WO2011002205A2 - 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자 - Google Patents

다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자 Download PDF

Info

Publication number
WO2011002205A2
WO2011002205A2 PCT/KR2010/004215 KR2010004215W WO2011002205A2 WO 2011002205 A2 WO2011002205 A2 WO 2011002205A2 KR 2010004215 W KR2010004215 W KR 2010004215W WO 2011002205 A2 WO2011002205 A2 WO 2011002205A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
coating layer
metal
electrochemical device
inorganic
Prior art date
Application number
PCT/KR2010/004215
Other languages
English (en)
French (fr)
Other versions
WO2011002205A3 (ko
Inventor
이주성
김종훈
박필규
홍장혁
신병진
조병규
진선미
김인철
윤수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2012516000A priority Critical patent/JP5841936B2/ja
Priority to PL10794340T priority patent/PL2461395T3/pl
Priority to CN201080029125.7A priority patent/CN102473894B/zh
Priority to EP10794340.9A priority patent/EP2461395B1/en
Publication of WO2011002205A2 publication Critical patent/WO2011002205A2/ko
Publication of WO2011002205A3 publication Critical patent/WO2011002205A3/ko
Priority to US13/229,009 priority patent/US20120003545A1/en
Priority to US13/492,128 priority patent/US20120244292A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for manufacturing an electrode of an electrochemical device such as a lithium secondary battery, an electrode formed therefrom and an electrochemical device having the same, and more particularly, a method for manufacturing an electrode having a porous coating layer including an inorganic material therefrom. It relates to an electrode formed and an electrochemical device having the same.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and greater energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • lithium ion batteries have safety problems such as ignition and explosion due to the use of the organic electrolyte, and are difficult to manufacture.
  • the lithium ion polymer battery has been considered as one of the next generation batteries by improving the weakness of the lithium ion battery, but the capacity of the battery is still relatively low compared to the lithium ion battery, and the discharge capacity is improved due to insufficient discharge capacity at low temperatures. This is urgently needed.
  • electrochemical devices are produced by many companies, but their safety characteristics show different aspects. It is very important to evaluate the safety and secure the safety of these electrochemical devices. The most important consideration is that an electrochemical device should not cause injury to the user in case of malfunction. For this purpose, safety standards strictly regulate the ignition and smoke in the electrochemical device. In the safety characteristics of the electrochemical device, there is a high possibility that an explosion occurs when the electrochemical device is overheated to cause thermal runaway or the separator penetrates. In particular, polyolefin-based porous substrates commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures of 100 degrees or more due to material characteristics and manufacturing process characteristics including stretching, and thus, a short circuit between the anode and the cathode. There is a problem that causes.
  • an electrode having a porous coating layer is formed by coating a mixture of excess inorganic particles and a binder polymer.
  • the inorganic particles contained in the porous coating layer have excellent heat resistance, and thus prevent a short circuit between the positive electrode and the negative electrode even when the electrochemical device is overheated. Therefore, the electrochemical device having such an electrode may omit or add a conventional separator to improve thermal stability.
  • the electrode having the above-described porous coating layer is prepared by dispersing excess inorganic particles in a solution in which the binder polymer is dissolved, and then coating and drying them on the outer surface of the electrode active material layer of the electrode.
  • the pores in the porous coating layer should be evenly distributed. That is, the excess inorganic particles contained in the porous coating layer should be well dispersed.
  • a method of physically agitating for a long time or using an ultrasonic dispersion method has been attempted.
  • the problem to be solved by the present invention is to replace the conventional porous coating layer containing the inorganic particles, a method for producing an electrode having a porous coating layer containing inorganic evenly distributed pores, an electrode formed therefrom and an electrochemical having the same It is to provide an element.
  • metal alkoxide compound silicon-containing alkoxide, aluminum-containing alkoxide, titanium-containing alkoxide, or the like can be used alone or in combination of two or more thereof.
  • the metal in the metal alkoxide may be partially substituted with an alkali metal such as lithium, magnesium, barium, or a transition metal such as alkaline earth metal, cobalt, manganese, iron, nickel, vanadium, or the like.
  • silicon-containing alkoxide tetraalkyl (1 to 4 carbon atoms) orthosilicate is used, and as the aluminum-containing alkoxide, aluminum sebutoxide, aluminum isopropoxide, aluminum ethoxide and the like, and titanium-containing alkoxide is titanium isopropoxide. And titanium alkyl (1-4 carbon atoms) may be exemplified.
  • the sol solution Polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polyacrylonitrile (polyacrylonitrile), polyvinylpyrrolidone, polyvinylacetate, polyvinyl alcohol, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose Cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose (cyanoethylcellulose), cyanoe Sucrose (cyanoethylsucrose), pullulan (pullulan), carboxymethyl cellulose may be added a low molecular compound or a polymer of molecular weight 10,000 g / mol or less, such as (carboxyl methyl
  • step (S2) it is preferable to further include a step of thermally decomposing to separate the above-mentioned binder from the porous nonwoven coating layer.
  • the electrospray may be electrospinning or electrospraying.
  • the inorganic fiber may be formed of an inorganic oxide such as SiO 2 , Al 2 O 3 , BaTiO 3 , TiO 2 alone or a mixture of two or more thereof, and the metal of the inorganic oxide may be lithium, It may be partially substituted with an alkali metal such as magnesium or barium or an alkaline earth metal, cobalt, manganese, iron, nickel, vanadium or the like.
  • an alkali metal such as magnesium or barium or an alkaline earth metal, cobalt, manganese, iron, nickel, vanadium or the like.
  • Such inorganic fibers can be formed by electrospinning such as electrospinning or electrospraying.
  • the average diameter of the inorganic fiber is 0.001 to 1000 nm
  • the thickness of the nonwoven fabric is 0.1 to 100 um
  • the average pore size of the nonwoven fabric is 0.01 to 10 um
  • the porosity of the nonwoven fabric is 1 to 80%. desirable.
  • Such an electrode of the present invention may be applied to both the positive electrode, the negative electrode, or both the positive electrode and the negative electrode of an electrochemical device such as a lithium secondary electron or a super capacitor device.
  • the porous nonwoven coating layer formed on the outer surface of the electrode is composed of inorganic fibers having excellent thermal stability, so that a short circuit between the anode and the cathode can be suppressed even when the electrochemical device is overheated.
  • the porous coating layer containing an excessive amount of inorganic particles since the non-woven coating layer formed of a fibrous inorganic material, pores are evenly distributed, contributing to the improvement of the performance of the electrochemical device.
  • the porous nonwoven coating layer composed of inorganic fiber microfiber formed by electrospray can be used to implement a high-capacity electrochemical device because the thickness of the porous nonwoven coating layer can be reduced.
  • FIG. 1 is an SEM photograph of a coating layer formed on an electrode according to Example 1.
  • Example 2 is a SEM photograph of the coating layer formed on the electrode according to Example 2.
  • According to the present invention is a method of forming a porous nonwoven fabric coating layer of inorganic fibers on the outer surface as follows.
  • a sol solution containing a metal alkoxide compound is prepared (step S1).
  • a silicon containing alkoxide, an aluminum containing alkoxide, a titanium containing alkoxide, etc. can be used individually or in mixture of 2 or more of these, respectively.
  • the metal in the metal alkoxide may be partially substituted with an alkali metal such as lithium, magnesium, or barium, or a transition metal such as alkaline earth metal, cobalt, manganese, iron, nickel, vanadium, or the like as necessary.
  • titanium-containing alkoxide As the silicon-containing alkoxide, tetraalkyl (1 to 4 carbon atoms) orthosilicate is used, and as the aluminum-containing alkoxide, aluminum sebutoxide, aluminum isopropoxide, aluminum ethoxide and the like, and titanium-containing alkoxide is titanium isopropoxide. Titanium alkyl (C 1 to 4) alkoxide can be exemplified, and any metal alkoxide compound which can be fibrillated according to the sol-gel reaction can be used.
  • sol solution containing the metal alkoxide compound is usually aged by mixing and stirring the metal alkoxide compound in a solvent, or by further adding an acid component such as hydrochloric acid to proceed hydrolysis and condensation reactions.
  • Korean Patent Registration No. 0596543 discloses a method of preparing a sol solution by aging a solution obtained by mixing tetraethyl orthosilicate in ethanol.
  • Korean Patent Publication No. 2009-0054385 discloses a method of preparing a sol solution by aging a precursor solution containing a silicon-containing alkoxide compound and a titanium-containing alkoxide compound. The above documents are incorporated by reference of the present invention.
  • the sol solution contains polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, and polymethylmethacrylate as needed. ), Polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinylalcohol, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide ( polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol Cyanoethylcellulose (cy A high molecular weight compound such as anoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, or the like, or a low molecular weight compound having a molecular weight of 10,000 g / mol or less may be further
  • the prepared sol solution is electrosprayed on the outer surface of the electrode active material layer formed on at least one surface of the current collector to form a porous nonwoven fabric coating layer made of inorganic fibers (step S2).
  • Electrospray is a method in which a high voltage is applied to a solution to impart a charge, and then the charged solution is sprayed onto the substrate through a spray head for generating a microscopic injection nozzle or droplets. Electrospray may include electrospinning or electrospraying.
  • Korean Patent Laid-Open Publication No. 2009-0054385 discloses a syringe (syringe pump), a needle, and a bottom electrode (stainless steel plate with adjustable rotation speed).
  • the distance between the tip of the needle and the drum is 5 to 30 cm
  • the radiation voltage is 15 kV or more
  • the flow rate of the spinning solution of the syringe pump is 1 to 20.
  • a method of electrospinning by adjusting to ml / hr is disclosed.
  • Republic of Korea Patent Publication No. 0027116 has been described with respect to the electrospray apparatus and method. The above documents are also incorporated by reference of the present invention.
  • the electrode is placed on the base of the electrospray apparatus, and the sol solution prepared on the outer surface of the electrode active material layer formed on at least one surface of the current collector of the electrode is electrosprayed to form a nonwoven fabric coating layer made of inorganic fibers.
  • the sol solution prepared on the outer surface of the electrode active material layer formed on at least one surface of the current collector of the electrode is electrosprayed to form a nonwoven fabric coating layer made of inorganic fibers.
  • the electrode to which the sol solution is sprayed according to the present invention is not particularly limited, and is prepared in a form in which a layer (ie, an electrode active material layer) containing an electrode active material is bound to at least one surface of a current collector according to a conventional method known in the art. can do.
  • a layer ie, an electrode active material layer
  • an electrode active material a conventional cathode active material that can be used for the anode of a conventional electrochemical device may be used, and lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide, or a lithium complex oxide in combination thereof may be exemplified.
  • the present invention is not limited thereto.
  • a conventional negative electrode active material which can be used for the negative electrode of the conventional electrochemical device can be used, and in particular, lithium metal or lithium alloy, carbon, petroleum coke, activated carbon, graphite Or other lithium adsorbents such as carbons, but are not limited thereto.
  • the current collector on which the cathode active material layer is formed include a foil made of aluminum, nickel, or a combination thereof.
  • Non-limiting examples of the current collector in which the negative electrode active material layer is formed include a foil manufactured by copper, gold, nickel, or a copper alloy or a combination thereof.
  • the solvent contained in the sol solution may be mostly volatilized according to the type of solvent, and thus, a separate solvent drying process may not be necessary, but a separate drying process for removing the solvent at room temperature or high temperature as necessary. Of course you can add.
  • a step of thermally decomposing the electrode on which the porous nonwoven coating layer is formed may be added to separate the polymer binder from the porous nonwoven coating layer.
  • the binder in the electrode active material layer should not be decomposed, so the selection of the binder and the polymer binder in the electrode active material layer should be selected in consideration of the decomposition temperature of these polymers.
  • Electrode of the present invention prepared according to the above-described method,
  • inorganic oxides such as SiO 2 , Al 2 O 3 , BaTiO 3 , TiO 2 , or a mixture of two or more thereof Fibers can be obtained, and finally, these inorganic fibers are entangled to produce a nonwoven fabric with a plurality of pores evenly distributed.
  • the metal of the inorganic oxide may be partially substituted with an alkali metal such as lithium, magnesium, barium or an alkaline earth metal, cobalt, manganese, iron, nickel, vanadium or the like.
  • the inorganic fibers may contain organic alcohols, binders and the like derived from metal alkoxides.
  • Inorganic fibers formed by electrospray usually form nano-sized inorganic fibers having a diameter of 1 to 100 nm, but according to recent technology trends, inorganic fibers having a submicron size, that is, 1 to 1000 nm in diameter, have been formed. It is possible.
  • the inorganic fiber nonwoven fabric formed by electrospinning is composed of relatively long inorganic fibers
  • the inorganic fiber nonwoven fabric formed by electrospray is composed of relatively short inorganic fibers, which are connected to each other to form a mesh nonwoven fabric.
  • the porous nonwoven coating layer composed of inorganic fiber microfiber formed by electrospray can be used to implement a high-capacity electrochemical device because the thickness of the porous nonwoven coating layer can be reduced.
  • the thickness of the porous nonwoven fabric coating layer is 0.1 to 100 um
  • the average pore size of the nonwoven fabric is 0.01 to 10 um
  • the porosity of the nonwoven fabric is preferably 1 to 80%.
  • the electrode of the present invention can be applied to both the positive electrode, the negative electrode or both the positive electrode and the negative electrode of the electrochemical device.
  • the porous nonwoven coating layer of inorganic fibers interposed between the positive electrode and the negative electrode may replace the conventional separator.
  • a conventional separator may be interposed between the positive electrode and the negative electrode.
  • the porous nonwoven coating layer made of inorganic fibers prevents a short circuit between the positive electrode and the negative electrode even if the conventional separator is thermally contracted or melted due to overheating.
  • the electrochemical device of the present invention includes all devices that undergo an electrochemical reaction, and specific examples include capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor elements.
  • capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor elements.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery among the secondary batteries is preferable.
  • an electrolyte in which a salt having a structure such as A + B ⁇ is dissolved in an organic solvent may be selectively used.
  • a + is Li +, Na +, and comprising an alkali metal cation or an ion composed of a combination thereof, such as K +
  • B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2) 3 - and include such anions or an ion composed of a combination of do.
  • Organic solvents include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane , Tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethylcarbonate (EMC), gamma butyrolactone ( ⁇ -butyrolactone) or mixtures thereof, but is not limited thereto. no.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethyl sulfoxide acetonitrile, dimethoxyethane, diethoxyethane , Tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethylcarbonate (EMC), gam
  • the injection of the electrolyte may be performed at an appropriate step in the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
  • Aluminum tri-sec-butoxide 5g was mixed with 18.98ml of ethanol and 0.22ml of water, aged at 60 ° C. for 3 hours, and then cooled to room temperature to prepare a sol solution. Subsequently, the prepared sol solution was transferred through a 0.5 mm inner tube at a flow rate of 100 uL / min using a syringe pump, and then 10 kV was applied to the electrode (electrospraying electrode having an anode active material layer formed on the outer surface of the current collector). ) To form a coating layer.
  • the SEM photograph of the formed coating layer is shown in FIG. Most of the diameters of the inorganic fibers of Al 2 O 3 constituting the coating layer were observed to be 100 nm or less.
  • the SEM photograph of the formed coating layer is shown in FIG. Most of the diameters of the inorganic fibers of BaTiO 3 constituting the coating layer were observed to be 800 nm or less.
  • Aluminum tri-sec-butoxide, ethanol and water were mixed in a molar ratio of 1: 16: 0.6, and aged at 60 ° C for 1 hour, and then cooled to room temperature to prepare a sol solution. Subsequently, the sol solution, methanol and water were mixed at a weight ratio of 1: 0.2: 0.003, to which 3 vol% acetic acid was added and stirred at room temperature for 30 minutes. Then, 5% by weight of polyvinyl alcohol aqueous solution was further added and stirred at room temperature for 2 hours to prepare a sol solution for electrospinning.
  • the prepared sol solution was transferred to a flow rate of 100 uL / min using a syringe pump through a tube having an internal diameter of 0.5 mm, and then electrospinning on an electrode (an electrode having a positive electrode active material layer formed on the outer surface of the current collector) by applying 20 kV. A coating layer was formed.
  • the prepared sol solution was transferred to a flow rate of 100 uL / min using a syringe pump through a tube having an internal diameter of 0.5 mm, and then electrospinning on an electrode (electrode having a positive electrode active material layer formed on the outer surface of the current collector) by applying 15 kV. A coating layer was formed.
  • Most of the diameters of the inorganic fibers of BaTiO 3 constituting the coating layer were observed to be 300 nm or less.
  • Al 2 O 3 inorganic oxide particles having an average diameter of about 500 nm were added so that the weight ratio of polymer to inorganic oxide was 8: 2, and the mixture was mixed for 6 hours. Dispersed.
  • the polymer solution in which the inorganic oxide particles were dispersed was transferred through a tube having an inner diameter of 2 mm at a flow rate of 5 L / min using a syringe pump, and then 23 kV was applied to the electrode (an electrode having a positive electrode active material layer formed on the outer surface of the current collector). Electrospinning for 5 minutes to form a coating layer.
  • the SEM photograph of the formed coating layer is shown in FIG. 3.
  • the diameter of the fibers constituting the coating layer was mostly 500 nm or less, but the inorganic oxide particles were not dispersed effectively and were observed in agglomerated form.
  • Al 2 O 3 inorganic oxide particles having an average diameter of about 50 nm were added so that the weight ratio of polymer to inorganic oxide was 2: 1, and the mixture was mixed for 6 hours. Dispersed.
  • the polymer solution in which the inorganic oxide particles were dispersed was transferred through a tube having an internal diameter of 0.5 mm at a flow rate of 0.8 L / min using a syringe pump, and then 23 kV was added to the electrode (electrode having a positive electrode active material layer formed on the outer surface of the current collector). Electrospinning was carried out for 20 minutes to form a coating layer.
  • the SEM photograph of the formed coating layer is shown in FIG. 4.
  • the diameter of the fibers constituting the coating layer was mostly 100 nm or less, but the inorganic oxide particles were not dispersed effectively and were observed in agglomerated form.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명에 따른 전극 제조방법은 (S1) 금속 알콕사이드 화합물을 포함하는 졸 용액을 준비하는 단계; 및 (S2) 상기 졸 용액을 집전체의 적어도 일면에 형성된 전극활물질층의 외면에 전기분사하여 무기섬유로 된 다공성 부직포 코팅층을 형성하는 단계를 포함한다. 본 발명의 전극 외면에 형성된 다공성 부직포 코팅층은 열적 안정성이 뛰어난 무기섬유로 구성되어 전기화학소자가 과열되는 경우에도 양극과 음극 사이의 단락을 억제할 수 있으며, 기공이 고르게 분포되어 있어 전기화학소자의 성능 향상에 기여한다.

Description

다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자
본 출원은 2009년 06월 30일에 출원된 한국특허출원 제10-2009-0058977호 및 2010년 6월 29일에 출원된 한국특허출원 제10-2010-0061845호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
본 발명은 리튬 이차전지와 같은 전기화학소자의 전극 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자에 관한 것으로서, 보다 상세하게는 무기물을 포함하는 다공성 코팅층이 형성된 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 촛점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이온 전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다. 최근의 리튬 이온 고분자 전지는 이러한 리튬 이온 전지의 약점을 개선하여 차세대 전지의 하나로 꼽히고 있으나 아직까지 전지의 용량이 리튬 이온 전지와 비교하여 상대적으로 낮고, 특히 저온에서의 방전 용량이 불충분하여 이에 대한 개선이 시급히 요구되고 있다.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 분리막이 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 분리막으로서 통상적으로 사용되는 폴리올레핀계 다공성 기재는 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100도 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 기재의 적어도 일면에, 과량의 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 다공성 코팅층을 형성한 전극이 제안되었다. 다공성 코팅층에 함유된 무기물 입자들은 내열성이 뛰어나므로, 전기화학소자가 과열되는 경우에도 양극과 음극 사이의 단락을 방지한다. 따라서, 이러한 전극을 구비한 전기화학소자는 종래의 세퍼레이터를 생략하거나 이에 더하여 열적 안정성을 향상시킬 수 있다.
전술한 다공성 코팅층을 구비한 전극은 과량의 무기물 입자를 바인더 고분자가 용해된 용액에 분산시킨 다음, 이를 전극의 전극활물질층 외면에 코팅 및 건조시켜 제조된다. 전기화학소자가 원활히 작동하기 위해서는 다공성 코팅층 내의 기공이 고르게 분포되어야 한다. 즉, 다공성 코팅층 내에 함유된 과량의 무기물 입자가 잘 분산되어 있어야만 한다. 이를 위하여 무기물 입자들을 바인더 고분자 용액에 첨가한 후 오랜 시간동안 물리적으로 교반을 하거나, 초음파 분산법을 이용하는 등의 방법이 시도되고 있다. 그러나, 위와 같은 방법을 통하여 무기물 입자를 고분자 용액에 잘 분산시킨 경우에도, 용매의 건조과정에서 다시 무기물 입자들이 응집되는 현상이 발생하게 되므로, 과량의 무기물 입자가 잘 분산된 다공성 코팅층을 제조하는 것은 매우 어려운 문제이다. 이러한 문제는 무기물 입자가 분산된 고분자 용액을 전기분사하는 경우에도 여전히 존재한다.
따라서, 본 발명이 해결하고자 하는 과제는 종래의 무기물 입자를 함유하는 다공성 코팅층을 대체하여, 기공이 고르게 분포된 무기물 함유 다공성 코팅층을 형성한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자를 제공하는데 있다.
상기 과제를 달성하기 위하여, 본 발명의 전극 제조방법은,
(S1) 금속 알콕사이드 화합물을 포함하는 졸 용액을 준비하는 단계; 및
(S2) 상기 졸 용액을 집전체의 적어도 일면에 형성된 전극활물질층의 외면에 전기분사하여 무기섬유로 된 다공성 부직포 코팅층을 형성하는 단계를 포함한다.
본 발명의 전극 제조방법에 있어서, 금속 알콕사이드 화합물로는 규소 함유 알콕사이드, 알루미늄 함유 알콕사이드, 티타늄 함유 알콕사이드 등을 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다. 금속 알콕사이드 중 금속은 리튬, 마그네슘, 바륨 등의 알칼리 금속 또는 알칼리 토금속, 코발트, 망간, 철, 니켈, 바나듐 등의 전이 금속 등으로 일부 치환될 수 있다.
규소 함유 알콕사이드로는 테트라알킬(탄소수가 1 내지 4)오르소실리케이트를, 알루미늄 함유 알콕사이드로는 알루미늄 세크부톡사이드, 알루미늄 이소프로톡사이드, 알루미늄 에톡사이드 등을, 티타늄 함유 알콕사이드는 티타늄 이소프로폭사이드, 티타늄 알킬(탄소수가 1 내지 4)알콕사이드를 예시할 수 있다.
본 발명의 전극 제조방법에 있어서, 졸 용액에는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜 (polyvinyl alcohol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 등과 같은 고분자 또는 분자량 10,000 g/mol 이하의 저분자 화합물을 결합제로서 더 첨가할 수 있다.
상기 (S2) 단계 후에는 전술한 결합제가 다공성 부직포 코팅층으로부터 분리되도록 열처리하여 분해하는 단계를 더 포함하는 것이 바람직하다.
본 발명의 전극 제조방법에 있어서, 전기분사는 전기방사(electrospinning) 또는 전기분무(electrospraying)일 수 있다.
본 발명에 따른 전극은,
(a) 집전체 및 상기 집전체의 적어도 일면에 형성된 전극활물질층; 및
(b) 상기 전극활물질층의 외면에 형성되어 있으며, 무기섬유로 된 다공성 부직포 코팅층을 구비한다.
본 발명에 따른 전극에 있어서, 무기섬유는 SiO2, Al2O3, BaTiO3, TiO2 등의 무기 산화물 단독으로 또는 이들 중 2종 이상의 혼합물로 형성될 수 있으며, 무기 산화물의 금속은 리튬, 마그네슘, 바륨 등의 알칼리 금속 또는 알칼리 토금속, 코발트, 망간, 철, 니켈, 바나듐 등의 전이 금속 등으로 일부 치환될 수 있다.
이러한 무기섬유는 전기방사(electrospinning) 또는 전기분무(electrospraying)와 같은 전기분사에 의해 형성될 수 있다.
본 발명에 따른 전극에 있어서, 무기섬유의 평균 직경은 0.001 내지 1000 nm, 부직포의 두께는 0.1 내지 100 um, 부직포의 평균 기공크기는 0.01 내지 10 um, 부직포의 기공도는 1 내지 80 %인 것이 바람직하다.
이와 같은 본 발명의 전극은 리튬 이차전자나 수퍼 캐패시터 소자와 같은 전기화학소자의 양극, 음극 또는 양극과 음극 모두에 적용될 수 있다.
본 발명에 따라 전극 외면에 형성된 다공성 부직포 코팅층은 열적 안정성이 뛰어난 무기섬유로 구성되어 전기화학소자가 과열되는 경우에도 양극과 음극 사이의 단락을 억제할 수 있다. 또한, 종래 무기물 입자가 과량 함유된 다공성 코팅층과는 달리 섬유상의 무기물로 형성된 부직포 코팅층이므로, 기공이 고르게 분포되어 있어 전기화학소자의 성능 향상에 기여한다. 더불어, 전기분사로 형성한 무기섬유 극세사로 구성된 다공성 부직포 코팅층은 그 두께를 얇게 할 수 있으므로, 고용량의 전기화학소자 구현에 이용될 수 있다.
도 1은 실시예 1에 따라 전극 위에 형성된 코팅층의 SEM 사진이다.
도 2는 실시예 2에 따라 전극 위에 형성된 코팅층의 SEM 사진이다.
도 3은 비교예 1에 따라 전극 위에 형성된 코팅층의 SEM 사진이다.
도 4는 비교예 2에 따라 전극 위에 형성된 코팅층의 SEM 사진이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명에 따라 전극 외면에 무기섬유로 된 다공성의 부직포 코팅층을 형성하는 방법은 다음과 같다.
먼저, 금속 알콕사이드 화합물을 포함하는 졸 용액을 준비한다(S1 단계).
금속 알콕사이드 화합물로는 규소 함유 알콕사이드, 알루미늄 함유 알콕사이드, 티타늄 함유 알콕사이드 등을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다. 금속 알콕사이드 중 금속은 필요에 따라 리튬, 마그네슘, 바륨 등의 알칼리 금속 또는 알칼리 토금속, 코발트, 망간, 철, 니켈, 바나듐 등의 전이 금속 등으로 일부 치환하여 사용할 수 있다.
규소 함유 알콕사이드로는 테트라알킬(탄소수가 1 내지 4)오르소실리케이트를, 알루미늄 함유 알콕사이드로는 알루미늄 세크부톡사이드, 알루미늄 이소프로톡사이드, 알루미늄 에톡사이드 등을, 티타늄 함유 알콕사이드는 티타늄 이소프로폭사이드, 티타늄 알킬(탄소수가 1 내지 4)알콕사이드를 예시할 수 있으며, 졸-겔 반응에 따라 섬유화될 수 있는 금속 알콕사이드 화합물이라면 모두 사용이 가능하다.
후술하는 전기분사를 위하여 이러한 금속 알콕사이드 화합물을 포함하는 졸 용액을 준비하는 방법은 당업계에 잘 알려져 있다. 금속 알콕사이드 화합물을 포함하는 졸 용액은 통상적으로 금속 알콕사이드 화합물을 용매에 혼합하고 스터링하거나, 염산 등의 산성분을 더 첨가하여 가수분해와 축합반응을 진행시켜 숙성시키는 것이 일반적이다.
예를 들어, 대한민국 특허등록공보 제0596543호에는 테트라에틸 오르소실리케이트를 에탄올에 혼합한 용액을 숙성시켜 졸 용액을 준비하는 방법이 개시되어 있다. 또한 대한민국 공개특허공보 제2009-0054385호에는 실리콘 함유 알콕사이드 화합물과 티타늄-함유 알콕사이드 화합물을 포함하는 전구체 용액을 숙성시켜 졸 용액을 준비하는 방법이 개시되어 있다. 위 문헌들은 본 발명의 레퍼런스로서 통합된다.
졸 용액에는 필요에 따라 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜 (polyvinylalcohol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 등과 같은 고분자 또는 분자량 10,000 g/mol 이하의 저분자 화합물을 결합제로서 더 첨가할 수 있다.
이어서, 준비된 졸 용액을 집전체의 적어도 일면에 형성된 전극활물질층의 외면에 전기분사하여 무기섬유로 된 다공성 부직포 코팅층을 형성한다(S2 단계).
졸 용액을 이용하여 전기분사하는 방법 역시 당업계에 잘 알려져 있다. 전기분사는 용액에 대하여 고전압을 인가하여 전하를 부여한 후, 하전된 용액을 미세경의 분사노즐이나 소적을 발생시키는 분무헤드를 통하여 기재로 분사하는 방법이다. 전기분사는 전기방사(electrospinning) 또는 전기분무(electrospraying)를 포함하는데, 대한민국 공개특허공보 제2009-0054385호에는 주사기(실린지 펌프)와 주사바늘, 바닥전극(회전 속도를 조절할 수 있는 스테인레스 강판의 드럼) 및 방사전압 공급장치로 구성된 전기방사장치를 이용하고, 주사바늘의 끝과 드럼 사이의 거리를 5 내지 30 cm, 방사전압은 15 kV 이상, 실린지 펌프의 방사용액의 유량을 1 내지 20 ml/hr로 조절하여 전기방사하는 방법이 개시되어 있다. 또한, 대한민국 등록특허공보 제0271116호에는 전기분무 장치 및 방법에 대하여 상술되어 있다. 위 문헌들 역시 본 발명의 레퍼런스로서 통합된다.
본 발명에서는 전기분사 장치의 기재에 전극을 위치시키고, 전극의 집전체의 적어도 일면에 형성된 전극활물질층의 외면에 준비된 졸 용액을 전기분사하므로서, 무기섬유로 된 부직포 코팅층을 형성한다. 이 때, 공지의 방법에 따라 주사바늘 사이의 간격, 기재의 운반속도 등을 조절하여, 부직포 코팅층의 기공도를 최적화할 수 있다.
본 발명에 따라 졸 용액이 분사되는 전극은 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 포함하는 층(즉, 전극활물질층)을 집전체의 적어도 일면에 결착하는 형태로 제조할 수 있다. 상기 전극활물질로는 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 예시할 수 있으나, 이에 한정되는 것은 아니다. 음극활물질로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등을 예시할 수 있으나, 이에 한정되는 것은 아니다 양극활물질층이 형성되는 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극활물질층이 형성되는 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
전기분사 과정에서, 졸 용액에 포함된 용매는 용매의 종류에 따라 대부분 휘발될 수 있으므로, 별도의 용매 건조 공정이 필요 없을 수 있으나, 필요에 따라 상온 또는 고온에서 용매를 제거하기 위한 별도의 건조 공정을 추가할 수 있음은 물론이다.
필요에 따라, 전술한 고분자 결합제가 다공성 부직포 코팅층으로부터 분리되도록, 다공성 부직포 코팅층이 형성된 전극을 열처리하여 분해하는 단계를 추가할 수 있다. 이러한 단계를 적용하는 경우, 전극활물질층 내의 바인더는 분해되지 않아야 하므로, 전극활물질층 내의 바인더와 고분자 결합제의 선택은 이들 고분자의 분해온도를 고려하여 선택해야 한다.
예시된 전술한 방법에 따라 제조한 본 발명의 전극은,
(a) 집전체 및 상기 집전체의 적어도 일면에 형성된 전극활물질층; 및
(b) 상기 전극활물질층의 외면에 형성되어 있으며, 무기섬유로 된 다공성 부직포 코팅층을 구비한다.
잘 알려진 바와 같이, 금속 알콕사이드 화합물을 포함하는 졸 용액을 전기분사하면 분사밀도 조절에 따라 SiO2, Al2O3, BaTiO3, TiO2 등의 무기 산화물 단독 또는 이들 중 2종 이상의 혼합물로 구성된 무기섬유를 얻을 수 있으며, 최종적으로는 이들 무기섬유가 얽혀 다수의 기공이 고르게 분포된 부직포가 제조된다. 무기 산화물의 금속은 리튬, 마그네슘, 바륨 등의 알칼리 금속 또는 알칼리 토금속, 코발트, 망간, 철, 니켈, 바나듐 등의 전이 금속 등으로 일부 치환될 수 있다. 또한, 무기섬유 내에는 금속 알콕사이드로부터 기인한 유기 알코올류, 결합체 등이 포함되어 있을 수 있다.
이러한 부직포는 전극활물질층 위에 직접 형성되므로, 전극활물질층의 코팅층을 이룬다. 전기분사에 의해 형성되는 무기섬유는 통상 1 내지 100 nm의 직경을 갖는 나노 사이즈의 무기섬유를 형성하나, 최근 기술 동향에 따르면 서브미크론 크기, 즉 1 내지 1000 nm의 직경을 갖는 무기섬유도 형성이 가능하다.
전기방사에 의해 형성된 무기섬유 부직포는 비교적 길이가 긴 무기섬유로 구성되고, 전기분무에 의해 형성된 무기섬유 부직포는 비교적 짧은 무기섬유로 구성되며, 이들이 서로 연결되어 망목상의 부직포가 형성된다. 특히, 전기분사로 형성한 무기섬유 극세사로 구성된 다공성 부직포 코팅층은 그 두께를 얇게 할 수 있으므로, 고용량의 전기화학소자 구현에 이용될 수 있다.
본 발명에 따른 전극에 있어서, 다공성 부직포 코팅층의 두께는 0.1 내지 100 um, 부직포의 평균 기공크기는 0.01 내지 10 um, 부직포의 기공도는 1 내지 80 %인 것이 바람직하다.
이와 같은 본 발명의 전극은 전기화학소자의 양극, 음극 또는 양극과 음극 모두에 적용될 수 있다. 양극과 음극 사이에 개재된 무기섬유로 된 다공성 부직포 코팅층은 종래의 세퍼레이터를 대체할 수 있다. 또한, 종래의 세퍼레이터를 양극과 음극 사이에 개재시킬 수도 있는데, 이 경우 무기섬유로 된 다공성 부직포 코팅층은 과열에 의해 종래의 세퍼레이터가 열수축 또는 용융되어도 양극과 음극 사이의 단락을 막아준다.
본 발명의 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
본 발명의 전기화학소자에는 A+B-와 같은 구조의 염을 유기용매에 용해시킨 전해질을 선택적으로 사용할 수 있다. 여기서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함한다. 유기용매로는 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (γ-부티로락톤) 또는 이들의 혼합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 전해질의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.
실시예 1
Aluminum tri-sec-butoxide, 5g을 에탄올 18.98ml와 물 0.22ml에 혼합한 후 60도에서 3시간 교반하여 숙성시킨 다음, 상온으로 냉각시켜 졸 용액을 준비하였다. 이어서, 제조한 졸 용액을 syringe pump를 이용하여 유량 100uL/min으로 내경이 0.5mm인 관을 통하여 이송한 다음, 10kV를 가하여 전극(집전체 외면에 양극 활물질층이 형성된 전극) 위에 전기분무(electrospraying)하여 코팅층을 형성하였다.
형성된 코팅층의 SEM 사진을 도 1에 나타냈다. 코팅층을 구성하는 Al2O3로 된 무기섬유의 직경은 대부분 100nm 이하로 관찰되었다.
실시예 2
Barium acetate 5.1g을 아세트산 12ml에 용해시킨 다음, 2시간 동안 교반하였다. 교반을 계속하면서, 5.9mL의 titanium isopropoxide를 서서히 첨가하고, 5시간 동안 교반하여 졸 용액을 준비하였다. 이어서, 제조한 졸 용액을 syringe pump를 이용하여 유량 100uL/min으로 내경이 0.5mm인 관을 통하여 이송한 다음, 10kV를 가하여 전극(집전체 외면에 양극 활물질층이 형성된 전극) 위에 전기분무(electrospraying)하여 코팅층을 형성하였다.
형성된 코팅층의 SEM 사진을 도 2에 나타냈다. 코팅층을 구성하는 BaTiO3로 된 무기섬유의 직경은 대부분 800nm 이하로 관찰되었다.
실시예 3
Aluminum tri-sec-butoxide, 에탄올 및 물을 1:16:0.6의 몰비로 혼합한 다음, 60도에서 1시간 교반하여 숙성시킨 다음, 상온으로 냉각시켜 졸 용액을 준비하였다. 이어서, 졸 용액, 메탄올 및 물을 1:0.2:0.003의 무게비로 혼합하였고, 여기에 아세트산을 3 부피%를 첨가하고 상온에서 30분간 교반하였다. 그런 다음, 5 중량%의 폴리비닐알콜 수용액을 더 첨가하고 상온에서 2시간 동안 교반하여 전기방사를 위한 졸 용액을 준비하였다.
제조된 졸 용액을 syringe pump를 이용하여 유량 100uL/min으로 내경이 0.5mm인 관을 통하여 이송한 다음, 20kV를 가하여 전극(집전체 외면에 양극 활물질층이 형성된 전극) 위에 전기방사(electrospinning)하여 코팅층을 형성하였다.
코팅층을 구성하는 Al2O3로 된 무기섬유의 직경은 대부분 300nm 이하로 관찰되었다.
실시예 4
Barium acetate 1.275g을 아세트산 3mL에 용해시킨 다음, 2시간 동안 교반하였다. 이어서 교반을 계속하면서 1.475mL의 titanium isopropoxide를 서서히 첨가하였다. 여기에 폴리비닐피롤리돈을 에탄올에 10 중량%의 농도로 용해시킨 용액을 더 첨가하고, 상온에서 2시간 동안 교반하여 전기방사를 위한 졸 용액을 준비하였다.
제조된 졸 용액을 syringe pump를 이용하여 유량 100uL/min으로 내경이 0.5mm인 관을 통하여 이송한 다음, 15kV를 가하여 전극(집전체 외면에 양극 활물질층이 형성된 전극) 위에 전기방사(electrospinning)하여 코팅층을 형성하였다.
코팅층을 구성하는 BaTiO3로 된 무기섬유의 직경은 대부분 300nm 이하로 관찰되었다.
비교예 1
아라미드를 디메틸아세트아미드에 용해시켜 고분자 용액을 제조한 다음, 약 500nm 평균직경을 갖는 Al2O3 무기산화물 입자들을 고분자 : 무기산화물의 중량비가 8:2가 되도록 첨가하고 믹서를 이용하여 6시간 동안 분산시켰다.
이어서, 무기산화물 입자가 분산된 고분자 용액을 syringe pump를 이용하여 유량 5 L/min으로 내경이 2mm인 관을 통하여 이송한 다음, 23kV를 가하여 전극(집전체 외면에 양극 활물질층이 형성된 전극) 위에 5분간 전기방사(electrospinning)하여 코팅층을 형성하였다.
형성된 코팅층의 SEM 사진을 도 3에 나타냈다. 코팅층을 구성하는 섬유의 직경은 대부분 500nm 이하로 나타났으나, 무기산화물 입자가 효과적으로 분산되지 못하고 응집된 형태로 관찰되었다.
비교예 2
아라미드를 디메틸아세트아미드에 용해시켜 고분자 용액을 제조한 다음, 약 50nm 평균직경을 갖는 Al2O3 무기산화물 입자들을 고분자 : 무기산화물의 중량비가 2:1이 되도록 첨가하고 믹서를 이용하여 6시간 동안 분산시켰다.
이어서, 무기산화물 입자가 분산된 고분자 용액을 syringe pump를 이용하여 유량 0.8 L/min으로 내경이 0.5mm인 관을 통하여 이송한 다음, 23kV를 가하여 전극(집전체 외면에 양극 활물질층이 형성된 전극) 위에 20분간 전기방사(electrospinning)하여 코팅층을 형성하였다.
형성된 코팅층의 SEM 사진을 도 4에 나타냈다. 코팅층을 구성하는 섬유의 직경은 대부분 100nm 이하로 나타났으나, 무기산화물 입자가 효과적으로 분산되지 못하고 응집된 형태로 관찰되었다.

Claims (21)

  1. (S1) 금속 알콕사이드 화합물을 포함하는 졸 용액을 준비하는 단계; 및
    (S2) 상기 졸 용액을 집전체의 적어도 일면에 형성된 전극활물질층의 외면에 전기분사하여 무기섬유로 된 다공성 부직포 코팅층을 형성하는 단계를 포함하는 전극의 제조방법.
  2. 제1항에 있어서,
    상기 금속 알콕사이드 화합물의 금속은 알칼리 금속, 알칼리 토금속 및 전이 금속으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상을 포함하는 것을 특징으로 하는 전극의 제조방법.
  3. 제2항에 있어서,
    상기 알칼리 금속은 리튬인 것을 특징으로 하는 전극의 제조방법.
  4. 제1항에 있어서,
    상기 금속 알콕사이드 화합물은 규소 함유 알콕사이드, 알루미늄 함유 알콕사이드 및 티타늄 함유 알콕사이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전극의 제조방법.
  5. 제4항에 있어서,
    상기 규소 함유 알콕사이드는 테트라알킬(탄소수가 1 내지 4)오르소실리케이트이고, 알루미늄 함유 알콕사이드는 알루미늄 세크부톡사이드, 알루미늄 이소프로톡사이드, 알루미늄 에톡사이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물이고, 티타늄 함유 알콕사이드는 티타늄 이소프로폭사이드 또는 티타늄 알킬(탄소수가 1 내지 4)알콕사이드인 것을 특징으로 하는 전극의 제조방법.
  6. 제1항에 있어서,
    상기 졸 용액은 결합제를 더 포함하는 것을 특징으로 하는 전극의 제조방법.
  7. 제6항에 있어서,
    상기 결합제는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜 (polyvinylalcohol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전극의 제조방법.
  8. 제6항에 있어서,
    상기 (S2) 단계 후에 상기 다공성 부직포 코팅층 내의 유기 성분을 분해시키기 위하여 열처리하는 단계를 더 포함하는 것을 특징으로 하는 전극의 제조방법.
  9. 제1항에 있어서,
    상기 전기분사는 전기방사(electrospinning) 또는 전기분무(electrospraying)인 것을 특징으로 하는 전극의 제조방법.
  10. (a) 집전체 및 상기 집전체의 적어도 일면에 형성된 전극활물질층; 및
    (b) 상기 전극활물질층의 외면에 형성되어 있으며, 무기섬유로 된 다공성 부직포 코팅층을 구비한 전극.
  11. 제10항에 있어서,
    상기 무기섬유는 무기섬유를 구성하는 무기 산화물 중 금속이 알칼리 금속, 알칼리 토금속 및 전이 금속으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상을 포함하는 것을 특징으로 하는 전극.
  12. 제11항에 있어서,
    상기 알칼리 금속은 리튬인 것을 특징으로 하는 전극.
  13. 제10항에 있어서,
    상기 무기섬유는 SiO2, Al2O3, BaTiO3 및 TiO2로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성된 것을 특징으로 하는 전극.
  14. 제10항에 있어서,
    상기 무기섬유는 전기분사에 의해 형성된 것을 특징으로 하는 전극.
  15. 제14항에 있어서,
    상기 전기분사는 전기방사(electrospinning) 또는 전기분무(electrospraying)인 것을 특징으로 하는 전극.
  16. 제10항에 있어서,
    상기 무기섬유의 평균 직경은 0.001 내지 1000 nm인 것을 특징으로 하는 전극..
  17. 제10항에 있어서,
    상기 다공성 부직포 코팅층의 두께는 0.1 내지 100 um인 것을 특징으로 하는 전극.
  18. 제10항에 있어서,
    상기 다공성 부직포 코팅층의 평균 기공크기는 0.01 내지 10 um인 것을 특징으로 하는 전극.
  19. 제10항에 있어서,
    상기 부직포의 기공도는 1 내지 80 %인 것을 특징으로 하는 전극.
  20. 양극, 및 음극을 포함하는 전기화학소자에 있어서,
    상기 양극, 음극 또는 양극과 음극 모두는 제10항의 전극인 것을 특징으로 하는 전기화학소자.
  21. 제20항에 있어서,
    상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자.
PCT/KR2010/004215 2009-06-30 2010-06-29 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자 WO2011002205A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012516000A JP5841936B2 (ja) 2009-06-30 2010-06-29 多孔性コーティング層を備える電極の製造方法、その方法によって形成された電極、及びそれを備える電気化学素子
PL10794340T PL2461395T3 (pl) 2009-06-30 2010-06-29 Sposób wytwarzania elektrody z porowatą warstwą powlekającą
CN201080029125.7A CN102473894B (zh) 2009-06-30 2010-06-29 制备具有多孔涂层的电极的方法、由此制备的电极及包含其的电化学设备
EP10794340.9A EP2461395B1 (en) 2009-06-30 2010-06-29 Method for manufacturing an electrode having a porous coating layer
US13/229,009 US20120003545A1 (en) 2009-06-30 2011-09-09 Method for manufacturing electrode having porous coating layer, electrode manufactured therefrom, and electrochemical device comprising the same
US13/492,128 US20120244292A1 (en) 2009-06-30 2012-06-08 Method for manufacturing electrode having porous coating layer, electrode manufactured therefrom, and electrochemical device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0058977 2009-06-30
KR20090058977 2009-06-30
KR1020100061845A KR101032214B1 (ko) 2009-06-30 2010-06-29 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자
KR10-2010-0061845 2010-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/229,009 Continuation US20120003545A1 (en) 2009-06-30 2011-09-09 Method for manufacturing electrode having porous coating layer, electrode manufactured therefrom, and electrochemical device comprising the same

Publications (2)

Publication Number Publication Date
WO2011002205A2 true WO2011002205A2 (ko) 2011-01-06
WO2011002205A3 WO2011002205A3 (ko) 2011-04-21

Family

ID=43610393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004215 WO2011002205A2 (ko) 2009-06-30 2010-06-29 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자

Country Status (7)

Country Link
US (2) US20120003545A1 (ko)
EP (1) EP2461395B1 (ko)
JP (1) JP5841936B2 (ko)
KR (1) KR101032214B1 (ko)
CN (1) CN102473894B (ko)
PL (1) PL2461395T3 (ko)
WO (1) WO2011002205A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9363291B2 (en) 2013-08-01 2016-06-07 Connectwise, Inc. Systems and methods for managing lost devices of multiple types with multiple policies using melded profiles associated with groups
WO2018084431A1 (ko) * 2016-11-01 2018-05-11 주식회사 아모그린텍 전극 및 이를 이용한 이차전지와 전극의 제조방법

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880603B1 (ko) * 2012-08-22 2018-07-23 동국대학교 산학협력단 리튬이차전지의 음극 활물질용 실리콘 산화물-탄소 복합체의 제조방법
KR101451899B1 (ko) 2012-10-05 2014-10-21 동국대학교 산학협력단 리튬이차전지의 스피넬 리튬 티타늄 옥사이드 나노섬유 음극활물질의 제조방법
CN104937400B (zh) * 2013-01-28 2018-07-03 索尼公司 用于生物样品的阻抗测量装置和用于生物样品的阻抗测量系统
JP6114873B2 (ja) * 2013-03-12 2017-04-12 サッチェム,インコーポレイテッド 酸化ポリオキソアニオン塩の析出を介した無機基材上の酸化物シェルの形成
WO2015026110A1 (ko) * 2013-08-19 2015-02-26 동국대학교 산학협력단 흑연-타이타늄계 옥사이드 복합체의 제조방법
KR101628729B1 (ko) 2013-08-19 2016-06-10 동국대학교 산학협력단 흑연-타이타늄계 옥사이드 복합체의 제조방법
CN105336916A (zh) * 2014-06-20 2016-02-17 东莞新能源科技有限公司 锂离子电池极片及其制备方法
JP6551878B2 (ja) * 2015-02-12 2019-07-31 国立大学法人 岡山大学 リチウムイオン電池の正極材料の製造方法及びこの方法で製造した電極材料
JP7062954B2 (ja) * 2016-02-10 2022-05-09 ソニーグループ株式会社 血液凝固解析装置及び血液凝固解析方法
CN107681113B (zh) * 2016-08-01 2020-07-28 宁德时代新能源科技股份有限公司 正极片及其制备方法以及二次电池
KR102654826B1 (ko) * 2016-09-30 2024-04-05 주식회사 아모그린텍 전극 및 이를 이용한 이차전지와 전극의 제조방법
CN110546801A (zh) * 2017-04-20 2019-12-06 阿莫绿色技术有限公司 电池及包括其的移动电子设备
KR102164252B1 (ko) * 2017-05-04 2020-10-12 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
KR102109729B1 (ko) * 2017-08-28 2020-05-12 주식회사 아모그린텍 전극 및 이를 이용한 이차전지와 전극의 제조방법
CN112042005B (zh) * 2017-12-22 2023-07-07 新罗纳米技术有限公司 具有含陶瓷的分隔器层的分隔器
US11135806B2 (en) 2018-02-16 2021-10-05 American Nano Llc. Compositions incorporating silica fibers
US20190255223A1 (en) 2018-02-16 2019-08-22 American Nano, LLC Silica fiber compositions and methods of use
US11759473B2 (en) 2018-02-16 2023-09-19 American Nano, LLC Topical compositions incorporating silica fibers
US10111783B1 (en) 2018-02-16 2018-10-30 American Nano, LLC Silica fiber composition and method of use
JP6876648B2 (ja) * 2018-03-22 2021-05-26 株式会社東芝 二次電池、電池パック及び車両
CN110660955B (zh) 2018-06-29 2021-11-23 宁德时代新能源科技股份有限公司 负极极片、其制备方法及电化学装置
CN112615052B (zh) * 2020-12-14 2024-04-26 江苏纳盾科技有限公司 一种复合电解质材料及其制备方法
CN113328205A (zh) * 2021-05-28 2021-08-31 安徽壹石通新能源材料有限公司 一种组合物、含有该组合物的电极及其应用
JP2023134867A (ja) * 2022-03-15 2023-09-28 株式会社リコー 電極製造装置、電極製造方法、電気化学素子の製造装置及び電気化学素子の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100271116B1 (ko) 1992-10-02 2000-11-01 스프레이그 로버트 월터 전기분무 피복 장치 및 방법
KR100596543B1 (ko) 2004-12-06 2006-07-04 박원호 은을 함유하는 실리카 나노섬유 및 제조 방법
KR20090054385A (ko) 2007-11-26 2009-05-29 주식회사 두본 2단계 열처리를 이용한 SiO2-TiO2계 복합무기섬유의 제조방법

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1156034A (en) * 1913-01-02 1915-10-05 James K Lanning Hand-threading shuttle.
US3447875A (en) * 1965-06-21 1969-06-03 American Optical Corp Temperature compensating refractometers
JPS57191962A (en) * 1981-05-20 1982-11-25 Hitachi Ltd Fuel cell
JP3371301B2 (ja) * 1994-01-31 2003-01-27 ソニー株式会社 非水電解液二次電池
WO1996030954A1 (en) * 1995-03-31 1996-10-03 Mitsubishi Paper Mills Limited Non-woven fabric for separator of non-aqueous electrolyte cell, and non-aqueous electrolyte cell using the same
ATE310321T1 (de) * 1995-06-28 2005-12-15 Ube Industries Nichtwässrige sekundärbatterie
JPH10284065A (ja) * 1997-04-05 1998-10-23 Haibaru:Kk 非水電解液電池
DE19916042A1 (de) * 1999-04-09 2000-10-12 Basf Ag Naß-in-Naß-Beschichtungsverfahren zur Herstellung von Verbundkörpern, die zur Verwendung in Lithiumionenbatterien geeignet sind
US6280871B1 (en) * 1999-10-12 2001-08-28 Cabot Corporation Gas diffusion electrodes containing modified carbon products
JP3917853B2 (ja) * 2001-12-18 2007-05-23 日本バイリーン株式会社 回路基板用基材及びこれを用いた回路基板
JP3891484B2 (ja) * 2002-09-05 2007-03-14 株式会社ノリタケカンパニーリミテド 電解質膜およびその膜を備えた燃料電池
TWI245079B (en) * 2002-12-30 2005-12-11 Ind Tech Res Inst Method for growing highly-ordered nanofibers
WO2004112183A1 (en) * 2003-06-17 2004-12-23 Samshin Creation Co., Ltd. A complex membrane for electrochemical device, manufacturing method and electrochemical device having the same
JP4781263B2 (ja) * 2004-06-22 2011-09-28 パナソニック株式会社 二次電池およびその製造方法
US7575707B2 (en) * 2005-03-29 2009-08-18 University Of Washington Electrospinning of fine hollow fibers
KR20080017324A (ko) * 2005-04-26 2008-02-26 닛토덴코 가부시키가이샤 필터 여과재, 그의 제조 방법 및 사용 방법, 및 필터 유닛
JP4664790B2 (ja) * 2005-09-28 2011-04-06 帝人株式会社 繊維構造体の製造方法および製造装置
US7771880B2 (en) * 2005-11-21 2010-08-10 University Of Dayton Solid composite electrolyte membrane and method of making
KR100727247B1 (ko) * 2005-12-06 2007-06-11 주식회사 엘지화학 모폴로지 그래디언트를 갖는 유기/무기 복합 분리막, 그제조방법 및 이를 구비한 전기화학소자
US9267220B2 (en) * 2006-03-31 2016-02-23 Cornell University Nanofibers, nanotubes and nanofiber mats comprising crystaline metal oxides and methods of making the same
KR100865035B1 (ko) * 2006-05-04 2008-10-23 주식회사 엘지화학 리튬 이차 전지 및 그 제조방법
JP2007327148A (ja) * 2006-06-06 2007-12-20 Tokyo Institute Of Technology 高分子電解質繊維およびその製造方法
WO2008111960A2 (en) * 2006-09-29 2008-09-18 University Of Akron Metal oxide fibers and nanofibers, method for making same, and uses thereof
EP1923934A1 (de) * 2006-11-14 2008-05-21 Fortu Intellectual Property AG Wiederaufladbare elektrochemische Batteriezelle
KR100879767B1 (ko) * 2007-01-12 2009-01-21 한국과학기술연구원 열처리된 산화티타늄층을 포함하는 슈퍼커패시터용 전극 및그 제조방법
US7709139B2 (en) * 2007-01-22 2010-05-04 Physical Sciences, Inc. Three dimensional battery
JP4539658B2 (ja) * 2007-01-23 2010-09-08 ソニー株式会社 電池
JP2008198506A (ja) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
KR100868290B1 (ko) * 2007-05-04 2008-11-12 한국과학기술연구원 나노파이버 네트워크 구조의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법
US8211496B2 (en) * 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
KR101252904B1 (ko) * 2007-09-06 2013-04-09 캐논 가부시끼가이샤 리튬 이온 축적·방출 재료의 제조 방법, 리튬 이온 축적·방출 재료 및 상기 재료를 사용한 전극 구조체 및 축전 디바이스
JP4748136B2 (ja) * 2007-10-03 2011-08-17 ソニー株式会社 耐熱絶縁層付きセパレータ及び非水電解質二次電池
WO2009120812A2 (en) * 2008-03-25 2009-10-01 A123 Systems, Inc. High energy high power electrodes and batteries
US20100330419A1 (en) * 2009-06-02 2010-12-30 Yi Cui Electrospinning to fabricate battery electrodes
KR100995154B1 (ko) 2010-02-11 2010-11-18 전남대학교산학협력단 다공성탄소나노섬유 제조방법, 상기 방법으로 제조된 다공성탄소나노섬유, 및 이를 포함하는 탄소나노섬유응용제품

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100271116B1 (ko) 1992-10-02 2000-11-01 스프레이그 로버트 월터 전기분무 피복 장치 및 방법
KR100596543B1 (ko) 2004-12-06 2006-07-04 박원호 은을 함유하는 실리카 나노섬유 및 제조 방법
KR20090054385A (ko) 2007-11-26 2009-05-29 주식회사 두본 2단계 열처리를 이용한 SiO2-TiO2계 복합무기섬유의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461395A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9363291B2 (en) 2013-08-01 2016-06-07 Connectwise, Inc. Systems and methods for managing lost devices of multiple types with multiple policies using melded profiles associated with groups
US9800617B2 (en) 2013-08-01 2017-10-24 Connectwise, Inc. Systems and methods for managing lost devices of multiple types with multiple policies using melded profiles associated with groups
US10313398B2 (en) 2013-08-01 2019-06-04 Connectwise, Llc Systems and methods for managing lost devices of multiple types with multiple policies using melded profiles associated with groups
US10904294B2 (en) 2013-08-01 2021-01-26 Connectwise, Llc Systems and methods for managing lost devices of multiple types with multiple policies using melded profiles associated with groups
WO2018084431A1 (ko) * 2016-11-01 2018-05-11 주식회사 아모그린텍 전극 및 이를 이용한 이차전지와 전극의 제조방법
CN109792035A (zh) * 2016-11-01 2019-05-21 阿莫绿色技术有限公司 电极及利用其的二次电池和电极的制备方法
US11018379B2 (en) 2016-11-01 2021-05-25 Amogreentech Co., Ltd. Electrode, secondary battery using same, and method for manufacturing electrode

Also Published As

Publication number Publication date
JP2012531010A (ja) 2012-12-06
EP2461395B1 (en) 2019-01-23
CN102473894B (zh) 2016-12-28
PL2461395T3 (pl) 2019-05-31
JP5841936B2 (ja) 2016-01-13
WO2011002205A3 (ko) 2011-04-21
KR101032214B1 (ko) 2011-05-02
US20120244292A1 (en) 2012-09-27
KR20110001951A (ko) 2011-01-06
US20120003545A1 (en) 2012-01-05
CN102473894A (zh) 2012-05-23
EP2461395A2 (en) 2012-06-06
EP2461395A4 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2011002205A2 (ko) 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자
WO2011062460A2 (ko) 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자
WO2011105866A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2014073937A1 (ko) 세퍼레이터의 제조방법, 그에 의해 제조된 세퍼레이터 및 그를 포함하는 전기화학소자
WO2013012292A2 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2010117195A2 (ko) 다공성 코팅층을 포함하는 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2013154253A1 (ko) 다공성 코팅층을 포함하는 전극, 상기 전극의 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2014042485A1 (ko) 개선된 전기화학 특성을 갖는 리튬이차전지 및 이의 제조방법
WO2016165559A1 (zh) 复合隔膜及其制备方法以及锂离子电池
WO2014088270A1 (ko) 리튬 이차전지용 고용량 음극 활물질, 이의 제조 방법 및 이를 포함한 리튬 이차전지
WO2010024559A2 (ko) 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2015196854A1 (zh) 复合隔膜及其制备方法,以及锂离子电池
WO2010076989A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2013157902A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2014182095A1 (ko) 절연층을 포함한 전극 구조체, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2013062313A1 (ko) 음극활물질의 제조방법, 그 음극활물질 및 이를 구비한 리튬이차전지
WO2011105865A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2014157955A1 (ko) 애노드 활물질 슬러리, 그 슬러리를 이용한 애노드 및 그를 포함하는 전기화학소자
WO2014185730A1 (ko) 중공형 실리콘계 입자, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질
WO2016029740A1 (zh) 复合隔膜的制备方法
WO2012150838A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2015065090A1 (ko) 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지
WO2015152636A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2016161920A1 (zh) 复合隔膜及其制备方法以及锂离子电池
WO2014030853A1 (ko) 리튬이차전지의 음극 활물질용 실리콘 산화물-탄소 복합체의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029125.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794340

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012516000

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010794340

Country of ref document: EP