WO2011013609A1 - アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール - Google Patents
アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール Download PDFInfo
- Publication number
- WO2011013609A1 WO2011013609A1 PCT/JP2010/062509 JP2010062509W WO2011013609A1 WO 2011013609 A1 WO2011013609 A1 WO 2011013609A1 JP 2010062509 W JP2010062509 W JP 2010062509W WO 2011013609 A1 WO2011013609 A1 WO 2011013609A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoelectric conversion
- aluminum
- magnesium
- composite material
- silicon composite
- Prior art date
Links
- 239000011777 magnesium Substances 0.000 title claims abstract description 153
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 147
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 145
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 139
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 137
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 115
- 239000002131 composite material Substances 0.000 title claims abstract description 115
- 239000010703 silicon Substances 0.000 title claims abstract description 105
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 99
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 61
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 101
- 239000000203 mixture Substances 0.000 claims description 58
- 239000002994 raw material Substances 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 31
- 238000002844 melting Methods 0.000 claims description 25
- 230000008018 melting Effects 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 239000000919 ceramic Substances 0.000 claims description 11
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 239000002783 friction material Substances 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 229910000077 silane Inorganic materials 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 59
- 238000000034 method Methods 0.000 description 42
- 239000000843 powder Substances 0.000 description 19
- 239000002019 doping agent Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 238000010298 pulverizing process Methods 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 9
- 239000011810 insulating material Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 238000007747 plating Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- MKPXGEVFQSIKGE-UHFFFAOYSA-N [Mg].[Si] Chemical compound [Mg].[Si] MKPXGEVFQSIKGE-UHFFFAOYSA-N 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000002918 waste heat Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 5
- -1 aluminum-magnesium-silicon Chemical compound 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 229910019752 Mg2Si Inorganic materials 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 238000004056 waste incineration Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 229910021338 magnesium silicide Inorganic materials 0.000 description 2
- YTHCQFKNFVSQBC-UHFFFAOYSA-N magnesium silicide Chemical compound [Mg]=[Si]=[Mg] YTHCQFKNFVSQBC-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 229910002909 Bi-Te Inorganic materials 0.000 description 1
- 229910020712 Co—Sb Inorganic materials 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- VJTAZCKMHINUKO-UHFFFAOYSA-M chloro(2-methoxyethyl)mercury Chemical compound [Cl-].COCC[Hg+] VJTAZCKMHINUKO-UHFFFAOYSA-M 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000011802 pulverized particle Substances 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58085—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C24/00—Alloys based on an alkali or an alkaline earth metal
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/8556—Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/401—Alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the present invention relates to an aluminum / magnesium / silicon composite material; a thermoelectric conversion material, a thermoelectric conversion element, and a thermoelectric conversion module; and an aluminum / magnesium / silicon composite material manufacturing method.
- waste heat recovery is performed by generating high-pressure steam by waste heat and generating power by rotating a steam turbine with this steam.
- the amount of waste heat emitted is small, and therefore, a method for recovering waste heat generated by a steam turbine or the like cannot be adopted.
- thermoelectric conversion material that performs reversible thermoelectric conversion using the Seebeck effect or the Peltier effect
- a method using a thermoelectric conversion element / thermoelectric conversion module has been proposed.
- thermoelectric conversion module examples include those shown in FIGS. 1 and 2.
- an n-type semiconductor and a p-type semiconductor having low thermal conductivity are used as thermoelectric conversion materials for the n-type thermoelectric conversion unit 101 and the p-type thermoelectric conversion unit 102, respectively.
- Electrodes 1015 and 1025 are provided at the upper ends of the n-type thermoelectric converter 101 and the p-type thermoelectric converter 102 arranged side by side, and electrodes 1016 and 1026 are provided at the lower ends.
- the electrodes 1015 and 1025 provided at the upper ends of the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit are connected to form an integrated electrode, and the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit
- the electrodes 1016 and 1026 provided respectively at the lower end of each are separated.
- thermoelectric conversion modules include those shown in FIGS. 3 and 4 (see, for example, Patent Document 1).
- this thermoelectric conversion module only an n-type semiconductor having a low thermal conductivity is used as the thermoelectric conversion material.
- the n-type thermoelectric conversion unit 103 is provided with an electrode 1035 at the upper end and an electrode 1036 at the lower end.
- a direct current flows from the electrode 1036 side to the electrode 1035 side through the n-type thermoelectric conversion unit 103 by the DC power source 4, thereby generating an endothermic effect in the electrode 1035 and generating heat in the electrode 1036. Occurs.
- a direct current flows from the electrode 1035 side to the electrode 1036 through the n-type thermoelectric conversion unit 103 by the DC power supply 4
- a heat generation effect occurs in the electrode 1035 and a heat absorption effect occurs in the electrode 1036.
- thermoelectric conversion elements capable of efficiently performing thermoelectric conversion with an extremely simple configuration have been applied and developed mainly for special applications.
- thermoelectric conversion materials such as Bi—Te, Co—Sb, Zn—Sb, Pb—Te, and Ag—Sb—Ge—Te are used for fuel cells, automobiles, boilers, incinerators, Attempts have been made to convert to electricity using a waste heat source of about 200 ° C. to 800 ° C. such as a blast furnace.
- a waste heat source of about 200 ° C. to 800 ° C. such as a blast furnace.
- thermoelectric conversion material contains a harmful substance, there is a problem that an environmental load increases.
- B 4 C and other borides containing a large amount of boron, rare earth metal chalcogenites such as LaS, and the like have been studied for use in high-temperature applications, but mainly include intermetallic compounds such as B 4 C and LaS.
- the non-oxide type material exhibits relatively high performance in a vacuum, there is a problem that stability in a high temperature region is inferior, for example, a crystal phase is decomposed at a high temperature.
- silicide systems such as Mg 2 Si (see, for example, Patent Documents 2 and 3 and Non-Patent Documents 1 to 3) and Mg 2 Si 1-x C x (see, for example, Non-Patent Document 4) with low environmental impact. Materials containing intermetallic compounds are also being studied.
- thermoelectric conversion module there is a problem that the material containing the silicide-based intermetallic compound containing Mg has a low thermoelectric conversion performance, and the material containing the silicide-based intermetallic compound containing Mg is actually used in the thermoelectric conversion module. It was not reached.
- the present invention has been made in view of the above problems, and includes an alloy composed of Al, Mg, and Si, and is an aluminum / magnesium / silicon composite material that can be suitably used as a material for a thermoelectric conversion module,
- An object of the present invention is to provide an aluminum / magnesium / silicon composite material having excellent thermoelectric conversion characteristics.
- an aluminum / magnesium / silicon composite material including an alloy composed of Al, Mg, and Si has excellent thermoelectric conversion characteristics and has a particularly high electric conductivity among factors that determine thermoelectric conversion performance.
- the present invention has been completed. Specifically, the present invention provides the following.
- the invention described in [1] is an aluminum / magnesium / silicon composite material including an alloy composed of Al, Mg, and Si and having high electrical conductivity.
- the figure of merit indicating the thermoelectric conversion characteristics of the thermoelectric conversion material is generally derived by the following formula (1), and a numerical value obtained by multiplying the figure of merit by the absolute temperature T is the dimensionless figure of merit ZT.
- ⁇ represents the Seebeck coefficient
- ⁇ represents electrical conductivity
- ⁇ represents thermal conductivity.
- thermoelectric conversion characteristics As is clear from the above formula (1), a material having a high electrical conductivity tends to have a high dimensionless figure of merit. Therefore, according to the invention described in [1], an aluminum / magnesium / silicon composite material excellent in thermoelectric conversion characteristics can be obtained.
- the composite material in the invention described in [1] includes an “alloy composed of Al, Mg, and Si”, for example, an aluminum that contains aluminum of an impurity level in magnesium silicide such as Mg 2 Si. It is different from the material doped with.
- the composite material usually indicates a material having an Al element content of 0.5 at% or more.
- the invention described in [3] defines a preferable content of Al in the composition raw material when the aluminum / magnesium / silicon composite material described in [2] is manufactured. According to the invention described in [3], in addition to the effect of the invention described in [2], an effect that the sintered body is excellent in mechanical strength can be obtained.
- the invention described in [4] defines the invention described in [1] or [2] as an invention of a manufacturing method. Therefore, according to the invention described in [4], an effect equivalent to that of the invention described in [1] or [2] can be obtained.
- thermoelectric conversion material comprising the aluminum / magnesium / silicon composite material according to any one of [1] to [3].
- thermoelectric conversion unit and a first electrode and a second electrode provided in the thermoelectric conversion unit, wherein the thermoelectric conversion unit is aluminum, magnesium, or silicon according to any one of [1] to [3] A thermoelectric conversion element manufactured using a composite material.
- thermoelectric conversion module including the thermoelectric conversion element according to [6].
- the invention described in [5] to [7] defines the invention described in any of [1] to [3] as an invention of a thermoelectric conversion material, a thermoelectric conversion element, and a thermoelectric conversion module. Therefore, according to the invention described in [5] to [7], an effect equivalent to that of the invention described in any of [1] to [3] can be obtained.
- thermoelectric conversion materials examples include uses of thermoelectric conversion materials, thermoelectric conversion elements, and thermoelectric conversion modules.
- corrosion resistant materials lightweight structural materials, friction materials, It can also be used for applications such as ceramic substrates, dielectric ceramic compositions, hydrogen storage compositions, and silane generators.
- the aluminum / magnesium / silicon composite material according to the present invention is an aluminum / magnesium / silicon composite material containing an alloy of Al, Mg, and Si and having high electrical conductivity.
- an aluminum / magnesium / silicon composite material excellent in thermoelectric conversion characteristics can be obtained.
- thermoelectric conversion module It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a thermoelectric conversion module. It is a figure which shows an example of a sintering apparatus. It is a figure which shows the relationship between the dimensionless figure of merit and temperature in the aluminum-magnesium-silicon composite material which concerns on this invention. It is a figure which shows the relationship between the electrical conductivity in the aluminum-magnesium-silicon composite material which concerns on this invention, and the composition ratio of aluminum.
- the aluminum / magnesium / silicon composite material according to the present invention includes an alloy composed of Al, Mg, and Si, and has an electric conductivity ⁇ at 300 K of 1000 to 3000 S / cm.
- a material having a high electrical conductivity ⁇ tends to have a high performance index.
- the aluminum / magnesium / silicon composite material according to the present invention tends to have excellent thermoelectric conversion performance.
- the electrical conductivity is preferably 1100 to 2500 S / cm, and more preferably 1200 to 2000 S / cm.
- the aluminum / magnesium / silicon composite material according to the present invention is obtained by heating and melting the composition raw material, preferably after pulverizing the sample after heating and melting, after sintering the sample after pulverization
- the composition raw material containing Al, Mg, and Si is heated and melted, and the sample after heat-melting is pulverized, It shall refer to what was measured after sintering the sample after grinding.
- a composition material containing Al, Mg, and Si is heated and melted, the sample after heat melting is pulverized, and the sample after pulverization is obtained. It shall refer to what was measured after sintering.
- the aluminum / magnesium / silicon composite material according to the present invention has a meaning including a heated melt of a composition raw material, a pulverized product of the heated melt, and a sintered body of the pulverized product, and these heated melts.
- a heated melt of a composition raw material a pulverized product of the heated melt
- a sintered body of the pulverized product a sintered body of the pulverized product
- Each of the pulverized product and the sintered product has a value as a product alone.
- the thermoelectric conversion material itself and the thermoelectric conversion part constituting the thermoelectric conversion element according to the present invention are composed of the sintered body.
- the aluminum / magnesium / silicon composite material according to the present invention includes “alloy of Al, Mg, and Si”.
- magnesium silicide such as Mg 2 Si contains Al at an impurity level. This is different from the material doped with Al.
- the composite material usually indicates a material having an Al content of 0.5 at% or more.
- the aluminum / magnesium / silicon composite material according to the present invention preferably has a dimensionless figure of merit at 860K of 0.47 or more, and more preferably 0.55 or more.
- the dimensionless figure of merit is within the above range, excellent thermoelectric conversion performance can be obtained when an aluminum / magnesium / silicon composite material is used as a thermoelectric conversion material.
- the aluminum / magnesium / silicon composite material according to the present invention may be in any form such as an ingot, powder, sintered powder, etc. It is preferable that the product is fired. Furthermore, the use of the aluminum / magnesium / silicon composite material according to the present invention is preferably a thermoelectric conversion material, a thermoelectric conversion element, and a thermoelectric conversion module, which will be described later, but is limited to such applications. However, it can also be used for applications such as corrosion resistant materials, lightweight structural materials, friction materials, ceramic substrates, dielectric ceramic compositions, hydrogen storage compositions, silane generators, and the like.
- the aluminum / magnesium / silicon composite material according to the present invention is excellent in mechanical strength. Therefore, the aluminum / magnesium / silicon composite material according to the present invention can be easily processed into a thermoelectric conversion element or the like.
- thermoelectric conversion material thermoelectric conversion element, and thermoelectric conversion module>
- the aluminum / magnesium / silicon composite material according to the present invention can be suitably used as a thermoelectric conversion material. That is, since the aluminum / magnesium / silicon composite material according to the present invention has an electric conductivity of 1000 to 3000 S / cm at 300 K, it tends to be excellent in thermoelectric conversion performance, and this is used as a thermoelectric conversion material. When used in a thermoelectric conversion module, high thermoelectric conversion performance can be obtained.
- the method for producing an aluminum / magnesium / silicon composite material according to the present invention is obtained by mixing an Al-containing Mg alloy and / or a mixture of Al and Mg with Si, and an Al content of 1 to
- the composition raw material of 10 at% has an opening and a lid that covers the opening, a contact surface to the lid at the edge of the opening, and a contact surface to the opening in the lid And a step of heating and melting in a heat-resistant container that has been polished together.
- the method for producing an aluminum / magnesium / silicon composite material according to the present invention may include a pulverization step of pulverizing the sample obtained in the heating and melting step, and a sintering step of sintering the pulverized sample. preferable.
- the content of Al in the composition raw material is more preferably 3.5 to 6.0 at%, and further preferably 3.8 to 5.8 at%.
- the sintered body has excellent mechanical strength. Therefore, for example, even when the sintered body is cut into a desired size with a blade saw, the element can be prevented from being damaged.
- Mg alloy containing Al and / or a mixture of Al and Mg and Si are mixed, and the content of Al is 1 to 10 at%, preferably 3.5 to 6.0 at%. More preferably, a raw material having a composition of 3.8 to 5.8 at% is obtained.
- silicon of 3N or more, preferably 6N or more can be used.
- Specific examples of silicon include high-purity silicon raw materials for LSI, high-purity silicon raw materials for solar cells, high-purity metal silicon, high-purity silicon ingots, and high-purity silicon wafers.
- Mg has a purity of about 99.5 wt% or more and is not particularly limited as long as it has substantially no impurities.
- it may contain impurities such as Si, Mn, Al, Fe, Cu, Ni, and Cl.
- the Al has a purity of about 99.5 wt% or more, and is substantially free of impurities. Although not particularly limited, for example, it may contain impurities such as Si, Mn, Mg, Fe, Cu, Ni, and Cl.
- Al is 2.0 to 8.2 at%, preferably 3.5 to 6.0 at%, more preferably 3. Mention may be made of alloys containing 8 to 5.8 at%. Specific examples of such alloys include AM20, AZ31B, AM60B, and AZ91D. Since such an alloy can be recycled from various products on the market, the manufacturing cost of the aluminum / magnesium / silicon composite material can be reduced.
- the composition raw material used in the mixing step is such that the Mg content is 66.17 to 66.77 at% in atomic weight ratio based on the total content of Mg and Si, and the Si content is the total content of Mg and Si
- the atomic weight ratio based on this is 33.23 to 33.83 at%.
- the Mg content is preferably 66.27 to 66.67 at% in terms of the atomic weight ratio based on the total content of Mg and Si.
- the Si content is the total content of Mg and Si.
- the atomic weight ratio based on is preferably 33.33 to 33.73 at%.
- the composition raw material containing Al, Mg, and Si is heat-treated in a reducing atmosphere and preferably under reduced pressure under a temperature condition that exceeds the melting point of Mg and Al and lower than the melting point of Si. It is preferable to melt and synthesize an alloy made of Si and Si.
- under a reducing atmosphere refers to an atmosphere containing hydrogen gas in an amount of 5% by volume or more and optionally containing an inert gas as another component.
- the pressure condition in the heating and melting step may be atmospheric pressure, but is preferably 1.33 ⁇ 10 ⁇ 3 Pa to atmospheric pressure. Considering safety, it is preferable to use a reduced pressure condition of about 0.08 MPa, for example.
- the heating conditions in the heating and melting step are 700 ° C. or higher and lower than 1410 ° C., preferably 1085 ° C. or higher and lower than 1410 ° C., for example, heat treatment can be performed for about 3 hours. Here, the heat treatment time may be 2 to 10 hours. By making the heat treatment longer, the obtained aluminum / magnesium / silicon composite material can be made more uniform.
- the melting point of Al is 660.4 ° C.
- the melting point of Si is 1410 ° C.
- a temperature raising condition when the composition material is heat-treated for example, a temperature raising condition of 150 to 250 ° C./h until reaching 150 ° C., a temperature raising condition of 350 to 450 ° C./h until reaching 100 ° C.
- a temperature raising condition after the heat treatment include a temperature lowering condition of 900 to 1000 ° C./h.
- an opening and a lid that covers the opening are provided, a contact surface to the lid at the edge of the opening, and the opening to the opening in the lid It is necessary to carry out in a heat-resistant container in which the contact surface is polished together.
- polishing in this way an aluminum / magnesium / silicon composite material having a composition ratio close to the composition ratio of the composition raw material can be obtained. This is because a gap is not formed on the contact surface between the lid and the edge of the opening, and the heat-resistant container is sealed, so that it is possible to suppress evaporation of evaporated Mg and Al to the outside of the heat-resistant container. This is probably because of this.
- the polishing treatment of the contact surface to the lid portion at the edge of the opening and the contact surface to the opening portion of the lid portion is not particularly limited, and it is only necessary that the polishing treatment is performed.
- the surface roughness Ra of the contact surface is 0.2 to 1 ⁇ m, it is preferable to form a close contact state, and more preferably 0.2 to 0.5 ⁇ m. If the surface roughness exceeds 1 ⁇ m, the adhesion between the edge of the opening and the lid may be insufficient.
- polishing is performed more than necessary, which is not preferable in terms of cost.
- the contact surface preferably has a surface waviness Rmax of 0.5 to 3 ⁇ m, more preferably 0.5 to 1 ⁇ m.
- Rmax 0.5 to 3 ⁇ m, more preferably 0.5 to 1 ⁇ m.
- the dimensions of the heat-resistant container include those having a container body having an inner diameter of 12 to 300 mm, an outer diameter of 15 to 320 mm, a height of 50 to 250 mm, and a lid portion having a diameter of 15 to 320 mm.
- the upper surface of the lid is directly or indirectly adjusted as necessary. It can be pressurized with a weight.
- the pressure during the pressurization is preferably 1 to 10 kgf / cm 2 .
- the gas used to perform the heating and melting step in a reducing atmosphere may be 100% by volume hydrogen gas, but hydrogen gas and inert gas such as nitrogen gas or argon gas containing 5% by volume or more of hydrogen gas.
- a mixed gas can be mentioned.
- the reason for performing the heating and melting step in a reducing atmosphere is that it is necessary to avoid the production of not only silicon oxide but also magnesium oxide as much as possible when producing the aluminum / magnesium / silicon composite material according to the present invention. Can be mentioned.
- the heated and melted sample can be cooled by natural cooling and forced cooling.
- the pulverization step is a step of pulverizing the heated and melted sample.
- the pulverized particles are fused to each other on at least a part of the surface, and almost no voids are observed. It is possible to obtain a sintered body having a density almost equal to the theoretical value from about 70% of the theoretical value.
- the pulverized sample one having an average particle diameter of 0.01 to 100 ⁇ m can be preferably used. Specifically, 75 ⁇ m sieve pass particles can be used.
- doping may be performed in the sintering step by adding a predetermined amount of dopant after the pulverization step.
- the dopant include, for example, trivalent dopants such as boron, gallium, and indium doped in a divalent Mg site; pentavalent dopants such as phosphorus and bismuth doped in a tetravalent Si site. it can. A necessary amount of one or more of these dopants can be added to produce an aluminum / magnesium / silicon composite material used as an n-type thermoelectric conversion material.
- dopant examples include, for example, monovalent dopants such as Ag, Cu, and Au doped in a divalent Mg site; trivalents such as boron, gallium, and indium doped in a tetravalent Si site. Can be mentioned.
- An aluminum / magnesium / silicon composite material used as a p-type thermoelectric conversion material can be produced by adding a necessary amount of one or more of these dopants.
- the dopant may be an aluminum / magnesium / silicon composite from a reactor used for sintering Mg 2 Si.
- the dopant doped by being dissolved in the material may be all of the dopant of the sintered body or may be a part of the dopant of the sintered body.
- the sintering step is a step of sintering the crushed sample.
- the above-mentioned sample added with a dopant in some cases is sintered at a sintering pressure of 5 to 60 MPa and a sintering temperature of 600 to 1000 ° C. in a vacuum or reduced pressure atmosphere by a pressure compression sintering method.
- the method of tying can be mentioned.
- the sintering pressure When the sintering pressure is less than 5 MPa, it becomes difficult to obtain a sintered body having a sufficient density of about 70% or more of the theoretical density, and the obtained sample cannot be practically used in terms of strength. There is a fear. On the other hand, when the sintering pressure exceeds 60 MPa, it is not preferable in terms of cost and is not practical. If the sintering temperature is less than 600 ° C., it is difficult to obtain a sintered body having a density close to the theoretical density from 70% of the theoretical density obtained by fusing and firing at least part of the surfaces where the particles are in contact with each other. Therefore, there is a possibility that the obtained sample cannot be practically used in terms of strength. Further, when the sintering temperature exceeds 1000 ° C., the temperature is too high, so that not only the sample is damaged, but in some cases, Mg may rapidly become vapor and scatter.
- the sintering temperature is in the range of 600 to 800 ° C., and when the sintering temperature is close to 600 ° C., the sintering pressure is close to 60 MPa.
- the sintering conditions are such that the sintering pressure is close to 5 MPa, and sintering is performed for about 5 to 60 minutes, preferably about 10 minutes.
- the sintering step is performed in an environment where a gas exists, it is preferable to sinter in an atmosphere using an inert gas such as nitrogen or argon.
- a hot press sintering method HP
- a hot isostatic sintering method HIP
- a discharge plasma sintering method is preferable.
- the spark plasma sintering method is a type of pressure compression sintering using the direct current pulse current method. It is a method of heating and sintering by applying a large pulse current to various materials. -This is a method in which an electric current is passed through a conductive material such as graphite and the material is processed and processed by Joule heating.
- the sintered body thus obtained becomes a sintered body having high mechanical strength and capable of stably exhibiting high thermoelectric conversion performance, is not weathered, has excellent durability, stability and reliability. It can be used as a thermoelectric conversion material with excellent properties.
- thermoelectric conversion element includes a thermoelectric conversion part, and a first electrode and a second electrode provided in the thermoelectric conversion part, and the thermoelectric conversion part includes the aluminum / magnesium / silicon composite material according to the invention. It is manufactured using.
- thermoelectric conversion part As a thermoelectric conversion part, what cut out the sintered compact obtained by said sintering process to the desired magnitude
- the thermoelectric conversion part having a multilayer structure can be manufactured by laminating a plurality of types of thermoelectric conversion materials before sintering in a desired order and then sintering.
- the formation method of the first electrode and the second electrode is not particularly limited, but the thermoelectric conversion element manufactured using the aluminum / magnesium / silicon composite material according to the present invention can be formed by plating. Is one of the features. Normally, when an electrode is formed on a thermoelectric conversion part manufactured using an aluminum / magnesium / silicon composite material by plating, hydrogen gas is generated due to metal magnesium remaining in the material, and adhesion of plating Sexuality gets worse. On the other hand, in the case of the thermoelectric conversion part manufactured using the aluminum / magnesium / silicon composite material according to the present invention, since the metal magnesium is hardly contained in the material, an electrode having high adhesion is formed by a plating method. It is possible. Although it does not specifically limit as a plating method, Electroless nickel plating is preferable.
- the sintered body with the plated layer thus obtained is cut into a predetermined size with a cutting machine such as a wire saw or a blade saw, and consists of a first electrode, a thermoelectric converter, and a second electrode. A thermoelectric conversion element is produced.
- the first electrode and the second electrode can be integrally formed when the aluminum / magnesium / silicon composite material is sintered. That is, an electrode material, an aluminum / magnesium / silicon composite material, and an electrode material are laminated in this order and subjected to pressure compression sintering to obtain a sintered body having electrodes formed at both ends.
- the layer of the pulverized product of the aluminum / magnesium / silicon composite material according to the present invention, the layer of the metal powder for electrode formation, and the layer of the insulating material powder are laminated to a predetermined thickness, and then subjected to pressure compression firing. Do the tie.
- the insulating material powder is effective for preventing electricity from flowing from the sintering apparatus to the electrode-forming metal powder and preventing melting, and separates the insulating material from the formed electrode after sintering.
- carbon paper is sandwiched between an insulating material powder layer and a metal powder layer for electrode formation, and further carbon paper is placed on the side inner wall surface of the cylindrical sintering jig, It is effective for preventing mixing and separating the electrode and the insulating material layer after sintering. Since many of the upper and lower surfaces of the sintered body thus obtained are uneven, it must be polished and smoothed, and then a predetermined size with a cutting machine such as a wire saw or blade saw.
- thermoelectric conversion element including the first electrode, the thermoelectric conversion unit, and the second electrode is manufactured.
- the metal powder for electrode formation is melted by the current, so that a large current cannot be used and it is difficult to adjust the current. Therefore, the electrode is removed from the obtained sintered body. There was a problem of peeling.
- the first method by providing the insulating material powder layer, a large current can be used, and as a result, an initial sintered body can be obtained.
- a layer of electrode-forming metal powder such as Ni is sequentially formed in the cylindrical sintering jig from the bottom.
- a layer of the pulverized product of the aluminum / magnesium / silicon composite material and a layer of the electrode forming metal powder are laminated, and the surface of the graphite die of the sintering jig in contact with the electrode forming metal powder layer is coated with BN.
- Such insulating, heat-resistant, and releasable ceramic particles are applied or sprayed to perform pressure compression sintering. In this case, it is not necessary to use carbon paper as in the first method.
- thermoelectric conversion element which consists of a 1st electrode, a thermoelectric conversion part, and a 2nd electrode by cutting the obtained sintered compact to a predetermined magnitude
- thermoelectric conversion module The thermoelectric conversion module according to the present invention includes the thermoelectric conversion element according to the present invention as described above.
- thermoelectric conversion modules examples include those shown in FIGS. 1 and 2, for example.
- this thermoelectric conversion module an n-type semiconductor and a p-type semiconductor obtained from the aluminum / magnesium / silicon composite material according to the present invention are used as thermoelectric conversion materials for the n-type thermoelectric conversion unit 101 and the p-type thermoelectric conversion unit 102, respectively.
- Electrodes 1015 and 1025 are provided at the upper ends of the n-type thermoelectric converter 101 and the p-type thermoelectric converter 102 arranged side by side, and electrodes 1016 and 1026 are provided at the lower ends.
- the electrodes 1015 and 1025 provided at the upper ends of the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit are connected to form an integrated electrode, and the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit
- the electrodes 1016 and 1026 provided respectively at the lower end of each are separated.
- thermoelectric conversion module for example, those shown in FIGS. 3 and 4 can be cited.
- an n-type semiconductor obtained from the aluminum / magnesium / silicon composite material according to the present invention is used as the thermoelectric conversion material of the n-type thermoelectric conversion unit 103.
- the n-type thermoelectric conversion unit 103 is provided with an electrode 1035 at the upper end and an electrode 1036 at the lower end.
- the aluminum / magnesium / silicon composite material according to the present invention is an aluminum / magnesium / silicon composite material containing an alloy of Al, Mg, and Si and having high electrical conductivity.
- a material having a high electrical conductivity ⁇ tends to have a high dimensionless figure of merit, according to the present invention, an aluminum / magnesium / silicon composite material excellent in thermoelectric conversion characteristics can be obtained.
- high-purity silicon a semiconductor grade manufactured by MEMC Electronic Materials, having a purity of 99.999999999%, and having a diameter of 4 mm or less was used.
- the magnesium a magnesium piece having a purity of 99.93% and a size of 1.4 mm ⁇ 0.5 mm manufactured by Nippon Thermochemical Co., Ltd. was used.
- the aluminum used was a chip made by Furuuchi Chemical Co., Ltd., having a purity of 99.99% and a size of 3 to 7 mm.
- the above composition raw material was put into a melting crucible made of Al 2 O 3 (manufactured by Nippon Chemical Ceramics Co., Ltd., inner diameter 34 mm, outer diameter 40 mm, height 150 mm; lid portion 40 mm in diameter and thickness 2.5 mm).
- the melting crucible has a surface roughness Ra of 0.5 ⁇ m and a surface waviness Rmax of 1.0 ⁇ m on the contact surface of the edge of the opening to the lid and the contact surface of the lid on the edge of the opening. What was grind
- the edge of the opening of the melting crucible and the lid are brought into close contact with each other, placed in a heating furnace, and pressurized with a weight to 3 kgf / cm 2 from the outside of the heating furnace through a ceramic rod. .
- the inside of the heating furnace the pressure was reduced to equal to or less than 5Pa a rotary pump, then the pressure was reduced to a 1.33 ⁇ 10 -2 Pa with a diffusion pump.
- the inside of the heating furnace was heated at 200 ° C./h until reaching 150 ° C., and kept at 150 ° C. for 1 hour to dry the composition raw material.
- the heating furnace was filled with a mixed gas of hydrogen gas and argon gas, the hydrogen gas partial pressure was 0.005 MPa, and the argon gas partial pressure was 0.052 MPa.
- sintering was performed in an argon atmosphere using a discharge plasma sintering apparatus (manufactured by ELENIX, “PAS-III-Es”) to obtain a sintered body.
- the sintering conditions are as follows. Sintering temperature: 750 ° C Pressure: 30.0 MPa Temperature rising rate: 100 ° C / min x 5min ( ⁇ 500 ° C) 0 °C / min ⁇ 10min (500 °C) 20 ° C / min x 12.5 min (500-750 ° C) 0 ° C / min ⁇ 2min (750 ° C) Cooling conditions: Vacuum cooling Atmosphere: Ar 60 Pa (vacuum when cooling)
- Example 2 In the mixing step, an aluminum / magnesium / silicon composite was prepared in the same manner as in Example 1 except that the amount of aluminum added was 2.11 parts by mass and the aluminum content in the composition raw material was 2.0 at%. A material (sintered body) was obtained.
- Example 3 In the mixing step, an aluminum / magnesium / silicon composite was prepared in the same manner as in Example 1 except that the amount of aluminum added was 3.16 parts by mass and the aluminum content in the composition raw material was 3.0 at%. A material (sintered body) was obtained.
- Example 4 In the mixing step, an aluminum / magnesium / silicon composite was prepared in the same manner as in Example 1 except that the amount of aluminum added was 6.11 parts by mass and the aluminum content in the composition raw material was 5.0 at%. A material (sintered body) was obtained.
- Example 5 In the mixing step, an aluminum / magnesium / silicon composite material (with the same method as in Example 1) except that the amount of aluminum added was 10.5 parts by mass and the aluminum content in the composition raw material was 10 at%. A sintered body) was obtained.
- Example 2 In the mixing step, an aluminum / magnesium / silicon composite was prepared in the same manner as in Example 1 except that the amount of aluminum added was 0.16 parts by mass and the aluminum content in the composition raw material was 0.15 at%. A material (sintered body) was obtained.
- the aluminum / magnesium / silicon composite materials of Examples 1 to 7 in which the Al content in the composition raw material is 1 to 10 at% are superior to the composite materials of Comparative Examples 1 to 3 in terms of thermoelectric conversion. It can be seen that performance is obtained. From this result, it can be seen that the aluminum / magnesium / silicon composite material according to the present invention can be suitably used as a thermoelectric conversion material.
- Test Example 2 Evaluation of Plasticity >> According to Test Example 1, an aluminum / magnesium / silicon composite material (sintered body) or a composition starting material containing Al at 0.0 at%, 1.0 at%, 3.0 at%, 5.8 at%, or 10 at%, or A magnesium-silicon composite material (sintered body) was prepared. About each of these sintered compacts, it cut
- Table 2 shows that the aluminum / magnesium / silicon composite material according to the present invention having an Al content of 1 to 10 at% in the composition raw material has excellent plasticity as compared with the magnesium / silicon composite material. From this result, it is surmised that the aluminum / magnesium / silicon composite material according to the present invention can be easily processed into a thermoelectric conversion element.
- FIG. 10 shows that the compressive strength is particularly excellent when the Al content in the composition raw material is in the range of 3.5 to 6.0 at%. From this result, the aluminum / magnesium / silicon composite material (sintered body) prepared using the composition raw material having an Al content of 3.5 to 6.0 at% is desired to be sintered with a blade saw, for example. It is considered that the element can be prevented from being damaged even when cut into a size. Although not shown in the drawing, when the content of Al in the composition raw material exceeds 6.0 at%, the compressive strength is lowered.
- the aluminum / magnesium / silicon composite material according to the present invention is an aluminum / magnesium / silicon composite material containing an alloy of Al, Mg, and Si and having high electrical conductivity.
- an aluminum / magnesium / silicon composite material excellent in thermoelectric conversion characteristics can be obtained.
- thermoelectric converter 1015 101 n-type thermoelectric converter 1015, 1016 electrode 102 p-type thermoelectric converter 1025, 1026 electrode 103 n-type thermoelectric converter 1035, 1036 electrode 3 load 4 DC power supply 10 graphite die 11a, 11b graphite punch
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Structural Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
[アルミニウム・マグネシウム・ケイ素複合材料の特性]
本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、300Kにおける電気伝導率σが1000~3000S/cmである。ここで、熱電変換材料の性能指数を示す上記の数式(1)から明らかなように、電気伝導率σが高い材料は、性能指数も高くなる傾向にある。このため、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、優れた熱電変換性能を有する傾向にある。アルミニウム・マグネシウム・ケイ素複合材料が優れた電気伝導率を示すことにより、例えば、アルミニウム・マグネシウム・ケイ素複合材料を熱電変換素子、熱電変換モジュールに使用する場合に、高い熱電変換性能を得ることができる。なお、上記電気伝導率は、1100~2500S/cmであることが好ましく、1200~2000S/cmであることが更に好ましい。
本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、熱電変換材料として好適に使用できるものである。即ち、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、300Kにおける電気伝導率が1000~3000S/cmのものであるので、熱電変換性能に優れる傾向にあり、これを熱電変換材料として熱電変換素子、熱電変換モジュールに使用する場合に、高い熱電変換性能を得ることができる。
本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の製造方法は、Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1~10at%である組成原料を、開口部とこの開口部を覆う蓋部とを有し、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するものである。
混合工程においては、Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合して、Alの含有量が1~10at%、好ましくは3.5~6.0at%、より好ましくは3.8~5.8at%である組成原料を得る。
加熱溶融工程においては、Al、Mg、及びSiを含む組成原料を還元雰囲気下且つ好ましくは減圧下において、Mg及びAlの融点を超えSiの融点を下回る温度条件下で熱処理してAl、Mg、及びSiからなる合金を溶融合成することが好ましい。ここで、「還元雰囲気下」とは、特に水素ガスを5体積%以上含み、必要に応じてその他の成分として、不活性化ガスを含む雰囲気を指す。斯かる還元雰囲気下で加熱溶融工程を行うことにより、Mg、Al、及びSiを確実に反応させることでき、アルミニウム・マグネシウム・ケイ素複合材料を合成することができる。
また、加熱溶融工程における加熱条件としては、700℃以上1410℃未満、好ましくは1085℃以上1410℃未満で、例えば3時間程度熱処理することができる。ここで、熱処理の時間は2~10時間であってもよい。熱処理を長時間のものとすることにより、得られるアルミニウム・マグネシウム・ケイ素複合材料をより均一化することができる。なお、Alの融点は660.4℃、Siの融点は1410℃である。
粉砕工程は、加熱溶融された試料を粉砕する工程である。粉砕工程においては、加熱溶融された試料を、微細で、狭い粒度分布を有する粒子に粉砕することが好ましい。微細で、狭い粒度分布を有する粒子に粉砕することにより、これを焼結する際に、粉砕された粒子同士がその表面の少なくとも一部において融着し、空隙(ボイド)の発生がほとんど観察されない程度に焼結することができ、理論値の約70%から理論値とほぼ同程度の密度を有する焼結体を得ることができる。
焼結工程は、粉砕した上記試料を焼結する工程である。焼結工程における焼結の条件としては、場合によってドーパントを添加した上記試料を、加圧圧縮焼結法により真空又は減圧雰囲気下で焼結圧力5~60MPa、焼結温度600~1000℃で焼結する方法を挙げることができる。
本発明に係る熱電変換素子は、熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、この熱電変換部が本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を用いて製造されるものである。
熱電変換部としては、上記の焼結工程にて得られた焼結体を、ワイヤーソー等を用いて所望の大きさに切り出したものを用いることができる。
この熱電変換部は、通常、1種類の熱電変換材料を用いて製造されるが、複数種類の熱電変換材料を用いて複層構造を有する熱電変換部としてもよい。複層構造を有する熱電変換部は、焼結前の複数種類の熱電変換材料を所望の順序で積層した後、焼結することにより製造することができる。
上記第1電極及び第2電極の形成方法は特に限定されるものではないが、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を用いて製造された熱電変換素子は、メッキ法により電極を形成できることが特徴の1つである。
通常、アルミニウム・マグネシウム・ケイ素複合材料を用いて製造された熱電変換部にメッキ法で電極を形成しようとした場合、材料中に残留する金属マグネシウムに起因して水素ガスが発生し、メッキの接着性が悪くなる。一方、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を用いて製造された熱電変換部の場合には、材料中に金属マグネシウムが殆ど含まれないため、メッキ法により接着性の高い電極を形成することが可能である。メッキ法としては、特に限定されないが、無電界ニッケルメッキが好ましい。
このようにして得られたメッキ層付きの焼結体を、ワイヤーソーやブレードソーのような切断機で所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子が作製される。
第1の方法は、例えばグラファイトダイ及びグラファイト製パンチからなる円筒型の焼結用冶具内にその底部から順次、SiO2のような絶縁性材料粉末の層、Niのような電極形成用金属粉末の層、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の粉砕物の層、上記電極形成用金属粉末の層、上記絶縁性材料粉末の層を所定の厚さで積層した後、加圧圧縮焼結を行う。
上記絶縁性材料粉末は、焼結装置から電極形成用金属粉末に電気が流れるのを防止し、溶融を防ぐために有効であり、焼結後、形成された電極から該絶縁性材料を分離する。
第1の方法においては、カーボンペーパーを絶縁性材料粉末層と電極形成用金属粉末層との間に挟み、さらに円筒型焼結用冶具の側内壁表面にカーボンペーパーを設置しておけば、粉末同士の混合を防止し、また焼結後に電極と絶縁材料層を分離するのに有効である。
このようにして得られた焼結体の上下表面の多くは、凹凸が形成されるため、研磨して平滑にする必要があり、その後、ワイヤーソーやブレードソーのような切断機で所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子が作製される。
絶縁性材料粉末を用いない従来の方法によると、電流によって電極形成用金属粉末を溶融させてしまうため、大電流を使用できず電流の調整が難しく、したがって、得られた焼結体から電極が剥離してしまう問題があった。一方、第1の方法では絶縁性材料粉末層を設けることによって、大電流を用いることができ、その結果、初期の焼結体を得ることができる。
この第2の方法は、第1の方法の利点を全て有する上に、得られた焼結体の上下表面が平滑であるため、殆ど研磨する必要がないという利点を有する。
得られた焼結体を所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子を作製する方法は上記第1の方法と同様である。
本発明に係る熱電変換モジュールは、上記のような本発明に係る熱電変換素子を備えるものである。
<実施例1>
[混合工程]
高純度シリコン36.23質量部、マグネシウム62.72質量部、及びアルミニウム1.06質量部を混合し、MgとSiとの組成比が、Mg:Si=66.0:33.0、Alの含有量が1.0at%の組成原料(1.0at%Al、66.0at%Mg、33.0at%Si)を得た。なお、高純度シリコンとしては、MEMC Electronic Materials社製で、純度が99.9999999%の半導体グレード、直径4mm以下の粒状のものを用いた。また、マグネシウムとしては、日本サーモケミカル社製で、純度が99.93%、大きさ1.4mm×0.5mmのマグネシウム片を用いた。また、アルミニウムとしては、フルウチ化学株式会社社製で、純度が99.99%、大きさ3~7mmのチップ状のものを用いた。
上記組成原料を、Al2O3製の溶融ルツボ(日本化学陶業社製、内径34mm、外径40mm、高さ150mm;蓋部は直径40mm、厚さ2.5mm)に投入した。当該溶融ルツボは、開口部の辺縁の蓋部への接触面と、蓋部の開口部の辺縁への接触面とが、表面粗さRaが0.5μm、表面うねりRmaxが1.0μmとなるように研磨されたものを用いた。溶融ルツボの開口部の辺縁と、蓋部とを密着させて、加熱炉内に静置し、加熱炉の外部からセラミック棒を介して、3kgf/cm2となるようにおもりで加圧した。
加熱溶融後の試料は、陶製乳鉢を用いて75μmにまで粉砕し、75μmの篩に通した粉末を得た。そして、図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、粉砕したマグネシウム-ケイ素複合材料1.0gを仕込んだ。粉末の上下端には、パンチへのマグネシウム-ケイ素複合材料固着防止のためにカーボンペーパーを挟んだ。その後、放電プラズマ焼結装置(ELENIX社製、「PAS-III-Es」)を用いてアルゴン雰囲気下で焼結を行い、焼結体を得た。焼結条件は下記のとおりである。
焼結温度:750℃
圧力:30.0MPa
昇温レート:100℃/min×5min(~500℃)
0℃/min×10min(500℃)
20℃/min×12.5min(500~750℃)
0℃/min×2min(750℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
混合工程において、アルミニウムの添加量を2.11質量部とし、組成原料中のアルミニウムの含有量を2.0at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
混合工程において、アルミニウムの添加量を3.16質量部とし、組成原料中のアルミニウムの含有量を3.0at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
混合工程において、アルミニウムの添加量を6.11質量部とし、組成原料中のアルミニウムの含有量を5.0at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
混合工程において、アルミニウムの添加量を10.5質量部とし、組成原料中のアルミニウムの含有量を10at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
混合工程において、高純度シリコン36.44g、及びアルミニウムを含有するマグネシウム合金(AM60)63.58gを混合し、MgとSiとの組成比を、Mg:Si=66.0:33.0、Alの含有量を3.8at%とした組成原料を用いた点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
混合工程において、高純度シリコン36.28g、及びアルミニウムを含有するマグネシウム合金(AZ91)63.75gを混合し、MgとSiとの組成比を、Mg:Si=66.0:33.0、Alの含有量を5.8at%とした組成原料を用いた点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
混合工程において、アルミニウムを添加しなかった点以外は、実施例1と同様の方法により、マグネシウム・ケイ素複合材料(焼結体)を得た。
混合工程において、アルミニウムの添加量を0.16質量部とし、組成原料中のアルミニウムの含有量を0.15at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
混合工程において、アルミニウムの添加量を0.35質量部とし、組成原料中のアルミニウムの含有量を0.33at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
[ゼーベック係数、熱伝導率、及び電気伝導率の測定]
実施例1~7、比較例1~3で得られた焼結体を、熱起電力・熱伝導率測定装置(アルバック理工社製、「ZEM2」)及びレーザーフラッシュ法熱伝導率測定装置(アルバック理工社製、「TC・7000H」)を用い、動作温度330~860Kにおけるゼーベック係数α、熱伝導率κ、及び電気伝導率σを測定すると共に、300Kにおける電気伝導率を別途測定した。測定した各種パラメーターを元に、上記数式(1)に従って、無次元性能指数ZTを算出した。結果を表1及び図6~図9に示す。
試験例1に倣って、Alが0.0at%、1.0at%、3.0at%、5.8at%、又は10at%の組成原料から、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)又はマグネシウム・ケイ素複合材料(焼結体)を調製した。これらの各焼結体につき、ダイヤモンドワイヤーソーを用いて切断し、切断後の断面におけるクラックの有無を調べた。ここで、クラックが入ったものを×、クラックが入っていないものを○とした。結果を表2に示す。
試験例1の実施例2,6,7に倣って、Alが2at%、3.8at%、又は5.8at%の組成原料から、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を調製した。これらの各焼結体につき、ダイヤモンドワイヤーソーを用いて2.7mm×2.7mm×10mmの大きさに切断し、オートグラフ(島津製作所製、「AG-10TA」)を用いて圧縮強度(N)を測定した。このときの試験速度は0.375mm/minとした。なお、測定は4回行い、最高値及び最低値を省いた2点の測定値及びその平均値を求めた。結果を図10に示す。
なお、図示しないが、組成原料中のAlの含有量が6.0at%を超えると、圧縮強度は低下した。
1015,1016 電極
102 p型熱電変換部
1025,1026 電極
103 n型熱電変換部
1035,1036 電極
3 負荷
4 直流電源
10 グラファイトダイ
11a,11b グラファイト製パンチ
Claims (8)
- Al、Mg、及びSiからなる合金を含み、300Kにおける電気伝導率σが1000~3000S/cmであるアルミニウム・マグネシウム・ケイ素複合材料。
- Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1~10at%である組成原料から合成される請求項1に記載のアルミニウム・マグネシウム・ケイ素複合材料。
- 前記組成原料中のAlの含有量が3.5~6.0at%である請求項2に記載のアルミニウム・マグネシウム・ケイ素複合材料。
- Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1~10at%である組成原料を、開口部と前記開口部を覆う蓋部とを備え、前記開口部の辺縁における前記蓋部への接触面と、前記蓋部における前記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するアルミニウム・マグネシウム・ケイ素複合材料の製造方法。
- 請求項1から3のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料からなる熱電変換材料。
- 熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、
前記熱電変換部が請求項1から3のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料を用いて製造される熱電変換素子。 - 請求項6に記載の熱電変換素子を備える熱電変換モジュール。
- 請求項1から3のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料が用いられてなる耐食性材料、軽量構造材、摩擦材、セラミックス基板、誘電体磁器組成物、水素吸蔵組成物、又はシラン発生装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127004521A KR101365251B1 (ko) | 2009-07-27 | 2010-07-26 | 알루미늄ㆍ마그네슘ㆍ규소 복합재료 및 그 제조 방법, 그리고 이 복합재료를 이용한 열전변환 재료, 열전변환 소자, 및 열전변환 모듈 |
CN201080033425.2A CN102473831B (zh) | 2009-07-27 | 2010-07-26 | 铝-镁-硅复合材料及其制造方法和使用了该复合材料的热电转换材料、热电转换元件以及热电转换组件 |
EP10804355A EP2461384A1 (en) | 2009-07-27 | 2010-07-26 | Aluminum/magnesium/silicon composite material and method for producing same, thermoelectric conversion member utilizing said composite material, thermoelectric conversion element, and thermoelectric conversion module |
US13/386,873 US20120118343A1 (en) | 2009-07-27 | 2010-07-26 | Aluminum-magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module each comprising or including the composite material |
US14/671,045 US20150207056A1 (en) | 2009-07-27 | 2015-03-27 | Aluminum-magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module each comprising or including the composite material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-174428 | 2009-07-27 | ||
JP2009174428 | 2009-07-27 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/386,873 A-371-Of-International US20120118343A1 (en) | 2009-07-27 | 2010-07-26 | Aluminum-magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module each comprising or including the composite material |
US14/671,045 Division US20150207056A1 (en) | 2009-07-27 | 2015-03-27 | Aluminum-magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module each comprising or including the composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011013609A1 true WO2011013609A1 (ja) | 2011-02-03 |
Family
ID=43529264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062509 WO2011013609A1 (ja) | 2009-07-27 | 2010-07-26 | アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール |
Country Status (7)
Country | Link |
---|---|
US (2) | US20120118343A1 (ja) |
EP (1) | EP2461384A1 (ja) |
JP (1) | JP5629920B2 (ja) |
KR (1) | KR101365251B1 (ja) |
CN (1) | CN102473831B (ja) |
TW (1) | TWI485266B (ja) |
WO (1) | WO2011013609A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012190984A (ja) * | 2011-03-10 | 2012-10-04 | Hitachi Chem Co Ltd | マグネシウムシリサイド粉末及び、それを用いた焼結体、熱電変換素子、それらの製造方法 |
US9115420B2 (en) | 2010-11-08 | 2015-08-25 | Hitachi Chemical Company, Ltd. | Thermoelectric material formed of Mg2Si-based compound and production method therefor |
JP2019012717A (ja) * | 2017-06-29 | 2019-01-24 | 三菱マテリアル株式会社 | 熱電変換材料、及び、熱電変換材料の製造方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6029256B2 (ja) * | 2009-06-30 | 2016-11-24 | 学校法人東京理科大学 | マグネシウム−ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール |
WO2013047474A1 (ja) * | 2011-09-26 | 2013-04-04 | 学校法人東京理科大学 | 焼結体、熱電変換素子用焼結体、熱電変換素子及び熱電変換モジュール |
CN104205382A (zh) | 2012-01-25 | 2014-12-10 | 阿尔法贝特能源公司 | 用于热回收系统的模块化热电单元及其方法 |
TWI499101B (zh) | 2012-07-13 | 2015-09-01 | Ind Tech Res Inst | 熱電轉換結構及使用其之散熱結構 |
US9257627B2 (en) | 2012-07-23 | 2016-02-09 | Alphabet Energy, Inc. | Method and structure for thermoelectric unicouple assembly |
US9065017B2 (en) * | 2013-09-01 | 2015-06-23 | Alphabet Energy, Inc. | Thermoelectric devices having reduced thermal stress and contact resistance, and methods of forming and using the same |
CN105330289B (zh) * | 2014-08-14 | 2018-08-31 | 清华大学 | 一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法 |
US10930834B2 (en) | 2015-02-09 | 2021-02-23 | University Of Houston System | Synthesis of N-type thermoelectric materials, including Mg—Sn—Ge materials, and methods for fabrication thereof |
TWI569499B (zh) * | 2015-05-22 | 2017-02-01 | 國立成功大學 | 複合電極材料及其製作方法、包含該複合電極材料之複合電極及其製作方法、以及包含該複合電極之鋰電池 |
JP6811539B2 (ja) * | 2016-03-07 | 2021-01-13 | 古河機械金属株式会社 | 熱電変換材料の製造方法 |
JP6390662B2 (ja) * | 2016-04-22 | 2018-09-19 | トヨタ自動車株式会社 | 熱電材料の製造方法 |
JP6536615B2 (ja) | 2017-03-31 | 2019-07-03 | トヨタ自動車株式会社 | 熱電変換材料及びその製造方法 |
EP3627573B1 (en) * | 2017-05-19 | 2023-08-30 | Nitto Denko Corporation | Method of producing semiconductor sintered body, electrical/electronic member and semiconductor sintered body |
JP7248157B2 (ja) * | 2017-06-29 | 2023-03-29 | 三菱マテリアル株式会社 | 熱電変換材料、及び、熱電変換材料の製造方法 |
JP7176248B2 (ja) * | 2017-06-29 | 2022-11-22 | 三菱マテリアル株式会社 | 熱電変換材料、熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法 |
JP7159854B2 (ja) * | 2018-12-26 | 2022-10-25 | 三菱マテリアル株式会社 | 熱電変換材料、熱電変換素子、及び、熱電変換モジュール |
KR102199791B1 (ko) * | 2019-07-02 | 2021-01-07 | 울산과학기술원 | 마찰 전계 효과를 이용한 열전발전소자 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999022411A1 (en) * | 1997-10-24 | 1999-05-06 | Sumitomo Special Metals Co., Ltd. | Silicon based conductive material and process for production thereof |
JPH11274578A (ja) | 1998-03-19 | 1999-10-08 | Matsushita Electric Ind Co Ltd | 熱電変換材料の製造方法および熱電変換モジュール |
JP2002194472A (ja) * | 2000-12-28 | 2002-07-10 | Kanazawa Inst Of Technology | 軽量高強度マグネシウム又はマグネシウム合金、及びその製造方法 |
WO2003027341A1 (fr) | 2001-09-25 | 2003-04-03 | Center For Advanced Science And Technology Incubation, Ltd. | Materiau composite a base de magnesium |
JP2005129765A (ja) * | 2003-10-24 | 2005-05-19 | Hitachi Metals Ltd | 熱発電モジュールおよびそれに用いる型枠 |
JP2005314805A (ja) | 2004-03-29 | 2005-11-10 | Toudai Tlo Ltd | マグネシウム化合物、金属材料およびマグネシウム化合物の製造方法 |
JP2006128235A (ja) * | 2004-10-27 | 2006-05-18 | National Institute Of Advanced Industrial & Technology | 熱電材料及びその製造方法 |
WO2008075789A1 (ja) * | 2006-12-20 | 2008-06-26 | Showa Kde Co., Ltd. | 熱電変換材料、その製造方法および熱電変換素子 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3600486B2 (ja) * | 1999-08-24 | 2004-12-15 | セイコーインスツル株式会社 | 熱電変換素子の製造方法 |
US6277351B1 (en) * | 2000-03-20 | 2001-08-21 | Carl Francis Swinehart | Crucible for growing macrocrystals |
JP2002368291A (ja) * | 2001-06-04 | 2002-12-20 | Tokyo Yogyo Co Ltd | 熱電材料 |
KR100985310B1 (ko) * | 2004-06-30 | 2010-10-04 | 스미토모덴키고교가부시키가이샤 | 마그네슘 합금재의 제조방법 |
JP2008001558A (ja) * | 2006-06-22 | 2008-01-10 | Sumitomo Metal Electronics Devices Inc | 窒化アルミニウム成形体の焼成方法と焼成用治具 |
-
2010
- 2010-07-23 TW TW099124370A patent/TWI485266B/zh not_active IP Right Cessation
- 2010-07-26 EP EP10804355A patent/EP2461384A1/en not_active Withdrawn
- 2010-07-26 US US13/386,873 patent/US20120118343A1/en not_active Abandoned
- 2010-07-26 JP JP2010167008A patent/JP5629920B2/ja not_active Expired - Fee Related
- 2010-07-26 WO PCT/JP2010/062509 patent/WO2011013609A1/ja active Application Filing
- 2010-07-26 KR KR1020127004521A patent/KR101365251B1/ko not_active IP Right Cessation
- 2010-07-26 CN CN201080033425.2A patent/CN102473831B/zh not_active Expired - Fee Related
-
2015
- 2015-03-27 US US14/671,045 patent/US20150207056A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999022411A1 (en) * | 1997-10-24 | 1999-05-06 | Sumitomo Special Metals Co., Ltd. | Silicon based conductive material and process for production thereof |
JPH11274578A (ja) | 1998-03-19 | 1999-10-08 | Matsushita Electric Ind Co Ltd | 熱電変換材料の製造方法および熱電変換モジュール |
JP2002194472A (ja) * | 2000-12-28 | 2002-07-10 | Kanazawa Inst Of Technology | 軽量高強度マグネシウム又はマグネシウム合金、及びその製造方法 |
WO2003027341A1 (fr) | 2001-09-25 | 2003-04-03 | Center For Advanced Science And Technology Incubation, Ltd. | Materiau composite a base de magnesium |
JP2005129765A (ja) * | 2003-10-24 | 2005-05-19 | Hitachi Metals Ltd | 熱発電モジュールおよびそれに用いる型枠 |
JP2005314805A (ja) | 2004-03-29 | 2005-11-10 | Toudai Tlo Ltd | マグネシウム化合物、金属材料およびマグネシウム化合物の製造方法 |
JP2006128235A (ja) * | 2004-10-27 | 2006-05-18 | National Institute Of Advanced Industrial & Technology | 熱電材料及びその製造方法 |
WO2008075789A1 (ja) * | 2006-12-20 | 2008-06-26 | Showa Kde Co., Ltd. | 熱電変換材料、その製造方法および熱電変換素子 |
Non-Patent Citations (4)
Title |
---|
"Bulk Crystals Growth of Mg2Si by the Vertical Bridgeman Method", SCIENCE DIRECT THIN SOLID FILMS, vol. 461, 2004, pages 86 - 89 |
"Seebeck Effect in Mg2Si Single Crystals", J. PHYS. CHEM. SOLIDS PROGRAM PRESS, vol. 23, 1962, pages 601 - 610 |
"Semiconducting Properties of Mg2Si Single Crystals", PHYSICAL REVIEW, vol. 109, no. 6, 15 March 1958 (1958-03-15), pages 1909 - 1915 |
BRIDGEMAN, THERMOELECTRIC PROPERTIES OF MG2SI CRYSTAL GROWN |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9115420B2 (en) | 2010-11-08 | 2015-08-25 | Hitachi Chemical Company, Ltd. | Thermoelectric material formed of Mg2Si-based compound and production method therefor |
JP2012190984A (ja) * | 2011-03-10 | 2012-10-04 | Hitachi Chem Co Ltd | マグネシウムシリサイド粉末及び、それを用いた焼結体、熱電変換素子、それらの製造方法 |
JP2019012717A (ja) * | 2017-06-29 | 2019-01-24 | 三菱マテリアル株式会社 | 熱電変換材料、及び、熱電変換材料の製造方法 |
JP7121227B2 (ja) | 2017-06-29 | 2022-08-18 | 三菱マテリアル株式会社 | 熱電変換材料、及び、熱電変換材料の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102473831A (zh) | 2012-05-23 |
KR101365251B1 (ko) | 2014-02-20 |
US20150207056A1 (en) | 2015-07-23 |
EP2461384A1 (en) | 2012-06-06 |
US20120118343A1 (en) | 2012-05-17 |
CN102473831B (zh) | 2015-03-25 |
TW201127966A (en) | 2011-08-16 |
KR20120049286A (ko) | 2012-05-16 |
TWI485266B (zh) | 2015-05-21 |
JP2011049538A (ja) | 2011-03-10 |
JP5629920B2 (ja) | 2014-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5629920B2 (ja) | アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール | |
JP6029256B2 (ja) | マグネシウム−ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール | |
Zheng et al. | High thermoelectric performance of mechanically robust n-type Bi 2 Te 3− x Se x prepared by combustion synthesis | |
JP5765776B2 (ja) | Mg2Si1−xSnx系多結晶体およびその製造方法 | |
Bux et al. | Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide | |
JP7042517B2 (ja) | 多結晶性マグネシウムシリサイドおよびその利用 | |
EP2400572A1 (en) | Thermo-electric converting materials, process for producing the same, and thermo-electric converting element | |
WO2014084163A1 (ja) | Mg-Si系熱電変換材料及びその製造方法、熱電変換用焼結体、熱電変換素子、並びに熱電変換モジュール | |
WO2013047474A1 (ja) | 焼結体、熱電変換素子用焼結体、熱電変換素子及び熱電変換モジュール | |
Boldrini et al. | Ultrafast high-temperature sintering and thermoelectric properties of n-doped Mg2Si | |
WO2013047475A1 (ja) | マグネシウムシリサイド、熱電変換材料、焼結体、熱電変換素子用焼結体、熱電変換素子、及び熱電変換モジュール | |
JP2013161948A (ja) | 熱電変換素子及び熱電変換素子の製造方法 | |
JP4123388B2 (ja) | 亜鉛アンチモン化合物焼結体 | |
JP2021005593A (ja) | マグネシウムシリサイド及びその利用 | |
JP3564541B2 (ja) | 亜鉛アンチモン化合物焼結体及びその製造法 | |
JP3704556B2 (ja) | 亜鉛アンチモン化合物の製造法 | |
Oulfarsi et al. | Thermal Stability of Mg2Si0. 6Sn0. 4 under Oxidation Conditions | |
Trivedi et al. | Magnesium and manganese silicides for efficient and low cost thermo-electric power generation | |
JP2003138332A (ja) | 亜鉛、アンチモン及びカドミウムからなる化合物の焼結体及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080033425.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10804355 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13386873 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010804355 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010804355 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127004521 Country of ref document: KR Kind code of ref document: A |