WO2011021668A1 - 固体電解コンデンサ - Google Patents
固体電解コンデンサ Download PDFInfo
- Publication number
- WO2011021668A1 WO2011021668A1 PCT/JP2010/064018 JP2010064018W WO2011021668A1 WO 2011021668 A1 WO2011021668 A1 WO 2011021668A1 JP 2010064018 W JP2010064018 W JP 2010064018W WO 2011021668 A1 WO2011021668 A1 WO 2011021668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- nonwoven fabric
- fiber
- separator
- electrolytic capacitor
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 177
- 239000007787 solid Substances 0.000 title claims abstract description 69
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 344
- 239000000835 fiber Substances 0.000 claims abstract description 211
- 239000011888 foil Substances 0.000 claims abstract description 99
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 82
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims description 98
- 229920001410 Microfiber Polymers 0.000 claims description 42
- 238000002844 melting Methods 0.000 claims description 24
- 230000008018 melting Effects 0.000 claims description 24
- 229920001169 thermoplastic Polymers 0.000 claims description 16
- 239000004416 thermosoftening plastic Substances 0.000 claims description 16
- 239000000155 melt Substances 0.000 claims description 12
- 229920006038 crystalline resin Polymers 0.000 claims description 10
- 230000010354 integration Effects 0.000 claims description 10
- 238000003490 calendering Methods 0.000 claims description 7
- 229920005989 resin Polymers 0.000 description 47
- 239000011347 resin Substances 0.000 description 47
- 239000007788 liquid Substances 0.000 description 38
- 230000008569 process Effects 0.000 description 37
- 239000000463 material Substances 0.000 description 31
- 239000000178 monomer Substances 0.000 description 31
- 239000011148 porous material Substances 0.000 description 27
- 239000011230 binding agent Substances 0.000 description 26
- 229920000139 polyethylene terephthalate Polymers 0.000 description 26
- 239000005020 polyethylene terephthalate Substances 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 25
- 229920001940 conductive polymer Polymers 0.000 description 24
- 239000000126 substance Substances 0.000 description 23
- 238000005259 measurement Methods 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 17
- 238000004804 winding Methods 0.000 description 17
- 239000000243 solution Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000009987 spinning Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229920002678 cellulose Polymers 0.000 description 9
- 239000001913 cellulose Substances 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- -1 polyoxymethylene Polymers 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000004734 Polyphenylene sulfide Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229920000069 polyphenylene sulfide Polymers 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 7
- 239000004696 Poly ether ether ketone Substances 0.000 description 6
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 6
- 230000002950 deficient Effects 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 6
- 229920002530 polyetherether ketone Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 240000000907 Musa textilis Species 0.000 description 5
- 229920002978 Vinylon Polymers 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 4
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000004815 dispersion polymer Substances 0.000 description 4
- 238000004049 embossing Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 229920006122 polyamide resin Polymers 0.000 description 4
- 229920001470 polyketone Polymers 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920006324 polyoxymethylene Polymers 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 229920006259 thermoplastic polyimide Polymers 0.000 description 4
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 3
- 239000001741 Ammonium adipate Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 235000019293 ammonium adipate Nutrition 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 3
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229920000547 conjugated polymer Polymers 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000004750 melt-blown nonwoven Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 239000012985 polymerization agent Substances 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- YMMGRPLNZPTZBS-UHFFFAOYSA-N 2,3-dihydrothieno[2,3-b][1,4]dioxine Chemical compound O1CCOC2=C1C=CS2 YMMGRPLNZPTZBS-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920006310 Asahi-Kasei Polymers 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 229920013633 Fortron Polymers 0.000 description 1
- 239000004738 Fortron® Substances 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical group 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- FYMCOOOLDFPFPN-UHFFFAOYSA-K iron(3+);4-methylbenzenesulfonate Chemical compound [Fe+3].CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 FYMCOOOLDFPFPN-UHFFFAOYSA-K 0.000 description 1
- 229910000462 iron(III) oxide hydroxide Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000414 polyfuran Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
- H01G9/028—Organic semiconducting electrolytes, e.g. TCNQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
- H01G9/151—Solid electrolytic capacitors with wound foil electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/02—Diaphragms; Separators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
Definitions
- the present invention relates to a solid electrolytic capacitor in which the nonwoven fabric constituting the separator is a laminated nonwoven fabric.
- a solid electrolytic capacitor having a high impedance and a low impedance in a high-frequency region using a solid electrolyte or a tetracyanoquinodimethane complex salt having high electrical conductivity has been put into practical use.
- a solid electrolytic capacitor is an electrical component that has a long life and high reliability because it does not use an electrolyte. Therefore, the use of the solid electrolytic capacitor has been expanded because the safety of electrical products can be further improved.
- a so-called winding type capacitor is used to meet the demand for higher capacity.
- This wound capacitor is typically formed by the following method. That is, the cathode, anode, and separator are wound so that a separator is interposed between the cathode electrode foil and the anode electrode foil. Then, a conductive polymer dispersion aqueous solution in which fine particles of a monomer (a highly conductive monomer, tetracyanoquinodimethane complex salt, etc.), a conductive polymer are dispersed, or a conductive high A liquid such as a molecular solution is impregnated as a conductive polymer material.
- a monomer a highly conductive monomer, tetracyanoquinodimethane complex salt, etc.
- the separator used in the solid electrolytic capacitor is a separator mainly composed of a cellulose component such as pulp or manila hemp, like the electrolytic type capacitor.
- the drying process is excessive in order to volatilize moisture contained in cellulose in the pulp or the like in the process of manufacturing the capacitor.
- the capacitor component is finished so that the moisture content in the capacitor element is reduced by the method of carbonizing the cellulose component.
- a dielectric oxide film layer for example, an aluminum oxide layer for solid aluminum electrolytic capacitors
- a metal foil such as aluminum that has a valve action. It is related to the necessity to form a continuous layer and a uniform thickness.
- damage deterioration due to heat or contamination of the oxide film layer due to gas components emitted from cellulose
- the performance of the capacitor was deteriorated.
- the charged voltage cannot be increased or the ripple current characteristics are poor. That is, in a solid electrolytic capacitor that is required to have high performance, the separator must be subjected to a heating step, so that the performance of the capacitor cannot be increased and the withstand voltage is kept low.
- the solid electrolytic capacitor has the advantage that it has a longer life compared to the electrolytic capacitor, which does not use an electrolytic solution, so there is less scatter and leakage of the electrolyte, and there is a concern that the life of the electrolytic capacitor may be reduced due to leakage of the electrolytic solution. . Nevertheless, the use range of solid electrolytic capacitors is narrow due to the fact that the high withstand voltage similar to that of electrolytic capacitors is not achieved. In addition, the solid electrolytic capacitor still has the same problem as the electrolytic capacitor, that is, the problem that the capacity of the capacitor cannot be increased and the problem that the parts cannot be reduced in size.
- Patent Documents 1 to 6 describe a separator in which moisture is suppressed by using PET or a PET-based nonwoven fabric as the separator.
- Patent Documents 5 and 6 an attempt is made to form a uniform solid electrolyte layer using a non-woven fabric of vinylon fibers and / or vinylon fibers and synthetic fibers for the same purpose as described above. Moreover, in the mixed paper nonwoven fabric using a vinylon fiber etc., a binder is used when forming a nonwoven fabric. The binder is used to prevent a stable wound product from being formed due to the fibers being scattered in the winding process or the nonwoven fabric being stretched when the separator is slit thinly.
- Patent Document 8 attempts to use a nonwoven fabric (typically by a melt-blown method) made of a liquid crystalline polymer as a separator.
- Japanese Patent No. 403460 Japanese Patent No. 3606137 JP 2001-60535 A Japanese Patent No. 3965871 Japanese Patent No. 3319501 Japanese Patent No. 3399515 International Publication No. 2004-094136 Pamphlet JP 2006-41223 A
- the non-woven fabric obtained by the spunbond method, wet method and dry method has a fiber diameter of the fibers constituting them. In general, it is more than a dozen microns. Therefore, the nonwoven fabric itself is rough, the distance between the fibers is large, and the basis weight is also considerably varied (in the winding type, the slit width of the separator is usually several millimeters to 10 mm). That is, when the solid electrolyte layer is formed, it is difficult for a liquid that becomes a conductive polymer material, such as a monomer for forming the solid electrolyte, to enter between the fibers.
- the distribution of the monomer and the like for forming the solid electrolyte layer becomes non-uniform due to the surface tension of the monomer and the interfacial tension between the materials, and a dense and uniform solid electrolyte layer cannot be formed.
- the dielectric oxide film layer serving as the anode and the solid electrolyte layer should be uniformly contacted at least at a desired portion.
- the non-uniform solid electrolyte layer reduces the contact area of these layers and reduces the capacitance of the capacitor.
- the nonwoven fabric using the conventional thermoplastic resin has a large variation in basis weight and thickness, and the solid electrolyte layer also varies considerably in thickness and uniformity.
- the solid electrolyte layer that becomes a substantial cathode is made more uniform.
- a uniform solid electrolyte layer has not been achieved because the distance between fibers of the nonwoven fabric constituting the separator is large.
- Patent Documents 5 and 6 require a step of removing the binder, and despite the fact that synthetic fibers were used, the number of steps was intentionally increased. Further, it has been necessary to use moisture and the like to remove the binder. These deteriorate the performance of the capacitor element. Capacitor performance such as capacitance and internal resistance is also caused by binders causing adverse effects on the formation of a good metal oxide layer and not causing an increase in withstand voltage, etc., and adversely affecting the formation of solid electrolyte layers. Had an adverse effect.
- the fiber diameter of the vinylon fiber and / or the non-woven fabric of the vinylon fiber and synthetic fiber as described in Patent Documents 5 and 6 is substantially large. For this reason, the electrolyte could not enter the gap between the fibers uniformly and densely, and a good solid electrolyte layer could not be formed.
- the melt-blown nonwoven fabric is such that the breaking strength of the nonwoven fabric is weak and it stretches with a little force.
- the cause is that the degree of crystallinity of the resin forming the fiber is low or the fiber is not sufficiently stretched. Therefore, even with the technique described in Patent Document 8, the defect rate in the winding process when forming the capacitor is high, and the actual use was not possible.
- Patent Document 8 since the nonwoven fabric described in Patent Document 8 has a low degree of resin crystallization, the surface of the nonwoven fabric is weak against friction and wear, and foreign matters such as fluff and fluff are generated on the surface in the process. On the other hand, if the pressure-bonding conditions are strengthened to withstand friction and wear, the fiber gap becomes too dense, and the liquid that becomes the conductive polymer material such as monomer does not sufficiently penetrate into the separator. As a result, a uniform solid electrolyte layer could not be formed.
- the nonwoven fabric by the melt blown method like patent document 8 cannot achieve the objective of forming a solid electrolyte and a dielectric oxide layer densely and uniformly in a solid electrolytic capacitor for the above reasons.
- Patent Document 7 does not disclose a solid capacitor separator.
- the problem to be solved by the present invention is to provide a high-performance solid electrolytic capacitor that can be stably produced.
- the present inventors have achieved higher performance (specifically, by using a laminated nonwoven fabric having two or more different layers having a specific fiber diameter as a separator)
- the inventors have found that a solid electrolytic capacitor having a high withstand voltage, a high capacity, and a low ESR (Equivalent Series Resistance) can be obtained, and the present invention has been made. That is, the present invention is as follows.
- a capacitor comprising an anode foil and a cathode foil, and a separator disposed between the anode foil and the cathode foil, The anode foil, the cathode foil and the separator are wound so that the separator is interposed between the anode foil and the cathode foil,
- the anode foil has a dielectric oxide film layer;
- the separator includes a solid electrolyte and a nonwoven fabric holding the solid electrolyte,
- the nonwoven fabric constituting the separator is a laminated nonwoven fabric having at least two nonwoven fabric layers,
- the laminated nonwoven fabric comprises a nonwoven fabric layer (I layer) composed of ultrafine fibers having a fiber diameter of 0.1 to 4 ⁇ m, and a nonwoven fabric layer (II layer) composed of thermoplastic resin fibers having a fiber diameter of 6 to 30 ⁇ m.
- the laminated nonwoven fabric comprises two nonwoven fabric layers (II layer) and the nonwoven fabric layer (I layer) present as an intermediate layer between the nonwoven fabric layers (II layer),
- the fiber diameter of the ultrafine fibers in the nonwoven fabric layer (I layer) is 0.1 to 4 ⁇ m
- thermoplastic resin fiber in the nonwoven fabric layer is a crystalline resin fiber having a melting point of 180 ° C. or higher.
- laminated nonwoven fabric has a thickness of 10 to 80 ⁇ m and a basis weight of 7 to 50 g / m 2 .
- the ratio (i) / (ii) of the basis weight (i) of the nonwoven fabric layer (I layer) to the basis weight (ii) of the nonwoven fabric layer (II layer) in the laminated nonwoven fabric is 1/10 to 2 / 1.
- the solid electrolytic capacitor of the present invention In the solid electrolytic capacitor of the present invention, a specific laminated nonwoven fabric is used as a separator. Therefore, the solid electrolytic capacitor of the present invention can be produced at a low cost because of a stable production process and a good yield.
- the solid electrolytic capacitor of the present invention has high performance because of its high withstand voltage, high capacity, and low ESR.
- FIG. 1 is a schematic diagram of a solid electrolytic capacitor of the present invention.
- the present invention relates to a capacitor including an anode foil and a cathode foil, and a separator disposed between the anode foil and the cathode foil, the separator being interposed between the anode foil and the cathode foil.
- the anode foil, the cathode foil, and the separator are wound on each other, the anode foil and the cathode foil have a dielectric oxide film layer, and the separator holds the solid electrolyte and the solid electrolyte.
- the nonwoven fabric comprising the nonwoven fabric and constituting the separator is a laminated nonwoven fabric having at least two nonwoven fabric layers
- the laminated nonwoven fabric is a nonwoven fabric layer comprising ultrafine fibers having a fiber diameter of 0.1 to 4 ⁇ m (I Layer) (hereinafter referred to as “ultrafine fiber nonwoven fabric layer (I layer)” or simply “nonwoven fabric layer (I layer)” or “I layer”) and thermoplastic resin fibers having a fiber diameter of 6 to 30 ⁇ m.
- Nonwoven layer (II layer) hereinafter, simply referred to as “nonwoven fabric layer (II layer)” or “II layer” is provided.
- FIG. 1 is a schematic diagram of a solid electrolytic capacitor of the present invention.
- Capacitor element 10 as a solid electrolytic capacitor of the present invention is formed by winding anode foil 2, cathode foil 3, and separator 1 which is a laminated nonwoven fabric.
- separator 1 which is a laminated nonwoven fabric.
- four layers of a separator 1, an anode foil 2, a separator 1, and a cathode foil 3 are sequentially wound.
- the capacitor element is configured such that the separator 1 is interposed between the anode foil 2 and the cathode foil 3, that is, the anode foil and the cathode foil sandwich the separator. .
- the lead foils 4 and 5 for connecting the respective electrodes to the outside are connected to the anode foil 2 and the cathode foil 3.
- the connection is realized by a known method such as stitching, ultrasonic welding, or caulking.
- the lead wires 4 and 5 are conductive metal terminals including a connection portion between the anode foil 2 and the cathode foil 3 and an external connection portion that is responsible for electrical connection with the outside. Electrical energy is finally led out from the wound capacitor element 10 through such terminals.
- the lead wire is made of, for example, aluminum. It is also preferable that the lead wire be processed such as plating in order to improve conductivity.
- the method for producing the solid electrolytic capacitor according to the present invention is not particularly limited, and a known method can be used.
- the capacitor element having the structure shown in FIG. 1 can be manufactured by the following method. First, an anode foil on which a dielectric oxide film layer is formed by chemical conversion or the like is prepared, and the anode foil, the separator, the cathode foil, and the separator are stacked in this order, and these are wound. Next, a solid electrolyte layer is formed between the electrodes by impregnating the separator of the wound product with a liquid that is a material of the solid electrolyte.
- a liquid (a combination of various electrolyte monomers and an initiator, a polymerization agent, etc., or a conductive substance such as a complex) impregnated with a solid electrolyte material, followed by polymerization (in the case of a monomer), complex
- a treatment according to the material of the solid electrolyte, such as formation (in the case of a complex) is performed to form a solid electrolyte layer.
- a solid electrolyte layer may be formed by impregnating a conductive polymer dispersion aqueous solution or a conductive polymer solution in which fine particles of a polymer in which a polymer and a dopant described later are bonded are dispersed.
- the re-forming process mentioned later may be performed and the edge part of the electrode foil of an anode and a cathode may be derivatized.
- the wound product is placed in an outer case (generally a bottomed cylindrical metal case), and then the opening is sealed with a resin or the like to form a capacitor element. .
- an outer case generally a bottomed cylindrical metal case
- the uniform dielectric oxide film layer increases the withstand voltage of the capacitor element, can suppress the leakage current, and can manufacture a capacitor element having a high capacity. Therefore, if the binder removal step is unnecessary, heat generated by the carbonization step and the drying step can be further reduced, and a dielectric oxide film layer can be made uniform, a higher performance capacitor element can be obtained.
- the lead wire plating is also oxidized by the heat applied in these steps, a lead wire made of silver or the like having high oxidation resistance has been conventionally used.
- One major object of the present invention is to simplify such a conventional process and to make the dielectric oxide layer uniform.
- the separator includes a solid electrolyte and a nonwoven fabric holding the solid electrolyte, and the nonwoven fabric is a laminated nonwoven fabric having at least two nonwoven fabric layers.
- the laminated nonwoven fabric includes a nonwoven fabric layer (I layer) and a nonwoven fabric layer (II layer).
- the laminated nonwoven fabric is a laminated nonwoven fabric having at least two layers, and has a nonwoven fabric layer (I layer) composed of ultrafine fibers having a fiber diameter of 0.1 to 4 ⁇ m and a fiber diameter of 6 to 30 ⁇ m.
- a nonwoven fabric layer (II layer) composed of thermoplastic resin fibers.
- the nonwoven fabric layer is composed of ultrafine fibers having a fiber diameter of 0.1 to 4 ⁇ m.
- the term “extra fine fiber” intends a fiber having a fiber diameter in the range of 0.1 to 4 ⁇ m.
- the I layer may contain fibers other than the ultrafine fibers as long as the effects of the present invention are not impaired, but typically comprises only the ultrafine fibers. If the fiber diameter is 4 ⁇ m or less, the fiber gap of the nonwoven fabric layer does not become too large, so liquid (monomer, etc.) as a solid electrolyte material easily enters the fiber gap, resulting in the formation of a dense and uniform solid electrolyte layer it can.
- the fiber diameter is small, the surface area per weight of the ultrafine fiber nonwoven fabric layer (I layer), that is, the specific surface area can be increased.
- a solid electrolyte layer that is thin, uniform, has many contacts with the nonwoven fabric layer (I layer), and has a large area can be formed on the surface of the ultrafine fiber. Therefore, even if there is little quantity of a solid electrolyte, the electrical resistance which passes along a nonwoven fabric layer can be made low.
- the chemical conversion liquid used to form the dielectric oxide film layer (hereinafter sometimes simply referred to as “chemical conversion liquid”) easily penetrates into the details of the nonwoven fabric used as the separator, and the surface of the anode foil and the cathode foil has a dielectric.
- An oxide film layer (for example, an aluminum oxide layer in the case of an aluminum electrolytic capacitor) can be formed with a uniform thickness.
- the fiber diameter is 0.1 ⁇ m or more, ultrafine fibers can be easily formed, and the formed ultrafine fibers do not fluff or form lint due to surface friction or the like. Thereby, the process of manufacturing a capacitor is improved.
- the dielectric oxide film layer and the solid electrolyte layer can be formed in a uniform structure.
- the fiber diameter of the nonwoven fabric layer (I layer) is preferably 0.3 to 4 ⁇ m, more preferably 0.3 to 3.5 ⁇ m, still more preferably 0.5 to 3 ⁇ m.
- the fiber diameter described in this specification can be evaluated by measuring the fiber diameter with a microscope.
- the nonwoven fabric layer (II layer) is composed of thermoplastic resin fibers having a fiber diameter of 6 to 30 ⁇ m. If the fiber diameter is 30 ⁇ m or less, the fiber diameter is not too large and a uniform inter-fiber distance can be obtained, so that a dense and uniform solid electrolyte layer can be formed.
- the nonwoven fabric layer (II layer) may contain fibers other than thermoplastic resin fibers having a fiber diameter of 6 to 30 ⁇ m within a range not impairing the effects of the present invention. It consists only of plastic resin fibers. Just as the fiber diameter in the I layer is important, the fiber diameter in the II layer is also important.
- the fiber diameter of the fibers constituting the II layer is 30 ⁇ m or less, when the I layer and the II layer are laminated so as to be in contact with each other, the ultrafine fibers constituting the I layer are more closely spaced between the fibers constituting the II layer. Evenly arranged. Thereby, in a laminated nonwoven fabric, an ultrafine fiber is distributed more uniformly. As a result, a dense and uniform solid electrolyte layer can be formed through a layer of extra fine fibers distributed more uniformly. On the other hand, if the fiber diameter of the fibers constituting the II layer is 6 ⁇ m or more, the laminated nonwoven fabric has sufficient strength and the winding process is stabilized.
- the laminated nonwoven fabric serving as the separator does not lose its shape, so that the capacitor can be stably formed.
- the fiber diameter of the fibers constituting the II layer is preferably 8 to 25 ⁇ m, more preferably 9 to 20 ⁇ m.
- an ultrafine fiber nonwoven fabric layer (I layer) can be provided inside or on the surface of the nonwoven fabric configured as a separator.
- the I layer since the fiber diameter is small, the fiber gap is small, the fibers are uniformly distributed, and the specific surface area is large.
- the nonwoven fabric layer (II layer) comprised with a thermoplastic resin fiber can be provided as a support layer which reinforces a microfiber nonwoven fabric layer (I layer).
- the nonwoven fabric layer (II layer) protects the ultrafine fiber nonwoven fabric layer (I layer) from deformation and damage, the defect rate can be lowered and the capacitor can be stably produced.
- the separator is a laminated nonwoven fabric having a nonwoven fabric layer (I layer) and a nonwoven fabric layer (II layer) having the fiber diameter defined above.
- a laminated nonwoven fabric as the separator, for example, a denser nonwoven fabric structure can be formed as compared with the case where each of the I layer and the II layer is used alone, and as a result, a denser solid electrolyte layer is obtained.
- the separator is a laminated nonwoven fabric having a nonwoven fabric layer (I layer) and a nonwoven fabric layer (II layer) having the fiber diameter defined above.
- a liquid containing a material for forming a solid electrolyte for example, a monomer that is a polymerizable compound that gives a conductive polymer and an initiator and an auxiliary agent for polymerizing the monomer, or a conductive polymer
- a material for forming a solid electrolyte for example, a monomer that is a polymerizable compound that gives a conductive polymer and an initiator and an auxiliary agent for polymerizing the monomer, or a conductive polymer
- the liquid of a conductive polymer dispersion aqueous solution or a conductive polymer solution in which fine particles are dispersed spreads more uniformly over the nonwoven fabric layer.
- the liquid for example, monomer
- the liquid is impregnated in the fiber gaps of the nonwoven fabric layer, and then forms a uniform solid electrolyte as a result, for example, by sequential polymerization with an initiator or the like.
- the viscosity of the liquid also changes to form a more viscous material, and finally a dense solid electrolyte layer is formed.
- the interfacial tension between the fiber and the conductive material changes sequentially, and the conductive material becomes more viscous, so if the fibers are too far apart, a heterogeneous structure is likely to occur, It becomes difficult to form a dense and uniform solid electrolyte layer.
- the I layer is essential for forming a dense structure
- the II layer makes the laminated nonwoven fabric more stable (ie, improves the tensile strength, bending strength and surface wear of the nonwoven fabric), and This is essential for stably holding the I layer in each step.
- the laminated nonwoven fabric having the I layer and the II layer is advantageous for producing a solid electrolytic capacitor having good performance.
- the laminated nonwoven fabric in order to produce a solid electrolytic capacitor more stably, a laminated nonwoven fabric composed of three layers is more preferable. More specifically, the laminated nonwoven fabric is preferably composed of two nonwoven fabric layers (II layer) and the nonwoven fabric layer (I layer) existing as an intermediate layer between the nonwoven fabric layers (II layer). In this case, the nonwoven fabric layer (II layer) constitutes both surfaces of the laminated nonwoven fabric, and the I layer exists as an intermediate layer sandwiched between the II layers.
- both surfaces of the laminated nonwoven fabric are II layers, when an external force such as friction is applied, the surface is not worn, fluff and lint are not formed, and as a result, the performance of the capacitor element is better, and The defective rate becomes smaller.
- friction since friction is applied to the separator, it is preferable to suppress the deterioration of the surface structure by the three-layer structure.
- the laminated nonwoven fabric comprises two nonwoven fabric layers (II layer) and the nonwoven fabric layer (I layer) existing as an intermediate layer between the nonwoven fabric layers (II layer).
- the fiber diameter of the ultrafine fibers in (I layer) is 0.1 to 4 ⁇ m, and the fiber diameter of the thermoplastic resin fibers in the nonwoven fabric layer (II layer) is 6 to 30 ⁇ m.
- the thickness of the laminated nonwoven fabric used as the separator is preferably 10 to 80 ⁇ m. If the thickness of the laminated nonwoven fabric is 10 ⁇ m or more, the slit laminated nonwoven fabric has high strength, can be wound well in the winding process, and has a low defect rate in the processing process. In the capacitor element, the width of the separator is usually several mm. The narrower this width, the lower the strength of the separator and the easier it is to cut. If the thickness is 10 ⁇ m or more, the gap between the electrodes can be sufficiently maintained in the process of manufacturing the capacitor element, and no insulation failure occurs in the capacitor element.
- the thickness of the laminated nonwoven fabric is 80 ⁇ m or less, the thickness when the cathode foil, the anode foil, and the separator are wound does not become too large, and a small product can be obtained as an electronic component. Further, if the capacitor part has a prescribed size, a larger area can be wound, and the capacity becomes higher per unit volume. Moreover, if thickness is 80 micrometers or less, the water
- the basis weight of the laminated nonwoven fabric used as the separator is preferably 7 to 50 g / m 2 . If the basis weight of the laminated nonwoven fabric is 7 g / m 2 or more, the slit laminated nonwoven fabric has high strength, can be wound well in the winding process, and has a low defect rate in the processing process.
- the chemical liquid and the liquid used as the material for the solid electrolyte can easily soak into the laminated nonwoven fabric used as the separator. Can be formed.
- the basis weight of the laminated nonwoven fabric is 7 g / m 2 or more, the laminated nonwoven fabric itself can be easily formed, and a laminated nonwoven fabric free from spots (that is, a non-uniform shape on the surface) can be obtained, resulting in defective capacitor elements. The rate can be reduced.
- the basis weight of the laminated nonwoven fabric is 50 g / m 2 or less, the amount of moisture brought into the capacitor element from the laminated nonwoven fabric can be reduced, so that good capacitor element performance can be obtained for the reasons described above.
- the basis weight of the laminated nonwoven fabric is 50 g / m 2 or less, when a certain thickness is required for the separator, the basis weight of the laminated nonwoven fabric is not too large, and the fiber gap for forming the solid electrolyte layer is appropriate.
- the electric conductivity of the capacitor element can be increased, and a low ESR element can be formed.
- the basis weight of the laminated nonwoven fabric is more preferably 15 to 40 g / m 2 .
- the laminated nonwoven fabric has a thickness of 10 to 80 ⁇ m and a basis weight of 7 to 50 g / m 2 .
- the apparent density of the laminated nonwoven fabric calculated from the above thickness and basis weight is preferably 0.2 to 0.8 g / cm 3 .
- the basis weight of each of the nonwoven fabric layer (I layer) and the nonwoven fabric layer (II layer) and the ratio of the nonwoven fabric layer (I layer) to the nonwoven fabric layer (II layer) are as follows: The range described is preferable.
- the basis weight of the nonwoven fabric layer (I layer) is preferably 0.5 to 25 g / m 2 , and more preferably 1.5 to 10 g / m 2 . If the basis weight of the I layer is 0.5 g / m 2 or more, the inter-fiber distance does not become too large, and the conductive monomer or the like for forming the solid electrolyte layer easily enters the fiber gap, making it more uniform and dense. A solid electrolyte layer can be formed. Further, the chemical conversion liquid can easily penetrate into the details of the nonwoven fabric to be the separator, and a dielectric oxide film layer (for example, an aluminum oxide layer in the case of an aluminum electrolytic capacitor) can be formed with a more uniform thickness.
- a dielectric oxide film layer for example, an aluminum oxide layer in the case of an aluminum electrolytic capacitor
- the basis weight of the I layer is 25 g / m 2 or less, it is easy to set the thickness of the entire laminated nonwoven fabric within a preferable range, and the cost is suppressed without consuming more solid electrolyte layers formed in the nonwoven fabric layer than necessary. I can do it.
- the basis weight of the nonwoven fabric layer is preferably 5 to 35 g / m 2 , more preferably 10 to 30 g / m 2 . If the basis weight of the II layer is 5 g / m 2 or more, in the laminated nonwoven fabric, the I layer, which is an ultrafine fiber layer, can obtain a sufficiently uniform inter-fiber distance, thereby forming a denser and more uniform solid electrolyte layer. it can. That is, as described in the fiber diameter regulation, it is possible to arrange the ultrafine fibers constituting the I layer more uniformly between the fibers constituting the II layer, and as a result, the laminated nonwoven fabric is more uniform and ultrafine. Fibers can be distributed.
- the basis weight of the II layer is 5 g / m 2 or more, the laminated nonwoven fabric has good strength, the winding process is stable, and the laminated nonwoven fabric that becomes a separator even in the subsequent process of manufacturing a capacitor element Will not lose shape. As a result, a capacitor can be manufactured stably, and as a result, an element with good performance can be obtained.
- the basis weight of the II layer is 35 g / m 2 or less, it is easy to set the thickness of the entire laminated nonwoven fabric within a preferable range.
- the ratio of the basis weight (i) of the nonwoven fabric layer (I layer) and the basis weight (ii) of the nonwoven fabric layer (II layer) in the laminated nonwoven fabric is not limited to the following, but gives the laminated nonwoven fabric good strength,
- the basis weight of the I layer and the II layer (for example, when the II layer is on both surfaces of the laminated nonwoven fabric, two or more I layers and / or two or more layers)
- the ratio (i) / (ii) of the total for each layer is preferably 1/10 to 2/1.
- the ratio is more preferably 1/8 to 1/1.
- the basis weight of the I layer is larger than 1/10 in (i) / (ii)
- the I layer is easily formed without unevenness in the surface direction of the nonwoven fabric.
- the basis weight of the II layer is larger than 2/1 in (i) / (ii)
- the entire laminated nonwoven fabric is easy to obtain good strength that is not deformed at the time of slitting, winding, and heat treatment.
- the thickness and basis weight of the laminated nonwoven fabric and each nonwoven fabric layer constituting the laminated nonwoven fabric should be appropriately selected within a range in which the thickness and basis weight required for the separator can be secured.
- thermoplastic resin fibers in the nonwoven fabric layer (II layer) are preferably thermoplastic synthetic long fibers.
- a nonwoven fabric composed of thermoplastic synthetic long fibers can have sufficient strength even in a micro slit product.
- a nonwoven fabric composed of thermoplastic synthetic long fibers is less susceptible to lint and is more resistant to wear when slitting and when subjected to external friction. As a result, the manufacturing process of the solid electrolytic capacitor element is more stable, and a high-performance capacitor element is obtained.
- thermoplastic synthetic long fiber the long fiber comprised by the crystalline resin enumerated later is mentioned, for example.
- thermoplastic resin fibers for example, the crystalline resin and a thermoplastic resin having a melting point lower than the melting point of the crystalline resin can be mixed and used.
- fibers composed of a single resin may be mixed, or two or more resins having different melting points may be contained in one fiber.
- a sheath core yarn comprising a core and a sheath, and the melting point of the sheath thermoplastic resin being lower than the melting point of the core thermoplastic resin can be used.
- a sheath core yarn having a PET core and a copolymer PET sheath can be used.
- the thermoplastic resin in the nonwoven fabric layer (II layer) is preferably a crystalline resin having a melting point of 180 ° C. or higher. If the melting point is 180 ° C. or higher, a stable separator structure can be obtained even after each thermal history in the capacitor manufacturing process (process that takes heat in capacitor element manufacturing, such as a process of removing drying, carbonization, and thermal strain). Can be formed. If the melting point is 180 ° C. or higher, when the solid electrolytic capacitor of the present invention is mounted on a circuit board as a capacitor component, the capacitor element structure is stably maintained against heat applied by general soldering or reflow soldering. Capacitor performance degradation is prevented and the defect rate is reduced.
- the melting point of the thermoplastic resin which is the crystalline resin is preferably 220 ° C. or higher, more preferably 240 ° C. or higher, and preferably 350 ° C. or lower.
- the above-described effects are favorably exhibited.
- the “crystalline resin” described in the present specification means a resin having a crystallinity of 10% or more measured by a differential scanning calorimeter (DSC) in a nonwoven fabric state.
- DSC differential scanning calorimeter
- ⁇ H the heat of fusion
- Xc the crystallinity
- Xc ( ⁇ HTm ⁇ HTcc) / ( ⁇ H0) * 100 (1)
- Xc crystallinity (%)
- ⁇ HTm heat of fusion at melting point (J / g)
- ⁇ HTcc heat of crystallization (J / g)
- ⁇ H0 heat of fusion at 100% crystallinity of resin Literature value (J / g).
- crystalline resins having a melting point of 180 ° C. or higher include polyalkylene terephthalate resins (PET, PBT, PTT, etc.) and derivatives thereof; polyamide resins such as N6, N66, N612 and derivatives thereof; And polyoxymethylene ether resins (POM, etc.), PEN, PPS, PPO, polyketone resins, polyketone resins such as PEEK; thermoplastic polyimide resins such as TPI; Also preferred are copolymers or mixtures based on these resins. In a range where the practical strength is not affected, the modification may be performed by adding a small amount of a low melting point component such as polyolefin.
- a low melting point component such as polyolefin.
- polyamide resins such as N6, N66, and N612 and derivatives thereof have a large water absorption rate as a synthetic resin. Therefore, from the viewpoint of water absorption, polyamide resins and derivatives thereof are more Other resins are more advantageous.
- PET resin, PPS resin, and PEEK resin are more preferable from the viewpoints of ease, versatility, and cost when manufacturing fibers and nonwoven fabrics.
- electrical characteristics such as dielectric constant and tan ⁇
- PET resin, PPS resin, PPO resin, and PEEK resin are preferable. Considering that it remains in the capacitor element, it is preferable to select a resin with good electrical characteristics in order to achieve a lower ESR.
- the thermoplastic resin used for forming the nonwoven fabric layer (II layer) is appropriately selected according to the intended use of the solid electrolytic capacitor of the present invention.
- the constituent material of the non-woven fabric layer (I layer) is not particularly limited as long as it is an ultrafine fiber having a fiber diameter of 0.1 to 4 ⁇ m, and may be a thermoplastic resin, for example, a thermoplastic such as cellulose fibril. There may be no material.
- a thermoplastic resin is preferably used similarly to the above-mentioned nonwoven fabric layer (II layer).
- polyalkylene terephthalate resins PET, PBT, PTT, etc.
- polyamide resins such as N6, N66, N612 and derivatives thereof
- polyoxymethylene ether resins POM, etc.
- PEN polyoxymethylene ether resin
- PPS polyoxymethylene ether resin
- PPO polyketone resin
- PEEK polyketone resin
- thermoplastic polyimide resin such as TPI
- copolymers or mixtures based on these resins More preferably, it is a thermoplastic resin having a low water absorption rate as in the case of the non-woven fabric layer (II layer) described above.
- PET resin, PPS resin, and PEEK resin are more preferable from the viewpoints of ease, versatility, and cost when manufacturing fibers and nonwoven fabrics.
- electrical characteristics such as dielectric constant and tan ⁇
- PET resin, PPS resin, PPO resin, and PEEK resin are preferable.
- the thermoplastic resin used for forming the nonwoven fabric layer (I layer) is appropriately selected according to the intended use of the solid electrolytic capacitor of the present invention.
- the resin forming the nonwoven fabric layer (I layer) and the nonwoven fabric layer (II layer) constituting the laminated nonwoven fabric may be the same material or different materials, but for the purpose of more uniformly forming the laminated nonwoven fabric, the same material is used. It is preferable that When the I layer and II layer are formed of the same resin, it is easy to form a non-woven fabric with more uniform fiber gaps. When such non-woven fabric is used as a separator, a uniform and dense solid electrolyte layer is formed. It's easy to do.
- Nonwoven fabric is composed of fibers and voids that are the gaps between the fibers, but the shape of the voids is generally random.
- a general spunbonded nonwoven fabric fiber diameter: 15 ⁇ m to 40 ⁇ m
- the average pore size distribution exceeds 30 ⁇ m
- the maximum pore size exceeds 50 ⁇ m. That is, voids having an approximate diameter of 50 ⁇ m or more are included in the nonwoven fabric.
- a liquid such as an electrolyte monomer for forming a conductive polymer
- a liquid such as an electrolyte monomer for forming a conductive polymer
- the hole is a portion where no electrolyte layer is present.
- performance degradation increase in internal resistance and insufficient capacity of the capacitor element.
- the width of the wound separator is thin, it is several millimeters, and the separator having a large hole diameter not only does not improve the performance, but also leads to an increase in the defect rate.
- the laminated nonwoven fabric used in the present invention has a nonwoven fabric layer (I layer) composed of ultrafine fibers, so that the distance between the fibers is reduced, that is, the pore diameter is reduced and a uniform solid electrolyte is formed. It's easy to do.
- the average pore diameter of the laminated nonwoven fabric in the present invention is preferably 0.3 ⁇ m or more and 20 ⁇ m or less. The average pore diameter is more preferably 1 ⁇ m to 15 ⁇ m.
- the chemical conversion liquid and the liquid used as the material for the solid electrolyte can easily enter the pores and have high withstand voltage, high Capacitance and low internal resistance can be realized.
- the distance is 20 ⁇ m or less, the distance between fibers is moderate, and a liquid film such as a monomer for forming a solid electrolyte is easily stretched. As a result, a good solid electrolyte layer can be formed. Capacitor elements with high capacitance and low internal resistance can be realized.
- the average pore size is 0.3 ⁇ m or more, the time required for the chemical liquid and the liquid used as the material of the solid electrolyte (such as a monomer for forming the conductive polymer) to penetrate does not become too long. Time can be designed efficiently.
- the manufacturing method of each nonwoven fabric layer used in the present invention is not limited.
- the production method of the nonwoven fabric layer (II layer) can preferably be a spunbond method, a dry method, a wet method, or the like.
- the production method of the ultrafine fiber nonwoven fabric layer (I layer) is preferably a dry method using ultrafine fibers, a production method such as a wet method, or an electrospinning or meltblown method. From the viewpoint that an ultrafine fiber nonwoven fabric layer can be easily and densely formed, the nonwoven fabric layer (I layer) is particularly preferably formed by a melt blown method. Further, the fiber may be used for producing a nonwoven fabric after realizing splitting or fibrillation by beating, partial dissolution or the like.
- thermal bonding For example, a method of jetting a high-speed water stream and three-dimensional entanglement, and a method of integrating with a particulate or fibrous adhesive.
- thermal bonding a method of jetting a high-speed water stream and three-dimensional entanglement, and a method of integrating with a particulate or fibrous adhesive.
- thermal bonding a method of jetting a high-speed water stream and three-dimensional entanglement, and a method of integrating with a particulate or fibrous adhesive.
- thermal bonding examples include integration by hot embossing (hot embossing roll method) and integration by high-temperature hot air (air-through method). Integration by thermal bonding is preferable from the viewpoint of maintaining the tensile strength and bending flexibility of the nonwoven fabric and maintaining heat resistance stability.
- Integration by thermal bonding is also preferable in that a laminated nonwoven fabric having a plurality of nonwoven fabric layers can be formed without using a binder.
- a binder is used when fibers are integrated to form a laminated nonwoven fabric, the binder remains in the capacitor element. If the binder does not deteriorate the capacitor element performance, there is no particular problem. However, when the deterioration of the capacitor performance is promoted by the binder, a step for removing the binder is newly required. In addition, when a step for removing the binder is necessary, a volatile solvent such as water or alcohol is usually used, so that there is a concern that this solvent remains in the element.
- the binder had an adverse effect on the formation of a good metal oxide film layer and the formation of a solid electrolyte layer. That is, when the binder remains, the binder is adsorbed on the surface of the metal foil, so that pinholes are formed in the oxide film layer and the thickness of the oxide film layer tends to be non-uniform. These led to a decrease in withstand voltage or a short circuit. In addition, when the formation of the solid electrolyte layer was inhibited due to the mixing of the binder, the decrease in capacity led to an increase in internal resistance. For the above reasons, a laminated nonwoven fabric that is integrated only by heat and does not use a binder is preferable.
- Integration by thermal bonding can be realized by thermally bonding two or more nonwoven fabric layers constituting the laminated nonwoven fabric.
- the thermal bonding step is performed, for example, by bonding using a flat roll at a temperature lower by 50 to 120 ° C. than the melting point of the thermoplastic resin (preferably a long thermoplastic resin fiber) at a linear pressure of 100 to 1000 N / cm. Can do. If the linear pressure in the thermal bonding step is less than 100 N / cm, it may be difficult to obtain sufficient adhesion and to develop sufficient strength. On the other hand, if it exceeds 1000 N / cm, the deformation of the fiber becomes large, the apparent density becomes high, and it may be difficult to obtain the effect of the present invention.
- a spunbond nonwoven fabric layer a meltblown nonwoven fabric layer and / or a spunbond nonwoven fabric layer are sequentially produced, and these are laminated and pressure-bonded with an embossing roll or a hot press roll.
- This method is preferable for the purpose of obtaining a uniform nonwoven fabric with a low basis weight because it can form a laminated nonwoven fabric with the same material and can be produced on a continuous integrated production line.
- one or more spunbond nonwoven layers are spun on a conveyor using a thermoplastic resin (preferably a thermoplastic synthetic resin), and a thermoplastic resin (preferably a thermoplastic synthetic resin) is used on the spunbond nonwoven fabric layer.
- One or more ultrafine fiber nonwoven fabric layers having a fiber diameter of 0.1 to 4 ⁇ m are sprayed by the melt blown method, and then a nonwoven fabric composed of thermoplastic resin fibers using a thermoplastic resin (preferably a thermoplastic synthetic resin).
- a method of laminating one or more layers (preferably a thermoplastic synthetic long-fiber nonwoven fabric) and then integrating these layers by pressure bonding using an embossing roll or a flat roll is preferable.
- an ultrafine fiber nonwoven fabric layer by a melt blown method is directly sprayed on a layer composed of thermoplastic resin fibers (preferably a thermoplastic synthetic long fiber nonwoven fabric layer).
- the ultrafine fibers can be penetrated into a layer composed of thermoplastic resin fibers (preferably a thermoplastic synthetic long fiber nonwoven fabric layer).
- the strength of the structure of the laminated nonwoven fabric itself is obtained by intruding and fixing the ultrafine fibers by the melt-blown method into a layer composed of thermoplastic resin fibers (preferably a thermoplastic synthetic long-fiber nonwoven fabric layer).
- the movement of the ultrafine fiber nonwoven fabric layer due to external force is less likely to occur, so that the voids in the nonwoven fabric layer (preferably the thermoplastic synthetic continuous fiber nonwoven fabric layer) composed of thermoplastic resin fibers are formed by the ultrafine fiber layer. It can be made uniform. This facilitates the formation of a laminated nonwoven fabric having the above-mentioned appropriate inter-fiber distance and the appropriate pore size distribution described above. That is, according to the above-described method, in the laminated nonwoven fabric, a part of the I layer is embedded in the II layer and the continuous I layer can be maintained. Diffusion of the monomer (such as a monomer for forming a conductive polymer) becomes uniform.
- the monomer such as a monomer for forming a conductive polymer
- the crystallinity of fibers formed by the meltblown method can be adjusted to a range of 5 to 40% under general meltblown spinning conditions.
- the crystallinity can be evaluated by, for example, the method using DSC described above. Specifically, the polymer forming the laminated nonwoven fabric was measured using a viscosity tube in a constant temperature water bath having a concentration of 0.01 g / mL and a temperature of 35 ° C. when o-chlorophenol (OCP) was used as a solvent.
- OCP o-chlorophenol
- a melt-blown fiber is constituted using a resin selected from PET resin and PPS resin, and the solution viscosity of the resin is ( ⁇ sp / c) is preferably 0.2 to 0.8.
- the crystallinity of the meltblown fiber is more preferably 10 to 40%.
- the laminated nonwoven fabric is preferably calendered.
- a more uniform structure can be given to the laminated nonwoven fabric.
- the melting point of the thermoplastic resin fibers preferably the thermoplastic resin long fibers
- the laminated nonwoven fabric has good strength, and the apparent density can be in a particularly preferable range (for example, within the range described in the examples of the present specification).
- thermoplastic resin fiber preferably thermoplastic resin long fiber
- the difference is less than 10 ° C.
- the apparent density tends to be too high
- thermoplastic resin When the melting point is lower than the melting point of the fiber (preferably a long thermoplastic resin fiber) and the difference exceeds 100 ° C., it is difficult to obtain sufficient strength, and the surface becomes fuzzy and the surface smoothness is impaired. There is a tendency that a uniform structure is not easily obtained as an element.
- the laminated nonwoven fabric is hydrophilized.
- the nonwoven fabric is easily impregnated with the chemical conversion liquid and the monomer for forming the solid electrolyte, so that a higher performance capacitor element can be manufactured.
- hydrophilization processing physical processing methods: that is, hydrophilization by corona treatment or plasma treatment, as well as chemical processing methods: introduction of surface functional groups (oxidation treatment, etc., sulfonic acid groups, carboxylic acids Group), water-soluble polymers (PVA, polystyrene sulfonic acid, and polyglutamic acid) and surfactants (nonionic, anionic, cationic, and amphoteric surfactants), etc. Processing with an agent is employed.
- the amount of treatment agent used, the amount of functional group introduced, and the like can be selected depending on the affinity with the monomer or the like for forming the solid electrolyte.
- the amount of processing (that is, the mass of the treatment agent and the functional group to be introduced relative to the mass of the laminated nonwoven fabric) is: It is preferable that it is 3 mass% or less.
- the solid electrolyte is typically held by a non-woven fabric as a solid electrolyte layer.
- the conductive substance used for forming the solid electrolyte is not particularly limited.
- a monomer that is, an electrolyte monomer
- a conductive polymer dispersion aqueous solution or a conductive polymer solution in which fine particles of a conductive polymer are dispersed, Liquid can be used.
- electrolyte monomer examples include ethylene dioxythiophene (for example, 3,4-ethylenedioxythiophene), pyrrole, thiazole, acetylene, phenylene vinylene (for example, paraphenylene vinylene), aniline, phenylene, thiophene, imidazole, furan, and the like. Examples thereof include monomers that are polymerizable compounds such as these substituted derivatives.
- the conductive polymer examples include polyethylene dioxythiophene, polypyrrole, polythiazole, polyacetylene, polyphenylene vinylene (for example, poly-p-phenylene vinylene), polyaniline, polyvinylene, polyphenylene, polythiophene, polyimidazole, polyfuran, and the like.
- electron conjugated polymers such as derivatives.
- the conductive polymer containing the substance which provides a dopant to these electron conjugated polymer is preferable.
- tetracyanoquinodimethane complex (TCNQ complex) and derivatives thereof can be used as other conductive substances.
- the oxidizing agent for solidifying it, a polymerization agent, or a complex formation agent can be selected suitably, and it is each used in order to form a uniform solid electrolyte.
- a polymer of polystyrene sulfonic acid or polyvinyl sulfonic acid as a dopant and the above conductive polymer is formed, and this is impregnated into a non-woven fabric to form a solid electrolyte layer.
- the nonwoven fabric is impregnated with a polymer of 3,4-ethylenedioxythiophene and polystyrene sulfonic acid or polyvinyl sulfonic acid to form a solid electrolyte layer, so that the solid electrolyte layer is uniformly formed on the separator.
- the conductivity can be further improved.
- the material for forming the solid electrolyte is not limited, and is selected by those skilled in the art so as to form a more uniform and highly conductive solid electrolyte.
- a capacitor element using polyethylenedioxythiophene as a solid electrolyte, 3,4-ethylenedioxythiophene and an oxidizing agent using p-toluenesulfonic acid ferric acid dissolved in ethylene glycol are used.
- the mixed solution obtained by mixing is impregnated into a capacitor element (that is, a capacitor element in which an anode foil and a cathode foil are wound through a separator), and the temperature is preferably 25 to 100 ° C. for 15 to 2 hours, preferably A method of repeating the step of leaving at 50 ° C. for 4 hours a predetermined number of times can be employed. Details of this method are described in JP-A-9-293639.
- the material (monomer, etc.) for forming the solid electrolyte has a low viscosity in the initial state when impregnated into the nonwoven fabric, and the material (monomer, etc.) usually develops the material. Impregnated with solvent. When this material (monomer or the like) proceeds to a solid state due to polymerization or the like, first, it becomes a liquid state with a higher viscosity and finally becomes a solid state.
- the nonwoven fabric is more uniformly impregnated with the material (monomer, etc.) even in a low-viscosity state, and the nonwoven fabric is more uniformly electrolyted even in a state where the electrolyte cohesive force increases as the viscosity increases to form an electrolyte layer. It is necessary to hold the layer.
- the inter-fiber distance of the non-woven fabric is kept moderate. Therefore, formation of a uniform solid electrolyte, which is one important factor for manufacturing a high-performance solid electrolytic capacitor, can be realized.
- the anode foil and cathode foil used in the present invention are usually metal foil materials. It is preferable to use a metal having a valve action for the purpose of exhibiting good performance as a capacitor. As the metal having a valve action, a commonly used metal can be used. In particular, aluminum foil and tantalum foil are preferable.
- the metal foil used for the anode and the cathode is more preferably etched to increase the area of the electrode from the viewpoint of obtaining good capacitor performance.
- anode foil a foil on which a dielectric oxide film layer is formed is used. Thereby, good capacitor performance can be obtained.
- a better foil may be selected for the purpose of improving the capacitor performance.
- the dimensions of the anode foil and the cathode foil are arbitrary depending on the specifications of the solid electrolytic capacitor to be manufactured.
- the size of the separator is also arbitrary, it is preferable to use a material having a width slightly larger than the size of the anode foil and the cathode foil according to the size of the electrode foil of both electrodes.
- the anode foil and the cathode foil are blocked by the separator without being in direct contact with each other, so that the possibility of short-circuiting is reduced.
- a tensile tension is applied to the material to be the separator. At this time, if the dimensional stability in the width direction of the separator is inferior, the tensile tension leads to performance deterioration and an increase in the defect rate.
- the anode foil has a dielectric oxide film layer on the surface.
- the dielectric oxide film layer is usually formed by forming a dielectric on the surface by chemical conversion treatment of the anode foil.
- the chemical conversion treatment can be realized by applying a voltage in a commonly used chemical conversion solution, for example, an aqueous solution of ammonium borate, ammonium adipate or the like, to generate an oxide film layer serving as a dielectric on the surface of the metal foil.
- Re-chemical conversion may be performed after winding the anode foil, the cathode foil, and the separator, in order to make the end of the electrode foil a dielectric (oxidation treatment) and to form a more uniform oxide film layer.
- Re-chemical conversion can be realized by applying a voltage in a commonly used chemical conversion solution, for example, an aqueous solution of ammonium borate, ammonium adipate or the like, to generate an oxide film layer serving as a dielectric on the surface of the metal foil.
- a commonly used chemical conversion solution for example, an aqueous solution of ammonium borate, ammonium adipate or the like
- the length direction is the MD direction (machine direction)
- the width direction is a direction perpendicular to the length direction.
- Weight per unit (g / m 2 ) According to the method specified in JIS L-1906, test specimens measuring 20 cm in length x 25 cm in width were sampled at 3 locations per 1 m in the width direction and 3 locations per 1 m in the length direction, for a total of 9 locations per 1 m ⁇ 1 m. It measured and calculated
- Thickness (mm) According to the method prescribed in JIS L-1906, the thickness of 10 locations per 1 m width was measured and the average value was determined. The load was 9.8 kPa.
- Opening hole diameter distribution (average flow hole diameter and maximum hole diameter)
- a palm porometer (model: CFP-1200AEX) manufactured by PMI was used.
- Sylwick manufactured by PMI was used as the immersion liquid, and the sample was immersed in the immersion liquid and sufficiently deaerated before measurement.
- This measurement device uses a filter as a sample, immerses the filter in a liquid with a known surface tension in advance, and applies pressure to the filter from a state in which all pores of the filter are covered with a liquid film. And the pore diameter calculated from the surface tension of the liquid. The following formula is used for the calculation.
- d C ⁇ r / P (Where d (unit: ⁇ m) is the pore size of the filter, r (unit: N / m) is the surface tension of the liquid, P (unit: Pa) is the pressure at which the liquid film of that pore size is broken, and C is a constant .)
- the cumulative filter flow rate (unit:%).
- the pore size of the liquid film that is broken at a pressure at which the cumulative filter flow rate is 50% is referred to as the average flow pore size. This average flow pore size was taken as the average pore size of the laminated nonwoven fabric of the present invention.
- the maximum pore size of the laminated nonwoven fabric of the present invention is measured by using the nonwoven fabric as the above filter sample, and the liquid film is destroyed in a range of ⁇ 2 ⁇ where the cumulative filter flow rate is 50%, that is, the pressure at which the cumulative filter flow rate is 2.3%. Of the pore diameter. Three points were measured for each sample by the above measurement method, and the average flow pore size and the maximum pore size were calculated as average values.
- Grade 5 There is no change on the surface of the nonwoven fabric.
- Grade 4 There is no pilling on the surface of the non-woven fabric, but one thread arrives on the surface and the surface is slightly rough.
- Third grade There is pilling less than 0.5 cm in length. Or fluff is floating throughout.
- Second grade There is pilling of 1 cm or more in length. Or the cotton-like thing has floated on the friction surface, or the friction surface is worn and worn down.
- Capacity Appearance Rate The actual capacitance of the manufactured solid electrolytic capacitor with respect to the capacitance measured in a 30% by mass sulfuric acid aqueous solution of the element after the dielectric oxide film layer was formed, as a percentage (%) It showed in.
- tan ⁇ Measurement was performed using an LCR meter at a measurement frequency of 120 Hz.
- Leakage current A 1000 ⁇ protective resistor was connected in series with the capacitor, a rated voltage was applied, and the measurement was made 5 minutes later.
- ESR Measurement was performed using an LCR meter at a measurement frequency of 100 kHz.
- Examples 1 to 11, 19, 22, 23, 25, 27 The laminated nonwoven fabrics of Examples 1 to 11 were produced by the following method, and performance evaluation was performed.
- a non-woven fabric layer (II layer) composed of thermoplastic resin fibers was formed.
- a solution of general-purpose PET as a thermoplastic resin
- OCP as a solvent
- the spunbond method was used to extrude the filament group toward the moving collection net surface by a spunbond method at a spinning speed of 4500 m / min. Spinned.
- the filament group was sufficiently opened by charging about 3 ⁇ C / g by corona charging, and a thermoplastic resin long fiber web was formed on the collection net.
- the fiber diameter was adjusted by changing the traction conditions.
- an ultrafine fiber nonwoven fabric layer (I layer)
- spinning temperature 300 ° C.
- the distance from the melt blown nozzle to the thermoplastic resin long fiber web was set to 100 mm
- the suction force on the collecting surface immediately below the melt blown nozzle was set to 0.2 kPa
- the wind speed was set to 7 m / sec.
- the fiber diameter and crystallinity are adjusted by adjusting the amount of heated air, and consists of a nonwoven fabric layer (II layer) composed of long thermoplastic resin fibers / a nonwoven fabric layer (I layer) composed of ultrafine fibers.
- a laminated web was obtained.
- thermoplastic resin long fiber is used as a nonwoven fabric layer (II layer) directly on the laminated web obtained above in the same manner as the formation of the thermoplastic resin long fiber web as the nonwoven fabric layer (II layer). Lamination was performed so as to obtain a predetermined fiber diameter and basis weight.
- the nonwoven fabric layer (II layer) composed of thermoplastic resin long fibers / nonwoven fabric layer (I layer) composed of ultrafine fibers / nonwoven fabric layer (II layer) composed of thermoplastic resin long fibers.
- a laminated web was obtained. The obtained laminated web was heat-bonded with a flat roll under the conditions shown in Tables 1 and 2 and then subjected to corona discharge machining (as a hydrophilization process).
- the thickness was adjusted to a desired thickness with a calender roll. As well as adjusting the apparent density, a laminated nonwoven fabric was obtained. Under the above basic conditions, the processing conditions were changed to obtain various nonwoven fabrics. (Examples 1 to 11). The composition of the obtained laminated nonwoven fabric is shown in Tables 1-2, and the performance results of the laminated nonwoven fabric are shown in Tables 4-5.
- each of the above laminated nonwoven fabrics is micro-slit to 6 mm, and this is interposed between an anode foil (aluminum foil) subjected to chemical conversion treatment and an aluminum foil to be a cathode foil, and these are wound to form a capacitor element.
- This capacitor element was re-formed with an aqueous solution of ammonium adipate.
- this capacitor element was made up of 3,4-ethylenedioxythiophene as a monomer (1 part by mass), ferric p-toluenesulfonate (2 parts by mass) as an oxidizing agent, and normal butanol (as a solvent).
- the polymer was advanced by allowing it to stand at 100 ° C., and a conductive polymer of polyethylene dioxythiophene (as a solid electrolyte) was formed between the electrode foils.
- the element thus obtained was coated with an exterior resin on its outer periphery, sealed together with a vulcanized butyl rubber sealing member in an aluminum alloy exterior case, and then sealed to produce a solid electrolytic capacitor.
- the size of the obtained capacitor was 8 mm in diameter and 10 mm in vertical dimension, and two types of products were produced (rated voltage: 25 V, rated capacitance: 30 ⁇ F). Finally, aging was performed by applying the rated voltage continuously for 1 hour (atmosphere temperature 105 ° C.).
- Examples 12, 13, 20, 21, 24, 26 Unlike Examples 1 to 11, a laminated nonwoven fabric having a two-layer structure (II layer and I layer) was used, and the other conditions were the same as in Examples 1 to 11.
- the conditions for forming the laminated nonwoven fabric and the performance thereof are shown in Tables 1-2 and 4-5, respectively.
- the capacitor performance is shown in Tables 7-8.
- Example 14 PPS (Fortron manufactured by Polyplastics) was used as the thermoplastic resin.
- the conditions for forming the nonwoven fabric are as follows.
- Layer II Melt viscosity of resin: 70 g / 10 min (measured using a capillary rheometer, measurement conditions: load 5 kg, temperature 315.6 ° C.), spinning temperature: 320 ° C., spinning speed: 8000 m / min.
- Layer I Melt viscosity of resin: 670 g / 10 min (measured in the same manner as described above, measurement conditions: load 5 kg, temperature 315.6 ° C.), spinning temperature: 340 ° C., heated air temperature: 390 ° C., heated air amount : 1000 Nm 3 / hr / m.
- the conditions for forming the laminated nonwoven fabric and the performance thereof are shown in Tables 1 and 4, respectively. Other conditions were the same as in Example 1.
- the capacitor performance is shown in Table 7.
- Example 15 As a nonwoven fabric layer (II layer), co-PET / PET sheath core short fibers having a fiber diameter of 18 ⁇ m and a fiber length of 5 mm are collected on the net to 30 g / m 2 by paper making, and then dehydrated and dried. The fibers were fused with each other by an air-through method (180 ° C., 5 m / min) to obtain a short fiber web. Next, as an intermediate layer, a melt-blown fiber to be a non-woven fabric layer (I layer) is sprayed and formed as an intermediate layer, and the non-woven fabric layer (II layer) is further formed thereon as a non-woven fabric layer (II layer).
- a non-woven fabric having the same structure as the layer (II layer) was stacked.
- the laminated web which consists of 3 layers was obtained by the above.
- the obtained laminated web was thermally bonded with a flat roll and a calender roll to obtain a laminated nonwoven fabric.
- the conditions for forming the laminated nonwoven fabric and the performance thereof are shown in Tables 1 and 4, respectively.
- the capacitor performance is shown in Table 7.
- Table 1 the melting point of the short fiber having the sheath / core structure is described in the order of the sheath / core (the same applies hereinafter).
- Example 16 PP (manufactured by Nippon Polypro Co., Ltd.) was used as the thermoplastic resin.
- the conditions for forming the nonwoven fabric are as follows. Layer II: Melt viscosity of resin: 43 g / 10 min (measured in the same manner as described above, measurement conditions: load 2.1 kg, temperature 230 ° C.), spinning temperature: 230 ° C., spinning speed: 3300 m / min.
- Layer I Melt viscosity of resin: 1500 g / 10 min (measured in the same manner as described above, measurement conditions: load 2.1 kg, temperature 230 ° C.), spinning temperature: 295 ° C., heated air temperature: 320 ° C., heated air amount : 1050 Nm 3 / hr / m.
- Tables 1 and 4 The conditions for forming the laminated nonwoven fabric and the performance thereof are shown in Tables 1 and 4, respectively.
- the capacitor performance is shown in Table 7.
- Example 17 As a non-woven fabric layer (II layer), short fibers of a co-PET / PET sheath core structure with a fiber diameter of 16 ⁇ m and a fiber length of 5 mm are collected to 11 g / m 2 on a net by a papermaking method, and after dehydration and drying A short fiber web was obtained by pressure bonding with a flat roll to such an extent that the fibers did not dissipate.
- an intermediate layer is formed thereon by blowing melt-blown fibers to be a non-woven fabric layer (I layer).
- a non-woven fabric layer (II layer) is formed thereon as Example 1.
- a thermoplastic resin long fiber web having the same structure as that in FIG.
- the obtained laminated web was thermally bonded with a flat roll and a calender roll to obtain a laminated nonwoven fabric.
- the conditions for forming the laminated nonwoven fabric and the performance thereof are shown in Tables 1 and 4, respectively.
- the capacitor performance is shown in Table 7.
- Example 18 As a non-woven fabric layer (II layer), short fibers of a co-PET / PET sheath core structure with a fiber diameter of 16 ⁇ m and a fiber length of 5 mm are collected to 11 g / m 2 on a net by a papermaking method, and after dehydration and drying A short fiber web was obtained by pressure bonding with a flat roll to such an extent that the fibers did not dissipate. Then, an intermediate layer is formed thereon by spraying meltblown fibers to be a nonwoven fabric layer (I layer) in the same manner as in Example 1. Further, a nonwoven fabric layer (II layer) is further formed thereon as Example 15. A short fiber web having the same configuration as that in FIG.
- the obtained laminated web was thermally bonded with a flat roll and a calender roll to obtain a laminated nonwoven fabric.
- the conditions for forming the laminated nonwoven fabric and the performance thereof are shown in Tables 1 and 4, respectively.
- the capacitor performance is shown in Table 7.
- a spunbonded nonwoven fabric (E05025, fiber diameter 16 ⁇ m, basis weight 25 g / m 2 ) manufactured by Asahi Kasei Fiber was used as an example of a nonwoven fabric consisting only of a nonwoven fabric layer (II layer).
- the composition of the nonwoven fabric is shown in Table 3, and the performance results are shown in Table 6.
- the capacitor performance is shown in Table 9.
- PET short fibers having a fiber diameter of 16 ⁇ m and a fiber length of 5 mm were collected on a net so as to be 25 g / m 2 by a papermaking method to obtain a web.
- polyvinyl alcohol dissolution temperature: 70 ° C.
- This web was dehydrated and dried, and thermocompression bonded with a calender roll to obtain a nonwoven fabric consisting only of a nonwoven fabric layer (II layer).
- the obtained nonwoven fabric and its evaluation results are shown in Tables 3 and 6.
- the capacitor performance is shown in Table 9.
- PET short fibers having a fiber diameter of 10 ⁇ m and a fiber length of 5 mm were collected on a net so as to be 25 g / m 2 by a papermaking method to obtain a web.
- polyvinyl alcohol dissolution temperature: 70 ° C.
- This web was dehydrated and dried, and thermocompression bonded with a calender roll to obtain a nonwoven fabric consisting only of a nonwoven fabric layer (II layer).
- the obtained nonwoven fabric and its evaluation results are shown in Tables 3 and 6.
- the capacitor performance is shown in Table 9.
- Example 10 As the non-woven fabric, a wet non-woven fabric (RCE 3040, fiber diameter 8 ⁇ m, basis weight 40 g / m 2 ) made of Nippon Advanced Paper's rayon fiber was used. The composition of the nonwoven fabric is shown in Table 3, and the performance results are shown in Table 6. The capacitor performance is shown in Table 9.
- PET represents polyethylene terephthalate
- MB represents a meltblown web
- SB represents a spunbond web
- SL represents a spunlace web.
- the solid electrolytic capacitors according to the examples of the present invention show superior performance in at least one of the capacitor performances as compared with the comparative examples.
- the solid electrolytic capacitor of the present invention is suitably used in the field of various electronic devices.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
該陽極箔と該陰極箔との間に該セパレーターが介在するように該陽極箔、該陰極箔及び該セパレーターが巻回されており、
該陽極箔が、誘電体酸化皮膜層を有し、
該セパレーターが、固体電解質、及び該固体電解質を保持する不織布を含み、
該セパレーターを構成する該不織布が、少なくとも2層の不織布層を有する積層不織布であり、
該積層不織布が、繊維径0.1~4μmを有する極細繊維で構成される不織布層(I層)と、繊維径6~30μmを有する熱可塑性樹脂繊維で構成される不織布層(II層)とを含む、固体電解コンデンサ。
[2] 該積層不織布が、2層の該不織布層(II層)と、該不織布層(II層)の間に中間層として存在する該不織布層(I層)とからなり、
該不織布層(I層)における該極細繊維の繊維径が0.1~4μmであり、
該不織布層(II層)における該熱可塑性樹脂繊維の繊維径が6~30μmである、上記[1]に記載の固体電解コンデンサ。
[3] 該不織布層(II層)における該熱可塑性樹脂繊維が、熱可塑性合成長繊維である、上記[1]又は[2]に記載の固体電解コンデンサ。
[4] 該積層不織布が、熱的結合による一体化によって形成されている、上記[1]~[3]のいずれかに記載の固体電解コンデンサ。
[5] 該不織布層(II層)における該熱可塑性樹脂繊維が、融点180℃以上を有する結晶性樹脂の繊維である、上記[1]~[4]のいずれかに記載の固体電解コンデンサ。
[6] 該積層不織布が、厚み10~80μm、及び目付け7~50g/m2を有する、上記[1]~[5]のいずれかに記載の固体電解コンデンサ。
[7] 該不織布層(I層)が、メルトブロウン法で形成されている、上記[1]~[6]のいずれかに記載の固体電解コンデンサ。
[8] 該積層不織布における該不織布層(I層)の目付け(i)と該不織布層(II層)の目付け(ii)との比(i)/(ii)が、1/10~2/1である、上記[1]~[7]のいずれかに記載の固体電解コンデンサ。
[9] 該積層不織布がカレンダー加工されている、上記[1]~[8]のいずれかに記載の固体電解コンデンサ。
[10] 該積層不織布が親水化加工されている、上記[1]~[9]のいずれかに記載の固体電解コンデンサ。
本発明は、陽極箔及び陰極箔、並びに該陽極箔と該陰極箔との間に配置されたセパレーターを含むコンデンサであって、該陽極箔と該陰極箔との間に該セパレーターが介在するように該陽極箔、該陰極箔及び該セパレーターが巻回されており、該陽極箔及び該陰極箔が、誘電体酸化皮膜層を有し、該セパレーターが、固体電解質、及び該固体電解質を保持する不織布を含み、該セパレーターを構成する該不織布が、少なくとも2層の不織布層を有する積層不織布であり、該積層不織布が、繊維径0.1~4μmを有する極細繊維で構成される不織布層(I層)(以下、「極細繊維不織布層(I層)」又は単に「不織布層(I層)」若しくは「I層」ということもある)と、繊維径6~30μmを有する熱可塑性樹脂繊維で構成される不織布層(II層)(以下、単に「不織布層(II層)」若しくは「II層」ということもある)とを含む、固体電解コンデンサを提供する。
セパレーターは、固体電解質、及び該固体電解質を保持する不織布を含み、該不織布は、少なくとも2層の不織布層を有する積層不織布である。
積層不織布は、不織布層(I層)及び不織布層(II層)を含む。具体的には、積層不織布は、少なくとも2層を有する積層不織布であって、繊維径0.1~4μmを有する極細繊維で構成される不織布層(I層)と、繊維径6~30μmを有する熱可塑性樹脂繊維で構成される不織布層(II層)とを有する。これにより、本発明の固体電解コンデンサにおいては、固体電解質及び誘電体酸化皮膜層を緻密且つ均一に形成することができる。
Xc=(ΔHTm-ΔHTcc)/(ΔH0)*100 (1)
ここで、Xc:結晶化度(%)、ΔHTm:融点での融解熱(J/g)、ΔHTcc:結晶化熱量(J/g)、ΔH0:樹脂の結晶化度100%時の融解熱の文献値(J/g)である。
本発明において、固体電解質は、典型的には固体電解質層として不織布によって保持されている。固体電解質を形成するために用いる導電性物質は特に限定されない。典型的には、導電性高分子を与える重合性化合物であるモノマー(即ち電解質モノマー)、又は、導電性高分子の微粒子を分散させた導電性高分子分散水溶液若しくは導電性高分子溶液等の、液体を使用できる。電解質モノマーとしては、例えば、エチレンジオキシチオフェン(例えば3,4-エチレンジオキシチオフェン)、ピロール、チアゾール、アセチレン、フェニレンビニレン(例えばパラフェニレンビニレン)、アニリン、フェニレン、チオフェン、イミダゾール、フラン等、及びこれらの置換誘導体、等の重合性化合物であるモノマーが挙げられる。また、導電性高分子としては、ポリエチレンジオキシチオフェン、ポリピロール、ポリチアゾール、ポリアセチレン、ポリフェニレンビニレン(例えばポリ-p-フェニレンビニレン)、ポリアニリン、ポリビニレン、ポリフェニレン、ポリチオフェン、ポリイミダゾール、ポリフラン等、及びこれらの誘導体、等の電子共役系高分子が挙げられる。また、これらの電子共役系高分子にドーパントを付与する物質を含んでいる導電性高分子が好ましい。さらに、その他の導電性物質として、テトラシアノキノジメタン錯体(TCNQ錯体)及びその誘導体等も使用できる。また、それぞれの導電性物質に応じて、それを固体化するための酸化剤、重合剤、又は錯体形成剤を適宜選択して使用でき、均一な固体電解質を形成する目的でそれぞれ使用される。また、より好ましい態様においては、ドーパントとしてのポリスチレンスルホン酸又はポリビニルスルホン酸と、上記の導電性高分子との重合体を形成し、これを不織布に含浸して、固体電解質層を形成する。例えば、好ましい態様においては、3,4-エチレンジオキシチオフェンとポリスチレンスルホン酸又はポリビニルスルホン酸との重合体を不織布に含浸し、固体電解質層を形成することにより、セパレーターに均一に固体電解質層が形成され、より導電性を向上させることができる。本発明では、固体電解質を形成するための材料は、限定されず、より均一で高導電性の固体電解質が形成されるように当業者が選定する。例えば、ポリエチレンジオキシチオフェンを固体電解質とするコンデンサ素子を製造するためには、3,4-エチレンジオキシチオフェンと、エチレングリコールに溶解したp-トルエンスルホン酸第三鉄を用いた酸化剤とを混合して得た混合溶液を、コンデンサ素子(即ち、陽極箔と陰極箔とをセパレーターを介して巻回したコンデンサ素子)に含浸させ、25℃~100℃で15時間~2時間、好適には50℃で4時間、放置する工程を所定回数繰り返す方法を採用できる。この方法の詳細は、特開平9-293639号公報に記載されている。
本発明において用いる陽極箔及び陰極箔は、通常金属箔素材である。コンデンサとしての性能を良好に発揮する目的で、弁作用を有する金属を用いることが好ましい。弁作用を有する金属としては、通常用いられるものを使用できる。特にアルミニウム箔及びタンタル箔が好ましい。
JIS L-1906に規定の方法に従い、縦20cm×横25cmの試験片を、試料の幅方向1m当たり3箇所、長さ方向1m当たり3箇所の、計1m×1m当たり9箇所採取して質量を測定し、その平均値を単位面積当たりの質量に換算して求めた。
JIS L-1906に規定の方法に従い、幅1m当たり10箇所の厚みを測定し、その平均値を求めた。荷重は9.8kPaで行った。
上記(1)にて測定した目付け(g/m2)、上記(2)にて測定した厚み(μm)を用い、以下の式により算出した。
見掛け密度=(目付け)/(厚み)
試料(不織布)の各端部10cmを除いて、試料の幅20cm毎の区域から、それぞれ1cm角の試験片を切り取った。各試験片について、マイクロスコープで繊維の直径を30点測定して、測定値の平均値(小数点第2位を四捨五入)を算出し、試料を構成する繊維の繊維径とした。
PMI社のパームポロメーター(型式:CFP-1200AEX)を用いた。測定には浸液にPMI社製のシルウィックを用い、試料を浸液に浸して充分に脱気した後、測定した。
本測定装置は、フィルターを試料として、あらかじめ表面張力が既知の液体にフィルターを浸し、フィルターの全ての細孔を液体の膜で覆った状態からフィルターに圧力をかけ、液膜の破壊される圧力と液体の表面張力とから計算された細孔の孔径を測定する。計算には下記の数式を用いる。
d=C・r/P
(式中、d(単位:μm)はフィルターの孔径、r(単位:N/m)は液体の表面張力、P(単位:Pa)はその孔径の液膜が破壊される圧力、Cは定数である。)
試料(不織布)の各端部10cmを除き、幅3cm×長さ20cmの試験片を、1m幅につき5箇所切り取った。試験片が破断するまで荷重を加え、MD方向の試験片の最大荷重時の強さの平均値を求めた。
下記の測定器にて測定を行い、融解ピークの導入部分における変曲点の漸近線とTgより高い温度領域でのベースラインが交わる温度を融点とした。
示差走査熱量計(SIIナノテクノロジー社製のDSC210)を使用し、下記の条件で測定した。
測定雰囲気:窒素ガス50ml/分、昇温速度:10℃/分、測定温度範囲:25~300℃。
試料(不織布)の幅方向に長い試験片(幅約30cm×長さ3cm)を、1m幅につき5点採取し、JIS L-0849 摩擦に対する染色堅ろう度試験方法 に記載の摩擦試験機II形(学振形)を用いて測定を行った。試験台上と摩擦子との双方に測定面が接触する様に試験片を取り付け、30回往復摩擦し、摩擦後の不織布の外観検査を以下の基準で実施した。なお表4~6中、「表」とは表1~3で各実施例及び比較例における層構成の最左に示している層を意味し、「裏」とは表1~3で各実施例及び比較例における層構成の最右に示している層を意味する。
5級:不織布の表面には、変化がない。4級:不織布の表面に、ピリングはないが、表面に、1本ずつの糸がたち、表面がわずかに荒れている。3級:長さ0.5cm未満のピリンングがある。又は、全体に毛羽が浮いている。2級:長さ1cm以上のピリングがある。又は、摩擦面に綿状物が浮いていたり、若しくは摩擦面が磨耗され磨り減っている。1級:不織布の一部が破れている。
(9)巻回性
コンデンサの巻回装置を用いて陽極箔、セパレータ、陰極箔、セパレータの4枚を重ねて巻回し、正常に巻回出来るかを、A~Dで判定した。 A:全く問題なし B:巻回装置の条件を調整すれば問題なし C:巻回装置の条件を調整しても巻回工程で不良品が発生する D:不良品が多く発生する
(10)静電容量
測定周波数120HzでLCRメータを用いて測定した。
(11)容量出現率
誘電体酸化皮膜層形成後の素子について30質量%の硫酸水溶液中にて測定した静電容量に対する、作製された固体電解コンデンサの実際の静電容量を、百分率(%)で示した。
(12)tanδ
測定周波数120HzでLCRメータを用いて測定した。
(13)もれ電流
コンデンサと直列に1000Ωの保護抵抗器を接続し、定格電圧を印加し、5分後に測定した。
(14)ESR
測定周波数100kHzでLCRメータを用いて測定した。
(15)ショート率(%)
定格電圧を1時間連続的に印加(雰囲気温度105℃)することによりエージングを行った後の、ショートしたコンデンサの比率を百分率(%)で示した。
(16)最大印加電圧(V)
JIS C-5101-1 4-6耐電圧の測定方法に従い、直流電流1.0Aにて最大印加電圧を測定した。
(17)はんだ耐熱性
温度条件:余熱温度150℃120秒、ピーク温度240℃後のサンプルについて(10)~(14)の測定、並びに外形の寸法変化及び変形を観察し、A~Dで判定した。 A:全く問題なし B:一部測定値が変化するが定格内 C:一部不良品が発生する D:不良品が多く発生する
以下の方法により、実施例1~11の積層不織布を作製し、性能評価を実施した。
熱可塑性樹脂繊維で構成される不織布層(II層)を形成した。具体的には、汎用的なPET(熱可塑性樹脂として)の溶液(OCPを溶媒として用い、温度35℃で測定した溶液粘度:ηsp/c=0.67を有する)(溶液粘度は温度35℃の恒温水槽中の粘度管で測定した。以下同じ。)を用い、スパンボンド法により、紡糸温度300℃で、フィラメント群を、移動する捕集ネット面に向けて押し出し、紡糸速度4500m/分で紡糸した。次いで、コロナ帯電で3μC/g程度帯電させてフィラメント群を十分に開繊させ、熱可塑性樹脂長繊維ウェブを捕集ネット上に形成した。繊維径の調整は、牽引条件を変えることにより行った。
実施例1~11とは異なり、2層構造(II層及びI層)の積層不織布とし、その他は、実施例1~11と同様の条件を用いた。積層不織布を形成する条件及びその性能は、それぞれ表1~2、表4~5に示す。また、コンデンサ性能は、表7~8に示す。
熱可塑性樹脂としてPPS(ポリプラスチック社製フォートロン)を用いた。不織布を形成する条件は、以下の通りである。
II層:樹脂の溶融粘度:70g/10分(キャピラリーレオメーターを用いて測定、測定条件:荷重5kg、温度315.6℃)、紡糸温度:320℃、紡糸速度:8000m/分。
I層:樹脂の溶融粘度:670g/10分(上記と同様の方法で測定、測定条件:荷重5kg、温度315.6℃)、紡糸温度:340℃、加熱空気温度:390℃、加熱空気量:1000Nm3/hr/m。
また、フラットロールによる熱接着条件は、線圧:260N/cm、ロール温度:上/下=170℃/170℃とし、カレンダー条件は、線圧:350N/cm、ロール温度:上/下=235℃/235℃とした。積層不織布を形成する条件及びその性能は、それぞれ表1、表4に示す。その他の条件は、実施例1と同様にした。また、コンデンサ性能は、表7に示す。
不織布層(II層)として、繊維径18μm、繊維長5mmのco-PET/PET鞘芯構造の短繊維を抄造法にてネット上に30g/m2となるように捕集し、脱水乾燥後、エアースルー方式(180℃、5m/分)で繊維同士を融着させ、短繊維ウェブを得た。次いで、その上に中間層として、実施例1と同様に、不織布層(I層)となるメルトブロウン繊維を吹きつけて形成し、さらに、その上に不織布層(II層)として、上記の不織布層(II層)と同じ構成の不織布を重ねた。以上により、3層からなる積層ウェブを得た。得られた積層ウェブを、フラットロール及びカレンダーロールにて熱接着し、積層不織布を得た。積層不織布を形成する条件及びその性能は、それぞれ表1、表4に示す。また、コンデンサ性能は、表7に示す。なお表1中、鞘芯構造の短繊維の融点は、鞘/芯の順で記載している(以下同様である)。
熱可塑性樹脂としてPP(日本ポリプロ社製)を用いた。不織布を形成する条件は、以下の通りである。
II層:樹脂の溶融粘度:43g/10分(上記と同様に測定、測定条件:荷重2.1kg、温度230℃)、紡糸温度:230℃、紡糸速度:3300m/分。
I層:樹脂の溶融粘度:1500g/10分(上記と同様の方法で測定、測定条件:荷重2.1kg、温度230℃)、紡糸温度:295℃、加熱空気温度:320℃、加熱空気量:1050Nm3/hr/m。
また、フラットロールによる熱接着条件は、線圧:260N/cm、ロール温度:上/下=90℃/90℃、カレンダー条件は、線圧:350N/cm、ロール温度:上/下=120℃/120℃とした。積層不織布を形成する条件及びその性能は、それぞれ表1、表4に示す。また、コンデンサ性能は、表7に示す。
不織布層(II層)として、繊維径16μm、繊維長5mmのco-PET/PET鞘芯構造の短繊維を抄造法にてネット上に11g/m2となるように捕集し、脱水乾燥後、繊維が散逸しない程度に、フラットロールにて圧着して短繊維ウェブを得た。次いで、その上に中間層として、実施例1と同様に、不織布層(I層)となるメルトブロウン繊維を吹きつけて形成し、さらに、その上に不織布層(II層)として、実施例1と同じ構成の熱可塑性樹脂長繊維ウェブを積層した。得られた積層ウェブを、フラットロール及びカレンダーロールにて熱接着し、積層不織布を得た。積層不織布を形成する条件及びその性能は、それぞれ表1、表4に示す。また、コンデンサ性能は、表7に示す。
不織布層(II層)として、繊維径16μm、繊維長5mmのco-PET/PET鞘芯構造の短繊維を抄造法にてネット上に11g/m2となるように捕集し、脱水乾燥後、繊維が散逸しない程度に、フラットロールにて圧着して短繊維ウェブを得た。次いで、その上に中間層として、実施例1と同様に、不織布層(I層)となるメルトブロウン繊維を吹きつけて形成し、さらに、その上に不織布層(II層)として、実施例15と同じ構成の短繊維ウェブを積層した。得られた積層ウェブを、フラットロール及びカレンダーロールにて熱接着し、積層不織布を得た。積層不織布を形成する条件及びその性能は、それぞれ表1、表4に示す。また、コンデンサ性能は、表7に示す。
実施例1のII層と同様のPETを用い、スパンボンド法により、紡糸温度300℃で、フィラメントの長繊維群を、移動する捕集ネット上に向けて押し出し、紡糸速度4500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて十分に開繊をさせ、熱可塑性樹脂長繊維ウェブを捕集ネット上に形成した。繊維径の調整は、吐出量を変えることにより行った。その後、得られたウェブを、表3に示す条件でフラットロールにて熱接着した後、コロナ放電加工を実施し、カレンダーロールにて、所望の厚みとなるように厚みを調整するとともに見掛け密度を調整し、不織布層(II層)のみからなる不織布を得た。得られた不織布の構成を表3に、及び不織布の性能結果を表6に示す。また、コンデンサ性能は、表9に示す。
不織布として、旭化成せんい製のスパンボンド不織布(E05025、繊維径16μm、目付け25g/m2)を用い、不織布層(II層)のみからなる不織布の例とした。不織布の構成を表3に、その性能結果を表6に示す。また、コンデンサ性能は、表9に示す。
極細繊維不織布層を、実施例1のI層と同様の樹脂を用い、紡糸温度300℃、加熱空気1000Nm3/hr/mの条件下で、メルトブロウン法により紡糸して、ネット上に吹きつけることによって形成した。この際、メルトブロウンノズルからウェブまでの距離を100mmとし、メルトブロウンノズル直下の捕集面における吸引力を0.2kPa、風速を7m/秒に設定した。繊維径及び結晶化度の調整は、吐出量を変えることにより行い、極細繊維不織布層(I層)のみからなる不織布を得た。不織布の構成を表3に、その性能結果を表6に示す。また、コンデンサ性能は、表9に示す。
極細繊維不織布層として、比較例4と同様の方法で、得られる平均繊維径が0.7μmの、極細繊維不織布層(I層)のみからなる不織布を得た。不織布の構成を表3に、その性能結果を表6に示す。また、コンデンサ性能は、表9に示す。
繊維径16μm、繊維長5mmのPET短繊維を、抄造法にて、25g/m2となるようにネット上に捕集してウェブを得た。なおこの際、繊維同士がばらけないように、また不織布強度を保つために、バインダーとしてポリビニルアルコール(溶解温度70℃)を用い、全体の目付け量を33g/m2とした。このウェブを脱水乾燥後、カレンダーロールにて熱圧着して、不織布層(II層)のみからなる不織布を得た。得られた不織布及びその評価結果を表3、6に示す。また、コンデンサ性能は、表9に示す。
繊維径10μm、繊維長5mmのPET短繊維を、抄造法にて、25g/m2となるようにネット上に捕集してウェブを得た。なおこの際、繊維同士がばらけないように、また不織布強度を保つために、バインダーとしてポリビニルアルコール(溶解温度70℃)を用い、全体の目付け量を33g/m2とした。このウェブを脱水乾燥後、カレンダーロールにて熱圧着して、不織布層(II層)のみからなる不織布を得た。得られた不織布及びその評価結果を表3、6に示す。また、コンデンサ性能は、表9に示す。
比較例6と同様の不織布を用い、コンデンサを形成する工程で、バインダーを除去する工程を強化し(90℃の温水浴に10分浸漬し、その後100℃で5分乾燥する、という工程を3回繰り返した)、その他は比較例6と同様の工程で、コンデンサを得た。コンデンサ性能は、表9に示す。
比較例7と同様の不織布を用い、コンデンサを形成する工程で、バインダーを除去する工程を強化し(90℃の温水浴に10分浸漬し、その後100℃で5分乾燥する、という工程を3回繰り返した)、その他は比較例7と同様の工程で、コンデンサを得た。コンデンサ性能は、表9に示す。
不織布として、日本高度紙製のレーヨン繊維からなる湿式不織布(RCE3040、繊維径8μm、目付け40g/m2)を用いた。不織布の構成を表3に、その性能結果を表6に示す。また、コンデンサ性能は、表9に示す。
2 陽極箔
3 陰極箔
4 リード線
5 リード線
10 コンデンサ素子
Claims (10)
- 陽極箔及び陰極箔、並びに該陽極箔と該陰極箔との間に配置されたセパレーターを含むコンデンサであって、
該陽極箔と該陰極箔との間に該セパレーターが介在するように該陽極箔、該陰極箔及び該セパレーターが巻回されており、
該陽極箔が、誘電体酸化皮膜層を有し、
該セパレーターが、固体電解質、及び該固体電解質を保持する不織布を含み、
該セパレーターを構成する該不織布が、少なくとも2層の不織布層を有する積層不織布であり、
該積層不織布が、繊維径0.1~4μmを有する極細繊維で構成される不織布層(I層)と、繊維径6~30μmを有する熱可塑性樹脂繊維で構成される不織布層(II層)とを含む、固体電解コンデンサ。 - 該積層不織布が、2層の該不織布層(II層)と、該不織布層(II層)の間に中間層として存在する該不織布層(I層)とからなり、
該不織布層(I層)における該極細繊維の繊維径が0.1~4μmであり、
該不織布層(II層)における該熱可塑性樹脂繊維の繊維径が6~30μmである、請求項1に記載の固体電解コンデンサ。 - 該不織布層(II層)における該熱可塑性樹脂繊維が、熱可塑性合成長繊維である、請求項1又は2に記載の固体電解コンデンサ。
- 該積層不織布が、熱的結合による一体化によって形成されている、請求項1~3のいずれか1項に記載の固体電解コンデンサ。
- 該不織布層(II層)における該熱可塑性樹脂繊維が、融点180℃以上を有する結晶性樹脂の繊維である、請求項1~4のいずれか1項に記載の固体電解コンデンサ。
- 該積層不織布が、厚み10~80μm、及び目付け7~50g/m2を有する、請求項1~5のいずれかに1項に記載の固体電解コンデンサ。
- 該不織布層(I層)が、メルトブロウン法で形成されている、請求項1~6のいずれか1項に記載の固体電解コンデンサ。
- 該積層不織布における該不織布層(I層)の目付け(i)と該不織布層(II層)の目付け(ii)との比(i)/(ii)が、1/10~2/1である、請求項1~7のいずれかに1項に記載の固体電解コンデンサ。
- 該積層不織布がカレンダー加工されている、請求項1~8のいずれか1項に記載の固体電解コンデンサ。
- 該積層不織布が親水化加工されている、請求項1~9のいずれか1項に記載の固体電解コンデンサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011527704A JP5395906B2 (ja) | 2009-08-19 | 2010-08-19 | 固体電解コンデンサ |
KR1020127002819A KR101417539B1 (ko) | 2009-08-19 | 2010-08-19 | 세퍼레이터 및 고체 전해 콘덴서 |
EP10810009.0A EP2469548B8 (en) | 2009-08-19 | 2010-08-19 | Solid electrolytic capacitor |
US13/391,122 US8953304B2 (en) | 2009-08-19 | 2010-08-19 | Solid electrolytic capacitor |
CN201080036680.2A CN102473526B (zh) | 2009-08-19 | 2010-08-19 | 固体电解电容器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-190095 | 2009-08-19 | ||
JP2009190095 | 2009-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011021668A1 true WO2011021668A1 (ja) | 2011-02-24 |
Family
ID=43607118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/064018 WO2011021668A1 (ja) | 2009-08-19 | 2010-08-19 | 固体電解コンデンサ |
Country Status (7)
Country | Link |
---|---|
US (1) | US8953304B2 (ja) |
EP (1) | EP2469548B8 (ja) |
JP (1) | JP5395906B2 (ja) |
KR (1) | KR101417539B1 (ja) |
CN (1) | CN102473526B (ja) |
TW (1) | TWI434306B (ja) |
WO (1) | WO2011021668A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102543492A (zh) * | 2012-02-16 | 2012-07-04 | 姜建国 | 一种高能量密度固体电容电池的制备方法 |
CN102637535A (zh) * | 2012-04-16 | 2012-08-15 | 南通江海电容器股份有限公司 | 一种高电压大容量的固体电解电容器的制备方法 |
JP2013080828A (ja) * | 2011-10-04 | 2013-05-02 | Asahi Kasei Fibers Corp | 固体電解コンデンサ用セパレーター |
WO2013151134A1 (ja) * | 2012-04-04 | 2013-10-10 | 旭化成せんい株式会社 | セパレータ |
JP2014072361A (ja) * | 2012-09-28 | 2014-04-21 | Asahi Kasei Fibers Corp | 電解コンデンサ用セパレータ |
JPWO2014046094A1 (ja) * | 2012-09-19 | 2016-08-18 | 旭化成株式会社 | セパレータ及びその製造方法、並びに、リチウムイオン二次電池 |
JP2017059769A (ja) * | 2015-09-18 | 2017-03-23 | ニッポン高度紙工業株式会社 | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ |
JP2021027285A (ja) * | 2019-08-08 | 2021-02-22 | 株式会社東芝 | アルミニウム電解コンデンサ、電気機器、及びアルミニウム電解コンデンサの製造方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104797979B (zh) * | 2013-01-22 | 2018-04-17 | Asml荷兰有限公司 | 静电夹具 |
CN103295784B (zh) * | 2013-05-31 | 2015-08-26 | 佛山市三水日明电子有限公司 | 一种固体电解质铝电解电容器的制造方法 |
JP6740579B2 (ja) * | 2015-08-12 | 2020-08-19 | 日本ケミコン株式会社 | 固体電解コンデンサおよび固体電解コンデンサの製造方法 |
CN108701795B (zh) * | 2016-02-29 | 2021-10-01 | 旭化成株式会社 | 铅蓄电池用无纺布分隔件及使用其的铅蓄电池 |
KR20170125229A (ko) * | 2016-05-04 | 2017-11-14 | 삼화콘덴서공업주식회사 | 복합 전극 구조를 갖는 에너지 저장 커패시터 |
CN107331507B (zh) * | 2017-08-31 | 2019-04-19 | 肇庆市洪利电子科技有限公司 | 一种防爆炸电容器 |
CN110265220A (zh) * | 2018-03-12 | 2019-09-20 | 钰邦科技股份有限公司 | 在电容器素子上形成高分子复合材料的方法 |
US11152161B2 (en) * | 2019-09-03 | 2021-10-19 | Kemet Electronics Corporation | Aluminum polymer capacitor with enhanced internal conductance and breakdown voltage capability |
CN114068192A (zh) * | 2021-11-20 | 2022-02-18 | 深圳市力容电子有限公司 | 一种超低温升的高压铝电解电容的芯包 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413460B2 (ja) | 1983-04-01 | 1992-03-09 | Tsudakoma Kogyo Kk | |
JPH09293639A (ja) | 1996-04-26 | 1997-11-11 | Nippon Chemicon Corp | 固体電解コンデンサおよびその製造方法 |
JPH11283602A (ja) * | 1998-03-30 | 1999-10-15 | Mitsubishi Paper Mills Ltd | 電池用セパレータ |
JP2001060535A (ja) | 1999-08-19 | 2001-03-06 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサおよびその製造方法 |
JP2002170540A (ja) * | 2000-11-30 | 2002-06-14 | Tonen Tapyrus Co Ltd | セパレータ |
JP3319501B2 (ja) | 1997-06-06 | 2002-09-03 | 日本ケミコン株式会社 | 固体電解コンデンサおよびその製造方法 |
JP3399515B2 (ja) | 1999-09-24 | 2003-04-21 | 日本ケミコン株式会社 | 固体電解コンデンサの製造方法 |
WO2004094136A1 (ja) | 2003-04-22 | 2004-11-04 | Asahi Kasei Fibers Corporation | 高強力不織布 |
JP3606137B2 (ja) | 1999-09-16 | 2005-01-05 | 松下電器産業株式会社 | 固体電解コンデンサおよびその製造方法 |
JP2005044587A (ja) * | 2003-07-25 | 2005-02-17 | Mitsubishi Paper Mills Ltd | 電気化学素子用セパレーター |
JP2006041223A (ja) | 2004-07-28 | 2006-02-09 | Mitsubishi Paper Mills Ltd | 固体電解コンデンサ用セパレータ |
JP3965871B2 (ja) | 1999-08-20 | 2007-08-29 | 松下電器産業株式会社 | 固体電解コンデンサおよびその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6208503B1 (en) | 1997-06-06 | 2001-03-27 | Nippon Chemi-Con Corporation | Solid electrolytic capacitor and process for producing the same |
CN1193388C (zh) | 1999-09-10 | 2005-03-16 | 松下电器产业株式会社 | 固体电解电容器及其制造方法和导电性聚合物聚合用的氧化剂溶液 |
JP4013460B2 (ja) | 1999-09-10 | 2007-11-28 | 松下電器産業株式会社 | 固体電解コンデンサ |
JP2001189242A (ja) * | 1999-10-21 | 2001-07-10 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサおよびその製造方法 |
JP2002050335A (ja) | 2000-08-01 | 2002-02-15 | Tonen Tapyrus Co Ltd | 耐熱性セパレータ |
US6730439B2 (en) | 2000-08-01 | 2004-05-04 | Tonen Tapyrus Co., Ltd. | Heat-resistant separator |
JP4646462B2 (ja) * | 2001-08-10 | 2011-03-09 | 日本ケミコン株式会社 | 電解コンデンサ |
JP2004153217A (ja) * | 2002-11-01 | 2004-05-27 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサおよびその製造方法 |
JP2005109053A (ja) * | 2003-09-29 | 2005-04-21 | Nippon Chemicon Corp | 固体電解コンデンサ |
WO2005088011A1 (ja) * | 2004-03-12 | 2005-09-22 | Mitsubishi Paper Mills Limited | 耐熱性不織布 |
US20100003588A1 (en) * | 2006-08-10 | 2010-01-07 | Mitsui Chemicals, Inc. | Separator for energy device and energy device having the same |
JP4299365B2 (ja) * | 2007-05-07 | 2009-07-22 | 三菱樹脂株式会社 | 積層多孔性フィルム及び電池用セパレータ |
-
2010
- 2010-08-19 KR KR1020127002819A patent/KR101417539B1/ko active IP Right Grant
- 2010-08-19 WO PCT/JP2010/064018 patent/WO2011021668A1/ja active Application Filing
- 2010-08-19 US US13/391,122 patent/US8953304B2/en active Active
- 2010-08-19 JP JP2011527704A patent/JP5395906B2/ja active Active
- 2010-08-19 EP EP10810009.0A patent/EP2469548B8/en active Active
- 2010-08-19 CN CN201080036680.2A patent/CN102473526B/zh active Active
- 2010-08-19 TW TW99127798A patent/TWI434306B/zh active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413460B2 (ja) | 1983-04-01 | 1992-03-09 | Tsudakoma Kogyo Kk | |
JPH09293639A (ja) | 1996-04-26 | 1997-11-11 | Nippon Chemicon Corp | 固体電解コンデンサおよびその製造方法 |
JP3319501B2 (ja) | 1997-06-06 | 2002-09-03 | 日本ケミコン株式会社 | 固体電解コンデンサおよびその製造方法 |
JPH11283602A (ja) * | 1998-03-30 | 1999-10-15 | Mitsubishi Paper Mills Ltd | 電池用セパレータ |
JP2001060535A (ja) | 1999-08-19 | 2001-03-06 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサおよびその製造方法 |
JP3965871B2 (ja) | 1999-08-20 | 2007-08-29 | 松下電器産業株式会社 | 固体電解コンデンサおよびその製造方法 |
JP3606137B2 (ja) | 1999-09-16 | 2005-01-05 | 松下電器産業株式会社 | 固体電解コンデンサおよびその製造方法 |
JP3399515B2 (ja) | 1999-09-24 | 2003-04-21 | 日本ケミコン株式会社 | 固体電解コンデンサの製造方法 |
JP2002170540A (ja) * | 2000-11-30 | 2002-06-14 | Tonen Tapyrus Co Ltd | セパレータ |
WO2004094136A1 (ja) | 2003-04-22 | 2004-11-04 | Asahi Kasei Fibers Corporation | 高強力不織布 |
JP2005044587A (ja) * | 2003-07-25 | 2005-02-17 | Mitsubishi Paper Mills Ltd | 電気化学素子用セパレーター |
JP2006041223A (ja) | 2004-07-28 | 2006-02-09 | Mitsubishi Paper Mills Ltd | 固体電解コンデンサ用セパレータ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2469548A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013080828A (ja) * | 2011-10-04 | 2013-05-02 | Asahi Kasei Fibers Corp | 固体電解コンデンサ用セパレーター |
CN102543492A (zh) * | 2012-02-16 | 2012-07-04 | 姜建国 | 一种高能量密度固体电容电池的制备方法 |
WO2013151134A1 (ja) * | 2012-04-04 | 2013-10-10 | 旭化成せんい株式会社 | セパレータ |
CN104205418A (zh) * | 2012-04-04 | 2014-12-10 | 旭化成纤维株式会社 | 分隔件 |
EP2835843A1 (en) * | 2012-04-04 | 2015-02-11 | Asahi Kasei Fibers Corporation | Separator |
EP2835843A4 (en) * | 2012-04-04 | 2015-04-01 | Asahi Kasei Fibers Corp | SEPARATOR |
JPWO2013151134A1 (ja) * | 2012-04-04 | 2015-12-17 | 旭化成せんい株式会社 | セパレータ |
US9461290B2 (en) | 2012-04-04 | 2016-10-04 | Asahi Kasei Fibers Corporation | Separator |
CN102637535A (zh) * | 2012-04-16 | 2012-08-15 | 南通江海电容器股份有限公司 | 一种高电压大容量的固体电解电容器的制备方法 |
CN102637535B (zh) * | 2012-04-16 | 2016-04-27 | 南通江海电容器股份有限公司 | 一种高电压大容量的固体电解电容器的制备方法 |
US10811658B2 (en) | 2012-09-19 | 2020-10-20 | Asahi Kasei Kabushiki Kaisha | Separator and method of preparing the same, and lithium ion secondary battery |
JPWO2014046094A1 (ja) * | 2012-09-19 | 2016-08-18 | 旭化成株式会社 | セパレータ及びその製造方法、並びに、リチウムイオン二次電池 |
JP2014072361A (ja) * | 2012-09-28 | 2014-04-21 | Asahi Kasei Fibers Corp | 電解コンデンサ用セパレータ |
JP2017059769A (ja) * | 2015-09-18 | 2017-03-23 | ニッポン高度紙工業株式会社 | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ |
JP2021027285A (ja) * | 2019-08-08 | 2021-02-22 | 株式会社東芝 | アルミニウム電解コンデンサ、電気機器、及びアルミニウム電解コンデンサの製造方法 |
JP7444561B2 (ja) | 2019-08-08 | 2024-03-06 | 株式会社東芝 | アルミニウム電解コンデンサ、電気機器、及びアルミニウム電解コンデンサの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102473526A (zh) | 2012-05-23 |
JP5395906B2 (ja) | 2014-01-22 |
JPWO2011021668A1 (ja) | 2013-01-24 |
CN102473526B (zh) | 2014-08-13 |
EP2469548B8 (en) | 2017-05-24 |
US8953304B2 (en) | 2015-02-10 |
TW201112285A (en) | 2011-04-01 |
TWI434306B (zh) | 2014-04-11 |
US20120154985A1 (en) | 2012-06-21 |
EP2469548A4 (en) | 2014-12-03 |
KR20120031304A (ko) | 2012-04-02 |
EP2469548B1 (en) | 2017-01-04 |
EP2469548A1 (en) | 2012-06-27 |
KR101417539B1 (ko) | 2014-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5395906B2 (ja) | 固体電解コンデンサ | |
JP5800658B2 (ja) | 固体電解コンデンサ用セパレーター | |
JP2014072361A (ja) | 電解コンデンサ用セパレータ | |
JP2015076416A (ja) | 不織布、及びそれを用いたセパレータ、並びに固体電解コンデンサ | |
JP2009266926A (ja) | 固体電解コンデンサおよびその製造方法 | |
JP3878421B2 (ja) | 固体電解コンデンサ用セパレータ及び固体電解コンデンサ | |
TWI745480B (zh) | 鋁電解電容器用隔膜以及鋁電解電容器 | |
JP4560940B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
TWI744399B (zh) | 鋁電解電容器用隔膜以及鋁電解電容器 | |
JP6442097B1 (ja) | アルミニウム電解コンデンサ用セパレータおよび該セパレータを用いたアルミニウム電解コンデンサ | |
JP3965871B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
JP2022117355A (ja) | 電解コンデンサおよびその製造方法 | |
JP4507500B2 (ja) | 電解コンデンサの製造方法 | |
JP2001189242A (ja) | 固体電解コンデンサおよびその製造方法 | |
JP2001060535A (ja) | 固体電解コンデンサおよびその製造方法 | |
JP7554599B2 (ja) | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ | |
JP3991557B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
JP2001155967A (ja) | 固体電解コンデンサおよびその製造方法 | |
JP2004153217A (ja) | 固体電解コンデンサおよびその製造方法 | |
JP2024122009A (ja) | 固体電解コンデンサ又はハイブリッド電解コンデンサ用セパレータ及び固体電解コンデンサ又はハイブリッド電解コンデンサ | |
JP2014120607A (ja) | 蓄電デバイス用セパレータ | |
JP2021158357A (ja) | 固体電解コンデンサ用セパレータ及び固体電解コンデンサ | |
WO2020137674A1 (ja) | アルミニウム電解コンデンサ用セパレータおよびアルミニウム電解コンデンサ | |
JP2020053425A (ja) | 固体電解コンデンサ又はハイブリッド電解コンデンサ用セパレータ及びそれを用いてなる固体電解コンデンサ又はハイブリッド電解コンデンサ | |
JP2013021161A (ja) | 固体電解コンデンサ用セパレータ及びそれを用いた固体電解コンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080036680.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10810009 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011527704 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127002819 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13391122 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010810009 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010810009 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 560/KOLNP/2012 Country of ref document: IN |