooling the droplet forming chamber.
  • the digital PCR system further includes a temperature sensor for testing the temperature of the droplet formation chamber.
  • the temperature sensor is integrated in the droplet ejection hole assembly.
  • the digital PCR system is further configured with an optical detection system for collecting and detecting PCR signals without transferring a sample.
  • the invention also provides a digital PCR droplet formation method, which includes the following steps:
  • a vaporizing member is used to vaporize the liquid layer and quickly push it into the droplet-forming oil in the droplet-forming chamber to form the digital PCR droplet.
  • the vaporization member includes a heating member, and the liquid layer is vaporized by heating the liquid layer.
  • the digital PCR droplet formation speed is controlled by controlling the heating time, the number of heating times, and the heating interval time of the heating member.
  • the thickness of the liquid layer ranges from 0.2 nm to 30,000 nm.
  • the height of the droplet formation chamber is less than twice the diameter of the digital PCR droplets to be formed, so that the resulting digital PCR droplets are tiled into a layer structure within the droplet formation chamber.
  • the formation rate of the digital PCR droplets is greater than 1000 per second.
  • the digital PCR system and digital PCR droplet formation method of the present invention have the following beneficial effects:
  • the present invention uses thermal bubble technology to perform high-speed digital PCR droplet formation.
  • the rapid formation of droplets depends on the instantaneous heating and vaporization of the nano-thickness liquid layer by the vaporized parts in the droplet ejection holes, thereby ejecting the droplets into the holes.
  • the digital PCR solution is quickly pushed into the droplet formation oil to form digital PCR droplets.
  • the droplet formation technology in the present invention can achieve greater than 1000 droplets per second. Speed of droplet formation.
  • the oil phase in the technical solution of the present invention is static, so the consumption of the oil phase is greatly reduced, and the oil phase is reduced by about 50%. Dosage.
  • the in situ digital PCR droplets can be tiled into a layer structure.
  • FIG. 1 is a schematic diagram of the three-dimensional structure of the digital PCR system of the present invention.
  • FIG. 2 is a top view of a digital PCR system according to the present invention.
  • FIG. 3 shows a bottom view of the digital PCR system of the present invention.
  • 4-7 are side views of the digital PCR system of the present invention.
  • FIG. 8 is a schematic diagram showing the exploded structure of the digital PCR system of the present invention.
  • FIG. 9 is a schematic diagram of the front three-dimensional structure of a combination of a liquid droplet ejection hole assembly and a flexible circuit board in the digital PCR system of the present invention.
  • FIG. 10 is a schematic diagram of the back three-dimensional structure of the combination of the liquid droplet ejection hole assembly and the flexible circuit board in the digital PCR system of the present invention.
  • FIG. 11 is a top view of a combination of a liquid droplet ejection hole assembly and a flexible circuit board in the digital PCR system of the present invention.
  • FIG. 12 is a bottom view of a combination of a liquid droplet ejection hole assembly and a flexible circuit board in the digital PCR system of the present invention.
  • 13 to 16 are side views of a combination of a liquid droplet ejection hole assembly and a flexible circuit board in the digital PCR system of the present invention.
  • FIG. 17 is a partial perspective view of a droplet ejection hole assembly in the digital PCR system of the present invention.
  • FIG. 18 is a partial cross-sectional view of a droplet ejection hole assembly in the digital PCR system of the present invention.
  • FIG. 19 is a schematic diagram showing the front three-dimensional structure of the droplet forming module in the digital PCR system of the present invention.
  • FIG. 20 is a schematic diagram of the back three-dimensional structure of the droplet formation module in the digital PCR system of the present invention.
  • FIG. 21 is a top view of a droplet formation module in the digital PCR system of the present invention.
  • FIG. 22 is a bottom view of a droplet formation module in the digital PCR system of the present invention.
  • 23 to 26 are side views of a droplet formation module in the digital PCR system of the present invention.
  • FIG. 27 is a schematic diagram of the front three-dimensional structure of the base in the digital PCR system of the present invention.
  • FIG. 28 is a schematic diagram of the rear three-dimensional structure of the base in the digital PCR system of the present invention.
  • FIG. 29 is a top view of a base in the digital PCR system of the present invention.
  • FIG. 30 is a bottom view of a base in the digital PCR system of the present invention.
  • 31-34 are side views of a base in the digital PCR system of the present invention.
  • FIG. 35 is a schematic diagram of the three-dimensional structure of the controller in the digital PCR system of the present invention.
  • FIG. 36 is a top view of the controller after the cover is removed in the digital PCR system of the present invention.
  • FIG. 37 is a bottom view of the controller shown in the digital PCR system of the present invention after the controller housing bottom plate is removed.
  • FIG. 38 is a schematic view showing that an external cooling fan is disposed in a controller housing in the digital PCR system of the present invention.
  • FIG. 39 shows an optical microscope image of a digital PCR droplet formed using the digital PCR system of the present invention.
  • FIG. 40 is a fluorescence diagram of a digital PCR droplet formed using the digital PCR system of the present invention.
  • Oil droplets form an oil injection hole
  • FIG. 1 is a schematic diagram of the three-dimensional structure of the digital PCR system
  • FIG. 2 is a top view of the digital PCR system
  • FIG. A bottom view of the digital PCR system is described
  • FIGS. 4, 5, 6, and 7 are side views of the digital PCR system in four directions.
  • FIG. 8 is a schematic diagram of the exploded structure of the digital PCR system. It can be seen that the digital PCR system includes a droplet forming component 1 and a droplet ejection hole component 4. Below the liquid droplet forming component 1.
  • the droplet ejection hole assembly 4 may include a thermal bubble printing chip.
  • Thermal bubble printing technology is a major technology in the field of printers, and its basic principle is to eject ink droplets by heating.
  • the liquid droplet ejection hole assembly 4 may use an existing thermal bubble printing chip.
  • the liquid droplet ejection hole assembly 4 is connected to a flexible circuit board 14.
  • FIG. 9 is a schematic diagram of the front three-dimensional structure of the combination of the liquid droplet ejection hole assembly 4 and the flexible circuit board 14, and FIG. 10 shows the liquid droplet ejection hole assembly 4 and
  • the rear three-dimensional structure diagram of the combination of the flexible circuit board 14 is shown in FIG. 11 as a top view of the combination of the liquid droplet ejection hole assembly 4 and the flexible circuit board 14, and FIG. A bottom view of the combination with the flexible circuit board 14, and FIG. 13, FIG. 14, FIG. 15, and FIG. 16 show the side of the droplet spray hole assembly 4 and the flexible circuit board 14 combined in four directions. view.
  • the flexible circuit board 14 is provided with through holes 15 for accommodating the droplet ejection hole assembly 4, and the surface of the flexible circuit board 14 is provided with a plurality of first connection pads (not shown). And a plurality of second connection pads 17, the droplet spray hole assembly 4 is connected to the first connection pad through a wire, so as to control the droplet spray hole assembly 4 to the outside through the flexible circuit board 14 ⁇ ⁇ Connected.
  • the droplet ejection hole assembly 4 can be connected to the first connection pad through a standard wire bonding process.
  • the droplet ejection hole assembly 4 includes a plurality of droplet ejection holes 5.
  • the droplet ejection hole 4 is close to the droplet ejection hole assembly 4.
  • One end is arranged in two rows, and the droplet ejection holes in each row are evenly distributed.
  • the droplet spray holes 4 may also be arranged in other ways, and the protection scope of the present invention should not be excessively limited here.
  • FIG. 17 is a partial perspective view of the droplet ejection hole assembly 4
  • FIG. 18 is a partial cross-sectional view of the droplet ejection hole assembly in the digital PCR system.
  • the droplet ejection hole 5 is opened from the upper surface of the droplet ejection hole assembly 4 and extends toward the lower surface of the droplet ejection hole assembly 4, but does not penetrate the lower surface of the droplet ejection hole assembly 4.
  • the opening shape of the droplet ejection hole 5 includes, but is not limited to, any one of a circle, an oval, and a polygon.
  • FIG. 19 is a schematic diagram of the front three-dimensional structure of the droplet forming component 1
  • FIG. 20 is a schematic diagram of the back three-dimensional structure of the droplet forming component 1
  • FIG. 22 shows a bottom view of the droplet forming assembly 1.
  • FIGS. 23, 24, 25, and 26 show the sides of the droplet forming assembly 1 in four directions. view.
  • the droplet forming assembly 1 includes a cover plate 2 and at least one annular step 3 connected to a lower surface of the cover plate 2.
  • the ring shape here does not merely represent a ring shape.
  • the outer contour of the annular step 3 is rectangular, and the inner contour of the annular step 3 is a rounded rectangle.
  • the annular step 3 may also have other shapes, as long as the ends of the step are connected, the protection scope of the present invention should not be excessively limited here.
  • the upper surface of the droplet ejection hole assembly 4, the lower surface of the cover plate 2, and the annular step 3 together form a droplet forming chamber, and the droplet ejection holes 5 and the droplets Chamber connection
  • a vaporization member 34 is provided in the droplet ejection hole 5 for vaporizing the liquid layer of the digital PCR solution in the droplet ejection hole 5 and quickly pushing it into the droplet forming chamber.
  • the droplets are formed in oil to form digital PCR droplets.
  • the volume of the droplet ejection holes 5 determines the volume of digital PCR droplets to be formed.
  • the vaporization member 34 is disposed on the bottom surface of the droplet ejection hole 5.
  • the vaporization member 34 may be a heating member, and the digital PCR solution liquid layer is heated to be vaporized.
  • the heating component includes a heating sheet, and the heating sheet may be a single-layer metal layer or a composite multilayer metal layer.
  • the shape of the vaporization member 34 includes, but is not limited to, a circle or a square, and the area may be 0.5 to 2 times the area of the bottom of the droplet ejection hole 5.
  • the vaporization member 34 may also be disposed on a side wall of the droplet ejection hole 5, and the protection scope of the present invention should not be excessively limited here.
  • the height of the circular step 3 is less than twice the diameter of the digital PCR droplets to be formed, so that the obtained digital PCR droplets are tiled into a layer structure in the droplet formation chamber.
  • the droplet forming assembly 1 further includes at least one droplet forming oil injection hole 6, and the droplet forming oil injection hole 6 penetrates the cover plate 2 and communicates with the cover plate 2.
  • the droplet formation chamber communicates.
  • the droplet formation assembly 1 further includes at least one droplet formation chamber exhaust hole 7 which also penetrates the cover plate 2 and communicates with the droplet formation chamber.
  • the PCR system further includes at least one PCR reagent chamber 8 for storing a digital PCR solution.
  • the droplet spray hole assembly 4 is provided with a flow channel, and the droplet spray hole 5 communicates with the PCR reagent chamber 8 through the flow channel.
  • the flow channel includes at least one main flow channel 9 and a plurality of branch flow channels 10 connected to the main flow channel 9, and each of the droplet ejection holes 5 is connected to one of the branch flow channels 10, respectively.
  • FIG. 10 and FIG. 17 show a case where the droplet ejection hole assembly 4 includes a main channel 9.
  • the number of the main channels 9 may be equal to the number of the droplet forming chambers.
  • Matching that is, matching the number of the annular steps 3.
  • FIG. 20 shows a case where the droplet forming assembly 1 includes a ring-shaped step 3.
  • the number of the ring-shaped steps 3 may also be multiple to form a plurality of droplet forming chambers.
  • a material for constructing the flow channel and the droplet discharge hole 5 includes, but is not limited to, silicon, polymer, photoresist, and the like.
  • the digital PCR system further includes a base 11, and the PCR reagent chamber 8 is disposed in the base 11.
  • the material of the base 11 includes, but is not limited to, any one of transparent or opaque plastic and glass, and the base 11 may also be made of metal.
  • FIG. 27 is a schematic diagram of the front three-dimensional structure of the base
  • FIG. 28 is a schematic diagram of the back three-dimensional structure of the base
  • FIG. 30 is a bottom view of the base
  • FIGS. 31, 32, 33, and 34 are side views of the base in four directions.
  • the PCR reagent chamber 8 is opened from the upper surface of the base 11 and extends toward the lower surface of the base 11, but does not penetrate the lower surface of the base 11, and the droplets
  • the nozzle assembly 4 is connected to the upper surface of the base 11 and covers the opening of the PCR reagent chamber 8.
  • At least one digital PCR solution injection hole 12 is provided on the lower surface of the base 11, and the digital PCR solution injection hole 12 is in communication with the PCR reagent chamber 8.
  • the lower surface of the base is further provided with at least one PCR reagent chamber exhaust hole 13, and the PCR reagent chamber exhaust hole 13 is in communication with the PCR reagent chamber 8.
  • the flexible circuit board 14 is connected above the base 11.
  • the flexible circuit board is connected to the base 11 by an adhesive method (for example, using glue or double-sided adhesive).
  • the cross-sectional area of the droplet ejection hole assembly 4 is larger than the opening area of the PCR reagent chamber 8.
  • the surface of the base 11 is ejected by the droplet.
  • the area covered by the hole assembly 4 is provided with at least one channel 18 for preventing glue from flowing onto the droplet ejection hole assembly.
  • the channels 18 are linear channels, and the number of the channels 18 is multiple.
  • the surface of the base 11 is further provided with an annular channel 19 for preventing glue from flowing onto the droplet ejection hole assembly, and the annular channel surrounds the liquid.
  • the annular channel surrounds the liquid.
  • the surface of the base 11 has a sunken platform 32 for receiving a flexible circuit board, and four corners of the sunken platform 32 have arc-shaped extension spaces.
  • the sunken type The protrusions 33 around the platform 32 play a positioning role when the flexible circuit board is adhered to the surface of the sunken platform 32.
  • the flexible circuit board 14 is provided with at least two positioning perforations 20. As shown in FIG. 29, the surface of the base 11 is provided with positioning protrusions corresponding to the positions of the positioning perforations 20. twenty one.
  • the digital PCR system further includes a controller.
  • FIG. 35 is a schematic diagram showing the three-dimensional structure of the controller 22, including a controller housing 23 and a controller circuit board located in the controller housing ( (Not shown).
  • the controller 22 further includes a machine cover 30 connected to the controller housing 22 for covering the base 11 to provide a light-shielding environment for the PCR reaction.
  • FIG. 36 is a top view of the controller shown after the cover 30 is removed. It can be seen that the controller housing 23 has a bearing portion 24 for placing the base 11, and a surface of the bearing portion 24 A plurality of circuit connection conductive pins 25 (also referred to as Pins) connected to the controller circuit connection board are provided, and the circuit connection conductive pins 25 correspond to the positions of the second connection pads 17.
  • circuit connection conductive pins 25 also referred to as Pins
  • FIG. 37 shows a bottom view of the controller after the bottom plate of the controller casing is removed, wherein a plurality of circuit board connection points 35 corresponding to the circuit connection conductive pins 25 are provided on the back of the bearing portion 24.
  • the controller circuit board can output a signal to the circuit connection conductive pin 25 through the circuit board connection point 35.
  • one end of the base 11 is provided with at least one limiting groove 26.
  • the controller housing 23 is provided with at least one corresponding to the limiting groove 26. ⁇ ⁇ ⁇ 29 ⁇ 29 of the limit pieces.
  • the limiting member 29 may be a spring plunger.
  • the base 11 is provided with a limiting through hole 28 that penetrates the front and back of the base.
  • the controller housing 23 is provided with a limiting piece 29 corresponding to the limiting through hole 28.
  • the digital PCR system further includes a heating module for heating the droplet formation chamber to provide reaction conditions at a specific temperature.
  • the heating module is integrated in the droplet ejection hole assembly 4.
  • the digital PCR system further includes a temperature sensor for testing the temperature of the droplet formation chamber to monitor the temperature in the droplet formation chamber.
  • the temperature sensor is integrated in the droplet ejection hole assembly 4.
  • the digital PCR system is further configured with an external cooling fan for cooling the droplet forming chamber.
  • the external cooling fan may be disposed in the controller housing 23.
  • FIG. 38 is a schematic diagram showing that the external cooling fan 31 is disposed in the controller housing 23, and a vent 34 is provided beside the external cooling fan 31.
  • the housing support structure 16 is also shown in FIG. 38.
  • the external cooling fan may also be replaced by an external semiconductor refrigerator.
  • Semiconductor cooler (Thermo Electric Cooler, TEC for short) is made by using the Peltier effect of semiconductor materials.
  • the so-called Peltier effect refers to a phenomenon in which one end absorbs heat and the other end emits heat when a direct current passes through an electric couple composed of two semiconductor materials.
  • the heavily doped N-type and P-type bismuth telluride is mainly used as a semiconductor material for TEC.
  • the bismuth telluride element is electrically connected in series and generates heat in parallel.
  • TEC includes some P-type and N-type pairs (groups), which are connected together by electrodes and sandwiched between two ceramic electrodes; when a current flows through the TEC, the heat generated by the current will be transferred from one side of the TEC to On the other side, the "hot” and “cold” sides are generated on the TEC. This is the heating and cooling principle of the TEC.
  • the digital PCR system is further configured with an optical detection system for collecting and detecting PCR signals without transferring a sample.
  • the main parts of the optical system include: a fluorescent light source, a bright-field light source, a control circuit, an optically amplified lens group, a fluorescent filter, a CCD camera, a slide system for moving the lens, and a housing for avoiding light.
  • the photographic shooting area of the optical system is the entire area of the cover. This kind of shooting can be a single imaging or multiple shots and stitching pictures.
  • the digital PCR system of the present invention can be used for the formation of digital PCR liquid droplets.
  • the rapid formation of liquid droplets depends on the instantaneous vaporization of a nano-thickness liquid layer by a vaporized component in the liquid droplet spray holes, thereby digitally PCR in the liquid droplet spray holes
  • the solution is quickly pushed into the droplet formation oil to form digital PCR droplets.
  • the droplet formation technology in the present invention can achieve more than 1,000 droplets per second. Formation speed.
  • the oil phase in the technical solution of the present invention is static, so the consumption of the oil phase is greatly reduced, and the amount of the oil phase is reduced by about 50%.
  • Efficient digital PCR oil utilization Due to the precise temperature control integrated on the silicon-based droplet nozzle assembly or thermal bubble printing chip, in situ temperature-controlled PCR is achieved. And the integrated optical system enables inspection without sample transfer. This not only reduces the operation time, but also improves the detection accuracy by reducing human error. In situ digital PCR droplets can be tiled into a single layer structure.
  • the invention also provides a method for forming a digital PCR droplet, which includes the following steps: using a vaporizing component to vaporize the digital PCR solution and quickly pushing it into the droplet forming oil to form a digital PCR droplet.
  • high-speed digital PCR droplet formation is performed using a thermal bubble technique, and the vaporization part includes a heating part, which is vaporized by heating the liquid layer of the digital PCR solution.
  • the digital PCR droplet formation speed is controlled by controlling the heating time, the number of heating times, and the heating interval time of the heating member.
  • the digital PCR droplet formation method of the present invention can achieve a digital PCR droplet formation speed of more than 1000 per second.
  • the digital PCR droplet formation method includes the following steps:
  • S1 Inject a digital PCR solution into a PCR reagent chamber, so that the digital PCR solution enters a droplet spray hole communicating with the PCR reagent chamber to form a liquid layer;
  • the vaporization part is used to vaporize the liquid layer and quickly push it into the droplet-forming oil in the droplet-forming chamber to form the digital PCR droplet.
  • the thickness of the liquid layer is nano-scale, and is greater than 0.2 nm. In this embodiment, the thickness of the liquid layer is preferably in a range of 0.2 nm to 30,000 nm.
  • the height of the droplet formation chamber is less than twice the diameter of the digital PCR droplets to be formed, so that the obtained digital PCR droplets are tiled into a layer structure in the droplet formation chamber.
  • the PCR reagent chamber is filled with droplet formation oil to make the PCR
  • the reagent chamber is in a filled state to prevent the formed droplets from flowing back to the PCR reagent chamber.
  • a seal can be used to form the droplet formation oil injection hole provided on the droplet formation chamber wall, the droplet formation chamber exhaust hole, the digital PCR solution injection hole and PCR reagent chamber provided on the PCR reagent chamber wall.
  • the chamber vent is sealed.
  • the sealing member includes, but is not limited to, a rubber stopper, a sealing film, a rubber ring, a cushion for sealing, and the like.
  • the seal can be made of soft plastic such as rubber or PDMS.
  • the heating module and temperature sensor integrated on the droplet ejection hole assembly (which can be a thermal bubble printing chip) and an external fan are used to perform temperature rise and fall control required for PCR to achieve in-situ temperature-controlled PCR.
  • semiconductor cooling films can also be used instead of fans to cool down.
  • the integrated optical system can also be used to collect and detect PCR signals without transferring samples.
  • FIG. 39 shows an optical microscope image of digital PCR droplets formed using the digital PCR system of the present invention. It can be seen that the formed digital PCR droplets are symmetrical and uniform in shape.
  • FIG. 40 shows a fluorescence chart of a digital PCR droplet formed by using the digital PCR system of the present invention.
  • the digital PCR system and the digital PCR droplet formation method of the present invention can satisfy the use of all digital PCR biochemical reagents. Because the concentration of many biomarker molecules in the blood is very low (for example, circulating tumor DNA has only 3 DNA molecules per 2 ml of blood), the digital PCR system and digital PCR droplet formation method of the present invention have the number of droplet formation It is not limited by the amount of oil used and the high speed makes it possible to apply this type of detection to digital PCR.
  • the digital PCR system and digital PCR droplet formation method of the present invention use thermal bubble technology to perform high-speed digital PCR droplet formation.
  • the rapid formation of droplets depends on the nano-thickness liquid from vaporized parts in the droplet ejection holes.
  • the layer is instantaneously heated and vaporized, so that the digital PCR solution in the droplet spray hole is quickly pushed into the droplet forming oil to form a digital PCR droplet.
  • the droplet formation technology can achieve a droplet formation speed of more than 1000 per second.
  • the oil phase in the technical solution of the present invention is static, so the consumption of the oil phase is greatly reduced, and the amount of oil phase is reduced by about 50%. Due to the precise temperature control integrated on the silicon-based droplet nozzle assembly or thermal bubble printing chip, in situ temperature-controlled PCR is achieved. And the integrated optical system enables detection without sample transfer. This not only reduces the operation time, but also improves the detection accuracy by reducing human error. In situ digital PCR droplets can be tiled into a single layer structure. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明提供一种数字PCR系统及数字PCR液滴形成方法,该数字PCR系统包括液滴形成组件及液滴喷孔组件,所述液滴喷孔组件连接于所述液滴形成组件下方,所述液滴形成组件包括盖板及连接于所述盖板下表面的至少一个环形台阶,所述液滴喷孔组件包括若干液滴喷孔,其中,所述液滴喷孔组件的上表面、所述盖板的下表面及所述环形台阶共同围成液滴形成腔室,所述液滴喷孔内设有汽化部件,用于使所述液滴喷孔中的数字PCR溶液液体层汽化并快速推入所述液滴形成腔室中的液滴形成油中,以形成数字PCR液滴。本发明使用热泡技术进行高速数字PCR液滴形成,并可进行原位PCR温控及原位数字PCR信号收集。

Description

一种数字PCR系统及数字PCR液滴形成方法 技术领域
本发明属于生物医药领域,尤其是疾病检测领域,涉及一种一体化原位数字PCR系统及液滴形成方法。
背景技术
聚合酶链式反应(polymerase chain reaction,PCR)提出至今已有20年时间,期间PCR已发展成为分子生物学领域的一项关键技术和常规技术,极大地推动了生命科学各个领域的发展。特别是90年代后期,美国ABI公司推出的实时荧光定量PCR(real time PCR,qPCR)技术及相关产品更是将PCR由体外合成及定性/半定量检测技术发展成为一种高灵敏、高特异性和精确定量的基因分析技术。
尽管经过十几年时间的迅速发展,qPCR技术已经用于除外伤和营养缺乏症外所有疾病的诊断,但是,在PCR扩增过程中影响其扩增效率的因素有很多,不能保证在反应过程中扩增效率保持不变和实际样品与标准样品以及不同样品之间的扩增效率是相同的,由此导至其定量分析所依赖的基础——循环阈值(CT)不是恒定不变的。因此qPCR的定量只是“相对定量”,其准确度和重现性依然不能够满足分子生物学定量分析的要求。
20世纪末,Vogelstein等提出数字PCR(digital PCR,dPCR)的概念,通过将一个样本分成几十到几万份,分配到不同的反应单元,每个单元包含一个或多个拷贝的目标分子(DNA模板),在每个反应单元中分别对目标分子进行PCR扩增,扩增结束后对各个反应单元的荧光信号进行统计学分析。与qPCR不同的是,数字PCR不依赖于CT值,因此不受扩增效率影响,扩增结束后通过直接计数或泊松分布公式来计算每个反应单元的平均浓度(含量),能够将误差控制在5%以内,数字PCR可以不需要对照标准样品和标准曲线来实现绝对定量分析。
数字PCR(也可称单分子PCR)一般包括两部分内容,即PCR扩增和荧光信号分析。在PCR扩增阶段,与传统技术不同,数字PCR一般需要将样品稀释到单分子水平,并平均分配到几十至几万个单元中进行反应。不同于qPCR对每个循环进行实时荧光测定的方法,数字PCR技术是在扩增结束后对每个反应单元的荧光信号进行采集。最后通过直接计数或泊松分布公式计算得到样品的原始浓度或含量。
由于数字PCR是一种核酸分子绝对定量技术,相较于qPCR,能够直接数出DNA分子的个数,是对起始样品的绝对定量,因此特别适用于依靠CT值不能很好分辨的应用领域, 例如拷贝数变异、突变检测、基因相对表达研究(如等位基因不平衡表达)、二代测序结果验证、miRNA表达分析、单细胞基因表达分析等。
目前市面上的数字PCR技术主要有三种。一种是通过在特定仪器中使用流动的油切断水相的PCR溶液形成液滴,然后在另外的两台仪器中完成PCR和检测;一种是通过将PCR溶液分布到挖空的硅片上,然后在特定仪器中进行PCR以及另外一台仪器中进行检测;最后一种是在一种仪器上将液体通过狭窄的沟道注入腔体形成液滴,并完成PCR,然后在另一台仪器中完成检测。然而,当前的三种方法的液滴形成速度或者通量各有限制。此外,上述三种技术无一例外的依赖多台大型仪器。这不但增加了仪器的购置的成本,限制了数字PCR的广泛使用;而且增加了实验操作的复杂度。
因此,如何提供一种大于每秒形成1000个液滴的高速的数字PCR液滴形成技术、液滴形成与PCR温控和检测仪器集成的原位PCR技术、高效的数字PCR油利用率方法,成为本领域技术人员亟待解决的一个重要技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种一体化原位数字PCR系统及液滴形成方法,用于解决现有技术中液滴形成速度慢、通量小、操作复杂、PCR油利用率低的问题。
为实现上述目的及其他相关目的,本发明提供一种数字PCR系统,包括:
液滴形成组件,包括盖板及连接于所述盖板下表面的至少一个环形台阶;
液滴喷孔组件,连接于所述液滴形成组件下方,包括若干液滴喷孔,所述液滴喷孔自所述液滴喷孔组件的上表面开口,并往所述液滴喷孔组件的下表面方向延伸,但未贯穿所述液滴喷孔组件的下表面,其中,所述液滴喷孔组件的上表面、所述盖板的下表面及所述环形台阶共同围成液滴形成腔室,所述液滴喷孔与所述液滴形成腔室连通,且所述液滴喷孔内设有汽化部件,用于使所述液滴喷孔中的数字PCR溶液液体层汽化并快速推入所述液滴形成腔室中的液滴形成油中,以形成数字PCR液滴。
可选地,所述液滴喷孔组件包括热泡打印芯片。
可选地,所述环形台阶的高度小于欲形成的数字PCR液滴的直径的2倍,以使得到的数字PCR液滴在所述液滴形成腔室内平铺成一层的结构。
可选地,所述液滴形成组件还包括至少一个液滴形成油注入孔,所述液滴形成油注入孔穿通所述盖板,与所述液滴形成腔室连通。
可选地,所述液滴形成组件还包括至少一个液滴形成腔室排气孔,所述液滴形成腔室排 气孔穿通所述盖板,与所述液滴形成腔室连通。
可选地,所述汽化部件设置于所述液滴喷孔的底面或侧壁。
可选地,所述液滴喷孔的开口形状包括圆形、椭圆形、多边形中的任意一种。
可选地,所述汽化部件包括加热部件,通过加热所述数字PCR溶液液体层使其汽化。
可选地,所述加热部件包括至少一层金属层。
可选地,所述PCR系统还包括至少一个用于储存数字PCR溶液的PCR试剂腔室,所述液滴喷孔组件中设有流道,所述液滴喷孔通过所述流道与所述PCR试剂腔室连通。
可选地,所述流道包括至少一条主流道及与所述主流道连接的多条支流道,每个所述液滴喷孔分别与一条所述支流道连接。
可选地,所述数字PCR系统还包括基座,所述PCR试剂腔室自所述基座的上表面开口,并往所述基座的下表面方向延伸,但未贯穿所述基座的下表面,所述液滴喷孔组件连接于所述基座上表面,并覆盖所述PCR试剂腔室的开口。
可选地,所述基座的下表面设有至少一个数字PCR溶液注入孔,所述数字PCR溶液注入孔与所述PCR试剂腔室连通。
可选地,所述基座的下表面设有至少一个PCR试剂腔室排气孔,所述PCR试剂腔室排气孔与所述PCR试剂腔室连通。
可选地,所述数字PCR系统还包括软性线路板,所述软性线路板连接于所述基座上方,所述软性线路板中设有用于收容所述液滴喷孔组件的通孔,且所述软性线路板表面设有若干第一连接焊垫及若干第二连接焊垫,所述液滴喷孔组件通过导线与所述第一连接焊垫连接。
可选地,所述软性线路板通过胶粘方式与所述基座连接。
可选地,所述液滴喷孔组件的横截面积大于所述PCR试剂腔室的开口面积,所述基座表面被所述液滴喷孔组件所遮盖的区域设有至少一条用于防止胶水流到所述液滴喷孔组件上的沟道。
可选地,所述基座表面设有一用于防止胶水流到所述液滴喷孔组件上的环形沟道,所述环形沟道围绕所述液滴喷孔组件的四周。
可选地,所述软性线路板中设有至少两个定位穿孔,所述基座表面设有与所述定位穿孔位置相对应的定位凸起。
可选地,所述数字PCR系统还包括一控制器,所述控制器包括控制器外壳及位于所述控制器外壳内的控制器电路板,所述控制器外壳具有用于放置所述基座的承载部,所述承载部表面设有若干与所述控制器电路连接板连接的电路连接导电针,且所述电路连接导电针与所述第二连接焊垫的位置相对应。
可选地,所述基座的一端设置有至少一个限位槽,所述控制器外壳设置有至少一个与所述限位槽相对应的限位件。
可选地,所述基座设置有一限位通孔,所述限位通孔贯穿所述基座的正面及背面,所述控制器外壳设置有与所述限位通孔相对应的限位件。
可选地,所述控制器还包括一机盖,所述机盖与所述控制器外壳连接,用于遮盖所述基座。
可选地,所述数字PCR系统还包括用于加热所述液滴形成腔室的加热模块。
可选地,所述加热模块集成于所述液滴喷孔组件中。
可选地,所述数字PCR系统还配置有用于为所述液滴形成腔室降温的外置散热风扇。
可选地,所述数字PCR系统还配置有用于为所述液滴形成腔室降温的外置半导体制冷器。
可选地,所述数字PCR系统还包括用于测试所述液滴形成腔室温度的温度传感器。
可选地,所述温度传感器集成于所述液滴喷孔组件中。
可选地,所述数字PCR系统还配置有光学检测系统,用于在不转移样品的情况下进行PCR信号收集检测。
本发明还提供一种数字PCR液滴形成方法,包括以下步骤:
向PCR试剂腔室内注入数字PCR溶液,使数字PCR溶液进入与所述PCR试剂腔室连通的液滴喷孔,形成液体层;
向液滴形成腔室中添加液滴形成油;
采用汽化部件使所述液体层汽化并快速推入所述液滴形成腔室中的所述液滴形成油中,以形成所述数字PCR液滴。
可选地,所述汽化部件包括加热部件,通过加热所述液体层使其汽化。
可选地,通过控制所述加热部件的发热时间、发热次数及发热间隔时间来控制所述数字PCR液滴的形成速度。
可选地,所述液体层的厚度范围是0.2nm~30000nm。
可选地,所述液滴形成腔室的高度小于欲形成的数字PCR液滴的直径的2倍,以使得到的数字PCR液滴在所述液滴形成腔室内平铺成一层的结构。
可选地,所述数字PCR液滴的形成速度大于1000个/秒。
如上所述,本发明的数字PCR系统及数字PCR液滴形成方法,具有以下有益效果:
(1)本发明使用热泡技术进行高速数字PCR液滴形成,液滴的快速形成依赖于液滴喷孔内的汽化部件对纳米级厚度液体层的瞬间加热汽化,从而将液滴喷孔中的数字PCR溶液快速推入液滴形成油中以形成数字PCR液滴,相比于市面上每秒钟100个液滴的形成速度,本 发明中的液滴形成技术可以实现大于1000个每秒的液滴形成速度。
(2)相比于油相与水相共同运动产生液滴的方法,本发明的技术方案中的油相是静态的,因此油相的消耗量被大大减少,减少了50%左右的油相用量。
(3)由于硅基的液滴喷孔组件或热泡打印芯片上集成了精确的温控,因此实现了原位温控PCR。而且整合的光学系统可以在不转移样品的情况下进行检测。这既减少了操作时间,也通过减少人为误差提高了检测的准确性。
(4)原位数字PCR液滴可平铺成一层的结构。
附图说明
图1显示为本发明的数字PCR系统的立体结构示意图。
图2显示为本发明的数字PCR系统的俯视图。
图3显示为本发明的数字PCR系统的仰视图。
图4-图7显示为本发明的数字PCR系统的侧视图。
图8显示为本发明的数字PCR系统的分解结构示意图。
图9显示为本发明的数字PCR系统中液滴喷孔组件与软性线路板组合的正面立体结构示意图。
图10显示为本发明的数字PCR系统中液滴喷孔组件与软性线路板组合的背面立体结构示意图。
图11显示为本发明的数字PCR系统中液滴喷孔组件与软性线路板组合的俯视图。
图12显示为本发明的数字PCR系统中液滴喷孔组件与软性线路板组合的仰视图。
图13-图16显示为本发明的数字PCR系统中液滴喷孔组件与软性线路板组合的侧视图。
图17显示为本发明的数字PCR系统中液滴喷孔组件的局部立体图。
图18显示为本发明的数字PCR系统中液滴喷孔组件的局部剖面图。
图19显示为本发明的数字PCR系统中液滴形成组件的正面立体结构示意图。
图20显示为本发明的数字PCR系统中液滴形成组件的背面立体结构示意图。
图21显示为本发明的数字PCR系统中液滴形成组件的俯视图。
图22显示为本发明的数字PCR系统中液滴形成组件的仰视图。
图23-图26显示为本发明的数字PCR系统中液滴形成组件的侧视图。
图27显示为本发明的数字PCR系统中基座的正面立体结构示意图。
图28显示为本发明的数字PCR系统中基座的背面立体结构示意图。
图29显示为本发明的数字PCR系统中基座的俯视图。
图30显示为本发明的数字PCR系统中基座的仰视图。
图31-图34显示为本发明的数字PCR系统中基座的侧视图。
图35显示为本发明的数字PCR系统中控制器的立体结构示意图。
图36显示为本发明的数字PCR系统中机盖被拿掉后所呈现的控制器俯视图。
图37显示为本发明的数字PCR系统中控制器外壳底板被拿掉后所呈现的控制器仰视图。图38显示为本发明的数字PCR系统中外置散热风扇设置于控制器外壳中的示意图。
图39显示为利用本发明的数字PCR系统形成的数字PCR液滴的光学显微镜图。
图40显示为利用本发明的数字PCR系统形成的数字PCR液滴的荧光图。
元件标号说明
1                     液滴形成组件
2                     盖板
3                     环形台阶
4                     液滴喷孔组件
5                     液滴喷孔
6                     液滴形成油注入孔
7                     液滴形成腔室排气孔
8                     PCR试剂腔室
9                     主流道
10                    支流道
11                    基座
12                    数字PCR溶液注入孔
13                    PCR试剂腔室排气孔
14                    软性线路板
15                    通孔
16                    外壳支撑结构
17                    第二连接焊垫
18                    沟道
19                    环形沟道
20                    定位穿孔
21                    定位凸起
22                     控制器
23                     控制器外壳
24                     承载部
25                     电路连接导电针
26                     限位槽
27、29                 限位件
28                     限位通孔
30                     机盖
31                     外置散热风扇
32                     下沉式平台
33                     凸起
34                     通风口
35                     电路板连接点
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图40。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
本发明提供一种数字PCR系统,请参阅图1至图7,其中,图1显示为所述数字PCR系统的立体结构示意图,图2显示为所述数字PCR系统的俯视图,图3显示为所述数字PCR系统的仰视图,图4、图5、图6及图7显示为所述数字PCR系统在四个方向上的侧视图。
请参阅图8,显示为所述数字PCR系统的分解结构示意图,可见,所述数字PCR系统包括液滴形成组件1及液滴喷孔组件4,其中,所述液滴喷孔组件4连接于所述液滴形成组件1下方。
作为示例,所述液滴喷孔组件4可包括热泡打印芯片。热泡打印技术是打印机领域的一项主要技术,其基本原理是通过加热将墨滴喷出。本发明中,所述液滴喷孔组件4可采用现有的热泡打印芯片。
本实施例中,所述液滴喷孔组件4连接于一软性线路板14。请参阅图9至图16,其中,图9显示为所述液滴喷孔组件4与所述软性线路板14组合的正面立体结构示意图,图10显示为所述液滴喷孔组件4与所述软性线路板14组合的背面立体结构示意图,图11显示为所述液滴喷孔组件4与所述软性线路板14组合的俯视图,图12显示为所述液滴喷孔组件4与所述软性线路板14组合的仰视图,图13、图14、图15及图16显示为所述液滴喷孔组件4与所述软性线路板14组合在四个方向上的侧视图。
具体的,所述软性线路板14中设有用于收容所述液滴喷孔组件4的通孔15,且所述软性线路板14表面设有若干第一连接焊垫(未图示)及若干第二连接焊垫17,所述液滴喷孔组件4通过导线与所述第一连接焊垫连接,以通过所述软性线路板14将所述液滴喷孔组件4与外部控制器连接。所述液滴喷孔组件4可以通过标准的打线(Wire Bond)工艺与所述第一连接焊垫连接。
具体的,如图9及图11所示,所述液滴喷孔组件4包括若干液滴喷孔5,本实施例中,所述液滴喷孔4在靠近所述液滴喷孔组件4的一端处排列成两行,且每行液滴喷孔均匀分布。在其它实施例中,所述液滴喷孔4也可以采用其它排列方式,此处不应过分限制本发明的保护范围。
请参阅图17及图18,其中,图17显示为所述液滴喷孔组件4的局部立体图,图18显示为所述数字PCR系统中液滴喷孔组件的局部剖面图,可见,所述液滴喷孔5自所述液滴喷孔组件4的上表面开口,并往所述液滴喷孔组件4的下表面方向延伸,但未贯穿所述液滴喷孔组件4的下表面。所述液滴喷孔5的开口形状包括但不限于圆形、椭圆形、多边形中的任意一种。
请参阅图19至图26,其中,图19显示为所述液滴形成组件1的正面立体结构示意图,图20显示为所述液滴形成组件1的背面立体结构示意图,图21显示为所述液滴形成组件1的俯视图,图22显示为所述液滴形成组件1的仰视图,图23、图24、图25及图26显示为所述液滴形成组件1在四个方向上的侧视图。
具体的,所述液滴形成组件1包括盖板2及连接于所述盖板2下表面的至少一个环形台阶3。需要指出的是,此处的环形并不仅仅代表圆环,例如本实施例中,所述环形台阶3的外部轮廓呈现矩形,所述环形台阶3的内部轮廓呈现圆角矩形。在其它实施例中,所述环形台阶3也可以为其它形状,只要台阶的首尾相接即可,此处不应过分限制本发明的保护范围。
具体的,所述液滴喷孔组件4的上表面、所述盖板2的下表面及所述环形台阶3共同围成液滴形成腔室,所述液滴喷孔5与所述液滴形成腔室连通
如图18所示,所述液滴喷孔5内设有汽化部件34,用于使所述液滴喷孔5中的数字PCR溶液液体层汽化并快速推入所述液滴形成腔室中的液滴形成油中,以形成数字PCR液滴。其中,所述液滴喷孔5的容积决定了要形成的数字PCR液滴的体积。
作为示例,所述汽化部件34设置于所述液滴喷孔5的底面,所述汽化部件34可以采用加热部件,通过加热所述数字PCR溶液液体层使其汽化。本实施例中,所述加热部件包括加热片,所述加热片可以是单层金属层,也可以是复合多层金属层。所述汽化部件34的形状包括但不限于圆形或方形,面积可以是所述液滴喷孔5底面积的0.5~2倍。在其它实施例中,所述汽化部件34也可以设置于所述液滴喷孔5的侧壁,此处不应过分限制本发明的保护范围。
本实施例中,所述环形台阶3的高度小于欲形成的数字PCR液滴的直径的2倍,以使得到的数字PCR液滴在所述液滴形成腔室内平铺成一层的结构。
具体的,如图21及图22所示,所述液滴形成组件1还包括至少一个液滴形成油注入孔6,所述液滴形成油注入孔6穿通所述盖板2,与所述液滴形成腔室连通。所述液滴形成组件1还包括至少一个液滴形成腔室排气孔7,所述液滴形成腔室排气孔7同样穿通所述盖板2,与所述液滴形成腔室连通。
如图8所示,所述PCR系统还包括至少一个用于储存数字PCR溶液的PCR试剂腔室8。如图17所示,所述液滴喷孔组件4中设有流道,所述液滴喷孔5通过所述流道与所述PCR试剂腔室8连通。
作为示例,所述流道包括至少一条主流道9及与所述主流道9连接的多条支流道10,每个所述液滴喷孔5分别与一条所述支流道10连接。图10及图17中显示的为所述液滴喷孔组件4包括一条主流道9的情形,在其它实施例中,所述主流道9的数量也可以与所述液滴形成腔室的数量相匹配,也就是与所述环形台阶3的数量相匹配。图20显示的为所述液滴形成组件1包括一个环形台阶3的情形,在其它实施例中,所述环形台阶3的数量也可以为多个,以构建多个液滴形成腔室。
作为示例,构建所述流道和所述液滴喷孔5的材料包括但不限于硅、聚合物、光刻胶等。
具体的,如图1及图8所示,所述数字PCR系统还包括基座11,所述PCR试剂腔室8设置于所述基座11中。作为示例,所述基座11的材质包括但不限于透明或不透明的塑料、玻璃中的任意一种,所述基座11还可以采用金属材质。
请参阅图27至图34,其中,图27显示为所述基座的正面立体结构示意图,图28显示为所述基座的背面立体结构示意图,图29显示为所述基座的俯视图,图30显示为所述基座 的仰视图,图31、图32、图33及图34显示为所述基座在四个方向上的侧视图。
具体的,所述PCR试剂腔室8自所述基座11的上表面开口,并往所述基座11的下表面方向延伸,但未贯穿所述基座11的下表面,所述液滴喷孔组件4连接于所述基座11上表面,并覆盖所述PCR试剂腔室8的开口。
具体的,所述基座11的下表面设有至少一个数字PCR溶液注入孔12,所述数字PCR溶液注入孔12与所述PCR试剂腔室8连通。所述基座的下表面还设有至少一个PCR试剂腔室排气孔13,所述PCR试剂腔室排气孔13与所述PCR试剂腔室8连通。
具体的,所述软性线路板14连接于所述基座11上方。作为示例,所述软性线路板通过胶粘方式(例如采用胶水或双面胶)与所述基座11连接。本实施例中,所述液滴喷孔组件4的横截面积大于所述PCR试剂腔室8的开口面积,如图27及图29所示,所述基座11表面被所述液滴喷孔组件4所遮盖的区域设有至少一条用于防止胶水流到所述液滴喷孔组件上的沟道18。本实施例中,所述沟道18采用直线沟道,且数量为多个。
作为示例,如图27及图29所示,所述基座11表面还设有一用于防止胶水流到所述液滴喷孔组件上的环形沟道19,所述环形沟道围绕所述液滴喷孔组件的四周。
本实施例中,所述基座11表面具有一用于收容软性线路板的下沉式平台32,且所述下沉式平台32的四角具有圆弧形的延伸空间,所述下沉式平台32四周的凸起33在所述软性线路板黏贴到所述下沉式平台32表面时起到定位作用。
如图10所示,所述软性线路板14中设有至少两个定位穿孔20,如图29所示,所述基座11表面设有与所述定位穿孔20位置相对应的定位凸起21。
具体的,所述数字PCR系统还包括一控制器,请参阅图35,显示为所述控制器22的立体结构示意图,包括控制器外壳23及位于所述控制器外壳内的控制器电路板(未图示)。本实施例中,所述控制器22还包括一机盖30,所述机盖30与所述控制器外壳22连接,用于遮盖所述基座11,为PCR反应提供一遮光环境。
请参阅图36,显示为所述机盖30被拿掉后所呈现的控制器俯视图,可见所述控制器外壳23具有用于放置所述基座11的承载部24,所述承载部24表面设有若干与所述控制器电路连接板连接的电路连接导电针25(也称为Pin),且所述电路连接导电针25与所述第二连接焊垫17的位置相对应。
请参阅图37,显示为控制器外壳底板被拿掉后所呈现的控制器仰视图,其中,所述承载部24背面设有若干与所述电路连接导电针25相对应的电路板连接点35,控制器电路板可通过所述电路板连接点35输出信号至所述电路连接导电针25。
具体的,如图28所示,所述基座11的一端设置有至少一个限位槽26,如图36所示, 所述控制器外壳23设置有至少一个与所述限位槽26相对应的限位件29。所述限位件29可采用弹簧柱塞。
具体的,如图28所示,所述基座11设置有一限位通孔28,所述限位通孔28贯穿所述基座的正面及背面,如图36所示,所述控制器外壳23设置有与所述限位通孔28相对应的限位件29。
具体的,所述数字PCR系统还包括用于加热所述液滴形成腔室的加热模块,以提供特定温度的反应条件。作为示例,所述加热模块集成于所述液滴喷孔组件4中。
具体的,所述数字PCR系统还包括用于测试所述液滴形成腔室温度的温度传感器,以监测液滴形成腔室内的温度。作为示例,所述温度传感器集成于所述液滴喷孔组件4中。
具体的,所述数字PCR系统还配置有用于为所述液滴形成腔室降温的外置散热风扇。作为示例,所述外置散热风扇可设置于所述控制器外壳23中。请参阅图38,显示为所述外置散热风扇31设置于控制器外壳23中的示意图,所述外置散热风扇31旁还设置有通风口34。图38中还显示了外壳支撑结构16。
具体的,所述外置散热风扇还可以采用外置半导体制冷器来替换。半导体制冷器(Thermo Electric Cooler,简称TEC)是利用半导体材料的珀尔帖效应制成的。所谓珀尔帖效应,是指当直流电流通过两种半导体材料组成的电偶时,其一端吸热,一端放热的现象。重掺杂的N型和P型的碲化铋主要用作TEC的半导体材料,碲化铋元件采用电串联,并且是并行发热。TEC包括一些P型和N型对(组),它们通过电极连在一起,并且夹在两个陶瓷电极之间;当有电流从TEC流过时,电流产生的热量会从TEC的一侧传到另一侧,在TEC上产生“热”侧和“冷”侧,这就是TEC的加热与制冷原理。
进一步的,所述数字PCR系统还配置有光学检测系统,用于在不转移样品的情况下进行PCR信号收集检测。光学系统的主要部分包括:荧光光源、明场光源、控制电路、光学放大的镜片组、荧光滤光片、CCD相机、用来移动镜头的滑台系统,以及用来避光的外壳。光学系统的照相拍摄区域是盖板的整个面积。这种拍摄可以是一次成像或者多次拍摄并拼接图片。
本发明的数字PCR系统可用于数字PCR液滴的形成,液滴的快速形成依赖于液滴喷孔内的汽化部件对纳米级厚度液体层的瞬间汽化,从而将液滴喷孔中的数字PCR溶液快速推入液滴形成油中以形成数字PCR液滴,相比于市面上每秒钟100个液滴的形成速度,本发明中的液滴形成技术可以实现大于1000个每秒的液滴形成速度。相比于油相与水相共同运动产生液滴的方法,本发明的技术方案中的油相是静态的,因此油相的消耗量被大大减少,减少了50%左右的油相用量,具有高效的数字PCR油利用率。由于硅基的液滴喷孔组件或热泡打印芯片上集成了精确的温控,因此实现了原位温控PCR。而且整合的光学系统可以在不转移样 品的情况下进行检测。这既减少了操作时间,也通过减少人为误差提高了检测的准确性。原位数字PCR液滴可平铺成一层的结构。
实施例二
本发明还提供一种数字PCR液滴形成方法,包括以下步骤:采用汽化部件使数字PCR溶液汽化并快速推入液滴形成油中,以形成数字PCR液滴。
作为示例,使用热泡技术进行高速数字PCR液滴形成,所述汽化部件包括加热部件,通过加热所述数字PCR溶液液体层使其汽化。
具体的,通过控制所述加热部件的发热时间、发热次数及发热间隔时间来控制所述数字PCR液滴的形成速度。利用本发明的数字PCR液滴形成方法可以达到大于1000个/秒的数字PCR液滴形成速度。
作为示例,所述数字PCR液滴形成方法包括以下步骤:
S1:向PCR试剂腔室内注入数字PCR溶液,使数字PCR溶液进入与所述PCR试剂腔室连通的液滴喷孔,形成液体层;
S2:向液滴形成腔室中添加液滴形成油;
S3:采用汽化部件使所述液体层汽化并快速推入所述液滴形成腔室中的所述液滴形成油中,以形成所述数字PCR液滴。
具体的,所述液体层的厚度为纳米级,且大于0.2nm,本实施例中,所述液体层的厚度范围优选为0.2nm~30000nm。
具体的,所述液滴形成腔室的高度小于欲形成的数字PCR液滴的直径的2倍,以使得到的数字PCR液滴在所述液滴形成腔室内平铺成一层的结构。
具体的,待所述PCR试剂腔室内的数字PCR溶液完全推入所述液滴形成腔室中形成数字PCR液滴后,将所述PCR试剂腔室用液滴形成油填充,使所述PCR试剂腔室处于填充状态,以避免形成的液滴回流至所述PCR试剂腔室。随后可以采用密封件将设置于液滴形成腔室壁上的液滴形成油注入孔、液滴形成腔室排气孔、设置于PCR试剂腔室壁上的数字PCR溶液注入孔及PCR试剂腔室排气孔密封。所述密封件包括但不限于胶塞、封口膜、胶圈环、密封用软垫等。所述密封件可以采用橡胶、PDMS等软塑料材质。
具体的,进行上述密封之后,利用液滴喷孔组件(可以是热泡打印芯片)上集成的加热模块和温度传感器以及外置的风扇进行PCR所需的升降温控制,实现原位温控PCR。根据某些特定的温度需要,也可以用半导体制冷薄膜代替风扇进行降温。
具体的,还可以利用整合的光学系统可以在不转移样品的情况下进行PCR信号收集检测。
请参阅图39,显示为利用本发明的数字PCR系统形成的数字PCR液滴的光学显微镜图,可见,形成的数字PCR液滴形态对称,均匀。
通过使用标准的数字PCR形成液滴后,通过原位的常规PCR温控反应,经过40个循环后,可见有荧光信号的阳性液滴。请参阅图40,显示为利用本发明的数字PCR系统形成的数字PCR液滴的荧光图。
本发明的数字PCR系统及数字PCR液滴形成方法可以满足所有数字PCR生化试剂的使用。由于许多的生物标志性分子在血液中的浓度非常低(如循环肿瘤DNA在每2ml血液中只有3个DNA分子),而本发明的数字PCR系统及数字PCR液滴形成方法具有液滴形成数量不受使用油量的限制的特点和高速的特点,使得这类检测在数字PCR的应用成为了可能。
综上所述,本发明的数字PCR系统及数字PCR液滴形成方法使用热泡技术进行高速数字PCR液滴形成,液滴的快速形成依赖于液滴喷孔内的汽化部件对纳米级厚度液体层的瞬间加热汽化,从而将液滴喷孔中的数字PCR溶液快速推入液滴形成油中以形成数字PCR液滴,相比于市面上每秒钟100个液滴的形成速度,本发明中的液滴形成技术可以实现大于1000个每秒的液滴形成速度。相比于油相与水相共同运动产生液滴的方法,本发明的技术方案中的油相是静态的,因此油相的消耗量被大大减少,减少了50%左右的油相用量。由于硅基的液滴喷孔组件或热泡打印芯片上集成了精确的温控,因此实现了原位温控PCR。而且整合的光学系统可以在不转移样品的情况下进行检测。这既减少了操作时间,也通过减少人为误差提高了检测的准确性。原位数字PCR液滴可平铺成一层的结构。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (36)

  1. 一种数字PCR系统,其特征在于,包括:
    液滴形成组件,包括盖板及连接于所述盖板下表面的至少一个环形台阶;
    液滴喷孔组件,连接于所述液滴形成组件下方,包括若干液滴喷孔,所述液滴喷孔自所述液滴喷孔组件的上表面开口,并往所述液滴喷孔组件的下表面方向延伸,但未贯穿所述液滴喷孔组件的下表面,其中,所述液滴喷孔组件的上表面、所述盖板的下表面及所述环形台阶共同围成液滴形成腔室,所述液滴喷孔与所述液滴形成腔室连通,且所述液滴喷孔内设有汽化部件,用于使所述液滴喷孔中的数字PCR溶液液体层汽化并快速推入所述液滴形成腔室中的液滴形成油中,以形成数字PCR液滴。
  2. 根据权利要求1所述的数字PCR系统,其特征在于:所述液滴喷孔组件包括热泡打印芯片。
  3. 根据权利要求1所述的数字PCR系统,其特征在于:所述环形台阶的高度小于欲形成的数字PCR液滴的直径的2倍,以使得到的数字PCR液滴在所述液滴形成腔室内平铺成一层的结构。
  4. 根据权利要求1所述的数字PCR系统,其特征在于:所述液滴形成组件还包括至少一个液滴形成油注入孔,所述液滴形成油注入孔穿通所述盖板,与所述液滴形成腔室连通。
  5. 根据权利要求1所述的数字PCR系统,其特征在于:所述液滴形成组件还包括至少一个液滴形成腔室排气孔,所述液滴形成腔室排气孔穿通所述盖板,与所述液滴形成腔室连通。
  6. 根据权利要求1所述的数字PCR系统,其特征在于:所述汽化部件设置于所述液滴喷孔的底面或侧壁。
  7. 根据权利要求1所述的数字PCR系统,其特征在于:所述液滴喷孔的开口形状包括圆形、椭圆形、多边形中的任意一种。
  8. 根据权利要求1所述的数字PCR系统,其特征在于:所述汽化部件包括加热部件,通过加热所述数字PCR溶液液体层使其汽化。
  9. 根据权利要求8所述的数字PCR系统,其特征在于:所述加热部件包括至少一层金属层。
  10. 根据权利要求1所述的数字PCR系统,其特征在于:所述PCR系统还包括至少一个用于储存数字PCR溶液的PCR试剂腔室,所述液滴喷孔组件中设有流道,所述液滴喷孔通过所述流道与所述PCR试剂腔室连通。
  11. 根据权利要求10所述的数字PCR系统,其特征在于:所述流道包括至少一条主流道及与所述主流道连接的多条支流道,每个所述液滴喷孔分别与一条所述支流道连接。
  12. 根据权利要求10所述的数字PCR系统,其特征在于:所述数字PCR系统还包括基座,所述PCR试剂腔室自所述基座的上表面开口,并往所述基座的下表面方向延伸,但未贯穿所述基座的下表面,所述液滴喷孔组件连接于所述基座上表面,并覆盖所述PCR试剂腔室的开口。
  13. 根据权利要求12所述的数字PCR系统,其特征在于:所述基座的下表面设有至少一个数字PCR溶液注入孔,所述数字PCR溶液注入孔与所述PCR试剂腔室连通。
  14. 根据权利要求12所述的数字PCR系统,其特征在于:所述基座的下表面设有至少一个PCR试剂腔室排气孔,所述PCR试剂腔室排气孔与所述PCR试剂腔室连通。
  15. 根据权利要求12所述的数字PCR系统,其特征在于:所述数字PCR系统还包括软性线路板,所述软性线路板连接于所述基座上方,所述软性线路板中设有用于收容所述液滴喷孔组件的通孔,且所述软性线路板表面设有若干第一连接焊垫及若干第二连接焊垫,所述液滴喷孔组件通过导线与所述第一连接焊垫连接。
  16. 根据权利要求15所述的数字PCR系统,其特征在于:所述软性线路板通过胶粘方式与所述基座连接。
  17. 根据权利要求16所述的数字PCR系统,其特征在于:所述液滴喷孔组件的横截面积大于所述PCR试剂腔室的开口面积,所述基座表面被所述液滴喷孔组件所遮盖的区域设有至少一条用于防止胶水流到所述液滴喷孔组件上的沟道。
  18. 根据权利要求16所述的数字PCR系统,其特征在于:所述基座表面设有一用于防止胶 水流到所述液滴喷孔组件上的环形沟道,所述环形沟道围绕所述液滴喷孔组件的四周。
  19. 根据权利要求15所述的数字PCR系统,其特征在于:所述软性线路板中设有至少两个定位穿孔,所述基座表面设有与所述定位穿孔位置相对应的定位凸起。
  20. 根据权利要求12所述的数字PCR系统,其特征在于:所述数字PCR系统还包括一控制器,所述控制器包括控制器外壳及位于所述控制器外壳内的控制器电路板,所述控制器外壳具有用于放置所述基座的承载部,所述承载部表面设有若干与所述控制器电路连接板连接的电路连接导电针,且所述电路连接导电针与所述第二连接焊垫的位置相对应。
  21. 根据权利要求20所述的数字PCR系统,其特征在于:所述基座的一端设置有至少一个限位槽,所述控制器外壳设置有至少一个与所述限位槽相对应的限位件。
  22. 根据权利要求20所述的数字PCR系统,其特征在于:所述基座设置有一限位通孔,所述限位通孔贯穿所述基座的正面及背面,所述控制器外壳设置有与所述限位通孔相对应的限位件。
  23. 根据权利要求20所述的数字PCR系统,其特征在于:所述控制器还包括一机盖,所述机盖与所述控制器外壳连接,用于遮盖所述基座。
  24. 根据权利要求1所述的数字PCR系统,其特征在于:所述数字PCR系统还包括用于加热所述液滴形成腔室的加热模块。
  25. 根据权利要求24所述的数字PCR系统,其特征在于:所述加热模块集成于所述液滴喷孔组件中。
  26. 根据权利要求24所述的数字PCR系统,其特征在于:所述数字PCR系统还配置有用于为所述液滴形成腔室降温的外置散热风扇。
  27. 根据权利要求24所述的数字PCR系统,其特征在于:所述数字PCR系统还配置有用于为所述液滴形成腔室降温的外置半导体制冷器。
  28. 根据权利要求1所述的数字PCR系统,其特征在于:所述数字PCR系统还包括用于测试所述液滴形成腔室温度的温度传感器。
  29. 根据权利要求28所述的数字PCR系统,其特征在于:所述温度传感器集成于所述液滴喷孔组件中。
  30. 根据权利要求1所述的数字PCR系统,其特征在于:所述数字PCR系统还配置有光学检测系统,用于在不转移样品的情况下进行PCR信号收集检测。
  31. 一种数字PCR液滴形成方法,其特征在于,包括以下步骤:
    向PCR试剂腔室内注入数字PCR溶液,使数字PCR溶液进入与所述PCR试剂腔室连通的液滴喷孔,形成液体层;
    向液滴形成腔室中添加液滴形成油;
    采用汽化部件使所述液体层汽化并快速推入所述液滴形成腔室中的所述液滴形成油中,以形成所述数字PCR液滴。
  32. 根据权利要求31所述的数字PCR液滴形成方法,其特征在于:所述汽化部件包括加热部件,通过加热所述液体层使其汽化。
  33. 根据权利要求32所述的数字PCR液滴形成方法,其特征在于:通过控制所述加热部件的发热时间、发热次数及发热间隔时间来控制所述数字PCR液滴的形成速度。
  34. 根据权利要求31所述的数字PCR液滴形成方法,其特征在于:所述液体层的厚度范围是0.2nm~30000nm。
  35. 根据权利要求31所述的数字PCR液滴形成方法,其特征在于:所述液滴形成腔室的高度小于欲形成的数字PCR液滴的直径的2倍,以使得到的数字PCR液滴在所述液滴形成腔室内平铺成一层的结构。
  36. 根据权利要求31所述的数字PCR液滴形成方法,其特征在于:所述数字PCR液滴的形成速度大于1000个/秒。
PCT/CN2018/117310 2018-08-13 2018-11-23 一种数字pcr系统及数字pcr液滴形成方法 WO2020034482A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/044,500 US20210220831A1 (en) 2018-08-13 2018-11-23 Digital pcr system and digital pcr droplet formation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810916910.2 2018-08-13
CN201810916910.2A CN110819523B (zh) 2018-08-13 2018-08-13 一种数字pcr系统及数字pcr液滴形成方法

Publications (1)

Publication Number Publication Date
WO2020034482A1 true WO2020034482A1 (zh) 2020-02-20

Family

ID=69525043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117310 WO2020034482A1 (zh) 2018-08-13 2018-11-23 一种数字pcr系统及数字pcr液滴形成方法

Country Status (3)

Country Link
US (1) US20210220831A1 (zh)
CN (1) CN110819523B (zh)
WO (1) WO2020034482A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046556A (zh) * 2013-03-13 2014-09-17 精工爱普生株式会社 核酸扩增反应装置和核酸扩增方法
CN104487592A (zh) * 2012-04-19 2015-04-01 生命技术公司 进行数字pcr的方法
CN104611223A (zh) * 2015-01-28 2015-05-13 中国科学院半导体研究所 电化学检测dPCR扩增产物的芯片及方法
CN106520524A (zh) * 2016-12-30 2017-03-22 中国科学技术大学 一体式刚性流道液滴数字pcr系统及方法
CN106754341A (zh) * 2016-12-30 2017-05-31 杭州用达生物科技有限公司 一种微滴式数字pcr生物芯片
CN106824313A (zh) * 2017-02-23 2017-06-13 中国科学院上海微系统与信息技术研究所 一种数字pcr芯片及其制备方法
CN106834115A (zh) * 2017-02-27 2017-06-13 武汉科技大学 微滴式数字pcr芯片模块

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60135092D1 (de) * 2000-01-31 2008-09-11 Univ Texas Tragbare vorrichtung mit einer sensor-array-anordnung
US20020160363A1 (en) * 2001-01-31 2002-10-31 Mcdevitt John T. Magnetic-based placement and retention of sensor elements in a sensor array
US8877512B2 (en) * 2009-01-23 2014-11-04 Advanced Liquid Logic, Inc. Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator
WO2011126892A2 (en) * 2010-03-30 2011-10-13 Advanced Liquid Logic, Inc. Droplet operations platform
US9176504B2 (en) * 2011-02-11 2015-11-03 The Regents Of The University Of California High-speed on demand droplet generation and single cell encapsulation driven by induced cavitation
EP2705374A4 (en) * 2011-05-02 2014-11-12 Advanced Liquid Logic Inc MOLECULAR DIAGNOSTIC PLATFORM
WO2014062551A1 (en) * 2012-10-15 2014-04-24 Advanced Liquid Logic, Inc. Digital microfluidics cartridge and system for operating a flow cell
US11123740B2 (en) * 2015-06-29 2021-09-21 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for continuous flow digital droplet polymerase chain reaction bioanalysis
CN108698814A (zh) * 2015-12-30 2018-10-23 伯克利之光生命科技公司 用于光学驱动的对流和移位的微流体设备、试剂盒及其方法
WO2017209906A1 (en) * 2016-05-28 2017-12-07 University Of Notre Dame Du Lac Ac electrosprayed droplets for digital and emulsion pcr
EP3426793A4 (en) * 2016-07-22 2019-03-27 Hewlett-Packard Development Company, L.P. METHOD FOR PREPARING TEST SAMPLES
EP3471865A4 (en) * 2016-10-21 2019-08-14 Hewlett-Packard Development Company, L.P. DROPLET GENERATOR
WO2018099420A1 (zh) * 2016-11-30 2018-06-07 领航基因科技(杭州)有限公司 微滴式数字pcr芯片
CN112513201A (zh) * 2018-06-07 2021-03-16 录象射流技术公司 Dna标记的油墨和系统以及使用方法
US20230285970A1 (en) * 2022-03-11 2023-09-14 Hewlett-Packard Development Company, L.P. Apparatuses with fluid droplet generators coupled to reaction regions and fluid ejectors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104487592A (zh) * 2012-04-19 2015-04-01 生命技术公司 进行数字pcr的方法
CN104046556A (zh) * 2013-03-13 2014-09-17 精工爱普生株式会社 核酸扩增反应装置和核酸扩增方法
CN104611223A (zh) * 2015-01-28 2015-05-13 中国科学院半导体研究所 电化学检测dPCR扩增产物的芯片及方法
CN106520524A (zh) * 2016-12-30 2017-03-22 中国科学技术大学 一体式刚性流道液滴数字pcr系统及方法
CN106754341A (zh) * 2016-12-30 2017-05-31 杭州用达生物科技有限公司 一种微滴式数字pcr生物芯片
CN106824313A (zh) * 2017-02-23 2017-06-13 中国科学院上海微系统与信息技术研究所 一种数字pcr芯片及其制备方法
CN106834115A (zh) * 2017-02-27 2017-06-13 武汉科技大学 微滴式数字pcr芯片模块

Also Published As

Publication number Publication date
CN110819523B (zh) 2023-08-29
US20210220831A1 (en) 2021-07-22
CN110819523A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN209039495U (zh) 一种数字pcr系统
CN209210833U (zh) 一种数字pcr系统
US11193098B2 (en) PCR apparatus comprising repeated sliding means and PCR method using same
CN110191759A (zh) 微流控样品芯片、使用该芯片的分析系统及用于检测dna序列的pcr方法
US20140024126A1 (en) Flow-channel device for detecting light emission
JP2016508734A (ja) パターンヒーターが繰り返し配置されたポリメラーゼ連鎖反応(pcr)熱ブロック及びこれを備えるポリメラーゼ連鎖反応(pcr)装置
CN110551622A (zh) 快速pcr反应芯片以及快速荧光定量检测仪
CN104302402A (zh) 用于评估生物样品的系统和方法
CN210945600U (zh) 快速pcr反应芯片以及快速荧光定量检测仪
CN113846002A (zh) 一种全封闭无污染的数字化核酸检测芯片及检测方法
JP2022543213A (ja) 核酸増幅試験のためのシステムおよびモジュール
WO2020034482A1 (zh) 一种数字pcr系统及数字pcr液滴形成方法
CN110628609A (zh) 一种数字pcr系统
WO2020034479A1 (zh) 一种数字pcr系统及数字pcr液滴形成方法
TW202201006A (zh) 具備具有作用表面之感測器之設備
CN110669661A (zh) 一种数字pcr液滴形成方法
CN110699250A (zh) 一种数字pcr系统
CN110724632A (zh) 一种数字pcr液滴形成方法
WO2020034483A1 (zh) 一种数字pcr系统及数字pcr液滴形成方法
TW201928045A (zh) 一種熱對流式聚合酶鏈式反應裝置
CN113999764A (zh) 一种集成式微液滴数字lamp核酸检测芯片及检测方法
CN110628610A (zh) 一种数字pcr系统
TWI498562B (zh) 生化反應之檢測裝置及其方法
KR102560947B1 (ko) 일체형 실시간 pcr 칩
KR102401332B1 (ko) 채널에 에어 포켓이 있는 pcr 칩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930008

Country of ref document: EP

Kind code of ref document: A1