WO2011013609A1 - アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール - Google Patents

アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール Download PDF

Info

Publication number
WO2011013609A1
WO2011013609A1 PCT/JP2010/062509 JP2010062509W WO2011013609A1 WO 2011013609 A1 WO2011013609 A1 WO 2011013609A1 JP 2010062509 W JP2010062509 W JP 2010062509W WO 2011013609 A1 WO2011013609 A1 WO 2011013609A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
aluminum
magnesium
composite material
silicon composite
Prior art date
Application number
PCT/JP2010/062509
Other languages
English (en)
French (fr)
Inventor
努 飯田
直樹 福島
達也 坂本
洋彦 水戸
宏邦 難波
豊 田口
昌保 赤坂
守 立川
賢一 日野
Original Assignee
学校法人東京理科大学
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学, 東レ・ダウコーニング株式会社 filed Critical 学校法人東京理科大学
Priority to KR1020127004521A priority Critical patent/KR101365251B1/ko
Priority to CN201080033425.2A priority patent/CN102473831B/zh
Priority to EP10804355A priority patent/EP2461384A1/en
Priority to US13/386,873 priority patent/US20120118343A1/en
Publication of WO2011013609A1 publication Critical patent/WO2011013609A1/ja
Priority to US14/671,045 priority patent/US20150207056A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/8556Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to an aluminum / magnesium / silicon composite material; a thermoelectric conversion material, a thermoelectric conversion element, and a thermoelectric conversion module; and an aluminum / magnesium / silicon composite material manufacturing method.
  • waste heat recovery is performed by generating high-pressure steam by waste heat and generating power by rotating a steam turbine with this steam.
  • the amount of waste heat emitted is small, and therefore, a method for recovering waste heat generated by a steam turbine or the like cannot be adopted.
  • thermoelectric conversion material that performs reversible thermoelectric conversion using the Seebeck effect or the Peltier effect
  • a method using a thermoelectric conversion element / thermoelectric conversion module has been proposed.
  • thermoelectric conversion module examples include those shown in FIGS. 1 and 2.
  • an n-type semiconductor and a p-type semiconductor having low thermal conductivity are used as thermoelectric conversion materials for the n-type thermoelectric conversion unit 101 and the p-type thermoelectric conversion unit 102, respectively.
  • Electrodes 1015 and 1025 are provided at the upper ends of the n-type thermoelectric converter 101 and the p-type thermoelectric converter 102 arranged side by side, and electrodes 1016 and 1026 are provided at the lower ends.
  • the electrodes 1015 and 1025 provided at the upper ends of the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit are connected to form an integrated electrode, and the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit
  • the electrodes 1016 and 1026 provided respectively at the lower end of each are separated.
  • thermoelectric conversion modules include those shown in FIGS. 3 and 4 (see, for example, Patent Document 1).
  • this thermoelectric conversion module only an n-type semiconductor having a low thermal conductivity is used as the thermoelectric conversion material.
  • the n-type thermoelectric conversion unit 103 is provided with an electrode 1035 at the upper end and an electrode 1036 at the lower end.
  • a direct current flows from the electrode 1036 side to the electrode 1035 side through the n-type thermoelectric conversion unit 103 by the DC power source 4, thereby generating an endothermic effect in the electrode 1035 and generating heat in the electrode 1036. Occurs.
  • a direct current flows from the electrode 1035 side to the electrode 1036 through the n-type thermoelectric conversion unit 103 by the DC power supply 4
  • a heat generation effect occurs in the electrode 1035 and a heat absorption effect occurs in the electrode 1036.
  • thermoelectric conversion elements capable of efficiently performing thermoelectric conversion with an extremely simple configuration have been applied and developed mainly for special applications.
  • thermoelectric conversion materials such as Bi—Te, Co—Sb, Zn—Sb, Pb—Te, and Ag—Sb—Ge—Te are used for fuel cells, automobiles, boilers, incinerators, Attempts have been made to convert to electricity using a waste heat source of about 200 ° C. to 800 ° C. such as a blast furnace.
  • a waste heat source of about 200 ° C. to 800 ° C. such as a blast furnace.
  • thermoelectric conversion material contains a harmful substance, there is a problem that an environmental load increases.
  • B 4 C and other borides containing a large amount of boron, rare earth metal chalcogenites such as LaS, and the like have been studied for use in high-temperature applications, but mainly include intermetallic compounds such as B 4 C and LaS.
  • the non-oxide type material exhibits relatively high performance in a vacuum, there is a problem that stability in a high temperature region is inferior, for example, a crystal phase is decomposed at a high temperature.
  • silicide systems such as Mg 2 Si (see, for example, Patent Documents 2 and 3 and Non-Patent Documents 1 to 3) and Mg 2 Si 1-x C x (see, for example, Non-Patent Document 4) with low environmental impact. Materials containing intermetallic compounds are also being studied.
  • thermoelectric conversion module there is a problem that the material containing the silicide-based intermetallic compound containing Mg has a low thermoelectric conversion performance, and the material containing the silicide-based intermetallic compound containing Mg is actually used in the thermoelectric conversion module. It was not reached.
  • the present invention has been made in view of the above problems, and includes an alloy composed of Al, Mg, and Si, and is an aluminum / magnesium / silicon composite material that can be suitably used as a material for a thermoelectric conversion module,
  • An object of the present invention is to provide an aluminum / magnesium / silicon composite material having excellent thermoelectric conversion characteristics.
  • an aluminum / magnesium / silicon composite material including an alloy composed of Al, Mg, and Si has excellent thermoelectric conversion characteristics and has a particularly high electric conductivity among factors that determine thermoelectric conversion performance.
  • the present invention has been completed. Specifically, the present invention provides the following.
  • the invention described in [1] is an aluminum / magnesium / silicon composite material including an alloy composed of Al, Mg, and Si and having high electrical conductivity.
  • the figure of merit indicating the thermoelectric conversion characteristics of the thermoelectric conversion material is generally derived by the following formula (1), and a numerical value obtained by multiplying the figure of merit by the absolute temperature T is the dimensionless figure of merit ZT.
  • represents the Seebeck coefficient
  • represents electrical conductivity
  • represents thermal conductivity.
  • thermoelectric conversion characteristics As is clear from the above formula (1), a material having a high electrical conductivity tends to have a high dimensionless figure of merit. Therefore, according to the invention described in [1], an aluminum / magnesium / silicon composite material excellent in thermoelectric conversion characteristics can be obtained.
  • the composite material in the invention described in [1] includes an “alloy composed of Al, Mg, and Si”, for example, an aluminum that contains aluminum of an impurity level in magnesium silicide such as Mg 2 Si. It is different from the material doped with.
  • the composite material usually indicates a material having an Al element content of 0.5 at% or more.
  • the invention described in [3] defines a preferable content of Al in the composition raw material when the aluminum / magnesium / silicon composite material described in [2] is manufactured. According to the invention described in [3], in addition to the effect of the invention described in [2], an effect that the sintered body is excellent in mechanical strength can be obtained.
  • the invention described in [4] defines the invention described in [1] or [2] as an invention of a manufacturing method. Therefore, according to the invention described in [4], an effect equivalent to that of the invention described in [1] or [2] can be obtained.
  • thermoelectric conversion material comprising the aluminum / magnesium / silicon composite material according to any one of [1] to [3].
  • thermoelectric conversion unit and a first electrode and a second electrode provided in the thermoelectric conversion unit, wherein the thermoelectric conversion unit is aluminum, magnesium, or silicon according to any one of [1] to [3] A thermoelectric conversion element manufactured using a composite material.
  • thermoelectric conversion module including the thermoelectric conversion element according to [6].
  • the invention described in [5] to [7] defines the invention described in any of [1] to [3] as an invention of a thermoelectric conversion material, a thermoelectric conversion element, and a thermoelectric conversion module. Therefore, according to the invention described in [5] to [7], an effect equivalent to that of the invention described in any of [1] to [3] can be obtained.
  • thermoelectric conversion materials examples include uses of thermoelectric conversion materials, thermoelectric conversion elements, and thermoelectric conversion modules.
  • corrosion resistant materials lightweight structural materials, friction materials, It can also be used for applications such as ceramic substrates, dielectric ceramic compositions, hydrogen storage compositions, and silane generators.
  • the aluminum / magnesium / silicon composite material according to the present invention is an aluminum / magnesium / silicon composite material containing an alloy of Al, Mg, and Si and having high electrical conductivity.
  • an aluminum / magnesium / silicon composite material excellent in thermoelectric conversion characteristics can be obtained.
  • thermoelectric conversion module It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a sintering apparatus. It is a figure which shows the relationship between the dimensionless figure of merit and temperature in the aluminum-magnesium-silicon composite material which concerns on this invention. It is a figure which shows the relationship between the electrical conductivity in the aluminum-magnesium-silicon composite material which concerns on this invention, and the composition ratio of aluminum.
  • the aluminum / magnesium / silicon composite material according to the present invention includes an alloy composed of Al, Mg, and Si, and has an electric conductivity ⁇ at 300 K of 1000 to 3000 S / cm.
  • a material having a high electrical conductivity ⁇ tends to have a high performance index.
  • the aluminum / magnesium / silicon composite material according to the present invention tends to have excellent thermoelectric conversion performance.
  • the electrical conductivity is preferably 1100 to 2500 S / cm, and more preferably 1200 to 2000 S / cm.
  • the aluminum / magnesium / silicon composite material according to the present invention is obtained by heating and melting the composition raw material, preferably after pulverizing the sample after heating and melting, after sintering the sample after pulverization
  • the composition raw material containing Al, Mg, and Si is heated and melted, and the sample after heat-melting is pulverized, It shall refer to what was measured after sintering the sample after grinding.
  • a composition material containing Al, Mg, and Si is heated and melted, the sample after heat melting is pulverized, and the sample after pulverization is obtained. It shall refer to what was measured after sintering.
  • the aluminum / magnesium / silicon composite material according to the present invention has a meaning including a heated melt of a composition raw material, a pulverized product of the heated melt, and a sintered body of the pulverized product, and these heated melts.
  • a heated melt of a composition raw material a pulverized product of the heated melt
  • a sintered body of the pulverized product a sintered body of the pulverized product
  • Each of the pulverized product and the sintered product has a value as a product alone.
  • the thermoelectric conversion material itself and the thermoelectric conversion part constituting the thermoelectric conversion element according to the present invention are composed of the sintered body.
  • the aluminum / magnesium / silicon composite material according to the present invention includes “alloy of Al, Mg, and Si”.
  • magnesium silicide such as Mg 2 Si contains Al at an impurity level. This is different from the material doped with Al.
  • the composite material usually indicates a material having an Al content of 0.5 at% or more.
  • the aluminum / magnesium / silicon composite material according to the present invention preferably has a dimensionless figure of merit at 860K of 0.47 or more, and more preferably 0.55 or more.
  • the dimensionless figure of merit is within the above range, excellent thermoelectric conversion performance can be obtained when an aluminum / magnesium / silicon composite material is used as a thermoelectric conversion material.
  • the aluminum / magnesium / silicon composite material according to the present invention may be in any form such as an ingot, powder, sintered powder, etc. It is preferable that the product is fired. Furthermore, the use of the aluminum / magnesium / silicon composite material according to the present invention is preferably a thermoelectric conversion material, a thermoelectric conversion element, and a thermoelectric conversion module, which will be described later, but is limited to such applications. However, it can also be used for applications such as corrosion resistant materials, lightweight structural materials, friction materials, ceramic substrates, dielectric ceramic compositions, hydrogen storage compositions, silane generators, and the like.
  • the aluminum / magnesium / silicon composite material according to the present invention is excellent in mechanical strength. Therefore, the aluminum / magnesium / silicon composite material according to the present invention can be easily processed into a thermoelectric conversion element or the like.
  • thermoelectric conversion material thermoelectric conversion element, and thermoelectric conversion module>
  • the aluminum / magnesium / silicon composite material according to the present invention can be suitably used as a thermoelectric conversion material. That is, since the aluminum / magnesium / silicon composite material according to the present invention has an electric conductivity of 1000 to 3000 S / cm at 300 K, it tends to be excellent in thermoelectric conversion performance, and this is used as a thermoelectric conversion material. When used in a thermoelectric conversion module, high thermoelectric conversion performance can be obtained.
  • the method for producing an aluminum / magnesium / silicon composite material according to the present invention is obtained by mixing an Al-containing Mg alloy and / or a mixture of Al and Mg with Si, and an Al content of 1 to
  • the composition raw material of 10 at% has an opening and a lid that covers the opening, a contact surface to the lid at the edge of the opening, and a contact surface to the opening in the lid And a step of heating and melting in a heat-resistant container that has been polished together.
  • the method for producing an aluminum / magnesium / silicon composite material according to the present invention may include a pulverization step of pulverizing the sample obtained in the heating and melting step, and a sintering step of sintering the pulverized sample. preferable.
  • the content of Al in the composition raw material is more preferably 3.5 to 6.0 at%, and further preferably 3.8 to 5.8 at%.
  • the sintered body has excellent mechanical strength. Therefore, for example, even when the sintered body is cut into a desired size with a blade saw, the element can be prevented from being damaged.
  • Mg alloy containing Al and / or a mixture of Al and Mg and Si are mixed, and the content of Al is 1 to 10 at%, preferably 3.5 to 6.0 at%. More preferably, a raw material having a composition of 3.8 to 5.8 at% is obtained.
  • silicon of 3N or more, preferably 6N or more can be used.
  • Specific examples of silicon include high-purity silicon raw materials for LSI, high-purity silicon raw materials for solar cells, high-purity metal silicon, high-purity silicon ingots, and high-purity silicon wafers.
  • Mg has a purity of about 99.5 wt% or more and is not particularly limited as long as it has substantially no impurities.
  • it may contain impurities such as Si, Mn, Al, Fe, Cu, Ni, and Cl.
  • the Al has a purity of about 99.5 wt% or more, and is substantially free of impurities. Although not particularly limited, for example, it may contain impurities such as Si, Mn, Mg, Fe, Cu, Ni, and Cl.
  • Al is 2.0 to 8.2 at%, preferably 3.5 to 6.0 at%, more preferably 3. Mention may be made of alloys containing 8 to 5.8 at%. Specific examples of such alloys include AM20, AZ31B, AM60B, and AZ91D. Since such an alloy can be recycled from various products on the market, the manufacturing cost of the aluminum / magnesium / silicon composite material can be reduced.
  • the composition raw material used in the mixing step is such that the Mg content is 66.17 to 66.77 at% in atomic weight ratio based on the total content of Mg and Si, and the Si content is the total content of Mg and Si
  • the atomic weight ratio based on this is 33.23 to 33.83 at%.
  • the Mg content is preferably 66.27 to 66.67 at% in terms of the atomic weight ratio based on the total content of Mg and Si.
  • the Si content is the total content of Mg and Si.
  • the atomic weight ratio based on is preferably 33.33 to 33.73 at%.
  • the composition raw material containing Al, Mg, and Si is heat-treated in a reducing atmosphere and preferably under reduced pressure under a temperature condition that exceeds the melting point of Mg and Al and lower than the melting point of Si. It is preferable to melt and synthesize an alloy made of Si and Si.
  • under a reducing atmosphere refers to an atmosphere containing hydrogen gas in an amount of 5% by volume or more and optionally containing an inert gas as another component.
  • the pressure condition in the heating and melting step may be atmospheric pressure, but is preferably 1.33 ⁇ 10 ⁇ 3 Pa to atmospheric pressure. Considering safety, it is preferable to use a reduced pressure condition of about 0.08 MPa, for example.
  • the heating conditions in the heating and melting step are 700 ° C. or higher and lower than 1410 ° C., preferably 1085 ° C. or higher and lower than 1410 ° C., for example, heat treatment can be performed for about 3 hours. Here, the heat treatment time may be 2 to 10 hours. By making the heat treatment longer, the obtained aluminum / magnesium / silicon composite material can be made more uniform.
  • the melting point of Al is 660.4 ° C.
  • the melting point of Si is 1410 ° C.
  • a temperature raising condition when the composition material is heat-treated for example, a temperature raising condition of 150 to 250 ° C./h until reaching 150 ° C., a temperature raising condition of 350 to 450 ° C./h until reaching 100 ° C.
  • a temperature raising condition after the heat treatment include a temperature lowering condition of 900 to 1000 ° C./h.
  • an opening and a lid that covers the opening are provided, a contact surface to the lid at the edge of the opening, and the opening to the opening in the lid It is necessary to carry out in a heat-resistant container in which the contact surface is polished together.
  • polishing in this way an aluminum / magnesium / silicon composite material having a composition ratio close to the composition ratio of the composition raw material can be obtained. This is because a gap is not formed on the contact surface between the lid and the edge of the opening, and the heat-resistant container is sealed, so that it is possible to suppress evaporation of evaporated Mg and Al to the outside of the heat-resistant container. This is probably because of this.
  • the polishing treatment of the contact surface to the lid portion at the edge of the opening and the contact surface to the opening portion of the lid portion is not particularly limited, and it is only necessary that the polishing treatment is performed.
  • the surface roughness Ra of the contact surface is 0.2 to 1 ⁇ m, it is preferable to form a close contact state, and more preferably 0.2 to 0.5 ⁇ m. If the surface roughness exceeds 1 ⁇ m, the adhesion between the edge of the opening and the lid may be insufficient.
  • polishing is performed more than necessary, which is not preferable in terms of cost.
  • the contact surface preferably has a surface waviness Rmax of 0.5 to 3 ⁇ m, more preferably 0.5 to 1 ⁇ m.
  • Rmax 0.5 to 3 ⁇ m, more preferably 0.5 to 1 ⁇ m.
  • the dimensions of the heat-resistant container include those having a container body having an inner diameter of 12 to 300 mm, an outer diameter of 15 to 320 mm, a height of 50 to 250 mm, and a lid portion having a diameter of 15 to 320 mm.
  • the upper surface of the lid is directly or indirectly adjusted as necessary. It can be pressurized with a weight.
  • the pressure during the pressurization is preferably 1 to 10 kgf / cm 2 .
  • the gas used to perform the heating and melting step in a reducing atmosphere may be 100% by volume hydrogen gas, but hydrogen gas and inert gas such as nitrogen gas or argon gas containing 5% by volume or more of hydrogen gas.
  • a mixed gas can be mentioned.
  • the reason for performing the heating and melting step in a reducing atmosphere is that it is necessary to avoid the production of not only silicon oxide but also magnesium oxide as much as possible when producing the aluminum / magnesium / silicon composite material according to the present invention. Can be mentioned.
  • the heated and melted sample can be cooled by natural cooling and forced cooling.
  • the pulverization step is a step of pulverizing the heated and melted sample.
  • the pulverized particles are fused to each other on at least a part of the surface, and almost no voids are observed. It is possible to obtain a sintered body having a density almost equal to the theoretical value from about 70% of the theoretical value.
  • the pulverized sample one having an average particle diameter of 0.01 to 100 ⁇ m can be preferably used. Specifically, 75 ⁇ m sieve pass particles can be used.
  • doping may be performed in the sintering step by adding a predetermined amount of dopant after the pulverization step.
  • the dopant include, for example, trivalent dopants such as boron, gallium, and indium doped in a divalent Mg site; pentavalent dopants such as phosphorus and bismuth doped in a tetravalent Si site. it can. A necessary amount of one or more of these dopants can be added to produce an aluminum / magnesium / silicon composite material used as an n-type thermoelectric conversion material.
  • dopant examples include, for example, monovalent dopants such as Ag, Cu, and Au doped in a divalent Mg site; trivalents such as boron, gallium, and indium doped in a tetravalent Si site. Can be mentioned.
  • An aluminum / magnesium / silicon composite material used as a p-type thermoelectric conversion material can be produced by adding a necessary amount of one or more of these dopants.
  • the dopant may be an aluminum / magnesium / silicon composite from a reactor used for sintering Mg 2 Si.
  • the dopant doped by being dissolved in the material may be all of the dopant of the sintered body or may be a part of the dopant of the sintered body.
  • the sintering step is a step of sintering the crushed sample.
  • the above-mentioned sample added with a dopant in some cases is sintered at a sintering pressure of 5 to 60 MPa and a sintering temperature of 600 to 1000 ° C. in a vacuum or reduced pressure atmosphere by a pressure compression sintering method.
  • the method of tying can be mentioned.
  • the sintering pressure When the sintering pressure is less than 5 MPa, it becomes difficult to obtain a sintered body having a sufficient density of about 70% or more of the theoretical density, and the obtained sample cannot be practically used in terms of strength. There is a fear. On the other hand, when the sintering pressure exceeds 60 MPa, it is not preferable in terms of cost and is not practical. If the sintering temperature is less than 600 ° C., it is difficult to obtain a sintered body having a density close to the theoretical density from 70% of the theoretical density obtained by fusing and firing at least part of the surfaces where the particles are in contact with each other. Therefore, there is a possibility that the obtained sample cannot be practically used in terms of strength. Further, when the sintering temperature exceeds 1000 ° C., the temperature is too high, so that not only the sample is damaged, but in some cases, Mg may rapidly become vapor and scatter.
  • the sintering temperature is in the range of 600 to 800 ° C., and when the sintering temperature is close to 600 ° C., the sintering pressure is close to 60 MPa.
  • the sintering conditions are such that the sintering pressure is close to 5 MPa, and sintering is performed for about 5 to 60 minutes, preferably about 10 minutes.
  • the sintering step is performed in an environment where a gas exists, it is preferable to sinter in an atmosphere using an inert gas such as nitrogen or argon.
  • a hot press sintering method HP
  • a hot isostatic sintering method HIP
  • a discharge plasma sintering method is preferable.
  • the spark plasma sintering method is a type of pressure compression sintering using the direct current pulse current method. It is a method of heating and sintering by applying a large pulse current to various materials. -This is a method in which an electric current is passed through a conductive material such as graphite and the material is processed and processed by Joule heating.
  • the sintered body thus obtained becomes a sintered body having high mechanical strength and capable of stably exhibiting high thermoelectric conversion performance, is not weathered, has excellent durability, stability and reliability. It can be used as a thermoelectric conversion material with excellent properties.
  • thermoelectric conversion element includes a thermoelectric conversion part, and a first electrode and a second electrode provided in the thermoelectric conversion part, and the thermoelectric conversion part includes the aluminum / magnesium / silicon composite material according to the invention. It is manufactured using.
  • thermoelectric conversion part As a thermoelectric conversion part, what cut out the sintered compact obtained by said sintering process to the desired magnitude
  • the thermoelectric conversion part having a multilayer structure can be manufactured by laminating a plurality of types of thermoelectric conversion materials before sintering in a desired order and then sintering.
  • the formation method of the first electrode and the second electrode is not particularly limited, but the thermoelectric conversion element manufactured using the aluminum / magnesium / silicon composite material according to the present invention can be formed by plating. Is one of the features. Normally, when an electrode is formed on a thermoelectric conversion part manufactured using an aluminum / magnesium / silicon composite material by plating, hydrogen gas is generated due to metal magnesium remaining in the material, and adhesion of plating Sexuality gets worse. On the other hand, in the case of the thermoelectric conversion part manufactured using the aluminum / magnesium / silicon composite material according to the present invention, since the metal magnesium is hardly contained in the material, an electrode having high adhesion is formed by a plating method. It is possible. Although it does not specifically limit as a plating method, Electroless nickel plating is preferable.
  • the sintered body with the plated layer thus obtained is cut into a predetermined size with a cutting machine such as a wire saw or a blade saw, and consists of a first electrode, a thermoelectric converter, and a second electrode. A thermoelectric conversion element is produced.
  • the first electrode and the second electrode can be integrally formed when the aluminum / magnesium / silicon composite material is sintered. That is, an electrode material, an aluminum / magnesium / silicon composite material, and an electrode material are laminated in this order and subjected to pressure compression sintering to obtain a sintered body having electrodes formed at both ends.
  • the layer of the pulverized product of the aluminum / magnesium / silicon composite material according to the present invention, the layer of the metal powder for electrode formation, and the layer of the insulating material powder are laminated to a predetermined thickness, and then subjected to pressure compression firing. Do the tie.
  • the insulating material powder is effective for preventing electricity from flowing from the sintering apparatus to the electrode-forming metal powder and preventing melting, and separates the insulating material from the formed electrode after sintering.
  • carbon paper is sandwiched between an insulating material powder layer and a metal powder layer for electrode formation, and further carbon paper is placed on the side inner wall surface of the cylindrical sintering jig, It is effective for preventing mixing and separating the electrode and the insulating material layer after sintering. Since many of the upper and lower surfaces of the sintered body thus obtained are uneven, it must be polished and smoothed, and then a predetermined size with a cutting machine such as a wire saw or blade saw.
  • thermoelectric conversion element including the first electrode, the thermoelectric conversion unit, and the second electrode is manufactured.
  • the metal powder for electrode formation is melted by the current, so that a large current cannot be used and it is difficult to adjust the current. Therefore, the electrode is removed from the obtained sintered body. There was a problem of peeling.
  • the first method by providing the insulating material powder layer, a large current can be used, and as a result, an initial sintered body can be obtained.
  • a layer of electrode-forming metal powder such as Ni is sequentially formed in the cylindrical sintering jig from the bottom.
  • a layer of the pulverized product of the aluminum / magnesium / silicon composite material and a layer of the electrode forming metal powder are laminated, and the surface of the graphite die of the sintering jig in contact with the electrode forming metal powder layer is coated with BN.
  • Such insulating, heat-resistant, and releasable ceramic particles are applied or sprayed to perform pressure compression sintering. In this case, it is not necessary to use carbon paper as in the first method.
  • thermoelectric conversion element which consists of a 1st electrode, a thermoelectric conversion part, and a 2nd electrode by cutting the obtained sintered compact to a predetermined magnitude
  • thermoelectric conversion module The thermoelectric conversion module according to the present invention includes the thermoelectric conversion element according to the present invention as described above.
  • thermoelectric conversion modules examples include those shown in FIGS. 1 and 2, for example.
  • this thermoelectric conversion module an n-type semiconductor and a p-type semiconductor obtained from the aluminum / magnesium / silicon composite material according to the present invention are used as thermoelectric conversion materials for the n-type thermoelectric conversion unit 101 and the p-type thermoelectric conversion unit 102, respectively.
  • Electrodes 1015 and 1025 are provided at the upper ends of the n-type thermoelectric converter 101 and the p-type thermoelectric converter 102 arranged side by side, and electrodes 1016 and 1026 are provided at the lower ends.
  • the electrodes 1015 and 1025 provided at the upper ends of the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit are connected to form an integrated electrode, and the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit
  • the electrodes 1016 and 1026 provided respectively at the lower end of each are separated.
  • thermoelectric conversion module for example, those shown in FIGS. 3 and 4 can be cited.
  • an n-type semiconductor obtained from the aluminum / magnesium / silicon composite material according to the present invention is used as the thermoelectric conversion material of the n-type thermoelectric conversion unit 103.
  • the n-type thermoelectric conversion unit 103 is provided with an electrode 1035 at the upper end and an electrode 1036 at the lower end.
  • the aluminum / magnesium / silicon composite material according to the present invention is an aluminum / magnesium / silicon composite material containing an alloy of Al, Mg, and Si and having high electrical conductivity.
  • a material having a high electrical conductivity ⁇ tends to have a high dimensionless figure of merit, according to the present invention, an aluminum / magnesium / silicon composite material excellent in thermoelectric conversion characteristics can be obtained.
  • high-purity silicon a semiconductor grade manufactured by MEMC Electronic Materials, having a purity of 99.999999999%, and having a diameter of 4 mm or less was used.
  • the magnesium a magnesium piece having a purity of 99.93% and a size of 1.4 mm ⁇ 0.5 mm manufactured by Nippon Thermochemical Co., Ltd. was used.
  • the aluminum used was a chip made by Furuuchi Chemical Co., Ltd., having a purity of 99.99% and a size of 3 to 7 mm.
  • the above composition raw material was put into a melting crucible made of Al 2 O 3 (manufactured by Nippon Chemical Ceramics Co., Ltd., inner diameter 34 mm, outer diameter 40 mm, height 150 mm; lid portion 40 mm in diameter and thickness 2.5 mm).
  • the melting crucible has a surface roughness Ra of 0.5 ⁇ m and a surface waviness Rmax of 1.0 ⁇ m on the contact surface of the edge of the opening to the lid and the contact surface of the lid on the edge of the opening. What was grind
  • the edge of the opening of the melting crucible and the lid are brought into close contact with each other, placed in a heating furnace, and pressurized with a weight to 3 kgf / cm 2 from the outside of the heating furnace through a ceramic rod. .
  • the inside of the heating furnace the pressure was reduced to equal to or less than 5Pa a rotary pump, then the pressure was reduced to a 1.33 ⁇ 10 -2 Pa with a diffusion pump.
  • the inside of the heating furnace was heated at 200 ° C./h until reaching 150 ° C., and kept at 150 ° C. for 1 hour to dry the composition raw material.
  • the heating furnace was filled with a mixed gas of hydrogen gas and argon gas, the hydrogen gas partial pressure was 0.005 MPa, and the argon gas partial pressure was 0.052 MPa.
  • sintering was performed in an argon atmosphere using a discharge plasma sintering apparatus (manufactured by ELENIX, “PAS-III-Es”) to obtain a sintered body.
  • the sintering conditions are as follows. Sintering temperature: 750 ° C Pressure: 30.0 MPa Temperature rising rate: 100 ° C / min x 5min ( ⁇ 500 ° C) 0 °C / min ⁇ 10min (500 °C) 20 ° C / min x 12.5 min (500-750 ° C) 0 ° C / min ⁇ 2min (750 ° C) Cooling conditions: Vacuum cooling Atmosphere: Ar 60 Pa (vacuum when cooling)
  • Example 2 In the mixing step, an aluminum / magnesium / silicon composite was prepared in the same manner as in Example 1 except that the amount of aluminum added was 2.11 parts by mass and the aluminum content in the composition raw material was 2.0 at%. A material (sintered body) was obtained.
  • Example 3 In the mixing step, an aluminum / magnesium / silicon composite was prepared in the same manner as in Example 1 except that the amount of aluminum added was 3.16 parts by mass and the aluminum content in the composition raw material was 3.0 at%. A material (sintered body) was obtained.
  • Example 4 In the mixing step, an aluminum / magnesium / silicon composite was prepared in the same manner as in Example 1 except that the amount of aluminum added was 6.11 parts by mass and the aluminum content in the composition raw material was 5.0 at%. A material (sintered body) was obtained.
  • Example 5 In the mixing step, an aluminum / magnesium / silicon composite material (with the same method as in Example 1) except that the amount of aluminum added was 10.5 parts by mass and the aluminum content in the composition raw material was 10 at%. A sintered body) was obtained.
  • Example 2 In the mixing step, an aluminum / magnesium / silicon composite was prepared in the same manner as in Example 1 except that the amount of aluminum added was 0.16 parts by mass and the aluminum content in the composition raw material was 0.15 at%. A material (sintered body) was obtained.
  • the aluminum / magnesium / silicon composite materials of Examples 1 to 7 in which the Al content in the composition raw material is 1 to 10 at% are superior to the composite materials of Comparative Examples 1 to 3 in terms of thermoelectric conversion. It can be seen that performance is obtained. From this result, it can be seen that the aluminum / magnesium / silicon composite material according to the present invention can be suitably used as a thermoelectric conversion material.
  • Test Example 2 Evaluation of Plasticity >> According to Test Example 1, an aluminum / magnesium / silicon composite material (sintered body) or a composition starting material containing Al at 0.0 at%, 1.0 at%, 3.0 at%, 5.8 at%, or 10 at%, or A magnesium-silicon composite material (sintered body) was prepared. About each of these sintered compacts, it cut
  • Table 2 shows that the aluminum / magnesium / silicon composite material according to the present invention having an Al content of 1 to 10 at% in the composition raw material has excellent plasticity as compared with the magnesium / silicon composite material. From this result, it is surmised that the aluminum / magnesium / silicon composite material according to the present invention can be easily processed into a thermoelectric conversion element.
  • FIG. 10 shows that the compressive strength is particularly excellent when the Al content in the composition raw material is in the range of 3.5 to 6.0 at%. From this result, the aluminum / magnesium / silicon composite material (sintered body) prepared using the composition raw material having an Al content of 3.5 to 6.0 at% is desired to be sintered with a blade saw, for example. It is considered that the element can be prevented from being damaged even when cut into a size. Although not shown in the drawing, when the content of Al in the composition raw material exceeds 6.0 at%, the compressive strength is lowered.
  • the aluminum / magnesium / silicon composite material according to the present invention is an aluminum / magnesium / silicon composite material containing an alloy of Al, Mg, and Si and having high electrical conductivity.
  • an aluminum / magnesium / silicon composite material excellent in thermoelectric conversion characteristics can be obtained.
  • thermoelectric converter 1015 101 n-type thermoelectric converter 1015, 1016 electrode 102 p-type thermoelectric converter 1025, 1026 electrode 103 n-type thermoelectric converter 1035, 1036 electrode 3 load 4 DC power supply 10 graphite die 11a, 11b graphite punch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

 Al、Mg、及びSiからなる合金を含み、熱電変換モジュールの材料として好適に使用可能なアルミニウム・マグネシウム・ケイ素複合材料であって、優れた熱電変換特性を有するアルミニウム・マグネシウム・ケイ素複合材料を提供する。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、300Kにおける電気伝導率σが1000~3000S/cmである。このアルミニウム・マグネシウム・ケイ素複合材料は熱電変換特性に優れているため、熱電変換素子を製造する際に好適である。

Description

アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール
 本発明は、アルミニウム・マグネシウム・ケイ素複合材料;熱電変換材料、熱電変換素子、及び熱電変換モジュール;並びにアルミニウム・マグネシウム・ケイ素複合材料の製造方法に関する。
 近年、環境問題の高まりに応じて、各種のエネルギーを効率的に利用する様々な手段が検討されている。特に、産業廃棄物の増加等に伴って、これらを焼却する際に生じる廃熱の有効利用が課題となっている。例えば大型廃棄物焼却施設では、廃熱により高圧の蒸気を発生させ、この蒸気により蒸気タービンを回転させて発電することにより廃熱回収が行われている。しかし、廃棄物焼却施設の大多数を占める中型・小型廃棄物焼却施設では、廃熱の排出量が少ないため、蒸気タービン等により発電する廃熱の回収方法は採用できていない。
 このような中型・小型の廃棄物焼却施設において採用することが可能な廃熱を利用した発電方法としては、例えば、ゼーベック効果或いはペルチェ効果を利用して可逆的に熱電変換を行う熱電変換材料・熱電変換素子・熱電変換モジュールを用いた方法が提案されている。
 熱電変換モジュールとしては、例えば図1及び図2に示すようなものが挙げられる。この熱電変換モジュールでは、熱伝導率の小さいn型半導体及びp型半導体がそれぞれn型熱電変換部101及びp型熱電変換部102の熱電変換材料として用いられる。並置されたn型熱電変換部101及びp型熱電変換部102の上端部には電極1015,1025が、下端部には電極1016,1026がそれぞれ設けられる。そして、n型熱電変換部及びp型熱電変換部の上端部にそれぞれ設けられた電極1015,1025が接続されて一体化された電極を形成すると共に、n型熱電変換部及びp型熱電変換部の下端部にそれぞれ設けられた電極1016,1026は分離されて構成される。
 ここで、図1に示すように、電極1015,1025の側を加熱し、電極1016,1026の側から放熱することで、電極1015,1025と、電極1016,1026との間に正の温度差(Th-Tc)が生じ、熱励起されたキャリアによってp型熱電変換部102がn型熱電変換部101よりも高電位となる。このとき、電極1016と電極1026との間に負荷として抵抗3を接続することで、p型熱電変換部102からn型熱電変換部101へと電流が流れる。
 一方、図2に示すように、直流電源4によってp型熱電変換部102からn型熱電変換部101へと直流電流を流すことで、電極1015,1025において吸熱作用が生じ、電極1016,1026において発熱作用が生じる。また、n型熱電変換部101からp型熱電変換部102へと直流電流を流すことで、電極1015,1025において発熱作用が生じ、電極1016,1026において吸熱作用が生じる。
 熱電変換モジュールの他の例としては、例えば図3及び図4に示すようなものが挙げられる(例えば特許文献1を参照)。この熱電変換モジュールでは、熱伝導率の小さいn型半導体のみが熱電変換材料として用いられる。n型熱電変換部103の上端部には電極1035が、下端部には電極1036がそれぞれ設けられる。
 この場合、図3に示すように、電極1035側を加熱し、電極1036側から放熱することで、電極1035と電極1036との間に正の温度差(Th-Tc)が生じ、電極1035側が電極1036側よりも高電位となる。このとき、電極1035と電極1036との間に負荷として抵抗3を接続することで、電極1035側から電極1036側へと電流が流れる。
 一方、図4に示すように、直流電源4によって電極1036側からn型熱電変換部103を経て電極1035側へと直流電流を流すことで、電極1035において吸熱作用が生じ、電極1036において発熱作用が生じる。また、直流電源4によって電極1035側からn型熱電変換部103を経て電極1036へと直流電流を流すことで、電極1035において発熱作用が生じ、電極1036において吸熱作用が生じる。
 このように極めてシンプルな構成で効率的に熱電変換を行うことができる熱電変換素子は、従来特殊な用途を中心に応用展開されている。
 ここで、従来、Bi-Te系、Co-Sb系、Zn-Sb系、Pb-Te系、Ag-Sb-Ge-Te系等の熱電変換材料により、燃料電池、自動車、ボイラー・焼却炉・高炉等の約200℃から800℃程度の廃熱源を利用して電気に変換する試みが行われてきた。しかし、このような熱電変換材料には有害物質が含まれるため、環境負荷が大きくなるという問題があった。
 また、高温用途で用いるものとしては、BC等、ホウ素を多量に含むホウ化物、LaS等のレアアース金属カルコゲナイト等が研究されているが、BCやLaS等の金属間化合物を主体とする非酸化物系の材料は、真空中で比較的高い性能を発揮するものの、高温下で結晶相の分解が生じる等、高温領域での安定性が劣るという問題があった。
 一方、環境負荷が少ないMgSi(例えば特許文献2及び3、非特許文献1~3を参照)、MgSi1-x(例えば非特許文献4を参照)等のシリサイド系(珪化物系)の金属間化合物を含む材料も研究されている。
特開平11-274578号公報 特開2005-314805号公報 国際公開第03/027341号
Semiconducting Properties of Mg2Si Single Crystals Physical Review Vol.109,No.6,March 15,1958,p.1909-1915 Seebeck Effect In Mg2Si Single Crystals J.Phys.Chem.Solids Program Press 1962.Vol.23,pp.601-610 Bulk Crystals Growth of Mg2Si by the vertical Bridgman method Science Direct Thin Solid Films 461(2004)86-89 Thermoelectric Properties of Mg2Si Crystal Grown by the Bridgeman method
 しかし、上記Mgを含有するシリサイド系の金属間化合物を含む材料は、熱電変換性能が低いといった問題点があり、Mgを含有するシリサイド系の金属間化合物を含む材料を実際に熱電変換モジュールに実用化するには至っていなかった。
 例えば、特許文献2,3に記載のマグネシウム-ケイ素複合材料については、これが有する熱電特性については、全く検討されていない。しかし、本発明者らが検討したところによれば、特許文献2,3に記載のマグネシウム-ケイ素複合材料は、本願で必要とされるマグネシウム-ケイ素複合材料の特性を有しないものであった。
 本発明は、以上の課題に鑑みてなされたものであり、Al、Mg、及びSiからなる合金を含み、熱電変換モジュールの材料として好適に使用可能なアルミニウム・マグネシウム・ケイ素複合材料であって、優れた熱電変換特性を有するアルミニウム・マグネシウム・ケイ素複合材料を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意研究を行った。その結果、Al、Mg、及びSiからなる合金を含むアルミニウム・マグネシウム・ケイ素複合材料が優れた熱電変換特性を有すると共に、熱電変換性能を決定する要因のうち、特に電気伝導率が高いものであることを見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。
 [1] Al、Mg、及びSiからなる合金を含み、300Kにおける電気伝導率σが1000~3000S/cmであるアルミニウム・マグネシウム・ケイ素複合材料。
 [1]に記載の発明は、Al、Mg、及びSiからなる合金を含み、高い電気伝導率を有するアルミニウム・マグネシウム・ケイ素複合材料である。ここで、熱電変換材料の熱電変換特性を示す性能指数は、一般に以下の数式(1)によって導出され、上記性能指数に絶対温度Tを乗じた数値が無次元性能指数ZTとなる。
Figure JPOXMLDOC01-appb-M000001
[上記式(1)において、αはゼーベック係数を、σは電気伝導率を、κは熱伝導率を示す。]
 上記数式(1)から明らかなように、電気伝導率が高い材料は無次元性能指数も高くなる傾向にある。このため、[1]に記載の発明によれば、熱電変換特性に優れたアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。
 なお、[1]に記載の発明における複合材料は、「Al、Mg、及びSiからなる合金」を含むものであり、例えばMgSi等のマグネシウムシリサイドに、不純物程度のアルミニウムを含有する、アルミニウムをドープした材料とは異なるものである。本発明において、上記複合材料としては、通常、Al元素の含有量が0.5at%以上のものを指す。
 [2] Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1~10at%である組成原料から合成される[1]に記載のアルミニウム・マグネシウム・ケイ素複合材料。
 [2]に記載の発明は、[1]に記載のアルミニウム・マグネシウム・ケイ素複合材料を製造する際の組成原料を規定したものである。したがって、[2]に記載の発明によれば、[1]に記載の発明と同等の効果を得ることができる。
 [3] 前記組成原料中のAlの含有量が3.5~6.0at%である[2]に記載のアルミニウム・マグネシウム・ケイ素複合材料。
 [3]に記載の発明は、[2]に記載のアルミニウム・マグネシウム・ケイ素複合材料を製造する際の組成原料中の好ましいAlの含有量を規定したものである。この[3]に記載の発明によれば、[2]に記載の発明の効果に加え、焼結体の機械的強度に優れるという効果を得ることができる。
 [4] Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1~10at%である組成原料を、開口部と前記開口部を覆う蓋部とを備え、前記開口部の辺縁における前記蓋部への接触面と、前記蓋部における前記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するアルミニウム・マグネシウム・ケイ素複合材料の製造方法。
 [4]に記載の発明は、[1]又は[2]に記載の発明を、製造方法の発明として規定したものである。したがって、[4]に記載の発明によれば、[1]又は[2]に記載の発明と同等の効果を得ることができる。
 [5] [1]から[3]のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料からなる熱電変換材料。
 [6] 熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、前記熱電変換部が[1]から[3]のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料を用いて製造される熱電変換素子。
 [7] [6]に記載の熱電変換素子を備える熱電変換モジュール。
 [5]から[7]に記載の発明は、[1]から[3]のいずれかに記載の発明を熱電変換材料、熱電変換素子、及び熱電変換モジュールの発明として規定したものである。したがって、[5]から[7]に記載の発明によれば、[1]から[3]のいずれかに記載の発明と同等の効果を得ることができる。
 [8] [1]から[3]のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料が用いられてなる耐食性材料、軽量構造材、摩擦材、セラミックス基板、誘電体磁器組成物、水素吸蔵組成物、又はシラン発生装置。
 本発明に係るマグネシウム-ケイ素複合材料の用途としては、好ましくは、熱電変換材料、熱電変換素子、及び熱電変換モジュールの用途を挙げることができるが、例えば、耐食性材料、軽量構造材、摩擦材、セラミックス基板、誘電体磁器組成物、水素吸蔵組成物、シラン発生装置等の用途に用いることもできる。
 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、高い電気伝導率を有するアルミニウム・マグネシウム・ケイ素複合材料である。ここで、電気伝導率が高い材料は無次元性能指数も高くなる傾向にあるため、本発明によれば、熱電変換特性に優れたアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。
熱電変換モジュールの一例を示す図である。 熱電変換モジュールの一例を示す図である。 熱電変換モジュールの一例を示す図である。 熱電変換モジュールの一例を示す図である。 焼結装置の一例を示す図である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における無次元性能指数と温度との関係を示す図である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における電気伝導率とアルミニウムの組成比との関係を示す図である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における無次元性能指数と電気伝導率との関係を示す図面である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における無次元性能指数とアルミニウムの組成比との関係を示す図である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における圧縮強度とアルミニウムの組成比との関係を示す図である。
 以下、本発明の実施形態について図面を挙げて詳細に説明する。
 <アルミニウム・マグネシウム・ケイ素複合材料>
 [アルミニウム・マグネシウム・ケイ素複合材料の特性]
 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、300Kにおける電気伝導率σが1000~3000S/cmである。ここで、熱電変換材料の性能指数を示す上記の数式(1)から明らかなように、電気伝導率σが高い材料は、性能指数も高くなる傾向にある。このため、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、優れた熱電変換性能を有する傾向にある。アルミニウム・マグネシウム・ケイ素複合材料が優れた電気伝導率を示すことにより、例えば、アルミニウム・マグネシウム・ケイ素複合材料を熱電変換素子、熱電変換モジュールに使用する場合に、高い熱電変換性能を得ることができる。なお、上記電気伝導率は、1100~2500S/cmであることが好ましく、1200~2000S/cmであることが更に好ましい。
 ここで、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、組成原料を加熱溶融し、好ましくは加熱溶融後の試料を粉砕した後のものであっても、粉砕後の試料を焼結した後のものであってもよいが、アルミニウム・マグネシウム・ケイ素複合材料の電気伝導率に言及するとき、Al、Mg、及びSiを含む組成原料を加熱溶融し、加熱溶融後の試料を粉砕して、粉砕後の試料を焼結した後に測定されたものを指すものとする。同様に、アルミニウム・マグネシウム・ケイ素複合材料の無次元性能指数に言及するとき、Al、Mg、及びSiを含む組成原料を加熱溶融し、加熱溶融後の試料を粉砕して、粉砕後の試料を焼結した後に測定されたものを指すものとする。
 すなわち、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料とは、組成原料の加熱溶融物、当該加熱溶融物の粉砕物及び当該粉砕物の焼結体を包含した意味をなし、これらの加熱溶融物、粉砕物、及び焼結体は、それぞれ単独で商品としての価値を有するものである。本発明に係る熱電変換材料自体及び熱電変換素子を構成する熱電変換部は、当該焼結体から構成されるものである。
 上述したとおり、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、「Al、Mg、及びSiからなる合金」を含むものであり、例えばMgSi等のマグネシウムシリサイドに、不純物程度のAlを含有する、Alをドープした材料とは異なるものである。本発明において上記複合材料としては、通常、Alの含有量が0.5at%以上のものを指す。
 また、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、860Kにおける無次元性能指数が0.47以上であることが好ましく、0.55以上であることがより好ましい。無次元性能指数が上記範囲内にあることにより、アルミニウム・マグネシウム・ケイ素複合材料を熱電変換材料として用いたときに、優れた熱電変換性能を得ることができる。
 なお、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、インゴット状のもの、粉末状のもの、粉末状のものを焼結したもの等、いかなる形態のものであってもよいが、粉末状のものを焼成したものであることが好ましい。更に、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の用途としては、好ましくは、後述する熱電変換材料、熱電変換素子、及び熱電変換モジュールの用途を挙げることができるが、このような用途に限定されるものではなく、例えば、耐食性材料、軽量構造材、摩擦材、セラミックス基板、誘電体磁器組成物、水素吸蔵組成物、シラン発生装置等の用途に用いることもできる。
 更に、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、機械的強度に優れるものである。このため、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、これを容易に熱電変換素子等に加工することができる。
 <熱電変換材料、熱電変換素子、及び熱電変換モジュール>
 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、熱電変換材料として好適に使用できるものである。即ち、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、300Kにおける電気伝導率が1000~3000S/cmのものであるので、熱電変換性能に優れる傾向にあり、これを熱電変換材料として熱電変換素子、熱電変換モジュールに使用する場合に、高い熱電変換性能を得ることができる。
 <アルミニウム・マグネシウム・ケイ素複合材料の製造方法等>
 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の製造方法は、Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1~10at%である組成原料を、開口部とこの開口部を覆う蓋部とを有し、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するものである。
 また、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の製造方法は、加熱溶融工程において得られた試料を粉砕する粉砕工程と、粉砕された上記試料を焼結する焼結工程とを有することが好ましい。
 なお、組成原料中におけるAlの含有量は、3.5~6.0at%であることがより好ましく、3.8~5.8at%であることが更に好ましい。Alの含有量をこのような範囲とすることにより、焼結体の機械的強度に優れるようになる。したがって、例えばブレードソーによって焼結体を所望の大きさに切り出す際にも、素子が破損することを防止できる。
 (混合工程)
 混合工程においては、Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合して、Alの含有量が1~10at%、好ましくは3.5~6.0at%、より好ましくは3.8~5.8at%である組成原料を得る。
 Siとしては、例えば3N以上、好ましくは6N以上のシリコンを利用することができる。ここで、シリコンとしては、具体的には、例えばLSI用高純度シリコン原料、太陽電池用高純度シリコン原料、高純度金属シリコン、高純度シリコンインゴット、高純度シリコンウエハ等を挙げることができる。
 混合工程においてAl及びMgの原料としてAl及びMgの混合物を用いる場合、Mgとしては、99.5wt%程度以上の純度を有するものであり、実質的に不純物を含有しないものである限り、特に限定されるものではないが、例えば、Si、Mn、Al、Fe、Cu、Ni、Cl等の不純物を含むものであっても差し支えない。
 また、混合工程においてAl及びMgの原料としてAl及びMgの混合物を用いる場合、Alとしては、99.5wt%程度以上の純度を有するものであり、実質的に不純物を含有しないものである限り、特に限定されるものではないが、例えば、Si、Mn、Mg、Fe、Cu、Ni、Cl等の不純物を含むものであっても差し支えない。
 更に、混合工程においてAl及びMgの原料としてAlを含有するMg合金を用いる場合には、Alを2.0~8.2at%、好ましくは3.5~6.0at%、より好ましくは3.8~5.8at%含有する合金を挙げることができる。このような合金としては、具体的には、AM20、AZ31B、AM60B、及びAZ91Dを挙げることができる。このような合金は、市場の様々な製品からリサイクル可能であるため、アルミニウム・マグネシウム・ケイ素複合材料の製造コストを低減することができる。
 混合工程において用いられる組成原料は、Mgの含有量がMg及びSiの合計含有量に基づく原子量比で66.17~66.77at%であり、Siの含有量がMg及びSiの合計含有量に基づく原子量比で33.23~33.83at%である。
 なお、Mgの含有量は、Mg及びSiの合計含有量に基づく原子量比で66.27~66.67at%であることが好ましく、このときのSiの含有量は、Mg及びSiの合計含有量に基づく原子量比で33.33~33.73at%であることが好ましい。
 (加熱溶融工程)
 加熱溶融工程においては、Al、Mg、及びSiを含む組成原料を還元雰囲気下且つ好ましくは減圧下において、Mg及びAlの融点を超えSiの融点を下回る温度条件下で熱処理してAl、Mg、及びSiからなる合金を溶融合成することが好ましい。ここで、「還元雰囲気下」とは、特に水素ガスを5体積%以上含み、必要に応じてその他の成分として、不活性化ガスを含む雰囲気を指す。斯かる還元雰囲気下で加熱溶融工程を行うことにより、Mg、Al、及びSiを確実に反応させることでき、アルミニウム・マグネシウム・ケイ素複合材料を合成することができる。
 加熱溶融工程における圧力条件としては、大気圧でもよいが、1.33×10-3Pa~大気圧が好ましく、安全性を考慮すれば、例えば0.08MPa程度の減圧条件とすることが好ましい。
 また、加熱溶融工程における加熱条件としては、700℃以上1410℃未満、好ましくは1085℃以上1410℃未満で、例えば3時間程度熱処理することができる。ここで、熱処理の時間は2~10時間であってもよい。熱処理を長時間のものとすることにより、得られるアルミニウム・マグネシウム・ケイ素複合材料をより均一化することができる。なお、Alの融点は660.4℃、Siの融点は1410℃である。
 ここで、Mgの融点である693℃以上に加熱することによりMgが溶融した場合、Al及びSiがその中に溶け込んで反応を開始するが、反応速度がやや遅いものとなる。一方、Mgの沸点である1090℃以上に加熱した場合、反応速度は速いものとなるが、Mgが急激に蒸気となって飛散するおそれがあるので注意して合成する必要がある。
 また、組成原料を熱処理する際の昇温条件としては、例えば、150℃に達するまでは150~250℃/hの昇温条件、1100℃に達するまでは350~450℃/hの昇温条件を挙げることができ、熱処理後の降温条件としては、900~1000℃/hの降温条件を挙げることができる。
 なお、加熱溶融工程を行う際には、開口部とこの開口部を覆う蓋部とを備え、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とが共に研磨処理された耐熱容器中で行う必要がある。このように研磨処理することで、組成原料の組成比率に近い組成比率を有するアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。これは、上記蓋部と上記開口部の辺縁との接触面において隙間が形成されず、耐熱容器が密閉されるため、蒸発したMgやAlの耐熱容器外への飛散を抑制することができるためと考えられる。
 上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面との研磨処理については特に限定されず、研磨処理されたものでありさえすればよい。しかし、特に、当該接触面の表面粗さRaを0.2~1μmとすると密着状態を形成するのに好ましく、0.2~0.5μmとすると更に好ましい。表面粗さが1μmを超えると、開口部の辺縁と蓋部との密着性が不十分になる場合がある。一方、表面粗さRaが0.2μm未満の場合、必要以上の研磨を行うこととなり、コスト面で好ましくない。また、上記接触面は、表面うねりRmaxが0.5~3μmであることが好ましく、0.5~1μmであることが更に好ましい。表面うねりRmaxが0.5μm未満の場合、必要以上の研磨を行うこととなり、コスト面で好ましくない。
 ここで、このような耐熱容器としては、アルミナ、マグネシア、ジルコニア、白金、イリジウム、シリコンカーバイト、ボロンナイトライド、パイロライティックボロンナイトライド、パイロライティックグラファイト、パイロライティックボロンナイトライドコート、パイロライティックグラファイトコート、及び石英からなる密閉容器を挙げることができる。また、上記耐熱容器の寸法としては、容器本体が内径12~300mm、外径15~320mm、高さ50~250mmで、蓋部の直径が15~320mmのものを挙げることができる。
 更に、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とを密着させるため、必要に応じて、上記蓋部の上面を直接又は間接におもりにて加圧することができる。当該加圧の際の圧力は、1~10kgf/cmであることが好ましい。
 加熱溶融工程を還元雰囲気下において行うために使用するガスとしては、100体積%の水素ガスでもよいが、水素ガス5体積%以上を含む窒素ガス又はアルゴンガス等、水素ガスと不活性ガスとの混合ガスを挙げることができる。このように、加熱溶融工程を還元雰囲気下で行う理由としては、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を製造するにあたって、酸化ケイ素のみならず、酸化マグネシウムの生成を極力避ける必要があることを挙げることができる。
 加熱溶融された試料は、自然冷却及び強制冷却によって冷却することができる。
 (粉砕工程)
 粉砕工程は、加熱溶融された試料を粉砕する工程である。粉砕工程においては、加熱溶融された試料を、微細で、狭い粒度分布を有する粒子に粉砕することが好ましい。微細で、狭い粒度分布を有する粒子に粉砕することにより、これを焼結する際に、粉砕された粒子同士がその表面の少なくとも一部において融着し、空隙(ボイド)の発生がほとんど観察されない程度に焼結することができ、理論値の約70%から理論値とほぼ同程度の密度を有する焼結体を得ることができる。
 粉砕した上記試料は、好ましくは、平均粒径が0.01~100μmのものを使用することができる。具体的には、75μm篩パスの粒子を使用することができる。
 なお、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を熱電変換材料として利用する場合には、粉砕工程の後にドーパントを所定量添加することにより焼結工程でドーピングを行ってもよい。
 ドーパントの具体例としては、例えば、2価のMgサイトにドープするホウ素、ガリウム、インジウム等の3価のドーパント;4価のSiサイトにドープするリン、ビスマス等の5価のドーパントを挙げることができる。これらのドーパントの1種以上を必要量添加して、n型熱電変換材料として用いられるアルミニウム・マグネシウム・ケイ素複合材料を製造することができる。
 また、ドーパントの他の具体例としては、例えば、2価のMgサイトにドープするAg、Cu、Au等の1価のドーパント;4価のSiサイトにドープするホウ素、ガリウム、インジウム等の3価のドーパントを挙げることができる。これらのドーパントの1種以上を必要量添加して、p型熱電変換材料として用いられるアルミニウム・マグネシウム・ケイ素複合材料を製造することができる。
 加圧圧縮焼結して安定して高い熱電変換性能を発揮できる焼結体が得られる限り、ドーパントとしては、MgSiを焼結する際に使用する反応装置等からアルミニウム・マグネシウム・ケイ素複合材料に溶け込んでドープされるドーパントが、焼結体のドーパントの全部であってもよく、焼結体のドーパントの一部であってもよい。
 なお、一般に、加熱溶融工程でドーパントを添加する場合、熱平衡状態下での固溶限界濃度まで可能であるが、後述する焼結工程でドーピングを行う場合、固溶限界濃度を超えてドーパントの添加を行うことができる。
 (焼結工程)
 焼結工程は、粉砕した上記試料を焼結する工程である。焼結工程における焼結の条件としては、場合によってドーパントを添加した上記試料を、加圧圧縮焼結法により真空又は減圧雰囲気下で焼結圧力5~60MPa、焼結温度600~1000℃で焼結する方法を挙げることができる。
 焼結圧力が5MPa未満である場合、理論密度の約70%以上の十分な密度を有する焼結体を得ることが難しくなり、得られた試料が強度的に実用に供することができないものとなるおそれがある。一方、焼結圧力が60MPaを超える場合、コストの面で好ましくなく、実用的でない。また、焼結温度が600℃未満では、粒子同士が接触する面の少なくとも一部が融着して焼成された理論密度の70%から理論密度に近い密度を有する焼結体を得ることが難しくなり、得られた試料が強度的に実用に供することができないものとなるおそれがある。また、焼結温度が1000℃を超える場合には、温度が高すぎるために試料の損傷が生じるばかりでなく、場合によってはMgが急激に蒸気となって、飛散するおそれがある。
 具体的な焼結条件としては、例えば、焼結温度を600~800℃の範囲内のものとし、焼結温度が600℃に近い温度にあるときには、焼結圧力を60MPaに近い圧力とし、焼結温度が800℃に近い温度であるときには、焼結圧力を5MPaに近い圧力として、5~60分間程度、好ましくは10分間程度焼結する焼結条件を挙げることができる。斯かる焼結条件の下で焼結を行うことで、高い機械的強度と、理論密度とほぼ同等の密度とを有し、安定して高い熱電変換性能を発揮できる焼結体を得ることができる。
 また、気体が存在する環境下で焼結工程を行う場合、窒素やアルゴン等の不活性ガスを使用した雰囲気下で焼結することが好ましい。
 焼結工程において、加圧圧縮焼結法を採用する場合、ホットプレス焼結法(HP)、熱間等方圧焼結法(HIP)、及び放電プラズマ焼結法を採用することができる。これらの中でも、放電プラズマ焼結法が好ましい。
 放電プラズマ焼結法は、直流パルス通電法を用いた加圧圧縮焼結法の一種で、パルス大電流を種々の材料に通電することによって加熱・焼結する方法であり、原理的には金属・グラファイト等の導電性材料に電流を流し、ジュール加熱により材料を加工・処理する方法である。
 このようにして得られた焼結体は、高い機械的強度を有し、且つ安定して高い熱電変換性能を発揮できる焼結体となり、風化せず、耐久性に優れて、安定性及び信頼性に優れた熱電変換材料として使用できる。
 (熱電変換素子)
 本発明に係る熱電変換素子は、熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、この熱電変換部が本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を用いて製造されるものである。
 (熱電変換部)
 熱電変換部としては、上記の焼結工程にて得られた焼結体を、ワイヤーソー等を用いて所望の大きさに切り出したものを用いることができる。
 この熱電変換部は、通常、1種類の熱電変換材料を用いて製造されるが、複数種類の熱電変換材料を用いて複層構造を有する熱電変換部としてもよい。複層構造を有する熱電変換部は、焼結前の複数種類の熱電変換材料を所望の順序で積層した後、焼結することにより製造することができる。
 (電極)
 上記第1電極及び第2電極の形成方法は特に限定されるものではないが、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を用いて製造された熱電変換素子は、メッキ法により電極を形成できることが特徴の1つである。
 通常、アルミニウム・マグネシウム・ケイ素複合材料を用いて製造された熱電変換部にメッキ法で電極を形成しようとした場合、材料中に残留する金属マグネシウムに起因して水素ガスが発生し、メッキの接着性が悪くなる。一方、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を用いて製造された熱電変換部の場合には、材料中に金属マグネシウムが殆ど含まれないため、メッキ法により接着性の高い電極を形成することが可能である。メッキ法としては、特に限定されないが、無電界ニッケルメッキが好ましい。
 メッキ法により電極を形成する前の焼結体の表面に、メッキを行うのに支障となる凹凸がある場合には、研磨して平滑にすることが好ましい。
 このようにして得られたメッキ層付きの焼結体を、ワイヤーソーやブレードソーのような切断機で所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子が作製される。
 また、第1電極及び第2電極は、アルミニウム・マグネシウム・ケイ素複合材料の焼結時に一体して形成することも可能である。即ち、電極材料、アルミニウム・マグネシウム・ケイ素複合材料、電極材料をこの順で積層し、加圧圧縮焼結することにより、両端に電極が形成された焼結体を得ることができる。
 本発明における加圧圧縮焼結法による電極の形成方法として、2つの方法について説明する。
 第1の方法は、例えばグラファイトダイ及びグラファイト製パンチからなる円筒型の焼結用冶具内にその底部から順次、SiOのような絶縁性材料粉末の層、Niのような電極形成用金属粉末の層、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の粉砕物の層、上記電極形成用金属粉末の層、上記絶縁性材料粉末の層を所定の厚さで積層した後、加圧圧縮焼結を行う。
 上記絶縁性材料粉末は、焼結装置から電極形成用金属粉末に電気が流れるのを防止し、溶融を防ぐために有効であり、焼結後、形成された電極から該絶縁性材料を分離する。
 第1の方法においては、カーボンペーパーを絶縁性材料粉末層と電極形成用金属粉末層との間に挟み、さらに円筒型焼結用冶具の側内壁表面にカーボンペーパーを設置しておけば、粉末同士の混合を防止し、また焼結後に電極と絶縁材料層を分離するのに有効である。
 このようにして得られた焼結体の上下表面の多くは、凹凸が形成されるため、研磨して平滑にする必要があり、その後、ワイヤーソーやブレードソーのような切断機で所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子が作製される。
 絶縁性材料粉末を用いない従来の方法によると、電流によって電極形成用金属粉末を溶融させてしまうため、大電流を使用できず電流の調整が難しく、したがって、得られた焼結体から電極が剥離してしまう問題があった。一方、第1の方法では絶縁性材料粉末層を設けることによって、大電流を用いることができ、その結果、初期の焼結体を得ることができる。
 第2の方法は、上記第1の方法における絶縁性材料粉末層を用いないで、円筒型の焼結用冶具内にその底部から順次、Niのような電極形成用金属粉末の層、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の粉砕物の層、上記電極形成用金属粉末の層を積層し、上記電極形成用金属粉末の層に接する焼結用冶具の上記グラファイトダイの表面に、BNのような絶縁性、耐熱性、且つ離型性のセラミックス粒子を塗布又はスプレーして、加圧圧縮焼結を行う。この場合、第1の方法のようにカーボンペーパーを使用する必要はない。
 この第2の方法は、第1の方法の利点を全て有する上に、得られた焼結体の上下表面が平滑であるため、殆ど研磨する必要がないという利点を有する。
 得られた焼結体を所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子を作製する方法は上記第1の方法と同様である。
 (熱電変換モジュール)
 本発明に係る熱電変換モジュールは、上記のような本発明に係る熱電変換素子を備えるものである。
 熱電変換モジュールの一例としては、例えば図1及び図2に示すようなものが挙げられる。この熱電変換モジュールでは、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料から得られたn型半導体及びp型半導体がそれぞれn型熱電変換部101及びp型熱電変換部102の熱電変換材料として用いられる。並置されたn型熱電変換部101及びp型熱電変換部102の上端部には電極1015,1025が、下端部には電極1016,1026がそれぞれ設けられる。そして、n型熱電変換部及びp型熱電変換部の上端部にそれぞれ設けられた電極1015,1025が接続されて一体化された電極を形成すると共に、n型熱電変換部及びp型熱電変換部の下端部にそれぞれ設けられた電極1016,1026は分離されて構成される。
 また、熱電変換モジュールの他の例としては、例えば図3及び図4に示すようなものが挙げられる。この熱電変換モジュールでは、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料から得られたn型半導体がn型熱電変換部103の熱電変換材料として用いられる。n型熱電変換部103の上端部には電極1035が、下端部には電極1036がそれぞれ設けられる。
 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、高い電気伝導率を有するアルミニウム・マグネシウム・ケイ素複合材料である。ここで、電気伝導率σが高い材料は、無次元性能指数も高くなる傾向にあるため、本発明によれば、熱電変換特性に優れたアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。
 以下、本発明について、実施例を挙げて詳細に説明する。なお、本発明は以下に示す実施例に何ら限定されるものではない。
 <<試験例1;熱電特性の測定>>
 <実施例1>
 [混合工程]
 高純度シリコン36.23質量部、マグネシウム62.72質量部、及びアルミニウム1.06質量部を混合し、MgとSiとの組成比が、Mg:Si=66.0:33.0、Alの含有量が1.0at%の組成原料(1.0at%Al、66.0at%Mg、33.0at%Si)を得た。なお、高純度シリコンとしては、MEMC Electronic Materials社製で、純度が99.9999999%の半導体グレード、直径4mm以下の粒状のものを用いた。また、マグネシウムとしては、日本サーモケミカル社製で、純度が99.93%、大きさ1.4mm×0.5mmのマグネシウム片を用いた。また、アルミニウムとしては、フルウチ化学株式会社社製で、純度が99.99%、大きさ3~7mmのチップ状のものを用いた。
 [加熱溶融工程]
 上記組成原料を、Al製の溶融ルツボ(日本化学陶業社製、内径34mm、外径40mm、高さ150mm;蓋部は直径40mm、厚さ2.5mm)に投入した。当該溶融ルツボは、開口部の辺縁の蓋部への接触面と、蓋部の開口部の辺縁への接触面とが、表面粗さRaが0.5μm、表面うねりRmaxが1.0μmとなるように研磨されたものを用いた。溶融ルツボの開口部の辺縁と、蓋部とを密着させて、加熱炉内に静置し、加熱炉の外部からセラミック棒を介して、3kgf/cmとなるようにおもりで加圧した。
 次いで、加熱炉の内部を、ロータリーポンプで5Pa以下となるまで減圧し、次いで拡散ポンプで1.33×10-2Paとなるまで減圧した。この状態で、加熱炉内を200℃/hで150℃に達するまで加熱し、150℃で1時間保持して組成原料を乾燥させた。この際、加熱炉内には、水素ガスとアルゴンガスとの混合ガスを充填し、水素ガスの分圧を0.005MPa、アルゴンガスの分圧を0.052MPaとした。
 その後、400℃/hで1100℃に達するまで加熱し、1100℃で3時間保持した。次いで、100℃/hで900℃にまで冷却し、1000℃/hで室温にまで冷却した。
 [粉砕工程・焼結工程]
 加熱溶融後の試料は、陶製乳鉢を用いて75μmにまで粉砕し、75μmの篩に通した粉末を得た。そして、図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、粉砕したマグネシウム-ケイ素複合材料1.0gを仕込んだ。粉末の上下端には、パンチへのマグネシウム-ケイ素複合材料固着防止のためにカーボンペーパーを挟んだ。その後、放電プラズマ焼結装置(ELENIX社製、「PAS-III-Es」)を用いてアルゴン雰囲気下で焼結を行い、焼結体を得た。焼結条件は下記のとおりである。
 焼結温度:750℃
  圧力:30.0MPa
  昇温レート:100℃/min×5min(~500℃)
        0℃/min×10min(500℃)
        20℃/min×12.5min(500~750℃)
        0℃/min×2min(750℃)
  冷却条件:真空放冷
  雰囲気:Ar 60Pa(冷却時は真空)
 なお、図6~図9において、本実施例に由来するサンプルはy=0.01で示すものとする。
 <実施例2>
 混合工程において、アルミニウムの添加量を2.11質量部とし、組成原料中のアルミニウムの含有量を2.0at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
 なお、図6~図9において、本実施例に由来するサンプルはy=0.02で示すものとする。
 <実施例3>
 混合工程において、アルミニウムの添加量を3.16質量部とし、組成原料中のアルミニウムの含有量を3.0at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
 なお、図6~図9において、本実施例に由来するサンプルはy=0.03で示すものとする。
 <実施例4>
 混合工程において、アルミニウムの添加量を6.11質量部とし、組成原料中のアルミニウムの含有量を5.0at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
 なお、図6~図9において、本実施例に由来するサンプルはy=0.05で示すものとする。
 <実施例5>
 混合工程において、アルミニウムの添加量を10.5質量部とし、組成原料中のアルミニウムの含有量を10at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
 なお、図6~図9において、本実施例に由来するサンプルはy=0.10で示すものとする。
 <実施例6>
 混合工程において、高純度シリコン36.44g、及びアルミニウムを含有するマグネシウム合金(AM60)63.58gを混合し、MgとSiとの組成比を、Mg:Si=66.0:33.0、Alの含有量を3.8at%とした組成原料を用いた点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
 なお、図6~図9において、本実施例に由来するサンプルはy=0.038で示すものとする。
 <実施例7>
 混合工程において、高純度シリコン36.28g、及びアルミニウムを含有するマグネシウム合金(AZ91)63.75gを混合し、MgとSiとの組成比を、Mg:Si=66.0:33.0、Alの含有量を5.8at%とした組成原料を用いた点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
 なお、図6~図9において、本実施例に由来するサンプルはy=0.058で示すものとする。
 <比較例1>
 混合工程において、アルミニウムを添加しなかった点以外は、実施例1と同様の方法により、マグネシウム・ケイ素複合材料(焼結体)を得た。
 なお、図6~図9において、本比較例に由来するサンプルはy=0で示すものとする。
 <比較例2>
 混合工程において、アルミニウムの添加量を0.16質量部とし、組成原料中のアルミニウムの含有量を0.15at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
 なお、図6~図9において、本比較例に由来するサンプルはy=0.0015で示すものとする。
 <比較例3>
 混合工程において、アルミニウムの添加量を0.35質量部とし、組成原料中のアルミニウムの含有量を0.33at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
 なお、図6~図9において、本比較例に由来するサンプルはy=0.0033で示すものとする。
 <評価>
 [ゼーベック係数、熱伝導率、及び電気伝導率の測定]
 実施例1~7、比較例1~3で得られた焼結体を、熱起電力・熱伝導率測定装置(アルバック理工社製、「ZEM2」)及びレーザーフラッシュ法熱伝導率測定装置(アルバック理工社製、「TC・7000H」)を用い、動作温度330~860Kにおけるゼーベック係数α、熱伝導率κ、及び電気伝導率σを測定すると共に、300Kにおける電気伝導率を別途測定した。測定した各種パラメーターを元に、上記数式(1)に従って、無次元性能指数ZTを算出した。結果を表1及び図6~図9に示す。
Figure JPOXMLDOC01-appb-T000002
 表1より、組成原料中のAlの含有量が1~10at%である実施例1~7のアルミニウム・マグネシウム・ケイ素複合材料は、比較例1~3の複合材料と比較して優れた熱電変換性能が得られていることが分かる。この結果より、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、熱電変換材料として好適に使用できることが分かる。
 <<試験例2;塑性の評価>>
 試験例1に倣って、Alが0.0at%、1.0at%、3.0at%、5.8at%、又は10at%の組成原料から、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)又はマグネシウム・ケイ素複合材料(焼結体)を調製した。これらの各焼結体につき、ダイヤモンドワイヤーソーを用いて切断し、切断後の断面におけるクラックの有無を調べた。ここで、クラックが入ったものを×、クラックが入っていないものを○とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2より、組成原料中のAlの含有量が1~10at%である本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、マグネシウム・ケイ素複合材料と比べても優れた塑性を有することが分かる。この結果より、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、熱電変換素子への加工が容易であると推察される。
 <<試験例3;圧縮強度の評価>>
 試験例1の実施例2,6,7に倣って、Alが2at%、3.8at%、又は5.8at%の組成原料から、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を調製した。これらの各焼結体につき、ダイヤモンドワイヤーソーを用いて2.7mm×2.7mm×10mmの大きさに切断し、オートグラフ(島津製作所製、「AG-10TA」)を用いて圧縮強度(N)を測定した。このときの試験速度は0.375mm/minとした。なお、測定は4回行い、最高値及び最低値を省いた2点の測定値及びその平均値を求めた。結果を図10に示す。
 図10より、組成原料中のAlの含有量が3.5~6.0at%の範囲では、圧縮強度が特に優れることが分かる。この結果より、Alの含有量が3.5~6.0at%である組成原料を用いて調製したアルミニウム・マグネシウム・ケイ素複合材料(焼結体)は、例えばブレードソーによって焼結体を所望の大きさに切り出す際にも、素子が破損することを防止できると考えられる。
 なお、図示しないが、組成原料中のAlの含有量が6.0at%を超えると、圧縮強度は低下した。
 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、高い電気伝導率を有するアルミニウム・マグネシウム・ケイ素複合材料である。ここで、電気伝導率が高い材料は無次元性能指数も高くなる傾向にあるため、本発明によれば、熱電変換特性に優れたアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。
 101 n型熱電変換部
 1015,1016 電極
 102 p型熱電変換部
 1025,1026 電極
 103 n型熱電変換部
 1035,1036 電極
 3 負荷
 4 直流電源
 10 グラファイトダイ
 11a,11b グラファイト製パンチ

Claims (8)

  1.  Al、Mg、及びSiからなる合金を含み、300Kにおける電気伝導率σが1000~3000S/cmであるアルミニウム・マグネシウム・ケイ素複合材料。
  2.  Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1~10at%である組成原料から合成される請求項1に記載のアルミニウム・マグネシウム・ケイ素複合材料。
  3.  前記組成原料中のAlの含有量が3.5~6.0at%である請求項2に記載のアルミニウム・マグネシウム・ケイ素複合材料。
  4.  Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1~10at%である組成原料を、開口部と前記開口部を覆う蓋部とを備え、前記開口部の辺縁における前記蓋部への接触面と、前記蓋部における前記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するアルミニウム・マグネシウム・ケイ素複合材料の製造方法。
  5.  請求項1から3のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料からなる熱電変換材料。
  6.  熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、
     前記熱電変換部が請求項1から3のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料を用いて製造される熱電変換素子。
  7.  請求項6に記載の熱電変換素子を備える熱電変換モジュール。
  8.  請求項1から3のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料が用いられてなる耐食性材料、軽量構造材、摩擦材、セラミックス基板、誘電体磁器組成物、水素吸蔵組成物、又はシラン発生装置。
PCT/JP2010/062509 2009-07-27 2010-07-26 アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール WO2011013609A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127004521A KR101365251B1 (ko) 2009-07-27 2010-07-26 알루미늄ㆍ마그네슘ㆍ규소 복합재료 및 그 제조 방법, 그리고 이 복합재료를 이용한 열전변환 재료, 열전변환 소자, 및 열전변환 모듈
CN201080033425.2A CN102473831B (zh) 2009-07-27 2010-07-26 铝-镁-硅复合材料及其制造方法和使用了该复合材料的热电转换材料、热电转换元件以及热电转换组件
EP10804355A EP2461384A1 (en) 2009-07-27 2010-07-26 Aluminum/magnesium/silicon composite material and method for producing same, thermoelectric conversion member utilizing said composite material, thermoelectric conversion element, and thermoelectric conversion module
US13/386,873 US20120118343A1 (en) 2009-07-27 2010-07-26 Aluminum-magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module each comprising or including the composite material
US14/671,045 US20150207056A1 (en) 2009-07-27 2015-03-27 Aluminum-magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module each comprising or including the composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-174428 2009-07-27
JP2009174428 2009-07-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/386,873 A-371-Of-International US20120118343A1 (en) 2009-07-27 2010-07-26 Aluminum-magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module each comprising or including the composite material
US14/671,045 Division US20150207056A1 (en) 2009-07-27 2015-03-27 Aluminum-magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module each comprising or including the composite material

Publications (1)

Publication Number Publication Date
WO2011013609A1 true WO2011013609A1 (ja) 2011-02-03

Family

ID=43529264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062509 WO2011013609A1 (ja) 2009-07-27 2010-07-26 アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール

Country Status (7)

Country Link
US (2) US20120118343A1 (ja)
EP (1) EP2461384A1 (ja)
JP (1) JP5629920B2 (ja)
KR (1) KR101365251B1 (ja)
CN (1) CN102473831B (ja)
TW (1) TWI485266B (ja)
WO (1) WO2011013609A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190984A (ja) * 2011-03-10 2012-10-04 Hitachi Chem Co Ltd マグネシウムシリサイド粉末及び、それを用いた焼結体、熱電変換素子、それらの製造方法
US9115420B2 (en) 2010-11-08 2015-08-25 Hitachi Chemical Company, Ltd. Thermoelectric material formed of Mg2Si-based compound and production method therefor
JP2019012717A (ja) * 2017-06-29 2019-01-24 三菱マテリアル株式会社 熱電変換材料、及び、熱電変換材料の製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029256B2 (ja) * 2009-06-30 2016-11-24 学校法人東京理科大学 マグネシウム−ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール
WO2013047474A1 (ja) * 2011-09-26 2013-04-04 学校法人東京理科大学 焼結体、熱電変換素子用焼結体、熱電変換素子及び熱電変換モジュール
CN104205382A (zh) 2012-01-25 2014-12-10 阿尔法贝特能源公司 用于热回收系统的模块化热电单元及其方法
TWI499101B (zh) 2012-07-13 2015-09-01 Ind Tech Res Inst 熱電轉換結構及使用其之散熱結構
US9257627B2 (en) 2012-07-23 2016-02-09 Alphabet Energy, Inc. Method and structure for thermoelectric unicouple assembly
US9065017B2 (en) * 2013-09-01 2015-06-23 Alphabet Energy, Inc. Thermoelectric devices having reduced thermal stress and contact resistance, and methods of forming and using the same
CN105330289B (zh) * 2014-08-14 2018-08-31 清华大学 一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法
US10930834B2 (en) 2015-02-09 2021-02-23 University Of Houston System Synthesis of N-type thermoelectric materials, including Mg—Sn—Ge materials, and methods for fabrication thereof
TWI569499B (zh) * 2015-05-22 2017-02-01 國立成功大學 複合電極材料及其製作方法、包含該複合電極材料之複合電極及其製作方法、以及包含該複合電極之鋰電池
JP6811539B2 (ja) * 2016-03-07 2021-01-13 古河機械金属株式会社 熱電変換材料の製造方法
JP6390662B2 (ja) * 2016-04-22 2018-09-19 トヨタ自動車株式会社 熱電材料の製造方法
JP6536615B2 (ja) 2017-03-31 2019-07-03 トヨタ自動車株式会社 熱電変換材料及びその製造方法
EP3627573B1 (en) * 2017-05-19 2023-08-30 Nitto Denko Corporation Method of producing semiconductor sintered body, electrical/electronic member and semiconductor sintered body
JP7248157B2 (ja) * 2017-06-29 2023-03-29 三菱マテリアル株式会社 熱電変換材料、及び、熱電変換材料の製造方法
JP7176248B2 (ja) * 2017-06-29 2022-11-22 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法
JP7159854B2 (ja) * 2018-12-26 2022-10-25 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
KR102199791B1 (ko) * 2019-07-02 2021-01-07 울산과학기술원 마찰 전계 효과를 이용한 열전발전소자

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022411A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Silicon based conductive material and process for production thereof
JPH11274578A (ja) 1998-03-19 1999-10-08 Matsushita Electric Ind Co Ltd 熱電変換材料の製造方法および熱電変換モジュール
JP2002194472A (ja) * 2000-12-28 2002-07-10 Kanazawa Inst Of Technology 軽量高強度マグネシウム又はマグネシウム合金、及びその製造方法
WO2003027341A1 (fr) 2001-09-25 2003-04-03 Center For Advanced Science And Technology Incubation, Ltd. Materiau composite a base de magnesium
JP2005129765A (ja) * 2003-10-24 2005-05-19 Hitachi Metals Ltd 熱発電モジュールおよびそれに用いる型枠
JP2005314805A (ja) 2004-03-29 2005-11-10 Toudai Tlo Ltd マグネシウム化合物、金属材料およびマグネシウム化合物の製造方法
JP2006128235A (ja) * 2004-10-27 2006-05-18 National Institute Of Advanced Industrial & Technology 熱電材料及びその製造方法
WO2008075789A1 (ja) * 2006-12-20 2008-06-26 Showa Kde Co., Ltd. 熱電変換材料、その製造方法および熱電変換素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600486B2 (ja) * 1999-08-24 2004-12-15 セイコーインスツル株式会社 熱電変換素子の製造方法
US6277351B1 (en) * 2000-03-20 2001-08-21 Carl Francis Swinehart Crucible for growing macrocrystals
JP2002368291A (ja) * 2001-06-04 2002-12-20 Tokyo Yogyo Co Ltd 熱電材料
KR100985310B1 (ko) * 2004-06-30 2010-10-04 스미토모덴키고교가부시키가이샤 마그네슘 합금재의 제조방법
JP2008001558A (ja) * 2006-06-22 2008-01-10 Sumitomo Metal Electronics Devices Inc 窒化アルミニウム成形体の焼成方法と焼成用治具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022411A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Silicon based conductive material and process for production thereof
JPH11274578A (ja) 1998-03-19 1999-10-08 Matsushita Electric Ind Co Ltd 熱電変換材料の製造方法および熱電変換モジュール
JP2002194472A (ja) * 2000-12-28 2002-07-10 Kanazawa Inst Of Technology 軽量高強度マグネシウム又はマグネシウム合金、及びその製造方法
WO2003027341A1 (fr) 2001-09-25 2003-04-03 Center For Advanced Science And Technology Incubation, Ltd. Materiau composite a base de magnesium
JP2005129765A (ja) * 2003-10-24 2005-05-19 Hitachi Metals Ltd 熱発電モジュールおよびそれに用いる型枠
JP2005314805A (ja) 2004-03-29 2005-11-10 Toudai Tlo Ltd マグネシウム化合物、金属材料およびマグネシウム化合物の製造方法
JP2006128235A (ja) * 2004-10-27 2006-05-18 National Institute Of Advanced Industrial & Technology 熱電材料及びその製造方法
WO2008075789A1 (ja) * 2006-12-20 2008-06-26 Showa Kde Co., Ltd. 熱電変換材料、その製造方法および熱電変換素子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Bulk Crystals Growth of Mg2Si by the Vertical Bridgeman Method", SCIENCE DIRECT THIN SOLID FILMS, vol. 461, 2004, pages 86 - 89
"Seebeck Effect in Mg2Si Single Crystals", J. PHYS. CHEM. SOLIDS PROGRAM PRESS, vol. 23, 1962, pages 601 - 610
"Semiconducting Properties of Mg2Si Single Crystals", PHYSICAL REVIEW, vol. 109, no. 6, 15 March 1958 (1958-03-15), pages 1909 - 1915
BRIDGEMAN, THERMOELECTRIC PROPERTIES OF MG2SI CRYSTAL GROWN

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115420B2 (en) 2010-11-08 2015-08-25 Hitachi Chemical Company, Ltd. Thermoelectric material formed of Mg2Si-based compound and production method therefor
JP2012190984A (ja) * 2011-03-10 2012-10-04 Hitachi Chem Co Ltd マグネシウムシリサイド粉末及び、それを用いた焼結体、熱電変換素子、それらの製造方法
JP2019012717A (ja) * 2017-06-29 2019-01-24 三菱マテリアル株式会社 熱電変換材料、及び、熱電変換材料の製造方法
JP7121227B2 (ja) 2017-06-29 2022-08-18 三菱マテリアル株式会社 熱電変換材料、及び、熱電変換材料の製造方法

Also Published As

Publication number Publication date
CN102473831A (zh) 2012-05-23
KR101365251B1 (ko) 2014-02-20
US20150207056A1 (en) 2015-07-23
EP2461384A1 (en) 2012-06-06
US20120118343A1 (en) 2012-05-17
CN102473831B (zh) 2015-03-25
TW201127966A (en) 2011-08-16
KR20120049286A (ko) 2012-05-16
TWI485266B (zh) 2015-05-21
JP2011049538A (ja) 2011-03-10
JP5629920B2 (ja) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5629920B2 (ja) アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール
JP6029256B2 (ja) マグネシウム−ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール
Zheng et al. High thermoelectric performance of mechanically robust n-type Bi 2 Te 3− x Se x prepared by combustion synthesis
JP5765776B2 (ja) Mg2Si1−xSnx系多結晶体およびその製造方法
Bux et al. Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide
JP7042517B2 (ja) 多結晶性マグネシウムシリサイドおよびその利用
EP2400572A1 (en) Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
WO2014084163A1 (ja) Mg-Si系熱電変換材料及びその製造方法、熱電変換用焼結体、熱電変換素子、並びに熱電変換モジュール
WO2013047474A1 (ja) 焼結体、熱電変換素子用焼結体、熱電変換素子及び熱電変換モジュール
Boldrini et al. Ultrafast high-temperature sintering and thermoelectric properties of n-doped Mg2Si
WO2013047475A1 (ja) マグネシウムシリサイド、熱電変換材料、焼結体、熱電変換素子用焼結体、熱電変換素子、及び熱電変換モジュール
JP2013161948A (ja) 熱電変換素子及び熱電変換素子の製造方法
JP4123388B2 (ja) 亜鉛アンチモン化合物焼結体
JP2021005593A (ja) マグネシウムシリサイド及びその利用
JP3564541B2 (ja) 亜鉛アンチモン化合物焼結体及びその製造法
JP3704556B2 (ja) 亜鉛アンチモン化合物の製造法
Oulfarsi et al. Thermal Stability of Mg2Si0. 6Sn0. 4 under Oxidation Conditions
Trivedi et al. Magnesium and manganese silicides for efficient and low cost thermo-electric power generation
JP2003138332A (ja) 亜鉛、アンチモン及びカドミウムからなる化合物の焼結体及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033425.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13386873

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010804355

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010804355

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127004521

Country of ref document: KR

Kind code of ref document: A